Sample records for highly toxic chemicals

  1. Runaway chemical reaction exposes community to highly toxic chemicals.

    PubMed

    Kaszniak, Mark; Vorderbrueggen, John

    2008-11-15

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed.

  2. Phase out persistent, bioaccumulative or highly toxic chemicals.

    PubMed

    Easthope, Tracey; Valeriano, Laurie

    2007-01-01

    Chemicals such as lindane, lead compounds, and some brominated flame retardants and organophosphate pesticides are examples of persistent, bio-accumulative, and/or highly toxic chemicals that continue to be used in commerce, although strong evidence exists that they pose threats to human and ecosystem health. These and other chemicals, by virtue of their characteristics, are very difficult to manage without unacceptable threats to workers, the environment, or ecosystems. Chemicals that cannot be safely managed should be prioritized for phase out. A transparent process to further identify and prioritize the list of chemicals for phase out is needed. With few exceptions, the U.S. government lacks the authority or an efficient policy instrument to prevent these high-priority chemicals from being used in products and processes or released to the environment. It also has been very difficult for state and local governments to restrict these chemicals. Policy instruments to efficiently and effectively phase out problematic chemicals are needed at all levels of government.

  3. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  4. How Much is Too Much? Toxic Chemicals in High School Labs.

    ERIC Educational Resources Information Center

    Nagel, Miriam C.

    1982-01-01

    Lists 37 chemicals classified as suspected carcinogens and suspected teratogens (chemicals capable of producing malformations in an embryo). Offers suggestions to high school chemistry teachers for conducting safe laboratory investigations by avoiding use of these potentially toxic materials. (Author/JN)

  5. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  6. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    PubMed

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals.

    PubMed

    Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong; Mayer, Philipp; Escher, Beate I

    2016-11-01

    Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol-water partition coefficient (K ow ) greater than 10 6 are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECD's screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and K ow . Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log K ow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.

  8. Classification of Chemicals Based On Structured Toxicity ...

    EPA Pesticide Factsheets

    Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-based classifications of chemicals were performed as a model application of ToxRefDB. These endpoints will ultimately provide the anchoring toxicity information for the development of predictive models and biological signatures utilizing in vitro assay data. Utilizing query and structured data mining approaches, toxicity profiles were uniformly generated for greater than 300 chemicals. Based on observation rate, species concordance and regulatory relevance, individual and aggregated effects have been selected to classify the chemicals providing a set of predictable endpoints. ToxRefDB exhibits the utility of transforming unstructured toxicity data into structured data and, furthermore, into computable outputs, and serves as a model for applying such data to address modern toxicological problems.

  9. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.

    2010-06-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influencemore » reproduction were defined. Concentrations of DMSO vehicle {<=} 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC{sub 50} values for cadmium for automated measurements (176-192 {mu}M) were comparable to those previously reported for a 72-h exposure using manual counting (151 {mu}M). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.« less

  10. Identification of Chemical Toxicity Using Ontology Information of Chemicals.

    PubMed

    Jiang, Zhanpeng; Xu, Rui; Dong, Changchun

    2015-01-01

    With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.

  11. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals.

    PubMed

    Allegra, Enrico; Titball, Richard W; Carter, John; Champion, Olivia L

    2018-05-01

    The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values. In general, cell culture systems overestimated the toxicity of chemicals, especially low toxicity chemicals. In contrast, toxicity testing in G. mellonella larvae was found to be a reliable predictor for low toxicity chemicals. For the 9 chemicals tested which were assigned to Globally Harmonised System (GHS) category 5, the toxicity measured in G. mellonella larvae was consistent with their GHS categorisation but cytotoxicity measured in 3T3 or NHK cells predicted 4 out of 9 chemicals as having low toxicity. A more robust assessment of the likely toxicity of chemicals in mammals could be made by taking into account their toxicities in both cell cultures and in G. mellonella larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang

    2014-01-01

    A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456

  13. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  14. Toxic Release Inventory Chemicals by Groupings

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment since 1987. EPA makes changes (additions, deletions, or changes in definition) to the TRI chemical list. As a result, the TRI list of reportable toxic chemicals can vary from year to year. EPA created groupings such as the core chemical lists (of 1988, 1991, 1995, 1998, 2000, and 2001) to facilitate year-to-year comparison based on a consistent set of reporting requirements and assure that changes in TRI release or other waste management amounts do not reflect the addition, deletion, or change in definition of reportable chemicals. EPA also created groupings of specific chemicals of interest by categories such as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Hazardous Air Pollutants (HAPs), Metals, Newly Added TRI Chemicals in 1995, Occupational Safety and Health Administration (OSHA, Carcinogens), Persistent Bioaccumulative and Toxic (PBT) Chemicals, and Priority Chemicals.

  15. [Chemicals toxic to the olfactory system. Analysis and description].

    PubMed

    Norès, J M; Biacabe, B; Bonfils, P

    2000-10-28

    AN IMPORTANT PROBLEM: Occupational exposure to chemical products can have toxic effects on the olfactory system. An important number of patients have experienced olfactory disorders subsequent to the development of the chemical industry and atmospheric pollution. EPIDEMIOLOGY DATA: Straightforward data are difficult to collect because several cofactors other than the toxic product are involved. Two lists of toxic products can be made. The first list includes products for which scientific data is available and the second products for which data is lacking. Olfactory tests also differ between authors and countries. TWO TYPES OF TOXICITY: Acute, accidental toxicity is evidenced by the lesions caused by inhalation of high-doses of strongly toxic agents. Chronic intoxication caused by lower concentrations of these inhaled agents does not produce a trigeminal reflex leading to a modified respiratory rate reducing the airborne aggression. APPROXIMATIONS: Clinical data describing the olfactory toxicity of certain industrial and chemical compounds are very significant but often cannot prove a cause and effect relationship. Data obtained with experimental models in rodents are difficult to extrapolate to humans.

  16. CHEMICAL STRUCTURE INDEXING OF TOXICITY DATA ON ...

    EPA Pesticide Factsheets

    Standardized chemical structure annotation of public toxicity databases and information resources is playing an increasingly important role in the 'flattening' and integration of diverse sets of biological activity data on the Internet. This review discusses public initiatives that are accelerating the pace of this transformation, with particular reference to toxicology-related chemical information. Chemical content annotators, structure locator services, large structure/data aggregator web sites, structure browsers, International Union of Pure and Applied Chemistry (IUPAC) International Chemical Identifier (InChI) codes, toxicity data models and public chemical/biological activity profiling initiatives are all playing a role in overcoming barriers to the integration of toxicity data, and are bringing researchers closer to the reality of a mineable chemical Semantic Web. An example of this integration of data is provided by the collaboration among researchers involved with the Distributed Structure-Searchable Toxicity (DSSTox) project, the Carcinogenic Potency Project, projects at the National Cancer Institute and the PubChem database. Standardizing chemical structure annotation of public toxicity databases

  17. Evaluating the Toxicity Pathways Using High-Throughput Environmental Chemical Data

    EPA Science Inventory

    The application of HTS methods to the characterization of human phenotypic response to environmental chemicals is a largely unexplored area of pharmacogenomics. The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approach...

  18. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals

    EPA Pesticide Factsheets

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  19. Toxico-Cheminformatics: New and Expanding Public Resources to Support Chemical Toxicity Assessments

    EPA Science Inventory

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve information gathering efforts for chemical assessments and p...

  20. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.

    2005-05-01

    A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.

  1. 40 CFR 372.45 - Notification about toxic chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...

  2. 40 CFR 372.45 - Notification about toxic chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...

  3. 40 CFR 372.45 - Notification about toxic chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...

  4. 40 CFR 372.45 - Notification about toxic chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...

  5. 40 CFR 372.45 - Notification about toxic chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Notification about toxic chemicals..., EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Supplier Notification Requirements § 372.45 Notification about toxic chemicals. (a) Except as...

  6. DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...

  7. The chemical exposure toxicity space (CETS) model: Displaying exposure time, aqueous and organic concentration, activity, and onset of toxicity.

    PubMed

    Mackay, Donald; Celsie, Alena K D; Parnis, J Mark; McCarty, Lynn S; Arnot, Jon A; Powell, David E

    2017-05-01

    A 1-compartment toxicokinetic model is used to characterize the chemical exposure toxicity space (CETS), providing a novel graphic tool that can aid in the design of aquatic toxicity tests for fish and for interpreting their results. The graph depicts the solution to the differential equation describing the uptake kinetics of a chemical by a modeled fish under conventional bioassay conditions. The model relates the exposure concentration in the water to a dimensionless time and the onset of toxicity as determined by an estimated or assumed critical body residue or incipient lethal aqueous concentration. These concentration graphs are specific to each chemical and exposure and organism parameters and clearly demonstrate differences in toxicity between chemicals and how factors such as hydrophobicity influence the toxic endpoint. The CETS plots can also be used to assess bioconcentration test conditions to ensure that concentrations are well below toxic levels. Illustrative applications are presented using a recent set of high-quality toxicity data. Conversion of concentrations to chemical activities in the plots enables results for different baseline toxicants to be superimposed. For chemicals that have different modes of toxic action, the increased toxicity then becomes apparent. Implications for design and interpretation of aquatic toxicity tests are discussed. The model, and pictorial visualization of the time-course of aquatic toxicity tests, may contribute to improvements in test design, implementation, and interpretation, and to reduced animal usage. Environ Toxicol Chem 2017;36:1389-1396. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  8. The Toxicity Data Landscape for Environmental Chemicals

    PubMed Central

    Judson, Richard; Richard, Ann; Dix, David J.; Houck, Keith; Martin, Matthew; Kavlock, Robert; Dellarco, Vicki; Henry, Tala; Holderman, Todd; Sayre, Philip; Tan, Shirlee; Carpenter, Thomas; Smith, Edwin

    2009-01-01

    Objective Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As part of these efforts, it is important to catalog, from widely dispersed sources, the toxicology information that is available. The main objective of this analysis is to define a list of environmental chemicals that are candidates for the U.S. EPA screening and prioritization process, and to catalog the available toxicology information. Data sources We are developing ACToR (Aggregated Computational Toxicology Resource), which combines information for hundreds of thousands of chemicals from > 200 public sources, including the U.S. EPA, National Institutes of Health, Food and Drug Administration, corresponding agencies in Canada, Europe, and Japan, and academic sources. Data extraction ACToR contains chemical structure information; physical–chemical properties; in vitro assay data; tabular in vivo data; summary toxicology calls (e.g., a statement that a chemical is considered to be a human carcinogen); and links to online toxicology summaries. Here, we use data from ACToR to assess the toxicity data landscape for environmental chemicals. Data synthesis We show results for a set of 9,912 environmental chemicals being considered for analysis as part of the U.S. EPA ToxCast screening and prioritization program. These include high-and medium-production-volume chemicals, pesticide active and inert ingredients, and drinking water contaminants. Conclusions Approximately two-thirds of these chemicals have at least limited toxicity summaries available. About one-quarter have been assessed in at least one highly curated toxicology evaluation database such as the U.S. EPA Toxicology Reference Database, U.S. EPA Integrated

  9. DOE contractor's meeting on chemical toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metalsmore » Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.« less

  10. Toxicity and biodegradability of high strength/toxic organic liquid industrial effluents and hazardous landfill leachates.

    PubMed

    Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A

    2002-01-01

    Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.

  11. 48 CFR 52.223-14 - Toxic Chemical Release Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Toxic Chemical Release....223-14 Toxic Chemical Release Reporting. As prescribed in 23.906(b), insert the following clause: Toxic Chemical Release Reporting (AUG 2003) (a) Unless otherwise exempt, the Contractor, as owner or...

  12. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    PubMed

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  14. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  15. America's Poisoned Playgrounds: Children and Toxic Chemicals.

    ERIC Educational Resources Information Center

    Freedberg, Louis

    Next to chemical and farm workers, today's children are at the greatest risk from toxic chemicals. Through their normal play activities, children are exposed to a frightening array of toxic hazards, including lead, pesticides, arsenic, and unknown dangers from abandoned landfills and warehouses. Through a series of documented examples, the author…

  16. Application of fuzzy c-means clustering to PRTR chemicals uncovering their release and toxicity characteristics.

    PubMed

    Xue, Mianqiang; Zhou, Liang; Kojima, Naoya; Dos Muchangos, Leticia Sarmento; Machimura, Takashi; Tokai, Akihiro

    2018-05-01

    Increasing manufacture and usage of chemicals have not been matched by the increase in our understanding of their risks. Pollutant release and transfer register (PRTR) is becoming a popular measure for collecting chemical data and enhancing the public right to know. However, these data are usually in high dimensionality which restricts their wider use. The present study partitions Japanese PRTR chemicals into five fuzzy clusters by fuzzy c-mean clustering (FCM) to explore the implicit information. Each chemical with membership degrees belongs to each cluster. Cluster I features high releases from non-listed industries and the household sector and high environmental toxicity. Cluster II is characterized by high reported releases and transfers from 24 listed industries above the threshold, mutagenicity, and high environmental toxicity. Chemicals in cluster III have characteristics of high releases from non-listed industries and low toxicity. Cluster IV is characterized by high reported releases and transfers from 24 listed industries above the threshold and extremely high environmental toxicity. Cluster V is characterized by low releases yet mutagenicity and high carcinogenicity. Chemicals with the highest membership degree were identified as representatives for each cluster. For the highest membership degree, half of the chemicals have a value higher than 0.74. If we look at both the highest and the second highest membership degrees simultaneously, about 94% of the chemicals have a value higher than 0.5. FCM can serve as an approach to uncover the implicit information of highly complex chemical dataset, which subsequently supports the strategy development for efficient and effective chemical management. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Profiling the reproductive toxicity of chemicals from multigeneration studies in the toxicity reference database

    EPA Science Inventory

    Multigeneration reproduction studies are used to characterize parental and offspring systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been digitized into sta...

  18. Predicting organ toxicity using in vitro bioactivity data and chemical structure

    EPA Science Inventory

    Animal testing alone cannot practically evaluate the health hazard posed by tens of thousands of environmental chemicals. Computational approaches together with high-throughput experimental data may provide more efficient means to predict chemical toxicity. Here, we use a superv...

  19. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing.

    PubMed

    Ducharme, Nicole A; Reif, David M; Gustafsson, Jan-Ake; Bondesson, Maria

    2015-08-01

    With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  1. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  2. Modeling Reproductive Toxicity for Chemical Prioritization into an Integrated Testing Strategy

    EPA Science Inventory

    The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals in over 500 assays of different molecular targets, cellular responses and cell-states. Of th...

  3. Policy Statement on a New Chemicals Category for Persistent, Bioaccumulative, and Toxic (PBT) Chemicals

    EPA Pesticide Factsheets

    On November 4, 1999, EPA issued its policy statement on a category for Persistent Bioaccumulative and Toxic (PBT) new chemicals. The statement provides guidance criteria for persistence, bioaccumulation, and toxicity for new chemicals.

  4. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Reportmore » (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.« less

  5. THE TOXCAST PROGRAM FOR PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals...

  6. 40 CFR 372.22 - Covered facilities for toxic chemical release reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Covered facilities for toxic chemical... (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.22 Covered facilities for toxic chemical...

  7. Toxic chemical release weighted ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrocchi, A.J.

    1989-07-19

    The weighted ranking as used in this report is an attempt to combine total air release with recognized exposure limit for each toxic chemical to arrive at a single ranking factor called Release Exposure Index (REI) which takes both release amount and degree of hazard into consideration. The REIs can then be used in decision making to prioritize how these chemicals are addressed. 2 tabs.

  8. GENE INDUCTION STUDIES AND TOXICITY OF CHEMICAL MIXTURES

    EPA Science Inventory

    As part of its mixtures program the Agency for Toxic Substances and Disease Registry (ATSDR) supports in vitro and limited in vivo toxicity testing to further our understanding of the toxicity and health effects of chemical mixtures. There are increasing concerns that environment...

  9. Exposure Science for Chemical Prioritization and Toxicity Testing

    EPA Science Inventory

    Currently, a significant research effort is underway to apply new technologies to screen and prioritize chemicals for toxicity testing as well as to improve understanding of toxicity pathways (Dix et al. 2007, Toxicol Sci; NRC, 2007, Toxicity Testing in the 21st Century; Collins ...

  10. Integrated modeling systems to assess exposure and toxicity of chemicals in support of aquatic ecological risk assessment of methodologically challenging chemicals

    EPA Science Inventory

    From an exposure assessment perspective, persistent, bioaccumulative and toxic chemicals (PBTs) are some of the most challenging chemicals facing environmental decision makers today. Due to their general physico-chemical properties [e.g., high octanol-water partition coefficien...

  11. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.

    PubMed

    Önlü, Serli; Saçan, Melek Türker

    2017-04-01

    The authors modeled the 72-h algal toxicity data of hundreds of chemicals with different modes of action as a function of chemical structures. They developed mode of action-based local quantitative structure-toxicity relationship (QSTR) models for nonpolar and polar narcotics as well as a global QSTR model with a wide applicability potential for industrial chemicals and pharmaceuticals. The present study rigorously evaluated the generated models, meeting the Organisation for Economic Co-operation and Development principles of robustness, validity, and transparency. The proposed global model had a broad structural coverage for the toxicity prediction of diverse chemicals (some of which are high-production volume chemicals) with no experimental toxicity data. The global model is potentially useful for endpoint predictions, the evaluation of algal toxicity screening, and the prioritization of chemicals, as well as for the decision of further testing and the development of risk-management measures in a scientific and regulatory frame. Environ Toxicol Chem 2017;36:1012-1019. © 2016 SETAC. © 2016 SETAC.

  12. Identifying Toxicity Pathways with ToxCast High-Throughput Screening and Applications to Predicting Developmental Toxicity

    EPA Science Inventory

    Results from rodent and non-rodent prenatal developmental toxicity tests for over 300 chemicals have been curated into the relational database ToxRefDB. These same chemicals have been run in concentration-response format through over 500 high-throughput screening assays assessin...

  13. Toxic Chemical Exposure in Schools: Our Children at Risk.

    ERIC Educational Resources Information Center

    Sterling, Peter; Paquette, Nicole

    Asserting that toxic chemicals can be found throughout school grounds in pesticides, building materials, school supplies, cleaning products, office equipment, and personal care products, this reports details the prevalence of toxic chemicals within schools and recommends methods for reducing exposure. Following an executive summary, the report…

  14. Comparison of the radiological and chemical toxicity of lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiationmore » dose.« less

  15. Review of chemical, medication, and anesthesia toxicity in the OR.

    PubMed

    Fiedler, M A; Biddle, C

    1998-02-01

    A host of toxic substances exist in the OR. The toxicity of prep solutions, cleaning chemicals, common medications, and trace anesthetic gases varies greatly. Nurses use, direct others in the use of, or administer potential toxins while breathing air that may be contaminated to some degree with anesthetic vapors. Often, the OR nurse is the neighborhood resource when questions about the toxicity of common chemicals and drugs arise. A general knowledge of the toxicity of these substances improves the nurse's ability to assess the risk from trace anesthetic gases, prevent injury to patients, provide first aid when potentially dangerous exposure occurs, and direct others in the safe use of OR chemicals.

  16. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  17. Toxicity challenges in environmental chemicals: Prediction of ...

    EPA Pesticide Factsheets

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do

  18. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  19. [Microplate luminometry for toxicity bioassay of chemicals on luciferase].

    PubMed

    Ge, Hui-Lin; Liu, Shu-Shen; Chen, Fu; Luo, Jin-Hui; Lü, Dai-Zhu; Su, Bing-Xia

    2013-10-01

    A new microplate luminometry for the toxicity bioassay of chemicals on firefly luciferase, was developed using the multifunctional microplate reader (SpectraMax M5) to measure the luminous intensity of luciferase. Efects of luciferase concentration, luciferin concentration, ATP concentration, pH, temperature, and reaction time on the luminescence were systematically investigated. It was found that ATP exerted a biphasic response on the luciferase luminescence and the maximum relative light units (RLU) occurred at an ATP concentration of 1.1 x 10(-4) mol x L(-1). The method was successfully employed in the toxic effect test of NaF, NaCl, KBr and NaBF4 on luciferase. Using nonlinear least square technique, the dose-response curves (DRC) of the 4 chemicals were accurately fitted with the coefficient of determination (R2) between the fitted and observed responses being greater than 0.99. The median effective concentration (EC50) of the 4 chemicals were accurately measured from the DRC models. Compared with some literatures, the bioassay is a fast easy-operate and cost-effective method with high accuracy.

  20. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing

    PubMed Central

    Wetmore, Barbara A.; Wambaugh, John F.; Allen, Brittany; Ferguson, Stephen S.; Sochaski, Mark A.; Setzer, R. Woodrow; Houck, Keith A.; Strope, Cory L.; Cantwell, Katherine; Judson, Richard S.; LeCluyse, Edward; Clewell, Harvey J.; Thomas, Russell S.; Andersen, Melvin E.

    2015-01-01

    We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization. PMID:26251325

  1. Differential Toxicity Characterization of Green Alternative Chemicals

    EPA Science Inventory

    Assessing the toxicity of a chemical across all possible disease domains and understanding its dose- response behavior cost millions to tens of millions of dollars per chemical, and can take years to decades to evaluate fully. This expense and the lack of regulatory requirements ...

  2. DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...

  3. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    PubMed

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  4. The use of high-throughput screening techniques to evaluate mitochondrial toxicity.

    PubMed

    Wills, Lauren P

    2017-11-01

    Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Environmental sentinel biomonitors: integrated response systems for monitoring toxic chemicals

    NASA Astrophysics Data System (ADS)

    van der Schalie, William H.; Reuter, Roy; Shedd, Tommy R.; Knechtges, Paul L.

    2002-02-01

    Operational environments for military forces are becoming potentially more dangerous due to the increased number, use, and misuse of toxic chemicals across the entire range of military missions. Defense personnel may be exposed to harmful chemicals as a result of industrial accidents or intentional or unintentional action of enemy, friendly forces, or indigenous populations. While there has been a significant military effort to enable forces to operate safely and survive and sustain operations in nuclear, biological, chemical warfare agent environments, until recently there has not been a concomitant effort associated with potential adverse health effects from exposures of deployed personnel to toxic industrial chemicals. To provide continuous real-time toxicity assessments across a broad spectrum of individual chemicals or chemical mixtures, an Environmental Sentinel Biomonitor (ESB) system concept is proposed. An ESB system will integrate data from one or more platforms of biologically-based systems and chemical detectors placed in the environment to sense developing toxic conditions and transmit time-relevant data for use in risk assessment, mitigation, and/or management. Issues, challenges, and next steps for the ESB system concept are described, based in part on discussions at a September 2001 workshop sponsored by the U.S. Army Center for Environmental Health Research.

  6. The problem of current toxic chemicals management.

    PubMed

    Tickner, Joel; Geiser, Ken

    2004-01-01

    In this article, we explore the limitations of current chemicals management policies worldwide and the evolution of new European, International and U.S. policies to address the problem of toxic chemicals control. It is becoming increasingly apparent that current chemicals management policies in Europe and the United States are inadequate. There is a general lack of toxicity and exposure information on chemicals in commerce and the vast majority of chemicals were considered safe until proven guilty in legislation. Governments must then prove each chemical is dangerous through a slow and resource-intensive risk assessment process. For more than a decade, Nordic countries, such as Denmark and Sweden, have actively promoted integrated chemicals policies to address contamination of critical waterways. They have successfully used a variety of voluntary and mandatory policy tools, such as education, procurement, lists of chemicals of concern, eco-labeling, research and development on safer substitutes, and chemical phase-out requirements, to encourage companies using chemicals to reduce their reliance on harmful substances and to develop safer substitutes. While previously isolated to particular countries, innovative and exciting European-wide policies to promote sustainable chemicals management are now moving forward, including the recently published draft Registration, Evaluation and Authorization of CHemicals (REACH) policy of the European Union. A sweeping change in chemicals management policies in Europe is inevitable and it will ultimately affect manufacturers in the U.S. and globally. The European movement provides an opportunity to initiate a discussion on integrated chemicals policy in the U.S. where some innovative initiatives already are underway.

  7. Toxicity Testing in the 21st Century Beyond Environmental Chemicals

    PubMed Central

    Rovida, Costanza; Asakura, Shoji; Daneshian, Mardas; Hofman-Huether, Hana; Leist, Marcel; Meunier, Leo; Reif, David; Rossi, Anna; Schmutz, Markus; Valentin, Jean-Pierre; Zurlo, Joanne; Hartung, Thomas

    2018-01-01

    Summary After the publication of the report titled Toxicity Testing in the 21st Century – A Vision and a Strategy, many initiatives started to foster a major paradigm shift for toxicity testing – from apical endpoints in animal-based tests to mechanistic endpoints through delineation of pathways of toxicity (PoT) in human cell based systems. The US EPA has funded an important project to develop new high throughput technologies based on human cell based in vitro technologies. These methods are currently being incorporated into the chemical risk assessment process. In the pharmaceutical industry, the efficacy and toxicity of new drugs are evaluated during preclinical investigations that include drug metabolism, pharmacokinetics, pharmacodynamics and safety toxicology studies. The results of these studies are analyzed and extrapolated to predict efficacy and potential adverse effects in humans. However, due to the high failure rate of drugs during the clinical phases, a new approach for a more predictive assessment of drugs both in terms of efficacy and adverse effects is getting urgent. The food industry faces the challenge of assessing novel foods and food ingredients for the general population, while using animal safety testing for extrapolation purposes is often of limited relevance. The question is whether the latest paradigm shift proposed by the Tox21c report for chemicals may provide a useful tool to improve the risk assessment approach also for drugs and food ingredients. PMID:26168280

  8. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  9. Materials Safety Data Sheets: the basis for control of toxic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketchen, E.E.; Porter, W.E.

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The datamore » sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.« less

  10. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    EPA Science Inventory

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  11. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    PubMed Central

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  13. An expert system for prediction of chemical toxicity

    USGS Publications Warehouse

    Hickey, James P.; Aldridge, Andrew J.; Passino-Reader, Dora R.; Frank, Anthony M.

    1992-01-01

    The National Fisheries Research Center- Great Lakes has developed an interactive computer program that uses the structure of an organic molecule to predict its acute toxicity to four aquatic species. The expert system software, written in the muLISP language, identifies the skeletal structures and substituent groups of an organic molecule from a user-supplied standard chemical notation known as a SMILES string, and then generates values for four solvatochromic parameters. Multiple regression equations relate these parameters to the toxicities (expressed as log10LC50s and log10EC50s, along with 95% confidence intervals) for four species. The system is demonstrated by prediction of toxicity for anilide-type pesticides to the fathead minnow (Pimephales promelas). This software is designed for use on an IBM-compatible personal computer by personnel with minimal toxicology background for rapid estimation of chemical toxicity. The system has numerous applications, with much potential for use in the pharmaceutical industry

  14. Optimization of DNA barcode method to assess altered chemical toxicity due to CYP-mediated metabolism

    EPA Science Inventory

    A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. This hinders the use and relevance of cell culture in high throughput chemical toxicity screening. To address this challenge, we engineered HEK293T cells to overexpress...

  15. ToxRefDB: Classifying ToxCast™ Phase I Chemicals Utilizing Structured Toxicity Information

    EPA Science Inventory

    There is an essential need for highly detailed chemicals classifications within the ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, relevant endpoints and toxicities m...

  16. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    PubMed

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  17. The comparative toxicity to soil invertebrates of natural chemicals and their synthetic analogues.

    PubMed

    Whitaker, J; Chaplow, J S; Potter, E; Scott, W A; Hopkin, S; Harman, M; Sims, I; Sorokin, N

    2009-07-01

    The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds.

  18. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    PubMed

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented

  20. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals.

    PubMed

    Wignall, Jessica A; Muratov, Eugene; Sedykh, Alexander; Guyton, Kathryn Z; Tropsha, Alexander; Rusyn, Ivan; Chiu, Weihsueh A

    2018-05-01

    Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q 2 of 0.25-0.45, mean model errors of 0.70-1.11 log 10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.

  1. Toxicity of fire retardant chemicals to aquatic organisms: Progress report

    USGS Publications Warehouse

    Hamilton, Steven J.; McDonald, Susan F.; Gaikowski, Mark P.; Buhl, Kevin J.; Ramsey, G.S.

    1996-01-01

    Fire retardants and suppressants used extensively in North America are often applied in environmentally sensitive areas that may contain endangered, threatened, or economically important plant and animal species. We conducted laboratory acute toxicity tests in both hard and soft waters with five commonly used fire control chemicals (Fire Trol LCG-R, Fire-Trol GTS-R, Phos-Chek D-75-F, Phos-Chek WD-881, and Silv-Ex). Organisms used in the tests included two fish (rainbow trout and fathead minnow), two aquatic invertebrates (Daphnia magna and Hyalella azteca), and a green algae (Selenastrum capricornutum). In general, the green algae was substantially more sensitive to the three non-foam fire chemicals than the animals, the Daphnia were the most sensitive test organism in exposures with foams. The two foams (Silv-Ex and Phos-Chek WD-881) had similar toxicity and were more toxic than the three non-foams. Water quality did not seem to modify the toxicity of the five fire chemicals in a consistent manner.

  2. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  3. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  4. Computerized in vitro test for chemical toxicity based on tetrahymena swimming patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.; Cronise, Raymond J.; Looger, Loren L.; Relwani, Rachna A.; Johnson, Jacqueline U.

    1994-01-01

    An apparatus and method for rapidly determining chemical toxicity was evaluated. The toxicity monitor includes an automated scoring of how motile biological cells (Tetrahymena pyriformis) slow down or otherwise change their swimming patterns in a hostile chemical environment. The device, called the Motility Assay Apparatus (MAA) is tested for 30 second determination of chemical toxicity in 20 aqueous samples containing trace organics and salts. With equal or better detection limits, results compare favorably to in vivo animal tests of eye irritancy, in addition to agreeing for all chemicals with previous manual evaluations of single cell motility.

  5. Impact of toxic chemicals on local wastewater treatment plant and the environment

    NASA Astrophysics Data System (ADS)

    Bennett, Gary F.

    1989-05-01

    Because toxic chemicals being discharged to sewers were simultaneously interfering with wastewater treatment processes of municipal, biological treatment plants and were passing through these plants to negatively impact the bodies of water to which these plants were discharging, the U.S. Environmental Protection Agency issued regulations governing industrial discharges to municipal sewers. These “Pretreatment Regulations” limit industrial discharges to municipal sewers of heavy metals, oil and grease, acids and bases, and toxic organic chemicals. This paper discusses the evolution of these regulations, the basis for them, the types of regulations (categorical and local), and the rationale for their promulgation based on the impacts of toxics chemicals on the treatment plant and receiving system. Finally, the expected results of these regulations in reducing industrial discharges of toxic chemicals is discussed.

  6. EPA's ToxCast Program for Predicting Hazard and Prioritizing the Toxicity Testing of Environmental Chemicals

    EPA Science Inventory

    An alternative is to perform a set of relatively inexpensive and rapid high throughput screening (HTS) assays, derive signatures predictive of effects or modes of chemical toxicity from the HTS data, then use these predictions to prioritize chemicals for more detailed analysis. T...

  7. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  8. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.

    PubMed

    Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y

    2014-10-01

    We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.

  9. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  10. EPA'S TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...

  11. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    PubMed

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at p<0.05. The high sensitivity of the 7-day-old test organisms to both chemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  12. Computerized In Vitro Test for Chemical Toxicity Based on Tetrahymena Swimming Patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.; Cronise, Raymond J.; Looger, Loren L.; Relwani, Rachna A.; Johnson, Jacqueline U.

    1994-01-01

    An apparatus and a method for rapidly determining chemical toxicity have been evaluated as an alternative to the rabbit eye initancy test (Draize). The toxicity monitor includes an automated scoring of how motile biological cells (Tetrahymena pyriformis) slow down or otherwise change their swimming patterns in a hostile chemical environment. The method, called the motility assay (MA), is tested for 30 s to determine the chemical toxicity in 20 aqueous samples containing trace organics and salts. With equal or better detection limits, results compare favorably to in vivo animal tests of eye irritancy.

  13. Acute toxicity of fire control chemicals to Daphnia magna(Straus) and Selenastrum capricornutum(Printz)

    USGS Publications Warehouse

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1996-01-01

    Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.

  14. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.

    PubMed

    Belanger, Scott E; Rawlings, Jane M; Carr, Gregory J

    2013-08-01

    The fish embryo test (FET) is a potential animal alternative for the acute fish toxicity (AFT) test. A comprehensive validation program assessed 20 different chemicals to understand intra- and interlaboratory variability for the FET. The FET had sufficient reproducibility across a range of potencies and modes of action. In the present study, the suitability of the FET as an alternative model is reviewed by relating FET and AFT. In total, 985 FET studies and 1531 AFT studies were summarized. The authors performed FET-AFT regressions to understand potential relationships based on physical-chemical properties, species choices, duration of exposure, chemical classes, chemical functional uses, and modes of action. The FET-AFT relationships are very robust (slopes near 1.0, intercepts near 0) across 9 orders of magnitude in potency. A recommendation for the predictive regression relationship is based on 96-h FET and AFT data: log FET median lethal concentration (LC50) = (0.989 × log fish LC50) - 0.195; n = 72 chemicals, r = 0.95, p < 0.001, LC50 in mg/L. A similar, not statistically different regression was developed for the entire data set (n = 144 chemicals, unreliable studies deleted). The FET-AFT regressions were robust for major chemical classes with suitably large data sets. Furthermore, regressions were similar to those for large groups of functional chemical categories such as pesticides, surfactants, and industrial organics. Pharmaceutical regressions (n = 8 studies only) were directionally correct. The FET-AFT relationships were not quantitatively different from acute fish-acute fish toxicity relationships with the following species: fathead minnow, rainbow trout, bluegill sunfish, Japanese medaka, and zebrafish. The FET is scientifically supportable as a rational animal alternative model for ecotoxicological testing of acute toxicity of chemicals to fish. Copyright © 2013 SETAC.

  15. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  16. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.

    PubMed

    Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott

    2018-05-01

    The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  18. Toxic Chemicals Use in School Labs Examined.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    The Consumer Product Safety Commission will recommend an information network to inform students and teachers of current toxicity evaluations of chemicals and of possible use of less hazardous substitutes. Lists names of 33 suspected carcinogens and 11 suspected teratogens. (SK)

  19. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.

    PubMed

    Firestone, Michael; Kavlock, Robert; Zenick, Hal; Kramer, Melissa

    2010-02-01

    In the 2007 report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences envisioned a major transition in toxicity testing from cumbersome, expensive, and lengthy in vivo testing with qualitative endpoints, to in vitro robotic high-throughput screening with mechanistic quantitative parameters. Recognizing the need for agencies to partner and collaborate to ensure global harmonization, standardization, quality control and information sharing, the U.S. Environmental Protection Agency is leading by example and has established an intra-agency Future of Toxicity Testing Workgroup (FTTW). This workgroup has produced an ambitious blueprint for incorporating this new scientific paradigm to change the way chemicals are screened and evaluated for toxicity. Four main components of this strategy are discussed, as follows: (1) the impact and benefits of various types of regulatory activities, (2) chemical screening and prioritization, (3) toxicity pathway-based risk assessment, and (4) institutional transition. The new paradigm is predicated on the discovery of molecular perturbation pathways at the in vitro level that predict adverse health effects from xenobiotics exposure, and then extrapolating those events to the tissue, organ, or whole organisms by computational models. Research on these pathways will be integrated and compiled using the latest technology with the cooperation of global agencies, industry, and other stakeholders. The net result will be that chemical toxicity screening will become more efficient and cost-effective, include real-world exposure assessments, and eliminate currently used uncertainty factors.

  20. Assessing deep and shallow learning methods for quantitative prediction of acute chemical toxicity.

    PubMed

    Liu, Ruifeng; Madore, Michael; Glover, Kyle P; Feasel, Michael G; Wallqvist, Anders

    2018-05-02

    Animal-based methods for assessing chemical toxicity are struggling to meet testing demands. In silico approaches, including machine-learning methods, are promising alternatives. Recently, deep neural networks (DNNs) were evaluated and reported to outperform other machine-learning methods for quantitative structure-activity relationship modeling of molecular properties. However, most of the reported performance evaluations relied on global performance metrics, such as the root mean squared error (RMSE) between the predicted and experimental values of all samples, without considering the impact of sample distribution across the activity spectrum. Here, we carried out an in-depth analysis of DNN performance for quantitative prediction of acute chemical toxicity using several datasets. We found that the overall performance of DNN models on datasets of up to 30,000 compounds was similar to that of random forest (RF) models, as measured by the RMSE and correlation coefficients between the predicted and experimental results. However, our detailed analyses demonstrated that global performance metrics are inappropriate for datasets with a highly uneven sample distribution, because they show a strong bias for the most populous compounds along the toxicity spectrum. For highly toxic compounds, DNN and RF models trained on all samples performed much worse than the global performance metrics indicated. Surprisingly, our variable nearest neighbor method, which utilizes only structurally similar compounds to make predictions, performed reasonably well, suggesting that information of close near neighbors in the training sets is a key determinant of acute toxicity predictions.

  1. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  2. Protecting children from toxic chemicals: putting it on Australia's public health agenda.

    PubMed

    Lantz, Sarah

    2013-11-01

    The high volume and widespread use of industrial chemicals, the backlog of internationally untested chemicals, the uptake of synthetic chemicals found in babies in utero, cord blood, and in breast milk, and the lack of a unified and comprehensive regulatory framework all necessitate developing policies that protect the most vulnerable in our society - our children. Australia's failure to do so raises profound intergenerational ethical issues. This article tells a story of international policy, and where Australia is falling down. It demonstrates that we can learn from countries already taking critical steps to reduce the toxic chemical exposure, and that the development of a comprehensive, child-centered chemical regulation framework is central to turning around Australia's failure.

  3. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.

    PubMed

    Escher, Beate I; Baumer, Andreas; Bittermann, Kai; Henneberger, Luise; König, Maria; Kühnert, Christin; Klüver, Nils

    2017-03-22

    The Microtox assay, a bioluminescence inhibition assay with the marine bacterium Aliivibrio fischeri, is one of the most popular bioassays for assessing the cytotoxicity of organic chemicals, mixtures and environmental samples. Most environmental chemicals act as baseline toxicants in this short-term screening assay, which is typically run with only 30 min of exposure duration. Numerous Quantitative Structure-Activity Relationships (QSARs) exist for the Microtox assay for nonpolar and polar narcosis. However, typical water pollutants, which have highly diverse structures covering a wide range of hydrophobicity and speciation from neutral to anionic and cationic, are often outside the applicability domain of these QSARs. To include all types of environmentally relevant organic pollutants we developed a general baseline toxicity QSAR using liposome-water distribution ratios as descriptors. Previous limitations in availability of experimental liposome-water partition constants were overcome by reliable prediction models based on polyparameter linear free energy relationships for neutral chemicals and the COSMOmic model for charged chemicals. With this QSAR and targeted mixture experiments we could demonstrate that ionisable chemicals fall in the applicability domain. Most investigated water pollutants acted as baseline toxicants in this bioassay, with the few outliers identified as uncouplers or reactive toxicants. The main limitation of the Microtox assay is that chemicals with a high melting point and/or high hydrophobicity were outside of the applicability domain because of their low water solubility. We quantitatively derived a solubility cut-off but also demonstrated with mixture experiments that chemicals inactive on their own can contribute to mixture toxicity, which is highly relevant for complex environmental mixtures, where these chemicals may be present at concentrations below the solubility cut-off.

  4. Predicting the Future: Opportunities and Challenges for the Chemical Industry to Apply 21st-Century Toxicity Testing

    PubMed Central

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-01-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process. PMID:25836969

  5. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    PubMed

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.

  6. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    EPA Science Inventory

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  7. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Dayong; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000; Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptorsmore » of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships.

  8. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data

    PubMed Central

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander

    2012-01-01

    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  9. Equity and Information: Information Regulation, Environmental Justice, and Risks from Toxic Chemicals

    ERIC Educational Resources Information Center

    Shapiro, Marc D.

    2005-01-01

    Decreases over time in pounds of industrial chemical emissions have led to concerns that nonminority, higher-income communities have benefited disproportionately in reductions in risk. Toxic chemical release data, modeled for toxicity and dispersion in square kilometer units across 45 states, are used to test six sets of hypotheses of potential…

  10. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL TOXICITY USING LITERATURE MINING-BASED WEIGHTING OF TOXCAST ASSAYS

    EPA Science Inventory

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals...

  11. Microbial contamination and chemical toxicity of the Rio Grande

    PubMed Central

    Mendoza, Jose; Botsford, James; Hernandez, Jose; Montoya, Anna; Saenz, Roswitha; Valles, Adrian; Vazquez, Alejandro; Alvarez, Maria

    2004-01-01

    Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC). Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no significant correlation was

  12. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  13. Identifying and designing chemicals with minimal acute aquatic toxicity.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  14. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    EPA Science Inventory

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  15. Acute toxicity of fire-control chemicals, nitrogenous chemicals, and surfactants to rainbow trout

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    2000-01-01

    Laboratory studies were conducted to determine the acute toxicity of three ammonia-based fire retardants (Fire-Trol LCA-F, Fire-Trol LCM-R, and Phos-Chek 259F), five surfactant-based fire-suppressant foams (FireFoam 103B, FireFoam 104, Fire Quench, ForExpan S, and Pyrocap B-136), three nitrogenous chemicals (ammonia, nitrate, and nitrite), and two anionic surfactants (linear alkylbenzene sulfonate [LAS] and sodium dodecyl sulfate [SDS]) to juvenile rainbow trout Oncorhynchus mykiss in soft water. The descending rank order of toxicity (96-h concentration lethal to 50% of test organisms [96-h LC50]) for the fire retardants was as follows: Phos-Chek 259F (168 mg/L) > Fire-Trol LCA-F (942 mg/L) = Fire-Trol LCM-R (1,141 mg/L). The descending rank order of toxicity for the foams was as follows: FireFoam 103B (12.2 mg/L) = FireFoam 104 (13.0 mg/L) > ForExpan S (21.8 mg/L) > Fire Quench (39.0 mg/L) > Pyrocap B-136 [156 mg/L). Except for Pyrocap B-136, the foams were more toxic than the fire retardants. Un-ionized ammonia (NH3; 0.125 mg/L as N) was about six times more toxic than nitrite (0.79 mg/L NO2-N) and about 13,300 times more toxic than nitrate (1,658 mg/L NO3-N). Linear alkylbenzene sulfonate (5.0 mg/L) was about five times more toxic than SDS (24.9 mg/L). Estimated total ammonia and NH3 concentrations at the 96-h LC50s of the fire retardants indicated that ammonia was the primary toxic component in these formulations. Based on estimated anionic surfactant concentrations at the 96-h LC50s of the foams and reference surfactants, LAS was intermediate in toxicity and SDS was less toxic to rainbow trout when compared with the foams. Comparisons of recommended application concentrations to the test results indicate that accidental inputs of these chemicals into streams require substantial dilutions (100-1,750-fold to reach concentrations nonlethal to rainbow trout.

  16. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  17. Toxicity Screening of the ToxCast Chemical Library Using a Zebrafish Developmental Assay

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the U.S. Environmental Protection Agency, the toxicity of the 320 ToxCast™ Phase I chemicals were assessed using a vertebrate screen of developmental toxicity. Zebrafish embryos/larvae (Danio rerio) were exp...

  18. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    PubMed

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Assessment of sediment toxicity and chemical concentrations in the San Diego Bay region, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairey, R.; Roberts, C.; Jacobi, M.

    1998-08-01

    Sediment quality within San Diego Bay, Mission Bay, and the Tijuana River Estuary of California was investigated as part of an ongoing statewide monitoring effort (Bay Protection and Toxic Cleanup Program). Study objectives were to determine the incidence, spatial patterns, and spatial extent of toxicity in sediments and porewater; the concentration and distribution of potentially toxic anthropogenic chemicals; and the relationships between toxicity and chemical concentrations. Rhepoxynius abronius survival bioassays, grain size, and total organic carbon analyses were performed on 350 sediment samples. Strongylocentrotus purpuratus development bioassays were performed on 164 pore-water samples. Toxicity was demonstrated throughout the San Diegomore » Bay region, with increased incidence and concordance occurring in areas of industrial and shipping activity. Trace metal and trace synthetic organic analyses were performed on 229 samples. Copper, zinc, mercury, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlordane were found to exceed ERM (effects range median) or PEL (probable effects level) sediment quality guidelines and were considered the six major chemicals or chemical groups of concern. Statistical analysis of the relationships between amphipod toxicity, bulk phase sediment chemistry, and physical parameters demonstrated few significant linear relationships. Significant differences in chemical levels were found between toxic and nontoxic responses using multivariate and univariate statistics. Potential sources of anthropogenic chemicals were discussed.« less

  20. ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?

    EPA Science Inventory

    Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...

  1. Identification of compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical fractionation.

    PubMed

    Adams, Julie; Bornstein, Jason M; Munno, Keenan; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V

    2014-04-01

    The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity. © 2013 SETAC.

  2. Sampling the stratum corneum for toxic chemicals.

    PubMed

    Coman, Garrett; Blickenstaff, Nicholas R; Blattner, Collin M; Andersen, Rosa; Maibach, Howard I

    2014-01-01

    Dermal exposure is an important pathway in environmental health. Exposure comes from contaminated water, soil, treated surfaces, textiles, aerosolized chemicals, and agricultural products. It can occur in homes, schools, play areas, and work settings in the form of industrial sources, consumer products, or hazardous wastes. Dermal exposure is most likely to occur through contact with liquids, water, soil, sediment, and contaminated surfaces. The ability to detect and measure exposure to toxic materials on the skin is an important environmental health issue. The stratum corneum is the skin's first and principal barrier layer of protection from the outside world. It has a complex structure that can effectively protect against a wide variety of physical, chemical, and biological contaminants. However, there are a variety of chemical agents that can damage the stratum corneum and the underlying epidermis, dermis and subcutis, and/or enter systemic circulation through the skin. There are numerous ways of sampling the stratum corneum for these toxic materials like abrasion techniques, biopsy, suction blistering, imaging, washing, wipe sampling, tape stripping, and spot testing. Selecting a method likely depends on the particular needs of the situation. Hence, there is a need to review practical considerations for their use in sampling the stratum corneum for toxins.

  3. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  4. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  5. Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling.

    PubMed

    Wong, M H; Wu, S C; Deng, W J; Yu, X Z; Luo, Q; Leung, A O W; Wong, C S C; Luksemburg, W J; Wong, A S

    2007-09-01

    This paper reviews the concentrations of persistent organic pollutants such as flame retardants (PBDEs), dioxins/furans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals/metalloid concentrations of different environmental media at Guiyu, a traditional rice-growing village located in southeastern Guangdong Province (PR China), which has turned into an intensive electronic-waste (e-waste) recycling site. Incomplete combustion of e-waste in open air and dumping of processed materials are the major sources of various toxic chemicals. By comparing with existing data available in other areas and also guidelines adopted in different countries, it is obvious that the environment is highly contaminated by these toxic chemicals derived from the recycling processes. For example, the monthly concentration of the sum of 22 PBDE congeners contained in PM(2.5) (16.8ngm(-3)) of air samples at Guiyu was 100 times higher than published data. In order to safeguard the environment and human health, detailed investigations are urgently needed, especially on tracking the exposure pathways of different toxic chemicals which may affect the workers and local residents especially mothers, infants and children.

  6. Toxicity and taste: unequal chemical defences in a mimicry ring.

    PubMed

    Winters, Anne E; Wilson, Nerida G; van den Berg, Cedric P; How, Martin J; Endler, John A; Marshall, N Justin; White, Andrew M; Garson, Mary J; Cheney, Karen L

    2018-06-13

    Mimicry of warning signals is common, and can be mutualistic when mimetic species harbour equal levels of defence (Müllerian), or parasitic when mimics are undefended but still gain protection from their resemblance to the model (Batesian). However, whether chemically defended mimics should be similar in terms of toxicity (i.e. causing damage to the consumer) and/or unpalatability (i.e. distasteful to consumer) is unclear and in many studies remains undifferentiated. In this study, we investigated the evolution of visual signals and chemical defences in a putative mimicry ring of nudibranch molluscs. First, we demonstrated that the appearance of a group of red spotted nudibranchs molluscs was similar from the perspective of potential fish predators using visual modelling and pattern analysis. Second, using phylogenetic reconstruction, we demonstrated that this colour pattern has evolved multiple times in distantly related individuals. Third, we showed that these nudibranchs contained different chemical profiles used for defensive purposes. Finally, we demonstrated that although levels of distastefulness towards Palaemon shrimp remained relatively constant between species, toxicity levels towards brine shrimp varied significantly. We highlight the need to disentangle toxicity and taste when considering chemical defences in aposematic and mimetic species, and discuss the implications for aposematic and mimicry signal evolution. © 2018 The Author(s).

  7. The U.S. EPA's ToxCast Chemical Screening Program and Predictive Modeling of Toxicity

    EPA Science Inventory

    The ToxCast program was developed by the U.S. EPA's National Center for Computational Toxicology to provide cost-effective high-throughput screening for the potential toxicity of thousands of chemicals. Phase I screened 309 compounds in over 500 assays to evaluate concentration-...

  8. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    PubMed

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (p< or =0.05 or less) between natural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Mixed Phylogenetic Signal in Fish Toxicity Data across Chemical Classes

    EPA Science Inventory

    Chemical use in society is growing rapidly and is one of the five major pressures on biodiversity worldwide. Since empirical toxicity studies of pollutants generally focus on a handful of model organisms, reliable approaches are needed to assess sensitivity to chemicals across th...

  10. EPA'S TOXCAST PROGRAM FOR PREDICTING TOXICITY AND PRIORITIZING ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    ToxCast is a research program to predict or forecast toxicity by evaluating a broad spectrum of chemicals and effects; physical-chemical properties, predicted bioactivities, HTS and cell-based assays, and genomics. Data will be interpretively linked to known or predicted toxicol...

  11. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    PubMed

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  12. DEVELOPING COMPUTATIONAL TOOLS FOR PREDICTING CHEMICAL FATE, METABOLISM, AND TOXICITY PATHWAYS

    EPA Science Inventory

    ORD's research program in Computational Toxicology (CompTox) will enable EPA Program Offices and other regulators to prioritize and reduce toxicity-testing requirements for potentially hazardous chemicals. The CompTox program defines the "toxicity process" as follows : 1) a stre...

  13. New High Throughput Methods to Estimate Chemical ...

    EPA Pesticide Factsheets

    EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing and screening chemicals. A recent report by the National Research Council of the National Academies, Exposure Science in the 21st Century: A Vision and a Strategy (NRC 2012) laid out a number of applications in chemical evaluation of both toxicity and risk in critical need of quantitative exposure predictions, including screening and prioritization of chemicals for targeted toxicity testing, focused exposure assessments or monitoring studies, and quantification of population vulnerability. Despite these significant needs, for the majority of chemicals (e.g. non-pesticide environmental compounds) there are no or limited estimates of exposure. For example, exposure estimates exist for only 7% of the ToxCast Phase II chemical list. In addition, the data required for generating exposure estimates for large numbers of chemicals is severely lacking (Egeghy et al. 2012). This SAP reviewed the use of EPA's ExpoCast model to rapidly estimate potential chemical exposures for prioritization and screening purposes. The focus was on bounded chemical exposure values for people and the environment for the Endocrine Disruptor Screening Program (EDSP) Universe of Chemicals. In addition to exposure, the SAP

  14. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    USGS Publications Warehouse

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  15. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Kim, Sung-Min; Yoon, Sung-Hwan; Joo, Jin-Ho; Shin, Beom-Soo; Jeon, Byong-Hun; Bae, Wookeun; Oh, Sang-Eun

    2010-08-01

    A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The assay is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that SOB biosensor can detect toxic chemicals, such as heavy metals and CN-, in the 5-2000ppb range. One bacterium was isolated from an SOB biosensor and the 16S rRNA gene of the bacterial strain has 99% and 96% sequence similarity to Acidithiobacillus sp. ORCS6 and Acidithiobacillus caldus DSM 8584, respectively. The isolate was identified as A. caldus SMK. The SOB biosensor is ideally suited for monitoring toxic chemicals in water having the advantages of high sensitivity and quick detection.

  16. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    USGS Publications Warehouse

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  17. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

    PubMed

    Zingaro, Kyle A; Nicolaou, Sergios A; Papoutsakis, Eleftherios T

    2013-11-01

    Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Application of dispersive solid phase extraction for trace analysis of toxic chemicals in foods.

    PubMed

    Neely, Sarah; Martin, Jordan; da Cruz, Natalia Ferreira; Piester, Gavin; Robinson, Morgan; Okoniewski, Richard; Tran, Buu N

    2018-05-29

    The objectives of this study were to develop and validate a method for the identification of toxic organic chemicals, including groups of controlled substances, alkaloids and pesticides that are highly toxic and considered threats to public health. This project aims to ensure our laboratory's readiness to respond to emergencies involving our food supply in cooperation with the Food Emergency Response Network (FERN) program. The food matrices were homogenized in a blender or food processor prior to extraction with an acetonitrile-water mixture using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) procedure. The extracts were then analyzed by either gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-electrospray tandem mass spectrometry (LC-ESI/MS/MS). Method validation was performed on a variety of food matrices including lettuce, grapes, milk, chicken, pork and beef. MDLs for the toxic compounds ranged from 0.01 to 0.66 mg/kg (ppm). The findings in this study will provide a valuable resource for the determination of toxic chemicals in food matrices for emergency response situations. Copyright © 2018. Published by Elsevier B.V.

  19. Mechanical-chemical analyses and sub-chronic systemic toxicity of chemical treated organic bovine bone.

    PubMed

    Lee, Kwang-il; Lee, Jung-soo; Lee, Keun-soo; Jung, Hong-hee; Ahn, Chan-min; Kim, Young-sik; Shim, Young-bock; Jang, Ju-woong

    2015-12-01

    Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. QSTR of the toxicity of some organophosphorus compounds by using the quantum chemical and topological descriptors.

    PubMed

    Senior, Samir A; Madbouly, Magdy D; El massry, Abdel-Moneim

    2011-09-01

    Quantum chemical and topological descriptors of some organophosphorus compounds (OP) were correlated with their toxicity LD(50) as a dermal. The quantum chemical parameters were obtained using B3LYP/LANL2DZdp-ECP optimization. Using linear regression analysis, equations were derived to calculate the theoretical LD(50) of the studied compounds. The inclusion of quantum parameters, having both charge indices and topological indices, affects the toxicity of the studied compounds resulting in high correlation coefficient factors for the obtained equations. Two of the new four firstly supposed descriptors give higher correlation coefficients namely the Heteroatom Corrected Extended Connectivity Randic index ((1)X(HCEC)) and the Density Randic index ((1)X(Den)). The obtained linear equations were applied to predict the toxicity of some related structures. It was found that the sulfur atoms in these compounds must be replaced by oxygen atoms to achieve improved toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. SIMULATING METABOLISM OF XENOBIOTIC CHEMICALS AS A PREDICTOR OF TOXICITY

    EPA Science Inventory

    EPA is faced with long lists of chemicals that need to be assessed for hazard. A major gap in evaluating chemical risk is accounting for metabolic activation resulting in increased toxicity. The goals of this project are to develop a capability to forecast the metabolism of xenob...

  2. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  3. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baun, A.; Jensen, S.D.; Bjerg, P.L.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additionalmore » genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.« less

  4. Novel approaches to improving the chemical safety of the meat chain towards toxicants.

    PubMed

    Engel, E; Ratel, J; Bouhlel, J; Planche, C; Meurillon, M

    2015-11-01

    In addition to microbiological issues, meat chemical safety is a growing concern for the public authorities, chain stakeholders and consumers. Meat may be contaminated by various chemical toxicants originating from the environment, treatments of agricultural production or food processing. Generally found at trace levels in meat, these toxicants may harm human health during chronic exposure. This paper overviews the key issues to be considered to ensure better control of their occurrence in meat and assessment of the related health risk. We first describe potential contaminants of meat products. Strategies to move towards a more efficient and systematic control of meat chemical safety are then presented in a second part, with a focus on emerging approaches based on toxicogenomics. The third part presents mitigation strategies to limit the impact of process-induced toxicants in meat. Finally, the last part introduces methodological advances to refine chemical risk assessment related to the occurrence of toxicants in meat by quantifying the influence of digestion on the fraction of food contaminants that may be assimilated by the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. EPA’s ToxCast Program for Predicting Toxicity and Prioritizing Chemicals for Further Screening and Testing

    EPA Science Inventory

    Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...

  6. Chemical-agnostic hazard prediction: statistical inference of in vitro toxicity pathways from proteomics responses to chemical mixtures

    EPA Science Inventory

    Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome...

  7. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  8. Relevancy in Basic Courses: Considering Toxic Chemical Disposal.

    ERIC Educational Resources Information Center

    Sollimo, Vincent J.

    1985-01-01

    A 2-week unit on toxic chemical waste disposal is used in a physical science course for nonscience majors. Descriptions of the unit, supplementary student activities, and student library project are provided. Also provided are selected student responses to a five-question survey on the unit. (JN)

  9. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    USGS Publications Warehouse

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  10. Classification of Chemicals Based On Structured Toxicity Information

    EPA Science Inventory

    Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-bas...

  11. The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity

    EPA Science Inventory

    To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...

  12. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity.

    PubMed

    Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C

    2017-01-01

    Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.

  13. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Acute oral toxicities of wildland fire control chemicals to birds

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hill, E.F.

    2009-01-01

    Wildland fire control chemicals are released into the environment by aerial and ground applications to manage rangeland, grassland, and forest fires. Acute oral 24 h median lethal dosages (LD50) for three fire retardants (Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R?) and two Class A fire suppressant foams (Silv-Ex? and Phos-Chek WD881?) were estimated for northern bobwhites, Colinus virginianus, American kestrels, Falco sparverius, and red-winged blackbirds, Agelaius phoeniceus. The LD50s of all chemicals for the bobwhites and red-winged blackbirds and for kestrels dosed with Phos-Chek WD881? and Silv-Ex? were above the predetermined 2000 mg chemical/kg body mass regulatory limit criteria for acute oral toxicity. The LD50s were not quantifiable for kestrels dosed with Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R? because of the number of birds which regurgitated the dosage. These chemicals appear to be of comparatively low order of acute oral toxicity to the avian species tested.

  15. A Novel Water Delivery System for Administering Volatile Chemicals while Minimizing Chemical Waste in Rodent Toxicity Studies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...

  16. A novel water delivery system for administering volatile chemicals while minimizing chemical waste in rodent toxicity sutdies

    EPA Science Inventory

    Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...

  17. SIMULATION MODELS FOR ENVIRONMENTAL MULTIMEDIA ANALYSIS OF TOXIC CHEMICALS

    EPA Science Inventory

    Multimedia understanding of pollutant behavior in the environment is of particular concern for chemicals that are toxic and are subject to accumulation in the environmental media (air, soil, water, vegetation) where biota and human exposure is significant. Multimedia simulation ...

  18. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    PubMed

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  19. Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay.

    PubMed

    Natsch, Andreas; Laue, Heike; Haupt, Tina; von Niederhäusern, Valentin; Sanders, Gordon

    2018-03-01

    Testing for acute fish toxicity is an integral part of the environmental safety assessment of chemicals. A true replacement of primary fish tissue was recently proposed using cell viability in a fish gill cell line (RTgill-W1) as a means of predicting acute toxicity, showing good predictivity on 35 chemicals. To promote regulatory acceptance, the predictivity and applicability domain of novel tests need to be carefully evaluated on chemicals with existing high-quality in vivo data. We applied the RTgill-W1 cell assay to 38 fragrance chemicals with a wide range of both physicochemical properties and median lethal concentration (LC50) values and representing a diverse range of chemistries. A strong correlation (R 2  = 0.90-0.94) between the logarithmic in vivo LC50 values, based on fish mortality, and the logarithmic in vitro median effect concentration (EC50) values based on cell viability was observed. A leave-one-out analysis illustrates a median under-/overprediction from in vitro EC50 values to in vivo LC50 values by a factor of 1.5. This assay offers a simple, accurate, and reliable alternative to in vivo acute fish toxicity testing for chemicals, presumably acting mainly by a narcotic mode of action. Furthermore, the present study provides validation of the predictivity of the RTgill-W1 assay on a completely independent set of chemicals that had not been previously tested and indicates that fragrance chemicals are clearly within the applicability domain. Environ Toxicol Chem 2018;37:931-941. © 2017 SETAC. © 2017 SETAC.

  20. Development of a category approach to predict the testicular toxicity of chemical substances structurally related to ethylene glycol methyl ether.

    PubMed

    Yamada, Takashi; Tanaka, Yushiro; Hasegawa, Ryuichi; Sakuratani, Yuki; Yamazoe, Yasushi; Ono, Atsushi; Hirose, Akihiko; Hayashi, Makoto

    2014-12-01

    We propose a category approach to assessing the testicular toxicity of chemicals with a similar structure to ethylene glycol methyl ether (EGME). Based on toxicity information for EGME and related chemicals and accompanied by adverse outcome pathway information on the testicular toxicity of EGME, this category was defined as chemicals that are metabolized to methoxy- or ethoxyacetic acid, a substance responsible for testicular toxicity. A Japanese chemical inventory was screened using the Hazard Evaluation Support System, which we have developed to support a category approach for predicting the repeated-dose toxicity of chemical substances. Quantitative metabolic information on the related chemicals was then considered, and seventeen chemicals were finally obtained from the inventory as a shortlist for the category. Available data in the literature shows that chemicals for which information is available on the metabolic formation of EGME, ethylene glycol ethyl ether, methoxy- or ethoxyacetic acid do in fact possess testicular toxicity, suggesting that testicular toxicity is a concern, due to metabolic activation, for the remaining chemicals. Our results clearly demonstrate practical utility of AOP-based category approach for predicting repeated-dose toxicity of chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Integration of chemical-specific exposure and pharmacokinetic information with the chemical-agnostic AOP framework to support high throughput risk assessment

    EPA Science Inventory

    Application of the Adverse Outcome Pathway (AOP) framework and high throughput toxicity testing in chemical-specific risk assessment requires reconciliation of chemical concentrations sufficient to trigger a molecular initiating event measured in vitro and at the relevant target ...

  2. Interaction of toxic chemicals with microplastics: A critical review.

    PubMed

    Wang, Fen; Wong, Charles S; Chen, Da; Lu, Xingwen; Wang, Fei; Zeng, Eddy Y

    2018-08-01

    Occurrence of microplastics (MPs) in the environment has attracted great attention as it has become a global concern. This review aims to systematically demonstrate the role of marine microplastic as a novel medium for environmental partitioning of chemicals in the ocean, which can cause toxic effects in the ecological environment. This review assimilated and analyzed available data published between 1972 and 2017 on the interaction between MPs and selected chemicals. Firstly, the review analyzes the occurrence of chemicals in MPs and outlines their distribution patterns. Then possible mechanisms of the interaction between MPs and organic chemicals and potential controlling factors were critically studied. Finally, the hazards of MPs and affiliated organic chemicals to marine organisms were shortly summarized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can use this XML-format dataset to create their own databases and hazard analyses of TRI chemicals. The hazard information is compiled from a series of authoritative sources including the Integrated Risk Information System (IRIS). The dataset is provided as a downloadable .zip file that when extracted provides XML files and schemas for the hazard information tables.

  4. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  5. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.

    PubMed

    Di Renzo, Gian Carlo; Conry, Jeanne A; Blake, Jennifer; DeFrancesco, Mark S; DeNicola, Nathaniel; Martin, James N; McCue, Kelly A; Richmond, David; Shah, Abid; Sutton, Patrice; Woodruff, Tracey J; van der Poel, Sheryl Ziemin; Giudice, Linda C

    2015-12-01

    Exposure to toxic environmental chemicals during pregnancy and breastfeeding is ubiquitous and is a threat to healthy human reproduction. There are tens of thousands of chemicals in global commerce, and even small exposures to toxic chemicals during pregnancy can trigger adverse health consequences. Exposure to toxic environmental chemicals and related health outcomes are inequitably distributed within and between countries; universally, the consequences of exposure are disproportionately borne by people with low incomes. Discrimination, other social factors, economic factors, and occupation impact risk of exposure and harm. Documented links between prenatal exposure to environmental chemicals and adverse health outcomes span the life course and include impacts on fertility and pregnancy, neurodevelopment, and cancer. The global health and economic burden related to toxic environmental chemicals is in excess of millions of deaths and billions of dollars every year. On the basis of accumulating robust evidence of exposures and adverse health impacts related to toxic environmental chemicals, the International Federation of Gynecology and Obstetrics (FIGO) joins other leading reproductive health professional societies in calling for timely action to prevent harm. FIGO recommends that reproductive and other health professionals advocate for policies to prevent exposure to toxic environmental chemicals, work to ensure a healthy food system for all, make environmental health part of health care, and champion environmental justice. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. A proposal to improve clarity and communication in the EU Classification process for chemicals for carcinogenicity and reproductive and developmental toxicity.

    PubMed

    Doe, J E

    2014-10-01

    There is an issue in the EU classification of substances for carcinogenicity and for reproductive or developmental toxicity which has brought difficulties to those involved in the process. The issue lies in the inability of the classification system to distinguish between carcinogens and reproductive toxicants with different levels of concern. This has its origins in the early years of toxicology when it was thought that a relatively small number of chemicals would be either carcinogens or reproductive toxicants, but this has turned out not to be the case. This can cause problems in communicating to the users of chemicals, including the public, the nature of the hazard presented by chemicals. Processes have been developed within the classification system for setting specific concentration limits which assess the degree of hazard for carcinogens and reproductive toxicants as high, medium or low. However these categories are not otherwise used in classification. It is proposed that their wider use would bring the advantages of transparency, clarity of communication, certainty of the process and would allow chemicals with a high degree of hazard to be identified and managed in an appropriate way. Copyright © 2014. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  7. FIELD SCREENING METHODS FOR HAZARDOUS WASTES AND TOXIC CHEMICALS

    EPA Science Inventory

    The purpose of this document is to present the technical papers that were presented at the Second International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals. ixty platform presentations were made and included in one of ten sessions: hemical sensor...

  8. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  9. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    USGS Publications Warehouse

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies

  10. The complex interaction between marine debris and toxic chemicals in the ocean.

    PubMed

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  11. Distributed Structure Searchable Toxicity

    EPA Pesticide Factsheets

    The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data. It helps to build a data foundation for improved structure-activity relationships and predictive toxicology. DSSTox publishes summarized chemical activity representations for structure-activity modeling and provides a structure browser. This tool also houses the chemical inventories for the ToxCast and Tox21 projects.

  12. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY: AN EXPANDED VIEW OF CHEMICAL TOXICITY

    EPA Science Inventory

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. T...

  13. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    EPA Science Inventory

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  14. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY ...

    EPA Pesticide Factsheets

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, SAR model development, or building of chemical relational databases (CRD). The Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: 1) to adopt and encourage the use of a common standard file format (SDF) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; 2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data s

  15. Exposure to toxic chemicals in the diet: is the Brazilian population at risk?

    PubMed

    Caldas, Eloisa Dutra; Jardim, Andreia Nunes Oliveira

    2012-01-01

    In Brazil, in the last 20 years, dietary risk assessments have been conducted on pesticides, mycotoxins, food additives, heavy metals (mainly mercury), environmental contaminants (mainly DDT) and acrylamide, a compound formed during food processing. The objectives of this paper were to review these studies, discuss their limitations and uncertainties and identify the most critical chemicals that may pose a health risk to Brazilian consumers. The studies have shown that the cumulative intake of organophosphorus and carbamate pesticides by high consumers of fruits and vegetables may represent a health concern (up to 169% of the ARfD), although the benefits of consuming large portions of those foods most probably overcome the risks. High consumers of maize products may also be at risk due to the presence of fumonisin (355% of the PMTDI), a mycotoxin present at high levels in Brazilian maize. The studies conducted in the Brazilian Amazon have shown that riparian fish consumers are exposed to unsafe levels of mercury. However, this is a more complex issue, as mercury levels in the region are naturally high and the health benefits of a fish-based diet are well known. Studies conducted both in Brazil and internationally on acrylamide have shown that the exposure to this genotoxic compound, mainly from the consumption of French fries and potato chips, is of health concern. Reducing the population dietary exposure to toxic chemicals is a challenge for government authorities and food producers in all countries. Management strategies aimed at decreasing exposure to the critical chemicals identified in this review involve limiting the use or eliminating highly toxic pesticides, implementing good agricultural practices to decrease maize contamination by fumonisins, educating local fish-eating communities toward a fish diet less contaminated by mercury, and changing dietary habits concerning the consumption of fried potatoes, the main processed food containing acrylamide.

  16. INVERSE QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP ANALYSIS FOR IMPROVING PREDICTIONS OF CHEMICAL TOXICITY

    EPA Science Inventory

    The toxic outcomes associated with environmental contaminants are often not due to the chemical form that was originally introduced into the environment, but rather to the chemical having undergone a transformation prior to reaching the vulnerable species. More importantly, the c...

  17. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  18. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    NASA Astrophysics Data System (ADS)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  19. Fluorescence-based assay as a new screening tool for toxic chemicals

    PubMed Central

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-01-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274

  20. Fluorescence-based assay as a new screening tool for toxic chemicals.

    PubMed

    Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey

    2016-09-22

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  1. Fluorescence-based assay as a new screening tool for toxic chemicals

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  2. Establishing a Cell-based Assay for Assessment of Cellular Metabolism on Chemical Toxicity

    EPA Science Inventory

    A major drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To help address this challenge, we are established a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A commonly used h...

  3. Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  4. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  5. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    EPA Science Inventory

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  6. Using Molecular Docking to Compare Toxicity of Reactive Chemicals to Freshwater and Marine Luminous Bacteria.

    PubMed

    Gao, Ya; Lin, Zhifen; Chen, Rui; Wang, Ting; Liu, Shushen; Yao, Zhifeng; Yin, Daqiang

    2012-12-01

    Vibrio fischeri is a marine luminous bacterium that has been widely used in toxicity bioassays, while Vibrio qinghaiensis sp.-Q67 is a newly found freshwater species which is more suitable for the tests on freshwater samples. However, there is a sensitive difference between these two species due to the media, chemical modes of action and the tested species. It remains unclear how these factors induce toxicity changes in luminous bioassays. Therefore, by using molecular docking between reactive chemicals and the target proteins of Vibrio fischeri and Vibrio qinghaiensis sp.-Q67 respectively, the sensitive difference was explored from the angle of amino acid residues that involved in the interactions. Mutation of amino acid residues was performed to investigate the role of these amino acids in the interactions and the most important amino acid residues in toxicity effect were found. The results suggested tat the most important amino acid residues in toxicity effect would affect the binding affinity between chemicals and target proteins of Vibrio fischeri and Vibrio qinghaiensis sp.-Q67, and then induce distinct toxic effect on them. As there are fewer toxicity data for freshwater Vibrio qinghaiensis sp.-Q67 than for Vibrio fischeri, this study helps to take advantage of the plentiful toxicity data of Vibrio fischeri to predict toxicities of freshwater samples. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Increased Susceptibility to Chemical Toxicity with Pre-existing ...

    EPA Pesticide Factsheets

    Numerous host and environmental factors may modulate vulnerability and risk. An area of increasing interest to risk assessors is the potential for chemicals to interact with pre-existing diseases and aging that may yield cumulative damage, altered chemical response, and increased disease susceptibility. We evaluated the relationships between chemicals and pre-existing disease and identify the type of information needed to evaluate the relationships of interest. Key among these is the existence of a clinically relevant and easy to measure biomarker of disease risk which is also modulated by a particular chemical of interest. This biomarker may be a physiological, biochemical, or genetic indicator that corresponds to a phase of the disease process and may be an indicator of where an individual is on the continuum of disease or health status. The relationship between chemical exposure and a biomarker may then be used to predict how preexisting conditions may modify health risks of chemical exposures. Several case studies are explored to describe the toxic chemical, the clinical biomarker, the impacted disease and the evidence that the chemical enhances disease risk: fine particulate matter/decreased heart rate variability/increased cardiopulmonary events; cadmium/decreased glomerular filtration ate/increased chronic kidney disease; methyl mercury/decreased paraoxonase-1/increased cardiovascular risk; Trichloroethylene/increased anti-nuclear antibody/autoimmunit

  8. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    PubMed

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  9. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    PubMed

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (< or =10%, class-I) and moderately (10< d < or =30 %, class-II), highly (30< d < or =50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  10. Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna.

    PubMed

    Toyota, Kenji; McNabb, Nicole A; Spyropoulos, Demetri D; Iguchi, Taisen; Kohno, Satomi

    2017-02-01

    In 2010, approximately 2.1 million gallons of chemical dispersants, mainly Corexit 9500, were applied in the Gulf of Mexico to prevent the oil slick from reaching shorelines and to accelerate biodegradation of oil during the Deepwater Horizon oil spill. Recent studies have revealed toxic effects of Corexit 9500 on marine microzooplankton that play important roles in food chains in marine ecosystems. However, there is still little known about the toxic effects of Corexit 9500 on freshwater zooplankton, even though oil spills do occur in freshwater and chemical dispersants may be used in response to these spills. The cladoceran crustacean, water flea Daphnia magna, is a well-established model species for various toxicological tests, including detection of juvenile hormone-like activity in test compounds. In this study, we conducted laboratory experiments to investigate the acute and chronic toxicity of Corexit 9500 using D. magna. The acute toxicity test was conducted according to OECD TG202 and the 48 h EC 50 was 1.31 ppm (CIs 0.99-1.64 ppm). The reproductive chronic toxicity test was performed following OECD TG211 ANNEX 7 and 21 days LOEC and NOEC values were 4.0 and 2.0 ppm, respectively. These results indicate that Corexit 9500 has toxic effects on daphnids, particularly during the neonatal developmental stage, which is consistent with marine zooplankton results, whereas juvenile hormone-like activity was not identified. Therefore, our findings of the adverse effects of Corexit 9500 on daphnids suggest that application of this type of chemical dispersant may have catastrophic impacts on freshwater ecosystems by disrupting the key food chain network. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  12. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling

    EPA Pesticide Factsheets

    Researchers facilitated evaluation of chemicals that lack chronic oral toxicity values using a QSAR model to develop estimates of potential toxicity for chemicals used in HF fluids or found in flowback or produced water

  13. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act.

    PubMed

    Krimsky, Sheldon

    2017-12-01

    After 40 years, the 1976 US Toxic Substances Control Act (TSCA) was revised under the Frank R. Lautenberg Chemical Safety for the 21st Century Act. Its original goals of protecting the public from hazardous chemicals were hindered by complex and cumbersome administrative burdens, data limitations, vulnerabilities in risk assessments, and recurring corporate lawsuits. As a result, countless chemicals were entered into commercial use without toxicological information. Few chemicals of the many identified as potential public health threats were regulated or banned. This paper explores the factors that have worked against a comprehensive and rational policy for regulating toxic chemicals and discusses whether the TSCA revisions offer greater public protection against existing and new chemicals.

  14. The unsteady state and inertia of chemical regulation under the US Toxic Substances Control Act

    PubMed Central

    2017-01-01

    After 40 years, the 1976 US Toxic Substances Control Act (TSCA) was revised under the Frank R. Lautenberg Chemical Safety for the 21st Century Act. Its original goals of protecting the public from hazardous chemicals were hindered by complex and cumbersome administrative burdens, data limitations, vulnerabilities in risk assessments, and recurring corporate lawsuits. As a result, countless chemicals were entered into commercial use without toxicological information. Few chemicals of the many identified as potential public health threats were regulated or banned. This paper explores the factors that have worked against a comprehensive and rational policy for regulating toxic chemicals and discusses whether the TSCA revisions offer greater public protection against existing and new chemicals. PMID:29252997

  15. Prediction of the effect of formulation on the toxicity of chemicals.

    PubMed

    Mistry, Pritesh; Neagu, Daniel; Sanchez-Ruiz, Antonio; Trundle, Paul R; Vessey, Jonathan D; Gosling, John Paul

    2017-01-01

    Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.

  16. Optical detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  17. For Debate: Impotence in Farm Workers using Toxic Chemicals

    PubMed Central

    Espir, Michael L. E.; Hall, J. W.; Shirreffs, J. G.; Stevens, David L.

    1970-01-01

    Four out of five members of a team of farmworkers who had been using various herbicides and pesticides in intensive agriculture became impotent. Sexual function recovered after further contact with the chemicals was stopped and hormone therapy had been given, though in one case this took about a year. We have not been able to incriminate one particular substance, but with the circumstantial evidence and the lack of any other obvious cause it seems likely that the impotence was due to the toxic effects of one or more of the chemicals being used. PMID:5434665

  18. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    PubMed

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  20. Biological and chemical analysis of the toxic potency of pesticides in rainwater.

    PubMed

    Hamers, T; Smit, M G; Murk, A J; Koeman, J H

    2001-11-01

    A newly developed method for measuring the integrated esterase inhibiting potency of rainwater samples was applied in practice, and the results are compared to the toxic potency calculated from concentrations of 31 organophosphate (OP) and carbamate pesticides, out of a total of 66 chemically analyzed pesticides. In addition, the general toxic potency of the rainwater samples was evaluated in a microtiter luminescence assay with Vibrio fischeri bacteria. Rainwater samples were collected over four consecutive 14-day periods in both open and wet-only samplers. The esterase inhibiting potency of the open rainwater samples (expressed as ng dichlorvos-equivalents/l) corresponded well with the chemical analyses of the rainwater samples collected by both types of samplers (r = 0.83-0.86). By far, the highest esterase inhibiting potency was found in a sample collected in an area with intense horticultural activities in June, and was attributed to high concentrations of dichlorvos, mevinphos, pirimiphos-methyl and methiocarb. The esterase inhibiting potency of this sample was equivalent to a dichlorvos concentration of 1380 ng/l in the rainwater, which is almost 2000 times higher than the maximum permissible concentration (MPC) of dichlorvos set for surface water in Netherlands. Maximum individual concentrations of dichlorvos and pirimiphos-methyl even exceeded the EC50 for Daphnia, suggesting that pesticides in rainwater pose a risk for aquatic organisms. Not all responses of the luminescence-assay for general toxicity could be explained by the analyzed pesticide concentrations. The bio-assays enable a direct assessment the toxic potency of all individual compounds present in the complex mixture of rainwater pollutants, even if they are unknown or present at concentrations below the detection limit. Therefore, they are valuable tools for prescreening and hazard characterization purposes.

  1. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    PubMed

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  2. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    PubMed

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  3. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity.

    PubMed

    Colombo, Andrea; Benfenati, Emilio; Karelson, Mati; Maran, Uko

    2008-06-01

    One of the challenges in the field of quantitative structure-activity relationship (QSAR) analysis is the correct classification of a chemical compound to an appropriate model for the prediction of activity. Thus, in previous studies, compounds have been divided into distinct groups according to their mode of action or chemical class. In the current study, theoretical molecular descriptors were used to divide 568 organic substances into subsets with toxicity measured for the 96-h lethal median concentration for the Fathead minnow (Pimephales promelas). Simple constitutional descriptors such as the number of aliphatic and aromatic rings and a quantum chemical descriptor, maximum bond order of a carbon atom divide compounds into nine subsets. For each subset of compounds the automatic forward selection of descriptors was applied to construct QSAR models. Significant correlations were achieved for each subset of chemicals and all models were validated with the leave-one-out internal validation procedure (R(2)(cv) approximately 0.80). The results encourage to consider this alternative way for the prediction of toxicity using QSAR subset models without direct reference to the mechanism of toxic action or the traditional chemical classification.

  4. Comparison among ultrasonic, electrical apparatus, and toxic chemicals for vestibular lesion in mice.

    PubMed

    Yamaoka, Yusuke; Abe, Chikara; Morita, Hironobu

    2018-02-01

    The vestibular lesion (VL) is required to examine the physiological function of the vestibular system in animals. Toxic chemicals or electrical apparatus have been used for the VL, however, they are not ideal as they have low specificity, and can result in unintended damage, and systemic toxic effect. Localized vibration-induced VL, using an ultrasonicator, is expected to overcome the problems associated with chemical and electrical lesions. Thus, we examined the effect of the ultrasonication on the VL from the aspects of both the physiological function and histology in the present study. and Comparison with Existing Method(s) Complete VL, which was evaluated by deterioration of swimming skills, righting reflex, and body stability, was induced using an ultrasonicator or electrical apparatus. Histological evaluation shows that hair cell layers in the saccule and utricle were completely destroyed in both methods Furthermore, significant drop in body mass was observed in VL. However, abscess at the cranial base was observed in VL induced by the electrical apparatus in ICR mice. Complete chemically-induced VL was observed in C57BL/6J but not ICR mice, and systemic leakage of the toxic chemicals (arsenic) was not detectable even 1day after surgery. Compared to the electrical apparatus, the ultrasonicator is useful for inducing VL in ICR and C57BL/6J mice, as it results in less non-specific damage. Toxic chemicals can be used for inducing VL in C57BL/6J mice; however, this method does not ensure complete disruption of the hair cells in the saccule and utricle. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies.

    PubMed

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2012-04-01

    Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.

  6. A high throughput respirometric assay for mitochondrial biogenesis and toxicity

    PubMed Central

    Beeson, Craig C.; Beeson, Gyda C.; Schnellmann, Rick G.

    2010-01-01

    Mitochondria are a common target of toxicity for drugs and other chemicals, and results in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput, real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTC) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Biosciences analyzer to measure mitochondrial function in real time in multi-well plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl2 and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTC. The merger of the RPTC model and multi-well respirometry results in a single high throughput assay to measure mitochondrial biogenesis and toxicity, and nephrotoxic potential. PMID:20465991

  7. New Chemicals Exposure Limits section 5(e) Order Boilerplate insert under the Toxic Substances Control Act (TSCA) New Chemicals Program

    EPA Pesticide Factsheets

    The New Chemicals Exposure Limits (NCELs) section 5(e) Consent Order insert presents the standard NCELs provisions. The actual NCEL concentration is an empty blank to be completed depending on the toxicity of the specific chemical involved.

  8. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  9. Brand switching and toxic chemicals in cigarette smoke: A national study.

    PubMed

    Mendel, Jennifer R; Baig, Sabeeh A; Hall, Marissa G; Jeong, Michelle; Byron, M Justin; Morgan, Jennifer C; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T

    2018-01-01

    US law requires disclosure of quantities of toxic chemicals (constituents) in cigarette smoke by brand and sub-brand. This information may drive smokers to switch to cigarettes with lower chemical quantities, under the misperception that doing so can reduce health risk. We sought to understand past brand-switching behavior and whether learning about specific chemicals in cigarette smoke increases susceptibility to brand switching. Participants were US adult smokers surveyed by phone (n = 1,151, probability sample) and online (n = 1,561, convenience sample). Surveys assessed whether smokers had ever switched cigarette brands or styles to reduce health risk and about likelihood of switching if the smoker learned their brand had more of a specific chemical than other cigarettes. Chemicals presented were nicotine, carbon monoxide, lead, formaldehyde, arsenic, and ammonia. Past brand switching to reduce health risk was common among smokers (43% in phone survey, 28% in online survey). Smokers who were female, over 25, and current "light" cigarette users were more likely to have switched brands to reduce health risks (all p < .05). Overall, 61-92% of smokers were susceptible to brand switching based on information about particular chemicals. In both samples, lead, formaldehyde, arsenic, and ammonia led to more susceptibility to switch than nicotine (all p < .05). Many US smokers have switched brands or styles to reduce health risks. The majority said they might or would definitely switch brands if they learned their cigarettes had more of a toxic chemical than other brands. Brand switching is a probable unintended consequence of communications that show differences in smoke chemicals between brands.

  10. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    PubMed

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  11. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  12. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    PubMed

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  13. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    PubMed

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  14. Toxicity and chemical analyses of airport runoff waters in Poland.

    PubMed

    Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek

    2014-05-01

    The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.

  15. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  16. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    PubMed

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Children's vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy.

    PubMed

    Landrigan, Philip J; Goldman, Lynn R

    2011-05-01

    A key policy breakthrough occurred nearly twenty years ago with the discovery that children are far more sensitive than adults to toxic chemicals in the environment. This finding led to the recognition that chemical exposures early in life are significant and preventable causes of disease in children and adults. We review this knowledge and recommend a new policy to regulate industrial and consumer chemicals that will protect the health of children and all Americans, prevent disease, and reduce health care costs. The linchpins of a new US chemical policy will be: first, a legally mandated requirement to test the toxicity of chemicals already in commerce, prioritizing chemicals in the widest use, and incorporating new assessment technologies; second, a tiered approach to premarket evaluation of new chemicals; and third, epidemiologic monitoring and focused health studies of exposed populations.

  18. QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) MODELS TO PREDICT CHEMICAL TOXICITY FOR VARIOUS HEALTH ENDPOINTS

    EPA Science Inventory

    Although ranking schemes based on exposure and toxicity have been developed to aid in the prioritization of research funds for identifying chemicals of regulatory concern, there are significant gaps in the availability of experimental toxicity data for most health endpoints. Pred...

  19. A Workflow for Identifying Metabolically Active Chemicals to Complement in vitro Toxicity Screening

    EPA Science Inventory

    The new paradigm of toxicity testing approaches involves rapid screening of thousands of chemicals across hundreds of biological targets through use of in vitro assays. Such assays may lead to false negatives when the complex metabolic processes that render a chemical bioactive i...

  20. REPDOSE: A database on repeated dose toxicity studies of commercial chemicals--A multifunctional tool.

    PubMed

    Bitsch, A; Jacobi, S; Melber, C; Wahnschaffe, U; Simetska, N; Mangelsdorf, I

    2006-12-01

    A database for repeated dose toxicity data has been developed. Studies were selected by data quality. Review documents or risk assessments were used to get a pre-screened selection of available valid data. The structure of the chemicals should be rather simple for well defined chemical categories. The database consists of three core data sets for each chemical: (1) structural features and physico-chemical data, (2) data on study design, (3) study results. To allow consistent queries, a high degree of standardization categories and glossaries were developed for relevant parameters. At present, the database consists of 364 chemicals investigated in 1018 studies which resulted in a total of 6002 specific effects. Standard queries have been developed, which allow analyzing the influence of structural features or PC data on LOELs, target organs and effects. Furthermore, it can be used as an expert system. First queries have shown that the database is a very valuable tool.

  1. Use of statistical and neural net approaches in predicting toxicity of chemicals.

    PubMed

    Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D

    2000-01-01

    Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.

  2. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

  3. High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...

  4. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    PubMed Central

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  5. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: an example of cyanogenic toxicants and aldehydes.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang

    2012-02-01

    Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive

  6. Toxicity testing of chemical mixtures: some general aspects and need of international guidelines.

    PubMed

    Kappus, H; Yang, R S

    1996-01-01

    The topics discussed by the Working Group on Toxicity Testing of Chemical Mixtures included the following (1) the study designs and results from two real-life exposure scenarios as additional information to the various investigations reported at the conference; (2) the need to take into consideration low-level, long-term exposure (i.e. mimicking human exposure conditions) as well as the issue of limited resources in experimental toxicology studies; (3) the importance of exploring alternative and predictive toxicology methodologies to minimize animal use and to conserve resources; (4) the realization that interactive toxicity should include the consideration of physical and biological agents in addition to chemicals. Two specific studies reported at the conference were also discussed. A number of recommendations were made concerning the planning and implementation of toxicology studies on chemical mixtures.

  7. In Vitro Methods To Measure Toxicity Of Chemicals

    DTIC Science & Technology

    2004-12-01

    industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological

  8. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    NASA Astrophysics Data System (ADS)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    carcinogenicity and the four in vitro STTs to attempt to confirm the current findings. The standard against which the performance of STTs is measured has changed dramatically in the past decade. The high levels of concordance published in the early 1970s were accurate at the time. Nearly all known carcinogens tested were genotoxic, and there was little experimental evidence on which to base a judgment of noncarcinogenicity which, taken together, restricted assessment of test performances with noncarcinogens. With the increasing availability of results from NCI and NTP 2-year carcinogenicity studies in rodents, higher frequencies of nongenotoxic carcinogens and genotoxic noncarcinogens have been observed; this has resulted in the reduced concordance of the STT results with carcinogenicity results. It is clear that even with a battery of assays, not all rodent carcinogens are in vitro mutagens nor are all in vitro mutagens rodent carcinogens. If current in vitro STTs are expected to replace long-term rodent studies for the identification of chemical carcinogens, then that expectation should be abandoned. STTs do, however, continue to offer an economical, rapid, and dependable means to detect genotoxic chemicals. There is a range of applications in which STTs have been used successfully, from the identification of mutagenic fractions in complex mixtures such as cooked meat (32, 33) or air pollutants (34) to the early identification of genetic toxicity in the development of new chemical products (35). Requirements for the use of STT have not been consistent in both the national and international regulatory agencies. This is evident in the variety of testing requirements (8) and the different impacts that positive test results have on the registration or further testing requirements of chemicals. Consensus on these matters is not likely to occur in the near future, but agreement should be possible in certain areas. For instance, any time a new test or strategy is proposed, it is

  9. Biochemical strategies for the detection and detoxification of toxic chemicals in the environment

    PubMed Central

    Febbraio, Ferdinando

    2017-01-01

    Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people’s body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field. PMID:28289515

  10. Biochemical strategies for the detection and detoxification of toxic chemicals in the environment.

    PubMed

    Febbraio, Ferdinando

    2017-02-26

    Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people's body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous real-time and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms (microorganisms, plants and animals) or metabolic pathway-based approaches (single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field.

  11. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay

    PubMed Central

    Keating, James E.; Zorn, Bryan T.; Kochar, Tavleen K.; Wolfgang, Matthew C.; Glish, Gary L.; Tarran, Robert

    2018-01-01

    The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition. PMID:29584716

  12. 78 FR 66700 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Chemical Testing; Receipt of Test Data AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces EPA's receipt of test data on 21 chemicals. These data were submitted pursuant to 3 test rules issued by EPA under section 4 of the Toxic Substance Control Act (TSCA). The...

  13. A high throughput passive dosing format for the Fish Embryo Acute Toxicity test.

    PubMed

    Vergauwen, Lucia; Schmidt, Stine N; Stinckens, Evelyn; Maho, Walid; Blust, Ronny; Mayer, Philipp; Covaci, Adrian; Knapen, Dries

    2015-11-01

    High throughput testing according to the Fish Embryo Acute Toxicity (FET) test (OECD Testing Guideline 236) is usually conducted in well plates. In the case of hydrophobic test substances, sorptive and evaporative losses often result in declining and poorly controlled exposure conditions. Therefore, our objective was to improve exposure conditions in FET tests by evaluating a passive dosing format using silicone O-rings in standard 24-well polystyrene plates. We exposed zebrafish embryos to a series of phenanthrene concentrations until 120h post fertilization (hpf), and obtained a linear dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120hpf was 310μg/L, CBR50 (critical body residue) was 2.72mmol/kg fresh wt and La50 (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity was not attributed to impaired swim bladder inflation, but rather to baseline toxicity. We conclude that silicone O-rings (1) produce a linear dilution series of phenanthrene in the 120hpf FET test, (2) generate and maintain aqueous concentrations for reliable determination of effect concentrations, and allow for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effective Strategies for Monitoring and Regulating Chemical Mixtures and Contaminants Sharing Pathways of Toxicity

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2015-01-01

    Traditionally, hazardous chemicals have been regulated in the U.S. on a one-by-one basis, an approach that is slow, expensive and can be inefficient, as illustrated by a decades-long succession of replacing one type of organohalogen flame retardants (OHFRs) with another one, without addressing the root cause of toxicity and associated public health threats posed. The present article expounds on the need for efficient monitoring strategies and pragmatic steps in reducing environmental pollution and adverse human health impacts. A promising approach is to combine specific bioassays with state-of-the-art chemical screening to identify chemicals and chemical mixtures sharing specific modes of action (MOAs) and pathways of toxicity (PoTs). This approach could be used to identify and regulate hazardous chemicals as classes or compound families, featuring similar biological end-points, such as endocrine disruption and mutagenicity. Opportunities and potential obstacles of implementing this approach are discussed. PMID:26343697

  15. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  16. TOXICOGENOMIC STUDY OF TRIAZOLE FUNGICIDES AND PERFLUOROALKYL ACIDS IN RAT LIVERS ACCURATELY CATEGORIZES CHEMICALS AND IDENTIFIES MECHANISMS OF TOXICITY

    EPA Science Inventory

    Toxicogenomic analysis of five environmental chemicals was performed to investigate the ability of genomics to predict toxicity, categorize chemicals, and elucidate mechanisms of toxicity. Three triazole antifungals (myclobutanil, propiconazole, and triadimefon) and two perfluori...

  17. CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to compare the concentrations of contaminants and toxicities of sedime...

  18. A Novel Two-Step Hierarchial Quantitative Structure-Activity Relationship Modeling Workflow for Predicting Acute Toxicity of Chemicals in Rodents

    EPA Science Inventory

    Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database co...

  19. Optimization of DNA Barcode Method to Assess Altered Chemical Toxicity due to CYP-mediated Metabolism.

    EPA Science Inventory

    A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. To address this challenge, we present a method for assessing the impact of cellular metabolism on chemical-based cellular toxicity. A cell line with low endogenous meta...

  20. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    PubMed

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    PubMed

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  2. Reactive formulations for a neutralization of toxic industrial chemicals

    DOEpatents

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  3. Interrelationships among carcinogenicity, mutagenicity, acute toxicity, and chemical structure in a genotoxicity data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benigni, R.; Andreoli, C.; Giuliani, A.

    1989-01-01

    The interrelationships among carcinogenicity, mutagenicity, acute toxicity (LD50), and a number of molecular descriptors were studied by computerized data analysis methods on the data base generated by the International Program for the Evaluation of Short-Term Test for Carcinogens (IPESTTC). With the use of statistical regression methods, three main associations were evidenced: (1) the well-known correlation between carcinogenicity and mutagenicity; (2) a correlation between mutagenicity and toxicity (LD50 ip in mice); and (3) a correlation between toxicity and a recently introduced estimator of the free energy of binding of the molecules to biological receptors. As expected on the basis of themore » large variety of chemical classes represented in the IPESTTC data base, no simple relationship between mutagenicity or carcinogenicity and chemical descriptors was found. To overcome this problem, a new pattern recognition method (REPAD), developed by us for structure-activity studies of noncongeneric chemicals, has been used. This allowed us to highlight a significant difference between the whole patterns of relationships among chemicophysical variables in the two groups to active (mutagenicity and/or carcinogenic) and inactive chemicals. This approach generated a classification rule able to correctly assign about 80% of carcinogens or mutagens.« less

  4. STRESS PATHWAY-BASED REPORTER ASSAYS TO ASSESS TOXICITY OF ENVIRONMENTAL CHEMICALS.

    EPA Science Inventory

    There is an increasing need for assays for the rapid and efficient assessment of toxicities of large numbers of environmental chemicals. To meet this need, we are developing cell-based reporter assays that measure the activation of key molecular stress pathways. We are using pro...

  5. PREVENTION REFERENCE MANUAL: OVERVIEWS ON PREVENTING AND CONTROLLING ACCIDENTIAL RELEASES OF SELECTED TOXIC CHEMICALS

    EPA Science Inventory

    The manual can be used to orient personnel involved in inspecting and otherwise evaluating potential toxic chemical release hazards to the fundamentals of release hazard control for 13 of the specific chemicals chosen for evaluation under Section 305(b) of the Superfund Amendment...

  6. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    PubMed

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  8. Toxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ming, Zhu; Feng, Shicheng; Yilihamu, Ailimire; Ma, Qiang; Yang, Shengnan

    2018-01-01

    Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme activity, and decomposition capability of P. chrysosporium was investigated to reflect the potential toxicity of fullerene. C60 did not change the fresh and dry weights of P. chrysosporium but C60-COOH inhibited the weight gain at high concentrations. Both C60 and C60-COOH destroyed the fibrous structure of the mycelia. The ultrastructure of P. chrysosporium was changed by C60-COOH. Pristine C60 did not affect the enzyme activity of the P. chrysosporium culture system while C60-COOH completely blocked the enzyme activity. Consequently, in the liquid culture, P. chrysosporium lost the decomposition activity at high C60-COOH concentrations. The decreased capability in degrading wood was observed for P. chrysosporium exposed to C60-COOH. Our results collectively indicate that chemical functionalization enhanced the toxicity of fullerene to white rot fungi and induced the loss of decomposition activity. The environmental risks of fullerene and its disturbance to the carbon cycle are discussed. PMID:29470407

  9. Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    NASA Astrophysics Data System (ADS)

    Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.

  10. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    PubMed Central

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  11. Amplified interactive toxicity of chemicals at nontoxic levels: Mechanistic considerations and implications to public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehendale, H.M.

    1994-11-01

    It is widely recognized that exposure to combinations or mixtures of chemicals may result in highly exaggerated toxicity even though the individual chemicals might not be toxic. Assessment of risk from exposure to combinations of chemicals requires the knowledge of the underlying mechanism(s). Dietary exposure to a nontoxic dose of chlordecone (CD; 10 ppm, 15 days) results in a 67-fold increase in lethality of an ordinarily inconsequential dose of CCl{sub 4} (100 {mu}l/kg, ip). Toxicity of closely related CHCl{sub 3} and BrCCl{sub 3} is also enhanced. Phenobarbital (PB, 225 ppm, 15 days) and mirex (10 ppm, 15 days) do notmore » share the propensity of CD in this regard. Exposure to PB + CCl{sub 4} results in enhanced liver injury similar to that observed with CD, but the animals recover and survive in contrast to the greatly amplified lethality of CD + CCl{sub 4}. Investigations have revealed that neither enhanced bioactivation of CCl{sub 4} nor increased lipid peroxidation offers a satisfactory explanation of these findings. Additional studies indicate that exposure to a low dose of CCl{sub 4} (100 {mu}l/kg, ip) results in limited jury, which is accompanied by a biphasic response of hepatocellular regeneration (6 and 36 hr) and tissue repair, which enables the animals to recover from injury. Exposure to CD + CCl{sub 4} results in suppressed tissue repair owing to an energy deficit in hepatocytes as a consequence of excessive intracellular influx of Ca{sup 2+} leading initially to a precipitous decline in glycogen and ultimately to hypoglycemia. Supplementation of cellular energy results in restoration of the tissue repair and complete recovery from the toxicity of CD + CCl{sub 4} combination. In contrast, only the early-phase hepatic tissue repair (6 hr) is affected in PB + CCl{sub 4} treatment, but this is compensated for by a greater stimulation of tissue repair at 24 and 48 hr resulting in recovery from liver and animal survival. 85 refs., 7 figs., 7 tabs.« less

  12. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    PubMed

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  13. Impact of Environmentally Based Chemical Hardness on Uranium Speciation and Toxicity in Six Aquatic Species

    PubMed Central

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-01-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484

  14. Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods.

    PubMed

    Gómez, M; Murcia, M D; Dams, R; Christofi, N; Gómez, E; Gómez, J L

    2012-01-01

    Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.

  15. LINKING EFFECTS OF PERSISTENT BIOACCUMULATIVE TOXICANTS TO CHEMICAL EXPOSURES IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    The critical step in characterization of ecological risks associated with exposures of fish and wildlife to persistent bioaccumulative toxicants (PBTs) is linking chemical residue based toxicological data to concentrations of PBTs in sediments, water, and biota. This is necessary...

  16. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Toxic chemical release reporting form... my knowledge and belief, the submitted information is true and complete and that amounts and values... year ending December 31, 2005, for which reporting forms are due July 1, 2006. Beginning with the...

  17. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Toxic chemical release reporting form... my knowledge and belief, the submitted information is true and complete and that amounts and values... year ending December 31, 2005, for which reporting forms are due July 1, 2006. Beginning with the...

  18. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Toxic chemical release reporting form... have reviewed the attached documents and, to the best of my knowledge and belief, the submitted... establishments in the facility until the reporting year ending December 31, 2005, for which reporting forms are...

  19. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Toxic chemical release reporting form... my knowledge and belief, the submitted information is true and complete and that amounts and values... year ending December 31, 2005, for which reporting forms are due July 1, 2006. Beginning with the...

  20. 40 CFR 372.85 - Toxic chemical release reporting form and instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Toxic chemical release reporting form... my knowledge and belief, the submitted information is true and complete and that amounts and values... year ending December 31, 2005, for which reporting forms are due July 1, 2006. Beginning with the...

  1. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    EPA Science Inventory

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  2. Prioritizing ToxCast Chemicals Across Multiple Sectors of Toxicity Using ToxPi

    EPA Science Inventory

    The Toxicological Prioritization Index (ToxPi™) framework was developed as a decision-support tool to aid in the rational prioritization of chemicals for integrated toxicity testing. ToxPi consolidates information from multiple domains—including ToxCast™ in vitro bioactivity prof...

  3. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  4. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  5. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action.

    PubMed

    Bakire, Serge; Yang, Xinya; Ma, Guangcai; Wei, Xiaoxuan; Yu, Haiying; Chen, Jianrong; Lin, Hongjun

    2018-01-01

    Organic chemicals in the aquatic ecosystem may inhibit algae growth and subsequently lead to the decline of primary productivity. Growth inhibition tests are required for ecotoxicological assessments for regulatory purposes. In silico study is playing an important role in replacing or reducing animal tests and decreasing experimental expense due to its efficiency. In this work, a series of theoretical models was developed for predicting algal growth inhibition (log EC 50 ) after 72 h exposure to diverse chemicals. In total 348 organic compounds were classified into five modes of toxic action using the Verhaar Scheme. Each model was established by using molecular descriptors that characterize electronic and structural properties. The external validation and leave-one-out cross validation proved the statistical robustness of the derived models. Thus they can be used to predict log EC 50 values of chemicals that lack authorized algal growth inhibition values (72 h). This work systematically studied algal growth inhibition according to toxic modes and the developed model suite covers all five toxic modes. The outcome of this research will promote toxic mechanism analysis and be made applicable to structural diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    USGS Publications Warehouse

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources.

  7. Computational Molecular Modeling for Evaluating the Toxicity of Environmental Chemicals: Prioritizing Bioassay Requirements

    EPA Science Inventory

    This commentary provides an overview of the challenges that arise from applying molecular modeling tools developed and commonly used for pharmaceutical discovery to the problem of predicting the potential toxicities of environmental chemicals.

  8. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity -NLTO Poster

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  9. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  10. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  11. Preventing and Managing Toxicities of High-Dose Methotrexate.

    PubMed

    Howard, Scott C; McCormick, John; Pui, Ching-Hon; Buddington, Randall K; Harvey, R Donald

    2016-12-01

    : High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%-12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs

  12. Preventing and Managing Toxicities of High-Dose Methotrexate

    PubMed Central

    McCormick, John; Pui, Ching-Hon; Buddington, Randall K.; Harvey, R. Donald

    2016-01-01

    High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%–12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. Implications for Practice: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular

  13. Evaluation of a novel automated water analyzer for continuous monitoring of toxicity and chemical parameters in municipal water supply.

    PubMed

    Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo

    2018-08-15

    A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity

    PubMed Central

    Meyer, Joel N.; Chan, Sherine S. L.

    2017-01-01

    Mitochondrial function is critical for health, as demonstrated by the effects of mitochondrial toxicity, mutations in genes encoding mitochondrial proteins, and the role of mitochondrial dysfunction in many chronic diseases. However, much basic mitochondrial biology is still being discovered. Furthermore, the details of how different environmental exposures affect mitochondria, how mitochondria respond to stressors, and how genetic variation affecting mitochondrial function alters response to exposures are areas of rapid research growth. This Special Issue was created to highlight and review cutting-edge areas of research into chemical effects on mitochondrial function. We anticipate that it will stimulate additional research into the mechanisms by which chemical exposures impact mitochondria, the biological processes that protect mitochondria from such impacts, and the health consequences that result when defense and homeostatic mechanisms are overcome. PMID:28627407

  15. Exploring the Q-marker of "sweat soaking method" processed radix Wikstroemia indica: Based on the "effect-toxicity-chemicals" study.

    PubMed

    Feng, Guo; Chen, Yun-Long; Li, Wei; Li, Lai-Lai; Wu, Zeng-Guang; Wu, Zi-Jun; Hai, Yue; Zhang, Si-Chao; Zheng, Chuan-Qi; Liu, Chang-Xiao; He, Xin

    2018-06-01

    Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. A Q-marker database of processed RWI by "sweat soaking method" was established according to the results

  16. Carbaryl toxicity prediction to soil organisms under high and low temperature regimes.

    PubMed

    Lima, Maria P R; Cardoso, Diogo N; Soares, Amadeu M V M; Loureiro, Susana

    2015-04-01

    Many studies on risk assessment of pesticides on non-target organisms have been performed based on standardized protocols that reflect conditions in temperate climates. However, the responses of organisms to chemical compounds may differ according to latitude and thus predicting the toxicity of chemicals at different temperatures is an important factor to consider in risk assessment. The toxic effects of the pesticide carbaryl were evaluated at different temperature regimes, which are indicative of temperate and tropical climates and are relevant to climate change predictions or seasonal temperature fluctuations. Four standard organisms were used (Folsomia candida, Eisenia andrei; Triticum aestivum and Brassica rapa) and the effects were assessed using synergistic ratios, calculated from EC/LC50 values. When possible, the MIXTOX tool was used based on the reference model of independent action (IA) and possible deviations. A decrease on carbaryl toxicity at higher temperatures was found in F. candida reproduction, but when the mixtox tool was used no interactions between these stressors (Independent Action) was observed, so an additive response was suggested. Synergistic ratios showed a tendency to synergism at high temperatures for E. andrei and B. rapa and antagonism at low temperatures for both species. T. aestivum showed to be less affected than expected (antagonism), when exposed to both low and high temperatures. The results showed that temperature may increase the deleterious effects of carbaryl to non-target organisms, which is important considering both seasonal and latitude related differences, as well as the global climate change context. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Acute toxicity of fire-retardant and foam-suppressant chemicals to early life stages of chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1998-01-01

    Laboratorys studies were conducted to determine the acute toxicity of three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F), and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex) to early life stages of chinook salmon, Oncorhynchus tshawytscha, in hard and soft water. Regardless of water type, swim-up fry and juveniles (60 and 90 d posthatch) exhibited similar sensitivities to each chemical and these life stages were more sensitive than eyed eggs. Foam suppressants were more toxic to each life stage than the fire retardants in both water types. The descending rank order of toxicity for these chemicals tested with swim-up fry and juveniles (range of 96-h median lethal concentrations [LC50s]) was Phos-Chek WD-881 (7–13 mg/L) > Ansul Silv-Ex (11–22 mg/L) > Phos-Chek D75-F (218–305 mg/L) > Fire-Trol GTS-R (218–412 mg/L) > Fire-Trol LCG-R (685–1,195 mg/L). Water type had a minor effect on the toxicity of these chemicals. Comparison of acute toxicity values with recommended application concentrations indicates that accidental inputs of these chemicals into stream environments would require substantial dilution (237- to 1,429-fold) to reach concentrations equivalent to their 96-h LC50s.

  18. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma).

    PubMed

    Mu, Jingli; Jin, Fei; Ma, Xindong; Lin, Zhongsheng; Wang, Juying

    2014-11-01

    The authors assessed the bioavailability and chronic toxicity of water-accommodated fractions of crude oil (WAFs) and 2 dispersants plus dispersed crude oil (chemical dispersant + crude oil [CE-WAF] and biological dispersant + crude oil [BE-WAF]) on the early life stages of marine medaka, Oryzias melastigma. The results showed that the addition of the 2 dispersants caused a 3- and 4-fold increase in concentrations of summed priority polycyclic aromatic hydrocarbons (PAHs) and high-molecular-weight PAHs with 3 or more benzene rings. The chemical and biological dispersants increased the bioavailability (as measured by ethoxyresorufin-O-dethylase activity) of crude oil 6-fold and 3-fold, respectively. Based on nominal concentrations, chronic toxicity (as measured by deformity) in WAFs exhibited a 10-fold increase in CE-WAF and a 3-fold increase in BE-WAF, respectively. When total petroleum hydrocarbon was measured, the differences between WAF and CE-WAF treatments disappeared, and CE-WAF was approximately 10 times more toxic than BE-WAF. Compared with the chemical dispersant, the biological dispersant possibly modified the toxicity of oil hydrocarbons because of the increase in the proportion of 2- and 3-ringed PAHs in water. The chemical and biological dispersants enhanced short-term bioaccumulation and toxicity, through different mechanisms. These properties should be considered in addition to their efficacy in degrading oil when oil spill management strategies are selected. © 2014 SETAC.

  19. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action

    USGS Publications Warehouse

    Wang, Ning; Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Alvarez, David; Hammer, Edward J.; Bauer, Candice R.; Augspurger, Tom; Raimondo, Sandy; Barnhart, M.Christopher

    2017-01-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  20. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    PubMed

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    EPA Science Inventory

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  2. Effects of toxic chemicals on the reproductive system. Council on Scientific Affairs.

    PubMed

    1985-06-21

    In an effort to make physicians more aware of the hazards of the workplace to pregnant workers, the Council on Scientific Affairs' Advisory Panel on Reproductive Hazards in the Workplace prepared this third and final report reviewing the effects of chemical exposure. A total of 120 chemicals were considered for reviews based on an estimation of their imminent hazard, ie, widespread use and/or inherent toxicity. Following a brief introduction, which sets out general principles, clinical applications, and aids to the recognition of a human teratogen, the report presents reviews and opinions for three representative chemicals. Information concerning the remaining 117 compounds is available upon request.

  3. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov; Smith, A.M.; West, P.R.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoAmore » biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal

  4. Impact of environmentally based chemical hardness on uranium speciation and toxicity in six aquatic species.

    PubMed

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-03-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.

  5. Fact Sheet: Final Air Toxics Standards for Area Sources in the Chemical Manufacturing Industry

    EPA Pesticide Factsheets

    Fact sheet on the national air toxics standards issued October 16, 2009 by the Environmental Protection Agency (EPA) for smaller-emitting sources, known as area sources, in the chemical manufacturing industry.

  6. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?

    PubMed

    Soroldoni, Sanye; Abreu, Fiamma; Castro, Ítalo Braga; Duarte, Fabio Andrei; Pinho, Grasiela Lopes Leães

    2017-05-15

    Antifouling paint particles (APPs) are generated during periodical maintenance of boat hulls. Chemical composition and toxicity (either chronic or acute) of APPs found in the sediment was evaluated using the epibenthic copepod Nitokra sp. The APPs analyzed showed the presence of high levels of metals such as Cu (234,247±268μgg -1 ), Zn (112,404±845μgg -1 ) and the booster biocide DCOIT (0.13μgg -1 ). Even at low concentrations (as from 5mgg -1 of APPs by mass of sediment) a significantly decrease in the fecundity was observed in laboratory tests. When the sediment was disturbed in elutriate test, a LC 50 of 0.14% for APPs was found. This study was the first assessment of toxicity associated with the presence of APPs in sediment to benthic organisms, and it calls attention to the need of improving regulations in boatyards and marina areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    PubMed

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21 st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19 th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20 th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  8. Large-Area Chemical and Biological Decontamination Using a High Energy Arc Lamp (HEAL) System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Smith, Rob R; Vass, Arpad Alexander

    2008-01-01

    Methods for quickly decontaminating large areas exposed to chemical and biological (CB) warfare agents can present significant logistical, manpower, and waste management challenges. Oak Ridge National Laboratory (ORNL) is pursuing an alternate method to decompose CB agents without the use of toxic chemicals or other potentially harmful substances. This process uses a high energy arc lamp (HEAL) system to photochemically decompose CB agents over large areas (12 m2). Preliminary tests indicate that more than 5 decades (99.999%) of an Anthrax spore simulant (Bacillus globigii) were killed in less than 7 seconds of exposure to the HEAL system. When combined withmore » a catalyst material (TiO2) the HEAL system was also effective against a chemical agent simulant, diisopropyl methyl phosphonate (DIMP). These results demonstrate the feasibility of a rapid, large-area chemical and biological decontamination method that does not require toxic or corrosive reagents or generate hazardous wastes.« less

  9. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

    PubMed Central

    Horzmann, Katharine A.; Freeman, Jennifer L.

    2016-01-01

    Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed. PMID:28730152

  10. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    PubMed

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Acute oral toxicity test of chemical compounds in silkworms.

    PubMed

    Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa

    2016-02-01

    This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.

  12. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  13. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The healthmore » effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.« less

  14. Toxicity induced by chemical warfare agents: insights on the protective role of melatonin.

    PubMed

    Pita, René; Marco-Contelles, José; Ramos, Eva; Del Pino, Javier; Romero, Alejandro

    2013-11-25

    Chemical Warfare Agents (CWAs) are substances that can be used to kill, injure or incapacitate an enemy in warfare, but also against civilian population in terrorist attacks. Many chemical agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence they can cause neurological symptoms and damage in different organs. Nowadays, taking into account that total immediate decontamination after exposure is difficult to achieve and there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against CWAs poisoning would benefit from a broad-spectrum multipotent molecule. Melatonin, a versatile and ubiquitous antioxidant molecule, originally discovered as a hormone synthesized mainly in the pineal gland, has low toxicity and high efficacy in reducing oxidative damage, anti-inflammatory effects by regulation of multiple cellular pathways and properties to prevent excitotoxicity, among others. The purpose of this review is to show the multiple and diverse properties of melatonin, as a pleiotropic indole derivative, and its marked potential for improving human health against the most widely used chemical weapons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    PubMed

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  16. Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...

  17. Optimizing Toxic Chemical Removal through Defect-Induced UiO-66-NH2 Metal-Organic Framework.

    PubMed

    Peterson, Gregory W; Destefano, Matthew R; Garibay, Sergio J; Ploskonka, Ann; McEntee, Monica; Hall, Morgan; Karwacki, Christopher J; Hupp, Joseph T; Farha, Omar K

    2017-11-13

    For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH 2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Picking Cell Lines for High-Throughput Transcriptomic Toxicity ...

    EPA Pesticide Factsheets

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captures the diversity of potential responses across chemicals. The ideal dataset to select these cell types would consist of hundreds of cell types treated with thousands of chemicals, but does not yet exist. However, basal gene expression data may be useful as a surrogate for representing the relevant biological space necessary for cell type selection. The goal of this study was to identify a small (< 20) number of cell types that capture a large, quantifiable fraction of basal gene expression diversity. Three publicly available collections of Affymetrix U133+2.0 cellular gene expression data were used: 1) 59 cell lines from the NCI60 set; 2) 303 primary cell types from the Mabbott et al (2013) expression atlas; and 3) 1036 cell lines from the Cancer Cell Line Encyclopedia. The data were RMA normalized, log-transformed, and the probe sets mapped to HUGO gene identifiers. The results showed that <20 cell lines capture only a small fraction of the total diversity in basal gene expression when evaluated using either the entire set of 20960 HUGO genes or a subset of druggable genes likely to be chemical targets. The fraction of the total gene expression variation explained was consistent when

  19. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to

  20. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to

  1. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  2. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing1

    PubMed Central

    Judson, Richard; Kavlock, Robert; Martin, Matt; Reif, David; Houck, Keith; Knudsen, Thomas; Richard, Ann; Tice, Raymond R.; Whelan, Maurice; Xia, Menghang; Huang, Ruili; Austin, Christopher; Daston, George; Hartung, Thomas; Fowle, John R.; Wooge, William; Tong, Weida; Dix, David

    2014-01-01

    Summary In vitro, high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals, but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. Here we discuss streamlining the validation process, specifically for prioritization applications in which HTS assays are used to identify a high-concern subset of a collection of chemicals. The high-concern chemicals could then be tested sooner rather than later in standard guideline bioassays. The streamlined validation process would continue to ensure the reliability and relevance of assays for this application. We discuss the following practical guidelines: (1) follow current validation practice to the extent possible and practical; (2) make increased use of reference compounds to better demonstrate assay reliability and relevance; (3) deemphasize the need for cross-laboratory testing, and; (4) implement a web-based, transparent and expedited peer review process. PMID:23338806

  3. Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha--a review.

    PubMed

    Karuppaiya, Palaniyandi; Tsay, Hsin Sheng

    2015-07-16

    Dysosma pleiantha (Hance) Woodson also called as Bajiaolian belongs to the family Berberidaceae, is widely used in Taiwan as traditional Chinese herbal medicine for more than thousands of years. It is usually recommended by various traditional Chinese medical doctors and herbal pharmacies for general remedies including postpartum recovery, treatment of weakness, neck mass, acne, hepatoma, lumbago, snakebite, tumor growth and dysmenorrhea. In the textbooks of traditional Chinese medicine, there is limited information about the toxicity of Bajiaolian. Podophyllotoxin, a lignan is the main toxic ingredient of Bajiaolian rhizome. Therefore, Bajiaolian is documented as the fifth highest cause of poisoning among the herbal medicine in Taiwan. Since the therapeutic and toxic doses are very close, Bajiaolian poisoning cases are frequently reported in Taiwan. Moreover, Dysosma poisoning cases are difficult to diagnosis because physicians are unfamiliar with this medicine's multiple clinical presentations in different stages of intoxication. Therefore, the objective of this review is to represent the collective information available in literatures regarding D. pleiantha, a cytotoxic lignan containing medicinal plant. Specifically, the literatures have been reviewed for articles pertaining to chemical constituents, properties, therapeutical benefits, toxicity, poisoning symptoms, toxic as well as therapeutic dose and medical management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Toxicity Screening of the ToxCast Phase II Chemical Library Using a Zebrafish Developmental Assay (SOT)

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the US EPA, the ToxCast Phase II chemicals were assessed using a vertebrate screen for developmental toxicity. Zebrafish embryos (Danio rerio) were exposed in 96-well plates from late-blastula stage (6hr pos...

  5. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    PubMed

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.

    PubMed

    Schirmer, Kristin; Tanneberger, Katrin; Kramer, Nynke I; Völker, Doris; Scholz, Stefan; Hafner, Christoph; Lee, Lucy E J; Bols, Niels C; Hermens, Joop L M

    2008-11-11

    This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.

  7. [Toxicity evaluation of sewage treatment plant effluent of chemical industrial park along the Yangtze River on rat testicular germ cells in vitro].

    PubMed

    Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia

    2009-05-15

    By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.

  8. A Literature Review - Problem Definition Studies on Selected Toxic Chemicals

    DTIC Science & Technology

    1978-06-16

    2 III. Recommendations and Hazard Analysis 6 IV. Physical and Chemical Properties 8 V. Human Toxicity A. Conditions and Extent of Exposure - 16 B...40 H. Coral 41 I. Phytoplankton and Algae 42 J. Bacteria 44 K. Plants 46 1. Fruit Trees 46 2. Foliage 49 3. Vegetables 51 4. Aquatic Plants 52 j PACE...breathe may result. The lung condition may clear up or death may occur, especially in accidents when children drink and choke on diesel fuel. The

  9. Toxicity of crude oil chemically dispersed in a wave tank to embryos of Atlantic herring (Clupea harengus).

    PubMed

    Greer, Colleen D; Hodson, Peter V; Li, Zhengkai; King, Thomas; Lee, Kenneth

    2012-06-01

    Tests of crude oil toxicity to fish are often chronic, exposing embryos from fertilization to hatch to oil solutions prepared using standard mixing procedures. However, during oil spills, fish are not often exposed for long periods and the dynamic nature of the ocean is not easily replicated in the lab. Our objective was to determine if brief exposures of Atlantic herring (Clupea harengus) embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil dispersed in a more realistic model system. Embryos were first exposed to chemically dispersed Alaska North Slope crude and Arabian light crude oil for 2.4 h to 14 d from fertilization to determine if exposure time affected toxicity. Toxicity increased with exposure time, but 2.4-h exposures at realistic concentrations of oil induced blue-sac disease and reduced the percentage of normal embryos at hatch; there was little difference in toxicity between the two oils. Secondly, oil was chemically dispersed in a wave tank to determine if the resultant oil solutions were as toxic to herring embryos as laboratory-derived dispersed oil using a single exposure period of 24 h. Samples taken 15 min postdispersion were more toxic than laboratory-prepared solutions, but samples taken at 5, 30, and 60 min postdispersion were less toxic. Overall, the laboratory- and wave tank-derived solutions of dispersed oil provided similar estimates of toxicity despite differences in the methods for preparing test solutions, suggesting that laboratory and wave tank data are a reliable basis for ecological risk assessments of spilled oil. Copyright © 2012 SETAC.

  10. Cigarette pack messages about toxic chemicals: a randomised clinical trial.

    PubMed

    Brewer, Noel T; Jeong, Michelle; Mendel, Jennifer R; Hall, Marissa G; Zhang, Dongyu; Parada, Humberto; Boynton, Marcella H; Noar, Seth M; Baig, Sabeeh A; Morgan, Jennifer C; Ribisl, Kurt M

    2018-04-13

    The USA can require tobacco companies to disclose information about harmful and potentially harmful chemicals in cigarette smoke, but the impact of these messages is uncertain. We sought to assess the effect of placing messages about toxic chemicals on smokers' cigarette packs. Participants were 719 adult cigarette smokers from California, USA, recruited from September 2016 through March 2017. We randomly assigned smokers to receive either factual messages about chemicals in cigarette smoke and their health harms (intervention) or messages about not littering cigarette butts (control) on the side of their cigarette packs for 3 weeks. The primary trial outcome was intention to quit smoking. In intent-to-treat analyses, smokers whose packs had chemical messages did not have higher intentions to quit smoking at the end of the trial than those whose packs had control messages (P=0.56). Compared with control messages, chemical messages led to higher awareness of the chemicals (28% vs 15%, P<0.001) and health harms (60% vs 52%, P=0.02) featured in the messages. In addition, chemical messages led to greater negative affect, thinking about the chemicals in cigarettes and the harms of smoking, conversations about the messages and forgoing a cigarette (all P<0.05). Chemical messages on cigarette packs did not lead to higher intentions to quit among smokers in our trial. However, chemical messages informed smokers of chemicals in cigarettes and harms of smoking, which directly supports their implementation and would be critical to defending the messages against cigarette company legal challenges. NCT02785484. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. High fiber probiotic fermented mare's milk reduces the toxic effects of mercury in rats

    PubMed Central

    Abdel-Salam, Ahmed M.; Al-Dekheil, Ali; Babkr, Ali; Farahna, Mohammed; Mousa, Hassan M.

    2010-01-01

    Background: Since the advent of the Industrial Revolution in the late 19th century, we have all been unfortunately exposed to an increasingly toxic and polluted world. Among the most dangerous of these pollutants is mercury, which is considered to be the most toxic non-radioactive heavy metal. Fermented foods may help cleanse the body of heavy metals. Fermentation breaks down the nutrients in foods by the action of beneficial microorganisms and creates natural chelators that are available to bind toxins and remove them from the body. Aims: The current study was designed to determine the impact of feeding a high fiber probiotic fermented mare's milk on the biological effects of mercury toxicity in rat model. Methods and Materials: The high fiber fermented mare's milk containing probiotics was prepared and its sensory properties, chemical composition, and antioxidant activity were determined. A rat model of mercury toxicity was used. The effect of feeding the high fiber probiotic fermented mare's milk to rats, along with mercury ingestion, was determined by the analysis of several biochemical markers in serum and histopathological examinations of brain and kidney. Results: The high fiber fermented mare's milk containing probiotics was found to be acceptable by all test panels and volunteers. Mercury ingestion was found to cause biochemical and histopathological alterations in rat serum and tissues. The mercury-treated rats showed a decrease in body weight and an increase in kidney weight. Sera of the mercury treated rats showed alterations in biochemical parameters, and histopathological changes in brain and kidney. However, the rats fed high fiber fermented mare`s milk along with mercury ingestion showed improved histopathology of kidney and brain, and there was restoration of the biochemical parameters in serum to almost normal values. Conclusions: Feeding high fiber fermented mare`s milk may reduce the toxic effects of mercury. PMID:22558569

  12. Sediment toxicity identification evaluation (TIE) studies at marine sites suspected of ordnance contamination

    USGS Publications Warehouse

    Carr, R.S.; Nipper, M.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.; Saepoff, S.

    2001-01-01

    A sediment quality assessment survey and subsequent toxicity identification evaluation (TIE) study was conducted at several sites in Puget Sound, Washington. The sites were previously suspected of contamination with ordnance compounds. The initial survey employed sea urchin porewater toxicity tests to locate the most toxic stations. Sediments from the most toxic stations were selected for comprehensive chemical analyses. Based on the combined information from the toxicity and chemical data, three adjacent stations in Ostrich Bay were selected for the TIE study. The results of the phase I TIE suggested that organics and metals were primarily responsible for the observed toxicity in the sea urchin fertilization test. In addition to these contaminants, ammonia was also contributing to the toxicity for the sea urchin embryological development test. The phase II TIE study isolated the majority of the toxicity in the fraction containing nonpolar organics with high log Kow, but chemical analyses failed to identify a compound present at a concentration high enough to be responsible for the observed toxicity. The data suggest that some organic or organometallic contaminant(s) that were not included in the comprehensive suite of chemical analyses caused the observed toxicological responses.

  13. The sensitivity and reproducibility of the zebrafish (Danio rerio) embryo test for the screening of waste water quality and for testing the toxicity of chemicals.

    PubMed

    Lahnsteiner, Franz

    2008-07-01

    The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.

  14. CHEMICAL STRUCTURE INDEXING OF TOXICITY DATA ON THE INTERNET: MOVING TOWARDS A FLAT WORLD

    EPA Science Inventory

    Standardized chemical structure annotation of public toxicity databases and information resources is playing an increasingly important role in the 'flattening' and integration of diverse sets of biological activity data on the Internet. This review discusses public initiatives th...

  15. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  16. Photolysis and cellular toxicities of the organic ultraviolet filter chemical octyl methoxycinnamate and its photoproducts.

    PubMed

    Stein, Hannah V; Berg, Courtney J; Maung, Jessica N; O'Connor, Lauren E; Pagano, Alexandra E; MacManus-Spencer, Laura A; Paulick, Margot G

    2017-06-21

    Organic ultraviolet filter chemicals (UVFCs) are the active ingredients used in many sunscreens to protect the skin from UV light; these chemicals have been detected in numerous aquatic environments leading to concerns about how they might affect aquatic organisms and humans. One commonly used organic UVFC is octyl methoxycinnamate (OMC), better known by its commercial name, octinoxate. Upon exposure to UV light, OMC degrades rapidly, forming numerous photoproducts, some of which have been previously identified. In this study, we isolated and completely characterized the major products of OMC photolysis, including the two major stable OMC cyclodimers. One of these cyclodimers is a δ-truxinate, resulting from a head-to-head dimerization of two OMC molecules, and the other cyclodimer is an α-truxillate, resulting from a head-to-tail dimerization of two OMC molecules. Additionally, the cellular toxicities of the individual photoproducts were determined; it was found that the parent UVFC, OMC, 4-methoxybenzaldehyde, and two cyclodimers are significantly toxic to cells. The photoproduct 2-ethylhexanol is not cytotoxic, demonstrating that different components of OMC photolysate contribute differently to its cellular toxicity. This study thus provides an enhanced understanding of OMC photolysis and gives toxicity data that can be used to better evaluate OMC as a sunscreen agent.

  17. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Lisa R.

    2008-11-15

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that aremore » elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition.« less

  18. Genetic and Biochemical Analysis of High Iron Toxicity in Yeast

    PubMed Central

    Lin, Huilan; Li, Liangtao; Jia, Xuan; Ward, Diane McVey; Kaplan, Jerry

    2011-01-01

    Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity. PMID:21115478

  19. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  20. Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition

    PubMed Central

    Deese, Rachel D.; LeBlanc, Madeline R.

    2016-01-01

    Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688

  1. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level.

    PubMed

    Castañeda-Arriaga, Romina; Galano, Annia

    2017-06-19

    Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.

  2. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  3. Classification and prediction of toxicity of chemicals using an automated phenotypic profiling of Caenorhabditis elegans.

    PubMed

    Gao, Shan; Chen, Weiyang; Zeng, Yingxin; Jing, Haiming; Zhang, Nan; Flavel, Matthew; Jois, Markandeya; Han, Jing-Dong J; Xian, Bo; Li, Guojun

    2018-04-18

    Traditional toxicological studies have relied heavily on various animal models to understand the effect of various compounds in a biological context. Considering the great cost, complexity and time involved in experiments using higher order organisms. Researchers have been exploring alternative models that avoid these disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient reproduction. As these benefits allow large scale studies to be initiated with relative ease, the problem of how to efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for each chemical treatment. The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the toxicity of different chemicals. Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical environments.

  4. Comparison of the toxicities, activities and chemical profiles of raw and processed Xanthii Fructus.

    PubMed

    Su, Tao; Cheng, Brian Chi-Yan; Fu, Xiu-Qiong; Li, Ting; Guo, Hui; Cao, Hui-Hui; Kwan, Hiu-Yee; Tse, Anfernee Kai-Wing; Yu, Hua; Cao, Hui; Yu, Zhi-Ling

    2016-01-22

    Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking (a processing method) can reduce the toxicity and enhance the efficacy of XF. Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method. SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular formulae and mass fragments, as well as literature data. Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical profiles. Further studies are warranted to establish the relationship between the alteration of chemical profiles and the

  5. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    PubMed Central

    Herndon, J. Marvin

    2015-01-01

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction. PMID:26270671

  6. 2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecology and Air Quality Group

    2007-12-12

    For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventorymore » Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.« less

  7. In Vitro Toxicity Assessment Technique for Volatile ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency is tasked with evaluating the human health, environmental, and wildlife effects of over 80,000 chemicals registered for use in the environment and commerce. The challenge is that sparse chemical data exists; traditional toxicity testing methods are slow, costly, involve animal studies, and cannot keep up with a chemical registry that typically grows by at least 1000 chemicals every year. In recent years, High Throughput Screening (HTS) has been used in order to prioritize chemicals for traditional toxicity screening or to complement traditional toxicity studies. HTS is an in vitro approach of rapidly assaying a large number of chemicals for biochemical activity using robotics and automation. However, no method currently exists for screening volatile chemicals such as air pollutants in a HTS fashion. Additionally, significant uncertainty regarding in vitro to in in vivo extrapolation (IVIVE) remains. An approach to bridge the IVIVE gap and the current lack of ability to screen volatile chemicals in a HTS fashion is by using a probe molecule (PrM) technique. The proposed technique uses chemicals with empirical human pharmacokinetic data as PrMs to study toxicity of molecules with no known data for gas-phase analysis. We are currently studying the xenobiotic-metabolizing enzyme CYP2A6 using transfected BEAS-2B bronchial epithelial cell line. The CYP2A6 pathway activity is studied by the formation of cotinine from nicot

  8. Relationships between aquatic toxicity, chemical hydrophobicity and mode of action: log kow QSARs revisited

    EPA Science Inventory

    Relationships between chemical hydrophobicity and toxicity have been shown for nearly 100 years in both mammals and fish, typically using the log of the octanol:water partition coefficient (kow). The current study reassessed the influence of mode of action (MOA) on aquatic toxici...

  9. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals

    USGS Publications Warehouse

    Dwyer, F.J.; Mayer, F.L.; Sappington, L.C.; Buckler, D.R.; Bridges, C.M.; Greer, I.E.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Kunz, J.L.; Whites, D.W.; Augspurger, T.; Mount, D.R.; Hattala, K.; Neuderfer, G.N.

    2005-01-01

    Assessment of contaminant impacts to federally identified endangered, threatened and candidate, and state-identified endangered species (collectively referred to as "listed" species) requires understanding of a species' sensitivities to particular chemicals. The most direct approach would be to determine the sensitivity of a listed species to a particular contaminant or perturbation. An indirect approach for aquatic species would be application of toxicity data obtained from standard test procedures and species commonly used in laboratory toxicity tests. Common test species (fathead minnow, Pimephales promelas; sheepshead minnow, Cyprinodon variegatus; and rainbow trout, Oncorhynchus mykiss) and 17 listed or closely related species were tested in acute 96-hour water exposures with five chemicals (carbaryl, copper, 4-nonylphenol, pentachlorophenol, and permethrin) representing a broad range of toxic modes of action. No single species was the most sensitive to all chemicals. For the three standard test species evaluated, the rainbow trout was more sensitive than either the fathead minnow or sheepshead minnow and was equal to or more sensitive than listed and related species 81% of the time. To estimate an LC50 for a listed species, a factor of 0.63 can be applied to the geometric mean LC50 of rainbow trout toxicity data, and more conservative factors can be determined using variance estimates (0.46 based on 1 SD of the mean and 0.33 based on 2 SD of the mean). Additionally, a low- or no-acute effect concentration can be estimated by multiplying the respective LC50 by a factor of approximately 0.56, which supports the United States Environmental Protection Agency approach of multiplying the final acute value by 0.5 (division by 2). When captive or locally abundant populations of listed fish are available, consideration should be given to direct testing. When direct toxicity testing cannot be performed, approaches for developing protective measures using common test

  10. A COMPARISON OF THE LETHAL AND SUBLETHAL TOXICITY OF ORGANIC CHEMICAL MIXTURES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    The joint toxic effects of known binary and multiple organic chemical mixtures to the fathead minnow (Pimephales promelas) were defined at both the 96-h 50% lethal effect concentration (LC50) and sublethal (32-d growth) response levels for toxicants with a narcosis I, narcosis II...

  11. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.

    PubMed

    Lei, Tailong; Sun, Huiyong; Kang, Yu; Zhu, Feng; Liu, Hui; Zhou, Wenfang; Wang, Zhe; Li, Dan; Li, Youyong; Hou, Tingjun

    2017-11-06

    Xenobiotic chemicals and their metabolites are mainly excreted out of our bodies by the urinary tract through the urine. Chemical-induced urinary tract toxicity is one of the main reasons that cause failure during drug development, and it is a common adverse event for medications, natural supplements, and environmental chemicals. Despite its importance, there are only a few in silico models for assessing urinary tract toxicity for a large number of compounds with diverse chemical structures. Here, we developed a series of qualitative and quantitative structure-activity relationship (QSAR) models for predicting urinary tract toxicity. In our study, the recursive feature elimination method incorporated with random forests (RFE-RF) was used for dimension reduction, and then eight machine learning approaches were used for QSAR modeling, i.e., relevance vector machine (RVM), support vector machine (SVM), regularized random forest (RRF), C5.0 trees, eXtreme gradient boosting (XGBoost), AdaBoost.M1, SVM boosting (SVMBoost), and RVM boosting (RVMBoost). For building classification models, the synthetic minority oversampling technique was used to handle the imbalance data set problem. Among all the machine learning approaches, SVMBoost based on the RBF kernel achieves both the best quantitative (q ext 2 = 0.845) and qualitative predictions for the test set (MCC of 0.787, AUC of 0.893, sensitivity of 89.6%, specificity of 94.1%, and global accuracy of 90.8%). The application domains were then analyzed, and all of the tested chemicals fall within the application domain coverage. We also examined the structure features of the chemicals with large prediction errors. In brief, both the regression and classification models developed by the SVMBoost approach have reliable prediction capability for assessing chemical-induced urinary tract toxicity.

  12. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  13. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    PubMed

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.

    PubMed

    Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan

    2016-12-01

    Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    PubMed

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Toxicity potential of disinfection agent in tannery wastewater.

    PubMed

    Tisler, Tatjana; Zagorc-Koncan, Jana; Cotman, Magda; Drolc, Andreja

    2004-09-01

    Wastewater from a tannery was investigated using chemical-specific analyses and assessment of the acute toxicity of the whole effluent over a 2-year period. The wastewater samples were overloaded with organic and inorganic compounds, and measured concentrations of the chemical parameters as well as dilution factors estimating acute toxicity, frequently exceeded the permissible limits for the discharge of wastewater from a tannery into the receiving stream. In the later part of the monitoring programme, the toxicity of the samples was significantly increased in comparison to the previous samples. The agent for hide disinfection was assumed to be the reason for the increased toxicity of the wastewater samples, and the extremely high acute and chronic toxicity of the agent to bacteria, algae, daphnids, and fish confirmed this suspicion. The most sensitive species was Daphnia magna; the 48 h EC50 was 0.70 x 10(-5)v/v% and the 21d IC25 was 0.40 x 10(-6)v/v% of the agent. After withdrawal of this highly toxic agent for hide disinfection from the technological process in the tannery, the toxicity of the wastewater declined to the previous level.

  17. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna.

    PubMed

    Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho

    2010-04-01

    Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.

  18. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    EPA Pesticide Factsheets

    EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800 chemicals. The 1,800 chemicals were screened in more than 800 rapid, automated tests (called high-throughput screening assays) to determine potential human health effects. The data is available through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard) and the complete data sets are also available for download.

  19. Acute toxicity of firefighting chemical formulations to four life stages of fathead minnow

    USGS Publications Warehouse

    Gaikowski, Mark P.; Hamilton, Steve J.; Buhl, Kevin J.; McDonald, Susan F.; Summers, Cliff H.

    1996-01-01

    Laboratory studies were conducted with four early life stages of fathead minnow,Pimephales promelas,to determine the acute toxicity of five firefighting chemical formulations in standardized soft and hard water. Egg, fry, 30-day posthatch, and 60-day posthatch life stages were tested with three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex). Fry were generally the most sensitive life stage tested, whereas the eggs were the least sensitive life stage. Formulation toxicity was greater in hard water than in soft water for all life stages tested. Fire-suppressant foams were more toxic than the fire retardants. The 96-hr LC50s derived for fathead minnows were rank ordered from the most toxic to the least toxic formulation as follows: Phos-Chek WD-881 (13a??32 mg/liter) > Silv-Ex (19a??32 mg/liter) > Fire-Trol GTS-R (135a??787 mg/liter) > Phos-Chek D75-F (168a??2250 mg/liter) > Fire-Trol LCG-R (519a??6705 mg/liter) (ranges are the lowest and highest 96-hr LC50for each formulation). (C) 1996 Academic Press, Inc.

  20. Saffron as an antidote or a protective agent against natural or chemical toxicities.

    PubMed

    Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2015-05-01

    Saffron (Crocus sativus) is an extensively used food additive for its color and taste. Since ancient times this plant has been introduced as a marvelous medicine throughout the world. The wide spectrum of saffron pharmacological activities is related to its major constituents including crocin, crocetin and safranal. Based on several studies, saffron and its active ingredients have been used as an antioxidant, antiinflammatory and antinociceptive, antidepressant, antitussive, anticonvulsant, memory enhancer, hypotensive and anticancer. According to the literatures, saffron has remarkable therapeutic effects. The protective effects of saffron and its main constituents in different tissues including brain, heart, liver, kidney and lung have been reported against some toxic materials either natural or chemical toxins in animal studies.In this review article, we have summarized different in vitro and animal studies in scientific databases which investigate the antidotal and protective effects of saffron and its major components against natural toxins and chemical-induced toxicities. Due to the lake of human studies, further investigations are required to ascertain the efficacy of saffron as an antidote or a protective agent in human intoxication.

  1. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars.

    PubMed

    Xu, Xuebin; Hu, Xin; Ding, Zhuhong; Chen, Yijun

    2017-12-01

    The potential release of toxic elements and the stability of carbon in sludge-based biochars are important on their application in soil remediation and wastewater treatment. In this study, municipal sludge was co-pyrolyzed with calcium carbonate (CaCO 3 ) and calcium dihydrogen phosphate [Ca(H 2 PO 4 ) 2 ] under 300 and 600 °C, respectively. The basic physicochemical properties of the resultant biochars were characterized and laboratory chemical oxidation and leaching experiments of toxic elements were conducted to evaluate the chemical stability of carbon in biochars and the potential release of toxic elements from biochars. Results show that the exogenous minerals changed the physico-chemical properties of the resultant biochars greatly. Biochars with exogenous minerals, especially Ca(H 2 PO 4 ) 2 , decreased the release of Zn, Cr, Ni, Cu, Pb, and As and the release ratios were less than 1%. Tessier's sequential extraction analysis revealed that labile toxic elements were transferred to residual fraction in the biochars with high pyrolysis temperature (600 °C) and exogenous minerals. Low risks for biochar-bound Pb, Zn, Cd, As, Cr, and Cu were confirmed according to risk assessment code (RAC) while the potential ecological risk index (PERI) revealed that the exogenous Ca(H 2 PO 4 ) 2 significantly decreased the risks from considerable to moderate level. Moreover, the exogenous minerals significantly increased the chemical stability of carbon in 600 °C-pyrolyzed biochars by 10-20%. These results indicated that the copyrolysis of sludge with phosphate and carbonate, especially phosphate, were effective methods to prepare the sludge-based biochars with immobilized toxic elements and enhanced chemical stability of carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    EPA Science Inventory

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  3. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action.

    PubMed

    Wang, Ning; Ivey, Christopher D; Ingersoll, Christopher G; Brumbaugh, William G; Alvarez, David; Hammer, Edward J; Bauer, Candice R; Augspurger, Tom; Raimondo, Sandy; Barnhart, M Christopher

    2017-03-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r 2  = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  4. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.

    PubMed

    Nendza, Monika; Wenzel, Andrea

    2006-05-01

    Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in

  5. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

    PubMed

    Nendza, Monika; Müller, Martin; Wenzel, Andrea

    2017-03-22

    Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR

  6. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes.

    PubMed

    Sandoval, Nicholas R; Papoutsakis, Eleftherios T

    2016-10-01

    Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  8. TOXICITY SCREENING WITH ZEBRAFISH ASSAY

    EPA Science Inventory

    The proposed toxicity screening will help EPA to prioritize chemicals for further testing, and it may also alert chemical manufacturers that some of their commercial products may be toxic. The proposed toxicity pathway studies will improve the research community’s abi...

  9. Environmental phototoxicity: Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.A.; Berenbaum, M.R.

    1988-04-01

    Ultraviolet radiation appears to be toxic to all forms of unpigmented living cells, including bacteria, protozoa, nematodes, arthropods, fish, birds, and mammals. In addition to the direct absorption of solar energy by cellular constituents, toxicity may occur because of the absorption of sunlight by xenobiotics (or by naturally occurring compounds outside the target cell); these may be converted by light or by subsequent light-promoted reactions that induce cellular damage. This article describes the phototoxicity of photodynamic dyes, light-activated synthetic herbicides, petroleum and its constituents, and naturally occurring chemicals from plants. Detoxification mechanisms are also discussed.

  10. Virtual Liver: integrating in vitro and in vivo data to predict chemical-induced toxicity

    EPA Science Inventory

    It is difficult to assess the health impact of long-term exposure to low levels of contaminants from animal studies. Current methods for testing the toxicity of a single chemical can cost millions of dollars, take up to two years and sacrifice thousands of animals. In vitro model...

  11. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  12. ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.

    EPA Science Inventory

    Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...

  13. Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA.

    PubMed

    Lim, Seong-Rin; Lam, Carl W; Schoenung, Julie M

    2011-09-01

    Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Drake Chemical Workers' Health Registry: coping with community tension over toxic exposures.

    PubMed Central

    Leviton, L C; Marsh, G M; Talbott, E; Pavlock, D; Callahan, C

    1991-01-01

    BACKGROUND: Programs to communicate health risk information and to protect the health of groups exposed to toxic substances need to tailor interventions to the political, economic, and cultural situation of the at-risk group. In particular, such programs must often cope with exceptional community tension and conflict over these exposures. METHODS: This article uses interviews and written materials to document and describe the state of affairs that led up to community tension over an occupational exposure to a bladder carcinogen. The article describes the planning and design of a program to provide medical surveillance to workers, which also alleviated community concern. RESULTS: The Drake Chemical Workers' Health Registry coped successfully with community conflict and obtained a high participation rate. CONCLUSIONS: General recommendations include the following: avoid identification with extraneous agendas; know the community and maintain communication; and match the intervention to the evolution of the community conflict. PMID:2029036

  15. Relationship between Composition and Toxicity of Motor Vehicle Emission Samples

    PubMed Central

    McDonald, Jacob D.; Eide, Ingvar; Seagrave, JeanClare; Zielinska, Barbara; Whitney, Kevin; Lawson, Douglas R.; Mauderly, Joe L.

    2004-01-01

    In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects. PMID:15531438

  16. Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences

    PubMed Central

    Kojima, Yosuke; Mori, Akira

    2015-01-01

    Many animals sequester dietary defensive compounds and incorporate them into the offspring, which protects the young against predation. One possible but poorly investigated question is whether females of such species actively prey upon toxic diets. The snake Rhabdophis tigrinus sequesters defensive steroids from toads consumed as prey; it also feeds on other amphibians. Females produce chemically armed offspring in direct proportion to their own level of toad-derived toxins by provisioning the toxins to their eggs. Our field observations of movements and stomach contents of radio-tracked R. tigrinus showed that gravid snakes preyed upon toads by actively foraging in the habitat of toads, even though toads were a scarce resource and toad-searching may incur potential costs. Our Y-maze experiments demonstrated that gravid females were more likely to trail the chemical cues of toads than were males or non-gravid females. These results showed behavioural switching in females and active foraging for scarce, toxic prey during gestation. Because exploitation of toads by gravid females results in their offspring being more richly endowed with prey-derived toxins, active foraging for toxic prey is expected to be an adaptive antipredator trait, which may enhance chemical defence in offspring. PMID:25392472

  17. Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences.

    PubMed

    Kojima, Yosuke; Mori, Akira

    2015-01-07

    Many animals sequester dietary defensive compounds and incorporate them into the offspring, which protects the young against predation. One possible but poorly investigated question is whether females of such species actively prey upon toxic diets. The snake Rhabdophis tigrinus sequesters defensive steroids from toads consumed as prey; it also feeds on other amphibians. Females produce chemically armed offspring in direct proportion to their own level of toad-derived toxins by provisioning the toxins to their eggs. Our field observations of movements and stomach contents of radio-tracked R. tigrinus showed that gravid snakes preyed upon toads by actively foraging in the habitat of toads, even though toads were a scarce resource and toad-searching may incur potential costs. Our Y-maze experiments demonstrated that gravid females were more likely to trail the chemical cues of toads than were males or non-gravid females. These results showed behavioural switching in females and active foraging for scarce, toxic prey during gestation. Because exploitation of toads by gravid females results in their offspring being more richly endowed with prey-derived toxins, active foraging for toxic prey is expected to be an adaptive antipredator trait, which may enhance chemical defence in offspring. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Comparative Toxicity of Eight Oil Dispersants, Louisiana Sweet Crude Oil (LSC) and Chemically Dispersed LSC to Two Aquatic Test Species

    EPA Science Inventory

    This study describes the acute toxicity of eight commercial oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC. The approach utilized consistent test methodologies within a single laboratory in assessing the relative acute toxicity of the eight dispers...

  19. Calculating Toxic Corridors.

    DTIC Science & Technology

    1980-11-01

    59 programmable calculator . Method 1 will most likely be used if there is a toxic corridor length table for the chemical; Method 2 if there is no table...experience of the forecaster in making this forecast, availability of a toxic corridor length table for the released chemical, and availability of a TI

  20. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India

    NASA Astrophysics Data System (ADS)

    Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.

    2016-12-01

    Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.

  1. High-throughput selection for cellulase catalysts using chemical complementation.

    PubMed

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  2. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  3. Toxicity of inorganic nanomaterials in biomedical imaging.

    PubMed

    Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang

    2014-01-01

    Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.

    PubMed

    Rabanal, Francesc; Grau-Campistany, Ariadna; Vila-Farrés, Xavier; Gonzalez-Linares, Javier; Borràs, Miquel; Vila, Jordi; Manresa, Angeles; Cajal, Yolanda

    2015-05-29

    Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

  5. 2002 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Stockton

    2003-11-01

    For reporting year 2002, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds and mercury as required under the Emergency Planning and Community Right-to-Know Act (EPCRA), Section 313. No other EPCRA Section 313 chemicals were used in 2002 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical usage and threshold determinations for LANL for calendar year 2002 as well as provide background information about the data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxicmore » Chemical Release Inventory report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999 EPA promulgated a final rule on Persistent Bioaccumulative Toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable under EPCRA Section 313. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.« less

  6. The acute toxicity of chemically and physically dispersed crude oil to key arctic species under arctic conditions during the open water season

    PubMed Central

    Gardiner, William W; Word, Jack Q; Word, Jack D; Perkins, Robert A; McFarlin, Kelly M; Hester, Brian W; Word, Lucinda S; Ray, Collin M

    2013-01-01

    The acute toxicity of physically and chemically dispersed crude oil and the dispersant Corexit 9500 were evaluated for key Arctic species. The copepod Calanus glacialis, juvenile Arctic cod (Boreogadus saida), and larval sculpin (Myoxocephalus sp.) were tested under conditions representative of the Beaufort and Chukchi Seas during the ice-free season. The toxicity of 3 water-accommodated fractions (WAF) of Alaska North Slope crude oil was examined with spiked, declining exposures. A dispersant-only test was conducted with the copepod C. glacialis. Each preparation with oil (WAF, breaking wave WAF [BWWAF], and chemically enhanced WAF [CEWAF]) produced distinct suites of hydrocarbon constituents; the total concentrations of oil were lowest in WAF and highest in CEWAF preparations. The relative sensitivity for the different species and age classes was similar within each WAF type. Median lethal concentration values based on total petroleum hydrocarbons ranged from 1.6 mg/L to 4.0 mg/L for WAF and BWWAF treatments and from 22 mg/L to 62 mg/L for CEWAF. For Corexit 9500 exposures, median lethal concentration values ranged from 17 mg/L to 50 mg/L. The differences in the relative toxicity among the accommodated fractions indicated that the majority of petroleum hydrocarbons in the CEWAF are in less acutely toxic forms than the components that dominate the WAF or BWWAF. Further evaluation showed that the parent polycyclic aromatic hydrocarbon compounds, specifically naphthalene, were highly correlated to acute toxicity. Environ Toxicol Chem 2013;32:2284–2300. PMID:23765555

  7. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  8. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  9. Distributed structure-searchable toxicity (DSSTox) public database network: a proposal.

    PubMed

    Richard, Ann M; Williams, ClarLynda R

    2002-01-29

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, Structure-Activity Relationship (SAR) model development, or building of chemical relational databases (CRD). The distributed structure-searchable toxicity (DSSTox) public database network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: (1) to adopt and encourage the use of a common standard file format (structure data file (SDF)) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; (2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data sources with potential users of these data from other disciplines (such as chemistry, modeling, and computer science); and (3) to engage public/commercial/academic/industry groups in contributing to and expanding this community-wide, public data sharing and distribution effort. The DSSTox project's overall aims are to effect the closer association of chemical structure information with existing toxicity data, and to promote and facilitate structure

  10. Cross-species extrapolation of toxicity information using the ...

    EPA Pesticide Factsheets

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two tiered approach for screening chemicals that applied standardized in vitro and in vivo toxicity tests. The Tier 1 screening assays were designed to identify substances that have the potential of interacting with the endocrine system and Tier 2 testing was developed to identify adverse effects caused by the chemical, with documentation of dose-response relationships. While this tiered approach was effective in identifying possible endocrine disrupting chemicals, the cost and time to screen a single chemical was significant. Therefore, in 2012 the EDSP proposed a transition to make greater use of computational approaches (in silico) and high-throughput screening (HTS; in vitro) assays to more rapidly and cost-efficiently screen chemicals for endocrine activity. This transition from resource intensive, primarily in vivo, screening methods to more pathway-based approaches aligns with the simultaneously occurring transformation in toxicity testing termed “Toxicity Testing in the 21st Century” which shifts the focus to the disturbance of the biological pathway predictive of the observable toxic effects. An example of such screening tools include the US Environmental Protection Agency’s

  11. Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: Implications for daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Milam, C.D.; Farris, J.L.; Dwyer, F.J.; Hardesty, D.K.

    2005-01-01

    Acute (24-h) toxicity tests were used in this study to compare lethality responses in early life stages (glochidia) of six freshwater mussel species, Leptodea fragilis, U. imbecillis, Lampsilis cardium, Lampsilis siliquoidea, Megalonaias nervosa, and Ligumia subrostrata, and two standard test organisms, Ceriodaphnia dubia and Daphnia magna. Concentrations of carbaryl, copper, 4-nonylphenol, pentachlorophenol, permethrin, and 2,4-D were used in acute exposures to represent different chemical classes and modes of action. The relative sensitivities of species were evaluated by ranking their LC 50 values for each chemical. We used these ranks to determine the extent to which U. imbecillis (one of the most commonly used unionids in toxicity tests) was representative of the tolerances of other mussels. We also calculated geometric mean LC50s for the families Unionidae and Daphnidae. Rankings of these data were used to assess the extent to which Daphnidae can be used as surrogates for freshwater mussels relative to chemical sensitivity. While no single chemical elicited consistently high or low toxicity estimates, carbaryl and 2,4-D were generally the least toxic to all species tested. No species was always the most sensitive, and Daphnidae were generally protective of Unionidae. Utterbackia imbecillis, while often proposed as a standard unionid mussel test species, did not always qualify as a sufficient surrogate (i.e., a substitute organism that often elicits similar sensitivity responses to the same contaminant exposure) for other species of mussels, since it was usually one of the more tolerant species in our rankings. U. imbecillis should be used as a surrogate species only with this caution on its relative insensitivity. ?? 2005 Springer Science+Business Media, Inc.

  12. Thermal Stress and Toxicity

    EPA Science Inventory

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral te...

  13. High Throughput Screening of Toxicity Pathways Perturbed by Environmental Chemicals

    EPA Science Inventory

    Toxicology, a field largely unchanged over the past several decades, is undergoing a significant transformation driven by a number of forces – the increasing number of chemicals needing assessment, changing legal requirements, advances in biology and computer science, and concern...

  14. High-Throughput Toxicity Testing: New Strategies for Assessing Chemical Safety

    EPA Science Inventory

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct add...

  15. 76 FR 65385 - Testing of Certain High Production Volume Chemicals; Third Group of Chemicals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...)(1)(B) of the Toxic Substances Control Act (TSCA) to require manufacturers, importers, and processors... the regulatory text. Any use of the term ``manufacture'' in this final rule will encompass ``import... substances (NAICS codes 325 and 324110), e.g., chemical manufacturing and petroleum refineries. Processors of...

  16. Chemotherapy induced toxicity is highly heritable in Drosophila melanogaster

    PubMed Central

    Kislukhin, Galina; Murphy, Maura L.; Jafari, Mahtab; Long, Anthony D.

    2012-01-01

    Objectives Identifying the genes responsible for chemotherapy toxicity in Drosophila melanogaster may allow for the identification of human orthologs that similarly mediate toxicity in humans. In order to develop Drosophila melanogaster as a model of dissecting chemotoxicity, we first need to develop standardized high throughput toxicity assays and prove that inter-individual variation in toxicity as measured by such assays is highly heritable. Methods We developed a method for the oral delivery of commonly used chemotherapy drugs to Drosophila. Post-treatment female fecundity displayed a dose dependent response to varying levels of the chemotherapy drug delivered. We fixed the dose for each drug at a level that resulted in a 50% reduction in fecundity and used a paternal half-sibling heritability design to calculate the heritability attributable to chemotherapy toxicity assayed via a decrease in female fecundity. Chemotherapy agents tested were carboplatin, floxuridine, gemcitabine hydrochloride, methotrexate, mitomycin C, and topotecan hydrochloride. Results We found that six currently widely prescribed chemotherapeutic agents lowered fecundity in D. melanogaster in both a dose dependent and highly heritable manner. The following heritability estimates were found: carboplatin – 0.72, floxuridine – 0.52, gemcitabine hydrochloride – 0.72, methotrexate – 0.99, mitomycin C – 0.64, and topotecan hydrochloride – 0.63. Conclusions The high heritability estimates observed in this study, irrespective of the particular class of drug examined, suggest that human toxicity may also have a sizable genetic component. PMID:22336958

  17. Treating chronic arsenic toxicity with high selenium lentil diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit, E-mail: judit.smits@ucalgary.ca

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we comparemore » diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B

  18. Best Practices for NPDES Permit Writers and Pretreatment Coordinators to Address Toxic and Hazardous Chemical Discharges to POTWs

    EPA Pesticide Factsheets

    This guidance generally describes measures (“best practices”) NPDES permit writers and pretreatment coordinators should consider adopting to address hazardous and toxic chemical discharges to POTWs.

  19. Incorporating Biological, Chemical and Toxicological Knowledge into Predictive Models of Toxicity: Letter to the Editor

    EPA Science Inventory

    Thomas et al. (2012) recently published an evaluation of statistical models for classifying in vivo toxicity endpoints from ToxRefDB (Knudsen et al. 2009; Martin et al. 2009a and 2009b) using ToxCast in vitro bioactivity data (Judson et al. 2010) and chemical structure descriptor...

  20. Toxic hazards in aerial application.

    DOT National Transportation Integrated Search

    1962-04-01

    An analysis of the hazards accompanying the aerial application of toxic pest-control chemicals are presented. The nature of teh chemicals, teh symptoms of toxicity, recommended treatment, and suggestions for safe-handling, are discussed

  1. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    EPA Science Inventory

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  2. Migratory birds are the source of highly toxic organic pollutants for indigenous people in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Pesiakova, A. A.; Gusakova, E. V.; Trofimova, A. N.; Sorokina, T. Yu

    2018-01-01

    Polychlorinated biphenyls are highly toxic organic contaminants. Due to their chemical properties they had wide application in industry and agriculture in the 20th century. In 2001 the production of PCBs has been prohibited almost worldwide. Environmental contamination has been found in soils, water, and air where there were PCB production sites. They have been detected in fish, birds and animals of migratory species, retaining transboarding transfer. Several migratory species of birds (Taiga bean goose, greater white-fronted goose, lesser white fronted goose and barnacle goose) are a diet for indigenous people. PCBs accumulating in the human body affect all systems and organs. This article reviews the contribution of migratory bird species in transboarding transfer of highly toxic contaminants in the Nenets Autonomous Area, Kolguev island (Russian Arctic).

  3. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  4. Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways

    PubMed Central

    Bhattacharya, Sudin; Zhang, Qiang; Carmichael, Paul L.; Boekelheide, Kim; Andersen, Melvin E.

    2011-01-01

    The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair. PMID:21701582

  5. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish

    PubMed Central

    Harper, Bryan J.; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B.

    2016-01-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles. PMID:27468180

  6. Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, N.B.; Ambrose, K.R.; Watson, A.P.

    1994-01-01

    The nerve agents, GA, GB, and VX are organophosphorus esters that form a major portion of the total agent volume contained in the U.S. stockpile of unitary chemical munitions. Congress has mandated the destruction of these agents, which is currently slated for completion in 2004. The acute, chronic, and delayed toxicity of these agents is reviewed in this analysis. The largely negative results from studies of genotoxicity, carcinogenicity, developmental, and reproductive toxicity are also presented. Nerve agents show few or delayed effects. At supralethal doses, GB can cause delayed neuropathy in antidote-protected chickens, but there is not evidence that itmore » causes this syndrome in humans at any dose. Agent VX shows no potential for inducing delayed neuropathy in any species. In view of their lack of genotoxicity, the nerve agent exposure is the extraordinarily high acute toxicity of these substances. Futhermore, acute effects of moderate exposure such as nausea, diarrhea, inability to perform simple mental tasks, and respiratory effects may render the public unable to respond adequately to emergency instructions in the unlikely event of agent release, making early warning and exposure avoidance important. Likewise, exposure or self-contamination of first responders and medical personnel must be avoided. Control limits for exposure via surface contact of drinking water are needed, as are detection methods for low levels in water or foodstuffs. 187 refs., 3 figs., 7 tabs.« less

  7. Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection.

    PubMed Central

    Munro, N

    1994-01-01

    The nerve agents, GA, GB, and VX are organophosphorus esters that form a major portion of the total agent volume contained in the U.S. stockpile of unitary chemical munitions. Congress has mandated the destruction of these agents, which is currently slated for completion in 2004. The acute, chronic, and delayed toxicity of these agents is reviewed in this analysis. The largely negative results from studies of genotoxicity, carcinogenicity, developmental, and reproductive toxicity are also presented. Nerve agents show few or delayed effects. At supralethal doses, GB can cause delayed neuropathy in antidote-protected chickens, but there is no evidence that it causes this syndrome in humans at any dose. Agent VX shows no potential for inducing delayed neuropathy in any species. In view of their lack of genotoxcity, the nerve agents are not likely to be carcinogens. The overreaching concern with regard to nerve agent exposure is the extraordinarily high acute toxicity of these substances. Furthermore, acute effects of moderate exposure such as nausea, diarrhea, inability to perform simple mental tasks, and respiratory effects may render the public unable to respond adequately to emergency instructions in the unlikely event of agent releaase, making early warning and exposure avoidance important. Likewise, exposure or self-contamination of first responders and medical personnel must be avoided. Control limits for exposure via surface contact of drinking water are needed, as are detection methods for low levels in water or foodstuffs. Images Figure 2. PMID:9719666

  8. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Losmore » Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.« less

  9. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program

    EPA Science Inventory

    Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such eff...

  10. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baderna, D., E-mail: diego.baderna@marionegri.it; Maggioni, S.; Boriani, E.

    2011-05-15

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of amore » landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: {yields} We study the toxicity of leachate from a non-hazardous industrial waste landfill. {yields} We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. {yields} Risk models suggest toxic effects due to ammonia and inorganic constituents. {yields} In vitro assays show that leachate inhibits cell proliferation at low doses. {yields} Leachate can induce cytotoxic effects on HepG2 cells at high doses.« less

  11. A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents

    PubMed Central

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander

    2009-01-01

    Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships

  12. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.

    PubMed

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander

    2009-08-01

    Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only

  13. INTEGRATED CHEMICAL INFORMATION TECHNOLOGIES ...

    EPA Pesticide Factsheets

    A central regulatory mandate of the Environmental Protection Agency, spanning many Program Offices and issues, is to assess the potential health and environmental risks of large numbers of chemicals released into the environment, often in the absence of relevant test data. Models for predicting potential adverse effects of chemicals based primarily on chemical structure play a central role in prioritization and screening strategies yet are highly dependent and conditional upon the data used for developing such models. Hence, limits on data quantity, quality, and availability are considered by many to be the largest hurdles to improving prediction models in diverse areas of toxicology. Generation of new toxicity data for additional chemicals and endpoints, development of new high-throughput, mechanistically relevant bioassays, and increased generation of genomics and proteomics data that can clarify relevant mechanisms will all play important roles in improving future SAR prediction models. The potential for much greater immediate gains, across large domains of chemical and toxicity space, comes from maximizing the ability to mine and model useful information from existing toxicity data, data that represent huge past investment in research and testing expenditures. In addition, the ability to place newer “omics” data, data that potentially span many possible domains of toxicological effects, in the broader context of historical data is the means for opti

  14. The toxic chemistry of methyl bromide.

    PubMed

    Bulathsinghala, A T; Shaw, I C

    2014-01-01

    Methyl bromide (MeBr) is a chemically reactive compound that has found use as a fire retardant and fumigant used for wood, soil, fruits and grains. Its use is banned in many countries because of its ozone-depleting properties. Despite this ban, the use of MeBr persists in some parts of the world (e.g. New Zealand) due to its important role in maintaining strict biosecurity of exported and imported products. Its high chemical reactivity leads to a broad toxicological profile ranging from acute respiratory toxicity following inhalation exposure, through carcinogenicity to neurotoxicty. In this article, we discuss the chemistry of MeBr in the context of its mechanisms of toxicity. The chemical reactivity of MeBr clearly underlies its toxicity. Bromine (Br) is electronegative and a good leaving group; the δ+ carbon thus facilitates electrophilic methylation of biological molecules including glutathione (GSH) via its δ- sulphur atom, leading to downstream effects due to GSH depletion. DNA alkylation, either directly by MeBr or indirectly due to reduction in GSH-mediated detoxification of reactive alkylating chemical species, might explain the carcinogenicity of MeBr. The neurotoxicity of MeBr is much more difficult to understand, but we speculate that methyl phosphates formed in cells might contribute to its neurone-specific toxicity via cholinesterase inhibition. Finally, evidence reviewed shows that it is unlikely for Br⁻ liberated by the metabolism of MeBr to have any toxicological effect because the Br⁻ dose is very low.

  15. Toxic substances handbook

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  16. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  17. Chemical hazards in health care: high hazard, high risk, but low protection.

    PubMed

    McDiarmid, Melissa A

    2006-09-01

    It is counter-intuitive that the healthcare industry, whose mission is the care of the sick, is itself a "high-hazard" industry for the workers it employs. Possessing every hazard class, with chemical agents in the form of pharmaceuticals, sterilants, and germicidals in frequent use, this industry sector consistently demonstrates poor injury and illness statistics, among the highest in the United States, and in the European Union (EU), 34% higher than the average work-related accident rate. In both the United States and the EU, about 10% of all workers are employed in the healthcare sector, and in developing countries as well, forecasts for the increasing need of healthcare workers (HCW) suggests a large population at potential risk of health harm. The explosion of technology growth in the healthcare sector, most obvious in pharmaceutical applications, has not been accompanied by a stepped up safety program in hospitals. Where there is hazard recognition, the remedies are often voluntary, and often poorly enforced. The wrong assumption that this industry would police itself, given its presumed knowledge base, has also been found wanting. The healthcare industry is also a significant waste generator threatening the natural environment with chemical and infectious waste and products of incineration. The ILO has recommended that occupational health goals for industrial nations focus on the hazards of new technology of which pharma and biopharma products are the leaders. This unchecked growth cannot continue without a parallel commitment to the health and safety of workers encountering these "high tech" hazards. Simple strategies to improve the present state include: (a) recognizing healthcare as a "high-hazard" employment sector; (b) fortifying voluntary safety guidelines to the level of enforceable regulation; (c) "potent" inspections; (d) treating hazardous pharmaceuticals like the chemical toxicants they are; and (e) protecting HCWs at least as well as workers in

  18. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  19. Grand rounds: an outbreak of toxic hepatitis among industrial waste disposal workers.

    PubMed

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction-type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers' health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent.

  20. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  1. A High-throughput Selection for Cellulase Catalysts Using Chemical Complementation

    PubMed Central

    Peralta-Yahya, Pamela; Carter, Brian T.; Lin, Hening; Tao, Haiyan; Cornish, Virginia W.

    2010-01-01

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases however is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Due to the large number of enzyme variants selections can test compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity. PMID:19053460

  2. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review.

    PubMed

    Dorri, Mahyar; Hashemitabar, Shirin; Hosseinzadeh, Hossein

    2018-01-10

    Cinnamon (Cinnamomum zeylanicum, Lauraceae) is a food additive greatly used for its taste. However, recently this medicinal plant has been brought to attention due to its medical effects. Cinnamon has constituents such as cinnamaldehyde and cinnamic acid that offers some health benefits including antioxidant and free-radical scavenging properties, lowering of blood glucose, anti-cholesterolemic, analgesic, antimicrobial, anti-inflammatory, anti-yeast, anti-secretagogue, and anti-gastric ulcer effects. This review summarizes various in vitro and animal studies on the protective effects of cinnamon against natural and chemical toxins. These studies consider the antidotal and/or protective effects of cinnamon and its major constituents against natural toxins and chemical-induced toxicities. It has been mentioned that cinnamon and its main constituents can ameliorate the toxicity of chemical toxins in liver, kidney, blood, brain, embryo, reproductive system, heart, spleen in part through antioxidant effect, radical scavenging, reducing lipid peroxidation, anti-inflammatory, fungistatic and fungicidal activities, modulation of CK-MB, LDH, TNF-α, IL-6, mitogen-activated protein kinase (MAPK), and nuclear factor-ĸB (NF-ĸB) signaling pathways.

  3. Predictive Modeling of Developmental Toxicity

    EPA Science Inventory

    The use of alternative methods in conjunction with traditional in vivo developmental toxicity testing has the potential to (1) reduce cost and increase throughput of testing the chemical universe, (2) prioritize chemicals for further targeted toxicity testing and risk assessment,...

  4. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Pesticide Factsheets

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  5. Proteomic Signatures of the Zebrafish (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals.

    PubMed

    Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike

    2010-01-01

    Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC(10)) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate "pattern-only" PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress.

  6. Proteomic Signatures of the Zebrafish (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals

    PubMed Central

    Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike

    2010-01-01

    Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC10) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate “pattern-only” PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress. PMID:22084678

  7. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.

    PubMed

    Kavlock, Robert; Dix, David

    2010-02-01

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly

  8. Distributed Structure-Searchable Toxicity (DSSTox) Database

    EPA Pesticide Factsheets

    The Distributed Structure-Searchable Toxicity network provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with chemical inventories or toxicity data sets of environmental relevance.

  9. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY (DSSTOX) PUBLIC DATABASE NETWORK: A PROPOSAL

    EPA Science Inventory

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These dive...

  10. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  11. Data gaps in toxicity testing of chemicals allowed in food in the United States.

    PubMed

    Neltner, Thomas G; Alger, Heather M; Leonard, Jack E; Maffini, Maricel V

    2013-12-01

    In the United States, chemical additives cannot be used in food without an affirmative determination that their use is safe by FDA or additive manufacturer. Feeding toxicology studies designed to estimate the amount of a chemical additive that can be eaten safely provide the most relevant information. We analyze how many chemical additives allowed in human food have feeding toxicology studies in three toxicological information sources including the U.S. Food and Drug Administration's (FDA) database. Less than 38% of FDA-regulated additives have a published feeding study. For chemicals directly added to food, 21.6% have feeding studies necessary to estimate a safe level of exposure and 6.7% have reproductive or developmental toxicity data in FDA's database. A program is needed to fill these significant knowledge gaps by using in vitro and in silico methods complemented with targeted in vivo studies to ensure public health is protected. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Treating chronic arsenic toxicity with high selenium lentil diets.

    PubMed

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0ppm As) or As (40ppm As) water while consuming SK lentils (0.3ppm Se) or northwestern USA lentils (<0.01ppm Se) diets for 14weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Evaluation of 1066 ToxCast Chemicals in a human stem cell assay for developmental toxicity (SOT)

    EPA Science Inventory

    To increase the diversity of assays used to assess potential developmental toxicity, the ToxCast chemical library was screened in the Stemina devTOX quickPREDICT assay using human embryonic stem (hES) cells. A model for predicting teratogenicity was based on a training set of 23 ...

  14. DOSE-RESPONSE BEHAVIOR OF ANDROGENIC AND ANTIANDROGENIC CHEMICALS: IMPLICATIONS FOR LOW-DOSE EXTRAPOLATION AND CUMULATIVE TOXICITY

    EPA Science Inventory

    DOSE-RESPONSE BEHAVIOR OF ANDROGENIC AND ANTIANDROGENIC CHEMICALS: IMPLICATIONS FOR LOW-DOSE EXTRAPOLATION AND CUMULATIVE TOXICITY. LE Gray Jr, C Wolf, J Furr, M Price, C Lambright, VS Wilson and J Ostby. USEPA, ORD, NHEERL, EB, RTD, RTP, NC, USA.
    Dose-response behavior of a...

  15. Engineering and Design: Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities

    DTIC Science & Technology

    This regulation prescribes Chemical Data Quality Management (CDQM) responsibilities and procedures for projects involving hazardous, toxic and/or radioactive waste (HTRW) materials. Its purpose is to assure that the analytical data meet project data quality objectives. This is the umbrella regulation that defines CDQM activities and integrates all of the other U.S. Army Corps of Engineers (USACE) guidance on environmental data quality management .

  16. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  17. The CAESAR models for developmental toxicity

    EPA Science Inventory

    The new REACH legislation requires assessment of a high number of chemicals in the European market for several endpoints. Developmental Toxicity results amongst the most difficult endpoint to assess, due to the complexity, length and costs of experiments. Following the encouragem...

  18. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  19. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  20. High-throughput exposure modeling to support prioritization of chemicals in personal care products.

    PubMed

    Csiszar, Susan A; Ernstoff, Alexi S; Fantke, Peter; Meyer, David E; Jolliet, Olivier

    2016-11-01

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass of a given chemical used in a product. We calculated use- and disposal- stage PiFs for 518 chemicals for five PCP archetypes. Across all product archetypes the use- and disposal- stage PiFs ranged from 10(-5) to 1 and 0 to 10(-3), respectively. There is a distinction between the use-stage PiF for leave-on and wash-off products which had median PiFs of 0.5 and 0.02 across the 518 chemicals, respectively. The PiF is a function of product characteristics and physico-chemical properties and is maximized when skin permeability is high and volatility is low such that there is no competition between skin and air losses from the applied product. PCP chemical contents (i.e. concentrations) were available for 325 chemicals and were combined with PCP usage characteristics and PiF yielding intakes summed across a demonstrative set of products ranging from 10(-8)-30 mg/kg/d, with a median of 0.1 mg/kg/d. The highest intakes were associated with body lotion. Bioactive doses derived from high-throughput in vitro toxicity data were combined with the estimated PiFs to demonstrate an approach to estimate bioactive equivalent chemical content and to screen chemicals for risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    PubMed

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  2. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    PubMed

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  3. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  4. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.

    PubMed

    Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J

    2018-06-01

    Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

  5. Toxicity Reference Database

    EPA Pesticide Factsheets

    The Toxicity Reference Database (ToxRefDB) contains approximately 30 years and $2 billion worth of animal studies. ToxRefDB allows scientists and the interested public to search and download thousands of animal toxicity testing results for hundreds of chemicals that were previously found only in paper documents. Currently, there are 474 chemicals in ToxRefDB, primarily the data rich pesticide active ingredients, but the number will continue to expand.

  6. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...EPA is announcing that it is lifting the Administrative Stay of the Emergency Planning and Community Right-to-Know Act (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4). Hydrogen sulfide was added to the EPCRA section 313 list of toxic chemicals in a final rule published in the Federal Register on December 1, 1993. However, on August 22, 1994, EPA issued an Administrative Stay of the reporting requirements for hydrogen sulfide in order to evaluate issues brought to the Agency's attention after promulgation of the final rule concerning the human health effect basis for the listing and the Agency's use of exposure analysis in EPCRA section 313 listing decisions. Although the final rule listing hydrogen sulfide under section 313 of EPCRA remained in force, the stay deferred the reporting requirements for hydrogen sulfide while EPA completed this further evaluation. EPA completed its further evaluation of additional information that has become available since the stay was put in place regarding the human health and environmental effects of hydrogen sulfide, and the Agency published a position that the stay should be lifted in the February 26, 2010, Federal Register document ``Intent to Consider Lifting Administrative Stay; Opportunity for Public Comment.'' Based on EPA's further evaluation and the consideration of the public comments received on the notice of intent, EPA continues to believe that the Administrative Stay should be lifted. By this current action, EPA is not revisiting the original listing decision, which was accomplished by final rule on December 1, 1993. Rather, EPA is lifting the Administrative Stay of the reporting requirements for hydrogen sulfide.

  7. Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays

    EPA Science Inventory

    The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo e...

  8. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid.

    PubMed

    Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don

    This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.

  9. USING QSAR AND SAR TO PREDICT THE TOXICITY AND DEGRADABILITY OF CHEMICALS IN SEDIMENTS AND WATER: AN EVALUATION USING QUADRICYCLANE AND IT'S ANALOGS

    EPA Science Inventory

    The NRC has examined the availability of toxicity endpoints for industrial chemicals and concluded that many of these chemicals lack even minimum testing. One way of carrying out risk assessments of chemicals having insufficient experimental data is by using Quantitative Structur...

  10. Translation of Toxicity Data into CW Agent Toxicity Estimates

    DTIC Science & Technology

    2003-07-01

    UNLIMITED UNCLASSIFIED/UNLIMITEDPrepared by Douglas R. Sommerville, PE US Army ECBC, APG, MD Dependence of Toxic Effect on Exposure Time Inhalation (IH...to longer exposure durations. Toxicity estimates for exposure durations ranging from 2 to 360 minutes have been derived for six agents (GA, GB, GD...individuals having effects greater in severity than the defining effect of the ECTYY Cn T = k Toxic load equation 5 6 Edgewood Chemical Biological Center

  11. Chemical pneumonitis

    MedlinePlus

    ... problems. DO NOT siphon gas, kerosene, or other toxic liquid chemicals. Alternative Names Aspiration pneumonia - chemical Images Lungs Respiratory system References Blanc PD. Acute responses to toxic exposures. In: Broaddus VC, Mason RJ, Ernst JD, ...

  12. Windows of sensitivity to toxic chemicals in the motor effects development.

    PubMed

    Ingber, Susan Z; Pohl, Hana R

    2016-02-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.

  13. Windows of sensitivity to toxic chemicals in the motor effects development✩

    PubMed Central

    Ingber, Susan Z.; Pohl, Hana R.

    2017-01-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. PMID:26686904

  14. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    PubMed Central

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Discussion Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. Relevance to clinical or professional practice In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent. PMID:17366828

  15. Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.

    PubMed

    Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O

    2007-01-01

    In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.

  16. Evaluation of soil toxicity at Joliet Army Ammunition Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simini, M.; Amos, J.C.; Wentsel, R.S.

    1995-04-01

    Environmental toxicity testing and chemical analyses of soil were performed as part of an ecological risk assessment at the Joliet Army Ammunition Plant (JAAP), Joliet, Illinois. Soils were collected from an area where munitions were loaded, assembled, and packed (area L7, group 1), and from an area where waste explosives were burned on unprotected soil (area L2). Control samples were collected from an adjacent field. Soil toxicity was determined using early seedling growth and vigor tests, earthworm survival and growth tests, and Microtox{reg_sign} assays. Relative toxicity of soils was determined within each area based on statistical significant (p = 0.05)more » of plant and earthworm growth and survival, and the effective concentration at which luminescence of the bacterium Photobacterium phosphoreum was reduced by 50% (EC50) in the Microtox assay. Samples were designated as having high, moderate, or no significant toxicity. Soil that had significant toxicity according to at least one test, and representative samples showing no toxicity, were analyzed for munitions via HPLC. Chemical residues found in soils were 2,4,6-trinitrotoluene (TNT); 1,3,5-trinitrobenzene (TNB); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene; 2-amino-4,6-DNT; 4-amino-2,6-DNT; 1,3,5-trinitro-1,3,5-triazine (RDX); and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). All soils with no significant toxicity were void of these chemicals. However, some soils void of munitions still showed toxicity that may have been caused by elevated levels of heavy metals. Linear regressions of toxicity test results vs. chemical concentrations showed that TNT and TNB accounted for most off the soil toxicity. Lowest-observable-effect concentrations (LOEC) of TNT were determined from these data. This study presents a simple, relatively inexpensive methodology for assessing toxicity of soils containing TNT, RDX, and other contaminants related to munitions production.« less

  17. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    PubMed

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  18. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  19. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater.

    PubMed

    Paździor, Katarzyna; Wrębiak, Julita; Klepacz-Smółka, Anna; Gmurek, Marta; Bilińska, Lucyna; Kos, Lech; Sójka-Ledakowicz, Jadwiga; Ledakowicz, Stanisław

    2017-06-15

    The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox ® toxicity test. Ozonation in two reactors of working volume 1 dm 3 (stirred cell) and 20 dm 3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm 3 ) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm 3 ). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

    EPA Pesticide Factsheets

    There is a growing need in the field of exposure science for monitoring methods that rapidly screen environmental media for suspect contaminants. Measurement and analysis platforms, based on high resolution mass spectrometry (HRMS), now exist to meet this need. Here we describe results of a study that links HRMS data with exposure predictions from the U.S. EPA's ExpoCast? program and in vitro bioassay data from the U.S. interagency Tox21 consortium. Vacuum dust samples were collected from 56 households across the U.S. as part of the American Healthy Homes Survey (AHHS). Sample extracts were analyzed using liquid chromatography time-of-flight mass spectrometry (LC??TOF/MS) with electrospray ionization. On average, approximately 2000 molecular features were identified per sample (based on accurate mass) in negative ion mode, and 3000 in positive ion mode. Exact mass, isotope distribution, and isotope spacing were used to match molecular features with a unique listing of chemical formulas extracted from EPA's Distributed Structure-Searchable Toxicity (DSSTox) database. A total of 978 DSSTox formulas were consistent with the dust LC??TOF/molecular feature data (match score ? 90); these formulas mapped to 3228 possible chemicals in the database. Correct assignment of a unique chemical to a given formula required additional validation steps. Each suspect chemical was prioritized for follow-up confirmation using abundance and detection frequency results, along with exp

  1. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Science Inventory

    As the use of hydraulic fracturing has increased, concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values—...

  2. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  3. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Tubic, Aleksandra; Ivancev-Tumbas, Ivana; Kovacevic, Radmila; Samardzija, Dragana; Andric, Nebojsa; Kaisarevic, Sonja

    2016-05-01

    Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    PubMed Central

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future. PMID:29515993

  5. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    NASA Astrophysics Data System (ADS)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  6. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    PubMed

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dempster-Shafer theory applied to regulatory decision process for selecting safer alternatives to toxic chemicals in consumer products.

    PubMed

    Park, Sung Jin; Ogunseitan, Oladele A; Lejano, Raul P

    2014-01-01

    Regulatory agencies often face a dilemma when regulating chemicals in consumer products-namely, that of making decisions in the face of multiple, and sometimes conflicting, lines of evidence. We present an integrative approach for dealing with uncertainty and multiple pieces of evidence in toxics regulation. The integrative risk analytic framework is grounded in the Dempster-Shafer (D-S) theory that allows the analyst to combine multiple pieces of evidence and judgments from independent sources of information. We apply the integrative approach to the comparative risk assessment of bisphenol-A (BPA)-based polycarbonate and the functionally equivalent alternative, Eastman Tritan copolyester (ETC). Our results show that according to cumulative empirical evidence, the estimated probability of toxicity of BPA is 0.034, whereas the toxicity probability for ETC is 0.097. However, when we combine extant evidence with strength of confidence in the source (or expert judgment), we are guided by a richer interval measure, (Bel(t), Pl(t)). With the D-S derived measure, we arrive at various intervals for BPA, with the low-range estimate at (0.034, 0.250), and (0.097,0.688) for ETC. These new measures allow a reasonable basis for comparison and a justifiable procedure for decision making that takes advantage of multiple sources of evidence. Through the application of D-S theory to toxicity risk assessment, we show how a multiplicity of scientific evidence can be converted into a unified risk estimate, and how this information can be effectively used for comparative assessments to select potentially less toxic alternative chemicals. © 2013 SETAC.

  8. The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.

    2003-01-01

    The interactive effects of ultraviolet (UV) and fire-retardant chemicals were evaluated by exposing rainbow trout (Oncorhyncus mykiss) juveniles and tadpoles of southern leopard frogs (Rana sphenocephala) to six fire-retardant formulations with and without sodium ferrocyanide (yellow prussiate of soda [YPS]) and to YPS alone under three simulated UV light treatments. Yellow prussiate of soda is used as a corrosion inhibitor in some of the fire-retardant chemical formulations. The underwater UV intensities measured were about 2 to 10% of surface irradiance measured in various aquatic habitats and were within tolerance limits for the species tested. Mortality of trout and tadpoles exposed to Fire-Trol?? GTS-R, Fire-Trol 300-F, Fire-Trol LCA-R, and Fire-Trol LCA-F was significantly increased in the presence of UV radiation when YPS was present in the formulation. The boreal toad (Bufo boreas), listed as endangered by the state of Colorado (USA), and southern leopard frog were similar in their sensitivity to these chemicals. Photoenhancement of fire-retardant chemicals can occur in a range of aquatic habitats and may be of concern even when optical clarity of water is low; however, other habitat characteristics can also reduce fire retardant toxicity.

  9. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  10. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  11. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model

    PubMed Central

    Jackson, George R.; Maione, Anna G.; Klausner, Mitchell

    2018-01-01

    Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643

  12. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.

  13. PREDICTING CHRONIC LETHALITY OF CHEMICALS TO FISHES FROM ACUTE TOXICITY TEST DATA: THEORY OF ACCELERATED LIFE TESTING

    EPA Science Inventory

    A method for modeling aquatic toxicity date based on the theory of accelerated life testing and a procedure for maximum likelihood fitting the proposed model is presented. he procedure is computerized as software, which can predict chronic lethality of chemicals using data from a...

  14. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level

    PubMed Central

    Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR < –1) to both species indicate that the bioconcentration potential of a chemical plays a very important role in the identification of excess toxicity and MOAs

  15. Improving ecological risk assessment of persistent, bioaccumulative, and toxic (PBT) chemicals by using an integrated modeling system - An example assessing chloroparaffins in riverine environments.

    EPA Science Inventory

    Chemical risk assessment (CRA) is primarily carried out at the screening level relying on empirical relationships between chemical properties and tested toxicity effects. Ultimately, risk to aquatic ecosystems is strongly dependent on actual exposure, which depends on chemical pr...

  16. Modeling Aquatic Toxicity through Chromatographic Systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  17. High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells.

    PubMed

    Liang, Shenxuan; Yin, Lei; Shengyang Yu, Kevin; Hofmann, Marie-Claude; Yu, Xiaozhong

    2017-01-01

    Bisphenol A (BPA), an endocrine-disrupting compound, was found to be a testicular toxicant in animal models. Bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) were recently introduced to the market as alternatives to BPA. However, toxicological data of these compounds in the male reproductive system are still limited so far. This study developed and validated an automated multi-parametric high-content analysis (HCA) using the C18-4 spermatogonial cell line as a model. We applied these validated HCA, including nuclear morphology, DNA content, cell cycle progression, DNA synthesis, cytoskeleton integrity, and DNA damage responses, to characterize and compare the testicular toxicities of BPA and 3 selected commercial available BPA analogues, BPS, BPAF, and TBBPA. HCA revealed BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS, including dose- and time-dependent alterations in nuclear morphology, cell cycle, DNA damage responses, and perturbation of the cytoskeleton. Our results demonstrated that this specific culture model together with HCA can be utilized for quantitative screening and discriminating of chemical-specific testicular toxicity in spermatogonial cells. It also provides a fast and cost-effective approach for the identification of environmental chemicals that could have detrimental effects on reproduction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    NASA Astrophysics Data System (ADS)

    Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  19. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.

    PubMed

    Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  20. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.

    2014-01-15

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less

  1. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOEpatents

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  2. Photoenhanced toxicity of oil to larval fish - abstract

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. A variety of oil products, weathered and chemically dispersed oils, and specific polycyclic aromatic compo...

  3. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  4. COMPUTATIONAL INVESTIGATION OF CHEMICAL REACTIVITY IN RELATION TO BIOACTIVATION AND TOXICITY ACROSS CLASSES OF HALOORGANICS: BROMINATION VS. CHLORINATION

    EPA Science Inventory

    COMPUTATIONAL INVESTIGATION OF CHEMICAL REACTIVITY IN RELATION TO BIOACTIV A TION AND TOXICITY ACROSS CLASSES OF HALOORGANICS: BROMINATION VS. CHLORINATION.

    Halogenation is a common feature of many classes of environmental contaminants, and often plays a crucial role in po...

  5. Acute sensitivity of freshwater mollusks and commonly tested invertebrates to select chemicals with different toxic models of action

    EPA Science Inventory

    Previous studies indicate that freshwater mollusks are more sensitive than commonly tested organisms to some chemicals, such as copper and ammonia. Nevertheless, mollusks are generally under-represented in toxicity databases. Studies are needed to generate data with which to comp...

  6. Molluscicidal properties and selective toxicity of surface-active agents

    PubMed Central

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  7. High-Throughput Toxicity Testing: New Strategies for ...

    EPA Pesticide Factsheets

    In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it

  8. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  9. Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  10. Using zebrafish in systems toxicology for developmental toxicity testing.

    PubMed

    Nishimura, Yuhei; Inoue, Atsuto; Sasagawa, Shota; Koiwa, Junko; Kawaguchi, Koki; Kawase, Reiko; Maruyama, Toru; Kim, Soonih; Tanaka, Toshio

    2016-01-01

    With the high cost and the long-term assessment of developmental toxicity testing in mammals, the vertebrate zebrafish has become a useful alternative model organism for high-throughput developmental toxicity testing. Zebrafish is also very favorable for the 3R perspective in toxicology; however, the methodologies used by research groups vary greatly, posing considerable challenges to integrative analysis. In this review, we discuss zebrafish developmental toxicity testing, focusing on the methods of chemical exposure, the assessment of morphological abnormalities, housing conditions and their effects on the production of healthy embryos, and future directions. Zebrafish as a systems toxicology model has the potential to elucidate developmental toxicity pathways, and to provide a sound basis for human health risk assessments. © 2015 Japanese Teratology Society.

  11. Using ToxCast in vitro Assays in the Hierarchical Quantitative Structure-Activity Relationship (QSAR) Modeling for Predicting in vivo Toxicity of Chemicals

    EPA Science Inventory

    The goal of chemical toxicology research is utilizing short term bioassays and/or robust computational methods to predict in vivo toxicity endpoints for chemicals. The ToxCast program established at the US Environmental Protection Agency (EPA) is addressing this goal by using ca....

  12. The toxicity of X material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferry, J.L.

    1943-12-31

    This report addresses toxicity (largely chemical) of Manhattan Project materials from the point of worker protection. Known chemical toxicities of X material (uranium), nitrous fumes, fluorine, vanadium, magnesium, and lime are described followed by safe exposure levels, symptoms of exposure, and treatment recommendations. The report closes with an overview of general policy in a question and answer format.

  13. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil.

    PubMed

    Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa

    2015-01-01

    Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Chemical composition of EOVAC was analyzed using gas chromatography - mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. EOVAC (s.c.) and morphine (i.p.) significantly (p<0.05) reduced pain responses in both formalin and tail immersion tests. In the study of evolved mechanisms, pretreatment with naloxone or atropine significantly (p <0.05) reversed the essential oil-induced analgesia in both formalin and tail immersion tests. Moreover, EOVAC and Piroxicam produced significant (p<0.05) inhibition in the acetic acid-induced writhing response. EOVAC did not show any mortality even at high dose (5 g/kg, p.o.) of administration in toxicity test. Moreover, according to GC-MS results, major components of the EOVAC were α-pinene (14.83%), limonene (10.29%), β-caryophyllene (6.9%), sabinene (5.27%), and β-farnesene (5.9%). These results suggest that endogenous opioidergic system as well as muscarinergic receptors of cholinergic system may be involve in the antinociceptive activity of Vitex agnus-castus essential oil in these models of pain in rats.

  14. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil

    PubMed Central

    Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa

    2015-01-01

    Objective: Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography – mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. Results: EOVAC (s.c.) and morphine (i.p.) significantly (p<0.05) reduced pain responses in both formalin and tail immersion tests. In the study of evolved mechanisms, pretreatment with naloxone or atropine significantly (p <0.05) reversed the essential oil-induced analgesia in both formalin and tail immersion tests. Moreover, EOVAC and Piroxicam produced significant (p<0.05) inhibition in the acetic acid-induced writhing response. EOVAC did not show any mortality even at high dose (5 g/kg, p.o.) of administration in toxicity test. Moreover, according to GC-MS results, major components of the EOVAC were α-pinene (14.83%), limonene (10.29%), β-caryophyllene (6.9%), sabinene (5.27%), and β-farnesene (5.9%). Conclusions: These results suggest that endogenous opioidergic system as well as muscarinergic receptors of cholinergic system may be involve in the antinociceptive activity of Vitex agnus-castus essential oil in these models of pain in rats. PMID:26101755

  15. Regulation of priority carcinogens and reproductive or developmental toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, K.; LaDou, J.; Rosenbaum, J.S.

    In California, 370 carcinogens and 112 reproductive/developmental toxicants have been identified as a result of the State's Safe Drinking Water and Toxic Enforcement Act of 1986. They include pesticides, solvents, metals, industrial intermediates, environmental mixtures, and reactive agents. Occupational, environmental, and consumer product exposures that involve these agents are regulated under the Act. At levels of concern, businesses must provide warnings for and limit discharges of those chemicals. The lists of chemicals were compiled following systematic review of published data, including technical reports from the U.S. Public Health Service--National Toxicology Program (NTP), and evaluation of recommendations from authoritative bodies suchmore » as the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (USEPA). Given the large number of chemicals that are carcinogens or reproductive/developmental toxicants, regulatory concerns should focus on those that have high potential for human exposure, e.g., widely distributed or easily absorbed solvents, metals, environmental mixtures, or reactive agents. In this paper, we present a list of 33 potential priority carcinogens and reproductive/developmental toxicants, including alcoholic beverages, asbestos, benzene, chlorinated solvents, formaldehyde, glycol ethers, lead, tobacco smoke, and toluene.« less

  16. Regulation of priority carcinogens and reproductive or developmental toxicants.

    PubMed

    Hooper, K; LaDou, J; Rosenbaum, J S; Book, S A

    1992-01-01

    In California, 370 carcinogens and 112 reproductive/developmental toxicants have been identified as a result of the State's Safe Drinking Water and Toxic Enforcement Act of 1986. They include pesticides, solvents, metals, industrial intermediates, environmental mixtures, and reactive agents. Occupational, environmental, and consumer product exposures that involve these agents are regulated under the Act. At levels of concern, businesses must provide warnings for and limit discharges of those chemicals. The lists of chemicals were compiled following systematic review of published data, including technical reports from the U.S. Public Health Service--National Toxicology Program (NTP), and evaluation of recommendations from authoritative bodies such as the International Agency for Research on Cancer (IARC) and the U.S. Environmental Protection Agency (USEPA). Given the large number of chemicals that are carcinogens or reproductive/developmental toxicants, regulatory concerns should focus on those that have high potential for human exposure, e.g., widely distributed or easily absorbed solvents, metals, environmental mixtures, or reactive agents. In this paper, we present a list of 33 potential priority carcinogens and reproductive/developmental toxicants, including alcoholic beverages, asbestos, benzene, chlorinated solvents, formaldehyde, glycol ethers, lead, tobacco smoke, and toluene.

  17. Understanding Genetic Toxicity Through Data Mining: The ...

    EPA Pesticide Factsheets

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies. This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies.

  18. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    PubMed

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  19. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  20. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies.

    PubMed

    Asic, Adna; Kurtovic-Kozaric, Amina; Besic, Larisa; Mehinovic, Lejla; Hasic, Azra; Kozaric, Mirza; Hukic, Mirsada; Marjanovic, Damir

    2017-07-01

    The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. RESPONSE OF THE THERMOREGULATORY SYSTEM TO TOXIC CHEMICALS

    EPA Science Inventory

    The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...

  2. Response of the Thermoregulatory System to Toxic Chemicals

    EPA Science Inventory

    The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...

  3. Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix

    USGS Publications Warehouse

    Hill, E.F.; Camardese, M.B.

    1986-01-01

    Five-day subacute dietary toxicity tests of 193 potential environmental contaminants, pesticides, organic solvents, and various adjuvants are presented for young coturnix (Japanese quail, Coturnix japonica Temminck and Schlegel). The report provides the most comprehensive data base available for avian subacute dietary toxicity tests and is primarily intended for use in ranking toxicities by a standard method that has a reasonable degree of environmental relevance. Findings are presented in two parts: Part I is a critique of selected drugs that includes discussion of subacute toxicity in relation to chemical class and structure, pesticide formulation, and age of animals; Part II is a summary of toxicologic findings for each test substance and provides a statistically basis for comparing toxicities. Data presented include the median lethal concentration (LC50), slope of the probit regression curve (dose-response curve), response chronology, and food consumption. We observed that: 1) fewer than 15% of the compounds were classed 'very' or 'highly' toxic (i.e, LC50 < 200 ppm) and all of these were either chlorinated hydrocarbons, organophosphates, or organometallics; 2) subacute toxicity may vary widely among structurally similar chemicals and between different formulations of the same chemical; therefore, conclusions about lethal hazard must be made cautiously until the actual formulation of inset has been tested: 3) inclusion of a general standard in each battery of tests is useful for detection of atypical trials and monitoring population changes but should not be used indiscriminantly for adjusting LC50's for intertest differences unless the chemicals of concern and the standard elicit their toxicities through the same action; 4) although other species have been tested effectively under the subacute protocol, coturnix were ideal for the stated purpose of this research because they are inexpensive, well-adapted to the laboratory environment, and yield good intertest

  4. In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barile, F.A.; Arjun, S.; Borges, L.

    1991-03-11

    This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less

  5. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  6. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    PubMed

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  7. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    PubMed

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  8. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents

    PubMed Central

    Datta, Sandipan; Sahdeo, Sunil; Gray, Jennifer A.; Morriseau, Christophe; Hammock, Bruce D.; Cortopassi, Gino

    2016-01-01

    Mitochondrial toxicity is emerging as a major mechanism underlying serious human health consequences. This work performs a high-throughput screen (HTS) of 176 environmental chemicals for mitochondrial toxicity utilizing a previously reported biosensor platform. This established HTS confirmed known mitochondrial toxins and identified novel mitotochondrial uncouplers such as 2, 2′-Methylenebis(4-chlorophenol) and pentachlorophenol. It also identified a mitochondrial ‘structure activity relationship’ (SAR) in the sense that multiple environmental chlorophenols are mitochondrial inhibitors and uncouplers. This study demonstrates proof-of-concept that a mitochondrial HTS assay detects known and novel environmental mitotoxicants, and could be used to quickly evaluate human health risks from mitotoxicants in the environment. PMID:27717841

  9. Toxicity and utilization of chemical weapons: does toxicity and venom utilization contribute to the formation of species communities?

    PubMed

    Westermann, Fabian L; McPherson, Iain S; Jones, Tappey H; Milicich, Lesley; Lester, Philip J

    2015-08-01

    Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.

  10. A Brief Study on Toxic Combustion Products of the Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2005-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is the adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper investigates the feasibility of using the NASA pneumatic-impact system to conduct adiabatic-compression combustion tests and determines the toxic combustion products produced from the burning of five selected polymers. Five polymers commonly used in high-pressure oxygen systems, Zytel(Registered TradeMark) 42 (Nylon 6/6), Buna N (nitrile rubber), Witon(Registered TradeMark) A (copolymer of vinylidene fluoride and hexafluoropropylene), Neoflon(Registered TradeMark) (polychlorotrifluoroethylene), and Teflon(Registered TradeMark) (polytetrafluoroethylene), were tested in the NASA pneumatic-impact test system at 17.2-MPa oxygen pressure. The polymers were ignited and burned; combustion products were collected in a stainless-steel sample bottle and analyzed using various methods. The results show that the NASA pneumatic-impact system is an appropriate test system to conduct adiabatic-compression combustion tests and to collect combustion products for further chemical analysis. The composition of the combustion product gas generated from burning the five selected polymers are presented and discussed.

  11. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    PubMed

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value < 0.001). Individual airborne particles were characterised morphologically and chemically via a combination of Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy (SEM-EDX). The subsequent image analysis revealed C-rich particles with shapes that pointed to combustion processes. Moreover, carbonaceous particles seemed to act as vehicles for sulphur compounds and metals (S, Na, Fe, Ca, Mg, K, Al, Mn, Zn and Cu). Coarse particles were found to be mainly constituted by crustal material and marine and carbonaceous particles. Although most of the studied individual particles in PM10 samples (86.0%) had a diameter within the 0.1-2.5 μm range, 1.8% of them had sizes lower than 0.1 μm 40.2% of the total studied particles were estimated to be inhaled and deposited in the human respiratory tract; 12.3% of these particles would reach the deepest zones, thereby posing a major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. TOXIC CHEMICAL RELEASE INVENTORY (TRI) OF FACILITIES IN 1987 TO 1993 BY STATESAND TERRITORIES INCLUDING AMERICAN SAMOA, PUERTO RICO, AND THE VIRGIN ISLANDS

    EPA Science Inventory

    TRI contains data on annual estimated releases of over 300 toxic chemicals to air, water, and land by the manufacturing industry. Industrial facilities provide the information, which includes: the location of the facility where chemicals are manufactured, processed, or otherwise...

  13. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  14. Studying toxicity

    USGS Publications Warehouse

    Elkus, A.; LeBlanc, L.; Kim, C.; Van Beneden, R.; Mayer, G.

    2006-01-01

    With funding from the George Mitchell Center for the Environment at the University of Maine, a team of scientists used a simple laboratory-based sediment resuspension design, and two well-established aquatic toxicology models, fathead minnows (Pimephales promelas) and zebrafish (Danio rerio), to evaluate if resuspension of Penobscot river sediment significantly elevates the toxicity of river water and to provide preliminary information on the types of chemicals likely to desorb during resuspension. The group collected sediments from two sites with known chemical contamination downstream of the Great Works and Veazie dams. The sediments were examined to determine the dynamics of PAH desorption and degradation under different resuspension frequencies. The scientists used clarified water from resuspension experiments for toxicity tests with the water-flea Ceriodaphnia dubia, and other aquatic test organisms to infer toxicity from sediments from northern California rivers. Data from the study will help ascertain whether metals and/or xenoestrogens are present in the desorption water and give insight into possible avenues of sediment remediation.

  15. Using Spider-Web Patterns To Determine Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Relwani, Rachna A.

    1995-01-01

    Method of determining toxicities of chemicals involves recording and analysis of spider-web patterns. Based on observation spiders exposed to various chemicals spin webs that differ, in various ways, from normal webs. Potential alternative to toxicity testing on higher animals.

  16. Aquatic Toxicity Information Retrieval Data Base (ACQUIRE). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of Acquire is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for ACQUIRE. Independently compiled data files that meet ACQUIRE parameter and quality assurance criteria are also included. Selected toxicity test results and related testing information for any individual chemical from laboratory and field aquatic toxicity effects are included for tests with freshwater and marine organisms. The total number of data records in ACQUIRE is now over 105,300.more » This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into ACQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows.« less

  17. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    PubMed Central

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  18. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  19. AQUIRE: Aquatic Toxicity Information Retrieval data base. Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.; Pilli, A.

    The purpose of Aquatic Toxicity Information Retrieval (AQUIRE) data base is to provide scientists and managers quick access to a comprehensive, systematic, computerized compilation of aquatic toxicity data. Scientific papers published both nationally and internationally on the toxicity of chemicals to aquatic organisms and plants are collected and reviewed for AQUIRE. Independently compiled data files that meet AQUIRE parameter and quality assurance criteria are also included. Selected toxicity-test results and related testing information for any individual chemical from laboratory and field aquatic toxicity tests are extracted and added to AQUIRE. Acute, sublethal, and bioconcentration effects are included for tests withmore » freshwater and marine organisms. The total number of data records in AQUIRE now equals 104,500. This includes data from 6000 references, for 5200 chemicals and 2400 test species. A major data file, Acute Toxicity of Organic Chemicals (ATOC), has been incorporated into AQUIRE. The ATOC file contains laboratory acute test data on 525 organic chemicals using juvenile fathead minnows. The complete data file can be accessed by requesting review code 5 as a search parameter.« less

  20. Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer.

    PubMed

    Zhang, Hui-Hui; Li, Zheng; Liu, Yu; Xinag, Ping; Cui, Xin-Yi; Ye, Hui; Hu, Bao-Lan; Lou, Li-Ping

    With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM 2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM 2.5 in these weather conditions. In this test, PM 2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM 2.5 were analyzed, the toxicity of PM 2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM 2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM 2.5 samples were water-soluble ions, particularly SO 4 2- , NO 3 - , and NH 4 + , followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM 2.5 , the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM 2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM 2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.