Science.gov

Sample records for highly synchronized cell

  1. Sharp Ca2+ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses

    PubMed Central

    Graydon, Cole W.; Cho, Soyoun; Li, Geng-Lin; Kachar, Bechara; von Gersdorff, Henrique

    2011-01-01

    Hair cell ribbon synapses exhibit several distinguishing features. Structurally, a dense body, or ribbon, is anchored to the presynaptic membrane and tethers synaptic vesicles; functionally, neurotransmitter release is dominated by large EPSC events produced by seemingly synchronous multivesicular release. However, the specific role of the synaptic ribbon in promoting this form of release remains elusive. Using complete ultrastructural reconstructions and capacitance measurements of bullfrog amphibian papilla hair cells dialyzed with high concentrations of a slow Ca2+ buffer (10 mM EGTA), we found that the number of synaptic vesicles at the base of the ribbon correlated closely to those vesicles that released most rapidly and efficiently, while the rest of the ribbon-tethered vesicles correlated to a second, slower pool of vesicles. Combined with the persistence of multivesicular release in extreme Ca2+ buffering conditions (10 mM BAPTA), our data argues against the Ca2+-dependent compound fusion of ribbon-tethered vesicles at hair cell synapses. Moreover, during hair cell depolarization, our results suggest that elevated Ca2+ levels enhance vesicle pool replenishment rates. Finally, using Ca2+ diffusion simulations, we propose that the ribbon and its vesicles define a small cytoplasmic volume where Ca2+ buffer is saturated, despite 10 mM BAPTA conditions. This local buffer saturation permits fast and large Ca2+ rises near release sites beneath the synaptic ribbon that can trigger multiquantal EPSCs. We conclude that, by restricting the available presynaptic volume, the ribbon may be creating conditions for the synchronous release of a small cohort of docked vesicles. PMID:22090491

  2. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines.

    PubMed

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  3. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  4. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  5. Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming

    PubMed Central

    Vidal, Simon E.; Amlani, Bhishma; Chen, Taotao; Tsirigos, Aristotelis; Stadtfeld, Matthias

    2014-01-01

    Summary The differentiated state of somatic cells provides barriers for the derivation of induced pluripotent stem cells (iPSCs). To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. Surprisingly, inhibition of transforming growth factor β (TGF-β) together with activation of Wnt signaling in the presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after 1 week of reprogramming factor expression. In contrast, hepatic and blood progenitors predominantly required only TGF-β inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner, and we demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF-β/mitogen-activated protein (MAP) kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Our observations define cell-type-specific requirements for the rapid and synchronous reprogramming of somatic cells. PMID:25358786

  6. Fission Yeast Cell Cycle Synchronization Methods.

    PubMed

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells. PMID:26519320

  7. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  8. Synchronization of eukaryotic cells by periodic forcing.

    PubMed

    Battogtokh, Dorjsuren; Aihara, Kazuyuki; Tyson, John J

    2006-04-14

    We study a cell population described by a minimal mathematical model of the eukaryotic cell cycle subject to periodic forcing that simultaneously perturbs the dynamics of the cell cycle engine and cell growth, and we show that the population can be synchronized in a mode-locked regime. By simplifying the model to two variables, for the phase of cell cycle progression and the mass of the cell, we calculate the Lyapunov exponents to obtain the parameter window for synchronization. We also discuss the effects of intrinsic mitotic fluctuations, asymmetric division, and weak mutual coupling on the pace of synchronization. PMID:16712125

  9. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  10. High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation[OPEN

    PubMed Central

    2015-01-01

    The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes. PMID:26432862

  11. Specific cell cycle synchronization with butyrate and cell cycle analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable for many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. To explore the possibility of using butyrate-blocked cells to obtain synchronized cells, we investigated the property of the cell cyc...

  12. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  13. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  14. Bioreactor and methods for producing synchronous cells

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  15. Synchronization

    NASA Astrophysics Data System (ADS)

    Pikovsky, Arkady; Rosenblum, Michael; Kurths, Jürgen

    2003-04-01

    Preface; 1. Introduction; Part I. Synchronization Without Formulae: 2. Basic notions: the self-sustained oscillator and its phase; 3. Synchronization of a periodic oscillator by external force; 4. Synchronization of two and many oscillators; 5. Synchronization of chaotic systems; 6. Detecting synchronization in experiments; Part II. Phase Locking and Frequency Entrainment: 7. Synchronization of periodic oscillators by periodic external action; 8. Mutual synchronization of two interacting periodic oscillators; 9. Synchronization in the presence of noise; 10. Phase synchronization of chaotic systems; 11. Synchronization in oscillatory media; 12. Populations of globally coupled oscillators; Part III. Synchronization of Chaotic Systems: 13. Complete synchronization I: basic concepts; 14. Complete synchronization II: generalizations and complex systems; 15. Synchronization of complex dynamics by external forces; Appendix 1. Discovery of synchronization by Christiaan Huygens; Appendix 2. Instantaneous phase and frequency of a signal; References; Index.

  16. Improved Gene Targeting through Cell Cycle Synchronization

    PubMed Central

    Tsakraklides, Vasiliki; Brevnova, Elena; Stephanopoulos, Gregory; Shaw, A. Joe

    2015-01-01

    Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications. PMID:26192309

  17. Mechanical communication in cardiac cell synchronized beating

    NASA Astrophysics Data System (ADS)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  18. Elutriation for Cell Cycle Synchronization in Fission Yeast.

    PubMed

    Kume, Kazunori

    2016-01-01

    Cell synchronization is a powerful technique for studying the eukaryotic cell cycle events precisely. The fission yeast is a rod-shaped cell whose growth is coordinated with the cell cycle. Monitoring the cellular growth of fission yeast is a relatively simple way to measure the cell cycle stage of a cell. Here, we describe a detailed method of unperturbed cell synchronization, named centrifugal elutriation, for fission yeast. PMID:26254921

  19. High speed synchronizer card utilizing VLSI technology

    NASA Technical Reports Server (NTRS)

    Speciale, Nicholas; Wunderlich, Kristin

    1988-01-01

    A generic synchronizer card capable of providing standard NASA communication block telemetry frame synchronization and quality control was fabricated using VLSI technology. Four VLSI chip sets are utilized to shrink all the required functions into a single synchronizer card. The application of VLSI technology to telemetry systems resulted in an increase in performance and a decrease in cost and size.

  20. DNA topoisomerase II sites in the histone H4 gene during the highly synchronous cell cycle of Physarum polycephalum.

    PubMed Central

    Borde, V; Duguet, M

    1998-01-01

    The nearly perfect synchrony of nuclear division in a plasmodium of Physarum polycephalum provides a powerful system to analyze topoisomerase II cleavage sites in the course of the cell cycle. The histone H4 locus, whose schedule of replication and transcription is precisely known, was chosen for this analysis. Drug-induced topoisomerase II sites are clustered downstream of the histone H4 gene and appear highly dependent on cell cycle stage. They were only detected in mitosis and at the very beginning of S phase, precisely at the time of replication of the histone H4 region. The sites, which were absent in G2 phase, reappeared at the next mitosis. Remarkably, DNase I hypersensitive sites occurred in nearly the same location, but their schedule was totally different: they were absent in mitosis and present in G2. This schedule follows H4 transcription, which peaks in mid-S phase and in the second part of G2 phase and is off during mitosis. These results suggest that topoisomerase II may not be involved in transcription, but plays a role in remodeling chromatin structure, both during chromosome condensation in prophase/metaphase to allow their decatenation and during chromosome decondensation after metaphase to allow replication fork passage throughout the region. PMID:9547257

  1. Constraints on the synchronization of entorhinal cortex stellate cells

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Lasker, Eric; Cheng, Sen

    2012-07-01

    Synchronized oscillations of large numbers of central neurons are believed to be important for a wide variety of cognitive functions, including long-term memory recall and spatial navigation. It is therefore plausible that evolution has optimized the biophysical properties of central neurons in some way for synchronized oscillations to occur. Here, we use computational models to investigate the relationships between the presumably genetically determined parameters of stellate cells in layer II of the entorhinal cortex and the ability of coupled populations of these cells to synchronize their intrinsic oscillations: in particular, we calculate the time it takes circuits of two or three cells with initially randomly distributed phases to synchronize their oscillations to within one action potential width, and the metabolic energy they consume in doing so. For recurrent circuit topologies, we find that parameters giving low intrinsic firing frequencies close to those actually observed are strongly advantageous for both synchronization time and metabolic energy consumption.

  2. Collective Cell Movement Promotes Synchronization of Coupled Genetic Oscillators

    PubMed Central

    Uriu, Koichiro; Morelli, Luis G.

    2014-01-01

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns. PMID:25028893

  3. Collective cell movement promotes synchronization of coupled genetic oscillators.

    PubMed

    Uriu, Koichiro; Morelli, Luis G

    2014-07-15

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns. PMID:25028893

  4. Synchronized renal tubular cell death involves ferroptosis

    PubMed Central

    Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R.; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus; Weinberg, Joel M.; Reichel, Christoph A.; Bräsen, Jan Hinrich; Kunzendorf, Ulrich; Anders, Hans-Joachim; Stockwell, Brent R.; Green, Douglas R.; Krautwald, Stefan

    2014-01-01

    Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia–reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy. PMID:25385600

  5. High power synchronous altitude satellite system

    SciTech Connect

    Keigler, J.E.

    1981-12-01

    The design and attitude control system of the illustrated momentum stabilized synchronous altitude spacecraft are such that relatively large amounts of electrical power may be derived from its sun oriented planar solar array. The system is illustrated and the control of the spacecraft to stabilize it about all three axes with respect to the sun is described.

  6. Weak correlation of starch and volume in synchronized photosynthetic cells

    NASA Astrophysics Data System (ADS)

    Rading, M. Michael; Sandmann, Michael; Steup, Martin; Chiarugi, Davide; Valleriani, Angelo

    2015-01-01

    In cultures of unicellular algae, features of single cells, such as cellular volume and starch content, are thought to be the result of carefully balanced growth and division processes. Single-cell analyses of synchronized photoautotrophic cultures of the unicellular alga Chlamydomonas reinhardtii reveal, however, that the cellular volume and starch content are only weakly correlated. Likewise, other cell parameters, e.g., the chlorophyll content per cell, are only weakly correlated with cell size. We derive the cell size distributions at the beginning of each synchronization cycle considering growth, timing of cell division and daughter cell release, and the uneven division of cell volume. Furthermore, we investigate the link between cell volume growth and starch accumulation. This work presents evidence that, under the experimental conditions of light-dark synchronized cultures, the weak correlation between both cell features is a result of a cumulative process rather than due to asymmetric partition of biomolecules during cell division. This cumulative process necessarily limits cellular similarities within a synchronized cell population.

  7. Synchronization in Biochemical Substance Exchange Between Two Cells

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Balaž, Igor

    In this paper, Mihailović et al. [Mod. Phys. Lett. B 25 (2011) 2407-2417] introduce a simplified model of cell communication in a form of coupled difference logistic equations. Then we investigated stability of exchange of signaling molecules under variability of internal and external parameters. However, we have not touched questions about synchronization and effect of noise on biochemical substance exchange between cells. In this paper, we consider synchronization in intercellular exchange in dependence of environmental and cell intrinsic parameters by analyzing the largest Lyapunov exponent, cross sample entropy and bifurcation maps.

  8. Radiation and taxol effects on synchronized human cervical carcinoma cells

    SciTech Connect

    Geard, C.R.; Jones, J.M. )

    1994-06-15

    The purpose was to evaluate the effectiveness of the plant derived chemotherapeutic agent taxol alone and in combination with ionizing radiation on synchronous and asynchronous human cervical carcinoma cells and to define the mechanistic basis for this cytotoxic response. Asynchronous and synchronous cells (obtained by modified mitotic shake-off) derived from carcinomas of the human uterine cervix were treated with a range of concentrations of taxol (0, 1.0, 2.5, 5.0, 10.0, and 20.0 nM) for either 8, 24, or 48 h. Synchronized cell cycling was evaluated by counting mitotic indices and by uptake of bromodeoxyuridine (BrdUrd). Cells were irradiated ([sup 137]Cs [gamma] rays at 1.12 Gy/min) alone and after taxol treatment and plating efficiencies and radiosensitivity determined. Taxol treatment resulted in a dose time dependent loss of colony forming ability with 10 nM for 24 h producing about 10% cell survival. Irradiating taxol treated cells resulted in a strictly additive response in contrast to previous supra-additive results with astrocytoma and melanoma cells. Mitotically synchronized cells rapidly moved into G[sub 1] phase with a second mitotic peak at 28 h (total cycle time). Taxol treatment resulted in a continued accumulation of mitoses, and a failure and/or delay of entry of a fraction of cells into S phase after a G[sub 1] phase of at least 10 h. That is, taxol effects cell cycling at a stage other than G[sub 2]/M. Irradiating (3 Gy) synchronized cells showed a 10-fold variation in sensitivity, with mitosis as the most sensitive phase with taxol alone resulting in some cytotoxicity and combined effects additive or less than additive. This may explain the failure to obtain taxol radiosensitization with these cells and it may indicate that taxol has a multiplicity of actions with differences in effectiveness likely between cells of different origins. 24 refs., 5 figs.

  9. Cell Cycle Synchronization of Schizosaccharomyces pombe by Lactose Gradient Centrifugation to Isolate Small Cells.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Size selection of small cells from an asynchronous Schizosaccharomyces pombe culture offers a simple way to generate cultures in which progression through the mitotic cell division cycle is synchronized throughout the population. Here, we describe how density centrifugation of cells from asynchronous cultures through lactose gradients selects small G2 cells to generate synchronized cultures as large as 500 mL. The ease and simplicity of this approach makes it an accessible and attractive method for generating synchronous cultures. PMID:27250945

  10. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture. PMID:27625207

  11. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  12. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    PubMed

    Schrader, Jared M; Shapiro, Lucy

    2015-01-01

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle. PMID:25938623

  13. Large scale spontaneous synchronization of cell cycles in amoebae

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  14. Synchronization of the Noisy Electrosensitive Cells in the Paddlefish

    SciTech Connect

    Neiman, A.; Pei, X.; Russell, D.; Wojtenek, W.; Wilkens, L.; Moss, F.; Braun, H.A.; Voigt, K.; Huber, M.T.

    1999-01-01

    Synchronization of electrosensitive cells of the paddlefish is studied by means of electrophysiological experiments. Different types of noisy phase locked regimes are observed. The experimental data are compared with computer simulations of a noise-mediated modified Hodgkin-Huxley neuron model and of a stochastic circle map. {copyright} {ital 1999} {ital The American Physical Society }

  15. GENERAL: Bursting Ca2+ Oscillations and Synchronization in Coupled Cells

    NASA Astrophysics Data System (ADS)

    Ji, Quan-Bao; Lu, Qi-Shao; Yang, Zhuo-Qin; Duan, Li-Xia

    2008-11-01

    A mathematical model proposed by Grubelnk et al. [Biophys. Chew,. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracel-lular bursting calcium oscillations of point-point, point-cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point-cycle type.

  16. Cell Cycle Synchronization in Xenopus Egg Extracts.

    PubMed

    Gillespie, Peter J; Neusiedler, Julia; Creavin, Kevin; Chadha, Gaganmeet Singh; Blow, J Julian

    2016-01-01

    Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle. PMID:26254920

  17. A low cost alternative to high performance PCM bit synchronizers

    NASA Technical Reports Server (NTRS)

    Deshong, Bruce

    1993-01-01

    The Code Converter/Clock Regenerator (CCCR) provides a low-cost alternative to high-performance Pulse Code Modulation (PCM) bit synchronizers in environments with a large Signal-to-Noise Ratio (SNR). In many applications, the CCCR can be used in place of PCM bit synchronizers at about one fifth the cost. The CCCR operates at rates from 10 bps to 2.5 Mbps and performs PCM code conversion and clock regeneration. The CCCR has been integrated into a stand-alone system configurable from one to six channels and has also been designed for use in VMEbus compatible systems.

  18. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  19. Identification of highly synchronized subnetworks from gene expression data

    PubMed Central

    2013-01-01

    Background There has been a growing interest in identifying context-specific active protein-protein interaction (PPI) subnetworks through integration of PPI and time course gene expression data. However the interaction dynamics during the biological process under study has not been sufficiently considered previously. Methods Here we propose a topology-phase locking (TopoPL) based scoring metric for identifying active PPI subnetworks from time series expression data. First the temporal coordination in gene expression changes is evaluated through phase locking analysis; The results are subsequently integrated with PPI to define an activity score for each PPI subnetwork, based on individual member expression, as well topological characteristics of the PPI network and of the expression temporal coordination network; Lastly, the subnetworks with the top scores in the whole PPI network are identified through simulated annealing search. Results Application of TopoPL to simulated data and to the yeast cell cycle data showed that it can more sensitively identify biologically meaningful subnetworks than the method that only utilizes the static PPI topology, or the additive scoring method. Using TopoPL we identified a core subnetwork with 49 genes important to yeast cell cycle. Interestingly, this core contains a protein complex known to be related to arrangement of ribosome subunits that exhibit extremely high gene expression synchronization. Conclusions Inclusion of interaction dynamics is important to the identification of relevant gene networks. PMID:23901792

  20. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  1. Synchronization of Spontaneous Active Motility of Hair Cell Bundles.

    PubMed

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  2. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.

    PubMed

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-01-01

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. PMID:25028488

  3. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells

    PubMed Central

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-01-01

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. PMID:25028488

  4. High-speed synchronous reluctance machine with minimized rotor losses

    SciTech Connect

    Hofmann, H.; Sanders, S.R.

    2000-04-01

    This paper presents a refined design of a high-speed synchronous reluctance machine with minimized eddy-current losses in the rotor. Design criteria are the ability of the rotor to withstand high speeds, ability to operate in vacuum, negligible zero-torque spinning losses, high reliability, high efficiency, and low manufacturing cost. The rotor of the synchronous reluctance machine consists of bonded sections of ferromagnetic and non-magnetic steels. Finite-element code, incorporating rotor rotation, has been developed in MATLAB that calculates steady-state eddy currents (and losses) in the rotor. A stator iron and stator winding have been designed to minimize rotor losses, and two such prototype machines have been fabricated. Experimental results show an efficiency of 91% at a 10-kW 10,000-r/min operating point, and rotor losses less than 0.5% of input power.

  5. Cycle life characteristics of sealed silver-zinc cell with inorganic separator. [for synchronous orbit applications

    NASA Technical Reports Server (NTRS)

    Lear, J. W.; Imamura, M. S.

    1977-01-01

    Two batteries containing 18 cells have been cycling in a simulated synchronous (24-hour) orbit for over a year at 40% depth of discharge at 22 C. One battery is under individual cell monitoring and control and the other battery is controlled at the battery level. The battery with individual cell monitoring and protection has performed over 350 cycles with no sign of failure. The battery without individual cell protection failed at 270 cycles from failure to remain above the specified minimum discharge voltage. A significant conclusion is that the sealed Ag-Zn cells manufactured with the inorganic separator material have demonstrated their capability to cycle at a fairly high depth of discharge and are worthy of consideration in short life synchronous orbit applications.

  6. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle

    PubMed Central

    Bates, David; Epstein, Jessica; Boye, Erik; Fahrner, Karen; Berg, Howard; Kleckner, Nancy

    2010-01-01

    Summary We describe a new method for synchronizing bacterial cells. Cells that have transiently expressed an inducible mutant ‘sticky’ flagellin are adhered to a volume of glass beads suspended in a chromatography column though which growth medium is pumped. Following repression of flagellin synthesis, newborn cells are eluted from the column in large quantities exceeding that of current baby machine techniques by approximately 10-fold. Eluted cultures of ‘baby cells’ are highly synchronous as determined by analysis of DNA replication, cell division and other events, over time after elution from the column. We also show that use of ‘minutes after elution’ as a time metric permits much greater temporal resolution among sequential chromosomal events than the commonly used metric of cell size (length). The former approach reveals the existence of transient intermediate stages that are missed by the latter approach. This finding has two important implications. First, at a practical level, the baby cell column is a particularly powerful method for temporal analysis. Second, at a conceptual level, replication-related events are more tightly linked to cell birth (i.e. cell division) than to absolute cell mass. PMID:15978072

  7. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  8. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells.

    PubMed

    Suter, David M; Preynat-Seauve, Olivier; Tirefort, Diderik; Feki, Anis; Krause, Karl-Heinz

    2009-09-01

    Embryonic stem (ES) cells are powerful tools to understand mechanisms of neuronal differentiation and to engineer neurons for in vitro studies and cell therapy. We developed a screening approach to identify small organic molecules driving neuronal differentiation of ES cells. For this purpose, we used a lentivector carrying a dual luciferase reporter system to engineer an ES cell line which allowed us to screen for small organic molecules enhancing neuronal differentiation. One of them, phenazopyridine, was further analysed in human ES cells. Phenazopyridine: (i) enhanced neuronal differentiation, (ii) increased cell survival, (iii) decreased the amount of non-neuronal and undifferentiated cells and (iv) synchronized the cellular differentiation state. Phenazopyridine allowed the development of a differentiation protocol compatible with the generation of clinical grade neural precursors, which were able differentiate into different neuronal subtypes, astrocytes and oligodendrocytes. In summary, we describe a powerful approach to identify small molecules directing stem cell differentiation. This led to the establishment of a new application for an old drug and the development of a novel clinical grade protocol for neuronal differentiation of ES cells. PMID:20196783

  9. Improved retroviral suicide gene transfer in colon cancer cell lines after cell synchronization with methotrexate

    PubMed Central

    2011-01-01

    Background Cancer gene therapy by retroviral vectors is mainly limited by the level of transduction. Retroviral gene transfer requires target cell division. Cell synchronization, obtained by drugs inducing a reversible inhibition of DNA synthesis, could therefore be proposed to precondition target cells to retroviral gene transfer. We tested whether drug-mediated cell synchronization could enhance the transfer efficiency of a retroviral-mediated gene encoding herpes simplex virus thymidine kinase (HSV-tk) in two colon cancer cell lines, DHDK12 and HT29. Methods Synchronization was induced by methotrexate (MTX), aracytin (ara-C) or aphidicolin. Gene transfer efficiency was assessed by the level of HSV-TK expression. Transduced cells were driven by ganciclovir (GCV) towards apoptosis that was assessed using annexin V labeling by quantitative flow cytometry. Results DHDK12 and HT29 cells were synchronized in S phase with MTX but not ara-C or aphidicolin. In synchronized DHDK12 and HT29 cells, the HSV-TK transduction rates were 2 and 1.5-fold higher than those obtained in control cells, respectively. Furthermore, the rate of apoptosis was increased two-fold in MTX-treated DHDK12 cells after treatment with GCV. Conclusions Our findings indicate that MTX-mediated synchronization of target cells allowed a significant improvement of retroviral HSV-tk gene transfer, resulting in an increased cell apoptosis in response to GCV. Pharmacological control of cell cycle may thus be a useful strategy to optimize the efficiency of retroviral-mediated cancer gene therapy. PMID:21970612

  10. [A Modified Procedure to Isolate Synchronous Cells from Yeasts with Continuous Percoll Density Gradient and Their Raman Discrimination].

    PubMed

    Huang, Shu-shi; Lai, Jun-zhuo; Lu, Ming-qian; Cheng, Qin; Liao, Wei; Chen, Li-mei

    2015-08-01

    A modified procedure of Percoll density gradient centrifugation was developed to isolate and fractionate synchronous cells from stationary phase (sp) cultures of different yeast strains, as well as Raman spectra discrimination of single yeast cells was reported. About 1.75 mL Percoll solution in 2 mL polypropylene centrifugal tube was centrifuged at 19,320 g, 20 °C with an angle rotor for 15 min to form continuous densities gradient (1.00~1.31 g · mL(-1)), approximately 100 μL sample was overlaid onto the preformed continuous density gradient carefully, subsequently, centrifuged at 400 g for 60 min in a tabletop centrifuge equipped with a angle rotor at 25 °C. Yeast samples could be observed that the suspensions were separated into two cell fractions obviously. Both fractions of different yeast strains were respectively determined by differential interference contrast (DIC), phase contrast microscope and synchronous culture to distinguish their morphological and growth trait. The results showed that the lower fraction cells were unbudded, mostly unicellular, highly refractive, homogeneous and uniform in size, and represented growth characteristic synchronously; Their protoplasm had relatively high density, and contained significant concentrations of glycogen; all of which were accordant with description of quiescent yeast cells and G0 cells in previously published paper. It was shown that lower fraction was quiescent cells, synchronous G0 cells as well. A Raman tweezers setup was used to investigate the differences between two fractions, G0 cells and non G0 cells, at a single cell level. The result showed that both G0 cells and the non G0 cells had the same characteristic peaks corresponding biological macromolecules including proteins, carbohydrates and nucleic acids, but all characteristic peak intensities of G0 cells were higher than that of non G0 cells, implied that the macromolecular substance content of G0 cells was more higher. Principal component

  11. Synchronization of stochastic systems: from paddlefish electroreceptors to human epileptic glial cell cultures

    NASA Astrophysics Data System (ADS)

    Neiman, Alexander

    2000-03-01

    Synchronization is one of the fundamental nonlinear phenomena observed in nature. We have studied stochastic synchronization in the electrosensitive system of the paddlefish, Polyodon spathula and have also applied synchronization analysis to networks of glial cells cultured from brain tissue of patients with severe epilepsy. We also present theoretical and numerical models for stochastic synchronization. The electrosensitive system of the paddlefish consists of tens of thousands of electroreceptors located mainly on the "rostrum", which serves as an antenna to locate plankton. Each electroreceptor is a noisy oscillator with natural frequencies in the range of 30-90 Hz. We study synchronization in vivo due to 3-20 Hz external periodic electric fields, which correspond to natural signals produced by Daphnia, the usual prey of paddlefish. We find that for signals whose strengths are in the range that paddlefish customarily encounter in the wild, synchronization coding offers a plausible alternative to the more usual rate coding. We also have studied mutual synchronization between different electroreceptors. Although the spontaneous firing of distant electroreceptors is not synchronized, synchronization is observed when external periodic or even noisy electric fields are applied. We have applied the same analysis techniques to examine synchronization between groups of glial cells. In contrast to cultures of healthy astrocytes, which demonstrate calcium waves, the networks from epileptic tissue are characterized by spatially disordered hyper activity. Nevertheless, we have found that, in many cases, synchronized activity is a rather typical for tissue taken from the uncus region of the brain.

  12. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  13. Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells

    NASA Astrophysics Data System (ADS)

    Kryukov, A. K.; Petrov, V. S.; Averyanova, L. S.; Osipov, G. V.; Chen, W.; Drugova, O.; Chan, C. K.

    2008-09-01

    We study collective phenomena in highly heterogeneous cardiac cell culture and its models. A cardiac culture is a mixture of passive (fibroblasts), oscillatory (pacemakers), and excitable (myocytes) cells. There is also heterogeneity within each type of cell as well. Results of in vitro experiments are modelled by Luo-Rudy and FitzHugh-Nagumo systems. For oscillatory and excitable media, we focus on the transitions from fully incoherent behavior to partially coherent behavior and then to global synchronization as the coupling strength is increased. These regimes are characterized qualitatively by spatiotemporal diagrams and quantitatively by profiles of dependence of individual frequencies on coupling. We find that synchronization clusters are determined by concentric and spiral waves. These waves arising due to the heterogeneity of medium push covered cells to oscillate in synchrony. We are also interested in the influence of passive and excitable elements on the oscillatory characteristics of low- and high-dimensional ensembles of cardiac cells. The mixture of initially silent excitable and passive cells shows the transitions to oscillatory behavior. In the media of oscillatory and passive or excitable cells, the effect of oscillation death is observed.

  14. High-speed synchronous reluctance machine for flywheel applications

    NASA Astrophysics Data System (ADS)

    Hofmann, Heath Fred

    1998-12-01

    This thesis presents a synchronous reluctance motor/alternator design for a flywheel energy storage system. The goal of this project is to provide an inexpensive alternative to permanent magnet machines in this application. Key design criteria for the machine are high power output at high speeds with high efficiency and low rotor losses. The proposed rotor design consists of alternating layers of ferromagnetic and nonmagnetic steels which are bonded together using a high-strength bonding process such as brazing or explosive bonding. Analytical expressions are developed to calculate the direct and quadrature inductances, as wen as maximum output torque and maximum-power-factor torque, of this design. These expressions are then used to design rotors with optimized performance. A two-dimensional finite element simulator has been developed in MATLAB which calculates the steady-state eddy currents induced in the rotor at a given operating point. Results from the simulator suggest that a machine design with manageable rotor losses can be achieved. Stator and rotor design criteria are developed and combined in the formulation of a design process for high-speed synchronous reluctance machines. Two prototype machines, designed to provide 60kW over a speed range of 24,000--48,000rpm, have been constructed along with two 400V , 200A inverters. A stator-flux-oriented torque controller with an optimal-efficiency algorithm has been developed to drive the machines. Experimental results largely validate the design process, except that core losses in the stator iron were significantly higher than expected. Nevertheless, efficiencies of up to 91% were achieved at a 10kW, 10,000rpm operating point with estimated rotor losses less than 0.5% of total input power.

  15. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    NASA Astrophysics Data System (ADS)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  16. CELL CYCLE SYNCHRONIZATION OF MOUSE LIVER EPITHELIAL CELLS BY ELUTRIATION CENTRIFUGATION

    SciTech Connect

    Pearlman, Andrew L.; Bartholomew, James C.

    1980-06-01

    Detailed methods are described for the sorting and cell cycle synchronization by means of centrifugal elutriation of an established mouse liver epithelial cell line(NMuLi). In a comparison between three different elutriation media and between two different temperatures(4° and 20° C), the NMuLi cells were found to be most reproducibly sorted in the cell cycle when run in growth medium in the absence of serum and at the lower temperature. Under these conditions. and using decrements of rotor speed calculated from an empirically derived algorithm as described in the text an initially asynchronous population (38% G{sub 1}, 36% S, and 28% G{sub 2}M) was sorted into fractions enriched to 60% G{sub 1}, 75% S, and 50% G{sub 2}M. Of the cells loaded into the rotor, 30% were lost in the elutriation process, and about 20% recovered as aggregates. The remainder appeared in the various synchronized fractions. Epithelial cells sorted in this manner demonstrated no loss of viability, and upon replating showed significant movement in the cell cycle by 6 hrs post elutriation. The degree of synchronous movement through the cell cycle achieved by elutriation depended on the part of the cell cycle from which the original elutriated fraction came. Cells collected as late S and G{sub 2}M moved through the cell cycle with the tightest sychrony.

  17. Highly efficient PWM synchronous buck converter with optimized LDMOS

    NASA Astrophysics Data System (ADS)

    Roy, Swarnil; Mukherjee, Sagar; Sarkar, Chandan Kumar

    2015-07-01

    In this work, a design of high efficiency synchronous buck converter with an optimized LDMOS is presented which works in VHF frequency domain. The circuit performance of the buck converter is then analyzed and optimized to increase the efficiency and to reduce the power losses without modifying the circuit. The analysis and optimization is performed by varying the different device parameters like drift region doping concentration (DDrift) and drift region length (LDrift) along with the circuit level parameters like the dead time and the switching frequency. The effect of the parameters is found to reduce the power losses of the circuit. The circuit with optimized parameters yields 80% efficiency at 100 MHz switching frequency.

  18. Synchronization via Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Kendelbacher, Franziska; Stark, Holger

    2013-12-01

    An object moving in a viscous fluid creates a flow field that influences the motion of neighboring objects. We review examples from nature in the microscopic world where such hydrodynamic interactions synchronize beating or rotating filaments. Bacteria propel themselves using a bundle of rotating helical filaments called flagella which have to be synchronized in phase. Other micro-organisms are covered with a carpet of smaller filaments called cilia on their surfaces. They beat highly synchronized so that metachronal waves propagate along the cell surfaces. We explore both examples with the help of simple model systems and identify generic properties for observing synchronization by hydrodynamic interactions.

  19. Cell Cycle Synchronization of Schizosaccharomyces pombe by Centrifugal Elutriation of Small Cells.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Division of Schizosaccharomyces pombe by medial fission produces identically sized daughter cells that grow by tip extension until their own division is prompted by reaching the same critical size for division as the parental cell. The fidelity of this size control in the absence of perturbation means that cells of the same size are at the same point in the cell cycle. Size selection of small cells from an asynchronous culture by centrifugal elutriation permits generation of synchronous cultures large enough for biochemical analysis. The changes observed in the synchronized cell cycle progression of such cultures are representative of those that accompany cell cycle progression of individual cells. Here, we describe how size selection with the Beckman Coulter JE-5.0 rotor can be used to generate synchronized cultures. Because of the continuous passage of medium through the rotor throughout the procedure, elutriation is considered to have less impact on the integrity of the cell cycle than other approaches. Two protocols are presented here: The first generates a 2-L culture ideal for detailed biochemical analysis, whereas the second allows rapid generation and simultaneous analysis of three smaller (200-mL) cultures. PMID:27250944

  20. Robot-Assisted Retroperitoneoscopic Surgery for Synchronous Contralateral Ureteral Metastasis of Renal-Cell Carcinoma

    PubMed Central

    Lai, Wei-Hong; Chiu, Allen Wen-Shien; Lu, Chih-Cheng; Huang, Steven Kuan-Hua

    2015-01-01

    Abstract Renal-cell carcinoma (RCC) with synchronous metastasis to contralateral ureter is extremely rare with only four cases reported in the literature. We report a case of synchronous metastatic RCC to the contralateral ureter with effective robot-assisted retroperitoneoscopic nephron-sparing surgery that leads to favorable oncologic and functional outcome. PMID:27579394

  1. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  2. Fast-synchronizing high-fidelity spread-spectrum receiver

    DOEpatents

    Moore, Michael Roy; Smith, Stephen Fulton; Emery, Michael Steven

    2004-06-01

    A fast-synchronizing receiver having a circuit including an equalizer configured for manipulating an analog signal; a detector in communication with the equalizer; a filter in communication with the detector; an oscillator in communication with the filter; a gate for receiving the manipulated signal; a circuit portion for synchronizing and tracking the manipulated signal; a summing circuit in communication with the circuit portion; and an output gate.

  3. Motility efficiency and spatiotemporal synchronization in non-metastatic vs. metastatic breast cancer cells

    PubMed Central

    Hermans, Thomas M.; Pilans, Didzis; Huda, Sabil; Fuller, Patrick; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A.

    2014-01-01

    Metastatic breast cancer cells move not only more rapidly and persistently than their non-metastatic variants but in doing so use the mechanical work of the cytoskeleton more efficiently. The efficiency of the cell motions is defined for entire cells (rather than parts of the cell membrane) and is related to the work expended in forming membrane protrusions and retractions. This work, in turn, is estimated by integrating the protruded and retracted areas along the entire cell perimeter and is standardized with respect to the net translocation of the cell. A combination of cross-correlation, Granger causality, and morphodynamic profiling analyses is then used to relate the efficiency to the cell membrane dynamics. In metastatic cells, the protrusions and retractions are highly “synchronized” both in space and in time and these cells move efficiently. In contrast, protrusions and retractions formed by non-metastatic cells are not “synchronized” corresponding to low motility efficiencies. Our work provides a link between the kinematics of cell motions and their energetics. It also suggests that spatiotemporal synchronization might be one of the hallmarks of invasiveness of cancerous cells. PMID:24136177

  4. Tracking and synchronization of the yeast cell cycle using dielectrophoretic opacity.

    PubMed

    Valero, Ana; Braschler, Thomas; Rauch, Alex; Demierre, Nicolas; Barral, Yves; Renaud, Philippe

    2011-05-21

    Cell cycle synchronization is an important tool for the study of the cell division stages and signalling. It provides homogeneous cell cultures that are of importance to develop and improve processes such as protein synthesis and drug screening. The main approach today is the use of metabolic agents that block the cell cycle at a particular phase and accumulate cells at this phase, disturbing the cell physiology. We provide here a non-invasive and label-free continuous cell sorting technique to analyze and synchronize yeast cell division. By balancing opposing dielectrophoretic forces at multiple frequencies, we maximize sensitivity to the characteristic shape and internal structure changes occurring during the yeast cell cycle, allowing us to synchronize the culture in late anaphase. PMID:21445448

  5. Synchronization of cells with activator-inhibitor pathways through adaptive environment-mediated coupling

    NASA Astrophysics Data System (ADS)

    Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.; Tchawoua, C.; Kofane, T. C.

    2015-11-01

    In this paper, we report the synchronized dynamics of cells with activator-inhibitor pathways via an adaptive environment-mediated coupling scheme with feedbacks and control mechanisms. The adaptive character of the extracellular medium is modeled via its damping parameter as a physiological response aiming at annihilating the cellular differentiation existing between the chaotic biochemical pathways of the cells, in order to preserve homeostasis. We perform an investigation on the existence and stability of the synchronization manifold of the coupled system under the proposed coupling pattern. Both mathematical and computational tools suggest the accessibility of conducive prerequisites (conditions) for the emergence of a robust synchronous regime. The relevance of a phase-synchronized dynamics is appraised and several numerical indicators advocate for the prevalence of this fascinating phenomenon among the interacting cells in the phase space.

  6. Early representation of shape by onset synchronization of border-ownership-selective cells in the V1-V2 network.

    PubMed

    Hatori, Yasuhiro; Sakai, Ko

    2014-04-01

    Construction of surface is a crucial step toward the representation of shape through the integration of local information. Physiological studies have reported that the primary visual cortex (V1) codes the medial axis (MA) that is a skeletal structure equidistant from nearby contours, suggesting the early representation of surface in V1. Although the neural basis of surface construction has not been clarified, the onset synchronization of border ownership (BO)-selective cells is a plausible candidate for the generation of surface. We investigated computationally the representation of surface in a biophysically detailed model of primate V1-V2 networks. The simulation results showed that the simultaneous arrival of signals from BO-selective cells evoked strong responses of V1 cells located around the MA. The simulation results lead to a prediction that the perception of the direction of figure (DOF) depends on the degree of synchronous presentation of contour. We conducted a psychophysical experiment and showed that the perception of the DOF is biased toward a highly synchronized contour. These results suggest a crucial role of the onset synchronization of BO-selective cells for the construction of early representation of shape. PMID:24695133

  7. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169

  8. Laser synchronized high-speed shutter for spectroscopic application

    DOEpatents

    Miles, Paul C.; Porter, Eldon L.; Prast, Thomas L.; Sunnarborg, Duane A.

    2002-01-01

    A fast mechanical shutter, based on rotating chopper wheels, has been designed and implemented to shutter the entrance slit of a spectrograph. This device enables an exposure time of 9 .mu.s to be achieved for a 0.8 mm wide spectrograph entrance slit, achieves 100% transmission in the open state, and an essentially infinite extinction ratio. The device further incorporates chopper wheel position sensing electronics to permit the synchronous triggering of a laser source.

  9. Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes.

    PubMed

    Gómez, Martha C; Jenkins, Jill A; Giraldo, Angelica; Harris, Rebecca F; King, Amy; Dresser, Betsy L; Pope, Charles Earle

    2003-09-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  10. Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes

    USGS Publications Warehouse

    Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.

    2003-01-01

    The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei

  11. Synchronous gastric and ampullary adenocarcinomas in a hairy cell leukemia patient treated with pentostatin eight years prior.

    PubMed

    Senatore, Frank J; Dasanu, Constantin A

    2016-06-01

    Hairy cell leukemia patients are at increased risk for second malignancies, including both solid and lymphoid neoplasms. Along with other factors, multiple immune defects present in hairy cell leukemia likely contribute to subsequent carcinogenesis. We report herein a case of synchronous high-grade gastric and ampullary adenocarcinomas in a patient with a history of hairy cell leukemia treated eight years prior with pentostatin. We include a review of immune alterations induced by both hairy cell leukemia and its therapies, and link them with the occurrence of second cancers in these patients. PMID:25712625

  12. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1

    PubMed Central

    Vinck, Martin; Bos, Jeroen J.; Van Mourik-Donga, Laura A.; Oplaat, Krista T.; Klein, Gerbrand A.; Jackson, Jadin C.; Gentet, Luc J.; Pennartz, Cyriel M. A.

    2016-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1–LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  13. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1.

    PubMed

    Vinck, Martin; Bos, Jeroen J; Van Mourik-Donga, Laura A; Oplaat, Krista T; Klein, Gerbrand A; Jackson, Jadin C; Gentet, Luc J; Pennartz, Cyriel M A

    2015-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1-LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  14. Cell-cycle research with synchronous cultures: an evaluation

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  15. Cell cycle synchronization of embryonic stem cells: Effect of serum deprivation on the differentiation of embryonic bodies in vitro

    SciTech Connect

    Zhang Enming; Li Xiaolong; Zhang Shufang; Chen Liangqiang; Zheng Xiaoxiang . E-mail: zxx@mail.bme.zju.edu.cn

    2005-08-12

    Research on stem-cell transplantation has indicated that the success of transplantation largely depends on synchronizing donor cells into the G0/G1 phase. In this study, we investigated the profile of embryonic stem (ES) cell synchronization and its effect on the formation of embryonic bodies (EBs) using cell culture with serum deprivation. The D3 cell line of ES cells was used, and parameters such as cell proliferation and activity, EB formation, and expression of stage-specific embryonic antigen-1 and Oct-4 were investigated. Results showed that the percentage of G0/G1 stage in serum deprivation culture is significantly higher than that in culture with serum supplementation. Synchronized ES cells can reenter the normal cell cycle successfully after serum supply. EBs formed from synchronized ES cells have higher totipotency capability to differentiate into functional neuronal cells than EBs formed from unsynchronized ES cells. Our study provides a method for ES treatment before cell transplantation that possibly helps to decrease the rate of cell death after transplantation.

  16. Synchronization of S Phase in Schizosaccharomyces pombe Cells by Transient Exposure to M-Factor Pheromone.

    PubMed

    Nielsen, Olaf

    2016-01-01

    A well-characterized S phase, a unicellular lifestyle, and a plethora of mutations in key components of DNA metabolism make fission yeast a particularly attractive system in which to study DNA replication. However, synchronization of passage through a normal S phase has proved challenging. This protocol describes how combining nitrogen starvation with M-factor mating pheromone treatment presents a highly effective method for synchronizing passage through an ostensibly normal S phase. PMID:27587782

  17. Transmission of a signal that synchronizes cell movements in swarms of Myxococcus xanthus

    PubMed Central

    Kaiser, Dale; Warrick, Hans

    2014-01-01

    We offer evidence for a signal that synchronizes the behavior of hundreds of Myxococcus xanthus cells in a growing swarm. Swarms are driven to expand by the periodic reversing of direction by members. By using time-lapse photomicroscopy, two organized multicellular elements of the swarm were analyzed: single-layered, rectangular rafts and round, multilayered mounds. Rafts of hundreds of cells with their long axes aligned in parallel enlarge as individual cells from the neighborhood join them from either side. Rafts can also add a second layer piece by piece. By repeating layer additions to a raft and rounding each layer, a regular multilayered mound can be formed. About an hour after a five-layered mound had formed, all of the cells from its top layer descended to the periphery of the fourth layer, both rapidly and synchronously. Following the first synchronized descent and spaced at constant time intervals, a new fifth layer was (re)constructed from fourth-layer cells, in very close proximity to its old position and with a number of cells similar to that before the “explosive” descent. This unexpected series of changes in mound structure can be explained by the spread of a signal that synchronizes the reversals of large groups of individual cells. PMID:25149859

  18. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    PubMed Central

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cellular starch content. During photosynthesis-driven starch biosynthesis, synchronized Chlamydomonas cells possess an unexpected cell-to-cell diversity both in size and starch content, but the starch-related heterogeneity largely exceeds that of size. The cellular volume, starch content, and amount of starch/cell volume obey lognormal distributions. Starch degradation was initiated by inhibiting the photosynthetic electron transport in illuminated cells or by darkening. Under both conditions, the averaged rate of starch degradation is almost constant, but it is higher in illuminated than in darkened cells. At the single-cell level, rates of starch degradation largely differ but are unrelated to the initial cellular starch content. A rate equation describing the cellular starch degradation is presented. SHG-based three-dimensional reconstructions of Chlamydomonas cells containing starch granules are shown. PMID:23009858

  19. Evaluation Program for Secondary Spacecraft Cells: Synchronous Orbit Testing of Sealed Nickel Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Performance data concerning sealed nickel-cadmium cells operating under a synchronous orbit regime are presented. A space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun was simulated. Results include: (1) exposure to synchronous orbit testing at a temperature of 40 C yields less than 6 years of life; (2) performance at -20 C presents a low capacity problem; (3) the capacity check, performed at the middle of each show period, provides a temporary red reconditioning effect on the cells in that the end-of-discharge voltages are higher, for approximately 7 to 10 days, following the capacity check than they were 7 to 10 days prior to the capacity check; (4) all the test packs at -20 C and 40 C have either failed or were discontinued because of low capacity; and (5) test packs at temperatures of 0 C and 10 C have delivered the best capacity during life and packs tested at 20 C showed better life capability than packs tested at -20 C and 40 C.

  20. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    SciTech Connect

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  1. ATS-5 solar cell experiment after 699 days in synchronous orbit.

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1972-01-01

    The data from the ATS-5 solar cell experiment for the first 699 days in synchronous orbit is presented. Comparison of the performance of several different types of solar cell/coverslide configurations is made. This behavior is in turn compared with the calculated performance for such cell/coverslide configurations in synchronous orbit and with the results of accelerator irradiations designed to simulate the omnidirectional electron environment. It is generally found that the cells on the flight experiment perform like the cells irradiated with the accelerator, but they degraded more than predicted by the calculation. Solar cells mounted on a thin kapton panel are degrading about the same as are their counterparts mounted on a rigid panel.

  2. Synchronization of Cell Cycle Oscillator by Multi-pulse Chemical Perturbations

    NASA Astrophysics Data System (ADS)

    Lin, Yihan; Li, Ying; Dinner, Aaron; Scherer, Norbert

    2011-03-01

    Oscillators underlie biological rhythms in various organisms and provide a timekeeping mechanism. Cell cycle oscillator, for example, controls the progression of cell cycle stage and drives cyclic reproduction in both prokaryotes and eukaryotes. The understanding of the underlying nonlinear regulatory network allows experimental design of external perturbations to interact and control cell cycle oscillation. We have previously demonstrated in experiment and in simulation that the cell cycle coherence of a model bacterium can be progressively tuned by the level of a histidine kinase. Here, we present our recent effort to synchronize the division of a population of bacterium cells by external pulsatile chemical perturbations. We were able to synchronize the cell population by phase-locking approach: the external oscillator (i.e. periodic perturbation) entrains the internal cell cycle oscillator which is in analogous to the phase-locking of circadian clock to external light/dark oscillator. We explored the ranges of frequencies for two external oscillators of different amplitudes where phase-locking occurred. To our surprise, non-periodic chemical perturbations could also cause synchronization of a cell population, suggesting a Markovian cell cycle oscillation dynamics.

  3. Activity of synchronized cells of a steady-state biofilm recirculated reactor during xenobiotic biodegradation.

    PubMed Central

    Ascon-Cabrera, M A; Thomas, D; Lebeault, J M

    1995-01-01

    The maintenance of a steady-state biofilm in a continuous-flow fixed-bed reactor, as a consequence of the reproduction-detachment of cells (an interfacial cell physiology phenomenon of steady-state biofilm) during the biodegradation of 2,4,6-trichlorophenol by Pseudomonas cells, was determined. After cell adhesion on an open-pore glass support, the biofilm was formed in a packed-bed recirculated reactor. After the steady-state biofilm was reached, the mechanisms of the interfacial cell detachment (at the biofilm-liquid interface) were determined. It was established that (i) the hydrophobicity of immobilized sessile cells (parent cells) increased (from 50 to 80%) as the dilution rate increased, while the hydrophobicity of detached suspended cells (daughter cells) remained constant (about 45%); and (ii) the immediately detached suspended cells showed a synchronized growth in about three generations. These results indicate that (i) the immobilized sessile and suspended detached cells grew synchronically at the end and at the beginning of the cell cycle, respectively; and (ii) the hydrophobicity difference of immobilized sessile and suspended detached cells permitted the cells detachment. Therefore, it is probable that independent of shear stress (due to recirculated flow), the synchronized growth and hydrophobicity of cells (which vary during the cell cycle) are the main factors permitting the maintenance of a steady-state xenobiotic-degrading biofilm reactor (in which the overall accumulation of biofilm is determined by the average growth rate of the biofilm cells minus the rate of detachment of cells from the biofilm). PMID:7793923

  4. Synchronously injected amplifiers, a novel approach to high-average-power FEL

    SciTech Connect

    Nguyen, D.C.; Fortgang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Sheffield, R.L.

    1996-11-01

    Two new FEL ideas based on synchronously injected amplifiers are described. Both of these rely on the synchronous injection of the optical signal into a high-gain, high-efficiency tapered wiggler. The first concept, called Regenerative Amplifier FEL (RAFEL), uses an optical feedback loop to provide a coherent signal at the wiggler entrance so that the optical power can reach saturation rapidly. The second idea requires the use of a uniform wiggler in the feedback loop to generate light that can be synchronously injected back into the first wiggler. The compact Advanced FEL is being modified to implement the RAFEL concept. We describe future operation of the Advanced FEL at high average current and discuss the possibility of generating 1 kW average power.

  5. Auxin Deprivation Induces Synchronous Golgi Differentiation in Suspension-Cultured Tobacco BY-2 Cells1

    PubMed Central

    Winicur, Zev M.; Feng Zhang, Guo; Andrew Staehelin, L.

    1998-01-01

    To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells. PMID:9625703

  6. A ten-year search for synchronous cells: obstacles, solutions, and practical applications

    PubMed Central

    Helmstetter, Charles E.

    2015-01-01

    My effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end. In this essay, I recount my personal journey in this obsessive experimental pursuit. That narrative is followed by a description of a simplified version of the “baby machine,” a technique that was developed to obtain minimally disturbed, synchronously growing E. coli cells. Subsequent studies with this methodology led to an understanding of the basic properties of the relationship between chromosome replication and cell division. Accordingly, I end this reminiscence with a simple, fool-proof graphical strategy for deducing the pattern of chromosome replication during the division cycle of cells growing at any rate. PMID:25870590

  7. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    PubMed Central

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  8. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons.

    PubMed

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D; Kelly, Martin J; Rønnekleiv, Oline K

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1(ARH)) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1(ARH) neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1(ARH) neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1(ARH) neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1(ARH) neurons. We propose that Kiss1(ARH) neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. PMID:27549338

  9. A self-synchronized high speed computational ghost imaging system: A leap towards dynamic capturing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Bian, Liheng; Xiao, Yudong; Wang, Yongjin; Zhang, Lei; Dai, Qionghai

    2015-11-01

    High quality computational ghost imaging needs to acquire a large number of correlated measurements between the to-be-imaged scene and different reference patterns, thus ultra-high speed data acquisition is of crucial importance in real applications. To raise the acquisition efficiency, this paper reports a high speed computational ghost imaging system using a 20 kHz spatial light modulator together with a 2 MHz photodiode. Technically, the synchronization between such high frequency illumination and bucket detector needs nanosecond trigger precision, so the development of synchronization module is quite challenging. To handle this problem, we propose a simple and effective computational self-synchronization scheme by building a general mathematical model and introducing a high precision synchronization technique. The resulted efficiency is around 14 times faster than state-of-the-arts, and takes an important step towards ghost imaging of dynamic scenes. Besides, the proposed scheme is a general approach with high flexibility for readily incorporating other illuminators and detectors.

  10. Noise-induced synchronous stochastic oscillations in small scale cultured heart-cell networks

    NASA Astrophysics Data System (ADS)

    Yuan, Lan; Liu, Zhi-Qiang; Zhang, Hui-Min; Ding, Xue-Li; Yang, Ming-Hao; Gu, Hua-Guang; Ren, Wei

    2011-02-01

    This paper reports that the synchronous integer multiple oscillations of heart-cell networks or clusters are observed in the biology experiment. The behaviour of the integer multiple rhythm is a transition between super- and subthreshold oscillations, the stochastic mechanism of the transition is identified. The similar synchronized oscillations are theoretically reproduced in the stochastic network composed of heterogeneous cells whose behaviours are chosen as excitable or oscillatory states near a Hopf bifurcation point. The parameter regions of coupling strength and noise density that the complex oscillatory rhythms can be simulated are identified. The results show that the rhythm results from a simple stochastic alternating process between super- and sub-threshold oscillations. Studies on single heart cells forming these clusters reveal excitable or oscillatory state nearby a Hopf bifurcation point underpinning the stochastic alternation. In discussion, the results are related to some abnormal heartbeat rhythms such as the sinus arrest.

  11. Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers.

    PubMed

    Murray, R T; Runcorn, T H; Kelleher, E J R; Taylor, J R

    2016-06-01

    We report the development of a high average power, picosecond-pulse, mid-infrared source based on difference-frequency generation (DFG) of two synchronous master oscillator power fiber amplifier systems. The generated idler can be tuned over the range 3.28-3.45 μm delivering greater than 3.4 W of average power, with a maximum pump to total DFG power conversion efficiency of 78%. The benefits of a synchronously pumped scheme, compared to CW seeding of DFG sources, are discussed. PMID:27244385

  12. Characteristic analysis of permanent magnet-assisted synchronous reluctance motor for high power application

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ho; Jang, Young-Jin; Hong, Jung-Pyo

    2005-05-01

    In this paper, finite element analysis for a permanent magnet-assisted synchronous reluctance motor (PMASynRM) is presented and the inductance, torque characteristics analysis is performed under the effect of saturation. Comparisons are given with inductance and torque characteristics of normal synchronous reluctance motor (SynRM) and those according to quantity of residual flux density (0.1-0.4T) in PMASynRM, respectively. Comparisons are given with output characteristics of normal SynRM and those of PMASynRM, according to load, respectively. It is confirmed that the proposed model results in high output power performance.

  13. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    SciTech Connect

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  14. ATS-5 solar cell experiment results after one year in synchronous orbit

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1972-01-01

    The results of the ATS-5 solar cell experiment after one year in synchronous orbit are reported. A partial failure in the experimental electronics package has caused a loss of data from half the 80 experimental solar cells. Procedures for extracting data due to a partial spacecraft failure are described and discussed. Data from the remaining 40 solar cells, including 15 mounted on a thin flexible structure are analyzed. Data are corrected to a solar intensity of 140 mW/sq cm and a temperature of 25 C. It was found that after one year in synchronous orbit: (1) cells with 1.52-mm-thick coverslides did not show a clear-cut advantage over those with 0.15-mm coverslides, (2) cells with solderless grid lines are degrading at the same rate as are cells with solder-dipped grid lines, (3) cells not quite completely covered with coverslides suffered a large power loss in comparison to cells fully covered, (4) no clear-cut advantage of 10-cm cells over 2-cm cells has yet been observed, (5) cells mounted on the flexible panel with relatively little backshielding did not degrade any faster than those with substantial backshielding, and (6) the flight data in large part confirms the adequacy of the ground-based techniques used in our preflight radiation test program.

  15. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy.

    PubMed

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-09-01

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given. PMID:26500732

  16. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy

    PubMed Central

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-01-01

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given. PMID:26500732

  17. Asynchronous and Synchronous Online Teaching: Perspectives of Canadian High School Distance Education Teachers

    ERIC Educational Resources Information Center

    Murphy, Elizabeth; Rodriguez-Manzanares, Maria A.; Barbour, Michael

    2011-01-01

    This paper presents the results of an inductive, interpretive analysis of the perspectives of 42 Canadian high school distance education (DE) teachers on asynchronous and synchronous online teaching. The paper includes a conceptual overview of the affordances and constraints of each form of teaching. Findings provided insight into the following…

  18. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase.

    PubMed

    Kim, Eunhye; Zheng, Zhong; Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently. PMID:27472781

  19. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase

    PubMed Central

    Jeon, Yubyeol; Jin, Yong-Xun; Hwang, Seon-Ung; Cai, Lian; Lee, Chang-Kyu; Kim, Nam-Hyung; Hyun, Sang-Hwan

    2016-01-01

    Pigs provide outstanding models of human genetic diseases due to their striking similarities with human anatomy, physiology and genetics. Although transgenic pigs have been produced using genetically modified somatic cells and nuclear transfer (SCNT), the cloning efficiency was extremely low. Here, we report an improved method to produce diploid cloned embryos from porcine induced pluripotent stem cells (piPSCs), which were synchronized to the G2/M stage using a double blocking method with aphidicolin and nocodazole. The efficiency of this synchronization method on our piPSC lines was first tested. Then, we modified our traditional SCNT protocol to find a workable protocol. In particular, the removal of a 6DMAP treatment post-activation enhanced the extrusion rate of pseudo-second-polar bodies (p2PB) (81.3% vs. 15.8%, based on peak time, 4hpa). Moreover, an immediate activation method yielded significantly more blastocysts than delayed activation (31.3% vs. 16.0%, based on fused embryos). The immunofluorescent results confirmed the effect of the 6DMAP treatment removal, showing remarkable p2PB extrusion during a series of nuclear transfer procedures. The reconstructed embryos from metaphase piPSCs with our modified protocol demonstrated normal morphology at 2-cell, 4-cell and blastocyst stages and a high rate of normal karyotype. This study demonstrated a new and efficient way to produce viable cloned embryos from piPSCs when synchronized to the G2/M phase of the cell cycle, which may lead to opportunities to produce cloned pigs from piPSCs more efficiently. PMID:27472781

  20. Synthesis and secretion of light-chain immunoglobulin in two successive cycles of synchronized plasmacytoma cells

    PubMed Central

    1976-01-01

    Suspension-cultured mouse plasmacytoma cells (MPC-11) were accumulated in the late G1 phase by exposure to isoleucine-deficient medium for 20- 24 h. The arrested culture was fed with complete medium enabling the cells to continue the cell cycle synchronously, undergo mitosis, and enter a second cycle of growth. This method of synchronization left the protein-synthesizing ability intact as judged by the polysome profile and the capacity of the cells to incorporate labeled amino acids into protein after the restoration of isoleucine. After incubation in isoleucine-deficient medium and the addition of isoleucine to the culture, cells entered the S phase after a short lag, as judged by [3H]thymidine incorporation into nucleic acid and by spectrophotometric measurement of nuclear DNA. The cells were in mitosis between 12 and 18 h as judged by the increase in cell count and analysis of cell populations on albumin gradients. Synthesis and secretion of light- chain immunoglobulin were maximal in the late G1/early S phase of the first cycle. During late S phase, G2 phase, and mitosis, both synthesis and secretion were observed to be at a low level; however, immediately after motosis the cells which then entered the G1 phase apparently commenced synthesis of light chain immunoglobulin straight away, although secretion of labeled material remained at a low level. PMID:812877

  1. Cell Synchronization by Rapamycin Improves the Developmental Competence of Porcine SCNT Embryos.

    PubMed

    Hyun, Hyuk; Lee, Seung-Eun; Son, Yeo-Jin; Shin, Min-Young; Park, Yun-Gwi; Kim, Eun-Young; Park, Se-Pill

    2016-06-01

    The cell cycle stage of donor cells influences the success of somatic cell nuclear transfer (SCNT). This study investigated the effects of rapamycin treatment on synchronization of porcine fibroblasts in comparison with control and serum-starved cells, SCNT donor cell viability, and SCNT-derived embryo development. Porcine fibroblasts were treated with 0.1, 1, 10, and 100 μM rapamycin for 1 or 3 days. The proportion of cells in G0/G1 phase was significantly higher among cells treated with 1 μM rapamycin for 3 days (D3-1R) than among control and serum-starved cells (p < 0.05). In comparison with control cells, rapamycin-treated cells exhibited reduced proliferation, similar to serum-starved cells. The viability (as assessed by the MTT assay) of D3-1R-treated cells was good, similar to control cells, showing their quality was maintained. To confirm nutrient regulation by rapamycin treatment, we checked the transcript levels of nutrient transporter genes (SLC2A2, SLC2A4, SLC6A14, and SLC7A1). These levels were significantly lower in D3-1R-treated cells than in control cells (p < 0.01). We performed SCNT with D3-1R-treated cells (SCNT(D3-1R)) to confirm the effect of cell cycle synchronization by rapamycin treatment. Although SCNT(D3-1R) embryos did not have an increased fusion rate, their cleavage and blastocyst formation rates were significantly higher than those of control embryos (p < 0.05). Regarding embryo quality, the numbers of total and apoptotic cells per blastocyst were increased and decreased, respectively, in SCNT(D3-1R) blastocysts. The mRNA levels of developmental (CDX2 and CDH1) and proapoptotic (FAS and CASP3) genes were significantly higher and lower, respectively, in SCNT(D3-1R) blastocysts than in control blastocysts (p < 0.05). These results demonstrate that rapamycin treatment affects the cell cycle synchronization of donor cells and enhances the developmental potential of porcine SCNT embryos. PMID:27253629

  2. Independent Tumor Origin in Two Cases of Synchronous Bilateral Clear Cell Renal Cell Carcinoma.

    PubMed

    Ji, Zhengguo; Zhao, Jialu; Zhao, Tian; Han, Yuying; Zhang, Yujun; Ye, Haihong

    2016-01-01

    Bilateral renal cell carcinomas (RCCs) pose a challenge for clinical treatment and management. Most bilateral RCCs are sporadic, and do not show a hereditary pattern indicative of VHL syndrome or other inherited cancers. The origin and evolution of these sporadic bilateral RCCs remains elusive. We obtained normal and tumor samples from two male patients suffering from early stage synchronous bilateral clear cell RCC (ccRCC), and analyzed genomic DNA using whole exome sequencing and bisulfite pyrosequencing. We detected distinct 3p loss of heterozygosity (LOH) in both tumors in each patient. Two tumors within the same patient harbored distinct driver mutations and different CpG hypermethylation sites in the VHL promoter. Moreover, tumors exhibit independent evolutionary trajectories. Therefore, distinct 3p LOH, combined with contingent driver gene mutations and independent VHL hypermethylation, led to independent tumor origin and parallel evolution of bilateral ccRCC in these two patients. Our results indicate that tumors in these two cases were not due to common germline oncogenic mutations. They were results of multiple de novo mutations in each kidney, rather than primary ccRCC with contralateral renal metastasis. Therefore, histopathologic and genetic profiling from single tumor specimen may underestimate the mutational burden and somatic heterogeneity of bilateral ccRCCs. PMID:27383411

  3. Independent Tumor Origin in Two Cases of Synchronous Bilateral Clear Cell Renal Cell Carcinoma

    PubMed Central

    Ji, Zhengguo; Zhao, Jialu; Zhao, Tian; Han, Yuying; Zhang, Yujun; Ye, Haihong

    2016-01-01

    Bilateral renal cell carcinomas (RCCs) pose a challenge for clinical treatment and management. Most bilateral RCCs are sporadic, and do not show a hereditary pattern indicative of VHL syndrome or other inherited cancers. The origin and evolution of these sporadic bilateral RCCs remains elusive. We obtained normal and tumor samples from two male patients suffering from early stage synchronous bilateral clear cell RCC (ccRCC), and analyzed genomic DNA using whole exome sequencing and bisulfite pyrosequencing. We detected distinct 3p loss of heterozygosity (LOH) in both tumors in each patient. Two tumors within the same patient harbored distinct driver mutations and different CpG hypermethylation sites in the VHL promoter. Moreover, tumors exhibit independent evolutionary trajectories. Therefore, distinct 3p LOH, combined with contingent driver gene mutations and independent VHL hypermethylation, led to independent tumor origin and parallel evolution of bilateral ccRCC in these two patients. Our results indicate that tumors in these two cases were not due to common germline oncogenic mutations. They were results of multiple de novo mutations in each kidney, rather than primary ccRCC with contralateral renal metastasis. Therefore, histopathologic and genetic profiling from single tumor specimen may underestimate the mutational burden and somatic heterogeneity of bilateral ccRCCs. PMID:27383411

  4. Synchronous presentation of invasive ductal carcinoma and mantle cell lymphoma: a diagnostic challenge in menopausal patients

    PubMed Central

    Woo, Edward J.; Baugh, Aaron D.; Ching, Karen

    2016-01-01

    Synchronous presentation of breast carcinoma and non-Hodgkin lymphoma (NHL) is a rare occurrence (Bradford PT, Freedman DM, Goldstein AM, Tucker MA. Increased risk of second primary cancers after a diagnosis of melanoma. Arch Dermatol 2010;146:265–72; Dutta Roy S, Stafford JA, Scally J, Selvachandran SN. A rare case of breast carcinoma co-existing with axillary mantle cell lymphoma. World J Surg Oncol 2003;1:27; Suresh Attili VS, Dadhich HK, Rao CR, Bapsy PP, Batra U, Anupama G et al. A case of breast cancer coexisting with B-cell follicular lymphoma. Austral Asian J Cancer 2007;6:155–6). In particular, only two reported cases on synchronous presentation of invasive ductal carcinoma (IDC) and mantle cell lymphoma (MCL) exist in the English literature. Owing to the rarity, there is a lack of consensus about underlying mechanism as well as optimal treatment strategy, and diagnosing both malignancies together without a delay remains a complex clinical challenge. We report a case of synchronous presentation of IDC and MCL in a 67-year-old female patient whose MCL diagnosis was delayed due to a misinterpretation of her B symptoms as postmenopausal, with a review of the literature on concurrently occurring breast carcinoma and NHL. PMID:26801778

  5. Synchronous presentation of invasive ductal carcinoma and mantle cell lymphoma: a diagnostic challenge in menopausal patients.

    PubMed

    Woo, Edward J; Baugh, Aaron D; Ching, Karen

    2016-01-01

    Synchronous presentation of breast carcinoma and non-Hodgkin lymphoma (NHL) is a rare occurrence (Bradford PT, Freedman DM, Goldstein AM, Tucker MA. Increased risk of second primary cancers after a diagnosis of melanoma. Arch Dermatol 2010; 146: :265-72; Dutta Roy S, Stafford JA, Scally J, Selvachandran SN. A rare case of breast carcinoma co-existing with axillary mantle cell lymphoma. World J Surg Oncol 2003; 1: :27; Suresh Attili VS, Dadhich HK, Rao CR, Bapsy PP, Batra U, Anupama G et al. A case of breast cancer coexisting with B-cell follicular lymphoma. Austral Asian J Cancer 2007; 6: :155-6). In particular, only two reported cases on synchronous presentation of invasive ductal carcinoma (IDC) and mantle cell lymphoma (MCL) exist in the English literature. Owing to the rarity, there is a lack of consensus about underlying mechanism as well as optimal treatment strategy, and diagnosing both malignancies together without a delay remains a complex clinical challenge. We report a case of synchronous presentation of IDC and MCL in a 67-year-old female patient whose MCL diagnosis was delayed due to a misinterpretation of her B symptoms as postmenopausal, with a review of the literature on concurrently occurring breast carcinoma and NHL. PMID:26801778

  6. Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xia, Liansheng; Chen, Yi; Liu, Yi; Yang, Chao; Ye, Mao; Deng, Jianjun

    2015-01-01

    The synchronization of 15 parallel high gain gallium arsenide photoconductive semiconductor switches (GaAs PCSS) has been researched aiming to get higher output voltage. Each PCSS is triggered independently by a high power pulse laser diode. The pulse width, energy, peak power, and central wavelength of the laser pulse are approximately 18 ns, 360 μJ, 20 kW, and 905 nm, respectively. In the stacked Blumlein transmission lines structure, the synchronous conduction of 15 parallel GaAs PCSSs has been achieved by offering optimized bias voltage and laser parameters. The method of synchronization calculation is given, and the synchronization of the 15 parallel GaAs PCSSs is measured as 775 ps. Furthermore, influences of the bias voltage, laser parameters on the synchronization are analyzed. In the output terminal, superimposed by the output voltages of 15 Blumlein transmission lines, the total output voltage reaches up to 328 kV, which is the highest output voltage of GaAs PCSSs that has been reported so far.

  7. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    PubMed Central

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  8. Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data

    NASA Astrophysics Data System (ADS)

    Yair, Yoav Y.; Aviv, Reuven; Ravid, Gilad

    2009-05-01

    We analyzed sequences of lightning flashes in several thunderstorms on the basis of data from various ground-based lightning location systems. We identified patterns of clustering and synchronicity of flashes in separate thunderstorm cells, distanced by tens to hundreds of kilometers from each other. This is in-line with our early findings of lightning synchronicity based on space shuttle images (Yair et al., 2006), hinting at a possible mutual electromagnetic coupling of remote thunderstorms. We developed a theoretical model that is based on the leaky integrate-and-fire concept commonly used in models of neural activity, in order to simulate the flashing behavior of a coupled network of thunderstorm cells. In this type of network, the intensity of the electric field Ei within a specific region of thunderstorm (i) grows with time until it reaches the critical breakdown value and generates a lightning flash while its electric field drops to zero, simultaneously adding a delta E to the intensity of the internal electric field in all thundercloud cells (Ej,k,l…) that are linked to it. The value of ΔE is inversely proportional to the distance between the "firing" cell i and its neighbors j, k, l; we assumed that thunderstorm cells are not identical and occupy a grid with random spacing and organization. Several topologies of the thunderstorm network were tested with varying degrees of coupling, assuming a predetermined probability of links between active cells. The results suggest that when the group coupling in the network is higher than a certain threshold value, all thunderstorm cells will flash in a synchronized manner.

  9. Periods of Highly Synchronous, Non-Reentrant Endocardial Activation Cycles Occur During Long Duration Ventricular Fibrillation

    PubMed Central

    Robichaux, Robert P.; Dosdall, Derek J.; Osorio, Jose; Garner, Nicholas W.; Li, Li; Huang, Jian; Ideker, Raymond E.

    2010-01-01

    Background Little is known about long-duration ventricular fibrillation (LDVF), lasting 1-10 minutes when resuscitation is still possible. Methods and Results To determine global LV endocardial activation during LDVF, 6 canines (9.5±0.8 kg) received a 64-electrode basket catheter in the left ventricle (LV), a right ventricular (RV) catheter, and a 12-lead ECG. Activation sequences of 15 successive cycles after initiation and after 1, 2, 3, 5, 7, and 10 minutes of LDVF were determined. Early during VF, LV endocardial activation was complex and present throughout most (78.0±9.7%) of each cycle consistent with reentry. After 3-7 min of LDVF in 5 animals, endocardial activation became highly synchronized and present for only a small percentage of each cycle (18.2±7.7%), indicating that LV endocardial reentry was no longer present. During this synchronization, activations arose focally in Purkinje fibers and spread as large wavefronts to excite the Purkinje system followed by the subendocardial working myocardium. During this synchronization, the ECG continued to appear irregular, consistent with VF, and LV cycle length (183±29 ms) was significantly different than RV cycle length (144±14 ms) and significantly different than the LV cycle length when synchronization was not present (130±11 ms). Conclusion After 3-7 minutes of LDVF, a highly organized, synchronous, focal LV endocardial activation pattern frequently occurs that is not consistent with reentry but is consistent with triggered activity or abnormal automaticity in Purkinje fibers. The ECG continues to appear irregular during this period, partially because of differences in LV and RV cycle lengths. PMID:20487123

  10. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  11. High-performance parallel interface to synchronous optical network gateway

    DOEpatents

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  12. Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl

    2014-06-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.

  13. Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies.

    PubMed

    Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl

    2014-06-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state. PMID:24732749

  14. Localization of LHCP II in the Golgi of synchronized Euglena cells by immuno-electron microscopy

    SciTech Connect

    Osafune, Tetsuaki ); Schiff, J.A. ); Hase, E. )

    1990-05-01

    We have previously localized LHCP II apoprotein in the Golgi thylakoids of Euglena gracilis (bacillaris Z strain) using specific antibody protein A-gold, during plastid development induction of LHCP II synthesis by increased light intensity. Using light/dark synchronized cells we now show that thylakoids are always immunoreactive. There is no reaction in the Golgi at 0 h. (beginning of light period), but immunoreaction appears in the Golgi soon thereafter, rises to a peak at 8 h. declines again to zero by 16 h. (2 h. into the dark period). The peak in immunoreaction in the Golgi immediately precedes the peak in {sup 14}C-labeling of cellular LHCP, supporting our suggestion that processing in the Golgi precedes deposition of LHCP II apoprotein in the thylakoids. Synchronized mutant Gr{sub 1} which lacks LHCP apoprotein fails to show immunoreaction in the Golgi or thylakoids at any stage.

  15. Paneth Cell in Adenomas of the Distal Colorectum Is Inversely Associated with Synchronous Advanced Adenoma and Carcinoma.

    PubMed

    Mahon, Megan; Xu, Jie; Yi, Xianghua; Liu, Xiuli; Gao, Nan; Zhang, Lanjing

    2016-01-01

    Recent studies have linked appearance of Paneth cells in colorectal adenomas to adenoma burden and male gender. However, the clinical importance of Paneth cells' associations with synchronous advanced adenoma (AA) and colorectal carcinoma (CRC) is currently unclear. We performed a comprehensive case-control study using 1,900 colorectal adenomas including 785 from females, and 1,115 from males. We prospectively reviewed and recorded Paneth cell status in the colorectal adenomas consecutively collected between February 2014 and June 2015. Multivariable logistic regression analyses revealed that, in contrast to the adenomas without Paneth cells, the Paneth cell-containing adenomas at distal colorectum were inversely associated with presence of a synchronous AA or CRC (odds ratio [OR] 0.39, P = 0.046), whereas no statistical significance was reached for Paneth cell-containing proximal colorectal adenomas (P = 0.33). Synchronous AA and CRC were significantly associated with older age (60 + versus <60 years, OR 1.60, P = 0.002), male gender (OR 1.42, P = 0.021), and a history of AA or CRC (OR 2.31, P < 0.001). However, synchronous CRC was not associated with Paneth cell status, or a history of AA or CRC. Paneth cell presence in the adenomas of distal colorectum may be a negative indicator for synchronous AA and CRC, and seems to warrant further studies. PMID:27188450

  16. Synchronicity from synchronized chaos

    SciTech Connect

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

  17. Synchronicity from synchronized chaos

    DOE PAGESBeta

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind andmore » matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.« less

  18. Waves of Cdk1 Activity in S Phase Synchronize the Cell Cycle in Drosophila Embryos.

    PubMed

    Deneke, Victoria E; Melbinger, Anna; Vergassola, Massimo; Di Talia, Stefano

    2016-08-22

    Embryos of most metazoans undergo rapid and synchronous cell cycles following fertilization. While diffusion is too slow for synchronization of mitosis across large spatial scales, waves of Cdk1 activity represent a possible process of synchronization. However, the mechanisms regulating Cdk1 waves during embryonic development remain poorly understood. Using biosensors of Cdk1 and Chk1 activities, we dissect the regulation of Cdk1 waves in the Drosophila syncytial blastoderm. We show that Cdk1 waves are not controlled by the mitotic switch but by a double-negative feedback between Cdk1 and Chk1. Using mathematical modeling and surgical ligations, we demonstrate a fundamental distinction between S phase Cdk1 waves, which propagate as active trigger waves in an excitable medium, and mitotic Cdk1 waves, which propagate as passive phase waves. Our findings show that in Drosophila embryos, Cdk1 positive feedback serves primarily to ensure the rapid onset of mitosis, while wave propagation is regulated by S phase events. PMID:27554859

  19. Surgical Outcomes of Synchronous Multiple Primary Non-Small Cell Lung Cancers

    PubMed Central

    Zhang, Zhirong; Gao, Shugeng; Mao, Yousheng; Mu, Juwei; Xue, Qi; Feng, Xiaoli; He, Jie

    2016-01-01

    The prognostic indicators for synchronous multiple primary non-small cell lung cancer (NSCLC) vary across reports. In present study, the prognostic factors for the patients with synchronous multiple primary NSCLC were analyzed in a large cohort. A total of 285 patients with synchronous multiple primary NSCLC who underwent radical surgical resection and with complete follow-up information were included in this study. The Kaplan-Meier method were used for survival analysis, Cox proportional hazards regression models were used for risk factors evaluation. Among them, 94 (33.0%) patients had bilateral tumors and 51 (17.9%) had multiple (≥3) tumors. The 5-year disease-free survival (DFS) and overall survival (OS) rate was 58.7% and 77.6%, respectively. Univariate analysis identified parameters conferring shorter OS including male gender, symptomatic disease, negative family history, large maximal tumor size, not all adenocarcinomas, advanced highest T stage, and lymph node involvement. Multivariate analysis showed that male gender (p = 0.020), symptomatic disease (p = 0.017), and lymph node involvement (p < 0.001) were independent adverse prognosticators. For patients with multiple adenocarcinomas, the 5-year DFS and OS rate was 59.6% and 82.4%, respectively. The subtypes other than lepidic predominant (p < 0.001) and lymph node involvement (p = 0.002) were the independent unfavorable prognosticators. In conclusion, we identified independent prognosticators which will provide the valuable clues for postoperative management of patients with synchronous multiple primary NSCLC. PMID:27254665

  20. Surgical Outcomes of Synchronous Multiple Primary Non-Small Cell Lung Cancers.

    PubMed

    Zhang, Zhirong; Gao, Shugeng; Mao, Yousheng; Mu, Juwei; Xue, Qi; Feng, Xiaoli; He, Jie

    2016-01-01

    The prognostic indicators for synchronous multiple primary non-small cell lung cancer (NSCLC) vary across reports. In present study, the prognostic factors for the patients with synchronous multiple primary NSCLC were analyzed in a large cohort. A total of 285 patients with synchronous multiple primary NSCLC who underwent radical surgical resection and with complete follow-up information were included in this study. The Kaplan-Meier method were used for survival analysis, Cox proportional hazards regression models were used for risk factors evaluation. Among them, 94 (33.0%) patients had bilateral tumors and 51 (17.9%) had multiple (≥3) tumors. The 5-year disease-free survival (DFS) and overall survival (OS) rate was 58.7% and 77.6%, respectively. Univariate analysis identified parameters conferring shorter OS including male gender, symptomatic disease, negative family history, large maximal tumor size, not all adenocarcinomas, advanced highest T stage, and lymph node involvement. Multivariate analysis showed that male gender (p = 0.020), symptomatic disease (p = 0.017), and lymph node involvement (p < 0.001) were independent adverse prognosticators. For patients with multiple adenocarcinomas, the 5-year DFS and OS rate was 59.6% and 82.4%, respectively. The subtypes other than lepidic predominant (p < 0.001) and lymph node involvement (p = 0.002) were the independent unfavorable prognosticators. In conclusion, we identified independent prognosticators which will provide the valuable clues for postoperative management of patients with synchronous multiple primary NSCLC. PMID:27254665

  1. Paneth Cell in Adenomas of the Distal Colorectum Is Inversely Associated with Synchronous Advanced Adenoma and Carcinoma

    PubMed Central

    Mahon, Megan; Xu, Jie; Yi, Xianghua; Liu, Xiuli; Gao, Nan; Zhang, Lanjing

    2016-01-01

    Recent studies have linked appearance of Paneth cells in colorectal adenomas to adenoma burden and male gender. However, the clinical importance of Paneth cells’ associations with synchronous advanced adenoma (AA) and colorectal carcinoma (CRC) is currently unclear. We performed a comprehensive case-control study using 1,900 colorectal adenomas including 785 from females, and 1,115 from males. We prospectively reviewed and recorded Paneth cell status in the colorectal adenomas consecutively collected between February 2014 and June 2015. Multivariable logistic regression analyses revealed that, in contrast to the adenomas without Paneth cells, the Paneth cell-containing adenomas at distal colorectum were inversely associated with presence of a synchronous AA or CRC (odds ratio [OR] 0.39, P = 0.046), whereas no statistical significance was reached for Paneth cell-containing proximal colorectal adenomas (P = 0.33). Synchronous AA and CRC were significantly associated with older age (60 + versus <60 years, OR 1.60, P = 0.002), male gender (OR 1.42, P = 0.021), and a history of AA or CRC (OR 2.31, P < 0.001). However, synchronous CRC was not associated with Paneth cell status, or a history of AA or CRC. Paneth cell presence in the adenomas of distal colorectum may be a negative indicator for synchronous AA and CRC, and seems to warrant further studies. PMID:27188450

  2. Cluster synchronization and spatio-temporal dynamics in networks of oscillatory and excitable Luo-Rudy cells

    NASA Astrophysics Data System (ADS)

    Kanakov, O. I.; Osipov, G. V.; Chan, C.-K.; Kurths, J.

    2007-03-01

    We study collective phenomena in nonhomogeneous cardiac cell culture models, including one- and two-dimensional lattices of oscillatory cells and mixtures of oscillatory and excitable cells. Individual cell dynamics is described by a modified Luo-Rudy model with depolarizing current. We focus on the transition from incoherent behavior to global synchronization via cluster synchronization regimes as coupling strength is increased. These regimes are characterized qualitatively by space-time plots and quantitatively by profiles of local frequencies and distributions of cluster sizes in dependence upon coupling strength. We describe spatio-temporal patterns arising during this transition, including pacemakers, spiral waves, and complicated irregular activity.

  3. Synchronized Stress-strain Measurements in Dynamic Loading at High Pressure using D-DIA

    SciTech Connect

    L Li; D Weidner

    2011-12-31

    A new data collection protocol for forced oscillation experiments using a multianvil high pressure device is reported. We derive the stress of the sample at high pressure and temperature from synchrotron x-ray diffraction that is synchronized with sample strain measurements from x-ray radiographs. This method yields stress directly from the sample rather than a stress proxy. Furthermore, the diffraction pattern yields useful information concerning time evolution of structurally related phenomena. Here we illustrate some of these possibilities with high pressure experimental data.

  4. A Systemized Approach to Investigate Ca2+ Synchronization in Clusters of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes

    PubMed Central

    Jones, Aled R.; Edwards, David H.; Cummins, Michael J.; Williams, Alan J.; George, Christopher H.

    2016-01-01

    Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM) are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB) vs. “on plate” culture on spontaneous activity and regional Ca2+ synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca2+ spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca2+ synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (>2 weeks). The maintenance of all spontaneously active IPS-CM clusters under “on plate” culture conditions promoted the progressive reduction in regional Ca2+ synchronization and the loss of spontaneous Ca2+ spiking. Raising the extracellular [Ca2+] surrounding these quiescent IPS-CM clusters from ~0.4 to 1.8 mM unmasked discrete behaviors typified by either (a) long-lasting Ca2+ elevation that returned to baseline or (b) persistent, large-amplitude Ca2+ oscillations around an increased cytoplasmic [Ca2+]. The different responses of IPS-CM to elevated extracellular [Ca2+] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation. PMID:26793710

  5. Synchronous Diagnosis of Multiple Myeloma, Breast Cancer, and Monoclonal B-Cell Lymphocytosis on Initial Presentation

    PubMed Central

    Vennepureddy, A.; Motilal Nehru, V.; Liu, Y.; Mohammad, F.; Atallah, J. P.

    2016-01-01

    The cooccurrence of more than one oncologic illness in a patient can present a diagnostic challenge. Here we report an unusual case of concomitant existence of multiple myeloma, breast cancer, and monoclonal B-cell lymphocytosis on initial presentation. The challenge was to accurately diagnose each disease and stage in order to maximize the therapeutic regimen to achieve cure/remission. Successful management of the patient and increased life expectancy can be achieved by multidisciplinary management and patient-oriented approach in multiple primary malignant synchronous tumors. PMID:27247815

  6. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  7. Development of a synchronous enzyme-reaction system for a highly sensitive enzyme immunoassay.

    PubMed

    Inouye, Kuniyo; Ueno, Iori; Yokoyama, Shin-ichi; Sakaki, Toshiyuki

    2002-01-01

    A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay. PMID:11754740

  8. The ATS-5 solar cell experiment after 6-1/2 years in synchronous orbit

    NASA Technical Reports Server (NTRS)

    Anspaugh, B.

    1976-01-01

    Several types of solar cell/coverslide combinations were launched into synchronous orbit. The cells were 2 and 10 ohm-cm crucible-grown silicon with thicknesses of 0.2 and 0.3 mm. Coverslides were fused silica, ranging in thickness from 0.15 to 1.52 mm. The cells were mounted on two panels, one a rigid aluminum honeycomb structure, giving essentially infinite backshielding; the other was a thin Kapton-fiberglass substrate, offering minimal protection to the rear surface of the cells. The current-voltage curves of the cells were measured. Correction of cell electrical output to standard temperature and solar intensity was performed, using empirical radiation-dependent corrections. It is found that the cells on the flexible panel degrade much more rapidly than predicted, while the rigid panel cells follow the predictions fairly well. The anomalous behavior of the flexible panel cells is attributed to the deposition of a contaminant on the cell coverslides.

  9. Progress on the XG-III high-intensity laser facility with three synchronized beams

    NASA Astrophysics Data System (ADS)

    Su, Jingqin; Zhu, Qihua; Xie, Na; Zhou, Kainan; Huang, Xiaojun; Zeng, Xiaoming; Wang, Xiao; Wang, Xiaodong; Xie, Xudong; Zhao, Lei; Zuo, Yanlei; Jiang, Dongbin; Sun, Li; Guo, Yi; Zhou, Song; Wen, Jing; Li, Qing; Huang, Zheng; Jiang, Xuejun; Jing, Feng

    2015-02-01

    The paper presents the technical design and progress on a special high-power laser facility, i.e. XG-III, which is being used for high-field physics research and fast ignition research. The laser facility outputs synchronized nanosecond, picosecond and femtosecond beams with three wavelengths, i.e. 527 nm, 1053 nm and 800 nm respectively, and multiple combinations of the beams can be used for physics experiments. The commissioning of the laser facility was completed by the end of 2013. The measurement results show that the main parameters of the three beams are equal to or greater than the designed ones.

  10. G2 phase arrest prevents bristle progenitor self-renewal and synchronizes cell division with cell fate differentiation.

    PubMed

    Ayeni, Joseph O; Audibert, Agnès; Fichelson, Pierre; Srayko, Martin; Gho, Michel; Campbell, Shelagh D

    2016-04-01

    Developmentally regulated cell cycle arrest is a fundamental feature of neurogenesis, whose significance is poorly understood. DuringDrosophilasensory organ (SO) development, primary progenitor (pI) cells arrest in G2 phase for precisely defined periods. Upon re-entering the cell cycle in response to developmental signals, these G2-arrested precursor cells divide and generate specialized neuronal and non-neuronal cells. To study how G2 phase arrest affects SO lineage specification, we forced pI cells to divide prematurely. This produced SOs with normal neuronal lineages but supernumerary non-neuronal cell types because prematurely dividing pI cells generate a secondary pI cell that produces a complete SO and an external precursor cell that undergoes amplification divisions. pI cells are therefore able to undergo self-renewal before transit to a terminal mode of division. Regulation of G2 phase arrest thus serves a dual role in SO development: preventing progenitor self-renewal and synchronizing cell division with developmental signals. Cell cycle arrest in G2 phase temporally coordinates the precursor cell proliferation potential with terminal cell fate determination to ensure formation of organs with a normal set of sensory cells. PMID:26893341

  11. Synchronous clear cell renal cell carcinoma and multilocular cystic renal cell neoplasia of low malignant potential: A clinico-pathologic and molecular study.

    PubMed

    Raspollini, Maria Rosaria; Castiglione, Francesca; Cheng, Liang; Montironi, Rodolfo; Lopez-Beltran, Antonio

    2016-05-01

    We report a rare case of synchronous clear cell renal cell carcinoma and multilocular cystic renal cell neoplasia of low malignant potential in the same kidney. The tumors were seen incidentally in a 45-year-old man. Pathologic study revealed that the former tumor was nucleolar grade 2, and the multilocular cystic renal cell neoplasia of low malignant potential was nucleolar grade 1. At immunohistochemistry, the clear cells in both tumors were positive for CD10 and CA IX. Interestingly, these uncommon synchronous tumors showed a different KRAS/NRAS mutation analysis that was characterized by KRAS mutation at codon p.G12C in the clear cell renal cell carcinoma, while this mutation was not present in the case of multilocular cystic renal cell neoplasia of low malignant potential. NRAS mutation was not seen in any of the tumors. PMID:26874573

  12. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells

    PubMed Central

    Muter, Joanne; Lucas, Emma S.; Chan, Yi-Wah; Brighton, Paul J.; Moore, Jonathan D.; Lacey, Lauren; Quenby, Siobhan; Lam, Eric W.-F.; Brosens, Jan J.

    2015-01-01

    Implantation requires coordinated interactions between the conceptus and surrounding decidual cells, but the involvement of clock genes in this process is incompletely understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK (circadian locomotor output cycles kaput) and brain muscle arnt-like 1 and repressors encoded by PER (Period) and Cryptochrome genes. We show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Down-regulation occurred between 12 and 24 hours following differentiation and coincided with reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter. RNA sequencing revealed that premature inhibition of PER2 by small interfering RNA knockdown leads to a grossly disorganized decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators among the 1121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of 70 midluteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure (Spearman rank test, ρ = −0.3260; P = 0.0046). Thus, PER2 synchronizes endometrial proliferation with initiation of aperiodic decidual gene expression; uncoupling of these events may cause recurrent pregnancy loss.—Muter, J., Lucas, E. S., Chan, Y.-W., Brighton, P. J., Moore, J. D., Lacey, L., Quenby, S., Lam, E. W.-F., Brosens, J. J. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells. PMID:25573754

  13. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-02-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  14. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell

    PubMed Central

    Kiss, István Z.; Munjal, Neil; Martin, R. Scott

    2009-01-01

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied. PMID:20160883

  15. A Clock Synchronization Strategy for Minimizing Clock Variance at Runtime in High-end Computing Environments

    SciTech Connect

    Jones, Terry R; Koenig, Gregory A

    2010-01-01

    We present a new software-based clock synchronization scheme designed to provide high precision time agreement among distributed memory nodes. The technique is designed to minimize variance from a reference chimer during runtime and with minimal time-request latency. Our scheme permits initial unbounded variations in time and corrects both slow and fast chimers (clock skew). An implementation developed within the context of the MPI message passing interface is described and time coordination measurements are presented. Among our results, the mean time variance among a set of nodes improved from 20.0 milliseconds under standard Network Time Protocol (NTP) to 2.29 secs under our scheme.

  16. Clock Synchronization in High-end Computing Environments: A Strategy for Minimizing Clock Variance at Runtime

    SciTech Connect

    Jones, Terry R; Koenig, Gregory A

    2013-01-01

    We present a new software-based clock synchronization scheme that provides high precision time agreement among distributed memory nodes. The technique is designed to minimize variance from a reference chimer during runtime and with minimal time-request latency. Our scheme permits initial unbounded variations in time and corrects both slow and fast chimers (clock skew). An implementation developed within the context of the MPI message passing interface is described, and time coordination measurements are presented. Among our results, the mean time variance for a set of nodes improved from 20.0 milliseconds under standard Network Time Protocol (NTP) down to 2.29 secs under our scheme.

  17. Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos.

    PubMed

    Yuan, Ye; Lee, Kiho; Park, Kwang-Wook; Spate, Lee D; Prather, Randall S; Wells, Kevin D; Roberts, R Michael

    2014-01-01

    Nuclear transfer (NT) from porcine iPSC to create cloned piglets is unusually inefficient. Here we examined whether such failure might be related to the cell cycle stage of donor nuclei. Porcine iPSC, derived here from the inner cell mass of blastocysts, have a prolonged S phase and are highly sensitive to drugs normally used for synchronization. However, a double-blocking procedure with 0.3 μM aphidicolin for 10 h followed by 20 ng/ml nocodazole for 4 h arrested 94.3% of the cells at G2/M and, after release from the block, provided 70.1% cells in the subsequent G1 phase without causing any significant loss of cell viability or pluripotent phenotype. Nuclei from different cell cycle stages were used as donors for NT to in vitro-matured metaphase II oocytes. G2/M nuclei were more efficient than either G1 and S stage nuclei in undergoing first cleavage and in producing blastocysts, but all groups had a high incidence of chromosomal/nuclear abnormalities at 2 h and 6 h compared with non-synchronized NT controls from fetal fibroblasts. Many G2 embryos extruded a pseudo-second polar body soon after NT and, at blastocyst, tended to be either polyploid or diploid. By contrast, the few G1 blastocysts that developed were usually mosaic or aneuploid. The poor developmental potential of G1 nuclei may relate to lack of a G1/S check point, as the cells become active in DNA synthesis shortly after exit from mitosis. Together, these data provide at least a partial explanation for the almost complete failure to produce cloned piglets from piPSC. PMID:24621508

  18. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    SciTech Connect

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  19. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Lange, B.; Sandmann, J.; Büchner, A.; Enghardt, W.; Kaever, P.

    2016-01-01

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad requirements of Systems-on-a-Chip (SoC) up to large-scale DAQ systems. We have implemented an embedded protocol stack for a Field Programmable Gate Array (FPGA) capable of high-throughput data transmission and clock synchronization. A versatile stack architecture for the User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) over Internet Protocol (IP) such as Address Resolution Protocol (ARP) as well as Precision Time Protocol (PTP) is presented. With a point-to-point connection to a host in a MicroTCA system we achieved the theoretical maximum data throughput limited by UDP both for 1000BASE-T and 1000BASE-KX links. Furthermore, we show that the random jitter of a synchronous clock over a 1000BASE-T link for a PTP application is below 60 ps.

  20. Synchronous scanning of reference mirror and objective lens for high-resolution full-field interferometry

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Kasuya, Yosuke; Kojima, Shuto; Kurokawa, Takashi

    2015-03-01

    We realized a long-scanning-range and high-resolution interferometry in a time-domain full-field microscopic scheme by adopting a simple configuration. A reference mirror was synchronously scanned with an objective lens, which was installed in a common path, to prevent lateral resolution degradation due to defocus at the mirror. High axial resolution was obtained using a broadband supercontinuum (SC) generated by a 1.55 µm pump. The SC was generated by propagating a femtosecond pulse at 1.55 µm through a highly nonlinear dispersion shifted fiber with a small dispersion slope. We designed and constructed an interferometer carefully to utilize the entire bandwidth. The broad bandwidth of the interferometer achieved an axial resolution of 2.50 µm in air. The synchronous scanning maintained a lateral resolution longer than 1 mm. The system successfully yielded a cross-sectional image of two layers of scotch tape along the 400-µm-depth and 90-nm-step surface profiles.

  1. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially

  2. Synchronizing Progression of Schizosaccharomyces pombe Cells from G2 through Repeated Rounds of Mitosis and S Phase with cdc25-22 Arrest Release.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Transient inactivation of the cdc25(+) gene product by manipulation of the culture temperature for cdc25-22 cells is the most commonly exploited approach to mitotic synchronization in fission yeast. Because Cdc25 removes the inhibitory phosphate placed on Cdk1 by Wee1, inactivation of Cdc25 arrests cells at the G2/M boundary. Incubation at the restrictive temperature of 36°C for just over one generation time forces all cells in the culture to accumulate at the G2/M boundary. Restoration of Cdc25 function via a return to the permissive temperature or chemical inhibition of Wee1 activity at 36°C can then promote a highly synchronous wave of cell division throughout the culture. These approaches can be performed on any scale and thus support simultaneous assessment of numerous events within a single culture. After describing this simple and widely applicable procedure, we discuss frequently overlooked issues that can have a considerable impact on the interpretation of data from cdc25-22 induction-synchronized cultures. PMID:27480720

  3. Synchronization of high speed framing camera and intense electron-beam accelerator

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Bing; Liu, Jin-Liang; Hong, Zhi-Qiang; Qian, Bao-Liang

    2012-06-01

    A new trigger program is proposed to realize the synchronization of high speed framing camera (HSFC) and intense electron-beam accelerator (IEBA). The trigger program which include light signal acquisition radiated from main switch of IEBA and signal processing circuit could provide a trigger signal with rise time of 17 ns and amplitude of about 5 V. First, the light signal was collected by an avalanche photodiode (APD) module, and the delay time between the output voltage of APD and load voltage of IEBA was tested, it was about 35 ns. Subsequently, the output voltage of APD was processed further by the signal processing circuit to obtain the trigger signal. At last, by combining the trigger program with an IEBA, the trigger program operated stably, and a delay time of 30 ns between the trigger signal of HSFC and output voltage of IEBA was obtained. Meanwhile, when surface flashover occurred at the high density polyethylene sample, the delay time between the trigger signal of HSFC and flashover current was up to 150 ns, which satisfied the need of synchronization of HSFC and IEBA. So the experiment results proved that the trigger program could compensate the time (called compensated time) of the trigger signal processing time and the inherent delay time of the HSFC.

  4. Synchronization of high speed framing camera and intense electron-beam accelerator

    SciTech Connect

    Cheng Xinbing; Liu Jinliang; Hong Zhiqiang; Qian Baoliang

    2012-06-15

    A new trigger program is proposed to realize the synchronization of high speed framing camera (HSFC) and intense electron-beam accelerator (IEBA). The trigger program which include light signal acquisition radiated from main switch of IEBA and signal processing circuit could provide a trigger signal with rise time of 17 ns and amplitude of about 5 V. First, the light signal was collected by an avalanche photodiode (APD) module, and the delay time between the output voltage of APD and load voltage of IEBA was tested, it was about 35 ns. Subsequently, the output voltage of APD was processed further by the signal processing circuit to obtain the trigger signal. At last, by combining the trigger program with an IEBA, the trigger program operated stably, and a delay time of 30 ns between the trigger signal of HSFC and output voltage of IEBA was obtained. Meanwhile, when surface flashover occurred at the high density polyethylene sample, the delay time between the trigger signal of HSFC and flashover current was up to 150 ns, which satisfied the need of synchronization of HSFC and IEBA. So the experiment results proved that the trigger program could compensate the time (called compensated time) of the trigger signal processing time and the inherent delay time of the HSFC.

  5. Bilateral Synchronous Sporadic Renal Cell Carcinoma: Retroperitoneoscopic Strategies and Intermediate Outcomes of 60 Patients

    PubMed Central

    Li, Hongzhao; Ma, Xin; Song, Erlin; Gao, Jiangping; Dong, Jun

    2016-01-01

    Objective To evaluate the presentation, management, pathology, and functional and oncological outcomes of patients undergoing retroperitoneoscopic treatment of bilateral synchronous sporadic RCC at our institution. Methods We retrospectively evaluated the records of 60 patients with bilateral synchronous sporadic RCC who underwent retroperitoneoscopic treatment at the General Hospital of People's Liberation Army from 2008 to 2014. The estimated glomerular filtration rate was calculated and compared among different surgical procedures. The overall survival and recurrence free survival were assessed based on information from recent follow-up. Results Fifty-six patients underwent bilateral retroperitoneoscopic surgeries in staged procedures, and four patients underwent bilateral retroperitoneoscopic surgeries in simultaneous procedures. Among the former group of patients, 34 underwent bilateral partial nephrectomy, 12 underwent radical nephrectomy followed by partial nephrectomy, and 10 underwent partial nephrectomy followed by radical nephrectomy. Bilateral partial nephrectomy can better preserve renal function (p = 0.040) and the sequence of partial nephrectomy and radical nephrectomy did not affect functional outcomes (p = 0.790). One patient undergoing simultaneous procedures developed acute renal failure and required temporary hemodialysis. At 3 and 5 years, overall survival rates were 93.0% and 89.4%, and recurrence free survival rates were 90.5% and 81.6%. High nuclear grade (p = 0.014) was related to disease recurrence. Conclusions Staged bilateral partial nephrectomy was efficient in preserving renal function. The survival of patients with bilateral synchronous sporadic renal tumors was similar to that of patients with unilateral nonmetastatic tumors. Nuclear grade was an independent prognostic factor of disease recurrence. PMID:27136191

  6. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    PubMed

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-03-01

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. PMID:26759993

  7. A numerical study of synchronization in the process of biochemical substance exchange in a diffusively coupled ring of cells

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Balaž, Igor; Arsenić, Ilija

    2013-04-01

    In this paper we numerically investigate a model of a diffusively coupled ring of cells. To model the dynamics of individual cells we propose a map with cell affinity, which is a generalization of the logistic map. First, the basic features of a one-cell system are studied in terms of the Lyapunov exponent, Kolmogorov complexity and Sample Entropy. Second, the notion of observational heterarchy, which is a perpetual negotiation process between different levels of the description of a phenomenon, is reviewed. After these preliminaries, we study how the active coupling induced by the consideration of the observational heterarchy modifies the synchronization property of the model with N=100 cells. It is shown numerically that the active coupling enhances synchronization of biochemical substance exchange in several different conditions of cell affinity.

  8. Analysis of Cell Cycle Phase Response Captures the Synchronization Phenomena and Reveals a Novel Cell Cycle Network Topology

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lin, Yihan; Scherer, Norbert; Dinner, Aaron

    2011-03-01

    Cell cycle progression requires a succession of temporally-regulated sub-processes, including chromosome replication and cell division, which are each controlled by their own regulatory modules. The modular design of cell cycle regulatory network allows robust environmental responses and evolutionary adaptations. It is emerging that some of the cell cycle modules involve their own autonomous periodic dynamics. As a consequence, the realization of robust coordination among these modules becomes challenging since each module could potentially run out of sync. We believe that an insight into this puzzle resides in the coupling between the contributing regulatory modules. Here, we measured the phase response curve (PRC) of the cell cycle oscillator by driving the expression of a master regulator of the cell cycle in a pulsatile manner and measuring the single cell phase response. We constructed a return map that quantitatively explains the synchronization phenomena that were caused by periodic chemical perturbation. To capture the measured phase response, we derived a minimalist coupled oscillator model that generalizes the basic topology of the cell cycle network. This diode-like coupling suggests that the cell is engineered to ensure complete coordination of constituent events with the cell cycle.

  9. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species. PMID:17587376

  10. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis.

    PubMed

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-12-15

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1(S310A) mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1(V205G) mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  11. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.

    PubMed

    Muter, Joanne; Lucas, Emma S; Chan, Yi-Wah; Brighton, Paul J; Moore, Jonathan D; Lacey, Lauren; Quenby, Siobhan; Lam, Eric W-F; Brosens, Jan J

    2015-04-01

    Implantation requires coordinated interactions between the conceptus and surrounding decidual cells, but the involvement of clock genes in this process is incompletely understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK (circadian locomotor output cycles kaput) and brain muscle arnt-like 1 and repressors encoded by PER (Period) and Cryptochrome genes. We show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Down-regulation occurred between 12 and 24 hours following differentiation and coincided with reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter. RNA sequencing revealed that premature inhibition of PER2 by small interfering RNA knockdown leads to a grossly disorganized decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators among the 1121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of 70 midluteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure (Spearman rank test, ρ = -0.3260; P = 0.0046). Thus, PER2 synchronizes endometrial proliferation with initiation of aperiodic decidual gene expression; uncoupling of these events may cause recurrent pregnancy loss. PMID:25573754

  12. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    PubMed

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization. PMID:26926429

  13. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis

    PubMed Central

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-01-01

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1V205G mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  14. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells

    PubMed Central

    Nelson, Branden R.; Hartman, Byron H.; Georgi, Sean A.; Lan, Michael S.; Reh, Thomas A.

    2007-01-01

    Summary In the developing nervous system, the balance between proliferation and differentiation is critical to generate the appropriate numbers and types of neurons and glia. Notch signaling maintains the progenitor pool throughout this process. While many components of the Notch pathway have been identified, the downstream molecular events leading to neural differentiation are not well understood. We have taken advantage of a small molecule inhibitor, DAPT, to block Notch activity in retinal progenitor cells, and analyzed the resulting molecular and cellular changes over time. DAPT treatment causes a massive, coordinated differentiation of progenitors that produces cell types appropriate for their developmental stage. Transient exposure of retina to DAPT for specific time periods allowed us to define the period of Notch inactivation that is required for a permanent commitment to differentiate. Inactivation of Notch signaling revealed a cascade of proneural bHLH transcription factor gene expression that correlates with stages in progenitor cell differentiation. Microarray/QPCR analysis confirms the changes in Notch signaling components, and reveals new molecular targets for investigating neuronal differentiation. Thus, transient inactivation of Notch signaling synchronizes progenitor cell differentiation, and allows for a systematic analysis of key steps in this process. PMID:17280659

  15. Optically synchronized dual-channel terahertz signals for high-performance transmitter/receiver system

    NASA Astrophysics Data System (ADS)

    Shimizu, Naofumi; Oh, Kyoung-Hwan; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2010-02-01

    We developed a high-sweeping-speed optically synchronized dual-channel terahertz signal generator, in which the frequency difference between the two terahertz signals is independent of the frequency of the terahertz signals themselves. This feature is essential for heterodyne detection of terahertz signals with various frequencies. With this generator, a frequency-sweepable terahertz transmitter (Tx)/receiver (Rx) system with a wide dynamic range can be realized without sacrificing the high frequency-sweeping speed. Absorption line measurements for water vapor and nitrous oxide show that the developed Tx/Rx system can detect gas absorption with the optical depth of 0.04 or less. This result indicates the potential of the system as a remote gas sensor and gas analyzer.

  16. A Synchronization Algorithm and Implementation for High-Speed Block Codes Applications. Part 4

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Zhang, Yu; Nakamura, Eric B.; Uehara, Gregory T.

    1998-01-01

    Block codes have trellis structures and decoders amenable to high speed CMOS VLSI implementation. For a given CMOS technology, these structures enable operating speeds higher than those achievable using convolutional codes for only modest reductions in coding gain. As a result, block codes have tremendous potential for satellite trunk and other future high-speed communication applications. This paper describes a new approach for implementation of the synchronization function for block codes. The approach utilizes the output of the Viterbi decoder and therefore employs the strength of the decoder. Its operation requires no knowledge of the signal-to-noise ratio of the received signal, has a simple implementation, adds no overhead to the transmitted data, and has been shown to be effective in simulation for received SNR greater than 2 dB.

  17. Design of bit error rate tester based on a high speed bit and sequence synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Xuanmin; Zhao, Xiangmo; Zhang, Lichuan; Zhang, Yinglong

    2013-03-01

    In traditional BER (Bit Error Rate) tester, bit synchronization applied digital PLL and sequence synchronization utilized sequence's correlation.It resulted in a low speed on bit and sequence synchronization. this paper came up new method to realize bit and sequence synchronization .which were Bit-edge-tracking method and Immitting-sequence method.The BER tester based on FPGA was designed.The functions of inserting error-bit and removing the false sequence synchronization were added. The results of Debuging and simulating display that the time to realize bit synchronization is less than a bit width, the lagged time of the tracking bit pulse is 1/8 of the code cycle,and there is only a M sequence's cycle to realize sequence synchronization.This new BER tester has many advantages,such as a short time to realize bit and sequence synchronization,no false sequence synchronization,testing the ability of the receiving port's error -correcting and a simple hareware.

  18. Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control

    PubMed Central

    Hoogland, Tycho M.; De Gruijl, Jornt R.; Witter, Laurens; Canto, Cathrin B.; De Zeeuw, Chris I.

    2015-01-01

    Summary It is a longstanding question in neuroscience how elaborate multi-joint movements are coordinated coherently. Microzones of cerebellar Purkinje cells (PCs) are thought to mediate this coordination by controlling the timing of particular motor domains. However, it remains to be elucidated to what extent motor coordination deficits can be correlated with abnormalities in coherent activity within these microzones and to what extent artificially evoked synchronous activity within PC ensembles can elicit multi-joint motor behavior. To study PC ensemble correlates of limb, trunk, and tail movements, we developed a transparent disk treadmill that allows quantitative readout of locomotion and posture parameters in head-fixed mice and simultaneous cellular-resolution imaging and/or optogenetic manipulation. We show that PC ensembles in the ataxic and dystonic mouse mutant tottering have a reduced level of complex spike co-activation, which is delayed relative to movement onset and co-occurs with prolonged swing duration and reduced phase coupling of limb movements as well as with enlarged deflections of body-axis and tail movements. Using optogenetics to increase simple spike rate in PC ensembles, we find that preferred locomotion and posture patterns can be elicited or perturbed depending on the behavioral state. At rest, preferred sequences of limb movements can be elicited, whereas during locomotion, preferred gait-inhibition patterns are evoked. Our findings indicate that synchronous activation of PC ensembles can facilitate initiation and coordination of limb and trunk movements, presumably by tuning downstream systems involved in the execution of behavioral patterns. PMID:25843032

  19. Synchronous bilateral tonsillar squamous cell carcinoma related to human papillomavirus: Two case reports and a brief review of the literature.

    PubMed

    Rasband-Lindquist, Allison; Shnayder, Yelizaveta; O'Neil, Maura

    2016-01-01

    Human papillomavirus (HPV) was recently identified as a risk factor for oropharyngeal squamous cell carcinoma (SCC) independent of tobacco and alcohol use. The prognosis of patients with HPV-related oropharyngeal carcinomas is better than that for patients with non-HPV-related cancers. Researchers and clinicians can test for HPV infection in cancer by (1) testing directly for HPV DNA and (2) testing for overexpression of the downstream p16 protein; there is currently no consensus regarding which is the better test. The chances of developing a reliable oropharyngeal HPV screening test for high-risk populations are promising. Such a test would allow for secondary prevention by identifying individuals with precursor or early-stage cancerous lesions that are more amenable to treatment. HPV testing has particular significance in SCC of an unknown primary site in head and neck cancer. Successful HPV testing of nodal metastasis can localize cancer specifically to the oropharynx. The optimal evaluation for SCC of an unknown primary in the head and neck has yet to be determined. Some studies have shown that the tonsillar fossa is the most probable primary site, followed closely by the base of the tongue. Biopsies often miss tonsillar carcinoma in the deep crypts of the lymph tissue, as well as in those rare cases in which the primary tumor is located contralateral to the metastatic lymph node. Recently, there has been an increase in the number of reports of diagnosed synchronous bilateral HPV-related tonsillar carcinomas. This increase has profound implications for the surgical approach of SCC of an unknown primary site in the head and neck and in tonsillar carcinoma, and it supports the need for bilateral tonsillectomy. We present 2 cases of incidentally discovered synchronous bilateral tonsillar carcinoma, and we review the literature. PMID:27140027

  20. Retrograde and Wallerian Axonal Degeneration Occur Synchronously after Retinal Ganglion Cell Axotomy

    PubMed Central

    Kanamori, Akiyasu; Catrinescu, Maria-Magdalena; Belisle, Jonathan M.; Costantino, Santiago; Levin, Leonard A.

    2013-01-01

    Axonal injury and degeneration are pivotal pathological events in diseases of the nervous system. In the past decade, it has been recognized that the process of axonal degeneration is distinct from somal degeneration and that axoprotective strategies may be distinct from those that protect the soma. Preserving the cell body via neuroprotection cannot improve function if the axon is damaged, because the soma is still disconnected from its target. Therefore, understanding the mechanisms of axonal degeneration is critical for developing new therapeutic interventions for axonal disease treatment. We combined in vivo imaging with a multilaser confocal scanning laser ophthalmoscope and in vivo axotomy with a diode-pumped solid-state laser to assess the time course of Wallerian and retrograde degeneration of unmyelinated retinal ganglion cell axons in living rats for 4 weeks after intraretinal axotomy. Laser injury resulted in reproducible axon loss both distal and proximal to the site of injury. Longitudinal polarization-sensitive imaging of axons demonstrated that Wallerian and retrograde degeneration occurred synchronously. Neurofilament immunostaining of retinal whole-mounts confirmed axonal loss and demonstrated sparing of adjacent axons to the axotomy site. In vivo fluorescent imaging of axonal transport and photobleaching of labeled axons demonstrated that the laser axotomy model did not affect adjacent axon function. These results are consistent with a shared mechanism for Wallerian and retrograde degeneration. PMID:22642911

  1. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    PubMed Central

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; De Vos, W. H.

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  2. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells.

    PubMed

    Robijns, J; Molenberghs, F; Sieprath, T; Corne, T D J; Verschuuren, M; De Vos, W H

    2016-01-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development. PMID:27461848

  3. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    NASA Astrophysics Data System (ADS)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  4. INHIBITION OF TOXOPLASMA GONDII GROWTH BY PYRROLIDINE DITHIOCARBAMATE IS CELL CYCLE SPECIFIC AND LEADS TO POPULATION SYNCHRONIZATION

    PubMed Central

    Conde de Felipe, Magnolia M.; Lehmann, Margaret M.; Jerome, Maria E.; White, Michael W.

    2008-01-01

    Successful completion of the Toxoplasma cell cycle requires the coordination of a series of complex and ordered processes that results in the formation of two daughters by internal budding. Although we now understand the order and timing of intracellular events associated with the parasite cell cycle, the molecular details of the checkpoints that regulate each step in T. gondii division is still uncertain. In other eukaryotic cells, the use of cytostatic inhibitors that are able to arrest replication at natural checkpoints have been exploited to induce synchronization of population growth. Herein, we describe a novel method to synchronize T. gondii tachyzoites based on the reversible growth inhibition by the drug, pyrrolidine dithiocarbamate. This method is an improvement over other strategies developed for this parasite as no prior genetic manipulation of the parasite was required. RH tachyzoites blocked by pyrrolidine dithiocarbamate exhibited a near uniform haploid DNA content and single centrosome indicating that this compound arrests parasites in the G1 phase of the tachyzoite cell cycle with a minor block in late cytokinesis. Thus, these studies support the existence of a natural checkpoint that regulates passage through the G1 period of the cell cycle. Populations released from pyrrolidine dithiocarbamate inhibition completed progression through G1 and entered S phase ~2 hours post-drug release. The transit of drug-synchronized populations through S phase and mitosis followed a similar timeframe to previous studies of the tachyzoite cell cycle. Tachyzoites treated with pyrrolidine dithiocarbamate were fully viable and completed two identical division cycles post-drug release demonstrating that this is a robust method for synchronizing population growth in Toxoplasma. PMID:17976834

  5. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system

    SciTech Connect

    Damji, A.A.; Snyder, R.E.; Ellinger, D.C.; Witkowski, F.X.; Allen, P.S.

    1988-11-01

    An electrocardiographic (ECG) unit suitable for cardiac-synchronized nuclear magnetic resonance imaging in high magnetic fields is presented. The unit includes lossy transmission lines as ECG leads in order to suppress radio frequency (RF) interference in the electrocardiogram. The unit's immunity to RF interference is demonstrated.

  6. Development of High-Force-Density Iron-Core Linear Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Kakihara, Masanobu; Hoshi, Toshiyuki; Shikayama, Toru; Ohto, Motomichi

    The demand for small-sized and high-acceleration linear motors for industrial machines such as semiconductor production equipment and LCD equipment is rapidly increasing in order to maintain the small size of these equipment and to increase productivity. To satisfy the demand, high-force-density (i.e., force per volume) linear motors are required. This paper discusses the development of a high-force-density iron-core linear synchronous motor that consists of a Halbach magnet array with soft magnetic material and a grain-oriented silicon steel sheet core; the motor has a shape-optimized design. The motor constant square density of the new linear motor reaches 10N2/W/cm3, while that of the highest force linear motor available at present is 5N2/W/cm3. In other words, the new motor can deliver a force of 900N per 1000cm3. In this paper, details of the design, especially the structure and performance of the new motor are presented, and the design is validated on the basis of measurements of a prototype motor.

  7. ROSA: A High-cadence, Synchronized Multi-camera Solar Imaging System

    NASA Astrophysics Data System (ADS)

    Christian, Damian Joseph; Jess, D. B.; Mahtioudakis, M.; Keenan, F. P.

    2011-05-01

    The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast and recently commissioned at the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 - 15 e/pixel/s), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, and up to 200 Hz when the CCD is windowed. ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution. We will present the current instrument set-up and parameters, observing modes, and future plans, including a new high QE camera allowing 15 Hz for Halpha. Interested parties should see https://habu.pst.qub.ac.uk/groups/arcresearch/wiki/de502/ROSA.html

  8. Synchronous fluorescence spectroscopic characterization of DMBA-TPA-induced squamous cell carcinoma in mice

    NASA Astrophysics Data System (ADS)

    Diagaradjane, Parmeswaran; Yaseen, Mohammad A.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2006-01-01

    While initially confined to the epidermis, squamous cell carcinoma can eventually penetrate into the underlying tissue if not diagnosed early and treated. The noninvasive early detection of the carcinoma is important to achieve a complete treatment of the disease. Of the various non-invasive optical techniques, the synchronous fluorescence (SF) technique is considered to provide a simplified spectral profile with more sharp spectral signatures of the endogenous fluorophores in complex systems. The potential use of the SF technique in the characterization of the sequential tissue transformation in 7,12-dimethylbenz(a)anthracene-12-O-tetradecanoylphorbol-13-acetate (DMBA-TPA)-induced mouse skin tumor model in conjunction with simple statistical analysis is explored. The SF spectra show distinct differences during the earlier weeks of the tumor-induction period. Intensity ratio variables are calculated and used in three discriminant analyses. All the discriminant analyses show better classification results with accuracy greater than 80%. From the observed differences in the spectral characteristics and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers to diagnose normal from abnormal tissues using the SF technique.

  9. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.

    PubMed Central

    Sugihara, I; Lang, E J; Llinás, R

    1993-01-01

    1. The issue of isochronicity of olivocerebellar fibre conduction time as a basis for synchronizing complex spike activity in cerebellar Purkinje cells has been addressed by latency measurement, multiple-electrode recording and Phaseolus vulgaris leucoagglutinin (PHA-L) tracing of climbing fibres in the adult rat. 2. The conduction time of the olivocerebellar fibres was measured by recording Purkinje cell complex spike (CS) responses from various areas of the cerebellum. The CSs were evoked by stimulating the olivocerebellar fibres near the inferior olive. In spite of a difference in length, as determined directly by light microscopy, the conduction times of different climbing fibres were quite uniform, 3.98 +/- 0.36 ms (mean +/- S.D., n = 660). 3. Multiple-electrode recording of spontaneous Purkinje cell CS activity was employed to study the spatial extent of CS synchronicity in the cerebellar cortex. Recordings of CS were obtained from Purkinje cells located on the surface and along the walls of lobule crus 2a. The rostrocaudal band-like distribution of simultaneous (within 1 ms) CS activity in Purkinje cells extended down the sides of the cerebellar folia to the deepest areas recorded (1.6-2.6 mm deep). As shown in previous experiments, the distribution of simultaneous CS activity did not extend significantly (500 microns) in the mediolateral axis of the cerebellar cortex. 4. In two animals a detailed determination of the length of the olivocerebellar fibre bundles was performed by staining the fibres with PHA-L injected into the contralateral inferior olive. This measurement included fibre bundles terminating in twenty-six different areas, ranging from the tops of the various folia to the bottoms of the fissures in both the hemisphere and the vermis. There was a 47.5% difference between the length of the longest measured fibre bundle (15.8 mm, terminating in lobule 6b, zone A) and the length of the shortest measured fibre bundle (8.3 mm, terminating in the

  10. Synchronization of genetic oscillators

    NASA Astrophysics Data System (ADS)

    Zhou, Tianshou; Zhang, Jiajun; Yuan, Zhanjiang; Chen, Luonan

    2008-09-01

    Synchronization of genetic or cellular oscillators is a central topic in understanding the rhythmicity of living organisms at both molecular and cellular levels. Here, we show how a collective rhythm across a population of genetic oscillators through synchronization-induced intercellular communication is achieved, and how an ensemble of independent genetic oscillators is synchronized by a common noisy signaling molecule. Our main purpose is to elucidate various synchronization mechanisms from the viewpoint of dynamics, by investigating the effects of various biologically plausible couplings, several kinds of noise, and external stimuli. To have a comprehensive understanding on the synchronization of genetic oscillators, we consider three classes of genetic oscillators: smooth oscillators (exhibiting sine-like oscillations), relaxation oscillators (displaying jump dynamics), and stochastic oscillators (noise-induced oscillation). For every class, we further study two cases: with intercellular communication (including phase-attractive and repulsive coupling) and without communication between cells. We find that an ensemble of smooth oscillators has different synchronization phenomena from those in the case of relaxation oscillators, where noise plays a different but key role in synchronization. To show differences in synchronization between them, we make comparisons in many aspects. We also show that a population of genetic stochastic oscillators have their own synchronization mechanisms. In addition, we present interesting phenomena, e.g., for relaxation-type stochastic oscillators coupled to a quorum-sensing mechanism, different noise intensities can induce different periodic motions (i.e., inhomogeneous limit cycles).

  11. Socially synchronized circadian oscillators

    PubMed Central

    Bloch, Guy; Herzog, Erik D.; Levine, Joel D.; Schwartz, William J.

    2013-01-01

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian ‘clock’). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day–night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the ‘group’ level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature. PMID:23825203

  12. Stochastic extinction of tumor cells due to synchronization effect through time periodic treatment in a tumor-immune interaction model

    NASA Astrophysics Data System (ADS)

    Aisu, Ryota; Horita, Takehiko

    The response to a time periodic treatment of the immunotherapy in a stochastic model of tumor-immune interaction is numerically investigated. Due to the effect of synchronization among the intrinsic oscillation and the treatment, an enhanced extinction of the tumor cells is observed. It suggests that compared with the static treatment, by controlling the period of the treatment, the time periodic treatment could be an effective way of treatment leading to tumor extinction.

  13. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications

    SciTech Connect

    Chung, S.K.; Kim, H.S.; Kim, C.G.; Youn, M.J.

    1998-05-01

    a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal flux distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.

  14. Isolation of Genes that Are Preferentially Expressed at the G1/S Boundary during the Cell Cycle in Synchronized Cultures of Catharanthus roseus Cells 1

    PubMed Central

    Kodama, Hiroaki; Ito, Masaki; Hattori, Tsukaho; Nakamura, Kenzo; Komamine, Atsushi

    1991-01-01

    A cDNA library was screened for genes that may be involved in the progression of the cell cycle of cells of higher plants. The Catharanthus roseus L. (G) Don. cells were synchronized by the double phosphate starvation method, and a λgt11 cDNA library was prepared using poly(A)+ RNA from cells in the S phase of the cell cycle. Two independent sequences, cyc02 and cyc07, were identified by differential screening. The levels of cyc02 and cyc07 mRNAs increased dramatically, but transiently, at the G1/S boundary of the cell cycle. High levels of cyc02 mRNA, but not of cyc07 mRNA, were also present in cells arrested at the G1 phase by phosphate starvation. In an asynchronous batch culture, cyc02 and cyc07 mRNAs accumulated transiently at different stages of the growth cycle, cyc02 mRNA early in the stationary phase, and cyc07 mRNA in the midlogarithmic phase. When the proliferation of cells was arrested by nutrient starvation, i.e. by sucrose or nitrogen starvation, the relative amounts of the cyc02 and cyc07 mRNAs decreased. These results indicate that cyc02 and cyc07 contain nucleotide sequences from growth-related genes. The analysis of nucleotide sequence of cyc02 shows that the predicted product of this gene is basic and is composed of 101 amino acids. No significant homology to other known proteins was detected. Images Figure 1 Figure 4 Figure 5 PMID:16667998

  15. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  16. Synchronous barium peaks in high-resolution profiles of calcite and aragonite marine bivalve shells

    NASA Astrophysics Data System (ADS)

    Gillikin, David Paul; Lorrain, Anne; Paulet, Yves-Marie; André, Luc; Dehairs, Frank

    2008-10-01

    Barium/calcium profiles of bivalve shells are characterized by flat background signals periodically interrupted by sharp peaks, with the background signals correlated with water Ba/Ca. To test if the peaks are an environmental signal related to productivity, we analyzed high-resolution Ba/Ca profiles in bivalve shells that grew adjacent to one another. Two aragonitic Saxidomus giganteus show remarkable similarity over a decade of growth, clearly indicating an environmental forcing. Four calcitic Pecten maximus shells also record synchronous Ba/Ca peaks, again indicating an exogenous control. The Ba/Ca peaks, however, start ~40 days after the crash of a bloom, while sedimentation takes place immediately following the bloom. Barite formation in settling phytoplankton flocs, as has been previously proposed, is clearly not the cause of these peaks. Other possible causes, such as dissolved Ba in ambient water, spawning, shell organic matter content, and kinetic growth rate effects are also discussed, but none provide satisfactory explanations. Background shell Ba partition coefficients (Ba/Cacarbonate/Ba/Cawater) for both the calcitic shells (0.18) and aragonitic shells (0.16) are similar to that previously reported for the calcitic Mytilus edulis (~0.1). We suggest that Ba/Ca peaks in bivalve shells are caused by an as yet undetermined environmental forcing, while background Ba/Ca levels are a good indication of dissolved Ba/Ca in the water; both are independent of shell mineralogy.

  17. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex.

    PubMed

    Alekseichuk, Ivan; Turi, Zsolt; Amador de Lara, Gabriel; Antal, Andrea; Paulus, Walter

    2016-06-20

    Previous, albeit correlative, findings have shown that the neural mechanisms underlying working memory critically require cross-structural and cross-frequency coupling mechanisms between theta and gamma neural oscillations. However, the direct causality between cross-frequency coupling and working memory performance remains to be demonstrated. Here we externally modulated the interaction of theta and gamma rhythms in the prefrontal cortex using novel cross-frequency protocols of transcranial alternating current stimulation to affect spatial working memory performance in humans. Enhancement of working memory performance and increase of global neocortical connectivity were observed when bursts of high gamma oscillations (80-100 Hz) coincided with the peaks of the theta waves, whereas superimposition on the trough of the theta wave and low gamma frequency protocols were ineffective. Thus, our results demonstrate the sensitivity of working memory performance and global neocortical connectivity to the phase and rhythm of the externally driven theta-gamma cross-frequency synchronization. PMID:27238283

  18. NOS inhibition synchronizes calcium oscillations in human adipose tissue-derived mesenchymal stem cells by increasing gap-junctional coupling.

    PubMed

    Sauer, Heinrich; Sharifpanah, Fatemeh; Hatry, Myriam; Steffen, Paul; Bartsch, Caroline; Heller, Regine; Padmasekar, Manju; Howaldt, Hans-Peter; Bein, Gregor; Wartenberg, Maria

    2011-06-01

    Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising stem cell source for cell transplantation. We demonstrate that undifferentiated ASCs display robust oscillations of intracellular calcium [Ca(2+) ](i) which may be associated with stem cell maintenance since oscillations were absent in endothelial cell differentiation medium supplemented with FGF-2. [Ca(2+) ](i) oscillations were dependent on extracellular Ca(2+) and Ca(2+) release from intracellular stores since they were abolished in Ca(2+) -free medium and in the presence of the store-depleting agent thapsigargin. They were inhibited by the phospholipase C antagonist U73,122, the inositol 1,4,5-trisphosphate (InsP(3) ) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) as well as by the gap-junction uncouplers 1-heptanol and carbenoxolone, indicating regulation by the InsP(3) pathway and dependence on gap-junctional coupling. Cells endogenously generated nitric oxide (NO), expressed NO synthase 1 (NOS 1) and connexin 43 (Cx 43). The nitric oxide NOS inhibitors NG-monomethyl-L-arginine (L-NMMA), N(G)-nitro-L-arginine methyl ester (L-NAME), 2-ethyl-2-thiopseudourea, and diphenylene iodonium as well as si-RNA-mediated down-regulation of NOS 1 synchronized [Ca(2+) ](i) oscillations between individual cells, whereas the NO-donors S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) as well as the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) were without effects. The synchronization of [Ca(2+) ](i) oscillations was due to an improvement of intracellular coupling since fluorescence recovery after photobleaching (FRAP) revealed increased reflow of fluorescent calcein into the bleached area in the presence of the NOS inhibitors DPI and L-NAME. In summary our data demonstrate that intracellular NO levels regulate synchronization of [Ca(2+) ](i) oscillations in undifferentiated ASCs by controlling gap-junctional coupling. PMID:21413022

  19. SONET synchronization: What's happening

    NASA Technical Reports Server (NTRS)

    Cubbage, Robert W.

    1993-01-01

    Almost everyone that has heard of SONET knows that the acronym stands for Synchronous Optical NETwork. There has been a host of magazine articles on SONET rings, SONET features, even SONET compatibility with digital radio. What has not been highly publicized is the critical relationship between SONET, network synchronization, and payload jitter. This topic is addressed.

  20. SONET synchronization: What's happening

    NASA Astrophysics Data System (ADS)

    Cubbage, Robert W.

    1993-06-01

    Almost everyone that has heard of SONET knows that the acronym stands for Synchronous Optical NETwork. There has been a host of magazine articles on SONET rings, SONET features, even SONET compatibility with digital radio. What has not been highly publicized is the critical relationship between SONET, network synchronization, and payload jitter. This topic is addressed.

  1. Synchronous Occurrence of Primary Cutaneous Anaplastic Large Cell Lymphoma and Squamous Cell Carcinoma

    PubMed Central

    Park, Ji-Hye; Lee, Jae Ho; Lim, Youngkyoung; Lee, You Jin

    2016-01-01

    CD30+ lymphoproliferative disorders (LPD) represent a spectrum of T-cell lymphoma including lymphomatoid papulosis and anaplastic large cell lymphoma (ALCL). Epidermis overlying cutaneous CD30+ LPD often shows epidermal hyperplasia, hyperkeratosis, crusting, and ulceration and it is difficult to distinguish from carcinoma such as keratoacanthoma (KA) or squamous cell carcinoma (SCC). Several cases of pseudocarcinomatous hyperplasia mimicking KA or SCC in CD30+ LPD have been reported. The relationship between CD30+ LPD and epithelial proliferations has not yet well understood. It was reported that a variety of mediators, including epidermal growth factor (EGF), transforming growth factor-α and EGFR from CD30+ LPD could attribute to epidermal hyperplasia. However, separate and distinct SCC occurring in CD30+ LPD has rarely been reported. Herein, we present a rare case of coexistence of SCC and cutaneous ALCL located on the same region. PMID:27489433

  2. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  3. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  4. A Position- and Velocity-Sensorless Control for Synchronous Reluctance Motor with Disturbance Observer Using High Frequency Voltages and Currents

    NASA Astrophysics Data System (ADS)

    Tamaoki, Masakazu; Tomita, Mutuwo; Chen, Zhiqian; Doki, Shinji; Okuma, Shigeru

    Synchronous reluctance motors (SynRMs) are characterized by their sturdiness, and several sensorless control methods of SynRMs have been proposed. In their methods, flux is estimated and the rotor position is estimated from the flux. The induced voltages for flux estimation are small at low speed. In this paper, new position estimation method is proposed using the disturbance observer based on high frequency currents. Simulation results show that the proposed system is very useful.

  5. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    PubMed

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems. PMID:26618779

  6. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  7. Synchronous clear cell renal cell carcinoma and tubulocystic carcinoma: genetic evidence of independent ontogenesis and implications of chromosomal imbalances in tumor progression

    PubMed Central

    2012-01-01

    Seven percent of renal cell carcinoma (RCC) cases are diagnosed as "unclassified" RCC by morphology. Genetic profiling of RCCs helps define renal tumor subtypes, especially in cases where morphologic diagnosis is inconclusive. This report describes a patient with synchronous clear cell RCC (ccRCC) and a tubulocystic renal carcinoma (TCRC) in the same kidney, and discusses the pathologic features and genetic profile of both tumors. A 67 year-old male underwent CT scans for an unrelated medical event. Two incidental renal lesions were found and ultimately removed by radical nephrectomy. The smaller lesion had multiple small cystic spaces lined by hobnail cells with high nuclear grade separated by fibrous stroma. This morphology and the expression of proximal (CD10, AMACR) and distal tubule cell (CK19) markers by immunohistochemistry supported the diagnosis of TCRC. The larger lesion was a typical ccRCC, with Fuhrman's nuclear grade 3 and confined to the kidney. Molecular characterization of both neoplasms using virtual karyotyping was performed to assess relatedness of these tumors. Low grade areas (Fuhrman grade 2) of the ccRCC showed loss of 3p and gains in chromosomes 5 and 7, whereas oncocytic areas displayed additional gain of 2p and loss of 10q; the high grade areas (Fuhrman grade 3) showed several additional imbalances. In contrast, the TCRC demonstrated a distinct profile with gains of chromosomes 8 and 17 and loss of 9. In conclusion, ccRCC and TCRC show distinct genomic copy number profiles and chromosomal imbalances in TCRC might be implicated in the pathogenesis of this tumor. Second, the presence of a ccRCC with varying degrees of differentiation exemplifies the sequence of chromosomal imbalances acquired during tumor progression. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1790525735655283 PMID:22369180

  8. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  9. Synchronizing Progression of Schizosaccharomyces pombe Cells from Prophase through Mitosis and into S Phase with nda3-KM311 Arrest Release.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Here, we describe how the rapid reversibility of the nda3-KM311 cold-sensitive β-tubulin mutation was optimized by Mitsuhiro Yanagida's laboratory to synchronize mitotic progression in an entire cell population. The inability to form microtubules following the loss of β-tubulin function at 20°C triggers the spindle assembly checkpoint, which arrests mitotic progression. Restoration of β-tubulin function by rewarming to 30°C (or higher) releases the arrest, generating a highly synchronous progression through mitosis. The viability of nda3-KM311 strains at 30°C makes it feasible to generate double mutants between nda3-KM311 and any temperature-sensitive mutant that can also grow at 30°C. These double mutants can be used in reciprocal shift analyses, in which cold-induced early mitotic arrest is relieved by a shift to 36°C, which then inactivates the product of the second mutant gene. The addition of microtubule depolymerizing drugs before the return to 36°C will maintain checkpoint signaling at 36°C transiently, permitting analysis of the impact of temperature-sensitive mutations on checkpoint function. Silencing the checkpoint of nda3-KM311-arrested cells at 20°C through chemical inhibition of aurora kinase is a powerful way to study checkpoint recovery pathways and mitotic exit without anaphase. PMID:27480719

  10. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration.

    PubMed

    Pisanti, Simona; Picardi, Paola; Pallottini, Valentina; Martini, Chiara; Petrosino, Stefania; Proto, Maria Chiara; Vitale, Mario; Laezza, Chiara; Gazzerro, Patrizia; Di Marzo, Vincenzo; Bifulco, Maurizio

    2015-12-01

    The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions. To date, very little is known concerning the role of the endocannabinoids in the control and regulation of cell proliferation. An anti-proliferative action of CB1 signaling blockade in neurogenesis and angiogenesis argues in favor of proliferation-promoting functions of endocannabinoids through CB1 receptors when pro-growth signals are present. Furthermore, liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor, the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy, the most useful to study synchronized cell cycle in vivo. Hepatic regeneration led to increased levels of anandamide and endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the G1 phase of the cell cycle, with a concomitant increase in CB1 mRNA levels, whose protein expression peaked later during the S phase. Blocking of CB1 receptor with a low dose of the selective antagonist/inverse agonist SR141716 (0.7 mg/kg/dose) affected cell cycle progression reducing the expression of PCNA, and through the inhibition of pERK and pSTAT3 pathways. These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals. PMID:25684344

  11. Synchronous pumping of picosecond dye laser using high efficiency second harmonic generation from optical fibres

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Bernardin, J. P.; Macdonald, R. L.; Demouchy, G.

    1991-01-01

    The stable operation of a mode-locked dye laser synchronously pumped by the second harmonic of an Nd:YAG laser produced in an Nd codoped germanosilicate optical fiber is reported. The optical fiber preparation technique, which results in a second harmonic conversion efficiency of 2 percent, is described. This optical fiber SHG conversion efficiency is the highest reported to date using a continuous-wave mode-locked laser.

  12. Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2016-01-01

    The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.

  13. The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo.

    PubMed

    Grégoire, V; Van, N T; Stephens, L C; Brock, W A; Milas, L; Plunkett, W; Hittelman, W N

    1994-12-01

    We have previously reported that fludarabine, an adenine nucleoside analogue, significantly enhances radiation-induced tumor regrowth delay and local cure in several mouse tumors. Although fludarabine potentiated tumor regrowth delay at various times from -36 h to +6 h in a SA-NH mouse sarcoma model, the greatest enhancement was observed when fludarabine was administered 24 h before irradiation. The purpose of this study was to understand the basis for in vivo enhancement of radiation efficacy by fludarabine. To examine the effect of fludarabine on DNA synthesis and cell cycle progression, tumor-bearing mice were given fludarabine by an i.p. route and then bromodeoxyuridine at various times up to 36 h, followed 0.5 h later by tumor harvest. Two-parameter flow cytometry analysis of the tumor cells using an anti-bromodeoxyuridine antibody demonstrated that an 800-mg/kg fludarabine dose stops DNA synthesis within 3 h with recovery starting at 12 h. By 24 h after fludarabine treatment, a synchronized wave of cycling tumor cells appeared in G2-M phase. The degree of DNA synthesis shutdown and the timing of the reinitiation of DNA synthesis and cell cycle progression were all fludarabine dose dependent. Interestingly, DNA synthesis reinitiated only at the G1-S boundary; cells in the S phase at the time of fludarabine administration appeared to disappear from the tumor population. To confirm these observations more directly, we pretreated tumor-bearing mice i.p. with chlorodeoxyuridine to mark the cells in the S phase, gave them fludarabine 0.5 h later, and then gave them iododeoxyuridine 0.5 h before tumor harvest. Flow cytometry analysis using antibodies specific for chlorodeoxyuridine- and iododeoxyuridined-labeled cells confirmed that cells in the S phase at the time of fludarabine administration never reinitiated DNA synthesis and disappeared from the tumor population. Immunohistological analysis of tumor sections obtained after fludarabine administration

  14. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    PubMed Central

    Bai, Hao; Xu, Jianlin; Yang, Haitang; Jin, Bo; Lou, Yuqing; Wu, Dan; Han, Baohui

    2016-01-01

    Introduction Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. Methods From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS) or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital. Results A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS) were available for survival analysis. The overall survival (OS) for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9) and 16.4 months (95% CI 8.8–24.1), respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08). Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2), compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46). Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. Conclusion There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit. PMID:27471395

  15. Observations of single-event upsets in non-hardened high-density SRAMs in sun-synchronous orbit

    NASA Astrophysics Data System (ADS)

    Underwood, C. I.; Ward, J. W.; Dyer, C. S.; Sims, A. J.

    1992-12-01

    Observations of single-event upset (SEU) activity in nonhardened static and dynamic RAMs of both low (16-kb) and high (256-kb, 1-Mb), density are presented for a family of small spacecraft in low-earth, near-polar, sun-synchronous orbits. The observation of single-event multiple-bit upset (MBU) in these devices is discussed, and the implications of such events for error-protection coding schemes are examined. Contrary to expectations, the 1-Mb static RAMs (SRAMs) are more resilient to SEU than the 246-kb SRAMs, and one type of commercial 1-Mb SRAM shows a particularly low error rate.

  16. Characteristics analysis of a high speed permanent magnet synchronous generator using the transfer relations theorem and equivalent circuit method

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Ko, Kyoung-Jin; Park, Ji-Hoon; Cho, Han-Wook; Hong, Jung-Pyo

    2008-04-01

    This paper presents analytical methods to predict the magnetic field distribution, electrical parameters, and output characteristics of a high speed synchronous generator equipped with surface-mounted permanent magnet. In order to analyze the magnetic field distribution and to estimate the electrical parameters, electromagnetic transfer relation (TR) theorem is employed. Moreover, output characteristics for variable resistive load and the operating speed are also obtained by solving the permanent magnet machine's equivalent circuit equation. The analytical results are validated extensively by nonlinear finite element analysis and experimental results.

  17. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    NASA Astrophysics Data System (ADS)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  18. Selection of in-phase or out-of-phase synchronization in a model based on global coupling of cells undergoing metabolic oscillations

    NASA Astrophysics Data System (ADS)

    Gonze, Didier; Markadieu, Nicolas; Goldbeter, Albert

    2008-09-01

    On the basis of experimental observations, it has been suggested that glycolytic oscillations underlie the pulsatile secretion of insulin by pancreatic β cells, with a periodicity of about 13min. If β cells within an islet are synchronized through gap junctions, the question arises as to how β cells located in different islets of Langerhans synchronize to produce oscillations in plasma levels of insulin. We address this question by means of a minimal model that incorporates the secretion of insulin by cells undergoing glycolytic oscillations. Global coupling and synchronization result from the inhibition exerted by insulin on the production of glucose, which serves as the substrate for metabolic oscillations. Glycolytic oscillations are described by a simple two-variable model centered on the product-activated reaction catalyzed by the allosteric enzyme phosphofructokinase. We obtain bifurcation diagrams for the cases in which insulin secretion is controlled solely by the product or by the substrate of the metabolic oscillator. Remarkably, we find that the oscillating cells in these conditions synchronize, respectively, in phase or out of phase. Numerical simulations show that in-phase and out-of-phase synchronization can sometimes coexist when insulin release is controlled by both the substrate and the product of the metabolic oscillator. The results provide an example of a system in which the selection of in-phase or out-of-phase synchronization is governed by the nature of the coupling between the intracellular oscillations and the secretion of the biochemical signal through which the oscillating cells are globally coupled.

  19. Effect of synchronous solitary bone metastasectomy and lung cancer resection on non-small cell lung cancer patients

    PubMed Central

    ZHAO, TIANCHENG; GAO, ZONGLI; WU, WEIMING; HE, WEIWEI; YANG, YI

    2016-01-01

    Lung cancer is the most frequent cause of cancer-associated mortality among men and women globally. The skeleton is one of the most common metastatic sites. The majority of patients exhibiting bone metastases are treated using systemic therapy or symptom-based palliative approaches without surgery. The present study attempted to improve the therapeutic effects of synchronous surgeries in resectable non-small cell lung cancer patients exhibiting solitary bone metastasis. A total of 5 patients underwent synchronous lung cancer resections and solitary bone metastasectomies between October 2009 and November 2011 in the Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital (Shanghai, China). All patients had received fluorodeoxyglucose positron emission tomography-computed tomography or bone scintigraphy to demonstrate the presence of solitary bone metastasis and to exclude the presence of metastases at alternative sites. The patients received standard lung cancer and mediastinal lymph node resections. In addition, bone lesions were assessed by orthopedists and operated on synchronously with standard procedures. Following surgery, all patients were administered standard chemotherapeutic regimens. Perioperative indicators, including time for thoracic drainage, length of hospital stay, incidence of post-operative complications and progression-free survival (PFS) time, were observed. The average time for post-operative drainage was 4.6±1.1 days, and the average length of post-operative hospitalization was 8.8±2.2 days. All procedures were performed safely with no serious complications. The PFS of the patients was 13.2±7.7 months. While 2 patients presenting with spinal metastases succumbed at ~1 year post-surgery, the remaining 3 patients presenting with limb bone metastases survived for >16 months post-surgery, and were alive at the last follow-up. In conclusion, the present study indicated that a synchronous metastasectomy and lung tumor resection is

  20. Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification.

    PubMed

    Fattahi, Hanieh; Teisset, Catherine Yuriko; Pronin, Oleg; Sugita, Atsushi; Graf, Roswitha; Pervak, Vladimir; Gu, Xun; Metzger, Thomas; Major, Zsuzsanna; Krausz, Ferenc; Apolonski, Alexander

    2012-04-23

    We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µJ frequency-doubled output of an Yb:YAG thin-disk oscillator. The residual timing jitter between the two oscillators was suppressed to 120 fs (RMS), allowing for an efficient and broadband amplification at 11.5 MHz to a pulse energy of 700 nJ and an average power of 8 W. First compression experiment with 240 nJ amplified pulse energy resulted in a pulse duration of ~10 fs. PMID:22535076

  1. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy.

    PubMed

    Muir, Ryan D; Sullivan, Shane Z; Oglesbee, Robert A; Simpson, Garth J

    2014-03-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  2. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    SciTech Connect

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  3. Cell cycle synchronization of E. coli using the stringent response, with fluorescence labeling assays for DNA content and replication

    PubMed Central

    Ferullo, Daniel J.; Cooper, Deani L.; Moore, Hayley R.; Lovett, Susan T.

    2009-01-01

    We describe a method for synchronization of the cell cycle in the bacterium E. coli. Treatment of asynchronous cultures with the amino acid analog, DL-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by “click” labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  4. Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication.

    PubMed

    Ferullo, Daniel J; Cooper, Deani L; Moore, Hayley R; Lovett, Susan T

    2009-05-01

    We describe a method for synchronization of the cell cycle in the bacterium Escherichia coli. Treatment of asynchronous cultures with the amino acid analog, dl-serine hydroxamate, induces the stringent response, with concomitant arrest of DNA replication at initiation. Following release of the stringent response, cells initiate DNA replication in synchrony, as determined by flow cytometry for DNA content, Southern blotting and microscopy. This method has the advantage that it can be used in fully wild-type cells, at different growth rates, and may be applicable to other bacterial species with replication control by the stringent response. We also elaborate other methods useful for establishing cell cycle parameters in bacterial populations. We describe flow cytometric methods for analyzing bacterial populations for DNA content using the DNA-specific dye PicoGreen, readily detected by most commercial flow cytometers. We also present an method for incorporation of the nucleotide ethynyl-deoxyuridine, EdU, followed by "click" labeling with fluorescent dyes, which allows us to measure and visualize newly replicated DNA in fixed E. coli K-12 cells under non-denaturing conditions. PMID:19245839

  5. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  6. Interplay between synchronization of multivesicular release and recruitment of additional release sites support short-term facilitation at hippocampal mossy fiber to CA3 pyramidal cells synapses.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2014-08-13

    Synaptic short-term plasticity is a key regulator of neuronal communication and is controlled via various mechanisms. A well established property of mossy fiber to CA3 pyramidal cell synapses is the extensive short-term facilitation during high-frequency bursts. We investigated the mechanisms governing facilitation using a combination of whole-cell electrophysiological recordings, electrical minimal stimulation, and random-access two-photon microscopy in acute mouse hippocampal slices. Two distinct presynaptic mechanisms were involved in short-term facilitation, with their relative contribution dependent on extracellular calcium concentration. The synchronization of multivesicular release was observed during trains of facilitating EPSCs recorded in 1.2 mM external Ca(2+) ([Ca(2+)]e). Indeed, covariance analysis revealed a gradual augmentation in quantal size during trains of EPSCs, and application of the low-affinity glutamate receptor antagonist γ-D-glutamylglycine showed an increase in cleft glutamate concentration during paired-pulse stimulation. Whereas synchronization of multivesicular release contributed to the facilitation in 1.2 mM [Ca(2+)]e, variance-mean analysis showed that recruitment of more release sites (N) was likely to account for the larger facilitation observed in 2.5 mM [Ca(2+)]e. Furthermore, this increase in N could be promoted by calcium microdomains of heterogeneous amplitudes observed in single mossy fiber boutons. Our findings suggest that the combination of multivesicular release and the recruitment of additional release sites act together to increase glutamate release during burst activity. This is supported by the compartmentalized spatial profile of calcium elevations in boutons and helps to expand the dynamic range of mossy fibers information transfer. PMID:25122902

  7. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  8. Design of a linear synchronous motor with high temperature superconductor materials in the armature and in the field excitation system

    NASA Astrophysics Data System (ADS)

    Pina, J. M.; Neves, M. V.; McCulloch, M. D.; Rodrigues, A. L.

    2006-06-01

    The high diamagnetism observed in high temperature superconducting (HTS) materials lead to applications involving levitation such as the linear synchronous motor (LSM). Certain features taken into account in conventional LSM design cannot be applied in the HTS case, due to these materials characteristics, such as BSCCO stiffness, when used as armature windings. Also other design features, e.g. slot skewing, which reduces the space harmonics of the air gap magnetic flux density, thus influencing motor performance, plays an important role in final cost. These and other aspects such as the thrust force or the effect of motor control through an inverter are examined in this paper, where the analytical and numerical methodologies involved in the design optimisation of a LSM demonstrator with premagnetised YBCO pellets in the field excitation system and BSCCO armature windings are described. Simulation results are also included.

  9. Synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1991-01-01

    A synchronous demodulator includes a switch which is operated in synchronism with an incoming periodic signal and both divides and applies that signal to two signal channels. The two channels each include a network for computing and holding, for a predetermined length of time, the average signal value on that channel and applies those valves, in the form of two other signals, to the inputs of a differential amplifier. The networks may be R-C networks. The output of the differential amplifier may or may not form the output of the synchronous detector and may or may not be filtered. The output will not include a periodic signal due to the presence of a dc offset. Additionally, the output will not contain any substantial ripple due to periodic components in the input signal. In a somewhat more complex version, containing twice the structural components of the above synchronous demodulator with a more complex switching mechanism, essentially all ripple due to periodic components in the input signal are eliminated.

  10. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  11. Recurrent Renal Cell Carcinoma with Synchronous Tumor Growth in Azygoesophageal Recess and Duodenum: A Rare Cause of Anemia and Upper Gastrointestinal Bleeding

    PubMed Central

    Vootla, Vamshidhar R.; Kashif, Muhammad; Niazi, Masooma; Nayudu, Suresh K.

    2015-01-01

    Renal cell carcinoma (RCC) has potential to present with distant metastasis several years after complete resection. The common sites of metastases include the lungs, bones, liver, renal fossa, and brain. RCCs metastasize rarely to the duodenum, and duodenal metastasis presenting with acute gastrointestinal bleed is infrequently reported in literature. We present a case of synchronous presentation of duodenal and azygoesophageal metastasis manifesting as acute upper gastrointestinal bleeding, four years after undergoing nephrectomy for RCC. The patient underwent further workup and was treated with radiation. The synchronous presentation is rare and stresses the importance of searching for recurrence of RCC in patients presenting with acute gastrointestinal bleeding. PMID:26640732

  12. Multicolor whole-cell bacterial sensing using a synchronous fluorescence spectroscopy-based approach.

    PubMed

    Parrello, Damien; Mustin, Christian; Brie, David; Miron, Sebastian; Billard, Patrick

    2015-01-01

    The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of their emission spectra. Here we introduce an original approach for detection and separation of multiple overlapping fluorescent signals from mixtures of bioreporters strains. The proposed method relies on the coupling of synchronous fluorescent spectroscopy (SFS) with blind spectral decomposition achieved by the Canonical Polyadic (CP) decomposition (also known as Candecomp/Parafac) of three-dimensional data arrays. Due to the substantial narrowing of FP emission spectra and sensitive detection of multiple FPs in a one-step scan, SFS reduced spectral overlap and improved the selectivity of the CP unmixing procedure. When tested on mixtures of labeled E. coli strains, the SFS/CP approach could easily extract the contribution of at least four overlapping FPs. Furthermore, it allowed to simultaneously monitor the expression of three iron responsive genes and pyoverdine production in P. aeruginosa. Implemented in a convenient microplate format, this multiplex fluorescent reporter method provides a useful tool to study complex processes with different variables in bacterial systems. PMID:25822488

  13. Multicolor Whole-Cell Bacterial Sensing Using a Synchronous Fluorescence Spectroscopy-Based Approach

    PubMed Central

    Parrello, Damien; Mustin, Christian; Brie, David; Miron, Sebastian; Billard, Patrick

    2015-01-01

    The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of their emission spectra. Here we introduce an original approach for detection and separation of multiple overlapping fluorescent signals from mixtures of bioreporters strains. The proposed method relies on the coupling of synchronous fluorescent spectroscopy (SFS) with blind spectral decomposition achieved by the Canonical Polyadic (CP) decomposition (also known as Candecomp/Parafac) of three-dimensional data arrays. Due to the substantial narrowing of FP emission spectra and sensitive detection of multiple FPs in a one-step scan, SFS reduced spectral overlap and improved the selectivity of the CP unmixing procedure. When tested on mixtures of labeled E. coli strains, the SFS/CP approach could easily extract the contribution of at least four overlapping FPs. Furthermore, it allowed to simultaneously monitor the expression of three iron responsive genes and pyoverdine production in P. aeruginosa. Implemented in a convenient microplate format, this multiplex fluorescent reporter method provides a useful tool to study complex processes with different variables in bacterial systems. PMID:25822488

  14. Cell Cycle-Regulated Protein Abundance Changes in Synchronously Proliferating HeLa Cells Include Regulation of Pre-mRNA Splicing Proteins

    PubMed Central

    Lane, Karen R.; Yu, Yanbao; Lackey, Patrick E.; Chen, Xian; Marzluff, William F.; Cook, Jeanette Gowen

    2013-01-01

    Cell proliferation involves dramatic changes in DNA metabolism and cell division, and control of DNA replication, mitosis, and cytokinesis have received the greatest attention in the cell cycle field. To catalogue a wider range of cell cycle-regulated processes, we employed quantitative proteomics of synchronized HeLa cells. We quantified changes in protein abundance as cells actively progress from G1 to S phase and from S to G2 phase. We also describe a cohort of proteins whose abundance changes in response to pharmacological inhibition of the proteasome. Our analysis reveals not only the expected changes in proteins required for DNA replication and mitosis but also cell cycle-associated changes in proteins required for biological processes not known to be cell-cycle regulated. For example, many pre-mRNA alternative splicing proteins are down-regulated in S phase. Comparison of this dataset to several other proteomic datasets sheds light on global mechanisms of cell cycle phase transitions and underscores the importance of both phosphorylation and ubiquitination in cell cycle changes. PMID:23520512

  15. Frame Synchronization of High-Speed Vision Sensors with Respect to Temporally Encoded Illumination in Highly Dynamic Environments

    PubMed Central

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2013-01-01

    The authors propose a Manchester Encoding inspired illumination modulation strategy to properly index the temporally-aligned vision frames, which are successfully synchronized by the LED reference signal. Based on signal normalization, Manchester Encoded reference signals carry temporal information owing to serial communication and thus can timestamp the output vision frame. Both simulated and experimental results show satisfactory robustness to various disturbances, such as dynamic targets, fluctuant optical intensity, and unfixed cameras, etc. The 1,000 Hz vision sensor is locked to 500 Hz temporally modulated LED illumination with only 24 μs jitters. This result is believed to be applicable to low-cost wireless vision sensor network. PMID:23535638

  16. A Novel 500kW High-Speed Turbine PM Synchronous Generator Set for Distributed Power Generation

    NASA Astrophysics Data System (ADS)

    Wendt, Sven; Benecke, Frank; Güldner, Henry

    The paper presents a power generation system based on the cogeneration of heat and electricity with a novel high speed turbogenerator. The machine consists of a single stage steam turbine and a directly coupled permanent magnet synchronous generator in one constructional unit. A PWM IGBT rectifier is the load to the generator and a PWM IGBT three-phase four-wire inverter feeds the power into the low voltage mains. In order to increase the turbine efficiency at light load, variable speed operation of the turbogenerator is realized. Different control schemes for mains parallel operation and stand alone operation are presented. The control schemes allow for the use of a lookup table based control with a speed-power-characteristic or for the use of a maximum power point tracker. Measurement results from the successfully tested turbogenerator set are presented.

  17. Ionizing radiation-induced 6-thioguanine-resistant clones in synchronous CHO cells

    SciTech Connect

    Burki, J.

    1980-01-01

    When cultured Chinese hamster ovary (CHO) cells are exposed to acute doses of ionizing radiation at different times during the cell division cycle, there is a characteristic cell-cycle response for radiation-induced cell killing and induced resistance to 6-thio-guanine (6TG). For cell killing the sensitive periods of the cell cycle are the G1, G2, M, and early S periods, as others have reported. For mutation induction the sensitive stage is the G1 period with the maximum sensitivity near the boundary between the G1 and the S period. Cells appear to be very refractile to induction of 6TG resistance in other periods of the cell cycle. These results suggest that chromosomal rearrangements of the X chromosome are most likely to occur in the G1 period before the gene for hypoxanthine-guanine-phosphoribosyl-transferase replicates, most likely due to genetic recombination. Clones resistant to 6TG after exposure to x rays are most likely induced by a different mutagenic pathway than ones stimulated by ultraviolet (uv) or ethylnitrosourea treatments, since the mutation induction patterns in the cell cycle are quite different.

  18. Short baseline solution from multi-antenna synchronized GNSS receiver and its applications for high-precision positioning

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Dong, Danan; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Zheng, Zhengqi; Yu, Chao; Kuang, Lei

    2015-04-01

    Multi-antenna synchronized GNSS receiver (using the same receiver clock) is a new type of receivers with low cost, high accuracy and broad range of applications. Using this receiver, single difference carrier phase observations are able to eliminate both the satellite and receiver clock errors simultaneously, which are equivalent to classical double difference model. However, current commercial products of this type of receivers still adopt the double differencing algorithm and hence do not take full advantage of the receiver clock synchronizing for better accuracy, efficiency and broader applications. In this study, we develop a single differencing algorithm for this emerging receiver, especially for short baseline solutions. Our results indicate that the single differencing algorithm enhances the resolving accuracy and efficiency, it also widens the applications. In addition, this innovate algorithm is able to observe the ground-based carrier phase wind-up (GPWU) effects clearly for the first time. Our major research results are summarized as the followings: (1) A real-time attitude determination algorithm is developed based on single difference carrier phase observations from multi-antenna synchronized GNSS receiver. Comparing with the double differencing algorithm, it has more observations and redundancy. Its solutions show better repeatability and lower correlations among parameters. In this algorithm, we design an ambiguity substitution approach (ASA), which separates the fractional initial phase from the integer parts of single difference ambiguities effectively, thus narrows the searching space of ambiguities and improves the efficiency and correctness of integer ambiguity fixing. (2) We construct a Multipath Hemispherical Model (MHM) to mitigate the multipath effects. The MHM is applicable not only for static environment but also for dynamic carriers with static multipath environment such as ships and airplanes. (3) We also propose the Single Antenna Yaw

  19. ULTRAVIOLET INACTIVATION OF CHLOROPLAST FORMATION IN SYNCHRONOUSLY DIVIDING EUGLENA GRACILIS.

    PubMed

    PETROPULOS, S F

    1964-07-24

    Ultraviolet inactivation of chloroplast formation was studied in synchronously dividing cultures of Euglena gracilis. Sensitivity to sublethal doses given at intervals throughout the cell cycle was greater just before cell division than during division. There was approximately a twofold difference in the doseresponse relationships for the periods of high and low sensitivity. PMID:14172598

  20. Synchronization in Superradiant Lasers

    NASA Astrophysics Data System (ADS)

    Cox, Kevin; Weiner, Joshua; Bohnet, Justin; Thompson, James

    2015-05-01

    Superradiant (or bad-cavity) lasers based on highly forbidden transitions in cold atoms are expected to produce light with coherence properties exceeding the state-of-the-art, finding applications in optical atomic clocks and other precision measurements. We study experimentally and theoretically the response of a superradiant Raman laser to an applied coherent drive. We observe two forms of synchronization (injection locking) between the superradiant ensemble and the applied drive: one attractive and one repulsive in nature, in which the atomic spin degrees of freedom play a crucial role in determining the dynamics. Additionally, we present time dynamics and steady state behavior of two interacting superradiant lasers. Understanding the synchronization physics of superradiant lasers could inform future implementations with technologically relevant phase noise properties and explorations for understanding synchronization in a quantum regime.

  1. Synchronous invasive ductal carcinoma and intravascular large B-cell lymphoma of the breast: a case report and review of the literature

    PubMed Central

    2014-01-01

    Primary breast lymphomas (PBLs) represent less than 1% of all breast malignancies. Intravascular large B-cell lymphoma (ILBCL) is a rare, aggressive form of extranodal lymphoma. Breast involvement has only been described in the literature once previously. ILBCL is characterized by the proliferation of tumour cells within the lumen of small vessels of involved organs, resulting in their eventual occlusion. Clinical features are often vague, diagnosis is difficult and delayed, and prognosis is usually poor. We report the first ever case of synchronous ILBCL and invasive ductal carcinoma (IDC) of the breast in a patient presenting with pyrexia of unknown origin and altered mental status who underwent modified radical mastectomy and subsequent chemotherapy, and review the literature regarding intravascular large B-cell lymphoma, PBLs and synchronous carcinomas and lymphomas of the breast. PMID:24708809

  2. Implementing the Synchronous Classroom

    ERIC Educational Resources Information Center

    Furman, Jan A.

    2010-01-01

    This commentary describes an action research project conducted by selected staff at the Northern Valley Regional High School District in New Jersey. The project focused on the idea of developing a synchronous classroom to provide world language learning opportunities to students. Relevant research is provided as are ideas regarding logistics and…

  3. Phase-Specific Polypeptides and Poly(A)+ RNAs during the Cell Cycle in Synchronous Cultures of Catharanthus roseus Cells 1

    PubMed Central

    Kodama, Hiroaki; Kawakami, Naoto; Watanabe, Akira; Komamine, Atsushi

    1989-01-01

    This study shows an overall analysis of gene expression during the cell cycle in synchronous suspension cultures of Catharanthus roseus cells. First, the cellular cytoplasmic proteins were fractionated by two-dimensional gel electrophoresis and visualized by staining with silver. Seventeen polypeptides showed qualitative or quantitative changes during the cell cycle. Second, the rates of synthesis of cytoplasmic proteins were also investigated by autoradiography by labeling cells with [35S]methionine at each phase of the cell cycle. The rates of synthesis of 13 polypeptides were found to vary during the cell cycle. The silverstained electrophoretic pattern of proteins in the G2 phase in particular showed characteristic changes in levels of polypeptides, while the rates of synthesis of polypeptides synthesized during the G2 phase did not show such phase-specific changes. This result suggests that posttranslational processing of polypeptides occurs during or prior to the G2 phase. In the G1 and S phases and during cytokinesis, several other polypeptides were specifically synthesized. Finally, the variation of mRNAs was analyzed from the autoradiograms of in vitro translation products of poly(A)+ RNA isolated at each phase. Three poly(A)+ RNAs increased in amount from the G1 to the S phase and one poly (A)+ RNA increased preferentially from the G2 phase to cytokinesis. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11 Figure 12 PMID:16666641

  4. Delivery of very high bandwidth with ATM switches and SONET. [Asynchronous Transfer Mode (ATM), Synchronous Optical NETwork (SONET)

    SciTech Connect

    Gossage, S.A.

    1992-10-01

    The choice of technologies for the delivery of very high bandwidth throughout a facility capable of ultimately achieving gigabits per second performance, is a crucial one for any high technology facility. The components of a high bandwidth delivery system include high performance sources and sinks in the form of central facilities (major mainframes, large file storage and specialized peripherals) and powerful, full bandwidth distributed local area networks (LANs). In order to deliver bandwidth among the sources and sinks, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the glue'' to transport and interconnect the LANs with the central facility over the pervasive cable plant is the focus of this paper. A design philosophy for high performance communications systems is proposed. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The advantages of ATM switching and SONET physical transport are explored in the structured design presentation. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories as a context to examine the suitability of those technologies. The synergy and utility of ATM and SONET in the campus network are explored. Other methods for distributing high data rates are compared and contrasted to ATM and SONET with respect to cable plant impact, reliability/availability, maintainability, and capacity. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.

  5. Analysis of Factors Controlling Cell Cycle that Can Be Synchronized Nondestructively During Root Cap Development

    SciTech Connect

    Martha Hawes

    2011-02-04

    Publications and presentations during the final funding period, including progress in defining the substrate specificity, the primary goal of the project, are listed below. Both short-term and long-term responses mediated by PsUGT1 have been characterized in transgenic or mutant pea, alfalfa, and Arabidopsis with altered expression of PsUGT1. Additional progress includes evaluation of the relationship between control of the cell cycle by PsUGT1 and other glycosyltransferase and glycosidase enzymes that are co-regulated in the legume root cap during the onset of mitosis and differentiation. Transcriptional profiling and multidimensional protein identification technology ('MudPIT') have been used to establish the broader molecular context for the mechanism by which PsUGT1 controls cell cycle in response to environmental signals. A collaborative study with the Norwegian Forest Research Institute (who provided $10,000.00 in supplies and travel funds for collaborator Dr. Toril Eldhuset to travel to Arizona and Dr. H. H. Woo to travel to Norway) made it possible to establish that the inducible root cap system for studying carbohydrate synthesis and solubilization is expressed in gymnosperm as well as angiosperm species. This discovery provides an important tool to amplify the potential applications of the research in defining conserved cell cycle machinery across a very broad range of plant species and habitats. The final work, published during 2009, revealed an additional surprising parallel with mammalian immune responses: The cells whose production is controlled by PsUGT1 appear to function in a manner which is analogous to that of white blood cells, by trapping and killing in an extracellular manner. This may explain why mutation within the coding region of PsUGT1 and its homolog in humans (UGT1) is lethal to plants and animals. The work has been the subject of invited reviews. A postdoctoral fellow, eight undergraduate students, four M.S. students and three Ph

  6. Current tufa sedimentation in a high discharge river: A comparison with other synchronous tufa records in the Iberian Range (Spain)

    NASA Astrophysics Data System (ADS)

    Arenas, C.; Auqué, L.; Osácar, C.; Sancho, C.; Lozano, M. V.; Vázquez-Urbez, M.; Pardo, G.

    2015-07-01

    The results from sedimentological, isotopic and hydrochemical analyses of current tufa sedimentation conducted in a high-discharge river (Ebrón River, northeastern Spain; 1.49 m3/s) through six-month monitoring over 3.5 years are discussed in terms of the factors that control local carbonate deposition through space and time, and compared with results from other synchronous tufa records in the same climatic domain. The findings allow for discerning the influence of the riverbed slope, hydrochemistry, discharge and groundwater inputs on tufa attributes and assess the significance of tufa as archives of certain climatic events on a regional scale. In the Ebrón River, the dominant upstream karstic springs from a Jurassic-rock aquifer determined the river's HCO3-Ca composition. Two river stretches were differentiated according to localised increments in both pCO2, resulting from additional groundwater inputs, and SO4 content, influenced by evaporite-bearing units. The variations in tufa's thickness through space were strongly controlled by CO2-rich springs and local slope variations. The monitored sites represent four primary subenvironments with distinct sedimentary facies, whose attributes suggest that 1) the tufa deposition rates in each fluvial subenvironment are mainly controlled by the CO2-outgassing intensity linked to local flow conditions and the biological substrate type, and 2) stromatolites represent the thickest and most complete record. The six-month variations in tufa thickness and calculated calcite mass in the Ebrón River were controlled by temperature-dependent physico-chemical and biological parameters, coupled with high-discharge events that provoked tufa erosion. The smaller deposition of the Ebrón River compared to two other synchronous tufa records in the Iberian Range is linked to 1) the absence of long areas of increased slope, 2) the occurrence of significant CO2-rich groundwater springs in the middle reach, and 3) the higher discharge and

  7. Very high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana

    2006-08-01

    The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

  8. Control of synchronization and spiking regularity by heterogenous aperiodic high-frequency signal in coupled excitable systems

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Chan, Wai-Lok; Wei, Xi-Le; Deng, Bin

    2013-10-01

    This paper investigates the synchronization and spiking regularity induced by heterogenous aperiodic (HA) signal in coupled excitable FitzHugh-Nagumo systems. We found new nontrivial effects of couplings and HA signals on the firing regularity and synchronization in coupled excitable systems without a periodic external driving. The phenomenon is similar to array enhanced coherence resonance (AECR), and it is shown that AECR-type behavior is not limited to systems driven by noises. It implies that the HA signal may be beneficial for the brain function, which is similar to the role of noise. Furthermore, it is also found that the mean frequencies, the amplitudes and the heterogeneity of HA stimuli can serve as control parameters in modulating spiking regularity and synchronization in coupled excitable systems. These results may be significant for the control of the synchronized firing of the brain in neural diseases like epilepsy.

  9. Conditions supporting repair of potentially lethal damage cause a significant reduction of ultraviolet light-induced division delay in synchronized and plateau-phase Ehrlich ascites tumor cells

    SciTech Connect

    Iliakis, G.; Nusse, M.

    1982-09-01

    Repair of potentially lethal damage (PLD) induced by uv light in synchronized and in plateau-phase cultures of Ehrlich ascites tumor cells was studied by measuring cell survival. In particlar the influence of conditions supporting repair of PLD on growth kinetics was investigated. In synchronized G/sub 1/, S, or G/sub 2/ + M cells as well as in plateau-phase cells, uv light induced, almost exclusively, delay in the next S phase. A significant decrease of this delay was observed when the cells were incubated for 24 hr in balanced salt solution. Repair of PLD after uv irradiation was found to occur in plateau-phase cells and in cells in different phases of the cell cycle provided that after irradiation these were kept under conditions inhibiting cell multiplication (incubation in balanced salt solution or in conditioned medium). The repair time constant t/sub 50/ was significantly higher than those found for X irradiation (5-10 hr compared to 2 hr), and repair was not significantly inhibited by either 20 ..mu..g/ml cycloheximide or 2 mM caffeine in 24 hr.

  10. A k-mode synchronization methodology for multiple satellite networks

    NASA Astrophysics Data System (ADS)

    Sharifi, M. Hossein; Arozullah, Mohammed

    The authors describe a k-mode burst synchronization methodology that can improve the synchronization performance of the digital communication networks with bursty dynamic users. The method is suitable for the applications such as centralized and distributed multiple satellite networking, where the system supports a large number of low-orbit user satellites. In the mobile networking environment usually there is no network synchronization and the users are highly dynamic. Therefore, more stringent analysis of the system synchronization performance is required. The methodology defined provides flexibility of selecting the k-synchronization stage, which provides a more stable synchronization. The major features of this synchronization method are: a) the synchronizer avoids returning to bit-by-bit comparison mode from higher modes for small errors; b) since there are many modes with different synchronization levels, the synchronizer provides a more stable synchronization; and c) the synchronizer is more stable in environments with burst noise or jamming.

  11. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases

    PubMed Central

    Tandra, Varun Sharma; Kotha, Krishna Mohan Reddy; Satyanarayana, Moorthy Gadisetti Venkata; Vadlamani, Kali Varaprasad; Yerravalli, Vyjayanthi

    2015-01-01

    Giant cell tumour (GCT) is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge. PMID:26106496

  12. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases.

    PubMed

    Tandra, Varun Sharma; Kotha, Krishna Mohan Reddy; Satyanarayana, Moorthy Gadisetti Venkata; Vadlamani, Kali Varaprasad; Yerravalli, Vyjayanthi

    2015-01-01

    Giant cell tumour (GCT) is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge. PMID:26106496

  13. Independent Synchronized Control and Visualization of Interactions between Living Cells and Organisms

    PubMed Central

    Rouger, Vincent; Bordet, Guillaume; Couillault, Carole; Monneret, Serge; Mailfert, Sébastien; Ewbank, Jonathan J.; Pujol, Nathalie; Marguet, Didier

    2014-01-01

    To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode’s surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion. PMID:24853738

  14. Synchronization of sinoatrial node pacemaker cell clocks and its autonomic modulation impart complexity to heart beating intervals Short title: Beating-rate variability of sinoatrial node cells

    PubMed Central

    Yaniv, Yael; Ahmet, Ismayil; Liu, Jie; Lyashkov, Alexey E.; Guiriba, Toni-Rose; Okamoto, Yosuke; Ziman, Bruce D.; Lakatta, Edward G.

    2014-01-01

    Background A reduction of complexity of heart-beat interval variability (BIV) that is associated with an increased morbidity and mortality in cardiovascular disease states is thought to derive from the balance of sympathetic and parasympathetic neural impulses to the heart. But rhythmic clock-like behavior intrinsic to pacemaker cells within the sinoatrial node (SAN) drives their beating, even in the absence of autonomic neural input. Objective To test how this rhythmic clock-like behavior intrinsic to pacemaker cells interacts with autonomic impulses to the heart-beat interval variability in vivo. Methods We analyzed BIV in the time and frequency domains and by fractal and entropy analyses: i) in vivo, when the brain input to the SAN is intact; ii) during autonomic denervation in vivo; iii) in isolated SAN tissue (i.e., in which the autonomic-neural input is completely absent); iv) in single pacemaker cells isolated from the SAN; and v) following autonomic receptor stimulation of these cells. Results Spontaneous-beating intervals of pacemaker cells residing within the isolated SAN tissue exhibit fractal-like behavior and have lower approximate entropy than in the intact heart. Isolation of pacemaker cells from SAN tissue, however, leads to a loss in the beating-interval order and fractal-like behavior. β adrenergic receptor stimulation of isolated pacemaker cells increases intrinsic clock synchronization, decreases their action potential period and increases system complexity. Conclusions Both the average-beating interval in vivo and beating interval complexity are conferred by the combined effects of clock periodicity intrinsic to pacemaker cells and their response to autonomic-neural input. PMID:24713624

  15. Analysis of Longitudinal Phase Differences in Vocal-Fold Vibration Using Synchronous High-Speed Videoendoscopy and Electroglottography

    PubMed Central

    Orlikoff, Robert F.; Golla, Maria E.; Deliyski, Dimitar D.

    2012-01-01

    Objective This investigation used synchronous high-speed videoendoscopy (HSV) and electroglottography (EGG) to systematically study contact and separation behavior along the length of the vocal folds. Design Repeated measures. Methods Facilitated by EGG and digital kymograms derived at 20%, 35%, 50%, 65%, and 80% of the posteroanterior length of the vocal folds, the pattern of vocal-fold contact and separation was determined for 7 female and 7 male vocally healthy subjects while producing “breathy,” “comfortable,” and “pressed” phonations. Results The female subjects consistently used an anterior-to-posterior contact pattern and posterior-to-anterior separation pattern when producing a breathy or comfortable voice, with several employing a simultaneous pattern of contact and/or separation for pressed phonation. The male subjects showed more variable “zipperlike” separation patterns, but consistently used a simultaneous contact pattern for pressed voice that was also commonly used when producing comfortable phonation. Conclusions Findings indicate longitudinal phase differences in vocal-fold vibration are both common and expected in vocally healthy speakers. The implications for vocal assessment, as well as for the use and interpretation of the EGG signal, are discussed. PMID:23059188

  16. High-accuracy diagnostic tool for electron cloud observation in the LHC based on synchronous phase measurements

    NASA Astrophysics Data System (ADS)

    Esteban Müller, J. F.; Baudrenghien, P.; Mastoridis, T.; Shaposhnikova, E.; Valuch, D.

    2015-11-01

    Electron cloud effects, which include heat load in the cryogenic system, pressure rise, and beam instabilities, are among the main intensity limitations for the LHC operation with 25 ns spaced bunches. A new observation tool was proposed and developed to monitor the e-cloud activity and it has already been used successfully during the LHC run 1 (2010-2012) and it is being intensively used in operation during the start of the LHC run 2 (2015-2018). It is based on the fact that the power loss of each bunch due to e-cloud can be estimated using bunch-by-bunch measurement of the synchronous phase. The measurements were done using the existing beam phase module of the low-level rf control system. In order to achieve the very high accuracy required, corrections for reflection in the cables and for systematic errors need to be applied followed by a post-processing of the measurements. Results clearly show the e-cloud buildup along the bunch trains and its time evolution during each LHC fill as well as from fill to fill. Measurements during the 2012 LHC scrubbing run reveal a progressive reduction in the e-cloud activity and therefore a decrease in the secondary electron yield. The total beam power loss can be computed as a sum of the contributions from all bunches and compared with the heat load deposited in the cryogenic system.

  17. Pineal mixed germ cell tumor with a synchronous sellar lesion in the sixth decade.

    PubMed

    Bohara, Manoj; Hirano, Hirofumi; Tokimura, Hiroshi; Hanaya, Ryosuke; Yonezawa, Hajime; Campos, Francia; Sugiyama, Kazuhiko; Sugata, Sei; Arita, Kazunori

    2011-04-01

    Intracranial germ cell tumors (GCTs) typically affect children and adolescents. We here report on a 59-year-old male patient presenting with diplopia, polydipsia and polyuria. On clinical examination, slight restriction of the upward gaze was seen on the left side. Computed tomography demonstrated calcifications in the pineal region and enhanced neurohypophysis. Magnetic resonance imaging displayed a heterogeneous pineal mass of 3-cm diameter, which was multicystic with an enhanced cyst wall, and also swelling of the pituitary stalk. The pineal lesion of the tumor, which included calcifications and keratinaceous components, was totally excised using an occipital transtentorial approach. Histopathological examination showed it to be a mixed GCT with germinoma and mature teratoma components. Postoperative chemoradiotherapy provided complete disappearance of the suprasellar lesion. To our knowledge, this is the first case of mixed bifocal GCT in an older adult reported in the literature, although a few cases of tumors with a single histological component have been reported. Hence, our case further underlines the possibility of the occurrence of GCTs in older adults and advocates the consideration of GCTs in the differential diagnosis of such cases for appropriate management. PMID:21287366

  18. High density bit transition requirements versus the effects on BCH error correcting code. [bit synchronization

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Schoggen, W. O.

    1982-01-01

    The design to achieve the required bit transition density for the Space Shuttle high rate multiplexes (HRM) data stream of the Space Laboratory Vehicle is reviewed. It contained a recommended circuit approach, specified the pseudo random (PN) sequence to be used and detailed the properties of the sequence. Calculations showing the probability of failing to meet the required transition density were included. A computer simulation of the data stream and PN cover sequence was provided. All worst case situations were simulated and the bit transition density exceeded that required. The Preliminary Design Review and the critical Design Review are documented. The Cover Sequence Generator (CSG) Encoder/Decoder design was constructed and demonstrated. The demonstrations were successful. All HRM and HRDM units incorporate the CSG encoder or CSG decoder as appropriate.

  19. In vitro developmental competence of pig nuclear transferred embryos: effects of GFP transfection, refrigeration, cell cycle synchronization and shapes of donor cells.

    PubMed

    Zhang, Yun-Hai; Pan, Deng-Ke; Sun, Xiu-Zhu; Sun, Guo-Jie; Liu, Xiao-Hui; Wang, Xiao-Bo; Tian, Xing-Hua; Li, Yan; Dai, Yun-Ping; Li, Ning

    2006-08-01

    The present study was designed to evaluate the feasibility of producing pig transgenic blastocysts expressing enhanced green fluorescent protein (GFP) and to examine the effects of shape and preparation methods of donor cells on in vitro developmental ability of pig nuclear transferred embryos (NTEs). In experiment 1, the effect of GFP transfection on development of pig NTEs was evaluated. The cleavage and blastocyst rates showed no significant difference between NTEs derived from transfected and non-transfected donors. In experiment 2, the effect of different nuclear donor preparation methods on in vitro development of NTEs was examined. The cleavage rate showed no statistically significant differences among three preparation methods. The blastocyst rates of donor cells treated once at -4 degrees C and those of freshly digested cells were similar to each other (26.3% vs 17.9%). The lowest blastocyst rates (5.88%) were observed when cells cryopreserved at -196 degrees C were used as donors. In experiment 3, the effect of different cell cycle synchronization methods on the in vitro development potential of pig NTEs was evaluated. The cleavage rate of NTEs derived from cycling cells was much better than that of NTEs derived from serum-starved cells (64.4% vs 50.5%, p < 0.05), but no significant difference was observed between the the blastocyst rates of the two groups. In experiment 4, the effect of different shapes of cultured fibroblast cells on the in vitro development of pig NTEs was examined. The fusion rate for couplets derived from rough cells was poorer than that observed in couplets derived from round smooth cells (47.8% vs 76.8%, p < 0.05). However, there were no significant differences observed in the cleavage rate and blastocyst rate. In conclusion, the present study indicated that (i) refrigerated pig GFP-transfected cells could be used as donors in nuclear transfer and these NTEs could be effectively developed to blastocyst stage; (ii) serum starvation

  20. Synchronous starphotometry and lidar measurements at Eureka in High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Ivanescu, L.; Duck, T. J.; Perro, C.; Herber, A.; Schulz, K.-H.; Schrems, O.

    2015-02-01

    We present recent progress related to the night-time retrievals of aerosol and cloud optical depth using starphotometry over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, the SPSTAR starphotometer was employed to acquire aerosol optical depth (AOD) measurements while vertical aerosol and cloud backscatter coefficient profiles were acquired using the CANDAC Raman Lidar (CRL). Several events were detected and characterized using starphotometry-lidar synergy: aerosols (short term aerosol events on 9 and 10 March 2011); a potential multi-night aerosol event across three polar nights (13-15 March 2012), a thin cloud event (21 February 2011) and a very low altitude ice crystals (10 March 2011). Using a simple backscatter coefficient threshold criterion we calculated fine and coarse (sub and super-micron) mode AODs from the vertically integrated CRL profiles. These were compared with their starphotometry analogues produced from a spectral deconvolution algorithm. The process-level analysis showed, in general, good agreement in terms of the physical coherence between high frequency starphotometry and lidar data. We argue that R2 (coefficient of determination) is the most robust means of comparing lidar and starphotometer data since it is sensitive to significant optico-physical variations associated with these two independent data sources while being minimally dependent on retrieval and calibration artifacts. Differences between the fine and course mode components of the starphotometry and lidar data is clearly also useful but is more dependent on such artifacts. Studying climatological seasonal aerosol trends necessitates effective cloud-screening procedures: temporal and spectral cloud screening of starphotometry data was found to agree moderately well with temporal cloud screening results except in the presence of thin homogeneous cloud. We conclude

  1. Highly Stable Wideband Microwave Extraction by Synchronizing Widely Tunable Optoelectronic Oscillator with Optical Frequency Comb

    PubMed Central

    Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.

    2013-01-01

    Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459

  2. The brains of high functioning autistic individuals do not synchronize with those of others☆

    PubMed Central

    Salmi, J.; Roine, U.; Glerean, E.; Lahnakoski, J.; Nieminen-von Wendt, T.; Tani, P.; Leppämäki, S.; Nummenmaa, L.; Jääskeläinen, I.P.; Carlson, S.; Rintahaka, P.; Sams, M.

    2013-01-01

    Multifaceted and idiosyncratic aberrancies in social cognition characterize autism spectrum disorders (ASDs). To advance understanding of underlying neural mechanisms, we measured brain hemodynamic activity with functional magnetic resonance imaging (fMRI) in individuals with ASD and matched-pair neurotypical (NT) controls while they were viewing a feature film portraying social interactions. Pearson's correlation coefficient was used as a measure of voxelwise similarity of brain activity (InterSubject Correlations—ISCs). Individuals with ASD showed lower ISC than NT controls in brain regions implicated in processing social information including the insula, posterior and anterior cingulate cortex, caudate nucleus, precuneus, lateral occipital cortex, and supramarginal gyrus. Curiously, also within NT group, autism-quotient scores predicted ISC in overlapping areas, including, e.g., supramarginal gyrus and precuneus. In ASD participants, functional connectivity was decreased between the frontal pole and the superior frontal gyrus, angular gyrus, superior parietal lobule, precentral gyrus, precuneus, and anterior/posterior cingulate gyrus. Taken together these results suggest that ISC and functional connectivity measure distinct features of atypical brain function in high-functioning autistic individuals during free viewing of acted social interactions. Our ISC results suggest that the minds of ASD individuals do not ‘tick together’ with others while perceiving identical dynamic social interactions. PMID:24273731

  3. Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    PubMed Central

    Nelander, Gitte-Mai; Hansen, Bo Falck; Jensen, Pia; Krabbe, Jonas S.; Jensen, Marianne B.; Hegelund, Anne Charlotte; Svendsen, Jette E.; Oleksiewicz, Martin B.

    2009-01-01

    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing. PMID:19898946

  4. Synchronous renal cell carcinoma metastasis to the contralateral adrenal gland and pancreas: A case report with 7-year follow-up subsequent to surgical therapy

    PubMed Central

    WU, CUNZAO; ZHOU, ZHENXU; YE, XUETING; HU, WEILIE

    2016-01-01

    Metastatic renal cell carcinoma (RCC) disseminates to a number of organ sites and few patients demonstrate long-term survival following surgery. However, synchronous metastasis of RCC to the contralateral adrenal gland and pancreas is rare. In the present report, a case of synchronous RCC metastasis to the contralateral adrenal gland and pancreas in a 55-year-old patient, with an 116×92×61 mm right renal tumor and a 96×79×57 mm left adrenal lesion, is described. In April 2007, right nephrectomy was performed to treat the RCC, left adrenalectomy was performed to treat the adrenal tumor and the pancreatic metastases were resected. The patient remained alive at the 7-year follow-up appointment. PMID:27313756

  5. Synchronous polar winter starphotometry and lidar measurements at a High Arctic station

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Ivanescu, L.; Duck, T. J.; Perro, C.; Herber, A.; Schulz, K.-H.; Schrems, O.

    2015-09-01

    We present recent progress on nighttime retrievals of aerosol and cloud optical properties over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, a star photometer was employed to acquire aerosol optical depth (AOD) data, while vertical aerosol and cloud backscatter profiles were measured using the CANDAC Raman Lidar (CRL). We used a simple backscatter coefficient threshold (βthr) to distinguish aerosols from clouds and, assuming that aerosols were largely fine mode (FM)/sub-micron, to distinguish FM aerosols from coarse mode (CM)/super-micron cloud or crystal particles. Using prescribed lidar ratios, we computed FM and CM AODs that were compared with analogous AODs estimated from spectral star photometry. We found (βthr dependent) coherences between the lidar and star photometer for both FM events and CM cloud and crystal events with averaged, FM absolute differences being <∼0.03 when associated R2 values were between 0.2 and 0.8. A βthr sensitivity study demonstrated that zero crossing absolute differences and R2 peaks were in comparable regions of the βthr range (or physical reasons were given for their disparity). The utility of spectral vs. temporal cloud screening of star photometer AODs was also illustrated. In general our results are critical to building confidence in the physical fidelity of derived, weak amplitude, star photometry AODs and, in turn, towards the development of AOD climatologies and validation databases for polar winter models and satellite sensors.

  6. Generic Conditions for Hydrodynamic Synchronization

    NASA Astrophysics Data System (ADS)

    Uchida, Nariya; Golestanian, Ramin

    2011-02-01

    Synchronization of actively oscillating organelles such as cilia and flagella facilitates self-propulsion of cells and pumping fluid in low Reynolds number environments. To understand the key mechanism behind synchronization induced by hydrodynamic interaction, we study a model of rigid-body rotors making fixed trajectories of arbitrary shape under driving forces that are arbitrary functions of the phase. For a wide class of geometries, we obtain the necessary and sufficient conditions for synchronization of a pair of rotors. We also find a novel synchronized pattern with an oscillating phase shift. Our results shed light on the role of hydrodynamic interactions in biological systems, and could help in developing efficient mixing and transport strategies in microfluidic devices.

  7. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  8. System for transmitting and receiving asynchronous nonhomogeneous variable width parallel data over a synchronous high speed serial transmission media

    SciTech Connect

    Scott, P.H.

    1990-09-18

    The patent describes a system witch utilizes a synchronous serial transmission media to transmit data between a data source that generates asynchronous nonhomogeneous variable width parallel data pattern inputs, and a data sink that accepts parallel data pattern outputs corresponding to the inputs. It comprises: transmitter means responsive to each of the parallel data pattern inputs, for synchronously transmitting a serial data pattern representative of a given input over the media; and receiver means, responsive to data transmitted over the media, for generating the parallel data pattern outputs.

  9. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  10. Nutritional recommendations for synchronized swimming.

    PubMed

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers. PMID:24667278

  11. A survey of synchronization methods for parallel computers

    SciTech Connect

    Dinning, A. )

    1989-07-01

    This article examines how traditional synchronization methods influence the design of MIMD multiprocessors. This particular class of architectures is one in which high-level synchronization plays an important role. Although vector processors, dataflow machines, and single instruction, multiple-data (SIMD) computers are highly synchronized, their synchronization is generally an explicit part of the control flow and is executed as part of every instruction. In MIMD multiprocessors, synchronization must occur on demand, so more sophisticated schemes are needed.

  12. Synchronized Polarization Induced Electrospray: Comprehensively Profiling Biomolecules in Single Cells by Combining both Positive-Ion and Negative-Ion Mass Spectra.

    PubMed

    Hu, Jun; Jiang, Xiao-Xiao; Wang, Jiang; Guan, Qi-Yuan; Zhang, Pan-Ke; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-07-19

    In this work, a synchronized polarization induced electrospray ionization (SPI-ESI) method is developed and applied for the analysis of single-cell samples. In SPI-ESI, periodic alternating current square wave voltage (AC-SWV) is applied to induce the bipolar spray and both positive-ion and negative-ion mass spectra are obtained through one measurement by synchronizing the mode of mass analyzer with the bipolar spray process. Compared with conventional nanoelectrospray ionization (nESI, flow rate < 1000 nL/min), ultralow spray flow rate (pico-electrospray ionization, pESI, flow rate < 1000 pL/min) is achieved in SPI-ESI without loss of its sensitivity. The decrease of flow rate prolongs the MS signal duration from single-cell samples to acquire ms(2) data for components determination. To our knowledge, this is the first time to successfully achieve comprehensive analysis of single-cell samples by combining both positive-ion and negative-ion mass spectra. Ultimately, 86 components are profiled from single Allium cepa cells and 94 components are profiled from single PC-12 cells. PMID:27297455

  13. [Event-related synchronization and desynchronization of EEG during appraisal of threatening and pleasant visual stimuli in high anxious subjects].

    PubMed

    Aftans, L I; Pavlov, S V; Reva, N V; Varlamov, A A

    2004-01-01

    The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing. PMID:15481384

  14. The structure of large-scale synchronized firing in primate retina

    PubMed Central

    Shlens, Jonathon; Field, Greg D.; Gauthier, Jeffrey L.; Greschner, Martin; Sher, Alexander; Litke, Alan M.; Chichilnisky, E.J.

    2009-01-01

    Synchronized firing among neurons has been proposed to constitute an elementary aspect of the neural code in sensory and motor systems. However, it remains unclear how synchronized firing affects the large-scale patterns of activity and redundancy of visual signals in a complete population of neurons. We recorded simultaneously from hundreds of retinal ganglion cells in primate retina, and examined synchronized firing in completely sampled populations of ~50–100 ON-parasol cells, which form a major projection to the magnocellular layers of the lateral geniculate nucleus. Synchronized firing in pairs of cells was a subset of a much larger pattern of activity that exhibited local, isotropic spatial properties. However, a simple model based solely on interactions between adjacent cells reproduced 99% of the spatial structure and scale of synchronized firing. No more than 20% of the variability in firing of an individual cell was predictable from the activity of its neighbors. These results held both for spontaneous firing and in the presence of independent visual modulation of the firing of each cell. In sum, large-scale synchronized firing in the entire population of ON-parasol cells appears to reflect simple neighbor interactions, rather than a unique visual signal or a highly redundant coding scheme. PMID:19369571

  15. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  16. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  17. Metastases of renal cell carcinoma to the thyroid gland with synchronous benign and malignant follicular cell-derived neoplasms.

    PubMed

    Zamarrón, Carlos; Abdulkader, Ihab; Areses, María C; García-Paz, Vanesa; León, Luís; Cameselle-Teijeiro, José

    2013-01-01

    Clear cell renal cell carcinoma (CCRCC) is the most common origin for metastasis in the thyroid. A 51-year-old woman was referred to our hospital for a subcarinal lesion. Ten years before, the patient had undergone a nephrectomy for CCRCC. Whole-body fluorodeoxyglucose positron emission tomography revealed elevated values in the thyroid gland, while the mediastinum was normal. An endoscopic ultrasonography-guided fine-needle aspiration biopsy of the mediastinal mass was consistent with CCRCC, and this was confirmed after resection. The thyroidectomy specimen also revealed lymphocytic thyroiditis, nodular hyperplasia, one follicular adenoma, two papillary microcarcinomas, and six foci of metastatic CCRCC involving both thyroid lobes. Curiously two of the six metastatic foci were located inside two adenomatoid nodules (tumor-in-tumor). The metastatic cells were positive for cytokeratins, CD10, epidermal growth factor receptor, and vascular endothelial growth factor receptor 2. No BRAF gene mutations were found in any of the primary and metastatic lesions. The patient was treated with sunitinib and finally died due to CCRCC distant metastases 6 years after the thyroidectomy. In CCRCC patients, a particularly prolonged survival rate may be achieved with the appropriate therapy, in contrast to the ominous prognosis typically found in patients with thyroid metastases from other origins. PMID:23878753

  18. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  19. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  20. Synchronous motion modulates animacy perception.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2015-01-01

    Visual motion serves as a cue for high-level percepts. The present study reports novel modulation of animacy perception through synchronous motion. A target dot moving along a random trajectory was presented. The trajectory was generated based on a variant of 1/f noise; hence, the dot could be perceived as animate. Participants were asked to rate the strength of perceived animacy and perceived intention from the target dot. Several task-irrelevant dots surrounding the target were also presented. Results indicated that perceived animacy and intention were drastically weakened when surrounding dots created synchronous motion with the target dot as compared to when surrounding dots did not create synchronous motion. A series of follow-up experiments replicated these results and revealed specific characteristics of this modulation. The present findings suggest synchronous visual motion serves as a strong modulator of animacy perception. PMID:26114680

  1. S-Phase Cells Are More Sensitive to High-Linear Energy Transfer Radiation

    SciTech Connect

    Wang Hongyan; Liu Shuang; Zhang Piyan; Zhang Shimeng; Naidu, Mamta; Wang Huichen; Wang Ya

    2009-07-15

    Purpose: S-phase cells are more resistant to low-linear energy transfer (LET) ionizing radiation (IR) than nonsynchronized and G{sub 1}-phase cells, because both nonhomologous end-joining (NHEJ) and homologous recombination repair can repair DNA double-strand breaks (DSBs) in the S phase. Although it was reported 3 decades ago that S-phase cells did not show more resistance to high-LET IR than cells in other phases, the mechanism remains unclear. We therefore attempted to study the phenotypes and elucidate the mechanism involved. Methods and Materials: Wild-type and NHEJ-deficient cell lines were synchronized using the double-thymidine approach. A clonogenic assay was used to detect the sensitivity of nonsynchronized, synchronized S-phase, and G{sub 2}-phase cells to high- and low-LET IR. The amounts of Ku bound to DSBs in the high- and low-LET-irradiated cells were also examined. Results: S-phase wild-type cells (but not NHEJ-deficient cells) were more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells. In addition, S-phase wild-type cells showed less efficient Ku protein binding to DSBs than nonsynchronized and G{sub 2}-phase cells in response to high-LET IR, although all cells at all phases showed similarly efficient levels of Ku protein binding to DSBs in response to low-LET IR. Conclusions: S-phase cells are more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells, because of the following mechanism: it is more difficult for Ku protein to bind to high-LET IR-induced DNA DSBs in S-phase cells than in cells at other phases, which results in less efficient NHEJ.

  2. S-phase cells are more sensitive to high-linear energy transfer radiation

    SciTech Connect

    Wang, H.; Naidu, M.; Liu, S.; Zhang, P.; Zhang, S.; Wang, H.; Wang, Y.

    2009-07-15

    S-phase cells are more resistant to low-linear energy transfer (LET) ionizing radiation (IR) than nonsynchronized and G{sub 1}-phase cells, because both nonhomologous end-joining (NHEJ) and homologous recombination repair can repair DNA double-strand breaks (DSBs) in the S phase. Although it was reported 3 decades ago that S-phase cells did not show more resistance to high-LET IR than cells in other phases, the mechanism remains unclear. We therefore attempted to study the phenotypes and elucidate the mechanism involved. Wild-type and NHEJ-deficient cell lines were synchronized using the double-thymidine approach. A clonogenic assay was used to detect the sensitivity of nonsynchronized, synchronized S-phase, and G{sub 2}-phase cells to high- and low-LET IR. The amounts of Ku bound to DSBs in the high- and low-LET-irradiated cells were also examined. S-phase wild-type cells (but not NHEJ-deficient cells) were more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells. In addition, S-phase wild-type cells showed less efficient Ku protein binding to DSBs than nonsynchronized and G{sub 2}-phase cells in response to high-LET IR, although all cells at all phases showed similarly efficient levels of Ku protein binding to DSBs in response to low-LET IR. S-phase cells are more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells, because of the following mechanism: it is more difficult for Ku protein to bind to high-LET IR-induced DNA DSBs in S-phase cells than in cells at other phases, which results in less efficient NHEJ.

  3. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. PMID:23912150

  4. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  5. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  6. Time-synchronized high-speed video images, electric fields, and currents of rocket-and-wire triggered lightning

    NASA Astrophysics Data System (ADS)

    Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Rakov, V. A.

    2009-12-01

    We present novel observations of 20 classically-triggered lightning flashes from the 2009 summer season at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida. We focus on: (1) upward positive leaders (UPL), (2) current decreases and current reflections associated with the destruction of the triggering wire, and (3) dart-stepped leader propagation involving space stems or space leaders ahead of the leader tip. High-speed video data were acquired 440 m from the triggered lightning using a Phantom v7.1 operating at frame rates of up to 10 kfps (90 µs frame time) with a field of view from ground to an altitude of 325 m and a Photron SA1.1 operating at frame rates of up to 300 kfps (3.3 µs frame time) that viewed from ground to an altitude of 120 m. These data were acquired along with time-synchronized measurements of electric field (dc to 3 MHz) and channel-base current (dc to 8 MHz). The sustained UPLs developed when the rockets were between altitudes of 100 m and 200 m, and accelerated from about 104 to 105 m s-1 from the top of the triggering wire to an altitude of 325 m. In each successive 10 kfps high-speed video image, the newly formed UPL channels were brighter than the previously established channel and the new channel segments were longer. The UPLs in two flashes were imaged at a frame rate of 300 kfps from the top of the wire to about 10 m above the wire (110 m to 120 m above ground). In these images the UPL developed in a stepped manner with luminosity waves traveling from the channel tip back toward the wire during a time of 2 to 3 frames (6.6 µs to 9.9 µs). The new channel segments were on average 1 m in length and the average interstep interval was 23 µs. During 13 of the 20 initial continuous currents, an abrupt current decrease and the beginning of the wire illumination (due to its melting) occurred simultaneously to within 1 high-speed video frame (between 3.3 µs and 10 µs). For two of the triggered

  7. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  8. Synchronizing redundant power oscillators

    NASA Technical Reports Server (NTRS)

    Jenson, K. J.

    1969-01-01

    Outputs of oscillators are synchronized by summing the power transformer phase voltages, the summed voltages are applied to the frequency determining inductors of the individual voltage-controlled power oscillators. The beat frequency is eliminated when synchronization is achieved.

  9. Chaotic synchronization system and electrocardiogram

    NASA Astrophysics Data System (ADS)

    Pei, Liuqing; Dai, Xinlai; Li, Baodong

    1997-01-01

    A mathematical model of chaotic synchronization of the heart-blood flow coupling dynamics is proposed, which is based on a seven dimension nonlinear dynamical system constructed by three subsystems of the sinoatrial node natural pacemaker, the cardiac relaxation oscillator and the dynamics of blood-fluid in heart chambers. The existence and robustness of the self-chaotic synchronization of the system are demonstrated by both methods of theoretical analysis and numerical simulation. The spectrum of Lyapunov exponent, the Lyapunov dimension and the Kolmogorov entropy are estimated when the system was undergoing the state of self-chaotic synchronization evolution. The time waveform of the dynamical variable, which represents the membrane potential of the cardiac integrative cell, shows a shape which is similar to that of the normal electrocardiogram (ECG) of human, thus implies that the model possesses physiological significance functionally.

  10. Long-Term Survival in Patients With Synchronous, Solitary Brain Metastasis From Non-Small-Cell Lung Cancer Treated With Radiosurgery

    SciTech Connect

    Flannery, Todd W.; Suntharalingam, Mohan; Regine, William F.; Chin, Lawrence S.; Krasna, Mark J.; Shehata, Michael K.; Edelman, Martin J.; Kremer, Marnie; Patchell, Roy A.; Kwok, Young

    2008-09-01

    Purpose: To report the outcome of patients with synchronous, solitary brain metastasis from non-small-cell lung cancer (NSCLC) treated with gamma knife stereotactic radiosurgery (GKSRS). Patients and Methods: Forty-two patients diagnosed with synchronous, solitary brain metastasis from NSCLC were treated with GKSRS between 1993 and 2006. The median Karnofsky performance status (KPS) was 90. Patients had thoracic Stage I-III disease (American Joint Committee on Cancer 2002 guidelines). Definitive thoracic therapy was delivered to 26/42 (62%) patients; 9 patients underwent chemotherapy and radiation, 12 patients had surgical resection, and 5 patients underwent preoperative chemoradiation and surgical resection. Results: The median overall survival (OS) was 18 months. The 1-, 2-, and 5-year actuarial OS rates were 71.3%, 34.1%, and 21%, respectively. For patients who underwent definitive thoracic therapy, the median OS was 26.4 months compared with 13.1 months for those who had nondefinitive therapy, and the 5-year actuarial OS was 34.6% vs. 0% (p < 0.0001). Median OS was significantly longer for patients with a KPS {>=}90 vs. KPS < 90 (27.8 months vs. 13.1 months, p < 0.0001). The prognostic factors significant on multivariate analysis were definitive thoracic therapy (p = 0.020) and KPS (p = 0.001). Conclusions: This is one of the largest series of patients diagnosed with synchronous, solitary brain metastasis from NSCLC treated with GKSRS. Definitive thoracic therapy and KPS significantly impacted OS. The 5-year OS of 21% demonstrates the potential for long-term survival in patients treated with GKSRS; therefore, patients with good KPS should be considered for definitive thoracic therapy.

  11. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    PubMed

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range. PMID:20372575

  12. Spike sorting of synchronous spikes from local neuron ensembles.

    PubMed

    Franke, Felix; Pröpper, Robert; Alle, Henrik; Meier, Philipp; Geiger, Jörg R P; Obermayer, Klaus; Munk, Matthias H J

    2015-10-01

    Synchronous spike discharge of cortical neurons is thought to be a fingerprint of neuronal cooperativity. Because neighboring neurons are more densely connected to one another than neurons that are located further apart, near-synchronous spike discharge can be expected to be prevalent and it might provide an important basis for cortical computations. Using microelectrodes to record local groups of neurons does not allow for the reliable separation of synchronous spikes from different cells, because available spike sorting algorithms cannot correctly resolve the temporally overlapping waveforms. We show that high spike sorting performance of in vivo recordings, including overlapping spikes, can be achieved with a recently developed filter-based template matching procedure. Using tetrodes with a three-dimensional structure, we demonstrate with simulated data and ground truth in vitro data, obtained by dual intracellular recording of two neurons located next to a tetrode, that the spike sorting of synchronous spikes can be as successful as the spike sorting of nonoverlapping spikes and that the spatial information provided by multielectrodes greatly reduces the error rates. We apply the method to tetrode recordings from the prefrontal cortex of behaving primates, and we show that overlapping spikes can be identified and assigned to individual neurons to study synchronous activity in local groups of neurons. PMID:26289473

  13. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  14. KPU-300, a Novel Benzophenone–Diketopiperazine–Type Anti-Microtubule Agent with a 2-Pyridyl Structure, Is a Potent Radiosensitizer That Synchronizes the Cell Cycle in Early M Phase

    PubMed Central

    Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko

    2015-01-01

    KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300. PMID:26716455

  15. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  16. The Clinical Use of Genomic Profiling to Distinguish Intrapulmonary Metastases From Synchronous Primaries in Non-Small-Cell Lung Cancer: A Mini-Review.

    PubMed

    Klempner, Samuel J; Ou, Sai-Hong Ignatius; Costa, Daniel B; VanderLaan, Paul A; Sanford, Eric M; Schrock, Alexa; Gay, Laurie; Ali, Siraj M; Miller, Vincent A

    2015-09-01

    The ability to reliably distinguish synchronous primary non-small-cell lung cancer (NSCLC) from intrapulmonary metastatic spread affects staging and treatment decisions in resected NSCLC. Adjuvant therapy for early-stage NSCLC is complicated and recommendations are primarily based on older data from trials that used now-outdated staging systems. Patients found to have 2 tumors with similar morphology in the same lobe are currently staged as pathologic T3 (pT3) but such cases represent a minority of patients in adjuvant lung cancer trials. Potentially more precise than tumor morphology alone, comprehensive genomic profiling technologies have the power to discriminate whether tumors in the same lobe represent 2 separate primary lesions or localized spread of a single lesion. In addition to lineage insights, tumor profiling simultaneously provides information on actionable genomic alterations. In this review we discuss the data that support the ability of molecular technologies to distinguish synchronous primary tumors from intrapulmonary metastases and discuss the use of molecular assays as an adjunct to current staging systems. Two cases are presented to highlight the potential immediate clinical implications of comprehensive genomic profiling. PMID:25911330

  17. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol

  18. A new automatic synchronizer

    SciTech Connect

    Malm, C.F.

    1995-12-31

    A phase lock loop automatic synchronizer, PLLS, matches generator speed starting from dead stop to bus frequency, and then locks the phase difference at zero, thereby maintaining zero slip frequency while the generator breaker is being closed to the bus. The significant difference between the PLLS and a conventional automatic synchronizer is that there is no slip frequency difference between generator and bus. The PLL synchronizer is most advantageous when the penstock pressure fluctuates the grid frequency fluctuates, or both. The PLL synchronizer is relatively inexpensive. Hydroplants with multiple units can economically be equipped with a synchronizer for each unit.

  19. Synchronization of chaotic systems

    SciTech Connect

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  20. Synchronization of chaotic systems

    NASA Astrophysics Data System (ADS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  1. Dedicated 4πβ (LS)-γ (HPGe) digital coincidence system based on synchronous high-speed multichannel data acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Feng; Song, Ke-Zhu; Liu, Jia-Cheng

    2016-03-01

    A dedicated 4πβ (LS) -γ (HPGe) digital coincidence system with five acquisition channels has been developed. Three ADC acquisition channels with an acquisition resolution of 8 bits and acquisition rate of 1 GSPS are utilized to collect the signals from three PMTs which are used to detect β decay, and two acquisition channels with an acquisition resolution of 16 bits and acquisition rate of 50 MSPS are utilized to collect the signals from high-purity germanium (HPGe), which is used to detect γ decay. In order to increase the accuracy of the coincidence system, all five acquisition channels are synchronous within 500 ps. The data collected by the five acquisition channels will be transmitted to the host PC through a PCI bus and saved as a file. Off-line software is utilized for the 4πβ (LS) -γ (HPGe) coincidence and data analysis as needed in practical applications. Tests of the system show that system can record pulse signals from 4πβ (LS) -γ (HPGe) synchronously for further coincidence calculation and the highest coincidence rate of the system is 20 K/s, which is sufficient for most applications. Compared with traditional coincidence modules like MAC3, the digital coincidence system has a higher flexibility of coincidence algorithm. In addition, due to the use of ADC, the structure of the coincidence system is simplified. This paper introduces the design of the hardware, the synchronization method and the test results of this system. Supported by National Metrology Institute of China

  2. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  3. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Qu, Timing; Song, Peng; Yu, Xiaoyu; Gu, Chen; Li, Longnian; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Zeng, Pan; Han, Zhenghe

    2014-04-01

    High temperature superconducting (HTS) armature windings have the potential for increasing the electric loading of a synchronous generator due to their high current transport capacity, which could increase the power density of an HTS rotating machine. In this work, a novel synchronous generator prototype with an HTS stator and permanent magnet rotor has been developed. It has a basic structure of four poles and six slots. The armature winding was constructed from six double-pancake race-track coils with 44 turns each. It was designed to deliver 2.5 kW at 300 rpm. A concentrated winding configuration was proposed, to prevent interference at the ends of adjacent HTS coils. The HTS stator was pressure mounted into a hollow Dewar cooled with liquid nitrogen. The whole stator could be cooled down to around 82 K by conduction cooling. In the preliminary testing, the machine worked properly and could deliver 1.8 kW power when the armature current was 14.4 A. Ic for the HTS coils was found to be suppressed due to the influence of the temperature and the leakage field.

  4. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  5. A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system

    NASA Astrophysics Data System (ADS)

    Yen, F.; Li, J.; Zheng, S. J.; Liu, L.; Ma, G. T.; Wang, J. S.; Wang, S. Y.; Liu, Wei

    2010-10-01

    Thrust measurements were performed on a coil made of a YBa2Cu3O7 - δ coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of IDC = 30 A for the superconducting coil and alternating current of IAC = 9 A for the stator coils, a thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back-plate, thrust was increased by 70%.

  6. Properly synchronized measurements of droplet sizes for high-pressure intermittent coal-water slurry fuel sprays

    SciTech Connect

    Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A.

    1993-12-31

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation with a laser diffraction particle analyzing (LDPA) technique. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. A correlation of the SMD with the injection conditions was determined which should show a satisfactory agreement with the measured SMD data. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure.

  7. Glutamatergic system controls synchronization of spontaneous neuronal activity in the murine neonatal entorhinal cortex.

    PubMed

    Unichenko, Petr; Yang, Jeng-Wei; Luhmann, Heiko J; Kirischuk, Sergei

    2015-07-01

    Synchronized spontaneous neuronal activity is a characteristic feature of the developing brain. Rhythmic network discharges in the neonatal medial entorhinal cortex (mEC) in vitro depend on activation of ionotropic glutamate receptors, but spontaneously active neurons are required for their initiation. Field potential recordings revealed synchronized neuronal activity in the mEC in vivo developmentally earlier than in vitro. We suggested that not only ionotropic receptors, but also other components of the glutamatergic system modulate neuronal activity in the mEC. Ca(2+) imaging was used to record neuronal activity in neonatal murine brain slices. Two types of spontaneous events were distinguished: global synchronous discharges (synchronous activity) and asynchronously (not synchronized with global discharges) active cells (asynchronous activity). AMPA receptor blockade strongly reduced the frequency of synchronous discharges, while NMDA receptor inhibition was less effective. AMPA and NMDA receptor blockade or activation of group 2/3 metabotropic glutamate receptors (mGluR2/3) completely suppressed synchronous discharges and increased the number of active cells. Blockade of glutamate transporters with DL-TBOA led to NMDA receptor-mediated hyper-synchronization of neuronal activity. Inhibition of NMDA receptors in the presence of DL-TBOA failed to restore synchronous discharges. The latter were partially reestablished only after blockade of mGluR2/3. We conclude that the glutamatergic system can influence neuronal activity via different receptors/mechanisms. As both NMDA and mGluR2/3 receptors have a high affinity for glutamate, changes in extracellular glutamate levels resulting for instance from glutamate transporter malfunction can balance neuronal activity in the mEC, affecting in turn synapse and network formation. PMID:25163767

  8. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  9. Synchronization with sound propagation delays

    NASA Astrophysics Data System (ADS)

    Haché, A.

    2010-04-01

    Complex systems that synchronize with acoustic signals, like chanting crowds and musical ensembles, have the intrinsic ability to maintain synchrony without external aid or visual cues, even when spread over wide areas. According to two models, the counterintuitive self-synchronization happens when the system's components have a spatial distribution that is sufficiently uniform. The roles of system size and density are examined for arrangements in 1, 2 and 3 dimensions. Asynchrony is predicted to become vanishingly small at high densities, and results suggest ways on how to minimize asynchrony in real-world situations.

  10. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    PubMed Central

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  11. Synchronous metastatic squamous cell carcinoma to the colon and cervical lymph nodes from a carcinoma of unknown primary site: A case report.

    PubMed

    Ito, Homare; Miyakura, Yasuyuki; Tsukui, Hidenori; Naoi, Daishi; Tahara, Makiko; Morimoto, Mitsuaki; Koinuma, Koji; Horie, Hisanaga; Lefor, Alan Kawarai; Sata, Naohiro

    2016-01-01

    Metastatic squamous cell carcinoma (SCC) from an unknown primary site to the colon has not been reported previously. A 75-year-old woman presented with a mass in the left submandibular region. Biopsy revealed a Class V lesion, but the histologic type was undetermined. Surgical resection of the left submandibular gland with cervical lymph node dissection was performed. However, SCC was seen in the lymph nodes only, with no tumor in the submandibular gland. Three months after surgery, computed tomography revealed that the preoperatively diagnosed lesion in the transverse colon had grown considerably. A laparoscopic right hemicolectomy was performed. Histological examination showed features of SCC, similar to the findings in the cervical lymph nodes. We report a rare case of synchronous metastatic SCC to the colon and cervical lymph nodes from a carcinoma of unknown primary site. PMID:27173884

  12. A Key Commitment Step in Erythropoiesis Is Synchronized with the Cell Cycle Clock through Mutual Inhibition between PU.1 and S-Phase Progression

    PubMed Central

    Pop, Ramona; Shearstone, Jeffrey R.; Shen, Qichang; Liu, Ying; Hallstrom, Kelly; Koulnis, Miroslav; Gribnau, Joost; Socolovsky, Merav

    2010-01-01

    Hematopoietic progenitors undergo differentiation while navigating several cell division cycles, but it is unknown whether these two processes are coupled. We addressed this question by studying erythropoiesis in mouse fetal liver in vivo. We found that the initial upregulation of cell surface CD71 identifies developmentally matched erythroblasts that are tightly synchronized in S-phase. We show that DNA replication within this but not subsequent cycles is required for a differentiation switch comprising rapid and simultaneous committal transitions whose precise timing was previously unknown. These include the onset of erythropoietin dependence, activation of the erythroid master transcriptional regulator GATA-1, and a switch to an active chromatin conformation at the β-globin locus. Specifically, S-phase progression is required for the formation of DNase I hypersensitive sites and for DNA demethylation at this locus. Mechanistically, we show that S-phase progression during this key committal step is dependent on downregulation of the cyclin-dependent kinase p57KIP2 and in turn causes the downregulation of PU.1, an antagonist of GATA-1 function. These findings therefore highlight a novel role for a cyclin-dependent kinase inhibitor in differentiation, distinct to their known function in cell cycle exit. Furthermore, we show that a novel, mutual inhibition between PU.1 expression and S-phase progression provides a “synchromesh” mechanism that “locks” the erythroid differentiation program to the cell cycle clock, ensuring precise coordination of critical differentiation events. PMID:20877475

  13. Cell cycle synchronization and BrdU incorporation as a tool to study the possible selective elimination of ErbB1 gene in the micronuclei in A549 cells.

    PubMed

    Lauand, C; Niero, E L; Dias, V M; Machado-Santelli, G M

    2015-05-01

    Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene that encodes epidermal growth factor receptor (EGFR). ErbB1 amplification and mutation are associated with tumor aggressiveness and low response to therapy. The aim of the present study was to design a schedule to synchronize the cell cycle of A549 cell line (a non-small cell lung cancer) and to analyze the possible association between the micronuclei (MNs) and the extrusion of ErbB1 gene extra-copies. After double blocking, by the process of fetal bovine serum deprivation and vincristine treatment, MNs formation was monitored with 5-bromo-2-deoxyuridine (BrdU) incorporation, which is an S-phase marker. Statistical analyses allowed us to infer that MNs may arise both in mitosis as well as in interphase. The MNs were able to replicate their DNA and this process seemed to be non-synchronous with the main cell nuclei. The presence of ErbB1 gene in the MNs was evaluated by fluorescent in situ hybridization (FISH). ErbB1 sequences were detected in the MNs, but a relation between the MNs formation and extrusion of amplified ErbB1 could not be established. The present study sought to elucidate the meaning of MNs formation and its association with the elimination of oncogenes or other amplified sequences from the tumor cells. PMID:25760027

  14. Cell cycle synchronization and BrdU incorporation as a tool to study the possible selective elimination of ErbB1 gene in the micronuclei in A549 cells

    PubMed Central

    Lauand, C.; Niero, E.L.; Dias, V.M.; Machado-Santelli, G.M.

    2015-01-01

    Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene that encodes epidermal growth factor receptor (EGFR). ErbB1 amplification and mutation are associated with tumor aggressiveness and low response to therapy. The aim of the present study was to design a schedule to synchronize the cell cycle of A549 cell line (a non-small cell lung cancer) and to analyze the possible association between the micronuclei (MNs) and the extrusion of ErbB1 gene extra-copies. After double blocking, by the process of fetal bovine serum deprivation and vincristine treatment, MNs formation was monitored with 5-bromo-2-deoxyuridine (BrdU) incorporation, which is an S-phase marker. Statistical analyses allowed us to infer that MNs may arise both in mitosis as well as in interphase. The MNs were able to replicate their DNA and this process seemed to be non-synchronous with the main cell nuclei. The presence of ErbB1 gene in the MNs was evaluated by fluorescent in situ hybridization (FISH). ErbB1 sequences were detected in the MNs, but a relation between the MNs formation and extrusion of amplified ErbB1could not be established. The present study sought to elucidate the meaning of MNs formation and its association with the elimination of oncogenes or other amplified sequences from the tumor cells. PMID:25760027

  15. Synchronizing large systolic arrays

    SciTech Connect

    Fisher, A.L.; Kung, H.T.

    1982-04-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of systolic array, it may be convenient to think of all processors as operating in lock step. Totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternate means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. This paper represents a first step towards a systematic study of synchronization problems for large systolic arrays.

  16. Bovine serum albumin nanospheres synchronously encapsulating "gold selenium/gold" nanoparticles and photosensitizer for high-efficiency cancer phototherapy.

    PubMed

    Yu, Cong; Wo, Fangjie; Shao, Yuxiang; Dai, Xiangyun; Chu, Maoquan

    2013-03-01

    Gold nanostructures have generated significant attention in biomedical areas because of their major role in cancer photothermal therapeutics. In order to conveniently combine gold nanostructures and drugs into one nanocomposite, Au2Se/Au core-shell nanostructures with strong near-infrared-absorbing properties were synthesized using a simple method and embedded inside bovine serum albumin (BSA) nanospheres by using a spray dryer equipped with an ultrasonic atomizer followed by thermal denaturation. The nanospheres with narrow size distribution mainly ranging from 450 to 600 nm were obtained. The Au2Se/Au-loaded BSA nanospheres (1 mg) adsorbed at least 0.01 mg of water-insoluble zinc phthalocyanine (ZnPc) photosensitizer. After irradiation with a 655-nm laser (20 min), the temperature of the Au2Se/Au-loaded BSA nanospheres [200 μL, 2 mg/mL, BSA/Au2Se/Au 10:1 (w/w)] increased by over 20 °C from the initial temperature of 24.82 ± 0.15 °C, and the release of ZnPc was improved compared with a corresponding sample without irradiation. After being incubated with cancer cells (human esophageal carcinoma Eca-109), the nanospheres exhibited photothermal and photodynamic therapy with a synergistic effect upon laser irradiation. This work provides novel Au2Se/Au-loaded polymer nanospheres prepared by a high-efficiency strategy for incorporating drugs for improving the efficiency in killing cancer cells. PMID:23322252

  17. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  18. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  19. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  20. Transient Uncoupling Induces Synchronization.

    PubMed

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-31

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously. PMID:26274420

  1. Analysis on operational power and eddy current losses for applying coreless double-sided permanent magnet synchronous motor/generator to high-power flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Park, Ji-Hoon; You, Dae-Joon; Choi, Sang-Ho

    2009-04-01

    This paper deals with analytical approach of operational power defined as load power and rotor loss represented as eddy current loss for applying a permanent magnet (PM) synchronous motor/generator to the high-power flywheel energy storage system. The used model is composed of a double-sided Halbach magnetized PM rotor and coreless three-phase winding stator. For one such motor/generator structure, we provide the magnetic field and eddy current with space and time harmonics via magnetic vector potential in two-dimensional (2D) polar coordinate system. From these, the operational power is estimated by backelectromotive force according to the PM rotor speed, and the rotor loss is also calculated from Poynting theorem.

  2. Elastic interactions synchronize beating in cardiomyocytes.

    PubMed

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications. PMID:27352146

  3. Are feedback loops destructive to synchronization?

    NASA Astrophysics Data System (ADS)

    Sheshbolouki, A.; Zarei, M.; Sarbazi-Azad, H.

    2015-08-01

    We study the effects of directionality on synchronization of dynamical networks. Performing the linear stability analysis and the numerical simulation of the Kuramoto model in directed networks, we show that balancing in- and out-degrees of all nodes enhances the synchronization of sparse networks, especially in networks with high clustering coefficient and homogeneous degree distribution. Furthermore, by omitting all the feedback loops, we show that while hierarchical directed acyclic graphs are structurally highly synchronizable, their global synchronization is too sensitive to the choice of natural frequencies and is strongly affected by noise.

  4. High-Frequency Stimulation of Excitable Cells and Networks

    PubMed Central

    Weinberg, Seth H.

    2013-01-01

    High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse. Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate, increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the influence of HF stimulation on neural networks. PMID:24278435

  5. High-Cycle-Life Lithium Cell

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  6. Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells.

    PubMed

    Kis, M; Asztalos, E; Sipka, G; Maróti, P

    2014-12-01

    The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0-4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·10(4) s(-1)) and yield (F v/F max ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·10(4) s(-1)). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand. PMID:25022916

  7. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  8. Synchronous navigation for CT colonography

    NASA Astrophysics Data System (ADS)

    Huang, Adam; Summers, Ronald M.; Roy, Dave

    2006-03-01

    We present a synchronous navigation module for CT colonography (CTC) reading. The need for such a system arises because most CTC protocols require a patient to be scanned in both supine and prone positions to increase sensitivity in detecting colonic polyps. However, existing clinical practices are limited to reading one scan at a time. Such limitation is due to the fact that building a reference system between scans for the highly flexible colon is a nontrivial task. The conventional centerline approach, generating only the longitudinal distance along the colon, falls short in providing the necessary orientation information to synchronize the virtual navigation cameras in both scanned positions. In this paper we describe a synchronous navigation system by using the teniae coli as anatomical references. Teniae coli are three parallel bands of longitudinal smooth muscle on the surface of the colon. They are morphologically distinguishable and form a piecewise triple helix structure from the appendix to the sigmoid colon. Because of these characteristics, they are ideal references to synchronize virtual cameras in both scanned positions. Our new navigation system consists of two side-by-side virtual colonoscopic view panels (for the supine and prone data sets respectively) and one single camera control unit (which controls both the supine and prone virtual cameras). The capability to examine the same colonic region simultaneously in both scanned images can raise an observer's confidence in polyp identification and potentially improve the performance of CT colonography.

  9. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  10. Synchronization and desynchronization in epilepsy: controversies and hypotheses

    PubMed Central

    Jiruska, Premysl; de Curtis, Marco; Jefferys, John G R; Schevon, Catherine A; Schiff, Steven J; Schindler, Kaspar

    2013-01-01

    Epilepsy has been historically seen as a functional brain disorder associated with excessive synchronization of large neuronal populations leading to a hypersynchronous state. Recent evidence showed that epileptiform phenomena, particularly seizures, result from complex interactions between neuronal networks characterized by heterogeneity of neuronal firing and dynamical evolution of synchronization. Desynchronization is often observed preceding seizures or during their early stages; in contrast, high levels of synchronization observed towards the end of seizures may facilitate termination. In this review we discuss cellular and network mechanisms responsible for such complex changes in synchronization. Recent work has identified cell-type-specific inhibitory and excitatory interactions, the dichotomy between neuronal firing and the non-local measurement of local field potentials distant to that firing, and the reflection of the neuronal dark matter problem in non-firing neurons active in seizures. These recent advances have challenged long-established views and are leading to a more rigorous and realistic understanding of the pathophysiology of epilepsy. PMID:23184516

  11. Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding

    PubMed Central

    Iturri, Jagoba; García-Fernández, Luis; Reuning, Ute; García, Andrés J.; Campo, Aránzazu del; Salierno, Marcelo J.

    2015-01-01

    The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies. PMID:25825012

  12. Pregnancy per AI differences between primiparous and multiparous high-yield dairy cows after using Double Ovsynch or G6G synchronization protocols.

    PubMed

    Astiz, S; Fargas, O

    2013-04-15

    The objective of the present work was to determine the optimal protocol for timed AI on high-yield dairy cows. The pregnancy per AI (pregnancy/AI) arising from 7805 first timed artificial inseminations on 27 dairy farms in eastern Spain was examined after use of the Double Ovsynch (DOv; N = 6783) or G6G (N = 1022) synchronization protocols. Parity number, farm, prostaglandin analogue, and season (hot or cool) were examined for their possible association with postsynchronization fertility (in terms of pregnancy/AI). Mean pregnancy/AI overall was 36.1 ± 8.4%, with no significant differences between the DOv or G6G protocols (36.3 ± 8.3% vs. 34.8 ± 9.1%). However, parity and synchronization treatment resulted in a significant interaction (P = 0.03). When DOv AIs (N = 6783) and G6G AIs (N = 1022) were analyzed separately it was observed that pregnancy/AI was significantly better in primiparous than in multiparous cows after DOv (44.3 ± 11.4% vs. 31.4 ± 8.2%; P < 0.0001), and pregnancy/AI was similar after G6G in primiparous and in multiparous cows (34.7 ± 9.2% vs. 34.8 ± 9.9%). Hot season significantly reduced pregnancy/AI to a similar extent for primiparous and multiparous cows and showed a significant interaction of protocol and season (P = 0.001). These results were similar across all farms, regardless that their overall pregnancy/AI was similar or significantly different from the average. These results indicate that G6G tended to be associated with a higher pregnancy/AI than DOv in multiparous cows, and the opposite was observed in primiparous cows. PMID:23453255

  13. High voltage planar multijunction solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C. P. (Inventor)

    1982-01-01

    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer.

  14. High-Gain Thompson-Scattering X-Ray Free-Electron Laser by Time-Synchronic Laterally Tilted Optical Wave

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Tang, Chuanxiang; Wu, Juhao

    2013-02-01

    A novel approach to generating coherent x rays with 109-1010 photons and femtoseconds duration per laser pulse is proposed. This high intensity x-ray source is realized first by the pulse front tilt of a lateral fed laser to extend the electron-laser synchronic interaction time by several orders, which accomplishes the high-gain free-electron-laser-type exponential growth process and coherent emission with highly microbunched electron beam. Second, two methods are presented to enhance the effective optical undulator strength parameter. One is to invoke lenses to focus two counterpropagating lasers that are at normal incidence to the electron beam as a transverse standing wave; the other is to invent a periodic microstructure that can significantly enhance the center electromagnetic field realized by a resonant standing wave and the quadrupole waveguides. The energy coupling efficiency between the electron beam and laser is therefore greatly improved to generate the high brightness x rays, which is demonstrated by analytical and simulation results.

  15. Remote bistatic receiver synchronization using DLL techniques

    NASA Astrophysics Data System (ADS)

    Aguasca, A.; Broquetas, A.; Fdez de Muniain, J.; Ambros, A.

    An experimental staggered pulse repetition frequency synchronizer, based on a delay-lock loop (DLL) was tested using a transmitter signal simulator that simulates the staggering sequence windowed by the antenna beam. The measured system performance ensures synchronization with a 30-ms direct illumination, with an accumulated delay error in the order of the resolution cell positioning error in range. An artificial time expansion of the received pulses is performed in order to reduce the acquisition time synchronization. A bistatic radar synchronization method based on DLL was is analyzed by linearization of the different parts and signals involved. The parameters that degrade system performance are obtained. And some solutions are represented in order to minimize their effects.

  16. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  17. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  18. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    ERIC Educational Resources Information Center

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  19. High-rate lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goebel, F.

    1982-01-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  20. Synchronous high-resolution phenotyping of leaf and root growth in Nicotiana tabacum over 24-h periods with GROWMAP-plant

    PubMed Central

    2013-01-01

    Background Root growth is highly responsive to temporal changes in the environment. On the contrary, diel (24 h) leaf expansion in dicot plants is governed by endogenous control and therefore its temporal pattern does not strictly follow diel changes in the environment. Nevertheless, root and shoot are connected with each other through resource partitioning and changing environments for one organ could affect growth of the other organ, and hence overall plant growth. Results We developed a new technique, GROWMAP-plant, to monitor growth processes synchronously in leaf and root of the same plant with a high resolution over the diel period. This allowed us to quantify treatment effects on the growth rates of the treated and non-treated organ and the possible interaction between them. We subjected the root system of Nicotiana tabacum seedlings to three different conditions: constant darkness at 22°C (control), constant darkness at 10°C (root cooling), and 12 h/12 h light–dark cycles at 22°C (root illumination). In all treatments the shoot was kept under the same 12 h/12 h light–dark cycles at 22°C. Root growth rates were found to be constant when the root-zone environment was kept constant, although the root cooling treatment significantly reduced root growth. Root velocity was decreased after light-on and light-off events of the root illumination treatment, resulting in diel root growth rhythmicity. Despite these changes in root growth, leaf growth was not affected substantially by the root-zone treatments, persistently showing up to three times higher nocturnal growth than diurnal growth. Conclusion GROWMAP-plant allows detailed synchronous growth phenotyping of leaf and root in the same plant. Root growth was very responsive to the root cooling and root illumination, while these treatments altered neither relative growth rate nor diel growth pattern in the seedling leaf. Our results that were obtained simultaneously in growing leaves and roots of the same

  1. Research on synchronization technique of the DRM system

    NASA Astrophysics Data System (ADS)

    Guo, Wen-fei; Zheng, Jian-sheng; Cheng, Wen; Su, Fan

    2011-10-01

    To deal with the degradation of the synchronization performance in low SNR condition, a novel DRM (Digital Radio Mondiale) synchronization algorithm is proposed. The proposed algorithm employs cyclic prefix for timing synchronization and fractional frequency offset estimation like conventional methods, but accomplishes frame synchronization and integer frequency offset estimation using time pilot cells and differential coding technologies, which are designed specially for the DRM system. After channel estimation and equalization, frequency pilot cells are used to estimate residue fractional frequency offset and subsequent sample offset as well as fixed phase offset to achieve complete synchronization. Simulation results show that the proposed algorithm can possesses better time and frequency synchronization performance than the conventional method in the multi-path fading channel with low SNR condition.

  2. Three Synchronous Atypical Metastases of Clear Cell Renal Carcinoma to the Maxillary Gingiva, Scalp and the Distal Phalanx of the Fifth Digit: A Case Report.

    PubMed

    Selvi, Firat; Faquin, William C; Michaelson, Marc Dror; August, Meredith

    2016-06-01

    Oral cavity metastasis of malignant tumors is extremely rare and accounts for only 1% of all malignant oral tumors. Renal cell carcinoma (RCC) can metastasize to any part of the body, with a 15% risk of metastasis to the head and neck region when the disease is disseminated and a 1% risk when it is not. RCC also is the third most common infraclavicular neoplasm that metastasizes to the oral cavity, after lung carcinoma in men and breast carcinoma in women. In the maxillofacial region, the nasal cavity and paranasal sinuses are the most commonly affected sites, followed by the oral cavity. This report describes the case of a 51-year-old man with a history of clear RCC presenting with 3 synchronous atypical metastases of this tumor to the maxillary gingiva, scalp, and distal phalanx of the fifth digit. Clinical findings, diagnosis, pathology, and treatment of these lesions are discussed. Metastasis of RCC should always be included in the differential diagnosis when a new oral and maxillofacial lesion appears in a patient with a history of RCC because the metastatic lesions can often present in a broad spectrum of forms. The rapid growth of these lesions should alert clinicians to avoid any delays in biopsy examination and subsequent treatment, which is usually palliative, because prognosis is usually poor. PMID:26954558

  3. Binary synchronous simulator

    NASA Technical Reports Server (NTRS)

    Rogers, J. R., III

    1980-01-01

    Flexible simulator for trouble-shooting data transmission system uses binary synchronous communications protocol to produce error-free transmission of data between two points. Protocol may be used to replace display generator or be directly fed to display generator.

  4. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  5. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  6. Synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Arenas, Alex; Díaz-Guilera, Albert; Kurths, Jurgen; Moreno, Yamir; Zhou, Changsong

    2008-12-01

    Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  7. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  8. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  9. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion.

    PubMed

    Ubezio, Benedetta; Blanco, Raquel Agudo; Geudens, Ilse; Stanchi, Fabio; Mathivet, Thomas; Jones, Martin L; Ragab, Anan; Bentley, Katie; Gerhardt, Holger

    2016-01-01

    Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning. PMID:27074663

  10. Analysis of FDDI synchronous traffic delays

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1988-01-01

    The Fiber Distributed Data Interface (FDDI) high-speed token-ring protocol provides support for two classes of service: synchronous, to support applications which require deterministic access to the channel, and asynchronous, to support applications which do not have such stringent response-time requirements. The purpose of this paper is to determine how to set ring parameters to support synchronous traffic most efficiently. Both theoretical results and results obtained from a simulation study are presented.

  11. Avoided Crossing and Synchronization

    NASA Astrophysics Data System (ADS)

    Sekii, T.; Shibahashi, H.

    2013-12-01

    We examine avoided crossing of stellar pulsations in the nonlinear regime, where synchronization may occur, based on a simple model of weakly coupled van der Pol oscillators with close frequencies. For this simple case, avoided crossing is unaffected in the sense that there is a frequency difference between the symmetric and antisymmetric modes, but as a result of synchronization, unlike the linear oscillations case, the system can vibrate in only one of the modes.

  12. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  13. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  14. Synchronous Earth Observatory Satellite /SEOS/

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1974-01-01

    NASA/GSFC is currently studying the applications and technical requirements for a Synchronous Earth Observations Satellite (SEOS). Such a satellite would combine the relatively high resolution and multi-spectral capability of the Earth Resources Technology Satellite (ERTS) with the on-station continuous monitoring of the Synchronous Meteorological Satellite (SMS). SEOS capability is geared to perform disaster warning of tornadoes and floods as well as to monitor transient phenomena affecting earth resources (e.g., green waves and algae blooms). The heart of the system is a Large Earth Survey Telescope (LEST) which has a designed 1.5 meter diameter. Spectral bands in the visible, near- and far-infrared have been selected to optimize SEOS utility. A microwave sounder will be used in conjunction with the LEST for meteorological applications.

  15. Noise and Synchronization in Pairs of Beating Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Polin, Marco; Tuval, Idan

    2009-10-01

    It has long been conjectured that hydrodynamic interactions between beating eukaryotic flagella underlie their ubiquitous forms of synchronization; yet there has been no experimental test of this connection. The biflagellate alga Chlamydomonas is a simple model for such studies, as its two flagella are representative of those most commonly found in eukaryotes. Using micromanipulation and high-speed imaging, we show that the flagella of a C. reinhardtii cell present periods of synchronization interrupted by phase slips. The dynamics of slips and the statistics of phase-locked intervals are consistent with a low-dimensional stochastic model of hydrodynamically coupled oscillators, with a noise amplitude set by the intrinsic fluctuations of single flagellar beats.

  16. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  17. [Synchronous carcinomas of the colon and rectum].

    PubMed

    Mandarano, R; Ciccone, A

    1995-12-01

    The authors base their observations on 3 cases of synchronous carcinoma of the large intestine and 1 case of association of cancer on polyps and synchronous colorectal carcinoma. After a short review of the etiopathogenetic and diagnostic aspects, they focus attention in particular on the various types on surgical approach which synchronous carcinoma of the large intestine offer to surgeons. The authors underline that numerous forms of surgery exist which are often complex and difficult, especially if multiple neoplasia involve separate colic segments and above all if they affect the distal rectal section. In conclusion, they affirm that the association of cancer on polyps and synchronous colorectal carcinoma is not rare and should be treated using combined endoscopic and surgical therapy. To the precise colic exeresis should be followed by endoscopic resection in the case of a scissil, villous polyps with high non-differentiated neoplastic tissue laying close on the endoscopic plane of section. PMID:8725069

  18. Considering High School Students' Experience in Asynchronous and Synchronous Distance Learning Environments: QoE Prediction Model

    ERIC Educational Resources Information Center

    Malinovski, Toni; Vasileva, Marina; Vasileva-Stojanovska, Tatjana; Trajkovik, Vladimir

    2014-01-01

    Early identification of relevant factors that influence students' experiences is vitally important to the educational process since they play an important role in learning outcomes. The purpose of this study is to determine underlying constructs that predict high school students' subjective experience and quality expectations during…

  19. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  20. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. PMID:25615406

  1. Increased Intraregional Synchronized Neural Activity in Adult Brain After Prolonged Adaptation to High-Altitude Hypoxia: A Resting-State fMRI Study.

    PubMed

    Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Zhang, Jiaxing

    2016-03-01

    The human brain is intrinsically plastic such that its functional architecture can be reorganized in response to environmental pressures and physiological changes. However, it remains unclear whether a compensatory modification of spontaneous neural activity occurs in adult brain during prolonged high-altitude (HA) adaptation. In this study, we obtained resting-state functional magnetic resonance (MR) images in 16 adults who have immigrated to Qinghai-Tibet Plateau (2300-4400 m) for 2 years and in 16 age-matched sea level (SL) controls. A validated regional homogeneity (Reho) method was employed to investigate the local synchronization of resting-state functional magnetic resonance imaging (fMRI) signals. Seed connectivity analysis was carried out subsequently. Cognitive and physiological assessments were made and correlated with the image metrics. Compared with SL controls, global mean Reho was significantly increased in HA immigrants as well as a regional increase in the right inferolateral sensorimotor cortex. Furthermore, mean z-Reho value extracted within the inferolateral sensorimotor area showed trend-level significant inverse correlation with memory search reaction time in HA immigrants. These observations, for the first time, provide evidence of adult brain resilience of spontaneous neural activity after long-term HA exposure without inherited and developmental effects. Resting-state fMRI could yield valuable information for central mechanisms underlying respiratory and cognitive compensations in adults during prolonged environmentally hypoxic adaptation, paving the way for future HA-adaptive training. PMID:26906285

  2. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    NASA Technical Reports Server (NTRS)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  3. High resolution measurement of striation patterns and sarcomere motions in cardiac muscle cells.

    PubMed Central

    Krueger, J W; Denton, A

    1992-01-01

    We describe an extension of the method of Myers et al. (1982) to measure with high precision the uniformity of contractile motions that occur between sarcomeres in the isolated cardiac muscle cell (guinea pig and rat). The image of the striations, observed with modulation contrast microscopy, was detected by a linear array of photodiodes. Sarcomere length was measured greater than 500/s from the frequency of the array's video signal at two selectable regions of the cell. A precision test grating demonstrated that method resolves known differences in the spacing between two contiguous striations to +/- 0.01 micron and that the effects of image translation and microscopic resolution are minor. The distribution of striation spacing appears to be discrete in isolated segments of the cell, and patches of fairly uniform length can be identified that are laterally contiguous. When electrically triggered, contraction is synchronous and the sarcomeres shorten and relengthen smoothly. The contrast between the striations is transiently enhanced during relengthening, an indication that the contracting cell can not be treated as a simple grating. Pauses that occur during late in relengthening (and transient contractile alternans) are characterized by very synchronized activity. These forms of irregular contractile behavior are not explained by desynchronization of a mechanism of release of intracellular calcium. A companion article describes application of the technique to study the nonuniform motions that occur between sarcomeres. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1540686

  4. Lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes

    PubMed Central

    Park, Jinkyu; McCormick, Sean P.; Chakrabarti, Mrinmoy; Lindahl, Paul A.

    2014-01-01

    Fermenting cells growing exponentially on rich (YPAD) medium transitioned to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transitionary period, the high-affinity Fe import rate declined slower than the cell growth rate declined, causing Fe to accumulate, initially as FeIII oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once in slow-growth mode, Fe import and cell growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during exponential phase and transitioned to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in stationary state. Fe initially accumulated as nanoparticles and high-spin FeII species, but vacuolar FeIII also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more ROS damage than younger cells, suggesting that Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included Fe import via a regulated high-affinity pathway and an unregulated low-affinity pathway. Fe import from the cytosol into vacuoles and mitochondria, and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of

  5. Paclitaxel disrupts polarized entry of membrane-permeable C6 ceramide into ovarian cancer cells resulting in synchronous induction of cell death

    PubMed Central

    BEST, CHARLES; CALIANESE, DAVID; SZULAK, KEVIN; CAMMARATA, GARRET; BRUM, GABRIELLA; CARBONE, THOMAS; STILL, ERIC; HIGGINS, KATELYN; JI, FANG; DI, WEN; WANEBO, HAROLD; WAN, YINSHENG

    2013-01-01

    Exogenous cell-permeable C6 ceramide has been demonstrated to act synergistically with chemotherapeutic drugs, including paclitaxel, cisplatin, doxorubicin and the histone deacetylase inhibitor, trichostatin A, to induce cell death in a variety of cancer cells. We previously demonstrated that C6 ceramide and paclitaxel function synergistically to induce ovarian cancer cell death via modulation of the PI3/AKT cell survival pathway. In the present study, the entry pattern of C6 ceramide into ovarian cancer cells was investigated using fluorescent short chain C6-NBD sphingomyelin (C6-NBD). Confocal microscopy revealed that C6-NBD enters the cells in a polarized pattern, characterized by marked signals at one cellular end, representing a likely mitosis initiation site. Pretreatment of the cells with filipin, an inhibitor of the lipid raft/caveolae endocytosis pathway, decreases C6-NBD entry into the cells. A pretreatment with the water channel inhibitor, CuSO4, was also found to reduce the entry of C6-NBD. Notably, the pretreatment with paclitaxel was shown to disrupt the polarized entry of C6-NBD into the cells, resulting in an even distribution of C6-NBD in the cytoplasm. In addition, the pretreatment of the cells with paclitaxel destabilized the cytoskeletal proteins, releasing an increased number of short tubulin fragments. The results of the present study indicate that C6 ceramide preferentially enters the cells via a predetermined initiation site of mitosis. In addition to diffusion, short chain C6 ceramide may also enter cells via water channels and caveolae-mediated endocytosis. Paclitaxel disrupts the cell cytoskeleton and induces an even distribution of C6 ceramide in the cytoplasm resulting in synergistic ovarian cancer cell death. PMID:23833655

  6. Different responses of two highly permissive cell lines upon HCV infection.

    PubMed

    Chen, Honghe; Pei, Rongjuan; Chen, Xinwen

    2013-08-01

    The construction of the first infectious clone JFH-1 speeds up the research on hepatitis C virus (HCV). However, Huh7 cell line was the only highly permissive cell line for HCV infection and only a few clones were fully permissive. In this study, two different fully permissive clones of Huh7 cells, Huh7.5.1 and Huh7-Lunet-CD81 (Lunet-CD81) cells were compared for their responses upon HCV infection. The virus replication level was found slightly higher in Huh7.5.1 cells than that in Lunet-CD81 cells. Viability of Huh7.5.1 cells but not of Lunet-CD81 cells was reduced significantly after HCV infection. Further analysis showed that the cell cycle of infected Huh7.5.1 cells was arrested at G1 phase. The G1/S transition was blocked by HCV infection in Huh7.5.1 cells as shown by the cell cycle synchronization analysis. Genes related to cell cycle regulation was modified by HCV infection and gene interaction analysis in GeneSpring GX in Direct Interactions mode highlighted 31 genes. In conclusion, the responses of those two cell lines were different upon HCV infection. HCV infection blocked G1/S transition and cell cycle progress, thus reduced the cell viability in Huh7.5.1 cells but not in Lunet-CD81 cells. Lunet-CD81 cells might be suitable for long term infection studies of HCV. PMID:23818110

  7. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  8. Optimistic barrier synchronization

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  9. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  10. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  11. Synchronization of coupled single-electron circuits based on nanoparticles and tunneling junctions

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2009-04-01

    We explore theoretically the synchronization properties of a device composed of coupled single-electron circuits whose building blocks are nanoparticles interconnected with tunneling junctions. Elementary nanoscillators can be achieved by a single-electron tunneling cell where the relaxation oscillation is induced by the tunneling. We develop a model to describe the synchronization of the nanoscillators and present sample calculations to demonstrate that the idea is feasible and could readily find applications. Instead of considering a particular system, we analyze the general properties of the device making use of an ideal model that emphasizes the essential characteristics of the concept. We define an order parameter for the system as a whole and demonstrate phase synchronization for sufficiently high values of the coupling resistance.

  12. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  13. High-efficiency silicon concentrator cell commercialization

    SciTech Connect

    Sinton, R.A.; Swanson, R.M.

    1993-05-01

    This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

  14. A high temperature high pressure cell for quasielastic neutron scattering

    SciTech Connect

    Yang, F.; Meyer, A.; Kaplonski, J.; Unruh, T.; Mamontov, E.

    2011-08-15

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm{sup 3}. The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.

  15. A high temperature high pressure cell for quasielastic neutron scattering.

    PubMed

    Yang, F; Kaplonski, J; Unruh, T; Mamontov, E; Meyer, A

    2011-08-01

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts. PMID:21895254

  16. Heinrich Stadial 4: sequence of events from North to South seen in high resolution Greenland and Antarctic ice cores and suggestion of synchronization to North Atlantic marine records

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Bazin, Lucie; Stowasser, Christopher; Landais, Amaelle; Masson-Delmotte, Valérie; Prié, Frédéric; Blunier, Thomas; Eynaud, Frédérique; Michel, Elisabeth; Vinther, Bo M.

    2013-04-01

    The last glacial period was affected by the occurrence of rapid climatic events at the millennial time scale known as Dansgaard-Oeschger (DO) events. In Greenland, these events are composed of a rapid temperature increase of 5-16° in less than a century, a warm phase lasting several centuries (InterStadial, GI) followed by a more gradual temperature decrease, and finally a cold phase (Stadial, GS). An Antarctic counterpart to each GI of the Last Glacial Period has been identified in Antarctic ice cores. In the North Atlantic Ocean, marine cores also record changes in surface temperature as well as the occurrence during cold phases of ice rafted debris horizons, corresponding to massive icebergs discharges, known as Heinrich (H) events. It has never been possible to identify the presence of H events from temperature proxies in Greenland ice cores. It thus remains difficult to compare the durations of H events and GS. Here, we focus on the time period covering DO 9 to 7 (41 to 34 ka b2k according to the GICC05/AICC2012 time scales), with H event 4 occurring during GS 9. We present a compilation of high resolution measurements (about 60 years) of this period based on Greenland and Antarctic ice cores data (ice and gas) synchronized on the new time scale AICC2012. Proxies for local Greenland temperature (δ15N-N2, δ18O-H2O) record GS9 as a uniform period lasting ~1850 years, followed by a sharp transition to GI8. This pattern is also seen in continuous methane concentration data (NEEM ice core, Greenland) showing a large increase by ~100 ppbv at the GS9 - GI8 transition. However, using additional proxies and a detailed inspection of the methane profile, GS9 can be divided into 3 phases. The first 600 years of GS9 (phase 1) are characterized by low CO2 and methane concentration, intermediate δD of CH4 (tracer of methane sources), high NEEM 17O-excess (proxy for vapor source relative humidity) and a progressive increase in EDML δ18O. The transition between phase 1

  17. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  18. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  19. Synchronization of shift register generators in distributed sample scramblers

    NASA Astrophysics Data System (ADS)

    Kim, Seok Chang; Lee, Byeong Gi

    1994-02-01

    In this paper a theory is developed to support the synchronization of shift register generators (SRG) in the distributed sample scramblers (DSS). DSSs, recently introduced for the cell-based ATM scrambling, are identical to the frame synchronous scramblers (FSS) in scrambling and descrambling processes, but are different in synchronizing the descrambler SRG states. The paper provides a systematic solution to the DSS synchronization problem based on mathematical modelling. It first considers how to sample the SRG state information of scrambler for transmission. Then it discusses how to use the received SRG state samples for the synchronization of the SRG state of descrambler. Examples are attached at the end to demonstrate the developed theory in the cell-based ATM scrambling environment.

  20. Synchronized time stamp support

    SciTech Connect

    Kowalkowski, J.

    1994-02-16

    New software has been added to IOC core to maintain time stamps. The new software has the ability to maintain time stamps over all IOCs on a network. The purpose of this paper is to explain how EPICS will synchronize the time stamps. In addition, this paper will explain how to configure and use the new EPICS time stamp support software.

  1. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  2. High temperature solid state storage cell

    SciTech Connect

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  3. High efficiency picosecond pulse generation in the 675-930 nm region from a dye laser synchronously pumped by an argon-ion laser. Technical report

    SciTech Connect

    Bado, P.; Dupuy, C.; Wilson, K.R.; Boggy, R.; Bowen, J.

    1983-04-01

    Picosecond pulses tunable from 675 to 930 micrometers have been obtained from a dye-laser synchronously pumped at 514.5 micrometers by a mode-locked Argon-ion laser. Peak energy conversion efficiencies between 10% and 29% are observed with pulse durations between 1.7 ps and 16 ps as measured by autocorrelation.

  4. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  5. Highly efficient single cell arraying by integrating acoustophoretic cell pre-concentration and dielectrophoretic cell trapping.

    PubMed

    Kim, Soo Hyeon; Antfolk, Maria; Kobayashi, Marina; Kaneda, Shohei; Laurell, Thomas; Fujii, Teruo

    2015-11-21

    To array rare cells at the single-cell level, the volumetric throughput may become a bottleneck in the cell trapping and the subsequent single-cell analysis, since the target cells per definition commonly exist in a large sample volume after purification from the original sample. Here, we present a novel approach for high throughput single cell arraying by integrating two original microfluidic devices: an acoustofluidic chip and an electroactive microwell array. The velocity of the cells is geared down in the acoustofluidic chip while maintaining a high volume flow rate at the inlet of the microsystem, and the cells are subsequently trapped one by one into the microwell array using dielectrophoresis. The integrated system exhibited a 10 times improved sample throughput compared to trapping with the electroactive microwell array chip alone, while maintaining a highly efficient cell recovery above 90%. The results indicate that the serial integration of the acoustophoretic pre-concentration with the dielectrophoretic cell trapping drastically improves the performance of the electroactive microwell array for highly efficient single cell analysis. This simple and effective system for high throughput single cell arraying with further possible integration of additional functions, including cell sorting and downstream analysis after cell trapping, has potential for development to a highly integrated and automated platform for single-cell analysis of rare cells. PMID:26439940

  6. Synchronization of EEG activity in patients with bipolar disorder

    NASA Astrophysics Data System (ADS)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  7. Heat transparent high intensity high efficiency solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  8. Feedthrough terminal for high-power cell

    DOEpatents

    Kaun, T.D.

    1982-05-28

    A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

  9. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  10. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  11. High-Throughput Cell Toxicity Assays.

    PubMed

    Murray, David; McWilliams, Lisa; Wigglesworth, Mark

    2016-01-01

    Understanding compound-driven cell toxicity is vitally important for all drug discovery approaches. With high-throughput screening (HTS) being the key strategy to find hit and lead compounds for drug discovery projects in the pharmaceutical industry [1], an understanding of the cell toxicity profile of hit molecules from HTS activities is fundamentally important. Recently, there has been a resurgence of interest in phenotypic drug discovery and these cell-based assays are now being run in HTS labs on ever increasing numbers of compounds. As the use of cell assays increases the ability to measure toxicity of compounds on a large scale becomes increasingly important to ensure that false hits are not progressed and that compounds do not carry forward a toxic liability that may cause them to fail at later stages of a project. Here we describe methods employed in the AstraZeneca HTS laboratory to carry out very large scale cell toxicity screening. PMID:27317000

  12. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures. PMID:26133832

  13. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  14. Thermal modeling of high efficiency AMTEC cells

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.

    1995-12-31

    Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Two parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.

  15. Synchronization of Eukaryotic Flagella and the Evolution of Multicellularity

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond

    2009-03-01

    Flagella, among the most highly conserved structures in eukaryotes, are responsible for such tasks as fluid transport, motility and phototaxis, establishment of embryonic left-right asymmetry, and intercellular communication, and are thought to have played a key role in the development of multicellularity. These tasks are usually performed by the coordinated action of groups of flagella (from pairs to thousands), which display various types of spatio-temporal organization. The origin and quantitative characterization of flagellar synchronization has remained an important open problem, involving interplay between intracellular biochemistry and interflagellar mechanical/hydrodynamic coupling. The Volvocine green algae serve as useful model organisms for the study of these phenomena, as they form a lineage spanning from unicellular Chlamydomonas to germ-soma differentiated Volvox, having as many as 50,000 biflagellated surface somatic cells. In this talk I will describe extensive studies [1], using micromanipulation and high-speed imaging, of the flagellar synchronization of two key species - Chlamydomonas reinhardtii and Volvox carteri - over tens of thousands of cycles. With Chlamydomonas we find that the flagellar dynamics moves back and forth between a stochastic synchronized state consistent with a simple model of hydrodynamically coupled noisy oscillators, and a deterministic one driven by a large interflagellar frequency difference. These results reconcile previously contradictory studies, based on short observations, showing only one or the other of these two states, and, more importantly, show that the flagellar beat frequencies themselves are regulated by the cell. Moreover, high-resolution three-dimensional tracking of swimming cells provides strong evidence that these dynamical states are related to reorientation events in the trajectories, yielding a eukaryotic equivalent of the ``run and tumble'' motion of peritrichously flagellated bacteria. The degree

  16. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  17. High-efficiency concentrator silicon solar cells

    SciTech Connect

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. . Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  18. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations

    PubMed Central

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on these results, we hypothesize that impaired speech perception in older persons may, in part, originate from deviances in neural synchronization. In this study, auditory steady-state responses that reflect synchronized activity of theta, beta, low and high gamma oscillations (i.e., 4, 20, 40, and 80 Hz ASSR, respectively) were recorded in young, middle-aged, and older persons. As all participants had normal audiometric thresholds and were screened for (mild) cognitive impairment, differences in synchronized neural activity across the three age groups were likely to be attributed to age. Our data yield novel findings regarding theta and high gamma oscillations in the aging auditory system. At an older age, synchronized activity of theta oscillations is increased, whereas high gamma synchronization is decreased. In contrast to young persons who exhibit a right hemispheric dominance for processing of high gamma range modulations, older adults show a symmetrical processing pattern. These age-related changes in neural synchronization may very well underlie the speech perception problems in aging persons. PMID:27378906

  19. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  20. Synchronously deployable truss structure

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor); Mikulas, M., Jr. (Inventor); Wallsom, E. (Inventor)

    1986-01-01

    A collapsible-expandable truss structure, including first and second spaced surface truss layers having an attached core layer is described. The surface truss layers are composed of a plurality of linear struts arranged in multiple triangular configurations. Each linear strut is hinged at the center and hinge connected at each end to a nodular joint. A passive spring serves as the expansion force to move the folded struts from a stowed collapsed position to a deployed operative final truss configuration. A damper controls the rate of spring expansion for the synchronized deployment of the truss as the folded configuration is released for deployment by the restrain belts. The truss is synchronously extended under the control of motor driven spools.

  1. Systematic characterization of cell cycle phase-dependent protein dynamics and pathway activities by high-content microscopy-assisted cell cycle phenotyping.

    PubMed

    Bruhn, Christopher; Kroll, Torsten; Wang, Zhao-Qi

    2014-12-01

    Cell cycle progression is coordinated with metabolism, signaling and other complex cellular functions. The investigation of cellular processes in a cell cycle stage-dependent manner is often the subject of modern molecular and cell biological research. Cell cycle synchronization and immunostaining of cell cycle markers facilitate such analysis, but are limited in use due to unphysiological experimental stress, cell type dependence and often low flexibility. Here, we describe high-content microscopy-assisted cell cycle phenotyping (hiMAC), which integrates high-resolution cell cycle profiling of asynchronous cell populations with immunofluorescence microscopy. hiMAC is compatible with cell types from any species and allows for statistically powerful, unbiased, simultaneous analysis of protein interactions, modifications and subcellular localization at all cell cycle stages within a single sample. For illustration, we provide a hiMAC analysis pipeline tailored to study DNA damage response and genomic instability using a 3-4-day protocol, which can be adjusted to any other cell cycle stage-dependent analysis. PMID:25458086

  2. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  3. Definitive Chemoradiation Therapy Following Surgical Resection or Radiosurgery Plus Whole-Brain Radiation Therapy in Non-Small Cell Lung Cancer Patients With Synchronous Solitary Brain Metastasis: A Curative Approach

    SciTech Connect

    Parlak, Cem; Mertsoylu, Hüseyin; Güler, Ozan Cem; Onal, Cem; Topkan, Erkan

    2014-03-15

    Purpose/Objectives: The aim of this study was to evaluate the impact of definitive thoracic chemoradiation therapy following surgery or stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) on the outcomes of patients with non-small cell lung cancer (NSCLC) with synchronous solitary brain metastasis (SSBM). Methods and Materials: A total of 63 NSCLC patients with SSBM were retrospectively evaluated. Patients were staged using positron emission tomography-computed tomography in addition to conventional staging tools. Thoracic radiation therapy (TRT) with a total dose of 66 Gy in 2 Gy fractions was delivered along with 2 cycles of cisplatin-based chemotherapy following either surgery plus 30 Gy of WBRT (n=33) or SRS plus 30 Gy of WBRT (n=30) for BM. Results: Overall, the treatment was well tolerated. All patients received planned TRT, and 57 patients (90.5%) were also able to receive 2 cycles of chemotherapy. At a median follow-up of 25.3 months (7.1-52.1 months), the median months of overall, locoregional progression-free, neurological progression-free, and progression-free survival were 28.6, 17.7, 26.4, and 14.6, respectively. Both univariate and multivariate analyses revealed that patients with a T1-T2 thoracic disease burden (P=.001), a nodal stage of N0-N1 (P=.003), and no weight loss (P=.008) exhibited superior survival. Conclusions: In the present series, surgical and radiosurgical treatments directed toward SSBM in NSCLC patients were equally effective. The similarities between the present survival outcomes and those reported in other studies for locally advanced NSCLC patients indicate the potentially curative role of definitive chemoradiation therapy for highly selected patients with SSBM.

  4. Practical parameter estimation through space harmonic method and experiment of permanent magnet linear synchronous motor for high accuracy field orient control

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; You, Dae-Joon; Jang, Won-Bum; Park, Ji-Hoon

    2005-05-01

    This paper presents the practical parameter estimation for a slotless air-cored permanent magnet linear synchronous motor (PMLSM) using an analytical method and experiment. In the analytical method, the linkage flux is calculated through the generalized magnetic vector potential obtained by the space harmonics and transfer relation with each region of permanent magnet (PM) mover, air gap, and winding stator. This linkage flux is used to estimate the dynamic parameters such as magnetization inductance, backemf, and thrust constant. Also, the resistance and self-inductance with one phase are obtained by the experiment. Therefore, dynamic simulation of a linear synchronous motor composed of dynamic parameters is performed by the nonrotating (d-q) voltage equation. In good agreement with the estimated parameter values, the experimental results confirm the validity of the analysis method and simulation.

  5. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  6. Superinsulator and quantum synchronization.

    SciTech Connect

    Vinokur, V. M.; Baturina, T. I.; Fistul, M. V.; Mironov, A. Yu.; Baklanov, M. R.; Strunk, C.; Materials Science Division; Inst. Semiconductor Physics; Univ. Regensburg; Ruhr-Univ. Bochum; IMEC

    2008-04-01

    Synchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture 'superconducting islands immersed into a normal matrix' and that tuning disorder drives the system from superconducting to insulating behavior. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system. Here we show that at a certain finite temperature, a Cooper-pair insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.

  7. Emergency Response Synchronization Matrix

    Energy Science and Technology Software Center (ESTSC)

    1999-06-01

    An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a community’s response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This system—based approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make real—time adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less

  8. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  9. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  10. High vacuum cells for classical surface techniques

    SciTech Connect

    Martinez, Imee Su; Baldelli, Steven

    2010-04-15

    Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.

  11. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  12. Synchronization system for Gamma-4 electrophysical facility

    NASA Astrophysics Data System (ADS)

    Grishin, A. V.; Nazarenko, S. T.; Kozachek, A. V.; Kalashnikov, D. A.; Glushkov, S. L.; Mironychev, B. P.; Martynov, V. M.; Turutin, V. V.; Kul'dyushov, D. A.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Esaeva, Yu. A.

    2015-01-01

    A synchronization system for the Gamma-4 four-module electrophysical facility has been developed. It has been shown that the synchronization system should provide triggering (with precision not worse than ±3 ns) of the high-voltage gas-filled trigatron-type switches of the facility modules (144 spark gaps with an operating voltage of 1 MV), the pre-pulse switches of the modules (24 spark gaps with an operating voltage of 3 MV) and eight Arkad'ev-Marx generators (40 spark gaps with an operating voltage of 100 kV).

  13. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  14. Observation of Flow-Induced Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Polin, M.; Tuval, I.; Drescher, K.; Goldstein, R. E.

    2008-11-01

    Colonial algae serve as model organisms for the study of evolutionary transitions to multicellularity, with species ranging from unicellular Chlamydomonas to Volvox, with thousands of biflagellated somatic cells. Locomotion and phototaxis of the multicellular species depends on the degree of coordination among those flagella, but little quantitative information has been available on the nature and degree of their spatio- temporal organization. Taking advantage of the spherical organism geometry, novel micromanipulation techniques, and high-speed imaging, we quantify in V. carteri the complex temporal dynamics of the flagella of individual somatic cells and the correlations of beat plane and beat phase between nearby cells. These flagella display the phenomenon of rhythm-splitting, well-known in the dynamics of coupled oscillators, and external flow is shown to strongly modify the degree of synchronization of flagella pairs.

  15. Synchronization of action potentials during low-magnesium-induced bursting

    PubMed Central

    Johnson, Sarah E.; Hudson, John L.

    2015-01-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103

  16. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  17. High Lifetime Solar Cell Processing and Design

    NASA Technical Reports Server (NTRS)

    Swanson, R. M.

    1985-01-01

    In order to maximize efficiency a solar cell must: (1) absorb as much light as possible in electron-hole production, (2) transport as large a fraction as possible of the electrons to the n-type terminal and holes to the p-type terminal without their first recombining, and (3) produce as high as possible terminal voltage. Step (1) is largely fixed by the spectrum of sunlight and the fundamental absorption characteristics of silicon, although some improvements are possible through texturizing induced light trapping and back surface reflectors. Steps (2) and (3) are, however, dependent on the recombination mechanisms of the cell. The recombination, on the contrary, is strongly influenced by cell processing and design. Some of the lessons during the development of point-contact-cell are discussed. Cell dependence on recombination, surface recombination, and contact recombination are discussed. Results show the overwhelming influence of contact recombination on the operation of the cell when the other sources of recombination are reduced by careful processing.

  18. High-temperature, high-pressure optical cell

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)

    1986-01-01

    The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.

  19. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  20. Coreless Concept for High Gradient Induction Cell

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  1. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  2. Speed of complex network synchronization

    NASA Astrophysics Data System (ADS)

    Grabow, C.; Grosskinsky, S.; Timme, M.

    2011-12-01

    Synchrony is one of the most common dynamical states emerging on networks. The speed of convergence towards synchrony provides a fundamental collective time scale for synchronizing systems. Here we study the asymptotic synchronization times for directed networks with topologies ranging from completely ordered, grid-like, to completely disordered, random, including intermediate, partially disordered topologies. We extend the approach of master stability functions to quantify synchronization times. We find that the synchronization times strongly and systematically depend on the network topology. In particular, at fixed in-degree, stronger topological randomness induces faster synchronization, whereas at fixed path length, synchronization is slowest for intermediate randomness in the small-world regime. Randomly rewiring real-world neural, social and transport networks confirms this picture.

  3. Breathing synchronization in interconnected networks

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2013-01-01

    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed. PMID:24256765

  4. Epileptiform synchronization in the cingulate cortex

    PubMed Central

    Panuccio, Gabriella; Curia, Giulia; Colosimo, Alfredo; Cruccu, Giorgio; Avoli, Massimo

    2016-01-01

    Summary Purpose The anterior cingulate cortex (ACC)— which plays a role in pain, emotions and behavior— can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. Methods We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. Results Bath-application of the convulsant 4- aminopyridine (4AP, 50 μM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. Conclusions Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC. PMID:19178556

  5. The emergence of synchronization behavior in Physarum polycephalum and its particle approximation.

    PubMed

    Tsuda, Soichiro; Jones, Jeff

    2011-03-01

    The regeneration process of contractile oscillation in the plasmodium of Physarum polycephalum is investigated experimentally and modelled computationally. When placed in a well, the Physarum cell restructures the body (fusion of small granule-like cells) and shows various complex oscillation patterns. After it completed the restructuring and regained synchronized oscillation within the body, the cell shows bilateral oscillation or rotating wave pattern. This regeneration process did not depend on the well size and all the cases tested here showed similar time course. Phase synchronization analysis based on Hilbert Transform also suggested that the cell can develop a fully synchronized oscillation within a fixed time no matter what the cell size is. A particle-based computational model was developed in order to model the emergence of oscillation patterns. Particles employing very simple and identical sensory and motor behaviors interacted with each other via the sensing and deposition of chemoattractants in a diffusive environment. From a random and almost homogeneous distribution, emergent domains of oscillatory activity emerged. By increasing the sensory radius the model simulated the regeneration process of the real plasmodium. In addition, the model replicated the rotating wave and bilateral oscillation pattern when the sensory radius was increased. The results suggest that complex emergent oscillatory behaviors (and thus the high-level systems which may utilize them, such as pumping and transport mechanisms) may be developed from simple materials inspired by Physarum slime mold. PMID:21070831

  6. Synchronized action of synaptically coupled chaotic model neurons.

    PubMed

    Abarbanel, H D; Huerta, R; Rabinovich, M I; Rulkov, N F; Rowat, P F; Selverston, A I

    1996-11-15

    Experimental observations of the intracellular recorded electrical activity in individual neurons show that the temporal behavior is often chaotic. We discuss both our own observations on a cell from the stomatogastric central pattern generator of lobster and earlier observations in other cells. In this paper we work with models with chaotic neurons, building on models by Hindmarsh and Rose for bursting, spiking activity in neurons. The key feature of these simplified models of neurons is the presence of coupled slow and fast subsystems. We analyze the model neurons using the same tools employed in the analysis of our experimental data. We couple two model neurons both electrotonically and electrochemically in inhibitory and excitatory fashions. In each of these cases, we demonstrate that the model neurons can synchronize in phase and out of phase depending on the strength of the coupling. For normal synaptic coupling, we have a time delay between the action of one neuron and the response of the other. We also analyze how the synchronization depends on this delay. A rich spectrum of synchronized behaviors is possible for electrically coupled neurons and for inhibitory coupling between neurons. In synchronous neurons one typically sees chaotic motion of the coupled neurons. Excitatory coupling produces essentially periodic voltage trajectories, which are also synchronized. We display and discuss these synchronized behaviors using two "distance" measures of the synchronization. PMID:8888609

  7. Sun synchronous solar refrigeration

    NASA Astrophysics Data System (ADS)

    The primary goal of this project was to prototype a complete Sun Synchronous Solar Powered Refrigerator. The key element to the technology is the development of the hermetic motor compressor assembly. The prototype was to be developed to either the stage where Polar Products could receive additional venture capital or to the point whereby Polar could use their own capital to manufacture the systems. Our goal was to construct a prototype which would be the next step to a proven and market ready product. To demonstrate the technology under laboratory conditions was a very minimal goal.

  8. Huygens synchronization of two clocks

    PubMed Central

    Oliveira, Henrique M.; Melo, Luís V.

    2015-01-01

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model. PMID:26204557

  9. Huygens synchronization of two clocks.

    PubMed

    Oliveira, Henrique M; Melo, Luís V

    2015-01-01

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model. PMID:26204557

  10. Planar multijunction high voltage solar cell chip

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.

    1982-01-01

    A new innovative planar multijunction solar cell chip for concentrated sunlight applications is proposed. The chip consists of many voltage-generating regions, called unit cells, which are connected in series within a single silicon wafer, thereby providing a high open-circuit voltage at multiple sun illumination levels. The unit cells are fabricated on 75 micron thick p-type single crystal silicon substrate. Each chip consists of 1.42 x 9.63 mm n(+)/p collecting junctions on the back of the wafer, while the illuminated front surface area is divided into 0.3 micron deep n(+) regions. The fabrication sequence includes standard degreasing and cleaning procedures, double-sided alignment photomasking, introduction of boron and phosphorus impurities, and photolithography. The open circuit voltage of the chip increased rapidly with illumination up to about 4 AM1 suns, and then began to saturate at the sum of the individual unit cell voltages of 3.5 above 4 AM1 suns. A short circuit density per unit cell of 300 mA/sq cm at 20 AM1 suns was observed.

  11. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  12. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  13. Synchronization failure caused by interplay between noise and network heterogeneity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Kori, H.

    2016-09-01

    We investigate synchronization in complex networks of noisy phase oscillators. We find that, while too weak a coupling is not sufficient for the whole system to synchronize, too strong a coupling induces a nontrivial type of phase slip among oscillators, resulting in synchronization failure. Thus, an intermediate coupling range for synchronization exists, which becomes narrower when the network is more heterogeneous. Analyses of two noisy oscillators reveal that nontrivial phase slip is a generic phenomenon when noise is present and coupling is strong. Therefore, the low synchronizability of heterogeneous networks can be understood as a result of the difference in effective coupling strength among oscillators with different degrees; oscillators with high degrees tend to undergo phase slip while those with low degrees have weak coupling strengths that are insufficient for synchronization.

  14. Automatic generation of synchronization instructions for parallel processors

    SciTech Connect

    Midkiff, S.P.

    1986-05-01

    The development of high speed parallel multi-processors, capable of parallel execution of doacross and forall loops, has stimulated the development of compilers to transform serial FORTRAN programs to parallel forms. One of the duties of such a compiler must be to place synchronization instructions in the parallel version of the program to insure the legal execution order of doacross and forall loops. This thesis gives strategies usable by a compiler to generate these synchronization instructions. It presents algorithms for reducing the parallelism in FORTRAN programs to match a target architecture, recovering some of the parallelism so discarded, and reducing the number of synchronization instructions that must be added to a FORTRAN program, as well as basic strategies for placing synchronization instructions. These algorithms are developed for two synchronization instruction sets. 20 refs., 56 figs.

  15. FPGA based fast synchronous serial multi-wire links synchronization

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  16. Spiking optical patterns and synchronization

    NASA Astrophysics Data System (ADS)

    Rosenbluh, Michael; Aviad, Yaara; Cohen, Elad; Khaykovich, Lev; Kinzel, Wolfgang; Kopelowitz, Evi; Yoskovits, Pinhas; Kanter, Ido

    2007-10-01

    We analyze the time resolved spike statistics of a solitary and two mutually interacting chaotic semiconductor lasers whose chaos is characterized by apparently random, short intensity spikes. Repulsion between two successive spikes is observed, resulting in a refractory period, which is largest at laser threshold. For time intervals between spikes greater than the refractory period, the distribution of the intervals follows a Poisson distribution. The spiking pattern is highly periodic over time windows corresponding to the optical length of the external cavity, with a slow change of the spiking pattern as time increases. When zero-lag synchronization between two lasers is established, the statistics of the nearly perfectly matched spikes are not altered. The similarity of these features to those found in complex interacting neural networks, suggests the use of laser systems as simpler physical models for neural networks.

  17. Oscillating tolerance in synchronized cultures of Staphylococcus aureus.

    PubMed Central

    Holzhoffer, S; Süssmuth, R; Haag, R

    1985-01-01

    Cells of synchronized cultures of Staphylococcus aureus showed an oscillating MBC/MIC ratio when tested with penicillin G. Although the MICs did not differ significantly throughout the cell cycle, the MBC was at its maximum when actively dividing cells were inoculated. PMID:4073867

  18. Metal versus rare-gas ion irradiation during Ti{sub 1-x}Al{sub x}N film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias

    SciTech Connect

    Greczynski, Grzegorz; Lu Jun; Jensen, Jens; Petrov, Ivan; Greene, Joseph E.; Bolz, Stephan; Koelker, Werner; Schiffers, Christoph; Lemmer, Oliver; Hultman, Lars

    2012-11-15

    Metastable NaCl-structure Ti{sub 1-x}Al{sub x}N is employed as a model system to probe the effects of metal versus rare-gas ion irradiation during film growth using reactive high-power pulsed magnetron sputtering (HIPIMS) of Al and dc magnetron sputtering of Ti. The alloy film composition is chosen to be x = 0.61, near the kinetic solubility limit at the growth temperature of 500 Degree-Sign C. Three sets of experiments are carried out: a -60 V substrate bias is applied either continuously, in synchronous with the full HIPIMS pulse, or in synchronous only with the metal-rich-plasma portion of the HIPIMS pulse. Alloy films grown under continuous dc bias exhibit a thickness-invariant small-grain, two-phase nanostructure (wurtzite AlN and cubic Ti{sub 1-x}Al{sub x}N) with random orientation, due primarily to intense Ar{sup +} irradiation leading to Ar incorporation (0.2 at. %), high compressive stress (-4.6 GPa), and material loss by resputtering. Synchronizing the bias with the full HIPIMS pulse results in films that exhibit much lower stress levels (-1.8 GPa) with no measureable Ar incorporation, larger grains elongated in the growth direction, a very small volume fraction of wurtzite AlN, and random orientation. By synchronizing the bias with the metal-plasma phase of the HIPIMS pulses, energetic Ar{sup +} ion bombardment is greatly reduced in favor of irradiation predominantly by Al{sup +} ions. The resulting films are single phase with a dense competitive columnar structure, strong 111 orientation, no measureable trapped Ar concentration, and even lower stress (-0.9 GPa). Thus, switching from Ar{sup +} to Al{sup +} bombardment, while maintaining the same integrated incident ion/metal ratio, eliminates phase separation, minimizes renucleation during growth, and reduces the high concentration of residual point defects, which give rise to compressive stress.

  19. Preliminary chaotic model of snapover on high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  20. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  1. High energy density aluminum-oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    1993-11-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  2. High Energy Density aluminum/oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  3. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  4. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  5. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  6. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    NASA Astrophysics Data System (ADS)

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.

  7. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    PubMed Central

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine. PMID:24464086

  8. NO66, a Highly Conserved Dual Location Protein in the Nucleolus and in a Special Type of Synchronously Replicating ChromatinD⃞

    PubMed Central

    Eilbracht, Jens; Reichenzeller, Michaela; Hergt, Michaela; Schnölzer, Martina; Heid, Hans; Stöhr, Michael; Franke, Werner W.; Schmidt-Zachmann, Marion S.

    2004-01-01

    It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1α, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions. PMID:14742713

  9. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  10. High efficiency lithium-thionyl chloride cell

    NASA Astrophysics Data System (ADS)

    Doddapaneni, N.

    1981-10-01

    The main objectives are to evaluate the polarization characteristics of Teflon bonded carbon electrodes in the Li/SOCl2 system and to improve cathode performance at high discharge rates and low operating temperatures (-40 F to 32 F). During the report period, we have studied the half-cell polarization and discharge performance characteristics of Li/SOCl2 cells with and without improved cathodes. In addition, the effect of catalysts on cyclic volt-ammograms and electrolyte viscosity and conductivity relationships with operating temperature have been examined. Electrolyte properties in Li/SOCL2 systems are found to contribute significantly towards the cathode overpotential. Cathodes doped with catalysts greatly minimized the activation polarization throughout the operating temperatures.

  11. High efficiency, radiation-hard solar cells

    SciTech Connect

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  12. Robust Sliding Window Synchronizer Developed

    NASA Technical Reports Server (NTRS)

    Chun, Kue S.; Xiong, Fuqin; Pinchak, Stanley

    2004-01-01

    The development of an advanced robust timing synchronization scheme is crucial for the support of two NASA programs--Advanced Air Transportation Technologies and Aviation Safety. A mobile aeronautical channel is a dynamic channel where various adverse effects--such as Doppler shift, multipath fading, and shadowing due to precipitation, landscape, foliage, and buildings--cause the loss of symbol timing synchronization.

  13. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  14. Asynchronous & Synchronous E-Learning

    ERIC Educational Resources Information Center

    Hrastinski, Stefan

    2008-01-01

    An ongoing debate addresses the usefulness of asynchronous versus synchronous e-learning. "Asynchronous e-learning," commonly facilitated by media such as e-mail and discussion boards, supports work relations among learners and with teachers, even when participants cannot be online at the same time. "Synchronous e-learning," commonly supported by…

  15. Synchronization Model for Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Morikawa, M.

    2013-12-01

    A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.

  16. Hypothesis test for synchronization: Twin surrogates revisited

    NASA Astrophysics Data System (ADS)

    Romano, M. Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  17. Iron loss calculation for synchronous reluctance machines

    SciTech Connect

    Leonardi, F.; Matsuo, T.; Lipo, T.A.

    1995-12-31

    A numerical method for iron loss calculation is presented in this paper. The method is suitable for any synchronous and most dc machines, especially if the current waveforms are known a priori . This technique will be principally useful for high speed machines and in particular for the synchronous reluctance machines and in particular for the synchronous reluctance machine, where the iron losses are often an important issue. The calculation is based on Finite Element Analysis, which provides the flux density waveforms in the iron, and on the Fourier Analysis of these waveforms. Several Finite Element Simulations are necessary to obtain the induced voltage versus time waveforms. To reduce the post-processing time the majority of the elements of the model are grouped together to create super elements. Also the periodicity of the motor can be used to reduce the number of required simulations. The method is applied to the calculation of the iron losses of a synchronous reluctance generator, and a number of interesting results are discussed in the paper.

  18. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  19. Synchronization in neural nets

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.; Haggerty, John

    1988-01-01

    The paper presents an artificial neural network concept (the Synchronizable Oscillator Networks) where the instants of individual firings in the form of point processes constitute the only form of information transmitted between joining neurons. In the model, neurons fire spontaneously and regularly in the absence of perturbation. When interaction is present, the scheduled firings are advanced or delayed by the firing of neighboring neurons. Networks of such neurons become global oscillators which exhibit multiple synchronizing attractors. From arbitrary initial states, energy minimization learning procedures can make the network converge to oscillatory modes that satisfy multi-dimensional constraints. Such networks can directly represent routing and scheduling problems that consist of ordering sequences of events.

  20. Synchronous anorectal melanoma

    PubMed Central

    Balicevic, Drinko; Tomic, Karla; Bekavac-Beslin, Miroslav; Kovacevic, Igor; Mijic, August; Belicza, Mladen; Kruslin, Bozo

    2006-01-01

    Anorectal melanoma is a very rare tumor with poor prognosis. Rectal bleeding is the most frequent symptom and surgical treatment ranges from local excision to radical abdominoperineal resection. We report a case of a 75-years-old male patient who presented with a history of recurrent rectal bleeding, and whose histopathological diagnosis was melanoma. Macroscopically, we found two distinct tumors in anorectal region, 0.5 cm and 1.5 cm from dentate line. The first one was pedunculated, on a thin stalk, measuring 1 cm in greatest diameter, and the second one was sessile and nodular measuring up to 2.8 cm in largest diameter. Microscopic examination and immunohistochemical analysis of both tumors confirmed the diagnosis of melanoma. This case represents multiple synchronous primary melanoma of the anorectal region, with a possibility that one of the lesions is primary melanoma and the second one is a satellite lesion. PMID:16733870

  1. Explosive synchronization is discontinuous

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Zou, Yong; Pereira, Tiago

    2015-07-01

    Spontaneous explosive is an abrupt transition to collective behavior taking place in heterogeneous networks when the frequencies of the nodes are positively correlated with the node degree. This explosive transition was conjectured to be discontinuous. Indeed, numerical investigations reveal a hysteresis behavior associated with the transition. Here, we analyze explosive synchronization in star graphs. We show that in the thermodynamic limit the transition to (and out of) collective behavior is indeed discontinuous. The discontinuous nature of the transition is related to the nonlinear behavior of the order parameter, which in the thermodynamic limit exhibits multiple fixed points. Moreover, we unravel the hysteresis behavior in terms of the graph parameters. Our numerical results show that finite-size graphs are well described by our predictions.

  2. Nanosecond-range multi-pulses synchronization based on magnetic switch and saturable pulse transformer.

    PubMed

    Liu, Jinliang; Fan, Xuliang; Zhang, Yu

    2012-12-01

    Magnetic switch has been widely used in the field of pulsed power system for its advantages of solid state, high repetition rate, and long lifetime. In this paper, the synchronization of ns-range multi-pulses based on magnetic switch is studied and two kinds of technical methods are proposed. One of which is based on magnetic switches on a communal magnetic core. It was proved that the synchronization accuracy of 3 pulses is about 2 ns. Another proposed method is ns-range multi-pulse synchronization based on saturable pulse transformer and the experimental result showed that the synchronization accuracy of 2 pulses could achieve 2.5 ns. In contrast to other multi-pulse synchronization methods controlled by high-voltage pulse trigger or laser trigger, the synchronization based on magnetic switch and saturable pulse transformer has the advantages of high synchronization accuracy, long lifetime, and exemption from external trigger signals. PMID:23278010

  3. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  4. An Experimental Cell for High-Temperature

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Robert, G.; Rodway, R.; Rust, A.; Russell, J. K.

    2005-12-01

    The Volcanology-Deformation-Rig (VDR) was developed for exploring the high-T rheological properties of volcanic materials [1]. The VDR is designed to perform high-T, low-load (< 1136 kg) deformation experiments at constant load, or displacement rate, or at controlled load rates. The rig is ideal for determining the rheological response of volcanic products within a wide range of natural conditions: T up to 1000oC, applied stresses up to 150 MPa, and strain rates between 10-6 and 10-2 s-1. The resulting data provide a powerful means of developing constitutive equations governing the multiphase (liquids ± vesicles ± solids) rheology of volcanic material during flow and deformation [2]. Many seminal issues in volcanology involve the behaviour of the volatile phase during flow and deformation and its effect on magma rheology and volcanic behaviour. Thus, we have designed and built a high-T resistant, sealed fluid pressure cell. The cell gives us the capacity to run controlled high-T deformation experiments at controlled H2O pressures that simulate nature (0-150 MPa). Deformation experiments can be run on consolidated and unconsolidated samples up to 3 cm in diameter and 10 cm in length. Fluid pressure in the cell can either be a dependent or independent variable. The former corresponds to a closed-system where fluid pressure is monitored throughout the experiment, whereas the latter is an open-system experiment with a fixed fluid pressure. By means of varying temperature and strain rate our experiments can explore the viscous to brittle transition of the investigated volcanic products at controlled conditions (e.g., water-bearing and/or water pressurized systems). We plan to use high-T experiments on natural volcanic materials (e.g., cores of sintered ash, obsidian, or pumice) to elucidate the rheology of multiphase volcanic products and to study feedback mechanisms between porosity and permeability evolution. References Cited: [1] Quane S, Russell JK & Kennedy LA

  5. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  6. Synchronous Cultures of Bacillus subtilis Obtained by Filtration with Glass Fiber Filters

    PubMed Central

    Sargent, Michael G.

    1973-01-01

    A simple method of potentially wide applicability for obtaining synchronous cultures of Bacillus subtilis based on size selection is described. Using glass fiber filters, a population (about 1 to 2% of the parent population) can be obtained substantially enriched for small cells which grow synchronously. A method for rapidly concentrating dilute suspensions of cells is described. PMID:4200855

  7. Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

    PubMed

    Heimer, G; Rivlin, M; Israel, Z; Bergman, H

    2006-01-01

    Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/ critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity. PMID:17017503

  8. Synchronized defibrillation for ventricular fibrillation

    PubMed Central

    Manoharan, Ganesh; Navarro, Cesar; Walsh, Simon J; Allen, John D; Anderson, John McC; Adgey, AA Jennifer

    2012-01-01

    Objective: Optimization of defibrillation success is important to improve efficacy and minimize post-shock sequelae. Previous work has suggested an improvement in shock success when an intracardiac shock is delivered synchronized to the upslope of a VF wave. We investigated the efficacy of transthoracic defibrillation success using a novel external biphasic defibrillator which delivers shocks synchronized to the upslope of the surface ECG. Methods: A prospective, controlled, randomized study in a research institute laboratory of male and female pigs (54.2±1.8 kg). Ventricular fibrillation (VF) was induced in 10 anaesthetized and ventilated pigs. Shocks were delivered randomly from a biphasic defibrillator in synchronized or non-synchronized mode via self-adhesive electrode pads following 30 s of VF. Energy settings at 50, 70, 80, and 100J were randomly tested. VF amplitude, impedance, and shock outcome were recorded and analysed digitally. Results: A total of 300 shocks were delivered. Synchronized shocks were delivered on the upslope of the VF wave in 99% of cases. There was no significant difference in shock success between shocks delivered in synchronized or non-synchronized modes (p=0.695). There was no significant difference in the amplitude of VF between successful and unsuccessful shocks (p=0.163). Furthermore, there was no association between shock success and transthoracic impedance. Conclusion: The novel defibrillator used in this study was able to consistently deliver shocks on the upslope portion of the VF wave but did not show an improvement in shock success. PMID:24062919

  9. Chaotic synchronization based on nonlinear state-observer and its application in secure communication

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jie; Li, Dian-Pu; Zhang, Ai-Jun

    2004-06-01

    Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear state-observer is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision. When the approach is applied to secure communication, the results are satisfying.

  10. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  11. Fluctuations in nuclear envelope's potential mediate synchronization of early neural activity.

    PubMed

    Yamashita, Masayuki

    2011-03-01

    Neural progenitor cells and developing neurons show periodic, synchronous Ca(2+) rises even before synapse formation, and the origin of the synchronous activity remains unknown. Here, fluorescence measurement revealed that the membrane potential of the nuclear envelope, which forms an intracellular Ca(2+) store, changed with a release of Ca(2+) and generated spontaneous, periodic bursts of fluctuations in potential. Furthermore, changes in the nuclear envelope's potential underlay spike burst generations. These results support the model that voltage fluctuations of the nuclear envelope synchronize Ca(2+) release between cells and also function as a current noise generator to cause synchronous burst discharges. PMID:21296053

  12. Synchronization in an evolving network

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Bagarti, Trilochan

    2015-09-01

    In this work we study the dynamics of Kuramoto oscillators on a stochastically evolving network whose evolution is governed by the phases of the individual oscillators and degree distribution. Synchronization is achieved after a threshold connection density is reached. This cumulative effect of topology and dynamics has many real-world implications, where synchronization in a system emerges as a collective property of its components in a self-organizing manner. The synchronous state remains stable as long as the connection density remains above the threshold value, with additional links providing resilience against network fluctuations.

  13. High resolution SIMS imaging of cations in mammalian cell mitosis, and in Drosophila polytene chromosomes

    NASA Astrophysics Data System (ADS)

    Levi-Setti, R.; Gavrilov, K. L.; Neilly, M. E.; Strick, R.; Strissel, P. L.

    2006-07-01

    The University of Chicago high resolution scanning ion microprobe (UC-SIM) was used to image, by Secondary Ion Mass Spectrometry (SIMS), the distribution of Ca 2+ and Mg 2+ in the chromosomes of Indian muntjac (IM) deer mitotic fibroblasts. This is part of a systematic study of the cation composition of mammalian cells and chromosomes throughout the cell cycle, after having shown that Ca 2+ and Mg 2+ appear to be important for chromosome condensation and structure at metaphase. We focus here on a detailed description of the metaphase-anaphase transition at narrow time intervals beyond the G2/M border, made possible by controlled cell synchronization procedures. High-density distributions of chromosome spreads showed progressive stages of mitosis, identified by their morphology, within the same UC-SIM field of view. Subtle differences in cation contents between successive mitotic stages could thus be quantified in identical experimental conditions. Preliminary results indicate maximal chromosomal concentrations of Ca 2+ and Mg 2+ at metaphase, and a progressive decrease of the same with advancing stages of anaphase. Ca 2+ and Mg 2+ distributions were also imaged in the polytene chromosomes of Drosophila melanogaster, whose DNA distribution had been previously studied by BrdU labeling. These cations may play a common role in mitosis from lower eukaryotes to mammals.

  14. Traveling-wave synchronous coil gun

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    An outline is presented of the coilgun concept, excitation, switching, brush commutation, power supply, and performance. It is shown that a traveling-wave synchronous coilgun permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required.

  15. High performance vapour-cell frequency standards

    NASA Astrophysics Data System (ADS)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Bandi, T.; Gruet, F.; Pellaton, M.; Mileti, G.

    2016-06-01

    We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10-13 τ-1/2 and 2.4×10-13 τ-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

  16. Time synchronized video systems

    NASA Technical Reports Server (NTRS)

    Burnett, Ron

    1994-01-01

    The idea of synchronizing multiple video recordings to some type of 'range' time has been tried to varying degrees of success in the past. Combining this requirement with existing time code standards (SMPTE) and the new innovations in desktop multimedia however, have afforded an opportunity to increase the flexibility and usefulness of such efforts without adding costs over the traditional data recording and reduction systems. The concept described can use IRIG, GPS or a battery backed internal clock as the master time source. By converting that time source to Vertical Interval Time Code or Longitudinal Time Code, both in accordance with the SMPTE standards, the user will obtain a tape that contains machine/computer readable time code suitable for use with editing equipment that is available off-the-shelf. Accuracy on playback is then determined by the playback system chosen by the user. Accuracies of +/- 2 frames are common among inexpensive systems and complete frame accuracy is more a matter of the users' budget than the capability of the recording system.

  17. Synchronous behavior of two coupled electronic neurons

    SciTech Connect

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  18. Synchronous behavior of two coupled electronic neurons

    NASA Astrophysics Data System (ADS)

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szücs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.

  19. Synchronization by small time delays

    NASA Astrophysics Data System (ADS)

    Pruessner, G.; Cheang, S.; Jensen, H. J.

    2015-02-01

    Synchronization is a phenomenon observed in all of the living and in much of the non-living world, for example in the heart beat, Huygens' clocks, the flashing of fireflies and the clapping of audiences. Depending on the number of degrees of freedom involved, different mathematical approaches have been used to describe it, most prominently integrate-and-fire oscillators and the Kuramoto model of coupled oscillators. In the present work, we study a very simple and general system of smoothly evolving oscillators, which continue to interact even in the synchronized state. We find that under very general circumstances, synchronization generically occurs in the presence of a (small) time delay. Strikingly, the synchronization time is inversely proportional to the time delay.

  20. Optimistic barrier synchronization. Contractor report

    SciTech Connect

    Nicol, D.M.

    1992-07-01

    Barrier synchronization is a fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that is has already processed all work required of it prior to the synchronization. This paper treats the alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all necessary pre-synchronization computation. The proble marises when the number of pre-synchronization messages to be received by a processor is unknown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. The authors describe an optimistic O(log2P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions, as well as associative parallel prefix computations.

  1. Synchronous identification of friendly targets

    DOEpatents

    Telle, John M.; Roger, Stutz A.

    1998-01-01

    A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.

  2. Synchronous Photodiode-Signal Sampler

    NASA Technical Reports Server (NTRS)

    Primus, Howard K.

    1988-01-01

    Synchronous sampling circuit increases signal-to-noise ratio of measurements of chopped signal of known phase and frequency in presence of low-frequency or dc background noise. Used with linear array of photoelectric sensors for locating edge of metal plate. Multiplexing circuit cycles through 16 light-emitting-diode/photodiode pairs, under computer control. Synchronized with multiplexer so edge detector makes one background-subtracted signal measurement per emitter/detector pair in turn.

  3. Synchronizing Rotation Of A Heavy Load

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger

    1991-01-01

    Drive system rotates large-inertia load at constant low speed. Simple setup of motors, pulleys, and belts provides both torque and synchronism. Induction motor drives two loads: rotating instrument and slightly lagging synchronous motor. Provides ample torque to start and maintain rotation, and synchronous motor ensures rotation synchronized with ac power supply.

  4. A Phase II Study of Synchronous Three-Dimensional Conformal Boost to the Gross Tumor Volume for Patients With Unresectable Stage III Non-Small-Cell Lung Cancer: Results of Korean Radiation Oncology Group 0301 Study

    SciTech Connect

    Cho, Kwan Ho Ahn, Sung Ja; Pyo, Hong Ryull; Kim, Kyu-Sik; Kim, Young-Chul; Moon, Sung Ho; Han, Ji-Youn; Kim, Heung Tae; Koom, Woong Sub; Lee, Jin Soo

    2009-08-01

    Purpose: We evaluated the efficacy of synchronous three-dimensional (3D) conformal boost to the gross tumor volume (GTV) in concurrent chemoradiotherapy for patients with locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Eligibility included unresectable Stage III NSCLC with no pleural effusion, no supraclavicular nodal metastases, and Eastern Cooperative Oncology Group performance score of 0-1. Forty-nine patients with pathologically proven NSCLC were enrolled. Eighteen patients had Stage IIIA and 31 had Stage IIIB. By using 3D conformal radiotherapy (RT) techniques, a dose of 1.8 Gy was delivered to the planning target volume with a synchronous boost of 0.6 Gy to the GTV, with a total dose of 60 Gy to the GTV and 45 Gy to the planning target volume in 25 fractions during 5 weeks. All patients received weekly chemotherapy consisting of paclitaxel and carboplatin during RT. Results: With a median follow-up of 36.8 months (range, 29.0-45.5 months) for surviving patients, median survival was 28.1 months. One-, 2- and 3-year overall survival rates were 77%, 56.4%, and 43.8%, respectively. Corresponding local progression-free survival rates were 71.2%, 53.7%, and 53.7%. Compliance was 90% for RT and 88% for chemotherapy. Acute esophagitis of Grade 2 or higher occurred in 29 patients. Two patients with T4 lesions died of massive bleeding and hemoptysis during treatment (Grade 5). Overall late toxicity was acceptable. Conclusions: Based on the favorable outcome with acceptable toxicity, the acceleration scheme using 3D conformal GTV boost in this trial is warranted to compare with conventional fractionation in a Phase III trial.

  5. Synchronous motor with HTS-2G wires

    NASA Astrophysics Data System (ADS)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  6. Pulse Ejection Presentation System Synchronized with Breathing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi

    Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.

  7. Cooperative synchronized assemblies enhance orientation discrimination

    PubMed Central

    Samonds, Jason M.; Allison, John D.; Brown, Heather A.; Bonds, A. B.

    2004-01-01

    There is no clear link between the broad tuning of single neurons and the fine behavioral capabilities of orientation discrimination. We recorded from populations of cells in the cat visual cortex (area 17) to examine whether the joint activity of cells can support finer discrimination than found in individual responses. Analysis of joint firing yields a substantial advantage (i.e., cooperation) in fine-angle discrimination. This cooperation increases to more considerable levels as the population of an assembly is increased. The cooperation in a population of six cells provides encoding of orientation with an information advantage that is at least 2-fold in terms of requiring either fewer cells or less time than independent coding. This cooperation suggests that correlated or synchronized activity can increase information. PMID:15096595

  8. Genesis and synchronization properties of fast neural oscillations

    NASA Astrophysics Data System (ADS)

    Bazhenov, Maxim; Rulkov, Nikolai

    2008-03-01

    Fast neural network oscillations in gamma (30-80 Hz) range are associated with attentiveness and sensory perception and have strong relation to both cognitive processing and temporal binding of sensory stimuli. These oscillations are found in different brain systems including cerebral cortex, hippocampus and olfactory bulb. Cortical gamma oscillations may become synchronized within 1-2 msec over distances up to a few millimeters. In this study we used computational network models to analyze basic synaptic mechanisms and synchronization properties of fast neural oscillations. Using the network models of synaptically coupled pyramidal neurons (up to 500,000 cells) and fast spiking interneurons (up to 125,000 cells) we found that the strength of feedback inhibition determined the network synchronization state: either global network oscillations with near zero phase lag between remote sites or waves of gamma activity propagating through the network. Long-range excitatory connections between pyramidal cells were not required for long-range synchronization. The model predicts that local inhibitory circuits can mediate global network synchronization with phase delays being much smaller than activity propagation time between remote network sites.

  9. Advances in High-Throughput Single-Cell Microtechnologies

    PubMed Central

    Weaver, Westbrook M.; Tseng, Peter; Kunze, Anja; Masaeli, Mahdohkht; Chung, Aram J.; Dudani, Jaideep S.; Kittur, Harsha; Kulkarni, Rajan P.; Di Carlo, Dino

    2013-01-01

    Micro-scale biological tools that have allowed probing of individual cells - from the genetic, to proteomic, to phenotypic level - have revealed important contributions of single cells to direct normal and diseased body processes. In analyzing single cells, sample heterogeneity between and within specific cell types drives the need for high-throughput and quantitative measurement of cellular parameters. In recent years, high-throughput single-cell analysis platforms have revealed rare genetic subpopulations in growing tumors, begun to uncover the mechanisms of antibiotic resistance in bacteria, and described the cell-to-cell variations in stem cell differentiation and immune cell response to activation by pathogens. This review surveys these recent technologies, presenting their strengths and contributions to the field, and identifies needs still unmet toward the development of high-throughput single-cell analysis tools to benefit life science research and clinical diagnostics. PMID:24484889

  10. Synchronization configurations of two coupled double pendula

    NASA Astrophysics Data System (ADS)

    Koluda, Piotr; Perlikowski, Przemyslaw; Czolczynski, Krzysztof; Kapitaniak, Tomasz

    2014-04-01

    We consider the synchronization of two self-excited double pendula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula can obtain four different robust synchronous configurations. Our approximate analytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. We consider the energy balance in the system and show how the energy is transferred between the pendula via the oscillating beam allowing the pendula' synchronization.

  11. Modeling and Analysis of Mixed Synchronous/Asynchronous Systems

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan

    2012-01-01

    Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.

  12. Prediction of performance of large synchronous machines with skewed stators

    NASA Astrophysics Data System (ADS)

    Troitskaia, Svetlana G.

    Large synchronous machines produce the majority of electric energy in Canada. To improve quality of the electric energy, manufacturers skew stators of these machines, Skewing causes axial shifting of magnetic fields, so that power losses in these machines differ from the losses in unskewed machines Numerical methods are incapable of analyzing a large skewed machine in a reasonable time. To evaluate losses, fast simulation tools have been needed to aid designers of skewed synchronous generators at a preliminary stage of design. This work is devoted to analytical modeling of harmonic magnetic fields, harmonic currents and high-frequency energy losses in large synchronous generators with skewed stators. A fast and accurate simulation tool has been developed on the basis of the model; it can be used for preliminary design of a skewed synchronous machine.

  13. Novel synchronization technique for two parallel connected sparkgap switches.

    PubMed

    Kumar, Rohit; Mitra, S; Patel, A; Dwivedi, Rajesh; Kolge, T; Sharma, Ranjeet Archana; Chakravarthy, D P

    2012-08-01

    In this article a novel way of synchronizing two parallel connected sparkgap switches with accuracies of 1-5 ns for high frequency pulsed power applications is described. The circuit design of a synchronized sparkgap switch circuit is discussed. The circuit uses a combination of one master sparkgap and a set of inductor and capacitors to synchronize two sparkgaps and can be controlled via an IGBT switch. Critical issues for circuit design are presented together with analytical calculations and simulations. Experimental verification of the novel topology is carried out in a prototype experimental setup. Results showing nanosecond level of accuracy in synchronization are reported in this paper along with simulations and analysis. PMID:22938319

  14. High-Collection-Efficiency Fluorescence Detection Cell

    NASA Technical Reports Server (NTRS)

    Hanisco, Thomas; Cazorla, Maria; Swanson, Andrew

    2013-01-01

    A new fluorescence cell has been developed for the laser induced fluorescence (LIF) detection of formaldehyde. The cell is used to sample a flow of air that contains trace concentrations of formaldehyde. The cell provides a hermetically sealed volume in which a flow of air containing formaldehyde can be illuminated by a laser. The cell includes the optics for transmitting the laser beam that is used to excite the formaldehyde and for collecting the resulting fluorescence. The novelty of the cell is its small size and simple design that provides a more robust and cheaper alternative to the state of the art. Despite its simplicity, the cell provides the same sensitivity to detection as larger, more complicated cells.

  15. High-Temperature, High-Pressure Optical Cells

    NASA Technical Reports Server (NTRS)

    Harris, R. P.; Holland, L. R.; Smith, R. E.

    1985-01-01

    Optical cell constructed for measurement of thermal diffusivity of HgCdTe semiconductor by laser pulses. Container allows radiation from laser to enter one side of alloy sample, while allowing lower-energy infrared radiation to leave opposite side of sample so temperature rise read by sensor. Composed entirely of fused silica, cell includes two optical windows joined by tube. Cell withstands 1,000 degrees C cell-operating temperature and contains molten alloy at its 100-atmosphere vapor pressure. Finally, allows alloy to solidify without bursting even though alloy expands on cooling.

  16. Synchronized Ion Acceleration by Ultraintense Slow Light.

    PubMed

    Brantov, A V; Govras, E A; Kovalev, V F; Bychenkov, V Yu

    2016-02-26

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils. PMID:26967421

  17. Synchronized Ion Acceleration by Ultraintense Slow Light

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.

    2016-02-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  18. A Novel Method of Clock Synchronization in Distributed System

    NASA Astrophysics Data System (ADS)

    Li, G.; Niu, M. J.; Cai, Y. S.; Chen, X.; Ren, Y. Q.

    2016-03-01

    Time synchronization plays an important role in application of aircraft flying formation and constellation autonomous navigation, etc. In application of clock synchronization in the network system, it is not always true that each observed node may be interconnected, therefore, it is difficult to achieve time synchronization of network system with high precision in the condition that a certain node can only obtain the measurement information of clock from one of its corresponding neighbors, and cannot obtain from other nodes. According to this special problem, a novel method of high precision time synchronization of network system has been proposed. In this paper, we regard each clock as a node in the network system, and based on different distributed topology definition, the following three control algorithms of time synchronization under three circumstances have been designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. The validity of the designed clock synchronization protocol has been proved both theoretically and through numerical simulation.

  19. System and method for clock synchronization and position determination using entangled photon pairs

    NASA Technical Reports Server (NTRS)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  20. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  1. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion

    PubMed Central

    Ubezio, Benedetta; Blanco, Raquel Agudo; Geudens, Ilse; Stanchi, Fabio; Mathivet, Thomas; Jones, Martin L; Ragab, Anan; Bentley, Katie; Gerhardt, Holger

    2016-01-01

    Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning. DOI: http://dx.doi.org/10.7554/eLife.12167.001 PMID:27074663

  2. Synchronous Bilateral Breast Cancers

    PubMed Central

    Subramanyan, Annapurneswari; Radhakrishna, Selvi

    2015-01-01

    Background Bilateral breast cancer (BBC) is not an uncommon entity in contemporary breast clinics. Improved life expectancy after breast cancer treatment and routine use of contra-lateral breast mammography has led to increased incidence of BBC. Our study objective was to define the epidemiological and tumour characteristics of BBC in India. Materials and Methods A total of 1251 breast cancer patients were treated during the period January 2007 to March 2015 and 30 patients were found to have BBC who constituted the study population (60 tumour samples). Synchronous bilateral breast cancers (SBC) was defined as two tumours diagnosed within an interval of 6 months and a second cancer diagnosed after 6 months was labelled as metachronous breast cancer (MBC). Analyses of patient and tumour characteristics were done in this prospective data base of BBC patients. Results Median patient age was 66 years (range 39-85). Majority of the patients had SBC (n=28) and in 12 patients the second tumour was clinically occult and detected only by mammography of the contra-lateral breast. The second tumour was found at lower tumour size compared to the first in 73% of cases and was negative for axillary metastasis in 80% of cases (24/30). Infiltrating ductal carcinoma was the commonest histological type (n=51) and majority of the tumours were ER/PR positive (50/60). Her2 was overexpressed in 13 tumours (21%). Over 70% (22/30) of patients had similar histology in both breasts and amongst them grade concordance was present in about 69% (15/22) of patients. Concordance rates of ER, PR and Her2 statuses were 83%, 80% and 90% respectively. Bilateral mastectomy was the commonest surgery performed in 80% of the patients followed by bilateral breast conservation in 13%. At the end of study period, 26 patients were alive and disease free. Median survival was 29 months (range 3-86 months). Conclusion In most patients with BBC, the second tumour is identified at an early stage than index

  3. Explosive synchronization with asymmetric frequency distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchang; Chen, Lumin; Bi, Hongjie; Hu, Xin; Liu, Zonghua; Guan, Shuguang

    2015-07-01

    In this work, we study the synchronization in a generalized Kuramoto model with frequency-weighted coupling. In particular, we focus on the situations in which the frequency distributions of oscillators are asymmetric. For typical unimodal frequency distributions, such as Lorentzian, Gaussian, triangle, and even special Rayleigh, we find that the synchronization transition in the model generally converts from the first order to the second order as the central frequency shifts toward positive direction. We characterize two interesting coherent states in the system: In the former, two phase-locking clusters are formed, rotating with the same frequency. They correspond to those oscillators with relatively high frequencies while the oscillators with relatively small frequencies are not entrained. In the latter, two phase-locking clusters rotate with different frequencies, leading to the oscillation of the order parameter. We further conduct theoretical analysis to reveal the relation between the asymmetric frequency distribution and the conversion of synchronization type, and justify the coherent states observed in the system.

  4. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  5. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  6. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task

    PubMed Central

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa

    2016-01-01

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few

  7. Bodily synchronization underlying joke telling

    PubMed Central

    Schmidt, R. C.; Nie, Lin; Franco, Alison; Richardson, Michael J.

    2014-01-01

    Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock–knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily “dance” occurs during structured conversation interactions and that this “dance” is constructed from a set of rhythms associated with the nested behavioral structure of the interaction. PMID:25177287

  8. High voltage, high current Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J. (Inventor)

    1977-01-01

    A Schottky barrier solar cell was described, which consists of a layer of wide band gap semiconductor material on which a very thin film of semitransparent metal was deposited to form a Schottky barrier. The layer of the wide band gap semiconductor material is on top of a layer of narrower band gap semiconductor material, to which one of the cell's contacts may be attached directly or through a substrate. The cell's other contact is a grid structure which is deposited on the thin metal film.

  9. Direct evidence of flagellar synchronization through hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Wan, Kirsty; Goldstein, Raymond

    2013-11-01

    Eukaryotic cilia and flagella exhibit striking coordination, from the synchronous beating of two flagella in Chlamydomonas to the metachronal waves and large-scale flows displayed by carpets of cilia. However, the precise mechanisms responsible for flagellar synchronization remain unclear. We perform a series of experiments involving two individual flagella in a quiescent fluid. Cells are isolated from the colonial alga Volvox carteri, held in place at a fixed distance d, and oriented so that their flagellar beating planes coincide. In this fashion, we are able to explicitly assess the role of hydrodynamics in achieving synchronization. For closely separated cells, the flagella are capable of exhibiting a phase-locked state for thousands of beats at a time, despite significant differences in their intrinsic frequencies. For intermediate values of d, synchronous periods are interrupted by brief phase slips, while for d >> 1 the flagellar phase difference drifts almost linearly with time. The coupling strength extracted through analysis of the synchronization statistics exhibits excellent agreement with hydrodynamic predictions. This study unambiguously reveals that flagella coupled only through hydrodynamics are capable of exhibiting robust synchrony.

  10. Toward Interactive Mobile Synchronous Learning Environment with Context-Awareness Service

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Kuo, Yen-Hung; Lin, Yen-Ting; Cheng, Shu-Chen

    2008-01-01

    Mobile synchronous learning is a new challenge in the e-learning domain. While popular mobile communication devices, such as cell phones, cannot directly accommodate traditional synchronous content due to the major limitation of display size, other constraints also restrict convenient interactions while using mobile devices in a synchronous…

  11. Linear Synchronous Motor Repeatability Tests

    SciTech Connect

    Ward, C.R.

    2002-10-18

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.

  12. Remote synchronization in star networks

    NASA Astrophysics Data System (ADS)

    Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E. J.; Fortuna, L.; Kurths, J.

    2012-02-01

    We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

  13. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  14. Global Synchronization of a New Chua's System

    NASA Astrophysics Data System (ADS)

    Zhou, Guopeng; Liu, Di; Huang, Jinhua; Liao, Xiaoxin

    The problem of global synchronization control for a class of new Chua's system is studied in this paper. Several linear controllers are proposed to realize the global exponential synchronization of two Chua's systems. Decoupling feedback control method is used to make Chua's system global exponential synchronized. Global exponential synchronization with respect to (w.r.t) partial state variables is studied when one of the error variables is zero. Finally, an adaptive synchronization controller is designed to make the response and the driven systems synchronized. Moreover, the estimate errors of the uncertain parameters converge to zero since the persistent excitation condition holds. Additionally, numerical simulations show the effectiveness of the proposed controllers.

  15. Simulating synchronization in neuronal networks

    NASA Astrophysics Data System (ADS)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  16. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  17. Cooperative Synchronization in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Etzlinger, Bernhard; Wymeersch, Henk; Springer, Andreas

    2014-06-01

    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\\'er-Rao bounds.

  18. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  19. Synchronization in an optomechanical cavity.

    PubMed

    Shlomi, Keren; Yuvaraj, D; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction. PMID:25871175

  20. Forced synchronization of quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Stankevich, N. V.; Kurths, J.; Kuznetsov, A. P.

    2015-01-01

    A model of a generator of quasiperiodic oscillations forced by a periodic pulse sequence is studied. We analyze synchronization when the autonomous generator demonstrates periodic, quasiperiodic, respective weakly chaotic oscillations. For the forced quasiperiodic oscillations a picture of synchronization, consisting of small-scale and large-scale structures was uncovered. It even includes the existence of stable the three-frequency tori. For the regime of weak chaos a partial destruction of this features and of the regime of three-frequency tori are found.