Science.gov

Sample records for highly squeezed light

  1. A squeezed light source operated under high vacuum.

    PubMed

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  2. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  3. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  4. High-fidelity dispersive readout using squeezed light. Part II

    NASA Astrophysics Data System (ADS)

    Kamal, Archana; Didier, Nicolas; Boutin, Samuel; Gustavsson, Simon; Kerman, Andrew J.; Oliver, William D.; Orlando, Terry P.; Blais, Alexandre; Clerk, Aashish A.

    2015-03-01

    Protocols employing squeezed radiation for quantum measurement have been realized in a gamut of systems. The central idea is to squeeze noise associated with the measured observable to enhance the signal-to-noise ratio (SNR) beyond the standard shot noise limit of detection. A similar strategy may be exploited to achieve fast, high-fidelity dispersive readout of superconducting qubits. Nonetheless, most of the reported schemes would require small dispersive shifts and/or encode information in vacuum fluctuations of the output quadrature, limiting their applicability in circuit-QED (cQED). In this talk, I will present further details on a new scheme using two-mode squeezing to dramatically enhance SNR in cQED measurement, in a setup where the qubit couples to two readout modes. I will discuss how the scheme is not limited to small dispersive couplings, and how it is robust even against various imperfections. Details on implementation of this protocol in practical cQED setups will also be discussed. This work was sponsored by the Army Research Office (ARO) and by the Assistant Secretary of Defense for Research & Engineering (ASDR&E). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government

  5. Squeezed light for the interferometric detection of high-frequency gravitational waves

    NASA Astrophysics Data System (ADS)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  6. High density spin noise spectroscopy with squeezed light

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage. Finally, we present a novel theoretical model on quantum limits of noise spectroscopies by defining a standard quantum limit under optimized regimes and by discussing the conditions of its overcoming due to squeezing.

  7. Beam splitter for squeezed light

    NASA Astrophysics Data System (ADS)

    Qu, Weizhi; Sun, Jian; Mikhailov, Eugeniy; Novikova, Irina; Shen, Heng; Xiao, Yanhong

    2016-05-01

    A conventional beam splitter can split classical light beams, but when used for squeezed light, the non-classical property is often lost at the beam splitter output. Here, we demonstrate a beam splitter made of moving atoms that can split squeezed light. Squeezed vacuum is generated by a degenerate four-wave-mixing (FWM) process in one location (Ch1) of a wall-coated Rb vapor cell, and then due to coherent diffusion of ground state coherence of the atoms within the cell, squeezed vacuum can be generated in a different location (Ch2) of the cell where no squeezing would exist without the presence of the Ch1, because of a relatively weak laser input. We attribute the phenomenon to FWM enhanced by coherence transfer. This effectively forms a beam splitter for squeezed light. We built a simple model that produces results in qualitative agreement with our experimental observations.

  8. Frequency dependent squeezed light at audio frequencies

    NASA Astrophysics Data System (ADS)

    Miller, John

    2015-04-01

    Following successful implementation in the previous generation of instruments, squeezed states of light represent a proven technology for the reduction of quantum noise in ground-based interferometric gravitational-wave detectors. As a result of lower noise and increased circulating power, the current generation of detectors places one further demand on this technique - that the orientation of the squeezed ellipse be rotated as function of frequency. This extension allows previously negligible quantum radiation pressure noise to be mitigated in addition to quantum shot noise. I will present the results of an experiment which performs the appropriate rotation by reflecting the squeezed state from a detuned high-finesse optical cavity, demonstrating frequency dependent squeezing at audio frequencies for the first time and paving the way for broadband quantum noise reduction in Advanced LIGO. Further, I will indicate how a realistic implementation of this approach will impact Advanced LIGO both alone and in combination with other potential upgrades.

  9. 30 years of squeezed light generation

    NASA Astrophysics Data System (ADS)

    Andersen, Ulrik L.; Gehring, Tobias; Marquardt, Christoph; Leuchs, Gerd

    2016-05-01

    Squeezed light generation has come of age. Significant advances on squeezed light generation have been made over the last 30 years—from the initial, conceptual experiment in 1985 till today’s top-tuned, application-oriented setups. Here we review the main experimental platforms for generating quadrature squeezed light that have been investigated in the last 30 years.

  10. Squeezed light from a silicon micromechanical resonator.

    PubMed

    Safavi-Naeini, Amir H; Gröblacher, Simon; Hill, Jeff T; Chan, Jasper; Aspelmeyer, Markus; Painter, Oskar

    2013-08-01

    Monitoring a mechanical object's motion, even with the gentle touch of light, fundamentally alters its dynamics. The experimental manifestation of this basic principle of quantum mechanics, its link to the quantum nature of light and the extension of quantum measurement to the macroscopic realm have all received extensive attention over the past half-century. The use of squeezed light, with quantum fluctuations below that of the vacuum field, was proposed nearly three decades ago as a means of reducing the optical read-out noise in precision force measurements. Conversely, it has also been proposed that a continuous measurement of a mirror's position with light may itself give rise to squeezed light. Such squeezed-light generation has recently been demonstrated in a system of ultracold gas-phase atoms whose centre-of-mass motion is analogous to the motion of a mirror. Here we describe the continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity. Laser light sent into the cavity is used to measure the fluctuations in the position of the mechanical resonator at a measurement rate comparable to its resonance frequency and greater than its thermal decoherence rate. Despite the mechanical resonator's highly excited thermal state (10(4) phonons), we observe, through homodyne detection, squeezing of the reflected light's fluctuation spectrum at a level 4.5 ± 0.2 per cent below that of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance frequency of 28 megahertz. With further device improvements, on-chip squeezing at significant levels should be possible, making such integrated microscale devices well suited for precision metrology applications. PMID:23925241

  11. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.

    PubMed

    Grote, Hartmut; Weinert, Michael; Adhikari, Rana X; Affeldt, Christoph; Kringel, Volker; Leong, Jonathan; Lough, James; Lück, Harald; Schreiber, Emil; Strain, Kenneth A; Vahlbruch, Henning; Wittel, Holger

    2016-09-01

    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5μA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments. PMID:27607619

  12. Pulsed squeezed light: Simultaneous squeezing of multiple modes

    SciTech Connect

    Wasilewski, Wojciech; Lvovsky, A. I.; Banaszek, Konrad; Radzewicz, Czeslaw

    2006-06-15

    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency.

  13. Étendue-squeezing light injector

    NASA Astrophysics Data System (ADS)

    Chaves, Julio C.; Sorgato, Simone; Benitez, Pablo; Miñano, Juan C.; Falicoff, Waqidi; Mohedano, Ruben

    2015-08-01

    There is currently a desire to produce thinner LED backlights and frontlights so that the devices which use these components can be as thin and lightweight as possible. This is particularly true for smartphones and tablets both of which make extensive use of such components. The push for thinner devices may lead to situations in which the backlights are thinner than the height of the LED emitting area. This paper deals with the coupling of LEDs and thin light guides, describing some possible ways to efficiently inject light from a relatively large LED into a thinner backlight. These solutions use étendue-squeezing optics, and linear edges which allow high-efficiency light injection.

  14. Output squeezed radiation from dispersive ultrastrong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Fedortchenko, S.; Huppert, S.; Vasanelli, A.; Todorov, Y.; Sirtori, C.; Ciuti, C.; Keller, A.; Coudreau, T.; Milman, P.

    2016-07-01

    We investigate the output generation of squeezed radiation of a cavity photon mode coupled to another off-resonant bosonic excitation. By modulating in time their linear interaction, we predict a high degree of output squeezing when the dispersive ultra-strong-coupling regime is achieved, i.e., when the interaction rate becomes comparable to the frequency of the lowest-energy mode. Our paper paves the way to squeezed light generation in frequency domains where the ultrastrong coupling is obtained, e.g., solid-state resonators in the GHz, THz, and mid-IR spectral ranges.

  15. Squeezed-light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan W.

    2016-05-01

    We report quantum enhancement of Faraday rotation spin noise spectroscopy by polarization squeezing of the probe beam. Using natural abundance Rb in 100 Torr of N2 buffer gas and squeezed light from a subthreshold optical parametric oscillator stabilized 20 GHz to the blue of the D1 resonance, we observe that an input squeezing of 3.0 dB improves the signal-to-noise ratio by 1.5 to 2.6 dB over the combined (power)⊗(number density) ranges (0.5-4.0 mW)⊗(1.5 ×1012cm-3 to 1.3 ×1013 cm-3), covering the ranges used in optimized spin noise spectroscopy experiments. We also show that squeezing improves the tradeoff between statistical sensitivity and broadening effects, a previously unobserved quantum advantage.

  16. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  17. Alignment sensing and control for squeezed vacuum states of light.

    PubMed

    Schreiber, E; Dooley, K L; Vahlbruch, H; Affeldt, C; Bisht, A; Leong, J R; Lough, J; Prijatelj, M; Slutsky, J; Was, M; Wittel, H; Danzmann, K; Grote, H

    2016-01-11

    Beam alignment is an important practical aspect of the application of squeezed states of light. Misalignments in the detection of squeezed light result in a reduction of the observable squeezing level. In the case of squeezed vacuum fields that contain only very few photons, special measures must be taken in order to sense and control the alignment of the essentially dark beam. The GEO 600 gravitational wave detector employs a squeezed vacuum source to improve its detection sensitivity beyond the limits set by classical quantum shot noise. Here, we present our design and implementation of an alignment sensing and control scheme that ensures continuous optimal alignment of the squeezed vacuum field at GEO 600 on long time scales in the presence of free-swinging optics. This first demonstration of a squeezed light automatic alignment system will be of particular interest for future long-term applications of squeezed vacuum states of light. PMID:26832246

  18. Amplitude and Transverse Quadrature Component Squeezing of Coherent Light in High Q Cavity by Injection of Atoms of Two-Photon Transition

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi

    1996-01-01

    The amplitude and transverse quadrature component squeezing of coherent light in high Q cavity by injection of atoms of two-photon transition are studied. The Golubev-Sokolov master equation and generating function approach are utilized to derive the exact variances of photon number and of transverse quadrature component as function of t. The correlation functions and power spectrums of photon number noise and of output photon current noise are also investigated.

  19. The POLIS interferometer for ponderomotive squeezed light generation

    NASA Astrophysics Data System (ADS)

    Calloni, Enrico; Conte, Andrea; De Laurentis, Martina; Naticchioni, Luca; Puppo, Paola; Ricci, Fulvio

    2016-07-01

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  20. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  1. Engineering squeezed states in high-Q cavities

    SciTech Connect

    Almeida, N.G. de; Serra, R.M.; Villas-Boas, C.J.; Moussa, M.H. Y.

    2004-03-01

    While it has been possible to build fields in high-Q cavities with a high degree of squeezing for some years, the engineering of arbitrary squeezed states in these cavities has only recently been addressed [Phys. Rev. A 68, 061801(R) (2003)]. The present work examines the question of how to squeeze any given cavity-field state and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum superposition in a a high-Q cavity.

  2. Squeezed light and correlated photons from dissipatively coupled optomechanical systems

    NASA Astrophysics Data System (ADS)

    Kilda, Dainius; Nunnenkamp, Andreas

    2016-01-01

    We study theoretically the squeezing spectrum and second-order correlation function of the output light for an optomechanical system in which a mechanical oscillator modulates the cavity linewidth (dissipative coupling). We find strong squeezing coinciding with the normal-mode frequencies of the linearized system. In contrast to dispersive coupling, squeezing is possible in the resolved-sideband limit simultaneously with sideband cooling. The second-order correlation function shows damped oscillations, whose properties are given by the mechanical-like, the optical-like normal mode, or both, and can be below shot-noise level at finite times, {g}(2)(τ )\\lt 1.

  3. Thomas precession and squeezed states of light

    NASA Technical Reports Server (NTRS)

    Han, D.; Hardekopf, E. E.; Kim, Y. S.

    1989-01-01

    The Lorentz group, which is the language of special relativity, is a useful theoretical toll in modern optics. Optics experiments can therefore serve as analog computers for special relativity. Possible optics experiments involving squeezed states are discussed in connection with the Thomas precession and the Wigner rotation.

  4. Sum-frequency generation from photon number squeezed light

    NASA Technical Reports Server (NTRS)

    Wu, Ling-An; Du, Cong-Shi; Wu, Mei-Juan; Li, Shi-Qun

    1994-01-01

    We investigate the quantum fluctuations of the fields produced in sum-frequency (SF) generation from light initially in the photon number squeezed state. It is found that, to the fourth power term, the output SF light is sub-Poissonian whereas the quantum fluctuations of the input beams increase. Quantum anticorrelation also exists in SF generation.

  5. Communication via the statistics of photon-number squeezed light.

    PubMed

    Paramanandam, Joshua; Parker, Michael A

    2005-06-17

    A method of communication employing the second order statistics of photon-number squeezed light is demonstrated. The technique encodes the information content in both nonstationary noise processes and in the average optical power, thereby creating two orthogonal channels and increasing the transmission capacity. Communication via the fragile quantum state has potential applications for privatized communication. PMID:16090471

  6. Spatial multimode structure of atom-generated squeezed light

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    2016-01-01

    We investigated the spatial distribution of quantum fluctuations in a squeezed vacuum field, generated via polarization self-rotation (PSR) interaction of an ensemble of Rb atoms and a strong near-resonant linearly polarized laser field. We found that the noise suppression is greatly effected by the transverse profile of a spatial mask, placed in both the squeezed field and the local oscillator, as well as its position along the focused beam near the focal point. These observations indicate the spatial multimode structure of the squeezed vacuum field. We have developed a theoretical model that describes the generation of higher-order Laguerre-Gauss modes as a result of PSR light-atom interaction. The prediction of this model is in a good qualitative agreement with the experimental measurements.

  7. Luminescence and squeezing of a superconducting light-emitting diode

    NASA Astrophysics Data System (ADS)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  8. Enhanced visibility of ghost imaging and interference using squeezed thermal light

    NASA Astrophysics Data System (ADS)

    Liu, Ruifeng; Fang, Aiping; Zhou, Yu; Zhang, Pei; Gao, Shaoyan; Li, Hongrong; Gao, Hong; Li, Fuli

    2016-01-01

    Ghost imaging and interference using squeezed thermal light are investigated. We show that squeezed thermal light can have a very strong photon-bunching effect in the region of very weak squeezing and thermal excitation. As a result, the visibility of the image and interference pattern can be greatly enhanced and raised to be much higher than the limitation 1 /3 to thermal light. In the squeezed vacuum case, especially, the visibility can approach to the level of entangled photon pairs from spontaneous parametric down-conversion. The present investigation may open a new potential application of squeezed light.

  9. Dynamic localization of light in squeezed-like photonic lattices

    NASA Astrophysics Data System (ADS)

    Nezhad, M. Khazaei; Golshani, M.; Mahdavi, S. M.; Bahrampour, A. R.; Langari, A.

    2016-05-01

    We investigate the dynamic localization of light in the sinusoidal bent squeezed-like photonic lattices, a class of inhomogeneous semi-infinite waveguide arrays. Our findings show that, dynamic localization takes place for the normalized amplitude of sinusoidal profile (α) above a critical value αc. In this regime, for any normalized amplitude α >αc, there is a specific spatial period (ℓ) of waveguides, in which the dynamical oscillation, with the same spatial period occurs. Moreover, the specific spatial period is a decreasing function of the normalized amplitude α. Accordingly, the dynamical oscillation and self-imaging is realized, in spite of the existence of inhomogeneous coupling coefficients and semi-infinite nature of the squeezed-like photonic lattices. In addition, a comparison between the dynamic localization and Bloch oscillation in squeezed-like photonic lattices reveals that for the same values of α (>αc), the variation in the width and the mean center of the Bloch oscillation profile are less than the corresponding values of the dynamic localization. Also, we propose the experimental conditions to observation of dynamic localization in squeezed photonic lattices.

  10. Theoretical study on balanced homodyne detection technique in preparation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Qu, Wenyan; Feng, Fei; Song, Jia-zheng; Zhang, Tong-yi

    2013-08-01

    We analyze the balanced homodyne detection technique in the detection of squeezed light, which is controlled by dither locking scheme. We discuss how the balanced homodyne detection efficiency influences the detected degree of squeezing. Also, fluctuation in the relative phase between the local beam and the squeezed light is discussed, since a little phase fluctuation would decrease the detected degree of squeezing greatly. Then, the dither locking technique is studied in detail, which is used to lock the relative phase between the local beam and the squeezed light. The simulation experiments and theoretically results show that the balanced homodyne detection technique and the dither locking scheme are efficient methods to get more accurate degree of squeezing in the preparation of the squeezed states of light.

  11. Demonstration of deterministic and high fidelity squeezing of quantum information

    SciTech Connect

    Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.

    2007-12-15

    By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.

  12. Squeezed States and Particle Production in High Energy Collisions

    NASA Technical Reports Server (NTRS)

    Bambah, Bindu A.

    1996-01-01

    Using the 'quantum optical approach' we propose a model of multiplicity distributions in high energy collisions based on squeezed coherent states. We show that the k-mode squeezed coherent state is the most general one in describing hadronic multiplicity distributions in particle collision processes, describing not only p(bar-p) collisions but e(+)e(-), vp and diffractive collisions as well. The reason for this phenomenological fit has been gained by working out a microscopic theory in which the squeezed coherent sources arise naturally if one considers the Lorentz squeezing of hadrons and works in the covariant phase space formalism.

  13. Improvement of the GEO600 gravitational wave detector using squeezed states of light

    NASA Astrophysics Data System (ADS)

    Dooley, Katherine; LIGO Scientific Collaboration

    2015-04-01

    During the last 3 years, the GEO600 laser interferometer gravitational wave (GW) observatory, located near Hannover, Germany, has conducted the first long-term study of the permanent integration of a squeezed light source to such a detector. Squeezed vacuum states, which are generated using quantum optics, are injected into the output port of the laser interferometer, where they join the GW signal and improve the shot-noise-limited signal-to-noise ratio. An improvement up to a factor 1.5 above 800 Hz has been achieved at GEO600, as well as a squeezing application duty cycle of about 90 % . New control loops have also been developed to ensure long-term stability of the integration of the squeezed light source to the GW detector. I will describe the squeezing experiment at GEO600 and report on the lessons learned for integration of a squeezed light source to future GW detectors, such as Advanced LIGO.

  14. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  15. Squeezing and over-squeezing of triphotons.

    PubMed

    Shalm, L K; Adamson, R B A; Steinberg, A M

    2009-01-01

    Quantum mechanics places a fundamental limit on the accuracy of measurements. In most circumstances, the measurement uncertainty is distributed equally between pairs of complementary properties; this leads to the 'standard quantum limit' for measurement resolution. Using a technique known as 'squeezing', it is possible to reduce the uncertainty of one desired property below the standard quantum limit at the expense of increasing that of the complementary one. Squeezing is already being used to enhance the sensitivity of gravity-wave detectors and may play a critical role in other high precision applications, such as atomic clocks and optical communications. Spin squeezing (the squeezing of angular momentum variables) is a powerful tool, particularly in the context of quantum light-matter interfaces. Although impressive gains in squeezing have been made, optical spin-squeezed systems are still many orders of magnitude away from the maximum possible squeezing, known as the Heisenberg uncertainty limit. Here we demonstrate how an optical system can be squeezed essentially all the way to this fundamental bound. We construct spin-squeezed states by overlapping three indistinguishable photons in an optical fibre and manipulating their polarization (spin), resulting in the formation of a squeezed composite particle known as a 'triphoton'. The symmetry properties of polarization imply that the measured triphoton states can be most naturally represented by quasi-probability distributions on the surface of a sphere. In this work we show that the spherical topology of polarization imposes a limit on how much squeezing can occur, leading to the quasi-probability distributions wrapping around the sphere-a phenomenon we term 'over-squeezing'. Our observations of spin-squeezing in the few-photon regime could lead to new quantum resources for enhanced measurement, lithography and information processing that can be precisely engineered photon-by-photon. PMID:19122637

  16. BOOK REVIEW: Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Zubairy, Suhail

    2005-05-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the

  17. Squeezed light from a diamond-turned monolithic cavity.

    PubMed

    Brieussel, A; Shen, Y; Campbell, G; Guccione, G; Janousek, J; Hage, B; Buchler, B C; Treps, N; Fabre, C; Fang, F Z; Li, X Y; Symul, T; Lam, P K

    2016-02-22

    For some crystalline materials, a regime can be found where continuous ductile cutting is feasible. Using precision diamond turning, such materials can be cut into complex optical components with high surface quality and form accuracy. In this work we use diamond-turning to machine a monolithic, square-shaped, doubly-resonant LiNbO3 cavity with two flat and two convex facets. When additional mild polishing is implemented, the Q-factor of the resonator is found to be limited only by the material absorption loss. We show how our monolithic square resonator may be operated as an optical parametric oscillator that is evanescently coupled to free-space beams via birefringent prisms. The prism arrangement allows for independent and large tuning of the fundamental and second harmonic coupling rates. We measure 2.6 ± 0.5 dB of vacuum squeezing at 1064 nm using our system. Potential improvements to obtain higher degrees of squeezing are discussed. PMID:26907056

  18. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600

    NASA Astrophysics Data System (ADS)

    Demkowicz-Dobrzański, Rafał; Banaszek, Konrad; Schnabel, Roman

    2013-10-01

    The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total rate of photons and for a given decoherence rate inside the measurement device. We theoretically show that the recently reported quantum-noise-limited sensitivity of the squeezed-light-enhanced German-British gravitational wave detector GEO 600 is exceedingly close to this bound, given the present amount of optical loss. Furthermore, our result proves that the employed combination of a bright coherent state and a squeezed vacuum state is generally the optimum practical approach for phase estimation with high precision on absolute scales. Based on our analysis we conclude that the application of neither Fock states nor NOON states nor any other sophisticated nonclassical quantum state would have yielded an appreciably higher quantum-noise-limited sensitivity.

  19. Generation of bright broadband-squeezed light and broadband quantum interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Daruo

    Generation of bright broadband squeezed light is of great interest from the viewpoint of experimental and applied physics. Squeezed states of the light field can be used for ultrasensitive interferometry measurements. Broadband light squeezing also can find a direct application as classical channel capacity enhancement in broadband coherent optical communication. A degenerate (type-I) optical parametric amplifier (OPA), which is based on a periodically poled nonlinear crystal, has been built for research in quantum optics, to provide a source of broadband squeezed light. Through parametric down-conversion process in the nonlinear crystal, energy of pump light was converted to OPA's output 1064 nm light, and the output light is phase-quadrature broadband squeezed. Moreover, the OPA has been operated in the state of a free-running emitter with no servo loops for cavity length control and phase control to verify the intrinsic stability of the OPA. Sensitivity enhancement of optical interferometry has been observed by homodyne detection measurements with the OPO-generated broadband squeezed light as an input beam. This experiment is also a demonstration of the increase of the classical channel capacity beyond that of a coherent state in coherent optical communication.

  20. Squeezed Light in Laguerre-Gaussian Modes through Non-linear Medium

    NASA Astrophysics Data System (ADS)

    Xiao, Zhihao; Lanning, R. Nicholas; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    2016-05-01

    We examine the propagation of squeezed light, in Laguerre-Gaussian spatial modes, through a non-linear medium such as Rb vapor. We examine the quantum states in varies spatial modes. We simulate the injection into a Rb vapor cell a linearly polarized laser beam to create squeezed vacuum state of light linearly polarized in the perpendicular direction. We fully quantize the optical field's propagation which is based on previous semi-classical calculation. The Rb atomic structure is simplified to a three-level system. We reveal the mechanism that how squeezed state of light is generated in this process and compare the theory with our experiment. Further, we simulate and compare the different squeezing that can be achieved due to the change of parameters or altering experimental setups, such as multiple passing of the beam through the Rb vapor cell.

  1. Dual clearance squeeze film damper for high load conditions

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1984-01-01

    Squeeze film dampers are widely used to control vibrations in aircraft turbine engines and other rotating machinery. However, if shaft unbalance rises appreciably above the design value (e.g., due to a turbine blade loss), a conventional squeeze film becomes overloaded, and is no longer effective in controlling vibration amplitudes and bearing forces. A damper concept characterized by two oil films is described. Under normal conditions, only one low-clearance film is active, allowing precise location of the shaft centerline. Under high unbalance conditions, both films are active, controlling shaft vibration in a near-optimum manner, and allowing continued operation until a safe shutdown can be made.

  2. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy B.; Lecocq, Florent; Simmonds, Raymond W.; Aumentado, José; Teufel, John D.

    2016-07-01

    In quantum-enhanced sensing, non-classical states are used to improve the sensitivity of a measurement. Squeezed light, in particular, has proved a useful resource in enhanced mechanical displacement sensing, although the fundamental limit to this enhancement due to the Heisenberg uncertainty principle has not been encountered experimentally. Here we use a microwave cavity optomechanical system to observe the squeezing-dependent radiation pressure noise that necessarily accompanies any quantum enhancement of the measurement precision and ultimately limits the measurement noise performance. By increasing the measurement strength so that radiation pressure forces dominate the thermal motion of the mechanical oscillator, we exploit the optomechanical interaction to implement an efficient quantum nondemolition measurement of the squeezed light. Thus, our results show how the mechanical oscillator improves the measurement of non-classical light, just as non-classical light enhances the measurement of the motion.

  3. Quantum squeezed light for probing mitochondrial membranes and study of neuroprotectants.

    SciTech Connect

    Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K.

    2005-01-01

    We report a new nanolaser technique for measuring characteristics of human mitochondria. Because mitochondria are so small, it has been difficult to study large populations using standard light microscope or flow cytometry techniques. We recently discovered a nano-optical transduction method for high-speed analysis of submicron organelles that is well suited to mitochondrial studies. This ultrasensitive detection technique uses nano-squeezing of light into photon modes imposed by the ultrasmall organelle dimensions in a semiconductor biocavity laser. In this paper, we use the method to study the lasing spectra of normal and diseased mitochondria. We find that the diseased mitochondria exhibit larger physical diameter and standard deviation. This morphological differences are also revealed in the lasing spectra. The diseased specimens have a larger spectral linewidth than the normal, and have more variability in their statistical distributions.

  4. Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths

    SciTech Connect

    Gerrits, Thomas; Stevens, Martin; Baek, Burm; Calkins, Brice; Lita, Adriana; Glancy, Scott; Knill, Emanuel; Nam, Sae Woo; Mirin, Richard; Hadfield, Robert; Bennink, Ryan S; Grice, Warren P; Dorenbos, Sander; Zijlstra, Tony; Klapwijk, Teun; Zwiller, Val

    2011-01-01

    We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.

  5. Phase control of squeezed vacuum states of light in gravitational wave detectors.

    PubMed

    Dooley, K L; Schreiber, E; Vahlbruch, H; Affeldt, C; Leong, J R; Wittel, H; Grote, H

    2015-04-01

    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond. PMID:25968662

  6. Spectral, noise and correlation properties of intense squeezed light generated by a coupling in two laser fields

    NASA Technical Reports Server (NTRS)

    Kryuchkyan, Gagik YU.; Kheruntsyan, Karen V.

    1994-01-01

    Two schemes of four-wave mixing oscillators with nondegenerate pumps are proposed for above-threehold generation of squeezed light with nonzero mean-field amplitudes. Noise and correlation properties and optical spectra of squeezed-light beams generated in these schemes are discussed.

  7. Two schemes for characterization and detection of the squeezed light: dynamical Casimir effect and nonlinear materials

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Allameh, Z.; Roknizadeh, R.; Heydari, H.

    2016-03-01

    Using two different schemes, a non-classical-squeezed state of light is detected and characterized. In the first scheme, in a one-dimensional cavity with a moving mirror (non-stationary Casimir effect) in the principal mode, we study the photon generation rate for two modes (squeezed and coherent state) of a driving field. Since the cavity with the moving mirror (similar to an optomechanical system) can be considered an analogue to a Kerr-like medium, in the second scheme, the probability amplitude for multi-photon absorption in a nonlinear (Kerr) medium will be quantum mechanically calculated. It is shown that because of the presence of nonlinear effects, the responses of these two systems to the squeezed versus coherent state are considerably distinguishable. The drastic difference between the results of these two states of light can be viewed as a proposal for detecting non-classical states.

  8. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    PubMed

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance. PMID:27370423

  9. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    NASA Astrophysics Data System (ADS)

    Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  10. Photon-number splitting of squeezed light by a single qubit in circuit QED

    NASA Astrophysics Data System (ADS)

    Moon, Kyungsun

    2013-10-01

    We theoretically propose an efficient way to generate and detect squeezed light by a single qubit in circuit QED. By tuning the qubit energy splitting close to the fundamental frequency of the first harmonic mode (FHM) in a transmission line resonator and placing the qubit at the nodal point of the third harmonic mode, one can generate the resonantly enhanced squeezing of the FHM upon pumping with the second harmonic mode. In order to investigate the photon number splitting for the squeezed FHM, we have numerically calculated the qubit absorption spectrum, which exhibits regularly spaced peaks at frequencies separated by twice the effective dispersive shift. It is also shown that adding a small pump field for the FHM makes additional peaks develop in between the dominant ones as well.

  11. Quantum-beat based dissipation for spin squeezing and light entanglement.

    PubMed

    Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi

    2016-08-22

    We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states. PMID:27557189

  12. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Aguiar, O. D.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Ast, S.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S.; Bao, Y.; Barayoga, J. C.; Barker, D.; Barr, B.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Bell, C.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bork, R.; Born, M.; Bose, S.; Bowers, J.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Buckland, K.; Brückner, F.; Buchler, B. C.; Buonanno, A.; Burguet-Castell, J.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannon, K.; Cao, J.; Capano, C. D.; Carbone, L.; Caride, S.; Castiglia, A. D.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chen, X.; Chen, Y.; Cho, H.-S.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Constancio Junior, M.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cumming, A.; Cunningham, L.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G. S.; Daw, E. J.; Dayanga, T.; Deleeuw, E.; Denker, T.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Palma, I.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drasco, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S. S.; Engel, R.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fang, Q.; Farr, B. F.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Garcia, J.; Gehrels, N.; Gelencser, G.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guido, C.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Huang, V.; Huerta, E. A.; Hughey, B.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jesse, E.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kozameh, C.; Kremin, A.; Kringel, V.; Krishnan, B.; Kucharczyk, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuper, B. J.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leong, J. R.; Levine, B.; Lhuillier, V.; Lin, A. C.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacArthur, J.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Mageswaran, M.; Mailand, K.; Manca, G.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martinov, D.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazzolo, G.; McAuley, K.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mokler, F.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nanda Kumar, D.; Nash, T.; Nayak, R.; Necula, V.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Paris, H.; Parkinson, W.; Pedraza, M.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Pöld, J.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C.; Raymond, V.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodriguez, L.; Rodruck, M.; Rollins, J. G.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vallisneri, M.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verma, S.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, J.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Wiseman, A. G.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Zanolin, M.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-08-01

    Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

  13. Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing

    NASA Astrophysics Data System (ADS)

    Zhao, Su; Twiefel, Jens; Wallaschek, Joerg

    2009-03-01

    A novel active squeeze film journal air bearing actuated by high power piezoelectric transducers is presented. The proposed bearing uses in-air squeeze film levitation to suspend the rotating spindle without contact. Unlike conventional journal bearings, the presented bearing journal is formed by multiple independently vibrating surfaces driven individually by piezoelectric transducers. Langevin type piezoelectric transducers with a special radiation surface are developed. Detailed design procedures to develop the ultrasonic transducers are presented. A complete spindle-bearing system is constructed to test the proposed squeeze film bearing. Load carrying forces are measured at different vibration amplitude and compared with the calculated results. The proposed squeeze film journal bearing is operated in ultrasonic frequency range. The achieved load capacity is about 50N, which is five times of the load capacity achieved by the previous squeeze film bearings reported in the literatures.

  14. Teleportation and spin squeezing utilizing multimode entanglement of light with atoms

    SciTech Connect

    Hammerer, K.; Cirac, J. I.; Polzik, E. S.

    2005-11-15

    We present a protocol for the teleportation of the quantum state of a pulse of light onto the collective spin state of an atomic ensemble. The entangled state of light and atoms employed as a resource in this protocol is created by probing the collective atomic spin, Larmor precessing in an external magnetic field, off resonantly with a coherent pulse of light. We take here full account of the effects of Larmor precession and show that it gives rise to a qualitatively different type of multimode entangled state of light and atoms. The protocol is shown to be robust against the dominating sources of noise and can be implemented with an atomic ensemble at room temperature interacting with free-space light. We also provide a scheme to perform the readout of the Larmor precessing spin state enabling the verification of successful teleportation as well as the creation of spin squeezing.

  15. Superluminal and slow light in {lambda}-type three-level atoms via squeezed vacuum and spontaneously generated coherence

    SciTech Connect

    Carreno, F.; Calderon, Oscar G.; Anton, M.A.

    2005-06-15

    We study the dispersion and absorption spectra of a weak probe in a {lambda}-type three-level atomic system with closely ground sublevels driven by a strong field and damped by a broadband squeezed vacuum. We analyze the interplay between the spontaneous generated coherence and the squeezed field on the susceptibility of the atomic system. We find that by varying the intensity of the squeezed field the group velocity of a weak pulse can change from subluminal to superluminal. In addition we exploit the fact that the properties of the atomic medium can be dramatically modified by controlling the relative phase between the driving field and the squeezed field, allowing us to manipulate the group velocity at which light propagates. The physical origin of this phenomenon corresponds to a transfer of the atomic coherence from electromagnetically induced transparency to electromagnetically induced absorption. Besides, this phenomenon is achieved under nearly transparency conditions and with negligible distortion of the propagation pulse.

  16. Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.

    PubMed

    Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A

    2015-08-28

    We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics. PMID:26371653

  17. Beyond Advanced Gravitational Wave Detectors: Beating the Quantum Limit with Squeezed States of Light

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa

    2013-04-01

    After two decades of technology development, the first direct observation of gravitational waves appears to be imminent. Ground-based interferometric gravitational wave detectors world-wide are about to come back on-line after a major upgrade aimed to significantly improve their sensitivity. As these advanced detectors become a reality, the gravitational wave community is looking at new ways of further expanding their astrophysical reach. The quantum nature of light imposes a fundamental limit to the sensitivity that gravitational wave detectors can achieve, due to statistical fluctuations in the arrival time of photons at the interferometer output (shot noise) and the recoil of the mirrors due to radiation pressure noise. In this talk I will show how mature technology can be used to push interferometric precision measurement beyond the standard quantum limit by means of squeezed states of light, and current ideas on how to integrate this technology into the Advanced detectors of the Laser Interferometer Gravitational wave Observatory (LIGO).

  18. Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source

    SciTech Connect

    Eberle, Tobias; Haendchen, Vitus; Schnabel, Roman; Duhme, Joerg; Franz, Torsten; Werner, Reinhard F.

    2011-05-15

    Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highest value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.

  19. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  20. INSTRUMENTS AND METHODS OF INVESTIGATION: Generation of squeezed (sub-Poissonian) light by a multimode laser

    NASA Astrophysics Data System (ADS)

    Kozlovskii, A. V.

    2007-12-01

    Theoretical and experimental results of investigations into the quantum noise of multimode laser radiation are considered. The feasibility of generating light with a photon-number-squeezed (sub-Poissonian) photon distribution by a multimode laser with a homogeneously broadened line is analyzed. The conditions of noisy and noiseless (regular) pumping are considered. Photon-number fluctuations of the net laser radiation summed over all generated modes are calculated in the approximation of equidistant equal modes, as are photon-number fluctuations in an individual mode inside and outside the resonator. Output-radiation noise spectra and photon-number fluctuations are calculated for solid-state (neodymium glass, Nd:YAG) and semiconductor lasers. Theoretical results are compared with a number of experimental data obtained for semiconductor lasers in recent years.

  1. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    PubMed Central

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-01-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits. PMID:26931620

  2. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    NASA Astrophysics Data System (ADS)

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-03-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits.

  3. Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: Experimental tests and modelling

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun

    2016-03-01

    This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

  4. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Preparation of Squeezed State and Entanglement State Between Vibrational Motion of Trapped Ion and Light

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Jie

    2010-12-01

    Several schemes have been proposed to prepare two-mode squeezed state and entanglement state between motional states of a single trapped ion and light. Preparation of two-mode squeezed state is based on interaction of a trapped ion located in light cavity with cavity field. Preparation of entanglement state is based on interaction of a trapped ion located in light cavity with cavity field and a traveling wave light field.

  5. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  6. Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Yu; Wei, Chao-Ping; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-06-01

    We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

  7. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    SciTech Connect

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-09-15

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  8. Experimental demonstration of quantum teleportation of broadband squeezing.

    PubMed

    Yonezawa, Hidehiro; Braunstein, Samuel L; Furusawa, Akira

    2007-09-14

    We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8+/-0.2 dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations. PMID:17930422

  9. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  10. Response of a mechanical oscillator in an optomechanical cavity driven by a finite-bandwidth squeezed vacuum excitation

    NASA Astrophysics Data System (ADS)

    Lotfipour, H.; Shahidani, S.; Roknizadeh, R.; Naderi, M. H.

    2016-05-01

    In this paper, we theoretically investigate the displacement and momentum fluctuations spectra of the movable mirror in a standard optomechanical system driven by a finite-bandwidth squeezed vacuum light accompanying a coherent laser field. Two cases in which the squeezed vacuum is generated by degenerate and nondegenerate parametric oscillators (DPO and NDPO) are considered. We find that for the case of finite-bandwidth squeezed vacuum injection, the two spectra exhibit unique features, which strongly differ from those of broadband squeezing excitation. In particular, the spectra exhibit a three-peaked and a four-peaked structure, respectively, for the squeezing injection from DPO and NDPO. Besides, some anomalous characteristics of the spectra such as squeezing-induced pimple, hole burning, and dispersive profile are found to be highly sensitive to the squeezing parameters and the temperature of the mirror. We also evaluate the mean-square fluctuations in position and momentum quadratures of the movable mirror and analyze the influence of the squeezing parameters of the input field on the mechanical squeezing. It will be shown that the parameters of driven squeezed vacuum affects the squeezing. We find the optimal mechanical squeezing is achievable via finite-bandwidth squeezed vacuum injection which is affected by the intensity of squeezed vacuum. We also show that the phase of incident squeezed vacuum determines whether position or momentum squeezing occurs. Our proposed scheme not only provides a feasible experimental method to detect and characterize squeezed light by optomechanical systems, but also suggests a way for controllable transfer of squeezing from an optical field to a mechanical oscillator.

  11. Experimental characterization of the Gaussian state of squeezed light obtained via single passage through an atomic vapor

    NASA Astrophysics Data System (ADS)

    Valente, P.; Auyuanet, A.; Barreiro, S.; Failache, H.; Lezama, A.

    2015-05-01

    We show that the description of light in terms of Stokes operators in combination with the assumption of Gaussian statistics results in a dramatic simplification of the experimental study of fluctuations in the light transmitted through an atomic vapor: no local oscillator is required, the detected quadrature is easily selected by a wave-plate angle, and the complete noise ellipsis reconstruction is obtained via matrix diagonalization. We provide empirical support for the assumption of Gaussian statistics in quasiresonant light transmitted through an 87Rb vapor cell and we illustrate the suggested approach by studying the evolution of the fluctuation ellipsis as a function of laser detuning. Applying the method to two light beams obtained by parting squeezed light in a beam splitter, we have measured the entanglement and quantum Gaussian discord.

  12. Generation of Squeezed Light Using Photorefractive Degenerate Two-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Lu, Yajun; Wu, Meijuan; Wu, Ling-An; Tang, Zheng; Li, Shiqun

    1996-01-01

    We present a quantum nonlinear model of two-wave mixing in a lossless photorefractive medium. A set of equations describing the quantum nonlinear coupling for the field operators is obtained. It is found that, to the second power term, the commutation relationship is maintained. The expectation values for the photon number concur with those of the classical electromagnetic theory when the initial intensities of the two beams are strong. We also calculate the quantum fluctuations of the two beams initially in the coherent state. With an appropriate choice of phase, quadrature squeezing or number state squeezing can be produced.

  13. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.

    PubMed

    Wang, Dong-Yang; Bai, Cheng-Hua; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme is assessed by simulating the steady-state variance of the mechanical displacement quadrature numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state squeezing can be effectively generated in a highly dissipative cavity. PMID:27091072

  14. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity

    PubMed Central

    Wang, Dong-Yang; Bai, Cheng-Hua; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme is assessed by simulating the steady-state variance of the mechanical displacement quadrature numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state squeezing can be effectively generated in a highly dissipative cavity. PMID:27091072

  15. Observation of squeezed states with strong photon-number oscillations

    NASA Astrophysics Data System (ADS)

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-01

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  16. Observation of squeezed states with strong photon-number oscillations

    SciTech Connect

    Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman

    2010-01-15

    Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.

  17. Disappearance and revival of squeezing in quantum communication with squeezed state over a noisy channel

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowei; Hao, Shuhong; Tian, Caixing; Su, Xiaolong; Xie, Changde; Peng, Kunchi

    2016-02-01

    Squeezed state can increase the signal-to-noise ratio in quantum communication and quantum measurement. However, losses and noises existing in real communication channels will reduce or even totally destroy the squeezing. The phenomenon of disappearance of the squeezing will result in the failure of quantum communication. In this letter, we present the experimental demonstrations on the disappearance and revival of the squeezing in quantum communication with squeezed state. The experimental results show that the squeezed light is robust (squeezing never disappears) in a pure lossy but noiseless channel. While in a noisy channel, the excess noise will lead to the disappearance of the squeezing, and the squeezing can be revived by the use of a correlated noisy channel (non-Markovian environment). The channel capacity of quantum communication is increased after the squeezing is revived. The presented results provide useful technical references for quantum communication with squeezed light.

  18. Squeezed K{sup +}K{sup -} correlations in high energy heavy ion collisions

    SciTech Connect

    Dudek, Danuce M.; Padula, Sandra S.

    2010-09-15

    The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties. In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed correlations have not yet been discovered experimentally. A method has been suggested for the empirical search of this effect, which was previously illustrated for {phi}{phi} pairs. We apply here the formalism and the suggested method to the case of K{sup +}K{sup -} pairs, since they may be easier to identify experimentally. The time distribution of the emission process plays a crucial role in the survival of the BBC's. We analyze the cases where the emission is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Levy distribution in time. Effects of squeezing on the correlation function of identical particles are also analyzed.

  19. Polarization squeezing of light by single passage through an atomic vapor

    NASA Astrophysics Data System (ADS)

    Barreiro, S.; Valente, P.; Failache, H.; Lezama, A.

    2011-09-01

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  20. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy; Dowling, Jonathan P.

    2016-05-01

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology and quantum memory applications. Additionally, we model a multi-pass beam configuration and show that this can lead to a further improvement of vacuum squeezing.

  1. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Toyli, D. M.; Eddins, A. W.; Boutin, S.; Puri, S.; Hover, D.; Bolkhovsky, V.; Oliver, W. D.; Blais, A.; Siddiqi, I.

    2016-07-01

    We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  2. Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

    PubMed Central

    Garcés, Rafael; de Valcárcel, Germán J.

    2016-01-01

    Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. Second, the light field has a macroscopic coherent component corresponding to the pump, making it less versatile than the so-called squeezed vacuum, characterised by a null mean field. Here we prove analytically and numerically that the bichromatic pumping of optomechanical and superconducting circuit cavities removes both limitations. This finding should boost the development of a new generation of robust vacuum squeezers in the microwave and optical domains with current technology. PMID:26916946

  3. Coal markets squeeze producers

    SciTech Connect

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  4. A hybrid-systems approach to spin squeezing using a highly dissipative ancillary system

    NASA Astrophysics Data System (ADS)

    Dooley, Shane; Yukawa, Emi; Matsuzaki, Yuichiro; Knee, George C.; Munro, William J.; Nemoto, Kae

    2016-05-01

    Squeezed states of spin systems are an important entangled resource for quantum technologies, particularly quantum metrology and sensing. Here we consider the generation of spin squeezed states by interacting the spins with a dissipative ancillary system. We show that spin squeezing can be generated in this model by two different mechanisms: one-axis twisting (OAT) and driven collective relaxation (DCR). We can interpolate between the two mechanisms by simply adjusting the detuning between the dissipative ancillary system and the spin system. Interestingly, we find that for both mechanisms, ancillary system dissipation need not be considered an imperfection in our model, but plays a positive role in spin squeezing. To assess the feasibility of spin squeezing we consider two different implementations with superconducting circuits. We conclude that it is experimentally feasible to generate a squeezed state of hundreds of spins either by OAT or by DCR.

  5. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a strong laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology.

  6. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  7. Squeezed-state source using radiation-pressure-induced rigidity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Mavalvala, Nergis; Chen Yanbei; Khalili, Farid; Vyatchanin, Sergey; Whitcomb, Stan

    2006-02-15

    We propose an experiment to extract ponderomotive squeezing from an interferometer with high circulating power and low mass mirrors. In this interferometer, optical resonances of the arm cavities are detuned from the laser frequency, creating a mechanical rigidity that dramatically suppresses displacement noises. After taking into account imperfection of optical elements, laser noise, and other technical noise consistent with existing laser and optical technologies and typical laboratory environments, we expect the output light from the interferometer to have measurable squeezing of 5 dB, with a frequency-independent squeeze angle for frequencies below 1 kHz. This squeeze source is well suited for injection into a gravitational-wave interferometer, leading to improved sensitivity from reduction in the quantum noise. Furthermore, this design provides an experimental test of quantum-limited radiation pressure effects, which have not previously been tested.

  8. High-fidelity teleportation between light and atoms

    SciTech Connect

    Hammerer, K.; Polzik, E. S.; Cirac, J. I.

    2006-12-15

    We show how high-fidelity quantum teleportation of light to atoms can be achieved in the same setup as was used in the recent experiment [J. Sherson et al., Nature 443, 557, 2006], where such an interspecies quantum state transfer was demonstrated for the first time. Our improved protocol takes advantage of the rich multimode entangled structure of the state of atoms and scattered light and requires simple postprocessing of homodyne detection signals and squeezed light in order to achieve fidelities up to 90% (85%) for teleportation of coherent (qubit) states under realistic experimental conditions. The remaining limitation is due to atomic decoherence and light losses.

  9. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    SciTech Connect

    Sales, J. S.; Silva, L. F. da; Almeida, N. G. de

    2011-03-15

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  10. Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity

    NASA Astrophysics Data System (ADS)

    Sales, J. S.; da Silva, L. F.; de Almeida, N. G.

    2011-03-01

    We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.

  11. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  12. High-Fidelity Resonator-Induced Phase Gate with Single-Mode Squeezing

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; Blais, Alexandre

    2016-05-01

    We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED by the use of narrow-band single-mode squeezing. We show that there exists an optimal squeezing angle and strength that erases qubit "which-path" information leaking out of the cavity and thereby minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in excellent agreement with numerical simulations of a cascaded master equation that takes into account the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible to realize a controlled-phase gate with a gate time of 200 ns and average infidelity of 1 0-5.

  13. High Intensity Lights

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Xenon arc lamps developed during the Apollo program by Streamlight, Inc. are the basis for commercial flashlights and emergency handlights. These are some of the brightest portable lights made. They throw a light some 50 times brighter than automobile high beams and are primarily used by police and military. The light penetrates fog and smoke and returns less back-scatter light. They are operated on portable power packs as boat and auto batteries. An infrared model produces totally invisible light for covert surveillance.

  14. 'Squeezing' near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion.

    PubMed

    Karalis, Aristeidis; Joannopoulos, J D

    2016-01-01

    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm(2) with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm(2) with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm(2) with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a 'squeezed' narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells. PMID:27363522

  15. The Second International Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.; Manko, V. I.

    1993-01-01

    This conference publication contains the proceedings of the Second International Workshop on Squeezed States and Uncertainty Relations held in Moscow, Russia, on 25-29 May 1992. The purpose of this workshop was to study possible applications of squeezed states of light. The Workshop brought together many active researchers in squeezed states of light and those who may find the concept of squeezed states useful in their research, particularly in understanding the uncertainty relations. It was found at this workshop that the squeezed state has a much broader implication than the two-photon coherent states in quantum optics, since the squeeze transformation is one of the most fundamental transformations in physics.

  16. Squeeze flow rheometry as a novel tool for the characterization of highly concentrated protein solutions.

    PubMed

    Schermeyer, Marie-Therese; Sigloch, Heike; Bauer, Katharina C; Oelschlaeger, Claude; Hubbuch, Jürgen

    2016-03-01

    This study aims at defining rheological parameters for the characterization of highly concentrated protein solutions. As a basis for comparing rheological behavior with protein solution characteristics the protein phase behavior of Lysozyme from chicken egg white with concentrations up to 225 mg/mL, changing pH values and additive concentrations was studied in a microbatch scale format. The prepared phase diagrams, scored after 40 days (t40) give insights into the kind and kinetics of the phase transitions that occur. Oscillatory frequency sweep measurements of samples with exactly the same conditions were conducted immediately after preparation (t0). The protein solutions behave viscoelastic and show a characteristic curve shape of the storage modulus (G') and the loss modulus (G″). The graphs provide information about the cross-linking degree of the respective sample. The measured rheological parameters were sensitive concerning solution composition, protein concentration and solution inner structure. The rheological moduli G' and G″ and especially the ratio of these parameters over a frequency range from 100 to 40000 rad/sec give information about the aggregation tendency of the protein under tested conditions. We succeeded to correlate protein phase behavior with the defined rheological key parameter ωCO. This point represents the frequency value of the intersection point from G' and G″. In our study Lysozyme expressed a ωCO threshold value of 20000 rad/sec as a lower limit for stable protein solutions. The predictability of lysozyme aggregation tendency and crystallization by means of squeeze flow rheometry is shown. PMID:26375304

  17. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

    PubMed

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies. PMID:25422163

  18. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  19. Quantum control and squeezing of collective spins

    NASA Astrophysics Data System (ADS)

    Montano, Enrique

    Quantum control of many body atomic spins is often pursued in the context of an atom-light quantum interface, where a quantized light field acts as a "quantum bus" that can be used to entangle distant atoms. One key challenge is to improve the coherence of the atom-light interface and the amount of atom-light entanglement it can generate, given the constraints of working with multilevel atoms and optical fields in a 3D geometry. We have explored new ways to achieve this, through rigorous optimization of the spatial geometry, and through control of the internal atomic state. Our basic setup consists of a quantized probe beam passing through an atom cloud held in a dipole trap, first generating spin-probe entanglement through the Faraday interaction, and then using backaction from a measurement of the probe polarization to squeeze the collective atomic spin. The relevant figure of merit is the metrologically useful spin squeezing determined by the enhancement in the resolution of rotations of the collective spin, relative to the commonly used spin coherent state. With an optimized free-space geometry, and by using a 2-color probe scheme to suppress tensor light shifts, we achieve 3(2) dB of metrologically useful spin squeezing. We can further increase atom-light coupling by implementing internal state control to prepare spin states with larger initial projection noise relative to the spin coherent state. Under the right conditions this increase in projection noise can lead to stronger measurement backaction and increased atom-atom entanglement. With further internal state control the increased atom-atom entanglement can then be mapped to a basis where it corresponds to improved squeezing of, e.g., the physical spin-angular momentum or the collective atomic clock pseudospin. In practice, controlling the collective spin of N ~ 106 atoms in this fashion is an extraordinarily difficult challenge because errors in the control of individual atoms tend to be highly

  20. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    SciTech Connect

    Jiang, Longtao; Wang, Pingping; Xiu, Ziyang; Chen, Guoqin; Lin, Xiu; Dai, Chen; Wu, Gaohui

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  1. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  2. Workshop on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1992-01-01

    The proceedings from the workshop are presented, and the focus was on the application of squeezed states. There are many who say that the potential for industrial applications is enormous, as the history of the conventional laser suggests. All those who worked so hard to produce squeezed states of light are continuing their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking for new experiments using these lasers. The physical basis of squeezed states is the uncertainty relation in Fock space, which is also the basis for the creation and annihilation of particles in quantum field theory. Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a measurement theory for quantum field theory.

  3. Nonlinear Whirl Response of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2005-01-01

    Synchronous and nonsynchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers is presented. Test performance with the original damper of length 5.84 mm was marginal, with nonsynchronous whirling at the overhung seal test disk and high amplitude synchronous response above 32,000 rpm near the drive spline section occurring. A system critical speed analysis of the drive system and the high-speed seal test rotor indicated that the first two critical speeds are associated with the seal test rotor. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. However, with high rotor unbalance, damper lockup could still occur at 33,000 rpm, even with the extended squeeze-film dampers. Therefore, the test rotor must be reasonably balanced in order for the un-centered dampers to be effective.

  4. Spin squeezing in a Rydberg lattice clock.

    PubMed

    Gil, L I R; Mukherjee, R; Bridge, E M; Jones, M P A; Pohl, T

    2014-03-14

    We theoretically demonstrate a viable approach to spin squeezing in optical lattice clocks via optical dressing of one clock state to a highly excited Rydberg state, generating switchable atomic interactions. For realistic experimental parameters, these interactions are shown to generate over 10 dB of squeezing in large ensembles within a few microseconds and without degrading the subsequent clock interrogation. PMID:24679291

  5. Some rules for polydimensional squeezing

    NASA Technical Reports Server (NTRS)

    Manko, Vladimir I.

    1994-01-01

    The review of the following results is presented: For mixed state light of N-mode electromagnetic field described by Wigner function which has generic Gaussian form, the photon distribution function is obtained and expressed explicitly in terms of Hermite polynomials of 2N-variables. The momenta of this distribution are calculated and expressed as functions of matrix invariants of the dispersion matrix. The role of new uncertainty relation depending on photon state mixing parameter is elucidated. New sum rules for Hermite polynomials of several variables are found. The photon statistics of polymode even and odd coherent light and squeezed polymode Schroedinger cat light is given explicitly. Photon distribution for polymode squeezed number states expressed in terms of multivariable Hermite polynomials is discussed.

  6. Displacement of Propagating Squeezed Microwave States.

    PubMed

    Fedorov, Kirill G; Zhong, L; Pogorzalek, S; Eder, P; Fischer, M; Goetz, J; Xie, E; Wulschner, F; Inomata, K; Yamamoto, T; Nakamura, Y; Di Candia, R; Las Heras, U; Sanz, M; Solano, E; Menzel, E P; Deppe, F; Marx, A; Gross, R

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power. PMID:27447495

  7. Displacement of Propagating Squeezed Microwave States

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  8. Squeezed state generation in photonic crystal microcavities.

    PubMed

    Banaee, M G; Young, Jeff F

    2008-12-01

    The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in three dimensional photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated for structures made in Al0.3Ga0.7As, using finite-difference time-domain simulations. Squeezing up to approximately 30% below the shot noise level is predicted for 10 mW average power, 80 MHz repetition, 500 ps excitation pulses using in a [111] oriented wafer. PMID:19065230

  9. Two-mode squeezing in a broadband parametric amplifier

    NASA Astrophysics Data System (ADS)

    Grover, J. A.; Kamal, A.; Gustavsson, S.; Yan, F.; Orlando, T. P.; Oliver, W. D.; Hover, D.; Bolkhovsky, V.; Yoder, J. L.; Macklin, C.; O'Brien, K.; Siddiqi, I.

    The Josephson traveling wave parametric amplifier (JTWPA) exhibits gains of greater than 20 dB over a frequency range of a few gigahertz. In addition to being a quantum-limited amplifier over a wide frequency range, the JTWPA is a source of broadband squeezed radiation. We report the observation of broadband squeezing of microwave light generated by a JTWPA by measuring cross correlations between modes separated by up to one gigahertz in frequency. Employing a chain of two JTWPAs, the first as a squeezer and the second as a quantum-limited preamplifier, ensures a high-efficiency measurement of squeezing. We also discuss progress towards employing such two-mode squeezed radiation to realize high-fidelity dispersive readout of superconducting qubits. This research was funded in part by the U.S. Army Research Office Grant No. W911NF-14-1-0682 and by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  10. Squeezing in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Boivin, Luc

    The generation of squeezed radiation in single -mode optical fibers is discussed. A self-consistent theory for the quantum propagation of pulses in dispersive and Raman active fibers is developed. A numerical implementation of the corresponding linearized noise theory is presented. This code was used to design a new fiber squeezer operating at 830nm. A closed-form solution to the nonlinear, stochastic and integro-differential equation for the quantum envelope is found at zero dispersion. We use this solution to study the resonance-fluorescence spectrum of a fiber excited by a monochromatic laser field. We also evaluate the mean field and the squeezing level for fiber lengths where the linearized approximation is no longer valid. The predictions of this continuous-time theory are compared with those of the discretized-time model. We show that quantum revivals predicted by the latter are spurious. We show that the linearized approximation in the soliton regime is valid for nonlinear phase shifts up to n_0^ {1/4}. The noise of the four soliton operators is shown to be minimized in a Poisson-Gaussian soliton state. We propose a new method for generating squeezed vacuum using a low birefringence fiber. This method relies on cross-phase modulation between modes with orthogonal polarizations, and does not require a interferometric geometry. We predict the nonlinear depolarization of an intense linearly polarized pulse coupled into a low birefringence fiber due to its interaction with quantum noise. Finally, progress in the construction of a fiber squeezer driven by a high repetition rate modelocked Ti:Sapphire laser is reported. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  11. Experimental generation of amplitude squeezed vector beams.

    PubMed

    Chille, Vanessa; Berg-Johansen, Stefan; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-05-30

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices 0 or 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB±0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters. PMID:27410153

  12. Squeezed potato orbits in a magnetic well

    SciTech Connect

    Shaing, K. C.

    2001-09-01

    It is shown that potato orbits in the near-axis region of a high beta tokamak are squeezed in a magnetic well. The squeezing factor is the same as that for the banana orbits derived in an earlier work [Phys. Plasmas 3, 2843 (1996)]. It depends on the energy of the particle. For high-energy particles, the size of the squeezed orbits is independent of their energy. This implies improved confinement for high-energy particles and for high beta tokamaks with advanced fuels.

  13. Squeezing in a {lambda}-type three-level atom via spontaneously generated coherence

    SciTech Connect

    Gonzalo, Isabel

    2005-09-15

    The squeezing spectrum of the fluorescent light is investigated for a laser-driven three-level atom of the {lambda} configuration when quantum interference of the decay channels is accounted for. We show that when the two atomic transitions contribute to the detected fluorescence field, squeezing at certain frequency intervals is obtained in both the weak- and the high-Rabi-frequency regimes even for equally decay rates of the transitions. Unlike in two-level atoms in free space, squeezing can be obtained in both the in-phase and out-of-phase quadrature spectra although in different spectral regions. We also show that the squeezing spectrum can be controlled by an adequate selection of the Rabi frequencies and atomic detunings. Another remarkable effect is that squeezing can be achieved with proper relative phases of the driving fields. We provide an analytical description in the dressed basis which accounts for the main features of the squeezing spectra obtained from the numerical work.

  14. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  15. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.

    PubMed

    Buchmann, L F; Schreppler, S; Kohler, J; Spethmann, N; Stamper-Kurn, D M

    2016-07-15

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation. PMID:27472106

  16. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.

    2016-07-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.

  17. New squeezed landau states

    NASA Technical Reports Server (NTRS)

    Aragone, C.

    1993-01-01

    We introduce a new set of squeezed states through the coupled two-mode squeezed operator. It is shown that their behavior is simpler than the correlated coherent states introduced by Dodonov, Kurmyshev, and Man'ko in order to quantum mechanically describe the Landau system, i.e., a planar charged particle in a uniform magnetic field. We compare results for both sets of squeezed states.

  18. High Intensity Lighting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Nightime illumination is an important part of round-the-clock pre-launch preparations because NASA uses TV and film cameras to monitor each step of the preliminaries and at times to identify the cause of malfunction during countdown. Generating a one billion candlepower beam visible 50 miles away, the lamps developed by Duro-Test Corporation provide daylight quality light that eliminates color distortion in film and TV coverage. The lighting system was first used at Kennedy Space Center in 1968 for the launch of Apollo 8. Modified versions are available in wide range of applications, such as the battery of spotlights with colored filters that light up Niagara Falls, as well as the lamps used in the projectors for the Smithsonian's IMAX Theatre, indoor theatres with supersized screens and outdoor projection systems.

  19. Polariton-generated intensity squeezing in semiconductor micropillars.

    PubMed

    Boulier, T; Bamba, M; Amo, A; Adrados, C; Lemaitre, A; Galopin, E; Sagnes, I; Bloch, J; Ciuti, C; Giacobino, E; Bramati, A

    2014-01-01

    The generation of squeezed and entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here we demonstrate a novel source of continuous variable squeezed light in pillar-shaped semiconductor microcavities in the strong coupling regime. Degenerate polariton four-wave mixing is obtained by exciting the pillar at normal incidence. We observe a bistable behaviour and we demonstrate the generation of squeezing near the turning point of the bistability curve. The confined pillar geometry allows for a larger amount of squeezing than planar microcavities due to the discrete energy levels protected from excess noise. By analysing the noise of the emitted light, we obtain a measured intensity squeezing of 20.3%, inferred to be 35.8% after corrections. PMID:24518009

  20. Single-mode squeezing in arbitrary spatial modes.

    PubMed

    Semmler, Marion; Berg-Johansen, Stefan; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd

    2016-04-01

    As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as flexible tools for the spatial reshaping of squeezed light. PMID:27137050

  1. Dynamic Evolution of Squeezing Maintenance

    NASA Astrophysics Data System (ADS)

    Wan, Zhi-Long; Fan, Hong-Yi

    2016-08-01

    By virtue of the coherent state representation and solving Riccati equation we derive dynamic evolution operator for maintaining squeezing, i.e., we demonstrate that the final state keeps squeezing when the initial state is a squeezed vacuum state. The number-phase squeezing maintenance mechanism is also studied.

  2. Storage and retrieval of squeezing in multimode resonant quantum memories

    NASA Astrophysics Data System (ADS)

    Tikhonov, K.; Samburskaya, K.; Golubeva, T.; Golubev, Yu.

    2014-01-01

    In this article the ability to record, store, and read out the quantum properties of light is studied. The discussion is based on high-speed and adiabatic models of quantum memory in λ configuration and in the limit of strong resonance. We show that in this case the equality between efficiency and squeezing ratio, predicted by the simple beam-splitter model, is broken. The requirement of the maximum squeezing in the output pulse should not be accompanied by the requirement of maximum efficiency of memory, as in the beam-splitter model. We have demonstrated that for the same optical depth a high output pulse squeezing can be reached earlier than the high efficiency. Comprehension of this "paradox" is achieved on the basis of mode analysis. The memories eigenmodes, which have an impact on the memory process, are found numerically. Also, the spectral analysis of modes was performed to match the spectral width of the input signal to the capacities of the memories.

  3. High power cladding light strippers

    NASA Astrophysics Data System (ADS)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  4. Spin squeezing and entanglement in a dispersive cavity

    SciTech Connect

    Deb, R. N.; Abdalla, M. Sebawe; Hassan, S. S.; Nayak, N.

    2006-05-15

    We consider a system of N two-level atoms (spins) interacting with the radiation field in a dispersive but high-Q cavity. Under an adiabatic condition, the interaction Hamiltonian reduces to a function of spin operators which is capable of producing spin squeezing. For a bipartite system (N=2), the expressions for spin squeezing get very simple, giving a clear indication of close to 100% noise reduction. We analyse this squeezing as a measure of bipartite entanglement.

  5. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  6. Stability Analysis of a High-Speed Seal Test Rotor With Marginal and Extended Squeeze-Film Dampers: Theoretical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    A case study of a high-speed seal test rotor shows how rotor dynamic analysis can be used to diagnose the source of high vibrations and evaluate a proposed remedy. Experimental results are compared with the synchronous and non-synchronous whirl response analysis of a double overhung, high-speed seal test rotor with ball bearings supported in 5.84- and 12.7-mm-long, un-centered squeeze-film oil dampers. Test performance with the original damper of length 5.84 mm was marginal. Non-synchronous whirling occurred at the overhung seal test disk and there was a high amplitude synchronous response near the drive spline above 32,000 rpm. Nonlinear synchronous unbalance and time transient whirl studies were conducted on the seal test rotor with the original and extended damper lengths. With the original damper design, the nonlinear synchronous response showed that unbalance could cause damper lockup at 33,000 rpm. Alford cross-coupling forces were also included at the overhung seal test disk for the whirl analysis. Sub-synchronous whirling at the seal test disk was observed in the nonlinear time transient analysis. With the extended damper length of 12.7 mm, the sub-synchronous motion was eliminated and the rotor unbalance response was acceptable to 45,000 rpm with moderate rotor unbalance. Seal test rotor orbits and vibration levels with the extended squeeze film dampers showed smooth operation to 40,444 rpm.

  7. Squeezing wetting and nonwetting liquids.

    PubMed

    Samoilov, V N; Persson, B N J

    2004-01-22

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n-->n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application. PMID:15268334

  8. Squeezing wetting and nonwetting liquids

    NASA Astrophysics Data System (ADS)

    Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n→n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.

  9. Distribution of Squeezed States through an Atmospheric Channel

    NASA Astrophysics Data System (ADS)

    Peuntinger, Christian; Heim, Bettina; Müller, Christian R.; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd

    2014-08-01

    Continuous variable quantum states of light are used in quantum information protocols and quantum metrology and known to degrade with loss and added noise. We were able to show the distribution of bright polarization squeezed quantum states of light through an urban free-space channel of 1.6 km length. To measure the squeezed states in this extreme environment, we utilize polarization encoding and a postselection protocol that is taking into account classical side information stemming from the distribution of transmission values. The successful distribution of continuous variable squeezed states is accentuated by a quantum state tomography, allowing for determining the purity of the state.

  10. Parametric-squeezing amplification of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Jäger, Georg; Berrada, Tarik; Schmiedmayer, Jörg; Schumm, Thorsten; Hohenester, Ulrich

    2015-11-01

    We theoretically investigate the creation of squeezed states of a Bose-Einstein condensate (BEC) trapped in a magnetic double-well potential. The number or phase squeezed states are created by modulating the tunnel coupling between the two wells periodically with twice the Josephson frequency, i.e., through parametric amplification. Simulations are performed with the multiconfigurational time-dependent Hartree method for bosons. We employ optimal control theory to bring the condensate to a complete halt at a final time, thus creating a highly squeezed state (squeezing factor of 0.12, ξS2=-18 dB) suitable for atom interferometry.

  11. Control of atomic spin squeezing via quantum coherence

    NASA Astrophysics Data System (ADS)

    Shao, Xuping; Ling, Yang; Yang, Xihua; Xiao, Min

    2016-06-01

    We propose a scheme to generate and control atomic spin squeezing via atomic coherence induced by the strong coupling and probe fields in the Λ-type electromagnetically-induced-transparency configuration in an atomic ensemble. Manipulation of squeezing of the two components in the plane orthogonal to the mean atomic spin direction and generation of nearly perfect squeezing in either component can be achieved by varying the relative intensities of the coupling and probe fields. This method provides a flexible and convenient way to create and control atomic spin squeezing, which may find potential applications in high-precision atomic-physics measurement, quantum coherent control, and quantum information processing.

  12. Optimally Squeezed Spin States

    NASA Astrophysics Data System (ADS)

    Rojo, Alberto

    2004-03-01

    We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).

  13. High strain rate superplasticity of a {beta}-Si{sub 3}N{sub 4} whisker reinforced pure aluminium composite made by squeeze casting

    SciTech Connect

    Imai, T.; Tochigi, I.; Ai, K.; L`Esperance, G.; Hong, B.

    1996-05-15

    High strain rate superplasticity (HSRS) in ceramic whisker or particulate reinforced aluminum alloy composites is expected to offer an efficiently near-net shape forming technique to automobile, aerospace, and even semi-conductor industries, since the HSRS composites usually exhibit a total elongation of 250--600% at a high strain rate of about 0.1--10 s{sup {minus}1}. It is thought that primary deformation mechanism of the HSRS is grain boundary sliding since the composites have the fine grain size of 3{approximately}0.8 {micro}m. The purpose of this study is to develop a thermomechanical processing route to produce a fine microstructure and a HSRS in a {beta}-Si{sub 3}N{sub 4} whisker reinforced 99.99% pure aluminum composite fabricated by squeeze casting. In addition, superplastic deformation mechanism of the composite are also discussed.

  14. EDITORIAL: Squeeze transformation and optics after Einstein

    NASA Astrophysics Data System (ADS)

    Kim, Young S.; Man'ko, Margarita A.; Planat, Michel

    2005-12-01

    -electron) statistics and fluctuations of the electromagnetic field, whose importance was first emphasized by Einstein in 1905. The squeezed states can also be considered as a generalization of the concept of coherent states, which turned out to be one of the most important theoretical tools for solving the numerous problems of quantum optics. It seems highly symbolical that the printed version of this special issue will appear in the same month when one of the prominent creators of the theory of coherent states and modern quantum optics—Professor Roy J Glauber—will receive his Nobel Prize in Stockholm. ICSSUR'05 was opened by the invited talk of R J Glauber, `What makes a quantum jump?', and we take great pleasure in congratulating him on this well deserved award. We are sure that all participants of ICSSUR'05 and all readers of this special issue share our feelings. Two other Nobel Prize winners of 2005—Professor J L Hall and Professor T W H\\"ansch—also made great contributions to quantum optics. In particular, in 1986, J L Hall with collaborators, performed the first experiments on the generation of squeezed states by parametric down conversion, having obtained squeezing at the 50% level (Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520). Another area, which has attracted the attention of many researchers in the past decade and which is well represented in this special issue, is related to the problems of quantum correlations, entanglement and quantum nonlocality. It is also connected with the name of Einstein due to his famous `EPR' paper of 1935 written together with Podolsky and Rosen. For several decades this was an area of `thought experiments' only, but now this field is becoming a new part of physics, known as `quantum information'. The reader can find several papers which introduce new concepts in this area, such as applications of the Galois algebras and discrete Wigner functions. Solutions of different problems of the interaction between light

  15. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  16. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm.

    PubMed

    Han, Yashuai; Wen, Xin; He, Jun; Yang, Baodong; Wang, Yanhua; Wang, Junmin

    2016-02-01

    We report on efficient generation of second harmonic laser and single-mode vacuum squeezed light of 795 nm with periodically poled KTiOPO4 (PPKTP) crystals. We achieved 111 mW of ultra-violet (UV) light at 397.5 nm from 191 mW of fundamental light with a PPKTP crystal in a doubling cavity, corresponding to a conversion efficiency of 58.1%. Using the UV light to pump an optical parametric oscillator with a PPKTP crystal, we realized -5.6 dB of a maximum squeezing. We analyzed the pump power dependence of the squeezing level and concluded that the UV light induced losses limit the improvement of the squeezing level. The generated squeezed light has huge potential application in quantum memory and ultra-precise measurement. PMID:26906810

  17. Photon number squeezed states in semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Yoshihisa; Machida, Susumu; Richardson, Wayne H.

    1992-01-01

    Electromagnetic fields, with the noise on one quadrature component reduced to below the quantum mechanical zero-point fluctuation level and the noise on the other quadrature component enhanced to above it, are currently of great interest in quantum optics because of their potential applications to various precision measurements. Such squeezed states of light are usually produced by imposing nonlinear unitary evolution on coherent (or vacuum) states. On the other hand, squeezed states with reduced photon number noise and enhanced phase noise are generated directly by a constant current-driven semiconductor laser. This is the simplest scheme for the generation of nonclassical light, and so far it has yielded the largest quantum noise reduction. The mutual coupling between a lasing junction and an external electrical circuit provides opportunities for exploring the macroscopic and microscopic quantum effects in open systems.

  18. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  19. Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input

    SciTech Connect

    Khalili, Farid Ya.; Miao, Haixing; Chen Yanbei

    2009-08-15

    We consider improving the sensitivity of future interferometric gravitational-wave detectors by simultaneously injecting two squeezed vacuums (light), filtered through a resonant Fabry-Perot cavity, into the dark port of the interferometer. The same scheme with single squeezed vacuum was first proposed and analyzed by Corbitt et al.[Phys. Rev. D 70, 022002 (2004).]. Here we show that the extra squeezed vacuum, together with an additional homodyne detection suggested previously by one of the authors [F. Ya. Khalili, Phys. Rev. D 77, 062003 (2008).], allows reduction of quantum noise over the entire detection band. To motivate future implementations, we take into account a realistic technical noise budget for Advanced LIGO and numerically optimize the parameters of both the filter and the interferometer for detecting gravitational-wave signals from two important astrophysics sources, namely, neutron-star-neutron-star binaries and bursts. Assuming the optical loss of the {approx}30 m filter cavity to be 10 ppm per bounce and 10 dB squeezing injection, the corresponding quantum noise with optimal parameters lowers by a factor of 10 at high frequencies and goes below the technical noise at low and intermediate frequencies.

  20. External Squeeze-Film Damper For Hydrostatic Bearing

    NASA Technical Reports Server (NTRS)

    Buckmann, Paul S.

    1992-01-01

    External squeeze-film damping device suppresses vibrations of rapidly turning shaft supported by pivoted-pad hydrostatic bearing in high-pressure/high-power-density turbomachine. Stacked disks provide damping and clearance for alignment.

  1. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  2. Atomic squeezing under collective emission

    SciTech Connect

    Yukalov, V.I.; Yukalova, E.P.

    2004-11-01

    Atomic squeezing is studied for the case of large systems of radiating atoms, when collective effects are well developed. All temporal stages are analyzed, starting with the quantum stage of spontaneous emission, passing through the coherent stage of superradiant emission, and going to the relaxation stage ending with stationary solutions. A method of governing the temporal behavior of the squeezing factor is suggested. The influence of a squeezed effective vacuum on the characteristics of collective emission is also investigated.

  3. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  4. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  5. Dynamics of squeezing fluids: Clapping wet hands

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim.

  6. Dynamics of squeezing fluids: clapping wet hands.

    PubMed

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim. PMID:24032924

  7. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  8. Fifth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)

    1998-01-01

    The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.

  9. Quantum Squeezing of Motion in a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Wollman, Emma E.

    Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK. Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies. In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1

  10. Large suppression of quantum fluctuations of light from a single emitter by an optical nanostructure.

    PubMed

    Martín-Cano, Diego; Haakh, Harald R; Murr, Karim; Agio, Mario

    2014-12-31

    We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a single emitter coupled to an optical nanostructure. We find that such hybrid systems can lead to the creation of squeezed states of light, with quantum fluctuations significantly below the shot-noise level. Moreover, the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space. A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway to its manipulation and applications on the nanoscale with state-of-the-art setups. PMID:25615333

  11. Cavity optomechanics with micromirrors: Progress towards the measurement of quantum radiation pressure noise and ponderomotive squeezing

    NASA Astrophysics Data System (ADS)

    Cripe, Jonathan; Singh, Robinjeet; Corbitt, Thomas; LIGO Collaboration

    2016-03-01

    Advanced LIGO is predicted to be limited by quantum noise at intermediate and high frequencies when it reaches design sensitivity. The quantum noise, including radiation pressure noise at intermediate frequencies, will need to be reduced in order to increase the sensitivity of future gravitational wave interferometers. We report recent progress towards measuring quantum radiation pressure noise in a cryogenic optomechanical cavity. The low noise microfabricated mechanical oscillator and cryogenic apparatus allow direct broadband thermal noise measurements which test thermal noise models and damping mechanisms. We also progress toward the measurement of the ponderomotive squeezing produced by the optomechanical cavity and the reduction of radiation pressure noise using squeezed light. These techniques may be applicable to an upgrade of Advanced LIGO or the next generation of gravitational wave detectors.

  12. High temperature mechanical properties of a {beta}-Si{sub 3}N{sub 4} whisker reinforced aluminium alloy composite produced by squeeze casting

    SciTech Connect

    Tochigi, Isao; Imai, Tsunemichi; Ai, Kyosuke

    1995-06-01

    The {beta}-Si{sub 3}N{sub 4}w/6061 Al composite was fabricated by the squeeze casting and extruded with the extrusion ratios of 44 and 100 at 773 K. Its tensile strength and superplastic characteristics were investigated and the following results were obtained: (1) the {beta}-Si{sub 3}N{sub 4}w/6061 Al composite exhibits the tensile strengths of about 400 MPa at room temperature and of about 250 MPa at 773 K; (2) the m value of the composite pulled at 818 K is 0.33 in the strain rate range from 0.02 up to 1.0 s{sup {minus}1}; (3) the total elongation of the composite becomes about 173 % at the strain rate of 0.02 s{sup {minus}1} even in the case of the high volume fraction of 0.25; (4) no reaction product on the surface of {beta}-Si{sub 3}N{sub 4} whisker after removing a matrix by etching was detected except AlN; (5) the fracture surface of the composite includes the melt matrix and small filaments, which shows that interfacial sliding should promote HSRS in addition to fine grain boundary sliding.

  13. Squeezing of Spin Waves in Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben; Norris, Leigh; Montano, Enrique; Michelson, Pascal; Jessen, Poul; Deutsch, Ivan

    2013-05-01

    Squeezing the collective spin of an atomic ensemble via QND measurement is based on the lighhift interaction between a cloud of atoms and a laser probe. When the shot noise resolution of the laser probe is below the projection noise of the atoms, the resulting backaction can reduce the uncertainty for a collective atomic observable. Most current models of this process rely on idealized one-dimensional plane wave approximations of the underlying light-matter interaction, which are not appropriate for describing a real system consisting of an atomic cloud in dipole trap interacting with a paraxial probe laser. We derive from first principles a model for three-dimensional QND spin squeezing of an ensemble of alkali atoms. The model includes spin waves, diffraction, propagation phase, paraxial modes, and optical pumping, based on a full master equation description. Our model easily generalizes to atoms with hyperfine spin f >1/2, for which initial state preparation of the ensemble using internal hyperfine control can enhance the entangling power of the Faraday interaction [Norris et al., PRL 109, 173603 (2012)]. Including dissipative dynamics, we find optimal geometries to maximize spin squeezing for a variety of state preparations and spin sizes.

  14. Steady-state spin squeezing generation in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng

    2014-04-01

    As one kind of many body entangled states, spin squeezed states can be used to implement the high precise measurement beyond the standard quantum limit. Inspired by the novel spin squeezing scheme based on phonon-induced spin-spin interactions [S. D. Bennett et al., Phys. Rev. Lett. 110, 156402 (2013), 10.1103/PhysRevLett.110.156402], we reexamine the steady-state behaviors for the spin ensemble in diamond nanostructures by exerting a controllable microwave field. By using the phase-space approach we calculate analytically fluctuations of collective spin operators. We find that there is bistability and spin squeezing for the steady-state spin ensemble, despite the mechanical damping considered. Moreover, our work shows that bistability and spin squeezing can be controlled by microwave field and Zeeman splitting. The present scheme can be used to increase the stability of spin clocks, magnetometers, and other measurements based on spin-spin interaction in diamond nanostructures.

  15. Protecting and enhancing spin squeezing via continuous dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Adam Zaman; Gong, Jiangbin

    2012-07-01

    Realizing useful quantum operations with high fidelity is a two-task quantum control problem wherein decoherence is to be suppressed and desired unitary evolution is to be executed. The dynamical decoupling (DD) approach to decoherence suppression has been fruitful but synthesizing DD fields with certain quantum control fields may be experimentally demanding. In the context of spin squeezing, here we explore an unforeseen possibility that continuous DD fields may serve dual purposes at once. In particular, it is shown that a rather simple configuration of DD fields can suppress collective decoherence and yield a 1/N scaling of the squeezing performance (N is the number of spins), thus making spin squeezing more robust to noise and much closer to the so-called Heisenberg limit. The theoretical predictions should be within the reach of current spin squeezing experiments.

  16. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  17. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    NASA Astrophysics Data System (ADS)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  18. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  19. Dual clearance squeeze film damper

    NASA Technical Reports Server (NTRS)

    Fleming, D. P. (Inventor)

    1985-01-01

    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.

  20. Differential neutron-proton squeeze-out

    NASA Astrophysics Data System (ADS)

    Trautmann, W.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Russotto, P.; Wu, P.

    2009-04-01

    The elliptic flow (squeeze-out) of neutrons, protons and light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable, sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. Preliminary results from a study of the existing FOPI/LAND data for 197Au + 197Au collisions at 400 A MeV with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to ( with γ=0.6±0.3.

  1. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  2. Strong mechanical squeezing and its detection

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Huang, Sumei

    2016-04-01

    We report an efficient mechanism to generate a squeezed state of a mechanical mirror in an optomechanical system. We use an especially tuned parametric amplifier (PA) inside the cavity and the parametric photon phonon processes to transfer quantum squeezing from photons to phonons with almost 100% efficiency. We get 50% squeezing of the mechanical mirror which is limited by the PA. We present analytical results for the mechanical squeezing thus enabling one to understand the dependence of squeezing on system parameters like gain of PA, cooperativity, and temperature. As in cooling experiments the detrimental effects of mirror's Brownian and zero point noises are strongly suppressed by the pumping power. By judicious choice of the phases, the cavity output is squeezed only if the mirror is squeezed thus providing us a direct measure of the mirror's squeezing. Further considerable larger squeezing of the mirror can be obtained by adding the known feedback techniques.

  3. Nonlinear optical magnetometry with accessible in situ optical squeezing

    SciTech Connect

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  4. Classification of spin and multipolar squeezing

    NASA Astrophysics Data System (ADS)

    Yukawa, Emi; Nemoto, Kae

    2016-06-01

    We investigate various types of squeezing in a collective su(2J+1) system consisting of spin-J particles (J\\gt 1/2). We show that squeezing in the collective su(2J+1) system can be classified into unitary equivalence classes, each of which is characterized by a set of squeezed and anti-squeezed observables forming an su(2) subalgebra in the su(2J+1) algebra. The dimensionality of the unitary equivalence class is found to be fundamentally related to its squeezing limit. We also demonstrate the classification of squeezing among the spin and multipolar observables in a collective su(4) system.

  5. Fourth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)

    1996-01-01

    The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.

  6. Squeeze Flow of Yield Stress Fluids

    NASA Astrophysics Data System (ADS)

    Pelot, David; Yarin, Alexander

    2014-03-01

    The squeeze flow of yield stress materials are investigated using a non-invasive optical technique. In the experiments, cylindrically-shaped samples of Carbopol solutions and Bentonite dispersions are rapidly compressed between two transparent plates using a constant force and the instantaneous cross-sectional area is recorded as a function of time using a high speed CCD camera. Furthermore, visualization of the boundary reveals that the no-slip condition holds. In addition, shear experiments are conducted using parallel-plate and vane viscometers. The material exhibits first a fast stage of squeezing in which the normal stresses dominate and viscosity plays the main role. Then, the second (slow) stage sets in where the material exhibits a slow deformation dominated by yield stress. At the end, the deformation process is arrested by yield stress. The material response is attributed to the Bingham-like or Herschel-Bulkley-like rheological behavior. Squeeze flow is developed into a convenient and simple tool for studying yield stress materials. This work is supported by the United States Gypsum Corp.

  7. Enhancement of squeezing in resonance fluorescence of a driven quantum dot close to a graphene sheet

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Wu, Qing-lin; Wu, Shao-ping; Li, Gao-xiang

    2016-05-01

    We investigate squeezing of the resonance fluorescence of a laser-driven quantum dot (QD) close to a graphene sheet. The coupling between the QD and the surface plasmon around the graphene sheet is frequency dependent in the terahertz region, which can be adjusted by the laser intensity. Distinct decay rates in different transition channels of dressed QDs can be achieved due to the tailored photon reservoir, which can be used to improve the squeezing. It is found that increases in both the dephasing rate and the environmental temperature are harmful to the squeezing. Meanwhile, an enhancement in the QD-plasmon coupling strength may reduce the fragility of squeezing against the decoherence process. Additionally, in the strong light-matter coupling region, squeezing can be largely enhanced by tuning the strength of the pump field and its detuning from the QD.

  8. Spin squeezing, entanglement and correlations

    NASA Astrophysics Data System (ADS)

    Sirsi, Swarnamala

    2004-11-01

    Spin-s assemblies are classified into two mutually exclusive classes: oriented and non-oriented systems. The density matrix rgr, describing oriented systems, can assume diagonal form in the angular momentum basis \\vert sm \\rangle (m=-s \\cdots {+}s ) defined with respect to the axis of quantization, whereas the eigenstates of rgr for the non-oriented assembly cannot all be identified with \\vert sm \\rangle states. A new scheme for constructing a mixed, non-oriented spin-s state using s(2s+1) spinors all pointing in different directions in space and 2s weights is discussed. Such a construction takes its inspiration from Schwinger's idea of realizing an \\vert sm \\rangle state as being made up of (s+m) 'up' spinors and (s-m) 'down' spinors, all defined with respect to a single axis in space. Since the oriented systems are never squeezed, non-oriented spin-1 assemblies which can be prepared in the laboratory with the available NQR technology are examined for signatures of squeezing using our scheme in a frame of reference where the Heisenberg-Robertson uncertainty relation has the same form as the Schrödinger uncertainty relation. It is shown that unlike in the case of the pure spin-1 state where squeezing is synonymous with non-orientedness, a non-oriented spin-1 system need not be squeezed and the existence of entanglement is a necessary but not sufficient condition for the system to be squeezed.

  9. High strain rate superplasticity of Si{sub 3}N{sub 4} whisker reinforced 7075 alloy matrix composite fabricated by squeeze casting

    SciTech Connect

    Lim, S.W.; Nishida, Yoshinori

    1995-06-01

    The {alpha}-Si{sub 3}N{sub 4} whisker reinforced 7075 aluminum alloy composite which exhibits superplasticity was produced by squeeze casting, followed by hot extrusion to pursue industrial advantages, and following results were obtained: (1) the production of {alpha}-Si3N4 whisker reinforced 7075 aluminum alloy composite which exhibits superplasticity was succeeded by squeeze casting; (2) the composite exhibited a total elongation of 260% at strain rates 0.18 s{sup {minus}1} at 773 K; (3) the superplasticity occurred in the wide range of strain rate from 0.1 to 1 s{sup {minus}1}; (4) the superplasticity occurred in the industrially useful whisker volume fraction range of 20%--30%.

  10. Q (Alpha) Function and Squeezing Effect

    NASA Technical Reports Server (NTRS)

    Yunjie, Xia; Xianghe, Kong; Kezhu, Yan; Wanping, Chen

    1996-01-01

    The relation of squeezing and Q(alpha) function is discussed in this paper. By means of Q function, the squeezing of field with gaussian Q(alpha) function or negative P(a)function is also discussed in detail.

  11. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  12. Generation and multi-pass propagation of a squeezed vacuum field in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    2016-05-01

    We study a squeezed vacuum field generated in hot Rb vapor via the polarization self-rotation effect. By propagating the strong laser beam through a vapor cell once, we were able to achieve a noise suppression of 2 dB below shot noise. Our previous experiments showed that the amount of observed squeezing may be limited by the contamination of the squeezed vacuum output with higher-order spatial modes, also generated inside the cell. Here, we investigate whether or not the squeezing can be improved by making the light interact several times with a less dense atomic ensemble. We carry out a comparison of various conditions, e.g. injection power, atomic density, passing numbers etc., and studied their effect on squeezing level and the spatial structure of the output squeezed vacuum field. We observe that multiple passages of beam through the medium can lead to an improvement of squeezing, and minimum noise occurs at almost the same effective atomic density for all setups. We show optimization of the conditions can lead to higher achievable squeezing which would be very useful for precision metrology and quantum memory applications. We acknowledge support from AFOSR Grant No. FA9550-13-1- 0098, ARO Grant No. W911NF-13-1-0381, NSF Grant No. 1403105, and the Northrop Grumman Corporation.

  13. Four-Mode Squeezing For Optical Communications

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1989-01-01

    Experiments demonstrated potential of four-mode squeezing for increasing immunity to noise in fiber-optical communication systems and interferometric devices. Four-mode squeezing reduces quantum noise more than ordinary squeezing and provides partial immunity to non-quantum-mechanical phase noise arising in such media as optical fibers.

  14. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  15. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  16. Interaction of a two-level atom with a squeezed vacuum: Photon statistics and spectra

    NASA Astrophysics Data System (ADS)

    Rice, Perry R.; Baird, Christopher A.

    1996-05-01

    We consider the interaction of a two-level atom with a squeezed vacuum, both in free space and in a cavity of moderate Q. In the latter case, only vacuum modes coupled to the cavity are squeezed. In both cases we calculate the following quantities for the fluorescent light fields: the second-order intensity correlation function g(2)(τ), the spectrum of squeezing, the coherent spectrum, and the spectrum obtained in a pump-probe absorption measurement. Nonclassical behavior is discussed and comparison to an ordinary vacuum and thermal fields is made.

  17. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  18. High Hats, Swiss Cheese, and Fluorescent Lighting?

    SciTech Connect

    McCullough, Jeffrey J.; Gordon, Kelly L.

    2002-08-30

    For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

  19. Production of a planar squeezed state in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Colangelo, Giorgio; Ciurana, Ferran Martin; Sewell, Robert J.; Mitchell, Morgan W.

    2016-05-01

    Production of squeezed states is of great interest for quantum metrology and allows production of exotic highly entangled spin states, a powerful resource for quantum simulators. However, while canonical variables such as quadratures of the radiation field can be squeezed in at most one component, a planar quantum squeezed (PQS) state, where two orthogonal spin components are simultaneously squeezed can be achieved due to the angular momentum commutation relations. Such states have recently attracted attention due to their potential applications in atomic interferometry and quantum information. Here we report the generation of a PQS state by coherently rotate the collective spin of a cold atomic ensemble of more than one million atoms . We induce spin squeezing through quantum non-demolition (QND) measurements and a coherent rotation by an external magnetic field that rotates a coherent spin state on a plane. This allows us to successively measure and squeeze two components of the atomic spin, while maintaining a large spin polarization (coherence) in the plane. We observe 3dB of spin squeezing and quantum enhanced sensitivity in the estimation of the magnetic field for any angle in the rotation plane, and detect entanglement by using generalized spin squeezing inequalities.

  20. Generation and multi-pass propagation of a squeezed vacuum field in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Lanning, R. Nicholas; Xiao, Zhihao; Dowling, Jonathan P.; Novikova, Irina; Mikhailov, Eugeniy E.

    We study a squeezed vacuum field (with reduced quantum noise level) generated in hot Rb vapor via the polarization self-rotation effect. By propagating the strong laser beam through a vapor cell once, we were able to achieve a noise suppression of 1.5-2 dB below shot noise. Our previous experiments showed that the amount of observed squeezing may be limited by the contamination of the squeezed vacuum output with higher-order spatial modes, also generated inside the cell. Here, we investigate whether or not the squeezing can be improved by making the light interact several times with a less dense atomic ensemble. We carry out a comparison of various conditions, e.g. injection power, atomic density, passing numbers etc., and studied their effect on squeezing level and the spatial structure of the output squeezed vacuum field. We believe(or show) optimization of the conditions can lead to higher achievable squeezing which would be very useful for precision metrology and quantum memory applications. This project is supported by AFOSR Grant FA9550-13-1-0098.

  1. Fresh squeezed orange juice odor: a review.

    PubMed

    Perez-Cacho, Pilar Ruiz; Rouseff, Russell L

    2008-08-01

    Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants. PMID:18663618

  2. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  3. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  4. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  5. Parsing polarization squeezing into Fock layers

    NASA Astrophysics Data System (ADS)

    Müller, Christian R.; Madsen, Lars S.; Klimov, Andrei B.; Sánchez-Soto, Luis L.; Leuchs, Gerd; Marquardt, Christoph; Andersen, Ulrik L.

    2016-03-01

    We investigate polarization squeezing in squeezed coherent states with varying coherent amplitudes. In contrast to the traditional characterization based on the full Stokes parameters, we experimentally determine the Stokes vector of each excitation subspace separately. Only for states with a fixed photon number do the methods coincide; when the photon number is indefinite, we parse the state in Fock layers, finding that substantially higher squeezing can be observed in some of the single layers. By capitalizing on the properties of the Husimi Q function, we map this notion onto the Poincaré space, providing a full account of the measured squeezing.

  6. Study of higher order non-classical properties of squeezed Kerr state

    NASA Astrophysics Data System (ADS)

    Mishra, Devendra Kumar

    2010-09-01

    Recently, Prakash and Mishra [J. Phys. B: at. Mol. Opt. Phys., 39, 2291(2006); 40, 2531(2007)] have studied higher order sub-Poissonian photon statistic conditions for non-classicality in the form of general inequalities for expectation values of products of arbitrary powers of photon number and of photon-number fluctuation. It is, therefore, vital to study the generation of these higher order sub-Poissonian photon statistics (phase-insensitive behavior) in a physically realizable medium and their relations to higher order squeezing (phase-sensitive behavior). In the present paper, we study higher order non-classical properties, such as Hong and Mandel squeezing, amplitude-squared squeezing and higher order sub-Poissonian photon statistics, of squeezed Kerr state which is generated by squeezing the output of a Kerr medium whose input is coherent light. Such states can be realized if laser light is sent through an optical fiber and then into a degenerate parametric amplifier. It is established that the squeezed Kerr state can exhibit higher order non-classical properties.

  7. Sixth International Conference on Squeezed States and Uncertainty Relations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Solimento, S. (Editor)

    2000-01-01

    These proceedings contain contributions from about 200 participants to the 6th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'99) held in Naples May 24-29, 1999, and organized jointly by the University of Naples "Federico II," the University of Maryland at College Park, and the Lebedev Institute, Moscow. This was the sixth of a series of very successful meetings started in 1990 at the College Park Campus of the University of Maryland. The other meetings in the series were held in Moscow (1992), Baltimore (1993), Taiyuan P.R.C. (1995) and Balatonfuered, Hungary (1997). The present one was held at the campus Monte Sant'Angelo of the University "Federico II" of Naples. The meeting sought to provide a forum for updating and reviewing a wide range of quantum optics disciplines, including device developments and applications, and related areas of quantum measurements and quantum noise. Over the years, the ICSSUR Conference evolved from a meeting on quantum measurement sector of quantum optics, to a wide range of quantum optics themes, including multifacet aspects of generation, measurement, and applications of nonclassical light (squeezed and Schrodinger cat radiation fields, etc.), and encompassing several related areas, ranging from quantum measurement to quantum noise. ICSSUR'99 brought together about 250 people active in the field of quantum optics, with special emphasis on nonclassical light sources and related areas. The Conference was organized in 8 Sections: Squeezed states and uncertainty relations; Harmonic oscillators and squeeze transformations; Methods of quantum interference and correlations; Quantum measurements; Generation and characterisation of non-classical light; Quantum noise; Quantum communication and information; and Quantum-like systems.

  8. Nonclassical light in interferometric measurements

    NASA Technical Reports Server (NTRS)

    Ansari, N. A.; Difiore, L.; Romano, R.; Solimeno, S.; Zaccaria, F.; Manko, Margarita A.; Manko, Vladimir I.

    1995-01-01

    It is shown that the even and odd coherent light and other nonclassical states of light like superposition of coherent states with different phases may replace the squeezed light in an interferometric gravitational wave detector to increase its sensitivity.

  9. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  10. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  11. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  12. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  13. Simultaneous polarization squeezing in polarized N photon state and diminution on a squeezing operation

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-09-01

    We study polarization squeezing of a pure photon number state, which is obviously polarized but the mere change in the basis of polarization leads to simultaneous polarization squeezing in all the components of Stokes operator vector except those falling along or perpendicular to the direction of polarization state, is observed. We use the most general definition of polarization squeezing and discuss the experimental feasibility of the result. We also observe that a squeezing operation like non-degenerate parametric amplification of the state does not reveal simultaneous squeezing in all Stokes operator vectors and decreases in this sense.

  14. Very high numerical aperture light transmitting device

    DOEpatents

    Allison, Stephen W.; Boatner, Lynn A.; Sales, Brian C.

    1998-01-01

    A new light-transmitting device using a SCIN glass core and a novel calcium sodium cladding has been developed. The very high index of refraction, radiation hardness, similar solubility for rare earths and similar melt and viscosity characteristics of core and cladding materials makes them attractive for several applications such as high-numerical-aperture optical fibers and specialty lenses. Optical fibers up to 60 m in length have been drawn, and several simple lenses have been designed, ground, and polished. Preliminary results on the ability to directly cast optical components of lead-indium phosphate glass are also discussed as well as the suitability of these glasses as a host medium for rare-earth ion lasers and amplifiers.

  15. Reprocessable squeezing electrode fabrication of olive-like Fe/Co/O nanoparticle@three dimensional nitrogen-doped reduced graphene oxides for high performance lithium batteries

    NASA Astrophysics Data System (ADS)

    Qi, Li-Ya; Zhang, Yi-Wei; Xin, Yue-Long; Zuo, Zi-Cheng; Wu, Bin; Zhang, Xin-Xiang; Zhou, Heng-Hui

    2015-04-01

    A one step in situ synthesis approach is developed to construct 3D nitrogen-doped reduced graphene oxides, in which olive-like multi-component metal oxides are homogeneously dispersed. The novel hybrid nanoarchitecture shows some particular properties derived from synergistic effects. The size of Fe/Co/O oxides is reduced and better controlled compared to that of individual oxides due to mutual dispersant interactions. Furthermore, the positive synergistic interaction between heterogeneous oxides and graphene nanosheets has effective control on the particle size and dispersion of nanoparticles. Taking advantage of the flexibility and the cohesiveness of graphene nanosheets, the obtained composite can be directly processed into a binder-free electrode through a unique time-saving ``squeezing'' process. The obtained electrode possesses a reprocessable feature, which provides possibilities for convenient storage and quick fabrication at any time and presents attractive electrochemical performance of robust long-term capability retention (562 mA h g-1 after 300 cycles at 10 A g-1) and superior rate performances (1162 mA h g-1 at 0.5 A g-1, 737 mA h g-1 at 5 A g-1, and 585 mA h g-1 at 10 A g-1).A one step in situ synthesis approach is developed to construct 3D nitrogen-doped reduced graphene oxides, in which olive-like multi-component metal oxides are homogeneously dispersed. The novel hybrid nanoarchitecture shows some particular properties derived from synergistic effects. The size of Fe/Co/O oxides is reduced and better controlled compared to that of individual oxides due to mutual dispersant interactions. Furthermore, the positive synergistic interaction between heterogeneous oxides and graphene nanosheets has effective control on the particle size and dispersion of nanoparticles. Taking advantage of the flexibility and the cohesiveness of graphene nanosheets, the obtained composite can be directly processed into a binder-free electrode through a unique time

  16. Squeezing spectra for nonlinear optical systems

    NASA Technical Reports Server (NTRS)

    Collett, M. J.; Walls, D. F.

    1985-01-01

    The squeezing spectra for the output fields of several intracavity nonlinear optical systems are obtained. It is shown that at critical points, e.g., the turning points for optical bistability, the threshold for parametric oscillation, and the self-pulsing instability in second-harmonic generation, perfect squeezing in the output field is, in principle, possible.

  17. Squeezed states of damped oscillator chain

    NASA Technical Reports Server (NTRS)

    Manko, O. V.

    1993-01-01

    The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain of coupled parametric oscillators with damping. The correlated and squeezed states for the chain of coupled parametric oscillators with damping are constructed. Based on the concept of the integrals of motion, it is demonstrated how squeezing phenomenon arises due to parametric excitation.

  18. On-Chip Optical Squeezing

    NASA Astrophysics Data System (ADS)

    Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Nussenzveig, Paulo; Lipson, Michal

    2015-04-01

    We report the observation of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low-loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity linewidth. We measure 1.7 dB (5 dB corrected for losses) of sub-shot-noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum-optics and quantum-information experiments on chip.

  19. Stability of Intershaft Squeeze Film Dampers

    NASA Technical Reports Server (NTRS)

    El-Shafei, A.

    1991-01-01

    Intershaft squeeze film dampers were investigated for damping of dual rotor aircraft jet engines. It was thought that the intershaft damper would enhance the stability of the rotor-bearing system. Unfortunately, it was determined that the intershaft squeeze film damper was unstable above the engine's first critical speed. Here, a stability analysis of rotors incorporating intershaft squeeze film dampers is discussed. A rotor model consisting of two Jeffcott rotors with two intershaft squeeze film dampers was investigated. Examining the system characteristic equation for the conditions at which the roots indicate an ever-growing unstable motion results in the stability conditions. The cause of the instability is identified as the rotation of the oil in the damper clearance. Several proposed configurations of intershaft squeeze film dampers are discussed, and it is shown that the intershaft dampers are stable supercritically only with a configuration in which the oil film does not rotate.

  20. Reprocessable squeezing electrode fabrication of olive-like Fe/Co/O nanoparticle@three dimensional nitrogen-doped reduced graphene oxides for high performance lithium batteries.

    PubMed

    Qi, Li-Ya; Zhang, Yi-Wei; Xin, Yue-Long; Zuo, Zi-Cheng; Wu, Bin; Zhang, Xin-Xiang; Zhou, Heng-Hui

    2015-05-01

    A one step in situ synthesis approach is developed to construct 3D nitrogen-doped reduced graphene oxides, in which olive-like multi-component metal oxides are homogeneously dispersed. The novel hybrid nanoarchitecture shows some particular properties derived from synergistic effects. The size of Fe/Co/O oxides is reduced and better controlled compared to that of individual oxides due to mutual dispersant interactions. Furthermore, the positive synergistic interaction between heterogeneous oxides and graphene nanosheets has effective control on the particle size and dispersion of nanoparticles. Taking advantage of the flexibility and the cohesiveness of graphene nanosheets, the obtained composite can be directly processed into a binder-free electrode through a unique time-saving "squeezing" process. The obtained electrode possesses a reprocessable feature, which provides possibilities for convenient storage and quick fabrication at any time and presents attractive electrochemical performance of robust long-term capability retention (562 mA h g(-1) after 300 cycles at 10 A g(-1)) and superior rate performances (1162 mA h g(-1) at 0.5 A g(-1), 737 mA h g(-1) at 5 A g(-1), and 585 mA h g(-1) at 10 A g(-1)). PMID:25853984

  1. Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics

    NASA Technical Reports Server (NTRS)

    Karassiov, V. P.

    1994-01-01

    The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.

  2. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  3. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  4. Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir

    NASA Astrophysics Data System (ADS)

    Asjad, Muhammad; Zippilli, Stefano; Vitali, David

    2016-06-01

    We describe a scheme for entangling mechanical resonators which is efficient beyond the resolved sideband regime. It employs the radiation pressure force of the squeezed light produced by a degenerate optical parametric oscillator, which acts as a reservoir of quantum correlations (squeezed reservoir), and it is effective when the spectral bandwidth of the reservoir and the field frequencies are appropriately selected. It allows for the steady-state preparation of mechanical resonators in entangled Einstein-Podolsky-Rosen states and can be extended to the preparation of many entangled pairs of resonators which interact with the same light field, in a situation in which the optomechanical system realizes a starlike harmonic network.

  5. High power LEDs and the organization of light

    NASA Astrophysics Data System (ADS)

    Paolini, Steve; Harbers, Gerard

    2006-02-01

    High-power Light Emitting Diodes (LEDs) were introduced in the market in 1998 by Lumileds. High-power LEDs have unique properties, very different from conventional light sources, creating never before possible solutions available to lighting designers. In this paper we will give an update on these devices and discuss the main benefits of LEDs compared to more traditional light sources. We will show that the benefits of high-power LEDs also relate to the organization of light they emit. Comparisons of more and less organized light sources as well as applications for highpower LEDs will be discussed.

  6. High brightness EUV light source modeling

    NASA Astrophysics Data System (ADS)

    Zakharov, Sergey V.; Choi, Peter; Zakharov, Vasily S.

    2010-04-01

    EUV source for actinic mask metrology, particularly for defect inspection, requires extremely high brightness. The selfabsorption of radiation limits the in-band EUV radiance of the source plasma and the etendue constraint limits the usable power of a conventional single unit EUV source. Theoretical study and numerical modelling has been carried out to address fundamental issues in tin and xenon plasmas and to optimize the performance of EUV sources. The highly ionized xenon plasma in the presence of fast electrons demonstrates the enhanced radiance. Theoretical models and robust modelling tools are being further developed under an international collaboration project FIRE in the frame of the EU FP7 IAPP program. NANO-UV is delivering a new generation of EUV light source with an intrinsic photon collector. Extensive numerical modelling has provided basic numbers to select the optimal regimes for tin and xenon based source operation. From these designs, a family of specially configured multiplexed source structures is being introduced to address the mask metrology needs.

  7. Quantum theory of multiwave mixing - Squeezed-vacuum model

    NASA Astrophysics Data System (ADS)

    An, Sunghyuck; Sargent, Murray, III

    1989-12-01

    The present paper combines a Langevin quantum-regression method with a denisty-operator approach to derive the master equation for the quantum theory of multiwave mixing in a very efficient way. The approach is quite general and is particularly valuable for analyzing complicated media such as semiconductors. It is used in the present paper to derive the quantum multiwave-mixing equations in a squeezed vacuum. Improved formulas are found for resonance fluorescence in a squeezed vacuum as well as the squeezing coefficients in a squeezed vacuum. Comparing squeezing spectra in squeezed and ordinary vacuums, significantly enhanced squeezing for the appropriate pump-vacuum relative phase is found.

  8. Global versus local quantum squeezing in composite systems

    SciTech Connect

    Yang Yang; Wang Xiaoguang; Liu Wanfang; Sun Zhe

    2009-05-15

    We investigate relations between the global squeezing of composite systems and the local squeezing of subsystems. For the pure symmetric product states, the global squeezing parameter is found to be equal to the local one for both spin and bosonic systems. Hence, a pure symmetric state is entangled if the global parameter is not equal to the local one. Two origins of the global squeezing are identified: one is from the local squeezing and the other from quantum correlations. For both spin and bosonic systems, we find that the entanglement can lead to a smaller global squeezing parameter; namely, the global squeezing is enhanced.

  9. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.

  10. Numerical determination of the transmissibility characteristics of a squeeze film damped forced vibration system

    NASA Technical Reports Server (NTRS)

    Sutton, M. A.; Davis, P. K.

    1976-01-01

    Numerical solutions of the governing equations of motion of a liquid squeeze film damped forced vibration system were carried out to examine the feasibility of using a liquid squeeze film to cushion and protect large structures, such as buildings, located in areas of high seismic activity. The mathematical model used was that for a single degree of freedom squeeze film damped spring mass system. The input disturbance was simulated by curve fitting actual seismic data with an eleventh order Lagranging polynomial technique. Only the normal component of the seismic input was considered. The nonlinear, nonhomogeneous governing differential equation of motion was solved numerically to determine the transmissibility over a wide range of physical parameters using a fourth-order Runge-Kutta technique. It is determined that a liquid squeeze film used as a damping agent in a spring-mass system can significantly reduce the response amplitude for a seismic input disturbance.

  11. Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED

    SciTech Connect

    Chen Changyong; Feng Mang; Gao Kelin

    2006-03-15

    We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.

  12. HELIX: The High Energy Light Isotope Experiment

    NASA Astrophysics Data System (ADS)

    Tarle, Gregory

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  13. Paramagnetic squeezing of QCD matter.

    PubMed

    Bali, G S; Bruckmann, F; Endrődi, G; Schäfer, A

    2014-01-31

    We determine the magnetization of quantum chromodynamics for several temperatures around and above the transition between the hadronic and the quark-gluon phases of strongly interacting matter. We obtain a paramagnetic response that increases in strength with the temperature. We argue that due to this paramagnetism, chunks of quark-gluon plasma produced in noncentral heavy ion collisions should become squeezed perpendicular to the magnetic field. This anisotropy will then contribute to the elliptic flow v2 observed in such collisions, in addition to the pressure gradient that is usually taken into account. We present a simple estimate for the magnitude of this new effect and a rough comparison to the effect due to the initial collision geometry. We conclude that the paramagnetic effect might have a significant impact on the value of v2. PMID:24580441

  14. Influence of oil-squeeze-film damping on steady-state response of flexible rotor operating to supercritical speeds

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1977-01-01

    Experimental data were obtained for the unbalance response of a flexible rotor to speeds above the third lateral bending critical. Squeeze-film damping coefficients calculated from measured data showed good agreement with short-journal-bearing approximations over a frequency range from 5000 to 31,000 cmp. Response of a rotor to varying amounts of unbalance was investigated. A very lightly damped rotor was compared with one where oil-squeeze dampers were applied.

  15. High Efficient OLEDs and Their Application to Lighting

    NASA Astrophysics Data System (ADS)

    Komoda, Takuya; Ide, Nobuhiro; Kido, Junji

    Organic Light Emitting Diode (OLED) is one of the strongest candidates for the next generation solid state lighting alternative to conventional incandescent bulbs and fluorescent lamps. There are still a lot of issues to overcome in order to commercialize OLED lighting, but a number of elemental technologies indispensable for OLED lighting such as high efficiency, long lifetime at high luminance and large area uniform emission have been developed.

  16. Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing

    NASA Astrophysics Data System (ADS)

    Qi, Xiaodong; Baragiola, Ben Q.; Jessen, Poul S.; Deutsch, Ivan H.

    2016-02-01

    We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the guided mode does not reach the strong-coupling regime for individual atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive interference over the entire chain of trapped atoms. We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided light by the trapped atoms. The Green's function is related to a full Heisenberg-Langevin treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection of atom number for atoms in a completely mixed spin state and the squeezing of projection noise for atoms in clock states. Compared with squeezing of atomic ensembles in free space, we capitalize on unique features that arise in the nanofiber geometry including anisotropy of both the intensity and polarization of the guided modes. We use a first-principles stochastic master equation to model the squeezing as a function of time in the presence of decoherence due to optical pumping. We find a peak metrological squeezing of ˜5 dB is achievable with current technology for ˜2500 atoms trapped 180 nm from the surface of a nanofiber with radius a =225 nm.

  17. High Extraction Phosphors for Solid State Lighting

    SciTech Connect

    Summers, Chris; Menkara, Hisham; Wagner, Brent

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  18. Performance of quantum Otto refrigerators with squeezing.

    PubMed

    Long, Rui; Liu, Wei

    2015-06-01

    The performance of a quantum Otto refrigerator coupled to a squeezed cold reservoir has been evaluated using the χ figure of merit. We have shown that squeezing can enhance the coefficient of performance (COP) dramatically, surpassing the Carnot COP defined by the initial temperatures of the heat baths. Furthermore, when the squeezing parameter approaches its maximum value, the work input vanishes while the cooling rate remains finite, in apparent contravention of the second law of thermodynamics. To explain this phenomenon, we have shown that squeezing renders the thermal bath into a nonequilibrium state and the temperature of the bath becomes frequency dependent. Thereby, a correlation to the Carnot COP has been deduced. The results reveal that the COP under the maximum χ figure of merit is of the Curzon-Ahlborn style that cannot surpass the actual Carnot COP, and is thus consistent with the second law of thermodynamics. PMID:26172691

  19. Spin squeezing in dipolar spinor condensates

    NASA Astrophysics Data System (ADS)

    Kajtoch, Dariusz; Witkowska, Emilia

    2016-02-01

    We study the effect of dipolar interactions on the level of squeezing in spin-1 Bose-Einstein condensates by using the single mode approximation. We limit our consideration to the SU(2) Lie subalgebra spanned by spin operators. The biaxial nature of dipolar interactions allows for dynamical generation of spin-squeezed states in the system. We analyze the phase portraits in the reduced mean-field space in order to determine positions of unstable fixed points. We calculate numerically the spin squeezing parameter showing that it is possible to reach the strongest squeezing set by the two-axis countertwisting model. We partially explain scaling with the system size by using the Gaussian approach and the frozen spin approximation.

  20. Performance of quantum Otto refrigerators with squeezing

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-06-01

    The performance of a quantum Otto refrigerator coupled to a squeezed cold reservoir has been evaluated using the χ figure of merit. We have shown that squeezing can enhance the coefficient of performance (COP) dramatically, surpassing the Carnot COP defined by the initial temperatures of the heat baths. Furthermore, when the squeezing parameter approaches its maximum value, the work input vanishes while the cooling rate remains finite, in apparent contravention of the second law of thermodynamics. To explain this phenomenon, we have shown that squeezing renders the thermal bath into a nonequilibrium state and the temperature of the bath becomes frequency dependent. Thereby, a correlation to the Carnot COP has been deduced. The results reveal that the COP under the maximum χ figure of merit is of the Curzon-Ahlborn style that cannot surpass the actual Carnot COP, and is thus consistent with the second law of thermodynamics.

  1. Sudden vanishing of spin squeezing under decoherence

    SciTech Connect

    Wang Xiaoguang; Miranowicz, Adam; Liu, Yu-xi; Sun, C. P.; Nori, Franco

    2010-02-15

    In order to witness multipartite correlations beyond pairwise entanglement, spin-squeezing parameters are analytically calculated for a spin ensemble in a collective initial state under three different decoherence channels. It is shown that, in analogy to pairwise entanglement, the spin squeezing described by different parameters can suddenly become zero at different vanishing times. This finding shows the general occurrence of sudden vanishing phenomena of quantum correlations in many-body systems, which here is referred to as spin-squeezing sudden death (SSSD). It is shown that the SSSD usually occurs due to decoherence and that SSSD never occurs for some initial states in the amplitude-damping channel. We also analytically obtain the vanishing times of spin squeezing.

  2. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  3. Engineering Non-Classical Light with Non-Linear Microwaveguides

    NASA Astrophysics Data System (ADS)

    Grimsmo, Arne; Clerk, Aashish; Blais, Alexandre

    The quest for ever increasing fidelity and scalability in measurement of superconducting qubits to be used for fault-tolerant quantum computing has recently led to the development of near quantum-limited broadband phase preserving amplifiers in the microwave regime. These devices are, however, more than just amplifiers: They are sources of high-quality, broadband two-mode squeezed light. We show how bottom-up engineering of Josephson junction embedded waveguides can be used to design novel squeezing spectra. Furthermore, the entanglement in the two-mode squeezed output field can be imprinted onto quantum systems coupled to the device's output. These broadband microwave amplifiers constitute a realization of non-linear waveguide QED, a very interesting playground for non-equilibrium many-body physics.

  4. Designing the microstructure of squeeze-cast Al composites

    NASA Astrophysics Data System (ADS)

    Dumant, X.; Beaugnon, E.; Regazzoni, G.

    1989-11-01

    Retaining their high strength and stiffness up to 350°C, SiC fiber-reinforced aluminum composites are lightweight alternatives to titanium or steel parts. By combining filament winding and squeeze-casting, components of fairly complex shapes can be produced. Both Nicalon and Tyranno "hybrid" SiC fibers (that is, continuous fibers with SiC particles distributed between the fibers) were used to reinforce pure aluminum and alloy 357 matrices. Their longitudinal properties appear much more dependent on alloying elements and processing conditions than on fiber types, but hybridization is effective in raising transverse properties significantly. Failure modes can be related to microstructural features, including interfaces, fiber-to-fiber contacts, second-phase bridges between fibers and fiber damage through processing. Provided some basic rules for microstructural design are followed for the manufacture of actual parts, squeeze-cast SiC fiber aluminum composites offer great potential for defense and aerospace applications.

  5. Multiple-copy distillation and purification of phase-diffused squeezed states

    SciTech Connect

    Marek, Petr; Fiurasek, Jaromir; Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman

    2007-11-15

    We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

  6. Transitions to chaos in squeeze-film dampers

    NASA Astrophysics Data System (ADS)

    Inayat-Hussain, Jawaid I.; Mureithi, Njuki W.

    2006-09-01

    This work reports on a numerical study undertaken to investigate the imbalance response of a rigid rotor supported by squeeze-film dampers. Two types of damper configurations were considered, namely, dampers without centering springs, and eccentrically operated dampers with centering springs. For a rotor fitted with squeeze-film dampers without centering springs, the study revealed the existence of three regimes of chaotic motion. The route to chaos in the first regime was attributed to a sequence of period-doubling bifurcations of the period-1 (synchronous) rotor response. A period-3 (one-third subharmonic) rotor whirl orbit, which was born from a saddle-node bifurcation, was found to co-exist with the chaotic attractor. The period-3 orbit was also observed to undergo a sequence of period-doubling bifurcations resulting in chaotic vibrations of the rotor. The route to chaos in the third regime of chaotic rotor response, which occurred immediately after the disappearance of the period-3 orbit due to a saddle-node bifurcation, was attributed to a possible boundary crisis. The transitions to chaotic vibrations in the rotor supported by eccentric squeeze-film dampers with centering springs were via the period-doubling cascade and type 3 intermittency routes. The type 3 intermittency transition to chaos was due to an inverse period-doubling bifurcation of the period-2 (one-half subharmonic) rotor response. The unbalance response of the squeeze-film-damper supported rotor presented in this work leads to unique non-synchronous and chaotic vibration signatures. The latter provide some useful insights into the design and development of fault diagnostic tools for rotating machinery that operate in highly nonlinear regimes.

  7. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  8. High Brightness GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ju; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2007-06-01

    This paper reviews our recent progress of GaN-based high brightness light-emitting diodes (LEDs). Firstly, by adopting chemical wet etching patterned sapphire substrates in GaN-based LEDs, not only could increase the extraction quantum efficiency, but also improve the internal quantum efficiency. Secondly, we present a high light-extraction 465-nm GaN-based vertical light-emitting diode structure with double diffuse surfaces. The external quantum efficiency was demonstrated to be about 40%. The high performance LED was achieved mainly due to the strong guided-light scattering efficiency while employing double diffuse surfaces.

  9. Development of lighting system for hologram using high power LEDs

    NASA Astrophysics Data System (ADS)

    Baba, Junko; Yaeda, Asami; Asakawa, Hisashi; Shibuya, Takehisa; Wakaki, Moriaki

    2007-02-01

    Light emitting diode (LED) became popular rapidly by the appearance of blue LED. Three color (R, G, B) emitting LEDs are utilized for the image display system by the development of multi color emitting LED. White LEDs became to commercial base by combining blue or UV light sources for excitation and materials for fluorescence. White LEDs are prevailing for general lighting applications. A single tip with the power of 5W became line up for commercial market owing to the research for high intensity LEDs. As a result, LEDs are replacing the market of conventional incandescent lighting and even head lights of the automobile. In this study, we aim to fabricate the white and R, G, B lighting system using high brightness LEDs for the lighting of holograms instead of a conventional halogen lamp.

  10. High energy neutrino spin light [rapid communication

    NASA Astrophysics Data System (ADS)

    Lobanov, A. E.

    2005-07-01

    The quantum theory of spin light (electromagnetic radiation emitted by a Dirac massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically "sterile". Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the spin light can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final "sterile" neutrinos.

  11. Highly transparent light-harvesting window film.

    PubMed

    Cocilovo, Byron; Hashimura, Aki; Tweet, Douglas J; Voutsas, Tolis; Norwood, Robert A

    2015-10-20

    We have simulated unique textured window films that capture solar radiation without compromising the window's transparency by scattering infrared light toward photovoltaic strips located at the edges of the window. These films are ideal for powering electrochromic glass, which is difficult to install as each window requires its own power source. Our most promising design consists of an embedded array of 35° cones coated with a five-layer SiO2-Ag stack that was simulated to direct 1.4% of the incident light toward the edges and generate 1 W of power under a collimated 1000  W/m2 AM1.5G source at 60° and an average of 0.5 W over a full year when applied to a 1  m×1  m window. The internal visible transmittance of the window with the applied film is 95% at normal incidence, and remains above 85% for viewing angles up to 60°. The haze is 0.6% at normal incidence and 3.9% at 60°. PMID:26560389

  12. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  13. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  14. Stray-light suppression with high-collection efficiency in laser light-scattering experiments

    NASA Technical Reports Server (NTRS)

    Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.

    1992-01-01

    An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.

  15. Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

    SciTech Connect

    Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletic, Vladan

    2010-06-25

    We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

  16. Local Unitary Invariant Spin-Squeezing in Multiqubit States

    NASA Astrophysics Data System (ADS)

    Divyamani, B. G.; Sudha; Usha Devi, A. R.

    2016-05-01

    We investiage Local Unitary Invariant Spin Squeezing (LUISS) in symmetric and non-symmetric multiqubit states. On developing an operational procedure to evaluate Local Unitary Invariant Spin Squeezing parameters, we explicitly evaluate these parameters for pure as well as mixed non-symmetric multiqubit states. We show that the existence of local unitary invariant version of Kitegawa-Ueda spin squeezing may not witness pairwise entanglement whereas the local unitary invariant analogue of Wineland spin squeezing necessarily implies pairwise entanglement.

  17. Planar quantum squeezing and atom interferometry

    SciTech Connect

    He, Q. Y.; Drummond, P. D.; Reid, M. D.; Peng Shiguo

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  18. Quantum squeezing of a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Lei, Chan U.; Weinstein, Aaron; Suh, Junho; Wollman, Emma; Schwab, Keith

    Generating nonclassical states of a macroscopic object has been a subject of considerable interest. It offers a route toward fundamental test of quantum mechanics in an unexplored regime. However, a macroscopic quantum state is very susceptible to decoherence due to the environment. One way to generate robust quantum states is quantum reservoir engineering. In this work, we utilize the reservoir engineering scheme developed by Kronwald et al. to generate a steady quantum squeezed state of a micron-scale mechanical oscillator in an electromechanical system. Together with the backaction evading measurement technique, we demonstrate a quantum nondemolition measurement of the mechanical quadratures to characterize the quantum squeezed state. By measuring the quadrature variances of the mechanical motion, more than 3dB squeezing below the zero-point level has been achieved.

  19. Secure quantum key distribution using squeezed states

    SciTech Connect

    Gottesman, Daniel; Preskill, John

    2001-02-01

    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e{sup r}=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.

  20. Yield stress measurements using novel squeezing flows

    NASA Astrophysics Data System (ADS)

    Ward, Daniel

    Techniques for measuring the yield stress of materials are numerous, but often plagued with difficulties and uncertainties in measurement. The primary methods include shear rheometry and, more recently, squeezing flow. Shear rheometry requires care on the part of the experimentalist to generate uniform flow fields and avoid shear banding or wall slip which may interfere with measurements. Squeezing flow tests are often performed with poorly controlled boundary conditions creating complicated flow fields. Further, the effects of the experimental modifications made to produce these boundary conditions in measurements are often not investigated and simply ignored. The main objective of this study was to develop a novel measuring technique to study the yield stress behavior of a model material, Carbopol. First attempts were made towards a novel lubricant injection squeezing (LIS) flow technique based on the continuous lubricated squeezing flow (CLSF) setup, as well as a novel lubricant film squeezing (LFS) technique which will allow measurement of the yield stress without the complicated treatment of either the sample or experimental setup required by currently favored methods. The novel techniques were developed and validated by direct comparison with shear measurements, the current gold standard for determining yield stress. Common squeezing techniques for characterizing yield stress fluids were also compared and found to be inadequate and inconsistent when compared to the shear measurements. The results from this study showed that the LIS and LFS methods are able to qualitatively determine a yield stress, but further investigation is required before they can be achieve their full potential as viable methods for determine yield stress.

  1. Entanglement and Squeezing in Solid State Circuits

    SciTech Connect

    Wen Yihuo; Gui Lulong

    2008-11-07

    We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.

  2. Modeling and experimental study on heat transfer in squeeze casting of magnesium alloy AM60 and aluminum alloy A443

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong

    This study developed a solution algorithm based on the function specification method to solve the inverse heat conduction equations. By this solution, the casting-die interfacial heat transfer coefficients (IHTC) in light metal squeeze castings were determined accurately and the pressurized solidification was simulated precisely. This goal was accomplished in the four stages. First, a model was developed to simulate fluid flow in forced convection and heat transfer in pressurized solidification of a cylindrical simple shape squeeze casting. Pressure-dependent heat transfer coefficients (HTC) and non-equilibrium solidification temperatures were determined by experimental measurements. With the measured HTC and temperatures under the different pressures, the temperature distributions and the cooling behaviours of squeeze cast were simulated. In the second stage, a different wall-thickness 5-step casting mould was designed, and squeeze casting of magnesium alloy AM60 was performed under an applied pressure 30, 60 and 90 MPa in a hydraulic press. With measured temperatures, heat fluxes and IHTCs were evaluated using the polynomial curve fitting method and numerical inverse method. The accuracy of these curves was analyzed by the direct modeling calculation. The results indicated that heat flux and IHTCs determined by the inverse method were more accurately than those from the extrapolated fitting method. In the third stage, the inverse method was applied to an aluminum alloy A443 and magnesium alloy AM60. As the applied hydraulic pressure increased, the IHTC peak value of each step was increased accordingly. Compared to the thin steps at the upper cavity, the relatively thick steps attained higher peak IHTCs and heat fluxes values due to high local pressures and high melt temperature. The empirical equations relating IHTC to the local pressures and solidification temperature at the casting surface were derived and summarized. Finally, the IHTC values calculated by

  3. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  4. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  5. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  6. Squeezed states and Affleck-Dine baryogenesis

    SciTech Connect

    Chaitanya, K. V. S. Shiv; Bambah, Bindu A.

    2008-09-15

    Quantum fluctuations in the post-inflationary Affleck-Dine baryogenesis model are studied. The squeezed states formalism is used to give evolution equations for the particle and antiparticle modes in the early universe. The role of expansion and parametric amplification of the quantum fluctuations on the baryon asymmetry produced is investigated.

  7. Squeezing in a 2-D generalized oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, Octavio; Lopez-Pena, Ramon; Manko, Vladimir I.

    1994-01-01

    A two-dimensional generalized oscillator with time-dependent parameters is considered to study the two-mode squeezing phenomena. Specific choices of the parameters are used to determine the dispersion matrix and analytic expressions, in terms of standard hermite polynomials, of the wavefunctions and photon distributions.

  8. Deterministic secure communications using two-mode squeezed states

    SciTech Connect

    Marino, Alberto M.; Stroud, C. R. Jr.

    2006-08-15

    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.

  9. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency. PMID:26906589

  10. Nanosecond high-power dense microplasma switch for visible light

    SciTech Connect

    Bataller, A. Koulakis, J.; Pree, S.; Putterman, S.

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  11. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.

    PubMed

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-29

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors. PMID:26871318

  12. Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system.

    PubMed

    Cai, Qiu-Hua; Xiao, Yin; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-09-01

    We propose a scheme for generating the squeezing of a mechanical mode and the anti-bunching of photonic modes in an optomechanical system. In this system, there are two photonic modes (the left cavity-mode and the right cavity-mode) and one mechanical mode. Both the left cavity-mode and the right cavity-mode are driven by two lasers, respectively. The power of the driving lasers and the detuning between them play a key role in generating squeezing of the mechanical mode. We find that the squeezing of the mechanical mode can be achieved even at a high temperature by increasing the power of the driving lasers. We also find that the cavity-modes can show photonic anti-bunching under suitable conditions. PMID:27607612

  13. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew

    2016-01-01

    Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

  14. Shaking the condensates: Optimal number squeezing in the dynamic splitting of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Grond, Julian; Schmiedmayer, Jörg; Hohenester, Ulrich

    2010-01-01

    We apply optimal control theory to the dynamic splitting process of a Bose-Einstein condensate (BEC). Number squeezing of two spatially separated BECs is important for interferometry applications and inhibits phase diffusion due to the nonlinear atom-atom interactions. We show how optimal number squeezing can be obtained on time scales much shorter compared to adiabatic splitting. The non-adiabatic time evolution of the condensates is controlled via the trap geometry, thus making our control schemes directly applicable to experiments. We find that the optimal solution for the trap is oscillatory, where a counterintuitive shaking during the ramp produces highly squeezed states. The underlying process can be identified as a parametric amplification.

  15. Conditional Spin Squeezing via Quantum Non-demolition Measurements with an Optical Cycling Transition

    NASA Astrophysics Data System (ADS)

    Weiner, Joshua; Cox, Kevin; Norcia, Matthew; Bohnet, Justin; Chen, Zilong; Thompson, James

    2013-04-01

    We present experimental progress towards quantum non-demolition (QND) measurements of the collective pseudo-spin Jz composed of the maximal mF hyperfine ground states of an ensemble of ˜10^5 ^87Rb atoms confined in a low finesse F = 710 optical cavity. Measuring the phase shift imposed by the atoms on a cavity probe field constitutes a QND measurement that can be used to prepare a conditionally spin squeezed state. By probing on a closed optical transition, we highly suppress both fundamental and technical noise due to Raman scattering compared to probing on an open transition. It may be possible to generate spin squeezed states with >10 dB enhancement in quantum phase estimation relative to the standard quantum limit. The resulting spin squeezed states may specifically enable magnetic field sensing beyond the standard quantum limit as well as broadly impact atomic sensors and tests of fundamental physics.

  16. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Ben-Zvi, I.; Dowell, D.H.; Feng, J.; Rao, T.; Smedley, J.; Wan, W.; Padmore, H.A.

    2011-07-21

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  17. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Feng, J.; Wan, W.; Padmore, H. A.; Ben-Zvi, I.; Dowell, D. H.; Rao, T.; Smedley, J.

    2011-07-18

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  18. New lighting for the design of high quality biomedical devices

    NASA Astrophysics Data System (ADS)

    Jaffe, Claudia B.; Jaffe, Steven M.; Conner, Arlie R.

    2009-02-01

    Among the trends redefining 21st century biomedical diagnostics and therapeutics are the advent of low-cost portable analyzers. Because light is a powerful tool in many of today's most widely used life science instruments, high intensity, low cost light engines are essential to the design and proliferation of the newest bioanalytical instruments, medical devices and miniaturized analyzers. The development of new light technology represents a critical technical hurdle in the realization of point-of-care analysis. Lumencor has developed an inexpensive lighting solution, uniquely well suited to the production of safe, effective and commercially viable life science tools and biomedical devices. Lumencor's proprietary, solid-state light engine provides powerful, pure, stable, inexpensive light across the UV-Vis- NIR. Light engines are designed to directly replace the entire configuration of light management components with a single, simple unit. Power, spectral breadth and purity, stability and reliability data will demonstrate the advantages of these light engines for today's bioanalytical needs. Performance and cost analyses will be compared to traditional optical subsystems based on lamps, lasers and LEDs with respect to their suitability as sources for biomedical applications, implementation for development/evaluation of novel measurement tools and overall superior reliability. Next generation products based on such sources will be described to fulfill the demand for portable, hand-held analyzers and affordable devices with highly integrated light sources. A four color violet/cyan/green/red product will be demonstrated. A variety of multicolor prototypes, their spectral outputs and facile modulation will be discussed and their performance capabilities disclosed.

  19. LED light engine concept with ultra-high scalable luminance

    NASA Astrophysics Data System (ADS)

    Hoelen, Christoph; de Boer, Dick; Bruls, Dominique; van der Eyden, Joost; Koole, Rolf; Li, Yun; Mirsadeghi, Mo; Vanbroekhoven, Vincent; Van den Bergh, John-John; Van de Voorde, Patrick

    2016-03-01

    Although LEDs have been introduced successfully in many general lighting applications during the past decade, high brightness light source applications are still suffering from the limited luminance of LEDs. High power LEDs are generally limited in luminance to ca 100 Mnit (108 lm/m2sr) or less, while dedicated devices for projection may achieve luminance values up to ca 300 Mnit with phosphor converted green. In particular for high luminous flux applications with limited étendue, like in front projection systems, only very modest luminous flux values in the beam can be achieved with LEDs compared to systems based on discharge lamps. In this paper we introduce a light engine concept based on a light converter rod pumped with blue LEDs that breaks through the étendue and brightness limits of LEDs, enabling LED light source luminance values that are more than 4 times higher than what can be achieved with LEDs so far. In LED front projection systems, green LEDs are the main limiting factor. With our green light emitting modules, peak luminance values well above 1.2 Gnit have been achieved, enabling doubling of the screen brightness of LED based DLP projection systems, and even more when this technology is applied to other colors as well. This light source concept, introduced as the ColorSpark High Lumen Density (HLD) LED technology, enables a breakthrough in the performance of LED-based light engines not only for projection, where >2700 ANSI lm was demonstrated, but for a wide variety of high brightness applications.

  20. LED white lights with high CRI and high luminous efficacy

    NASA Astrophysics Data System (ADS)

    He, Guoxing; Zheng, Lihong; Yan, Huafeng

    2010-11-01

    The models for spectra of a phosphor-coated white (p-W) LED and a white light LED cluster are developed based on the principle of additive color mixture. The simulation results show that p-W LEDs consisting of a blue chip (450nm), green phosphor (507 nm), yellow phosphor (580 nm) and red phosphor (655 nm) could realize color rendering indices (CRIs) above 97.7 and special CRIs of R1 to R14 above 91.1, but luminous efficacies of radiation (LERs) below 250.3 lm/W, that white/red clusters consisting of red LEDs and p-W LEDs with a blue chip (450nm), green (507 nm) and yellow (580 nm) phosphors could realize given color temperature white light with CRIs above 97.9 and special CRIs of R1 to R14 above 89.6, as well as LERs above 296.3 lm/W, and that a neutral-white /red//blue cluster consisting of blue LEDs (465 nm), red LEDs (628 nm) and neutral-white LEDs with a blue chip (452 nm), green (530 nm) and yellow (586 nm) phosphors could realize CCT tunable white lights with CRIs above 97.9 and special CRIs of R1 to R14 above 89.6, as well as LER above 296.3 lm/W.

  1. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  2. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  3. High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Carl; Zhang, Cheng; Ray, Vishva; Guo, L. Jay; Grbic, Anthony

    2014-07-01

    It is experimentally shown that bianisotropic metasurfaces allow for extreme polarization control of light with high performance. A metasurface providing asymmetric transmission (i.e., polarization conversion) of circularly polarized light is reported at a wavelength of 1.5 μm. The experimental transmittance and extinction ratio are 50% and 20:1, which represents an order of magnitude improvement over previous optical structures exhibiting asymmetric transmission. The metasurface consists of patterned gold sheets that are spaced at a subwavelength distance from each other. The same design and fabrication processes can be used in the future to completely control the phase, amplitude, and polarization of light.

  4. Color temperature tunable white-light light-emitting diode clusters with high color rendering index.

    PubMed

    He, Guoxing; Zheng, Lihong

    2010-08-20

    A model for LED spectra at different drive currents is established. The simulation program of color rendering of a white-light LED cluster is developed according to the principle of additive color mixtures. The program can predict not only the spectral power distribution, chromaticity coordinates, correlated color temperature (CCT), and color rendering index (CRI), but also the drive currents of LEDs, luminous flux, input power, and luminous efficacy of white-light LED clusters. Three types of CCT tunable white-light LED clusters [warm-white/red/green/blue (WW/R/G/B), neutral-white (NW)/R/G/B, and cool-white/R/amber/G clusters] with high CRI are found by simulation analysis and realized in our laboratory. The experimental results show that the WW/R/G/B cluster can realize CCT tunable white light with high CRIs (above 90) but lower luminous efficacies (below 65 lm/W), and that the NW/R/G/B cluster can realize CCT tunable white light with high CRIs (above 86), as well as high luminous efficacies (above 64 lm/W). PMID:20733639

  5. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement

    NASA Astrophysics Data System (ADS)

    Vasilakis, G.; Shen, H.; Jensen, K.; Balabas, M.; Salart, D.; Chen, B.; Polzik, E. S.

    2015-05-01

    Continuous observation of an oscillator results in quantum back-action, which limits the knowledge acquired by the measurement. A careful balance between the information obtained and the back-action disturbance leads to the standard quantum limit of precision. This limit can be surpassed by a measurement with strength modulated at twice the oscillator frequency, resulting in a squeezed state of the oscillator motion, as proposed decades ago. Here, we report the generation of a squeezed state of an oscillator by a stroboscopic back-action-evading measurement. The oscillator is the spin of an atomic ensemble precessing in a magnetic field. The oscillator initially prepared nearly in the ground state is stroboscopically coupled to an optical mode of a cavity. A measurement of the output light results in a 2.2 +/- 0.3 dB squeezed state of the oscillator. The demonstrated spin-squeezed state of 108 atoms with an angular spin variance of 8 × 10-10 rad2 is promising for magnetic field sensing.

  6. Field dynamics, instabilities, and phase squeezing in the two-photon correlated-emission laser

    NASA Astrophysics Data System (ADS)

    Bergou, J.; Zhang, J.; Su, C.

    1995-10-01

    Both stationary and time-dependent regimes of operation, instabilities, and phase squeezing are investigated in the off-resonant two-photon correlated-spontaneous-emission laser by numerical calculation. Initial atomic coherence plays an essential role in lasing without population inversion, phase locking, and phase noise squeezing in the system. Under certain conditions, in the inverted and noninverted regimes alike, the output intensity exhibits bistable behaviors against the initial atomic coherence. Depending on the parameters, the whole or a portion of the upper or lower branch gives stable operations. In the inverted regime, even tristable behavior can be found in a narrow range of parameters. The field evolution and dynamics are studied. Furthermore, phase noise reduction near bistable areas is also investigated. In addition to the lower branch, where from previous studies, it has been known to exist, phase squeezing is also found on the upper branch both with and without population inversion, thus generating a bright source of phase noise squeezed light.

  7. Light management for photovoltaics using high-index nanostructures.

    PubMed

    Brongersma, Mark L; Cui, Yi; Fan, Shanhui

    2014-05-01

    High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells. PMID:24751773

  8. Light management for photovoltaics using high-index nanostructures

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.; Cui, Yi; Fan, Shanhui

    2014-05-01

    High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.

  9. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  10. Spatial light modulators for high-brightness projection displays.

    PubMed

    Takizawa, K; Fujii, T; Kikuchi, H; Fujikake, H; Kawakita, M; Hirano, Y; Sato, F

    1999-09-10

    We fabricated polymer-dispersed liquid-crystal light valves (PDLCLV's) consisting of a 30-microm-thick hydrogenated amorphous-silicon film and a 10-microm-thick polymer-dispersed liquid-crystal (PDLC) film composed of nematic liquid-crystal (LC) microdroplets surrounded by polymer. The device can modulate high-power reading light, because the PDLC becomes transparent or opalescent independent of the polarization state of the reading light when either sufficient or no writing light is incident on the PDLCLV. This device has a limiting resolution of 50 lp/mm (lp indicates line pairs), a reading light efficiency of 60%, a ratio of intensity of light incident on the PDLC layer to intensity of light radiated from the layer, and an extinction ratio of 130:1. The optically addressed video projection system with three PDLCLV's, LC panels of 1048 x 480 pixels as input image sources, a 1-kW Xe lamp, and a schlieren optical system projected television (TV) pictures of 600 and 450 TV lines in the horizontal and the vertical directions on a screen with a diagonal length of 100 in. The total output flux of this system was 1500 lm. PMID:18324076

  11. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum

    SciTech Connect

    Gerrits, Thomas; Glancy, Scott; Clement, Tracy S.; Calkins, Brice; Lita, Adriana E.; Nam, Sae Woo; Mirin, Richard P.; Knill, Emanuel; Miller, Aaron J.; Migdall, Alan L.

    2010-09-15

    We have created heralded coherent-state superpositions (CSSs) by subtracting up to three photons from a pulse of squeezed vacuum light. To produce such CSSs at a sufficient rate, we used our high-efficiency photon-number-resolving transition edge sensor to detect the subtracted photons. This experiment is enabled by and utilizes the full photon-number-resolving capabilities of this detector. The CSS produced by three-photon subtraction had a mean-photon number of 2.75{sub -0.24}{sup +0.06} and a fidelity of 0.59{sub -0.14}{sup +0.04} with an ideal CSS. This confirms that subtracting more photons results in higher-amplitude CSSs.

  12. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  13. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  14. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum

    PubMed Central

    Wilhelm, Christian

    2013-01-01

    The objective of the present study was to test the hypothesis that the acclimation to different light intensities in the diatom Phaeodactylum tricornutum is controlled by light quality perception mechanisms. Therefore, semi-continuous cultures of P. tricornutum were illuminated with equal amounts of photosynthetically absorbed radiation of blue (BL), white (WL), and red light (RL) and in combination of two intensities of irradiance, low (LL) and medium light (ML). Under LL conditions, growth rates and photosynthesis rates were similar for all cultures. However, BL cultures were found to be in an acclimation state with an increased photoprotective potential. This was deduced from an increased capacity of non-photochemical quenching, a larger pool of xanthophyll cycle pigments, and a higher de-epoxidation state of xanthophyll cycle pigments compared to WL and RL cultures. Furthermore, in the chloroplast membrane proteome of BL cells, an upregulation of proteins involved in photoprotection, e.g. the Lhcx1 protein and zeaxanthin epoxidase, was evident. ML conditions induced increased photosynthesis rates and a further enhanced photoprotective potential for algae grown under BL and WL. In contrast, RL cultures exhibited no signs of acclimation towards increased irradiance. The data implicate that in diatoms the photoacclimation to high light intensities requires the perception of blue light. PMID:23183259

  15. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  16. High Pressure CPT Signals using Intensity Modulated Light

    NASA Astrophysics Data System (ADS)

    Post, Amber; Jau, Yuan-Yu; Miron, Eli; Romalis, Michael; Kuzma, Nicholas; Happer, William

    2004-05-01

    Coherent Population Trapping (CPT) is a promising technique for use in miniature atomic clocks, since it uses modulated light to detect clock resonances rather than microwaves. This method typically uses frequency-modulated light to probe cells with low buffer gas pressure, in which the ground-state hyperfine structure is clearly resolved. However, conventional frequency-modulated CPT fails at the higher pressures needed to inhibit wall collisions in miniature cells. We present theory and supporting experimental results of high-pressure CPT signals using intensity-modulated light. Circularly polarized light tuned to the Rb D1 line traps most of the atoms in the F=2, m_F=2, where the microwave ``end resonance"^2 is excited. We will show experimental data and briefly discuss linewidth broadening mechanisms. 2 Y.-Y. Jau, A. B. Post, N. N. Kuzma, et al., Phys. Rev. Lett. (in press, 2004).

  17. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  18. Toward spin squeezing with trapped ions

    NASA Astrophysics Data System (ADS)

    Uys, Hermann; Biercuk, Michael; Britton, Joe; Bollinger, John J.

    2012-09-01

    Building robust instruments capable ofmaking interferometric measurements with precision beyond the standard quantum limit remains an important goal in many metrology laboratories. We describe here the basic concepts underlying spin squeezing experiments that allow one to surpass this limit. In principle it is possible to reach the so-called Heisenberg limit, which constitutes an improvement in precision by a factorv √N , where N is the number of particles on which the measurement is carried out. In particular, we focus on recent progress toward implementing spin squeezing with a cloud of beryllium ions in a Penning ion trap, via the geometric phase gate used more commonly for performing two-qubit entangling operations in quantum computing experiments.

  19. Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Richardson, W. H.; Machida, S.; Yamamoto, Y.

    1991-01-01

    Amplitude noise on the light from a semiconductor laser produced a photocurrent fluctuation spectrum that was a maximum of 85 percent (-8.3 dB) below the shot-noise limit. Squeezing in semiconductor lasers is not limited by the overall quantum, or current transfer, efficiency from the laser injection current to the detector photocurrent. Current leakage away from the lasing junction does not introduce Poissonian partition noise.

  20. Squeezing and Entanglement of Density Oscillations in a Bose-Einstein Condensate.

    PubMed

    Wade, Andrew C J; Sherson, Jacob F; Mølmer, Klaus

    2015-08-01

    The dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate how the measurement backaction leads to squeezing and entanglement of the quantized density oscillations. We show that properly timed, stroboscopic imaging and feedback can be used to selectively address specific eigenmodes and avoid excitation of nontargeted modes of the system. PMID:26296103

  1. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  2. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    NASA Astrophysics Data System (ADS)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  3. Baryon asymmetry, inflation and squeezed states

    SciTech Connect

    Bambah, Bindu A. . E-mail: bbsp@uohyd.ernet.in; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-04-15

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry.

  4. Squeezed states for the Bateman Hamiltonian

    NASA Astrophysics Data System (ADS)

    Aliaga, J.; Crespo, G.; Proto, A. N.

    1991-01-01

    Recently, De Brito and Baseia [Phys. Rev. A 40, 4097 (1989)] have studied the appearance of squeezed states for the Bateman Hamiltonian. Although the final results obtained in that report are correct, it is our intention to use an alternative point of view, based on a density matrix defined according to the maximum entropy principle, which allows us to reobtain those results in a more general way.

  5. Investigation of squeeze-film dampers

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dogan, M.

    1982-01-01

    Squeeze film dampers are a means of curing instabilities in rotating shaft assemblies. Their efficiency depends very much on the condition of the oil, which in turn depends on inlet and outlet arrangements, on damper geometry and on the flexibility of the rotor and surrounding structure. Rig investigations in which structural flexibility is included experimentally are discussed. Comparisons are made between measured and predicted results.

  6. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  7. Spin squeezing in a quadrupolar nuclei NMR system.

    PubMed

    Auccaise, R; Araujo-Ferreira, A G; Sarthour, R S; Oliveira, I S; Bonagamba, T J; Roditi, I

    2015-01-30

    We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics. PMID:25679893

  8. Effective theory of squeezed correlation functions

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Simonović, Marko

    2016-03-01

    Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in klong/kshort. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (klong/kshort)Δ with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.

  9. Harmonic oscillator interaction with squeezed radiation

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Nikonov, D. E.

    1993-01-01

    Although the problem of electromagnetic radiation by a quantum harmonic oscillator is considered in textbooks on quantum mechanics, some of its aspects have remained unclear until now. By this, we mean that usually the initial quantum states of both the oscillator and the field are assumed to be characterized by a definite energy level of the oscillator and definite occupation numbers of the field modes. In connection with growing interest in squeezed states, it would be interesting to analyze the general case when the initial states of both subsystems are arbitrary superpositions of energy eigenstates. This problem was considered in other work, where the power of the spontaneous emission was calculated in the case of an arbitrary oscillator's initial state, but the field was initially in a vacuum state. In the present article, we calculate the rate of the oscillator average energy, squeezing, and correlation parameter change under the influence of an arbitrary external radiation field. Some other problems relating to the interaction between quantum particles (atoms) or oscillators where the electromagnetic radiation is an arbitrary (in particular squeezed) state were investigated.

  10. High-performance OLEDs and their application to lighting

    NASA Astrophysics Data System (ADS)

    Ide, Nobuhiro; Tsuji, Hiroya; Ito, Norihiro; Sasaki, Hiroyuki; Nishimori, Taisuke; Kuzuoka, Yoshikazu; Fujihara, Koki; Miyai, Takao; Komoda, Takuya

    2008-08-01

    Organic light emitting diodes (OLED) are expected to be used in next generation solid state lighting sources serving as an alternative to conventional incandescent bulbs and fluorescent lamps. OLEDs will provide the environmental benefits of possible considerable energy savings and elimination of mercury, as well as some other advantages such as thin flat shape, planar emission, and no UV emission. Recently, important properties of OLEDs such as efficiency and lifetime have been greatly improved. Additionally, for lighting applications, a high color rendering index (CRI) at the desired CIE chromaticity coordinates, high luminance and large area uniform emission, and high stability over long time operation are also required. In this paper, we describe the development and performance of our high CRI OLEDs: the conventional OLED with multiple emissive layers and the multi-unit OLED with only two emissive units (a fluorescent blue emissive unit and a phosphorescent green / red emissive unit). Related technologies for OLED lighting to obtain uniform emission at high luminance in large areas are also described.

  11. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  12. Studying fluid squeeze characteristics for aerostatic journal bearing

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Gamal M.

    2008-07-01

    The Reynolds equation for studying fluid squeeze of aerostatic journal bearing is solved numerically by considering the quasi-steady behavior of the air film. The radial displacement can influence the air film thickness modifying the pressure distribution in the journal-bearing gap. Also, the variations in the seal characteristics with eccentricity, time, squeeze number, length-to-diameter and supply pressure are presented. The numerical results for the squeeze load-carrying capacity are given in a non-dimensional form.

  13. Photon statistics of a two-mode squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Schrade, Guenter; Akulin, V. M.; Schleich, W. P.; Manko, Vladimir I.

    1994-01-01

    We investigate the general case of the photon distribution of a two-mode squeezed vacuum and show that the distribution of photons among the two modes depends on four parameters: two squeezing parameters, the relative phase between the two oscillators and their spatial orientation. The distribution of the total number of photons depends only on the two squeezing parameters. We derive analytical expressions and present pictures for both distributions.

  14. Amplitude-squeezed fiber-Bragg-grating solitons

    SciTech Connect

    Lee, R.-K.; Lai Yinchieh

    2004-02-01

    Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.

  15. Generalised squeezing and information theory approach to quantum entanglement

    NASA Technical Reports Server (NTRS)

    Vourdas, A.

    1993-01-01

    It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

  16. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  17. Squeeze flow and compaction behavior of toughened polyimide matrix composites

    NASA Technical Reports Server (NTRS)

    Lee, Byung Lip; Pater, R.; Soucek, M. D.

    1991-01-01

    The main emphasis was placed upon the squeeze flow and compaction behavior of the Lewis Research Center (LaRC) research project series polyimide matrix composites. The measurement of squeeze film flow behavior was performed by a plastometer which monitors the change of thickness of a prepreg specimen laid between two parallel plates under the specified temperature and pressure history. A critical evaluation of the plastometer data was attempted by examining the morphology of the specimen at various points during the squeeze flow. The effects of crosslinks (Mc) of resin, imidization (B-ataging) condition, and pressure on the squeeze flow behavior were examined. Results are given.

  18. Triple-mode squeezing with dressed six-wave mixing

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-05-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.

  19. Triple-mode squeezing with dressed six-wave mixing.

    PubMed

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-01-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878

  20. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator.

    PubMed

    Pirkkalainen, J-M; Damskägg, E; Brandt, M; Massel, F; Sillanpää, M A

    2015-12-11

    A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations that are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude 1.1±0.4  dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object. PMID:26705631

  1. Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    SciTech Connect

    Tran, Truong X.; Cassemiro, Katiuscia N.; Soeller, Christoph; Biancalana, Fabio; Blow, Keith J.

    2011-07-15

    We report the existence of a kind of squeezing in photonic crystal fibers which is conceptually intermediate between four-wave-mixing-induced squeezing in which all the participant waves are monochromatic waves, and self-phase-modulation-induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasimonochromatic resonant radiation near a zero-group-velocity-dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot-noise level is predicted.

  2. Triple-mode squeezing with dressed six-wave mixing

    PubMed Central

    Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing

    2016-01-01

    The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging. PMID:27169878

  3. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  4. High-Rate Strong-Signal Quantum Cryptography

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  5. Impact of Advance Rate on Entrapment Risk of a Double-Shielded TBM in Squeezing Ground

    NASA Astrophysics Data System (ADS)

    Hasanpour, Rohola; Rostami, Jamal; Barla, Giovanni

    2015-05-01

    Shielded tunnel boring machines (TBMs) can get stuck in squeezing ground due to excessive tunnel convergence under high in situ stress. This typically coincides with extended machine stoppages, when the ground has sufficient time to undergo substantial displacements. Excessive convergence of the ground beyond the designated overboring means ground pressure against the shield and high shield frictional resistance that, in some cases, cannot be overcome by the TBM thrust system. This leads to machine entrapment in the ground, which causes significant delays and requires labor-intensive and risky operations of manual excavation to release the machine. To evaluate the impact of the time factor on the possibility of machine entrapment, a comprehensive 3D finite difference simulation of a double-shielded TBM in squeezing ground was performed. The modeling allowed for observation of the impact of the tunnel advance rate on the possibility of machine entrapment in squeezing ground. For this purpose, the model included rock mass properties related to creep in severe squeezing conditions. This paper offers an overview of the modeling results for a given set of rock mass and TBM parameters, as well as lining characteristics, including the magnitude of displacement and contact forces on shields and ground pressure on segmental lining versus time for different advance rates.

  6. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  7. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  8. Laser surface texturization for high power cladding light stripper

    NASA Astrophysics Data System (ADS)

    Berisset, Michael; Lebrun, Léo.; Faucon, Marc; Kling, Rainer; Boullet, Johan; Aguergaray, Claude

    2016-03-01

    We demonstrated herein a new type of cladding light strippers suitable for high power systems. By precisely micro-machining the surface of the fiber we create CLS with efficiencies as high as 97 % for large NA, multi-mode, cladding light (NA = 0.3), and 70 % for single-mode, low NA, light. The NA of the cladding light is reduced from 0.3 down to 0.08. The CLS exhibit a 1°C/stripped-Watt temperature elevation making them very suitable for high power applications. This fabrication method is simple and reliable. We have tested different texturization geometries on several different fibers: 20/400 from Nufern, KAGOME, and LMA 10 and LMA 15 fibers (results not shown herein) and we observed good efficiencies and temperature elevation behavior for all of them. Finally, large scale production of CLS with this method is possible since the time necessary to prepare on CLS is very small, in the order of few seconds.

  9. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  10. High-intensity xenon pulse light source for fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueno, Kazuo

    1997-05-01

    A newly developed 60W xenon flash lamp, L6604 and L6605, achieves the goals of longer operating life, higher output, and improved light stability. It operates at 2 Joules per flash input energy with approximately a 4 microsecond flash duration. The stability achieved is 2-3 percent peak-to-peak during a lifetime of 5 X 10e7 flashes, which is almost double that of conventional xenon flash lamps. This newly developed xenon flashlamp should serve as an excellent light source for analytical cytology and other fluorescence instruments. It can function as a high output, stable excitation light source for conventional fluorescence or delayed luminescence with a CCD. Besides providing powerful and stable illumination for absorption analysis of cells on slides, this lamp eliminates the optical artifacts associated with vibration of the stage which often limit throughput. This paper will describe in detail performance improvements obtained from this newly developed xenon flash lamp.

  11. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Significant alterations in Biological Clock responses have been reported following sidereal time changes (e.g., Jet-lag), and exposure to microgravity (e.g., daytime sleepiness). Additionally, light reduces circulating melatonin (spectral specificity greatest between 450-500 nm). It was hypothesized that LEDs can replace the current light sources used in zero gravity and terrestrial research laboratories because of their small size, low mass, low energy consumption and long functional life. This report evaluates the capacity of LEDs to entrain the circadian system of rats as judged by measurement of overt behavioral circadian rhythms (activity, feeding, drinking). These data were collected in highly controlled environments similar to the shuttle Animal Enclosure Modules. Two groups were compared: control - animals exposed to standard cool-white fluorescent lights, and test - animals exposed to LEDs with a spectral power distribution matching the fluorescent lights. Gross locomotor activity, feeding and drinking frequencies were continuously monitored and stored at 10 minute intervals. Animals were exposed to the following photoperiods: 28 days of 12L:12D, 19 days of 24L:0D and 16 days of 12L:12D. Light intensities tested varied between 0.1 to 100 lux. Rats received food and water ad libitum, and temperature and humidity were controlled throughout the study. The general health status of all rats was acceptable for each day of this study. No incidents of aggressive behavior were observed. Growth, locomotor activity, food and water consumption were comparable for all groups of animals, i.e, the circadian characteristics of the animals under these conditions were comparable. These results indicate that LED arrays are as effective in maintaining circadian rhythm stability as the commonly used cool-white fluorescent light sources. LEDs with their flexible spectrum, low energy requirements and minimal heat production have advantages for some chronopharmacology studies and

  12. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  13. Modelling high-energy pulsar light curves from first principles

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Philippov, Alexander A.; Spitkovsky, Anatoly

    2016-04-01

    Current models of gamma-ray light curves in pulsars suffer from large uncertainties on the precise location of particle acceleration and radiation. Here, we present an attempt to alleviate these difficulties by solving for the electromagnetic structure of the oblique magnetosphere, particle acceleration, and the emission of radiation self-consistently, using 3D spherical particle-in-cell simulations. We find that the low-energy radiation is synchro-curvature radiation from the polar-cap regions within the light cylinder. In contrast, the high-energy emission is synchrotron radiation that originates exclusively from the Y-point and the equatorial current sheet where relativistic magnetic reconnection accelerates particles. In most cases, synthetic high-energy light curves contain two peaks that form when the current sheet sweeps across the observer's line of sight. We find clear evidence of caustics in the emission pattern from the current sheet. High-obliquity solutions can present up to two additional secondary peaks from energetic particles in the wind region accelerated by the reconnection-induced flow near the current sheet. The high-energy radiative efficiency depends sensitively on the viewing angle, and decreases with increasing pulsar inclination. The high-energy emission is concentrated in the equatorial regions where most of the pulsar spin-down is released and dissipated. These results have important implications for the interpretation of gamma-ray pulsar data.

  14. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white

  15. The high-order quantum coherence of thermal light

    NASA Astrophysics Data System (ADS)

    Chen, Hui

    Thermal light, such as sunlight, is usually considered classical light. In a macroscopic picture, classical theory successfully explained the first-order coherence phenomena of thermal light. The macroscopic theory, based on the statistical behavior of light intensity fluctuations, however, can only phenomenologically explain the second- or higher-order coherence phenomena of thermal light. This thesis introduces a microscopic quantum picture, based on the interferences of a large number of randomly distributed and randomly radiated subfields, wavepackets or photons, to the study of high-order coherence of thermal light. This thesis concludes that the second-order intensity fluctuation correlation is caused by nonlocal interference: a pair of wavepackets, which are randomly paired together, interferes with the pair itself at two distant space-time coordinates. This study has the following practical motivations: (1) to simulate N-qbits. Practical quantum computing requires quantum bits(qubits) of N-digit to represent all possible integers from 0 to 2N-1 simultaneously. A large number of independent particles can be prepared to represent a large set of N orthogonal |0> and |1> bits. In fact, based on our recent experiments of simulating the high-order correlation of entangled photons, thermal radiation is suggested as a promising source for quantum information processing. (2) to achieve sunlight ghost imaging. Ghost imaging has three attractive non-classical features: (a) the ghost camera can "see" targets that can never be seen by a classic camera; (2) it is turbulence-free; and (3) its spatial resolution is mainly determined by the angular diameter of the light source. For example, a sunlight ghost image of an object on earth may achieve a spatial resolution of 200 micrometer because the angular diameter of sun is 0.53 degree with respect to Earth. Although ghost imaging has been experimental demonstrated by using entangled photon pairs and "pseudo-thermal light

  16. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  17. Squeezing of Spin Waves in a Three-Dimensional Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Norris, Leigh; Baragiola, Ben; Montano, Enrique; Michelson, Pascal; Jessen, Poul; Deutsch, Ivan

    2013-03-01

    Spin squeezed states (SSS) have generated considerable interest for their potential applications in quantum metrology and quantum information processing. Many protocols for generating SSS in atomic gases rely on the Faraday interaction that creates entanglement between atoms through the coupling of the collective spin of the ensemble to polarization modes of an optical field. Most descriptions of this process rely on an idealized one-dimensional plane wave model of light-matter interactions that is not appropriate for describing a real system consisting of a cigar-shaped cold atomic cloud in dipole trap interacting with a probe laser beam. We provide a first principles three-dimensional model of squeezing via a quantum nondemolition measurement of the collective magnetization for an ensemble of atoms with hyperfine spin f. The model includes spin waves, diffraction, paraxial modes, and optical pumping, derived by a full master equation description. Including dissipative dynamics, we find the optimal ensemble geometry and input Gaussian beam parameters for generating spin squeezing. We also study the effect of enhancing the atom-light interface using internal hyperfine control of atoms with large spin f. Supported by NSF

  18. Orbit-induced spin squeezing in a spin-orbit coupled Bose-Einstein condensate

    PubMed Central

    Lian, Jinling; Yu, Lixian; Liang, J.-Q.; Chen, Gang; Jia, Suotang

    2013-01-01

    In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths, has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel spin-orbit coupling has important applications in quantum metrology, such as spin squeezing. We first demonstrate that an effective spin-spin interaction, which is the heart for producing spin squeezing, can be generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms. Compared with previous schemes, this realized spin-spin interaction has advantages of no dissipation, high tunability, and strong coupling. More importantly, a giant squeezing factor (lower than −30 dB) can be achieved by tuning a pair of Raman lasers in current experimental setup. Finally, we find numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing. PMID:24196590

  19. Dual squeezed states in an atom-photon cluster and their manifestations

    SciTech Connect

    Trubilko, A. I.

    2012-04-15

    The general kinetic equation for an isolated two-level atom and a high-Q cavity mode in a heat bath exhibiting quantum correlations (entangled bath) is applied to the analysis of the squeezed states of the collective system. Two types of collective operators are introduced for the analysis: one is based on bosonic commutation relations, and the other, on the commutation relations of the algebra obtained by a polynomial deformation of the angular momentum algebra. On the basis of these relations, formulas for observables are constructed that identify squeezed states in the system. It is shown that, under certain conditions, the collective system exhibits dual squeezing within the relations for boson operators, as well as for the operators constructed from the angular momentum algebra. Such squeezing is demonstrated under a projective measurement of an atom and for an entanglement swapping protocol. In the latter case, when measuring two initially independent atomic systems, depending on the type of measurement, two cavity modes collapse into a nonseparable state, which is described either by a nonseparability relation based on boson operators or by a relation based on the operators of the algebra of the quasimomentum of the collective system consisting of these two modes.

  20. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  1. Modular design optical light pipe with high efficiency

    NASA Astrophysics Data System (ADS)

    Whang, Allen Jong-Woei; Yeh, Yi-Hsin; Chen, Yi-Yung

    2013-03-01

    The best benefit of Natural Light Illumination System (NLIS®) is to reduce energy consumption that compare to traditional lighting system. However, the propagation efficiency will decrease dramatically when there is the long distance propagation in NLIS®. Therefore, this paper has proposed an innovative modulated guiding structure with high propagation efficiency. The base structure is consisting of two Fresnel lenses and the distance between two lenses is two times of focal length. Furthermore, the light will be focused by first Fresnel lens and diverge as original input again before the second lens due to two times of focal length design. The advantage of the innovative design is to avoid energy loss when propagation. Based on two times of focal length design method and connecting several base structures in the way of cascading, it could make the structure become modulated. The efficiency of a base module structure will reach above 80%. We have proposed an innovative modeled structure that is with high propagation efficiency. By the Fresnel lens, the structure has the benefit of low cost and easy to produce that compare to traditional natural light system.

  2. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum

  3. Performance and trends of high power light emitting diodes

    NASA Astrophysics Data System (ADS)

    Bierhuizen, Serge; Krames, Michael; Harbers, Gerard; Weijers, Gon

    2007-09-01

    We will discuss the performance, progress and trend of High Power Light Emitting Diodes (HP-LEDs), suitable for high luminance applications like micro-display projection, car headlamps, spot lamps, theatre lamps, etc. Key drivers for the high luminance applications are LED parameters such as internal quantum efficiency, extraction efficiency, drive current, operating temperature and optical coupling efficiency, which are important for most applications as they also enable higher lumen/$ ratios. Historical progress, prospects for improving these parameters and potential optical luminance enhancement methods to meet the demands for the various illumination applications are presented.

  4. Analytical investigation of squeeze film dampers

    NASA Astrophysics Data System (ADS)

    Bicak, Mehmet Murat Altug

    Squeeze film damping effects naturally occur if structures are subjected to loading situations such that a very thin film of fluid is trapped within structural joints, interfaces, etc. An accurate estimate of squeeze film effects is important to predict the performance of dynamic structures. Starting from linear Reynolds equation which governs the fluid behavior coupled with structure domain which is modeled by Kirchhoff plate equation, the effects of nondimensional parameters on the damped natural frequencies are presented using boundary characteristic orthogonal functions. For this purpose, the nondimensional coupled partial differential equations are obtained using Rayleigh-Ritz method and the weak formulation, are solved using polynomial and sinusoidal boundary characteristic orthogonal functions for structure and fluid domain respectively. In order to implement present approach to the complex geometries, a two dimensional isoparametric coupled finite element is developed based on Reissner-Mindlin plate theory and linearized Reynolds equation. The coupling between fluid and structure is handled by considering the pressure forces and structural surface velocities on the boundaries. The effects of the driving parameters on the frequency response functions are investigated. As the next logical step, an analytical method for solution of squeeze film damping based upon Green's function to the nonlinear Reynolds equation considering elastic plate is studied. This allows calculating modal damping and stiffness force rapidly for various boundary conditions. The nonlinear Reynolds equation is divided into multiple linear non-homogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling calculation of damping ratio and frequency shift as well as complex resistant pressure. Moreover, the theoretical results are correlated and compared with experimental results both in the

  5. Damping capacity of a sealed squeeze film bearing

    NASA Technical Reports Server (NTRS)

    Dede, M. M.; Dogan, M.; Holmes, R.

    1984-01-01

    The advantages of incorporating an open-ended or weakly-sealed squeeze-film bearing in a flexible support structure simulating an aero-engine assembly were examined. Attention is given to empirically modelling the hydrodynamics of the more usual tightly-sealed squeeze-film bearing, with a view to assessing its damping performance.

  6. Physical Activity Benefits Creativity: Squeezing a Ball for Enhancing Creativity

    ERIC Educational Resources Information Center

    Kim, JongHan

    2015-01-01

    Studies in embodied cognition show that physical sensations, such as touch and movement, influence cognitive processes. Two studies were conducted to test whether squeezing a soft versus a hard ball facilitates different types of creativity. Squeezing a malleable ball would increase divergent creativity by catalyzing multiple or alternative ideas,…

  7. Phase space flow of particles in squeezed states

    NASA Technical Reports Server (NTRS)

    Ceperley, Peter H.

    1994-01-01

    The manipulation of noise and uncertainty in squeezed states is governed by the wave nature of the quantum mechanical particles in these states. This paper uses a deterministic model of quantum mechanics in which real guiding waves control the flow of localized particles. This model will be used to examine the phase space flow of particles in typical squeezed states.

  8. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  9. Beam-beam tuneshift during the TEVATRON squeeze

    SciTech Connect

    Mane, S.R.

    1988-11-01

    We calculate the beam-beam tuneshift during the squeeze of the beam in the Tevatron from injection to mini-beta. We find that for the beam emittances typically used, there is little variation of the tuneshift, in either plane, during the squeeze. 7 figs., 2 tabs.

  10. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  11. On the entangled fractional squeezing transformation

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Chen, Jun-Hua; Zhang, Peng-Fei

    2015-04-01

    We propose an entangled fractional squeezing transformation (EFrST) generated by using two mutually conjugate entangled state representations with the following operator: ; this transformation sharply contrasts the complex fractional Fourier transformation produced by using (see Front. Phys. DOI: 10.1007/s11467-014-0445-x). The EFrST is obtained by converting the triangular functions in the integration kernel of the usual fractional Fourier transformation into hyperbolic functions, i.e., tan α → tanh α and sin α → sinh α. The fractional property of the EFrST can be well described by virtue of the properties of the entangled state representations.

  12. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  13. Highly Automated Module Production Incorporating Advanced Light Management

    SciTech Connect

    Perelli-Minetti, Michael; Roof, Kyle

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF film over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition

  14. Squeezing quadrature rotation in the acoustic band via optomechanics

    NASA Astrophysics Data System (ADS)

    Guccione, Giovanni; Slatyer, Harry J.; Carvalho, André R. R.; Buchler, Ben C.; Lam, Ping Koy

    2016-03-01

    We examine the use of optomechanically generated squeezing to obtain a sensitivity enhancement for interferometers in the gravitational-wave band. The intrinsic dispersion characteristics of optomechanical squeezing around the mechanical frequency are able to produce squeezing at different quadratures over the spectrum, a feature required by gravitational-wave interferometers to beat the standard quantum limit over an extended frequency range. Under realistic assumptions we show that the amount of available squeezing and the intrinsic quadrature rotation may provide, compared to similar amounts of fixed-quadrature squeezing, a detection advantage. A significant challenge for this scheme, however, is the amount of excess noise that is generated in the unsqueezed quadrature at frequencies near the mechanical resonance.

  15. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  16. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  17. Digital Light Processing for high-brightness high-resolution applications

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1997-05-01

    Electronic projection display technology for high-brightness applications had its origins in the Gretag Eidophor, an oil film-based projection system developed in the early 1940s. A number of solid state technologies have challenged the Eidophor, including CRT-addressed LCD light valves and active-matrix-addressed LCD panels. More recently, in response to various limitations of the LCD technologies, high-brightness systems have been developed based on Digital Light Processing technology. At the heart of the DLP projection display is the Digital Micromirror Device, a semiconductor-based array of fast, reflective digital light switches that precisely control a light source using a binary pulsewidth modulation technique. This paper describes the design, operation, performance, and advantages of DLP- based projection systems for high-brightness, high- resolution applications. It also presents the current status of high-brightness products that will soon be on the market.

  18. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  19. Predictions for squeezed back-to-back correlations of φ φ and K^+K^- in high-energy heavy-ion collisions by event-by-event hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhang, Wei-Ning

    2016-08-01

    We calculate the squeezed back-to-back correlation (BBC) functions of φ φ and K^+K^- for heavy-ion collisions at RHIC and LHC energies, using (2+1)-dimensional hydrodynamics with fluctuating initial conditions. The BBC functions averaged over event-by-event calculations for many events for the hydrodynamic sources are smoothed as a function of the particle momentum. For heavy-ion collisions of Au + Au at √{s_{NN}}=200 GeV, the BBC functions are larger than those for collisions of Pb + Pb at √{s_{NN}}=2.76 TeV. The BBC of φ φ may possibly be observed in peripheral collisions at the RHIC and LHC energies. It is large for the smaller sources of Cu + Cu collisions at √{s_{NN}}=200 GeV.

  20. Partial squeeze film levitation modulates fingertip friction.

    PubMed

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips. PMID:27482117

  1. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  2. High Efficiency Near Infrared Spectrometer for Zodiacal Light Spectral Study

    NASA Technical Reports Server (NTRS)

    Kutyrea, A. S.

    2008-01-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 61 2, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I lneat 5 184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program.

  3. Constant Light Output Ballasting For High Intensity Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Donkin, Adrian

    1988-02-01

    Since the commercial introduction some twenty years ago of HMI* (Hydragyrum-mercury, Medium, Iodide) type lamps, as a source intended primarily for floodlighting applications, their attraction as a cinematographic light source has been apparent due to their largely desirable characteristics. Use in this field has been restricted due to the absolute requirement for an alternating current supply - with a sine wave supply frame rates are limited to a sub-multiple of the supply frequency with the supply frequency phase locked to the camera frame rate. This has effectively barred metal halide HID lighting from use in high speed photography. The general characteristics of metal halide HID lamps are presented alongside a sample of other light sources. An electronic ballast which has been proven to 12000 Watts in the motion picture industry is then described which overcomes the limitations of the conventional magnetic ballast - the square wave output of the electronic ballast theoretically allows the use of any camera frame rate/shutter angle combination. Finally the suitability of luminaires for high speed photography is discussed.

  4. New robust and highly customizable light source management system

    NASA Astrophysics Data System (ADS)

    Minegishi, Yuji; Takahisa, Kenji; Ochiai, Hideyuki; Ohta, Takeshi; Enami, Tatsuo

    2015-03-01

    In semiconductor lithography, light sources play a significant role in the wafer production process as well as impacting the manufacturing cost per wafer. Chip manufacturers going forward will be challenged to develop new ways to become more cost effective than their competitors, and the software tools necessary to compete in this environment must be capable of effectively adapting to the unique needs of each manufacturer. Gigaphoton has developed a new highly customizable software system for managing light sources. It not only offers a simple and intuitive user interface that can be operated using a standard web browser on PCs, tablets, and smartphones, but also a platform for users and third parties to develop unique extensions and optimizations.

  5. High mobility solution-processed hybrid light emitting transistors

    NASA Astrophysics Data System (ADS)

    Walker, Bright; Ullah, Mujeeb; Chae, Gil Jo; Burn, Paul L.; Cho, Shinuk; Kim, Jin Young; Namdas, Ebinazar B.; Seo, Jung Hwa

    2014-11-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm2/V s, current on/off ratios of >107, and external quantum efficiency of 10-2% at 2100 cd/m2. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  6. High mobility solution-processed hybrid light emitting transistors

    SciTech Connect

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B. E-mail: seojh@dau.ac.kr; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa E-mail: seojh@dau.ac.kr

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  7. Second quantization of propagation of light through Rb vapor

    NASA Astrophysics Data System (ADS)

    Xiao, Zhihao; Lanning, Robert; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy; Dowling, Jonathan

    We model the propagation of squeezed light, in Laguerre-Gaussian spatial modes, through a non-linear medium such as Rb vapor. We examine the changes in both quantum state and spatial modes. We simulate the injection into a Rb vapor cell a linearly polarized laser beam to create squeezed vacuum state of light linearly polarized in the perpendicular direction. We fully quantize the optical field's propagation which is originally based on semi-classical calculation. The Rb atomic structure is simplified to a three-level system. We reveal the mechanism that how squeezed state of light is generated in this process and compare the theory with our experiment. We further investigate the impact on squeezing due to the change of parameters and produce schemes which improve the squeezing in the desired spatial modes.

  8. Quantum-enhanced metrology based on Fabry-Perot interferometer by squeezed vacuum and non-Gaussian detection

    SciTech Connect

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Li, Gang; Zhang, Tiancai

    2014-03-28

    We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed vacuum state injection and non-Gaussian detection, including photon number resolving detection and parity detection. In order to show the suitability of the system, parallel studies were made of the performance of two other light sources: coherent state of light and Fock state of light either with classical mean intensity detection or with non-Gaussian detection. This shows that by using the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI can go far beyond the cavity standard bandwidth limit based on the current techniques. The sensitivity of the scheme has also been explored and it shows that the minimum detectable sensitivity is better than that of the other schemes.

  9. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  10. Funnel-shaped silicon nanowire for highly efficient light trapping.

    PubMed

    Hussein, Mohamed; Hameed, Mohamed Farhat O; Areed, Nihal F F; Yahia, Ashraf; Obayya, S S A

    2016-03-01

    In this Letter, funnel-shaped silicon nanowires (SiNWs) are newly introduced for highly efficient light trapping. The proposed designs of nanowires are inspired by the funnel shape, which enhances the light trapping with reduced reflections in the wavelength range from 300 to 1100 nm. Composed of both cylindrical and conical units, the funnel nanowires increase the number of leaky mode resonances, yielding an absorption enhancement relative to a uniform nanowire array. The optical properties of the suggested nanowires have been numerically investigated using the 3D finite difference time domain (FDTD) method and compared to cylindrical and conical counterparts. The structural geometrical parameters are studied to maximize the ultimate efficiency and hence the short-circuit current. Carefully engineered structure geometry is shown to yield improved light absorption useful for solar cell applications. The proposed funnel-shaped SiNWs offer an ultimate efficiency of 41.8%, with an enhancement of 54.8% relative to conventional cylindrical SiNWs. Additionally, short-circuit current of 34.2  mA/cm2 is achieved using the suggested design. PMID:26974103

  11. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

    NASA Astrophysics Data System (ADS)

    Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

    2004-06-01

    Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

  12. High-performance applications of light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Saini, Gurdial S.; Hopper, Darrel G.

    1996-05-01

    A display is an electronic component or subsystem used to convert electrical signals into visual imagery in real time suitable for direct interpretation by a human observer. Until recently, the cathode ray tube (CRT) has been the main source of displays. During the last twenty years, it has been determined that alternatives to CRT displays need to be found. One of the alternatives was the introduction of flat-panel displays. The term 'flat-panel display' is more of a concept than a specific entity. It is a display which is flat and light and may not require a great deal of power. A flat-panel display is often defined in terms of the ideal display, that being: thin form, low volume, even surface, having high resolution, high contrast, sunlight readable, color, low power, and being solid-state and lightweight. This is easy to conceive but difficult to deliver. The objective is to develop displays with as many desirable characteristics as possible. Flat-panel displays are basically of two types: the light valve type (that needs an external source of light such as a backlight or arc-lamp) and the emissive type (that generate light at the display surface). The light emitting diode (LED) display is of the emissive type. The LED displays have been in use for more than 25 years in one form or the other. Because of certain limitations of inorganic materials (such as cost, power, and color), LED displays do not dominate the flat-panel display market. A recent discovery of polymer and organic materials may change LED prospects. It is now believed that it may become possible to make LED displays that are inexpensive, low-power, and at the same time provide full color. If present research objectives are met, LEDs, especially organic LEDs, may revolutionize the flat-panel display market. This paper addresses the various aspects of LED technology with particular reference to its useful characteristics, and the limitations that need to be overcome.

  13. Highly reactive light-dependent monoterpenes in the Amazon

    SciTech Connect

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  14. Highly reactive light-dependent monoterpenes in the Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  15. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    SciTech Connect

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D.; Setia, D.E.A.; Hinrichsen, C.J.; Sujana, W.

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  16. Squeezing in an injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.

    1993-09-01

    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  17. Bell operator and Gaussian squeezed states in noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2016-05-01

    We examine putative corrections to the Bell operator due to the noncommutativity in the phase space. Starting from a Gaussian squeezed envelope whose time evolution is driven by commutative (standard quantum mechanics) and noncommutative dynamics, respectively, we conclude that although the time-evolving covariance matrix in the noncommutative case is different from the standard case, the squeezing parameter dominates and there are no noticeable noncommutative corrections to the Bell operator. This indicates that, at least for squeezed states, the privileged states to test Bell correlations, noncommutativity versions of quantum mechanics remain as nonlocal as quantum mechanics itself.

  18. Simultaneous two component squeezing in generalized q-coherent states

    NASA Technical Reports Server (NTRS)

    Mcdermott, Roger J.; Solomon, Allan I.

    1994-01-01

    Using a generalization of the q-commutation relations, we develop a formalism in which it is possible to define generalized q-bosonic operators. This formalism includes both types of the usual q-deformed bosons as special cases. The coherent states of these operators show interesting and novel noise reduction properties including simultaneous squeezing in both field components, unlike the conventional case in which squeezing is permitted in only one component. This also contrasts with the usual quantum group deformation which also only permits one component squeezing.

  19. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures

    PubMed Central

    Nelson, Jacob A.; Bugbee, Bruce

    2014-01-01

    Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400–700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture. PMID:24905835

  20. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  1. Light duty diesel vehicle emissions at high altitude

    SciTech Connect

    Hollman, T.W.; Gallagher, J.L.

    1983-06-01

    Twenty 1981-82 light-duty diesel vehicles were randomly selected from Denver metropolitan vehicle registration lists for Federal Test Procedure (FTP) emissions testing. Opacity levels were monitored during the entire FTP and during various ''short tests'', which were designed to detect FTP failures and/or excessively high opacity levels under loaded driving conditions. Regulated emissions from this fleet of vehicles were lower than an earlier study conducted in Denver of 1978-80 light-duty diesel vehicles. Five vehicles which exceeded current federal emissions standards received restorative maintenance, i.e., high altitude adjustments and kits, air filter changes, and fuel injection system maintenance (as needed). Following restorative maintenance these vehicles were retested under the third phase of the FTP (Hot transient section) to evaluate the effect of the adjustment on emissions and opacity. Both increases and decreases were seen on emissions and opacity as a result of these procedures. Hydrocarbons, carbon monoxide and particulate emissions averaged decreases as a result of the adjustment maintenance, while oxides of nitrogen and mean opacity averaged increases. Mean opacity values of FTP opacity levels were calculated on all 20 vehicles. Mean opacity was used only to compare individual vehicles and groups of vehicles. The ''passed'' fleet (based on FTP regulated emissions standards) did show a lower mean opacity than the ''failed'' fleet. The restorative maintenance procedures increased mean opacity levels on four of the five ''failed'' vehicles. Initial review of the short tests did not show any incriminating evidence for detecting FTP failures. However, further analysis is on-going as of this writing to determine the value of individual short tests in detecting FTP failures and/or excessive smoke levels from light-duty diesel vehicles.

  2. Squeezing in phase-conjugated resonance fluorescence

    NASA Technical Reports Server (NTRS)

    Arnoldus, Henk F.

    1993-01-01

    Emission of resonance fluorescence by an atom near the surface of a four-wave mixing phase conjugator is considered. The dipole radiation field, regarded as a Heisenberg-operator field, is decomposed into plane waves with the aid of Weyl's representation of the Green's function for the wave equation. Each plane-wave component which is incident on the surface of the nonlinear medium, is reflected as its phase-conjugate image. Summation of all reflected plane waves then yields the phase conjugate replica of the incident dipole radiation. This field adds to the radiation which is emitted by the atom into the direction away from the medium. The condition under which squeezing occurs in the emitted resonance fluorescence is investigated.

  3. Squeeze-film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Mclean, L. J.; Hahn, E. J.

    1984-01-01

    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

  4. Two photon annihilation operators and squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Roy, Anil K.; Mehta, C. L.; Saxena, G. M.

    1993-01-01

    Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than.

  5. The measurement of low-frequency linear viscoelastic properties of polyolefins using creeping squeeze flow

    NASA Astrophysics Data System (ADS)

    Cua, Edwin Matthew Chua

    The characterization of the low-frequency linear viscoelastic properties of polymers is a classical problem in rheometry, especially for broad molecular weight (MW), fractional melt-flow index (MFI) polyolefins with small time-temperature shift factors. By interconversion of high-temperature, low-shear steady-viscosity data in the terminal flow regime into low-frequency data using the Cox-Merz rule, the experimental window is expanded towards lower frequencies. A squeeze-flow apparatus using Newton interferometry as a drift-free transducer to measure the gap between a spherical lens and a flat glass plate with high spatial resolution was constructed. Trials with a Newtonian silicone oil and a viscoelastic polydimethylsiloxane (PDMS) gum were undertaken to examine the various experimental factors that might contribute to errors in the calculation of the viscosity. After taking into account those factors during the runs with PDMS gum, the squeeze-flow-derived viscosities at the terminal flow regime (at shear rates accessible to a commercial rheometer) were in good agreement with low frequency dynamic data. To achieve much lower shear rates for the runs with polyolefins, an increase in the working gap range was made by switching from Newton interferometry to Fizeau interferometry. A hermetically sealed high vacuum chamber was built to allow high-temperature runs with polyolefins with minimal degradation. Interconversion of the measured viscosities of a broad MW, 1.04 MFI high-density polyethylene (HDPE) with the squeeze flow apparatus resulted in complex viscosity data at ˜10-5 rad/s, expanding the experimental window by 2 decades. The squeeze-flow derived complex viscosity data was used to decide which of the two popular viscosity models was more accurate in predicting the zero-shear rate viscosity based on its fit to dynamic data limited to higher frequencies.

  6. High-precision temperature determination of evaporating light-absorbing and non-light-absorbing droplets.

    PubMed

    Derkachov, G; Jakubczyk, D; Woźniak, M; Archer, J; Kolwas, M

    2014-10-30

    Models describing evaporation or condensation of a droplet have existed for over a century, and the temporal evolutions of droplet radius and temperature could be predicted. However, the accuracy of results was questionable, since the models contain free parameters and the means of accurate calibration were not available. In previous work (Hołyst et al. Soft Matter 2013, 9, 7766), a model with an efficacious parametrization in terms of the mean free path was proposed and calibrated with molecular dynamics numerical experiment. It was shown that it is essentially possible to determine reliably the temperature of a steadily evaporating/condensing homogeneous droplet relative to ambient temperature when the evolution of the droplet radius is known. The accuracy of such measurement can reach fractions of mK. In the case of an evaporating droplet of pure liquid, the (droplet) temperature is constant during the stationary stage of evaporation. In this paper, we show that, in many cases, it is also possible to determine the temporal evolution of droplet temperature from the evolution of the droplet radius if the droplet (initial) composition is known. We found the droplet radius evolution with high accuracy and obtained the evolution of droplet temperature (and composition) for droplets of (i) a two-component mixture of pure liquids; (ii) solutions of solid in liquid, one that is non-surface-active and another that is; and (iii) suspensions of non-light-absorbing and light-absorbing particles. PMID:25290035

  7. Effects of fluid inertia and turbulence on force coefficients for squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Andres, L. S.; Vance, J. M.

    1984-01-01

    The effects of fluid inertia and turbulence on the force coefficients of squeeze film dampers are investigated analytically. Both the convective and the temporal terms are included in the analysis of inertia effects. The analysis of turbulence is based on friction coefficients currently found in the literature for Poiseuille flow. The effect of fluid inertia on the magnitude of the radial direct inertia coefficient (i.e., to produce an apparent added mass at small eccentricity ratios, due to the temporal terms) is found to be completely reversed at large eccentricity ratios. The reversal is due entirely to the inclusion of the convective inertia terms in the analysis. Turbulence is found to produce a large effect on the direct damping coefficient at high eccentricity ratios. For the long or sealed squeeze film damper at high eccentricity ratios, the damping prediction with turbulence included is an order of magnitude higher than the laminar solution.

  8. Cavitation effects on the pressure distribution of a squeeze film damper bearing

    NASA Technical Reports Server (NTRS)

    Zeidan, Fouad Y.; Vance, John M.

    1989-01-01

    High speed motion pictures have revealed several operating regimes in a squeeze film damper. Pressure measurements corresponding to these distinct regimes were made to examine their effect on the performance of such dampers. Visual observation also revealed the means by which the pressure in the feed groove showed higher amplitudes than the theory predicts. Comparison between vapor and gaseous cavitation are made based on their characteristic pressure wave, and the effect this has on the total force and its phase.

  9. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  10. Squeezing out the entropy of fermions in optical lattices

    PubMed Central

    Ho, Tin-Lun; Zhou, Qi

    2009-01-01

    At present, there is considerable interest in using atomic fermions in optical lattices to emulate the mathematical models that have been used to study strongly correlated electronic systems. Some of these models, such as the 2-dimensional fermion Hubbard model, are notoriously difficult to solve, and their key properties remain controversial despite decades of studies. It is hoped that the emulation experiments will shed light on some of these long-standing problems. A successful emulation, however, requires reaching temperatures as low as 10−12 K and beyond, with entropy per particle far lower than what can be achieved today. Achieving such low-entropy states is an essential step and a grand challenge of the whole emulation enterprise. In this article, we point out a method to literally squeeze the entropy out from a Fermi gas into a surrounding Bose–Einstein condensed gas, which acts as a heat reservoir. This method allows one to reduce the entropy per particle of a lattice Fermi gas to a few percent of the lowest value obtainable today. PMID:19365065

  11. High-resolution TFT-LCD for spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  12. Laguerre-Polynomial-Weighted Two-Mode Squeezed State

    NASA Astrophysics Data System (ADS)

    He, Rui; Fan, Hong-Yi; Song, Jun; Zhou, Jun

    2016-07-01

    We propose a new optical field named Laguerre-polynomial-weighted two-mode squeezed state. We find that such a state can be generated by passing the l-photon excited two-mode squeezed vacuum state C l a † l S 2|00> through an single-mode amplitude damping channel. Physically, this paper actually is concerned what happens when both excitation and damping of photons co-exist for a two-mode squeezed state, e.g., dessipation of photon-added two-mode squeezed vacuum state. We employ the summation method within ordered product of operators and a new generating function formula about two-variable Hermite polynomials to proceed our discussion.

  13. An investigation of squeeze-cast alloy 718

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    1993-01-01

    Alloy 718 billets produced by the squeeze-cast process have been evaluated for use as potential replacements for propulsion engine components which are normally produced from forgings. Alloy 718 billets were produced using various processing conditions. Structural characterizations were performed on 'as-cast' billets. As-cast billets were then homogenized and solution treated and aged according to conventional heat-treatment practices for this alloy. Mechanical property evaluations were performed on heat-treated billets. As-cast macrostructures and microstructures varied with squeeze-cast processing parameters. Mechanical properties varied with squeeze-cast processing parameters and heat treatments. One billet exhibited a defect free, refined microstructure, with mechanical properties approaching those of wrought alloy 718 bar, confirming the feasibility of squeeze-casting alloy 718. However, further process optimization is required, and further structural and mechanical property improvements are expected with process optimization.

  14. HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HUNTER 20 MATCHPLATE MOLDING MACHINE 'SQUEEZING' BOTH HALVES OF A MOLD SURROUNDING A MATCHPLATE PATTERN, DENNIS GRAY OPERATOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  15. Experimental demonstration of quantum teleportation of a squeezed state

    SciTech Connect

    Takei, Nobuyuki; Aoki, Takao; Yonezawa, Hidehiro; Furusawa, Akira; Koike, Satoshi; Yoshino, Ken-ichiro; Hiraoka, Takuji; Wakui, Kentaro; Mizuno, Jun; Takeoka, Masahiro; Ban, Masashi

    2005-10-15

    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity and discuss the classical limit for the state. The measured fidelity for the input state is 0.85{+-}0.05, which is higher than the classical case of 0.73{+-}0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.

  16. Squeezing of a coupled state of two spinors

    NASA Astrophysics Data System (ADS)

    Usha Devi, A. R.; Mallesh, K. S.; Sbaih, Mahmoud A. A.; Nalini, K. B.; Ramachandran, G.

    2003-05-01

    The notion of spin squeezing involves a reduction in the uncertainty of a component of the spin vector vec S below a certain limit. This aspect has been studied earlier (Mallesh et al 2000a J. Phys. A: Math. Gen. 33 779, Mallesh et al 2000b J. Phys. A: Math. Gen. 34 3293) for pure and mixed states of definite spin. In this paper, this study has been extended to coupled spin states which do not possess a sharp spin value. A general squeezing criterion has been obtained such that a direct product state for two spinors is not squeezed. The squeezing aspect of entangled states is studied in relation to their spin-spin correlations.

  17. Robust spin squeezing preservation in photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Zhong, Wo-Jun; Li, Yan-Ling; Xiao, Xing; Xie, Ying-Mao

    2016-08-01

    We show that the robust spin squeezing preservation can be achieved by utilizing detuning modification for an ensemble of N separate two-level atoms embedded in photonic crystal cavities (PCC). In particular, we explore the different dynamical behaviors of spin squeezing between isotropic and anisotropic PCC cases when the atomic frequency is inside the band gap. In both cases, it is shown that the robust preservation of spin squeezing is completely determined by the formation of bound states. Intriguingly, we find that unlike the isotropic case where steady-state spin squeezing varies smoothly when the atomic frequency moves from the inside to the outside band edge, a sudden transition occurs for the anisotropic case. The present results may be of direct importance for, e.g. quantum metrology in open quantum systems.

  18. Feedback-Enhanced Parametric Squeezing of Mechanical Motion

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Falferi, P.

    2013-11-01

    We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.

  19. Ultra-High Efficiency White Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Narukawa, Yukio; Narita, Junya; Sakamoto, Takahiko; Deguchi, Kouichiro; Yamada, Takao; Mukai, Takashi

    2006-10-01

    We fabricated the high luminous efficiency white light emitting diode (LED) and the high power white LED by using the patterned sapphire substrates and an indium-tin oxide (ITO) contact as a p-type electrode. The high luminous efficiency white LED was the yellow YAG-phosphors-coated small-size (240 × 420 μm2) high efficiency blue LED with the quantum efficiency of 63.3% at a forward-bias current of 20 mA. The luminous flux (Φ), the forward-bias voltage (Vf), the correlated color temperature (Tcp), the luminous efficiency (ηL), and the wall-plug efficiency (WPE) of the high luminous efficiency white LED are 8.6 lm, 3.11 V, 5450 K, 138 lm/W, and 41.7%, respectively. The luminous efficiency is 1.5 times greater than that of a tri-phosphor fluorescent lamp (90 lm/W). The high power white LED was fabricated from the larger-size (1 × 1 mm2) blue LED with the output power of 458 mW at 350 mA. Φ, Vf, Tcp, ηL, and WPE of the high power white LED are 106 lm, 3.29 V, 5200 K, 91.7 lm/W, and 27.7%, respectively, at 350 mA. The WPE is greater than that of a fluorescent lamp (25%) in the visible region. Moreover, the luminous flux of the high power white LED reaches to 402 lm at 2 A, which is equivalent to the total flux of a 30 W incandescent lamp.

  20. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  1. High-dimensional quantum cryptography with twisted light

    NASA Astrophysics Data System (ADS)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S.; O'Sullivan, Malcolm N.; Rodenburg, Brandon; Malik, Mehul; Lavery, Martin P. J.; Padgett, Miles J.; Gauthier, Daniel J.; Boyd, Robert W.

    2015-03-01

    Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.

  2. Noise-resistant optimal spin squeezing via quantum control

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Caneva, T.; Montangero, S.; Lukin, M. D.; Calarco, T.

    2016-01-01

    Entangled atomic states, such as spin-squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise and outperforms conventional methods. Potential experimental implementations are discussed.

  3. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  4. Wave and pseudo-diffusion equations from squeezed states

    NASA Technical Reports Server (NTRS)

    Daboul, Jamil

    1993-01-01

    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.

  5. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  6. High performance light-colored nitrile-butadiene rubber nanocomposites.

    PubMed

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions. PMID:22408977

  7. The marriage squeeze and the rise in informal marriage in Brazil.

    PubMed

    Greene, M E; Rao, V

    1995-01-01

    Around the world, populations have experienced shortages of one sex or the other at marriageable ages, as a result of mortality declines. The solutions to this problem vary with the cultural context. Declines in the spousal age difference and increases in dowry payments (India) and polygamy (Africa) are two adjustments to a disequilibrium in the marriage market. We hypothesize that in Brazil the marriage market finds its balance by "recycling" men through highly unstable informal unions. Using census and 1984 survey data, we establish the relationship between a marriage squeeze and the increase in informal marriage. Census data and a competing-risks analysis of marriage choice provide evidence that a marriage squeeze has affected both the chances of marrying at all and the type of marriage entered. PMID:7481921

  8. Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources.

    PubMed

    Huang, K; Le Jeannic, H; Ruaudel, J; Verma, V B; Shaw, M D; Marsili, F; Nam, S W; Wu, E; Zeng, H; Jeong, Y-C; Filip, R; Morin, O; Laurat, J

    2015-07-10

    We propose and experimentally realize a novel versatile protocol that allows the quantum state engineering of heralded optical coherent-state superpositions. This scheme relies on a two-mode squeezed state, linear mixing, and a n-photon detection. It is optimally using expensive non-Gaussian resources to build up only the key non-Gaussian part of the targeted state. In the experimental case of a two-photon detection based on high-efficiency superconducting nanowire single-photon detectors, the freely propagating state exhibits a 67% fidelity with a squeezed even coherent-state superposition with a size |α|(2)=3. The demonstrated procedure and the achieved rate will facilitate the use of such superpositions in subsequent protocols, including fundamental tests and optical hybrid quantum information implementations. PMID:26207468

  9. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor.

    PubMed

    Averbukh, I S; Arvieu, R

    2001-10-15

    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rainbowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold atoms by a standing light wave. PMID:11690204

  10. Squeezed states, time-energy uncertainty relation, and Feynman's rest of the universe

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1992-01-01

    Two illustrative examples are given for Feynman's rest of the universe. The first example is the two-mode squeezed state of light where no measurement is taken for one of the modes. The second example is the relativistic quark model where no measurement is possible for the time-like separation fo quarks confined in a hadron. It is possible to illustrate these examples using the covariant oscillator formalism. It is shown that the lack of symmetry between the position-momentum and time-energy uncertainty relations leads to an increase in entropy when the system is different Lorentz frames.

  11. Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover. PMID:25514661

  12. Teleportation of squeezing: Optimization using non-Gaussian resources

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio; Adesso, Gerardo

    2010-12-15

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell'Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. A 76, 022301 (2007); F. Dell'Anno, S. De Siena, and F. Illuminati, ibid. 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  13. Teleportation of squeezing: Optimization using non-Gaussian resources

    NASA Astrophysics Data System (ADS)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  14. High-speed Light Peak optical link for high energy applications

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  15. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGESBeta

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  16. Industry-grade high average power femtosecond light source

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Weiler, S.; Fleischhaker, R.; Gebs, R.; Budnicki, A.; Wolf, M.; Kleinbauer, J.; Russ, S.; Kumkar, M.; Sutter, D. H.

    2014-03-01

    Ultrashort pulses are capable of processing practically any material with negligible heat affected zone. Typical pulse durations for industrial applications are situated in the low picosecond-regime. Pulse durations of 5 ps or below are a well established compromise between the electron-phonon interaction time of most materials and the need for pulses long enough to suppress detrimental effects such as nonlinear interaction with the ablated plasma plume. However, sub-picosecond pulses can further increase the ablation efficiency for certain materials, depending on the available average power, pulse energy and peak fluence. Based on the well established TruMicro 5000 platform (first release in 2007, third generation in 2011) an Yb:YAG disk amplifier in combination with a broadband seed laser was used to scale the output power for industrial femtosecond-light sources: We report on a subpicosecond amplifier that delivers a maximum of 160 W of average output power at pulse durations of 750 fs. Optimizing the system for maximum peak power allowed for pulse energies of 850 μJ at pulse durations of 650 fs. Based on this study and the approved design of the TruMicro 5000 product-series, industrygrade, high average power femtosecond-light sources are now available for 24/7 operation. Since their release in May 2013 we were able to increase the average output power of the TruMicro 5000 FemtoEdition from 40 W to 80 W while maintaining pulse durations around 800 fs. First studies on metals reveal a drastic increase of processing speed for some micro processing applications.

  17. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  18. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  19. Transient phonon vacuum squeezing due to femtosecond-laser-induced bond hardening

    NASA Astrophysics Data System (ADS)

    Cheenicode Kabeer, Fairoja; Grigoryan, Naira S.; Zijlstra, Eeuwe S.; Garcia, Martin E.

    2014-09-01

    Ultrashort optical pulses can be used both to create fundamental quasiparticles in crystals and to change their properties. In noble metals, femtosecond lasers induce bond hardening, but little is known about its origin and consequences. Here we simulate ultrafast laser excitation of silver at high fluences. We compute laser-excited potential-energy surfaces by all-electron ab initio theory and analyze the resulting quantum lattice dynamics. We also consider incoherent lattice heating due to electron-phonon interactions using the generalized two-temperature model. We find phonon hardening, which we attribute to the excitation of s electrons. We demonstrate that this may result in phonon vacuum squeezed states with an optimal squeezing factor of ˜0.001 at the L-point longitudinal mode. This finding implies that ultrafast laser-induced bond hardening may be used as a tool to manipulate the quantum state of opaque materials, where, so far, the squeezing of phonons below the zero-point motion has only been realized in transparent crystals by a different mechanism. On the basis of our finding, we further propose a method for directly measuring bond hardening.

  20. Successful "First Light" for VLT High-Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  1. The CMB bispectrum in the squeezed limit

    SciTech Connect

    Creminelli, Paolo; Pitrou, Cyril; Vernizzi, Filippo E-mail: cyril.pitrou@gmail.com

    2011-11-01

    The CMB bispectrum generated by second-order effects at recombination can be calculated analytically when one of the three modes has a wavelength much longer than the other two and is outside the horizon at recombination. This was pointed out in [1] and here we correct their results. We derive a simple formula for the bispectrum, f{sub NL}{sup loc} = −(1/6+cos 2θ)⋅(1−1/2⋅dln (l{sub S}{sup 2}C{sub S})/dln l{sub S}), where C{sub S} is the short scale spectrum and θ the relative orientation between the long and the short modes. This formula is exact and takes into account all effects at recombination, including recombination-lensing, but neglects all late-time effects such as ISW-lensing. The induced bispectrum in the squeezed limit is small and will negligibly contaminate the Planck search for a local primordial signal: this will be biased only by f{sub NL}{sup loc} ≈ −0.4. The above analytic formula includes the primordial non-Gaussianity of any single-field model. It also represents a consistency check for second-order Boltzmann codes: we find substantial agreement with the current version of the CMBquick code.

  2. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  3. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    SciTech Connect

    David, Aurelien Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R.

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  4. MISR empirical stray light corrections in high-contrast scenes

    NASA Astrophysics Data System (ADS)

    Limbacher, J. A.; Kahn, R. A.

    2015-07-01

    We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Stray light in the MISR instrument is responsible for a large portion of the high AOD bias in high-contrast scenes, such as broken-cloud scenes that are quite common over ocean. Discrepancies among MODIS and MISR nadir-viewing blue, green, red, and near-infrared images are used to optimize seven parameters individually for each wavelength, along with a background reflectance modulation term that is modeled separately, to represent the observed features. Independent surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR research aerosol retrieval algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. With these corrections, plus the baseline RA corrections and enhanced cloud screening applied, the median AOD bias for all data in the mid-visible (green, 558 nm) band decreases from 0.006 (0.020 for the MISR standard algorithm (SA)) to 0.000, and the RMSE decreases by 5 % (27 % compared to the SA). For AOD558 nm < 0.10, which includes about half the validation data, 68th percentile absolute AOD558 nm errors for the RA have dropped from 0.022 (0.034 for the SA) to < 0.02 (~ 0.018).

  5. Optical design of an adaptive front-lighting system with high energy efficiency

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangbing; Wang, Cheng; Wu, Han; Jiang, Long

    2014-07-01

    To meet the demands of safe and comfortable driving, we present a new design of a highly energy-efficient Adaptive Front-lighting System (AFS) that can automatically adjust the shape, range, and light distribution of the illumination. The AFS system consists of a lamp, a reflector, light pipes, a Digital Micromirror Device (DMD), a condenser, and a lens. Our simulations show that this system can achieve different beams, such as basic passing beams, town beams, motorway beams, and corner lighting. By using the second light pipe to collect light, the illumination efficiency is increased by 10 points, accordingly reducing the generated heat of the lighting system.

  6. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor.

    PubMed

    Safari, Akbar; De Leon, Israel; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Boyd, Robert W

    2016-01-01

    The change in the speed of light as it propagates through a moving material has been a subject of study for almost two centuries. This phenomenon, known as the Fresnel light-drag effect, is quite small and usually requires a large interaction path length and/or a large velocity of the moving medium to be observed. Here, we show experimentally that the observed drag effect can be enhanced by over 2 orders of magnitude when the light beam propagates through a moving slow-light medium. Our results are in good agreement with the theoretical prediction, which indicates that, in the limit of large group indices, the strength of the light-drag effect is proportional to the group index of the moving medium. PMID:26799017

  7. Fast Acting Optical Forces From Far Detuned, High Intensity Light

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We are exploring fast acting, strong optical forces from standing wave light fields with high intensity and large detuning δ >> γ , where γ is the transition linewidth. We observe these fast acting forces on a time scale of a few times the excited state lifetime τ ≡ 1 / γ thus an atom may experience at most one or two spontaneous emission events. The dipole force is typically considered when the Rabi frequency Ω << δ , but we use Ω ~ δ so the usual approximations break down because a significant excited state population can occur, even for our short interaction times that limit spontaneous emission. Our experiment measures the transverse velocity distribution of a beam of 23S He after a chosen interaction time with a perpendicular standing wave detuned from the 23S -->33P transition near 389 nm. The distribution shows velocity resonance effects that persist over a large range of Ω. We also simulate the experiment numerically using the Optical Bloch Equations and the results are consistent with our measurements. Supported by ONR and Dept. of Education GAANN

  8. Lattice Development for Pep-X High Brightness Light Source

    SciTech Connect

    Nosochkov, Yuri; Cai, Yunhai; Wang, Min-Huey; /SLAC

    2010-08-25

    Design of PEP-X high brightness light source machine is under development at SLAC. The PEP-X is a proposed replacement for the PEP-II in the existing 2.2 km tunnel. Two of the PEP-X six arcs contain DBA type lattice providing 30 dispersion free straights suitable for 3.5 m long undulators. The lattice contains TME cells in the other four arcs and 89.3 m wiggler in a long straight section yielding a horizontal emittance of {approx}0.1 nm-rad at 4.5 GeV. The recent lattice modifications are aimed at increasing the predicted brightness and improving beam dynamic properties. The standard DBA cells are modified into supercells for providing low-{beta} undulator straights. The DBA and TME cell phase advance is better optimized. Harmonic sextupoles are added to minimize the sextupole driven resonance effects and amplitude dependent tune shift. Finally, the injection scheme is changed from vertical to horizontal plane in order to avoid large vertical amplitudes of injected beam within small vertical aperture of undulators.

  9. Squeezing with a flux-driven Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2014-03-01

    Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.

  10. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    NASA Astrophysics Data System (ADS)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  11. Dissipative preparation of squeezed states with ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Caballar, Roland Cristopher F.; Diehl, Sebastian; Mäkelä, Harri; Oberthaler, Markus

    2014-05-01

    We present a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed states. It utilizes ultracold atoms in a double-well configuration immersed in a background BEC acting as a dissipative quantum reservoir. We derive a master equation starting from microscopic physics, and show that squeezing develops on a time scale proportional to 1 / N , where N is the number of particles in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation of squeezed states very short. Effects of the dephasing which limits the lifetime of the squeezed states can be avoided by stroboscopically switching the driving off and on. We show that this approach leads to robust stationary squeezed states. We also provide the necessary ingredients for a potential experimental implementation. NRF (No. 2012R1A1A2008028), MPS, Korea MEST, FWF (No. F4006-N16), Alfred Kordelin Foundation, Magnus Ehrnrooth Foundation, Emil Aaltonen Foundation, Academy of Finland (No. 251748).

  12. Squeezing-out dynamics in free-standing smectic films

    NASA Astrophysics Data System (ADS)

    S̀liwa, Izabela; Vakulenko, A. A.; Zakharov, A. V.

    2016-05-01

    We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  13. Enhancing the ADMX-HF Search Rate via Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Palken, Daniel; Malnou, Maxime; Lehnert, Konrad

    2016-03-01

    ADMX-HF seeks to detect dark matter axions in the 4-12 GHz band by reading out the state of a microwave cavity. Utilizing a quantum-limited, phase-insensitive amplifier such as a Josephson Parametric Amplifier (JPA) to read out both quadratures of the putative axion signal adds a full quantum of noise atop that signal. The two halves of that quantum are attributed to the noncommutation of the quadrature operators with the cavity Hamiltonian and with one another. We propose a method whereby both halves of this quantum may be circumvented. A JPA is used to create a squeezed microwave state and inject it into the axion cavity, whereupon an axion field, if present, displaces the squeezed state in phase space. The squeezed state then decays out of the cavity, and a second JPA is used for a phase-sensitive readout of only the squeezed quadrature of the field. A single quadrature measurement need not add noise, and, because the cavity field will be prepared in an approximate eigenstate of one quadrature operator, and not of its Hamiltonian, that half-quantum is averted as well. The limiting factor in this protocol will be the efficient transport of the squeezed microwave state between the JPAs and the axion cavity. We estimate that with currently achievable efficiency, we can increase the axion search rate by a factor of four.

  14. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes.

    PubMed

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-01-01

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution. PMID:27619647

  15. Novel Characteristics of Photodamage to PSII in a High-Light-Sensitive Symbiodinium Phylotype.

    PubMed

    Karim, Widiastuti; Seidi, Azadeh; Hill, Ross; Chow, Wah S; Minagawa, Jun; Hidaka, Michio; Takahashi, Shunichi

    2015-06-01

    Dinoflagellates from the genus Symbiodinium form symbiotic relationships with many marine invertebrates, including reef-building corals. Symbiodinium is genetically diverse, and acquiring suitable Symbiodinium phylotypes is crucial for the host to survive in habitat environments, such as high-light conditions. The sensitivity of Symbiodinium to high light differs among Symbiodinium phylotypes, but the mechanism that controls light sensitivity has not yet been fully resolved. In the present study using high-light-tolerant and -sensitive Symbiodinium phylotypes, we examined what determines sensitivity to high light. In growth experiments under different light intensities, Symbiodinium CS-164 (clade B1) and CCMP2459 (clade B2) were identified as high-light-tolerant and -sensitive phylotypes, respectively. Measurements of the maximum quantum yield of photosystem II (PSII) and the maximum photosynthetic oxygen production rate after high-light exposure demonstrated that CCMP2459 is more sensitive to photoinhibition of PSII than CS-164, and tends to lose maximum photosynthetic activity faster. Measurement of photodamage to PSII under light of different wavelength ranges demonstrated that PSII in both Symbiodinium phylotypes was significantly more sensitive to photodamage under shorter wavelength regions of light spectra (<470 nm). Importantly, PSII in CCMP2459, but not CS-164, was also sensitive to photodamage under the regions of light spectra around 470-550 and 630-710 nm, where photosynthetic antenna proteins of Symbiodinium have light absorption peaks. This finding indicates that the high-light-sensitive CCMP2459 has an extra component of photodamage to PSII, resulting in higher sensitivity to high light. Our results demonstrate that sensitivity of PSII to photodamage differs among Symbiodinium phylotypes and this determines their sensitivity to high light. PMID:25759327

  16. Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity.

    PubMed

    Tartaglino, U; Sivebaek, I M; Persson, B N J; Tosatti, E

    2006-07-01

    The properties of butane (C4H10) lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and elastic properties of the solid surfaces. We consider the linear n-butane and the branched isobutane. For the linear molecule, well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. The branched isobutane forms more disordered structures which permit it to stay liquidlike at smaller surface separations. During squeezing the solvation forces show oscillations corresponding to the width of a molecule. At low speeds (<0.1 ms) the last layers of isobutane are squeezed out before those of n-butane. Since the (interfacial) squeezing velocity in most practical applications is very low when the lubricant layer has molecular thickness, one expects n-butane to be a better boundary lubricant than isobutane. With n-butane possessing a slightly lower viscosity at high pressures, our result refutes the view that squeeze-out should be harder for higher viscosities; on the other hand our results are consistent with wear experiments in which n-butane were shown to protect steel surfaces better than isobutane. PMID:16863321

  17. Squeeze flow of a Carreau fluid during sphere impact

    NASA Astrophysics Data System (ADS)

    Uddin, J.; Marston, J. O.; Thoroddsen, S. T.

    2012-07-01

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Ztip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Ztip = Zmin) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  18. Experimental and analytical investigation of hybrid squeeze film dampers

    SciTech Connect

    El Shafei, A. )

    1993-04-01

    A new concept for actively controlling high-speed rotating machinery is investigated both analytically and experimentally. The controlling mechanism consists of a hybrid squeeze film damper (patent pending) that can be adaptively controlled to change its characteristics according to the instructions of a controller. In an extreme case the hybrid damper can act as a long damper, which is shown to be effective in reducing the amplitude of vibration of rotating machinery. In the other extreme the hybrid damper acts as a short damper, which is shown to be effective in reducing the force transmitted to the support. In the long damper configuration the oil flow is circumferential, while in the short damper configuration the oil flow is predominantly axial. The hybrid damper is designed to operate in either the short or the long damper configuration by controlling the positions of two movable sealing rings. The hybrid damper was tested on a Bently Nevada Rotor Kit and it is shown experimentally that the long damper configuration is extremely efficient at controlling the amplitude of vibration and the short damper configuration reduces the force transmitted to the support.

  19. Coherence area profiling in multi-spatial-mode squeezed states

    SciTech Connect

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  20. Coherence area profiling in multi-spatial-mode squeezed states

    NASA Astrophysics Data System (ADS)

    Lawrie, B. J.; Otterstrom, N.; Pooser, R. C.

    2016-05-01

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. We also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  1. Comment on ''Teleportation of two-mode squeezed states''

    SciTech Connect

    He Guangqiang; Zhang Jingtao

    2011-10-15

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  2. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGESBeta

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  3. Molecular confinement accelerates deformation of entangled polymers during squeeze flow.

    PubMed

    Rowland, Harry D; King, William P; Pethica, John B; Cross, Graham L W

    2008-10-31

    The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding. For melt flow, we further observed a complete inversion of conventional polymer viscosity scaling with molecular weight. Our results show that squeeze flow is accelerated at small scales by an unexpected influence of film thickness in polymer materials. PMID:18832609

  4. Effects of reservoir squeezing on quantum systems and work extraction.

    PubMed

    Huang, X L; Wang, Tao; Yi, X X

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when T(H)

  5. Persistent atomic spin squeezing at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; Tey, Meng Khoon; You, L.

    2015-12-01

    Two well-known mechanisms, one-axis twisting (OAT) and two-axis countertwisting (TACT), generate spin-squeezed states dynamically. The latter provides better spin squeezing (SS) but has not been demonstrated as the form of its interaction does not occur naturally in known physical systems. Several proposals for realizing effective TACT transformed from OAT require stringent experimental conditions in order to overcome the resulting nonstationary (oscillating) SS and continuously varying mean spin directions. This work presents a simple scheme that solves both problems by freezing SS at an optimal point and realizing effectively persistent SS by inhibiting further squeezing dynamics. Explicit procedures are outlined for persistent SS of the TACT limit. Protocols based on our scheme favorably relax experimental demands, which significantly brighten the prospects for realizing TACT.

  6. Persistent atomic spin squeezing at the Heisenberg limit

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; Tey, Meng Khoon; You, Li

    2016-05-01

    One-axis twisting (OAT) and two-axis counter twisting (TACT) are two widely discussed processes capable of dynamically generating spin squeezed states, which have potential applications to precision measurement and entanglement detection. TACT provides better spin squeezing (SS), but has not been demonstrated as its form of interaction does not occur naturally in known physical systems. Several proposals for realizing effective TACT transformed from OAT require stringent experimental conditions, in order to overcome the problems of non-stationary (oscillating) SS and continuously varying mean spin direction. We report a simple protocol that solves both problems by freezing SS at an optimal point and realizing effectively persistent SS by inhibiting further squeezing dynamics. Explicit procedures are outlined which favorably relax experimental demands and significantly brighten the prospects for realizing TACT.

  7. Indirect evidence for Levy walks in squeeze film damping

    SciTech Connect

    Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.

    2010-06-15

    Molecular flow gas damping of mechanical motion in confined geometries, and its associated noise, is important in a variety of fields, including precision measurement, gravitational wave detection, and microelectromechanical systems devices. We used two torsion balance instruments to measure the strength and distance-dependence of 'squeeze film' damping. Measured quality factors derived from free decay of oscillation are consistent with gas particle superdiffusion in Levy walks and inconsistent with those expected from traditional Gaussian random walk particle motion. The distance-dependence of squeeze film damping observed in our experiments is in agreement with a parameter-free Monte Carlo simulation. The squeeze film damping of the motion of a plate suspended a distance d away from a parallel surface scales with a fractional power between d{sup -1} and d{sup -2}.

  8. High illumination resolution test of low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofeng; Yin, Lei; Zhu, Yufeng; He, Yingping; Miao, Zhuang; Hu, Wen; Hou, Zhipeng; Shi, Hongli

    2013-08-01

    High illumination resolution, which directly determines the applied characteristic of night vision system in flashlight or high light level condition, is an important performance parameter for evaluating the characteristic of low light level image intensifier used in high light level condition. In this article, according to the limited resolution test technique, the test principle, test condition and test method to high illumination resolution are described in detail associated with operation mode and protective way of low light level image intensifier. Test system for measuring the high illumination resolution has been founded based on the limited resolution test system. The value of high illumination for measuring the high illumination resolution has been calculated in theory and measured by illuminometer. High illumination resolution of low light level image intensifiers have been measured in test system, results show that high illumination resolution test system is satisfied the need for measuring high illumination resolution of low light level image intensifier, and test system output light illumination must be greater than 1×103 lux. Light of high illumination, which can be correctly measured by illuminometer, is transferred legitimately. That is worthwhile to evaluate the operational characteristic of low light level image intensifier.

  9. Which Q-analogue of the squeezed oscillator?

    NASA Technical Reports Server (NTRS)

    Solomon, Allan I.

    1993-01-01

    The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.

  10. Tunneling of squeezed states with an eye to evaporating black holes

    NASA Astrophysics Data System (ADS)

    Kontou, Eleni-Alexandra; Haggard, Hal

    2016-03-01

    In this work we study how tunneling time depends on the squeezing parameter of quantum states. Squeezed quantum states are investigated for optical communications and appear in the emission from black holes. A surprising property of these states is reduced tunneling time. Treating Hawking radiation as a quantum tunneling process, we study the interplay of squeezing with the radiation process.

  11. Coherence and Squeezing of Bose-Einstein Condensates in Double Wells

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-jie

    2016-05-01

    We investigate coherence and squeezing of a two-mode Bose-Einstein condensate trapped in a double-well potential. By analytically deriving the form of coherence and numerically calculating the squeezing parameter, we show that the coherence and the squeezing may be controlled by adjusting some parameters of the two-mode Bose-Einstein condensate.

  12. Low Voltage High Precision Spatial Light ModulatorsFinal Report

    SciTech Connect

    Papavasiliou, A P

    2005-02-09

    The goal of this project was to make LLNL a leader in Spatial Light Modulators (SLMs) by developing the technology that will be needed by the next generation of SLMs. We would use new lower voltage actuators and bond those actuators directly to controlling circuitry to break the fundamental limitations that constrain current SLM technology. This three-year project was underfunded in the first year and not funded in the second year. With the funding that was available, we produced actuators and designs for the controlling circuitry that would have been integrated in the second year. Spatial light modulators (SLMs) are arrays of tiny movable mirrors that modulate the wave-fronts of light. SLMs can correct aberrations in incoming light for adaptive optics or modulate light for beam control, optical communication and particle manipulation. MicroElectroMechanical Systems (MEMS) is a technology that utilizes the microfabrication tools developed by the semiconductor industry to fabricate a wide variety of tiny machines. The first generation of MEMS SLMs have improved the functionality of SLMs while drastically reducing per pixel cost making arrays on the order of 1000 pixels readily available. These MEMS SLMs however are limited by the nature of their designs to be very difficult to scale above 1000 pixels and have very limited positioning accuracy. By co-locating the MEMS mirrors with CMOS electronics, we will increase the scalability and positioning accuracy. To do this we will have to make substantial advances in SLM actuator design, and fabrication.

  13. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    SciTech Connect

    Liao, Jie-Qiao; Law, C. K.

    2011-03-15

    We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.

  14. Extended Coherence Time with Atom-Number Squeezed States

    SciTech Connect

    Li Wei; Tuchman, Ari K.; Chien, H.-C.; Kasevich, Mark A.

    2007-01-26

    Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein condensate interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times.

  15. Extended coherence time with atom-number squeezed states.

    PubMed

    Li, Wei; Tuchman, Ari K; Chien, Hui-Chun; Kasevich, Mark A

    2007-01-26

    Coherence properties of Bose-Einstein condensates offer the potential for improved interferometric phase contrast. However, decoherence effects due to the mean-field interaction shorten the coherence time, thus limiting potential sensitivity. In this work, we demonstrate increased coherence times with number squeezed states in an optical lattice using the decay of Bloch oscillations to probe the coherence time. We extend coherence times by a factor of 2 over those expected with coherent state Bose-Einstein condensate interferometry. We observe quantitative agreement with theory both for the degree of initial number squeezing as well as for prolonged coherence times. PMID:17358746

  16. Transient dynamics of a flexible rotor with squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.

    1978-01-01

    A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.

  17. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    SciTech Connect

    Li Pengbo; Li Fuli

    2011-03-15

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  18. Whirl Motion of a Seal Test Rig with Squeeze-Film Dampers

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Gunter, Edgar J.

    2007-01-01

    This paper presents the experimental behavior and dynamic analysis of a high speed test rig with rolling element bearings mounted in squeeze film oil damper bearings. The test rotor is a double overhung configuration with rolling element ball bearings mounted in uncentered squeeze-film oil dampers. The damper design is similar to that employed with various high-speed aircraft HP gas turbines. The dynamic performance of the test rig with the originally installed dampers with an effective damper length of length 0.23-inch was unacceptable. The design speed of 40,000 RPM could not be safely achieved as nonsynchronous whirling at the overhung seal test disk and high amplitude critical speed response at the drive spline section occurred at 32,000 RPM. In addition to the self excited stability and critical speed problems, it was later seen from FFT data analysis, that a region of supersynchronous dead band whirling occurs between 10,000 to 15,000 RPM which can lead to bearing distress and wear. The system was analyzed using both linear and nonlinear techniques. The extended length damper design resulting from the analysis eliminated the rotor subsynchronous whirling, high amplitude critical speed, and the dead band whirling region allowing the system to achieve a speed of 45,000 RPM. However, nonlinear analysis shows that damper lockup could occur with high rotor unbalance at 33,000 RPM, even with the extended squeeze-film dampers. The control of damper lockup will be addressed in a future paper.

  19. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana.

    PubMed

    Alsharafa, Khalid; Vogel, Marc Oliver; Oelze, Marie-Luise; Moore, Marten; Stingl, Nadja; König, Katharina; Friedman, Haya; Mueller, Martin J; Dietz, Karl-Josef

    2014-04-19

    High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role. PMID:24591725

  20. High dynamic, spectral, and polarized natural light environment acquisition

    NASA Astrophysics Data System (ADS)

    Porral, Philippe; Callet, Patrick; Fuchs, Philippe; Muller, Thomas; Sandré-Chardonnal, Etienne

    2015-03-01

    In the field of image synthesis, the simulation of material's appearance requires a rigorous resolution of the light transport equation. This implies taking into account all the elements that may have an influence on the spectral radiance, and that are perceived by the human eye. Obviously, the reflectance properties of the materials have a major impact in the calculations, but other significant properties of light such as spectral distribution and polarization must also be taken into account, in order to expect correct results. Unfortunately real maps of the polarized or spectral environment corresponding to a real sky do not exist. Therefore, it seemed necessary to focus our work on capturing such data, in order to have a system that qualifies all the properties of light and capable of powering simulations in a renderer software. As a consequence, in this work, we develop and characterize a device designed to capture the entire light environment, by taking into account both the dynamic range of the spectral distribution and the polarization states, in a measurement time of less than two minutes. We propose a data format inspired by polarimetric imaging and fitted for a spectral rendering engine, which exploits the "Stokes-Mueller formalism."

  1. Development of high-efficiency and high-power vertical light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hahn, Berthold; Galler, Bastian; Engl, Karl

    2014-10-01

    We provide an overview of the vertical chip technology and discuss recent improvements that have enabled (AlGaIn)N-based light-emitting diodes to further extend the range of their applications. In particular, the excellent scalability of chip size and low electric losses make related devices predestinated for use in high-power and high-luminance tasks. The evolution from standard vertical chips to the advanced chip design is described from a conceptual as well as from a performance point of view. Excellent stability data under demanding conditions are shown, which are the basis for the operation of devices in automotive applications requiring high reliability at current densities exceeding 3 A/mm2. As the vertical chip technology is not directly dependent on the substrate owing to its removal in the chip process, it is highly flexible with respect to the change of substrate materials to the very promising (111) silicon, for example.

  2. Titanium oxide nanotube arrays for high light extraction efficiency of GaN-based vertical light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Leem, Young-Chul; Seo, Okkyun; Jo, Yong-Ryun; Kim, Joon Heon; Chun, Jaeyi; Kim, Bong-Joong; Noh, Do Young; Lim, Wantae; Kim, Yong-Il; Park, Seong-Ju

    2016-05-01

    TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs.TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs. Electronic

  3. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    PubMed

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs. PMID:26573888

  4. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    PubMed Central

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-01-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444

  5. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors

    NASA Astrophysics Data System (ADS)

    Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2015-03-01

    Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.

  6. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  7. High frame rate photoacoustic imaging using multiple wave-length LED array light source

    NASA Astrophysics Data System (ADS)

    Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Shigeta, Yusuke; Tanaka, Chizuyo

    2016-03-01

    We have successfully imaged photoacoustic differences of light absorbance between two images acquired by different wave-length LED array light source. Compared to photoacoustic imaging system using conventional solid-state laser light source, LED light source can be driven at higher frequency pulses, so we were able to get the subtraction image at higher frame rate that calculated from two images which were captured at each wave-length LED light pulse timing. We developed LED array light source which is composed to have two different wave-length chips, so each wave-length light pulse can be controlled and emitted freely. Thus LED array light source can be composed as multiple selectable wavelength more than two, and a various combination of subtraction image may become available at high frame rate.

  8. Conditional generation scheme for entangled vacuum evacuated coherent states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2016-08-01

    Conditions to generate high-purity entangled vacuum-evacuated coherent states (| 0 > | α>0 - | - α>0 | 0 >) were studied for two cascade-placed beam splitters, with one squeezed state input and two coherent state inputs whenever a single photon is detected. Controlling the amplitudes and the phases of the beams allows for various amplitudes of the vacuum-evacuated coherent states (| α>0 = | α > -e - | α|2 | 0 >) up to α = 2.160 to be manipulated with high-purity.

  9. Phosphorescent organic light emitting diodes with high efficiency and brightness

    SciTech Connect

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  10. Wormholes and negative energy from the gravitationally squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Hochberg, David

    1992-01-01

    Minkowski-signature wormhole solutions of the Einstein field equations require the existence of negative energy density in the vicinity of their throats. We point out that the gravitational interaction automatically generates squeezed vacuum states of matter, which by their nature, entail negative energy and, thus, provide a natural source for maintaining this class of wormholes.

  11. Gaussian private quantum channel with squeezed coherent states.

    PubMed

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  12. Equilibrium temperature of laser cooled atoms in squeezed vacuum

    NASA Technical Reports Server (NTRS)

    Shevy, Y.

    1992-01-01

    It is shown that by squeezing the vacuum fluctuations of the electromagnetic field the quantum fluctuations of the optical forces exerted on laser cooled two-level atoms, can be dramatically modified. Under certain conditions, this modification in concert with the enhanced average forces can lead to equilibrium temperatures below those attained under normal vacuum fluctuations.

  13. Gaussian private quantum channel with squeezed coherent states

    PubMed Central

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-01-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893

  14. Gaussian private quantum channel with squeezed coherent states

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong

    2015-09-01

    While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.

  15. Linear force coefficients for squeeze-film dampers

    SciTech Connect

    Szeri, A.Z.; Giron-Duarte, A.; Raimondi, A.A.

    1982-10-01

    This paper presents a simplifed analysis of viscous squeeze-film damper behavior. It makes use of the notation of averaged inertia and calculates linear velocity and inertia coeffcients. These coefficients are shown to be accurate at practical values of the length/diameter ratio and the gap Reynolds number of the viscous damper.

  16. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  17. Progress Toward Light Weight High Angular Resolution Multilayer Coated Optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2005-12-01

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weightWolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality.We give a progress report on our work on all three areas.

  18. High luminance low etendue white light source using blue laser over static phosphor

    NASA Astrophysics Data System (ADS)

    Farooq, Tayyab; Qian, KeYuan

    2015-10-01

    A High Luminance White Light source for Etendue limited application has been demonstrated in this research paper by using blue InGaN laser diode beam over static source of phosphor Ce: YAG layer. Phosphor target has kept static because moving phosphor target light output is not constant and uniform. Different color temperatures had been obtained by varying phosphor concentration and thickness of the layer. When laser beam has focused on phosphor target spot, it induced very high temperature at that spot area. Temperature induced in the layer by laser beam depends on the layer thickness. All the layer thickness, surface temperature, output light flux, efficiency, and light color temperature are interrelate with each other. Uniform laser beam distribution, surface temperature, laser spot size, phosphor layer thickness are successfully calculated. Luminous efficiency, light color temperature, flux, wavelength spectrum, and light output power of laser driven white light source had been successfully observed at different laser beam powers.

  19. High immersive three-dimensional tabletop display system with high dense light field reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Mengqing; Yu, Xunbo; Xie, Songlin; Sang, Xinzhu; Yu, Chongxiu

    2014-11-01

    Three-dimensional (3D) tabletop display is a kind of display with wide range of potential applications. An auto-stereoscopic 3D tabletop display system is designed to provide the observers with high level of immersive perception. To improve the freedom of viewing position, the eye tracking system and a set of active partially pixelated masks are utilized. To improve the display quality, large number of images is prepared to generate the stereo pair. The light intensity distribution and crosstalk of parallax images are measured respectively to evaluate the rationality of the auto-stereoscopic system. In the experiment, the high immersive auto-stereoscopic tabletop display system is demonstrated, together with the system architectures including hardware and software. Experimental results illustrate the effectiveness of the high immersive auto-stereoscopic tabletop display system.

  20. All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor

    NASA Astrophysics Data System (ADS)

    Horrom, Travis; Romanov, Gleb; Novikova, Irina; Mikhailov, Eugeniy E.

    2013-01-01

    With our all-atomic squeezing and filtering setup, we demonstrate control over the noise amplitudes and manipulation of the frequency-dependent squeezing angle of a squeezed vacuum quantum state by passing it through an atomic medium with electromagnetically induced transparency (EIT). We generate low sideband frequency squeezed vacuum using the polarization self-rotation effect in a hot Rb vapor cell, and direct it through a second atomic vapor subject to EIT conditions. We use the frequency-dependent absorption of the EIT window to demonstrate an example of squeeze amplitude attenuation and squeeze angle rotation of the quantum noise quadratures of the squeezed probe. These studies have implications for quantum memory and storage as well as gravitational wave interferometric detectors.

  1. Squeezing arbitrary cavity-field states through their interaction with a single driven atom

    SciTech Connect

    Villas-Boas, C.J.; Serra, R.M.; Moussa, M.H.Y.; Almeida, N.G. de

    2003-12-01

    We propose an implementation of the parametric amplification of an arbitrary radiation-field state previously prepared in a high-Q cavity. This nonlinear process is accomplished through the dispersive interactions of a single three-level atom (fundamental |g>, intermediate |i>, and excited |e> levels) simultaneously with (i) a classical driving field and (ii) a previously prepared cavity mode whose state we wish to squeeze. We show that, in the adiabatic approximantion, the preparation of the initial atomic state in the intermediate level |i> becomes crucial for obtaining the degenerated parametric amplification process.

  2. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  3. Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl

    NASA Technical Reports Server (NTRS)

    Brewe, David E.

    1988-01-01

    Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.

  4. Squeezed States, Uncertainty Relations and the Pauli Principle in Composite and Cosmological Models

    NASA Technical Reports Server (NTRS)

    Terazawa, Hidezumi

    1996-01-01

    The importance of not only uncertainty relations but also the Pauli exclusion principle is emphasized in discussing various 'squeezed states' existing in the universe. The contents of this paper include: (1) Introduction; (2) Nuclear Physics in the Quark-Shell Model; (3) Hadron Physics in the Standard Quark-Gluon Model; (4) Quark-Lepton-Gauge-Boson Physics in Composite Models; (5) Astrophysics and Space-Time Physics in Cosmological Models; and (6) Conclusion. Also, not only the possible breakdown of (or deviation from) uncertainty relations but also the superficial violation of the Pauli principle at short distances (or high energies) in composite (and string) models is discussed in some detail.

  5. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source. PMID:27192285

  6. Titanium oxide nanotube arrays for high light extraction efficiency of GaN-based vertical light-emitting diodes.

    PubMed

    Leem, Young-Chul; Seo, Okkyun; Jo, Yong-Ryun; Kim, Joon Heon; Chun, Jaeyi; Kim, Bong-Joong; Noh, Do Young; Lim, Wantae; Kim, Yong-Il; Park, Seong-Ju

    2016-05-21

    TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs. PMID:27121775

  7. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  8. An algorithm based on carrier squeezing interferometry for multi-beam phase extraction in Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Wang, Kailiang; Yang, Zhongming; Wang, Shuai; Yuan, Qun

    2015-10-01

    Multi-beam interference will exist in the cavity of Fizeau interferometer due to the high reflectivity of test optics. The random phase shift error will be generated by some factors such as the environmental vibration, air turbulence, etc. Both these will cause phase retrieving error. We proposed a non-iterative approach called Carrier Squeezing Multi-beam Interferometry (CSMI) algorithm, which is based on the Carrier squeezing interferometry (CSI) technique to retrieve the phase distribution from multiple-beam interferograms with random phase shift errors. The intensity of multiple-beam interference was decomposed into fundamental wave and high-order harmonics, by using the Fourier series expansion. Multi-beam phase shifting interferograms with linear carrier were rearranged by row or column, to fuse one frame of spatial-temporal fringes. The lobe of the fundamental component related to the phase and the lobes of high-order harmonics and phase shift errors were separated in the frequency domain, so the correct phase was extracted by filtering out the fundamental component. Suppression of the influence from high-order harmonic components, as well as random phase shift error is validated by numerical simulations. Experiments were also executed by using the proposed CSMI algorithm for mirror with high reflection coefficient, showing its advantage comparing with normal phase retrieving algorithms.

  9. High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Kohn, Rudolph N., Jr.; Becker, Michael F.; Heinzen, Daniel J.

    2011-03-01

    We designed a precision laser beam shaper using a Texas Instruments digital micromirror device (DMD) with a telescope system containing a pinhole low-pass filter. The performance of the beam shaper was measured by comparing the intensity and wave-front uniformity to the target function and by the energy conversion efficiency. We demonstrated flattop and other laser beam profiles with 1-1.5% root-mean-square (RMS) error for a raw camera image and nearly flat phase. A noise analysis of the system revealed that lower error is possible and that most of the error came from coherent speckle noise in the camera. A previous experiment using a 1064 nm single-mode fiber (SMF) laser produced around 7% beam power conversion efficiency. Here we report improvements in system automation and laser source flexibility that result in increasing both the speed of the system to calculate and produce a beam, and the beam uniformity and energy conversion efficiency. A LabVIEW program was written to accelerate the speed of the iterative process for beam profile refinement. A 760 nm super-luminescent light emitting diode (SLED) and a 781 nm Laser Diode (LD) were used as light sources in order to reduce the beam coherence and approach the ultimate performance of the shaper. Both sources greatly reduced the speckle noise and increased measured intensity uniformity. Experiments achieved less than 0.9% RMS error over the entire flattop area with a diameter of 1.32 mm. In addition, simulations were conducted to determine the optimized wavelengths for different types of DMDs. For the .7XGA DMD, the 5th diffraction order matches 750-800 nm. Matching the laser diode to this wavelength increased the power conversion efficiency (input beam to output beam) to 19.8%.

  10. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  11. Testing the thermal-niche oxygen-squeeze hypothesis for estuarine striped bass

    USGS Publications Warehouse

    Kraus, Richard T.; Secor, D.H.; Wingate, Rebecca L.

    2015-01-01

    In many stratified coastal ecosystems, conceptual and bioenergetics models predict seasonal reduction in quality and quantity of fish habitat due to high temperatures and hypoxia. We tested these predictions using acoustic telemetry of 2 to 4 kg striped bass (Morone saxatilis Walbaum) and high-resolution spatial water quality sampling in the Patuxent River, a sub-estuary of the Chesapeake Bay, during 2008 and 2009. Striped bass avoided hypoxic (dissolved oxygen ≤2 mg·l−1) subpycnocline waters, but frequently occupied habitats with high temperatures (>25 °C) in the summer months, as cooler habitats were typically not available. Using traditional concepts of the seasonal thermal-niche oxygen-squeeze, most of the Patuxent estuary would beconsidered unsuitable habitat for adult striped bass during summer. Application of a bioenergetics model revealed that habitats selected by striped bass during summer would support positive growth rates assuming fish could feed at one-half ofmaximum consumption. Occupancy of the estuary during summer by striped bass in this study was likely facilitated by sufficient prey and innate tolerance of high temperatures by sub-adult fish of the size range that we tagged. Our results help extend the thermalniche oxygen-squeeze hypothesis to native populations of striped bass in semi-enclosed coastal systems. Tolerance of for supraoptimal temperatures in our study supports recent suggestions by others that the thermal-niche concept for striped bass should be revised to include warmer temperatures.

  12. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions. PMID:25896488

  13. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice.

    PubMed

    Cui, Li-Li; Lu, Yu-Sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  14. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    PubMed Central

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  15. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum.

    PubMed

    Finger, Martin A; Iskhakov, Timur Sh; Joly, Nicolas Y; Chekhova, Maria V; Russell, Philip St J

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50  THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content. PMID:26551812

  16. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    PubMed

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials. PMID:26785427

  17. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    SciTech Connect

    Yamamoto, Seiichi Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  18. Light thermal structures and materials for high speed flight

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1992-01-01

    Over the last twenty years, unified viscoplastic constitutive models have evolved to meet this need. These constitutive models provide a means for representing a material's response from the elastic through the plastic range including strain-rate dependent plastic flow, creep, and stress relaxation. Rate-dependent plasticity effects are known to be important at elevated temperatures. The purpose of this paper is to describe computational and experimental research programs underway at the Light Thermal Structures Center focused on the investigation of the response of structures and materials to local heating. In the first part of the paper, finite element thermoviscoplastic analysis is highlighted. In the second part of the paper, the thermal-structures experimental program is outlined.

  19. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    SciTech Connect

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  20. Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W. H.

    2013-12-01

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ~2 MeV nucleon-1) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E >= 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.

  1. Squeezing of particle distributions by expanding magnetic turbulence and space weather variability

    SciTech Connect

    Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W. H. E-mail: achara.ser@mahidol.ac.th E-mail: p.chuychai@sci.mfu.ac.th

    2013-12-10

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ∼2 MeV nucleon{sup –1}) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvénic (slab) and two-dimensional magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E ≥ 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.

  2. Volume-scalable high-brightness three-dimensional visible light source

    SciTech Connect

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  3. Transient structure in the high-energy X-ray light curve of NP 0532

    NASA Technical Reports Server (NTRS)

    Ryckman, S. G.; Ricker, G. R.; Scheepmaker, A.; Ballintine, J. E.; Doty, J. P.; Downey, P. M.; Lewin, W. H. G.

    1977-01-01

    The paper reports the observation of pulsed fractions in the primary and secondary peaks, as well as in the interpulse region, of the high-energy X-ray light curve of NP 0532. A statistical analysis of light-curve data is performed, and a similar analysis is carried out using simulated data. It is concluded that a previously reported third peak in the light curve was transient in nature.

  4. Apparatus for injecting high power laser light into a fiber optic cable

    DOEpatents

    Sweatt, W.C.

    1997-11-11

    High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber. 6 figs.

  5. Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Butsch, A.; Euser, T. G.; Noskov, R. E.; St. J. Russell, P.

    2013-11-01

    The freely-suspended glass membranes in a dual-nanoweb fiber, driven at resonance by intensity-modulated light, exhibit a giant optomechanical nonlinearity. We experimentally investigate the effect of squeezed-film damping by exploring the pressure dependence of resonant frequency and mechanical quality factor. As a consequence of the unusually narrow slot between the nanowebs (22 μm by 550 nm), the gas-spring effect causes a pressure-dependent frequency shift that is ˜15 times greater than typically measured in micro-electro-mechanical devices. When evacuated, the dual-nanoweb fiber yields a quality factor of ˜3 600 and a resonant optomechanical nonlinear coefficient that is ˜60 000 times larger than the Kerr effect.

  6. Coherent squeezed states of motion in an ion trap generated with Raman-driven sideband transitions

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Lin, Fucheng

    1995-07-01

    Raman interaction between two internal levels and its sideband cooling of a trapped ion or atom are investigated in copropagating traveling-wave light fields for localization beyond the Lamb-Dicke limit. Under certain conditions, only the first-order sideband excitations (||n>-->||n+/-1> with ||n> being a Fock state) may play a significant role. This provides an experimental realization of the Jaynes-Cummings model with quantized center-of-mass motion beyond the Lamb-Dicke regime, which can be used to measure the statistics of the quantized motion, and thus to detect nonclassical states of motion. Moreover, the multichromatic two-photon Raman excitations of the trapped particle can be used for the preparation of coherent squeezed states of motion.

  7. Creation of a squeezed photon distribution using artificial atoms with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Koppenhöfer, Martin; Marthaler, Michael

    2016-02-01

    We consider a two-level system with both a transversal and a longitudinal coupling to the electromagnetic field of a resonator. Using a polaron transformation, this Hamiltonian can be mapped onto a Jaynes-Cummings Hamiltonian with generalized field operators acting on the electromagnetic field in the resonator. In contrast to the usual ladder operators a and a†, these operators exhibit a nonmonotonous coupling strength with respect to the number n of photons in the resonator. In particular, there are roots of the coupling between qubit and resonator at certain photon numbers n0. We show that this effect can be exploited to generate photon-number squeezed light, characterized by a Fano factor F ≪1 , with a large number of photons (e.g., of the order of 1 ×104 ).

  8. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    SciTech Connect

    Dong, J.X.; Karnezis, P.A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from {approximately}1.7 pct for the gravity die cast LM25 alloy to {approximately}8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated conditions. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25 + Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of {approximately}6.5 pct, compared to that of {approximately}0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  9. The effect of Sr and Fe additions on the microstructure and mechanical properties of a direct squeeze cast Al-7Si-0.3Mg alloy

    NASA Astrophysics Data System (ADS)

    Dong, J. X.; Karnezis, P. A.; Durrant, G.; Cantor, B.

    1999-05-01

    This article describes the results of an investigation into the microstructure and mechanical properties of a gravity die cast and direct squeeze cast LM25 alloy (Al-7Si-0.3Mg-0.3Fe). The direct squeeze cast LM25 alloy has superior mechanical properties compared to the gravity die cast LM25 alloy, especially with regard to ductility, which is increased from ˜1.7 pct for the gravity die cast LM25 alloy to ˜8.0 pct for the direct squeeze cast LM25 alloy in the T6 heat-treated condition. This increase in ductility is due to (1) the removal of porosity, (2) a decrease in Si particle size, and (3) a refinement of the Fe-Si-aluminide particles. High cooling rates in direct squeeze casting result in quench modification of the Si particles, such that chemical modification with Sr or Na may not be required. In addition, direct squeeze casting is more tolerant of Fe impurities in the alloy, due to the formation of smaller Fe-Si-aluminide particles than those in gravity die cast material. The direct squeeze cast LM25+Fe alloy (Al-7Si-0.3Mg-1.0Fe) has a ductility of ˜6.5 pct, compared to that of ˜0.5 pct for the gravity die cast LM25 + Fe alloy in the T6 heat-treated condition. This increase in tolerance to Fe impurities can lead to a substantial reduction in manufacturing costs due to (1) reduced raw-material costs, (2) reduced die sticking, and (3) improved die life.

  10. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  11. High efficiency white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Dong, Weili; Gao, Hongyan; Tian, Xiaocui; Zhao, Lina; Jiang, Wenlong; Zhang, Xiyan

    2015-06-01

    The light emitting diodes with the structure of ITO/ m-MTDATA(20 nm)/NPB(10 nm)/CBP BCzVBi ( x, nm, 10%)/CBP(3 nm)/CBP: Ir(ppy)3: DCJTB(10 nm, 8 and 1%)/Bphen(30 nm)/Cs2CO3: Ag2O (2 nm, 20%)/Al (100 nm) employing phosphorescence sensitization and fluorescence doping, were manufactured. The performance of the devices was studied by adjusting the thickness of fluorescence dopant layer ( x = 15, 20, 25, and 30). The best performance was achieved when its thickness was 25 nm. The device has the maximum luminance of 20260 cd/m2 at applied voltage of 14 V and the maximum current efficiency of 11.70 cd/A at 7 V. The device displays a continuous change of color from yellow to white. The CIE coordinates change from (0.49, 0.48) to (0.32, 0.39) when the driving voltage is varied from 5 to 15 V.

  12. Vendors Future: Northern Light--Delivering High-Quality Content to a Large Internet Audience.

    ERIC Educational Resources Information Center

    Wiggins, Richard

    1997-01-01

    Describes a Web-based information service, Northern Light, which demonstrates a new paradigm for serving large populations of users and delivering high-quality content on topics both general and narrow. Discusses performance of the search engine, search syntax, Northern Light's special collection, and pricing. (AEF)

  13. OZONE UPTAKE OF DIFFERENT-SIZED BLACK CHERRY TREES IN HIGH- AND LOW-LIGHT ENVIRONMENTS

    EPA Science Inventory

    Ozone uptake rates of different-sized black cherry trees located in both high and low light environments were calculated from measurements of ambient ozone concentration and stomatal conductance. he objective of the study was to determine how tree size and light conditions may di...

  14. A compact, light weight, high resolution electron monochromator

    NASA Astrophysics Data System (ADS)

    Goembel, L.; Doering, J. P.

    1995-06-01

    A high resolution electron monochromator that incorporates Vespel polyimide plastic in its construction is described. A great saving in bulk can be realized by mounting the electron optical elements in Vespel tubes rather than mounting them by traditional means.

  15. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light.

    PubMed

    Xie, Xiujun; Huang, Aiyou; Gu, Wenhui; Zang, Zhengrong; Pan, Guanghua; Gao, Shan; He, Linwen; Zhang, Baoyu; Niu, Jianfeng; Lin, Apeng; Wang, Guangce

    2016-02-01

    The development of microalgae on an industrial scale largely depends on the economic feasibility of mass production. High light induces productive suspensions during cultivation in a tubular photobioreactor. Herein, we report that high light, which inhibited the growth of Chlorella sorokiniana under autotrophic conditions, enhanced the growth of this alga in the presence of acetate. We compared pigments, proteomics and the metabolic flux ratio in C. sorokiniana cultivated under high light (HL) and under low light (LL) in the presence of acetate. Our results showed that high light induced the synthesis of xanthophyll and suppressed the synthesis of chlorophylls. Acetate in the medium was exhausted much more rapidly in HL than in LL. The data obtained from LC-MS/MS indicated that high light enhanced photorespiration, the Calvin cycle and the glyoxylate cycle of mixotrophic C. sorokiniana. The results of metabolic flux ratio analysis showed that the majority of the assimilated carbon derived from supplemented acetate, and photorespiratory glyoxylate could enter the glyoxylate cycle. Based on these data, we conclude that photorespiration provides glyoxylate to speed up the glyoxylate cycle, and releases acetate-derived CO2 for the Calvin cycle. Thus, photorespiration connects the glyoxylate cycle and the Calvin cycle, and participates in the assimilation of supplemented acetate in C. sorokiniana under high light. PMID:26439434

  16. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    PubMed Central

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  17. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    NASA Astrophysics Data System (ADS)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  18. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    PubMed

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  19. High-resolution Fourier hologram synthesis from photographic images through computing the light field.

    PubMed

    Chen, Ni; Ren, Zhenbo; Lam, Edmund Y

    2016-03-01

    We present a technique for synthesizing the Fourier hologram of a three-dimensional scene from its light field. The light field captures the volumetric information of an object, and an important advantage is that it does not require coherent illumination, as in conventional holography. In this work, we show how to obtain a high-resolution digital hologram with the light field obtained from a series of photographic images captured along the optical axis. The method is verified both by simulations and experimentally captured light field. PMID:26974639

  20. Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions

    PubMed Central

    Hayat, Tasawar; Muhammad, Khursheed; Farooq, Muhammad; Alsaedi, Ahmad

    2016-01-01

    Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes. PMID:27149208