Nontrivial Ghosts and Second-Class Constraints
NASA Astrophysics Data System (ADS)
Chishtie, Farrukh; McKeon, D. G. C.
In a model in which a vector gauge field Wμ a is coupled to an antisymmetric tensor field φ μ ν a possessing a pseudoscalar mass, it has been shown that all physical degrees of freedom reside in the vector field. Upon quantizing this model using the Faddeev-Popov procedure, explicit calculation of the two-point functions <ϕϕ> and
Split involution and second class constraints
Batalin, I.A.; Lyakhovich, S.L.; Tyutin, I.V. )
1992-07-10
In this paper, the new quantization scheme is proposed for theories with second class constraints. The formalism possesses the properties intermediate between those of the conversion method and quantum deformation of the Dirac bracket; on the one hand, all the phase variable operators have nonsingular commutators while the physical states are determined by weak equations; on the other hand, no extra degrees of freedom are introduced.
First class models from linear and nonlinear second class constraints
NASA Astrophysics Data System (ADS)
Dehghani, Mehdi; Mardaani, Maryam; Monemzadeh, Majid; Nejad, Salman Abarghouei
2015-10-01
Two models with linear and nonlinear second class constraints are considered and gauged by embedding in an extended phase space. These models are studied by considering a free non-relativistic particle on the hyperplane and hypersphere in the configuration space. The gauged theory of the first model is obtained by converting the very second class system to the first class one directly. In contrast, the first class system related to the free particle on the hypersphere is derived with the help of the infinite Batalin-Fradkin-Tyutin (BFT) embedding procedure. We propose a practical formula, based on the simplified BFT method, which is practical in gauging linear and some nonlinear second class systems. As a result of gauging these two models, we show that in the conversion of second class constraints to the first class ones, the minimum number of phase space degrees of freedom for both systems is a pair of phase space coordinates. This pair is made up of a coordinate and its conjugate momentum for the first model, but the corresponding Poisson structure of the embedded non-relativistic particle on hypersphere is a nontrivial one. We derive infinite correction terms for the Hamiltonian of the nonlinear constraints and an interacting gauged Hamiltonian is constructed by summing over them. At the end, we find an open algebra for three first class objects of the embedded nonlinear system.
Gauge transformations for dynamical systems with first- and second-class constraints
Sugano, R. ); Kimura, T. )
1990-02-15
Gauge theories with second-class constraints are investigated. The relation between primary first-class constraints and gauge degrees of freedom is shown. Next, a method to obtain the generator of the gauge transformation is presented. The generator is expressed in terms of a linear combination of constraints. In the expression, all constraints are employed without distinguishing the first- from the second-class ones. The generator consists of the generator of the pure gauge transformation and that of global symmetry transformations with constant parameters. The method to construct the generator can be applied to a system having only second-class constraints, and extended Noether currents (generators) with constant parameters are obtained. If the first-class constraints and the Hamiltonian are in involution, the generator of pure gauge transformations can be obtained using only the first-class constraints.
Maslov complex germ method for systems with second-class constraints
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2016-03-01
We study the semiclassical mechanics of systems with second-class constraints. We assume that the quantum mechanics of such a system is constructed by the Batalin-Fradkin-Tyutin method, where some additional coordinates and momenta are introduced and second-class constraints are converted into firstclass constraints. We also assume that the algebraic quantization method is used to quantize the extended system. To construct the semiclassical approximation, we use the Maslov complex germ theory. We study the semiclassical states of a system with second-class constraints, their scalar product, and the action of semiclassical observables in the first order of the semiclassical expansion. We consider the transformation of semiclassical states in the course of evolution.
Nesterenko, V.V.
1987-04-01
A Hamiltonian functional integral in theories with first and second class constraints (both stationary and nonstationary) is derived in a simple and consistent manner. The gauge conditions need not be in involution and may contain the time explicitly. In contrast to other studies, much attention is devoted to the proof of the Hamiltonicity of the theory on the physical submanifold Gamma* of the phase space Gamma. It is shown that ..delta../sup -1/, where D is the Faddeev-Popov determinant, is simply the volume element of the subspace Gamma = Gamma/Gamma* in noncanonical coordinates determined by the constraints and gauge conditions. It is proved that the expression for the functional integral is invariant under finite transformations of the gauge conditions.
Xun, D.M.; Liu, Q.H.; Zhu, X.M.
2013-11-15
A generalization of Dirac’s canonical quantization scheme for a system with second-class constraints is proposed, in which the fundamental commutation relations are constituted by all commutators between positions, momenta and Hamiltonian, so they are simultaneously quantized in a self-consistent manner, rather than by those between merely positions and momenta which leads to ambiguous forms of the Hamiltonian and the momenta. The application of the generalized scheme to the quantum motion on a torus leads to a remarkable result: the quantum theory is inconsistent if built up in an intrinsic geometric manner, whereas it becomes consistent within an extrinsic examination of the torus as a submanifold in three dimensional flat space with the use of the Cartesian coordinate system. The geometric momentum and potential are then reasonably reproduced. -- Highlights: •A generalization of Dirac’s canonical quantization is proposed for a system with second-class constraints. •Quantum motion on torus surface is explicitly treated to show how Schrödinger formalism is complementary to the Dirac one. •The embedding effect in quantum mechanics is originated from the quantization.
Predictions on the second-class current decays τ-→π-η(')ντ
NASA Astrophysics Data System (ADS)
Escribano, R.; Gonzàlez-Solís, S.; Roig, P.
2016-08-01
We analyze the second-class current decays τ-→π-η(')ντ in the framework of chiral perturbation theory with resonances. Taking into account π0-η -η' mixing, the π-η(') vector form factor is extracted, in a model-independent way, using existing data on the π-π0 one. For the participant scalar form factor, we have considered different parametrizations ordered according to their increasing fulfillment of analyticity and unitarity constraints. We start with a Breit-Wigner parametrization dominated by the a0(980 ) scalar resonance and after we include its excited state, the a0(1450 ). We follow by an elastic dispersion relation representation through the Omnès integral. Then, we illustrate a method to derive a closed-form expression for the π-η , π-η' (and K-K0) scalar form factors in a coupled-channels treatment. Finally, predictions for the branching ratios and spectra are discussed emphasizing the error analysis. An interesting result of this study is that both τ-→π-η(')ντ decay channels are promising for the soon discovery of second-class currents at Belle-II. We also predict the relevant observables for the partner ηℓ3(') decays, which are extremely suppressed in the Standard Model.
Stochastic volatility models at ρ=±1 as second class constrained Hamiltonian systems
NASA Astrophysics Data System (ADS)
Contreras G., Mauricio
2014-07-01
systems (Dirac, 1958, 1967) must be employed, and Dirac's analysis reveals that the constraints are second class. In order to obtain the transition probability density or the option price correctly, one must evaluate the propagator as a constrained Hamiltonian path-integral (Henneaux and Teitelboim, 1992), in a similar way to the high energy gauge theory models. In fact, for all stochastic volatility models, after integrating over momentum variables, one obtains an effective Euclidean Lagrangian path-integral over the volatility alone. The role of the second class constraints is determining the underlying asset price S completely in terms of volatility, so it plays no role in the path integral. In order to examine the effect of the constraints on the dynamics for both extreme limits, the probability density function is evaluated by using semi-classical arguments, in an analogous manner to that developed in Hagan et al. (2002), for the SABR model.
Search for second-class currents in tau;{-} --> omegapi;{-}nu_{tau}.
Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Tico, J Garra; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; da Costa, J Firmino; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Pegna, D Lopes; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; de Monchenault, G Hamel; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Sevilla, M Franco; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L
2009-07-24
We report an analysis of tau;{-} decaying into omegapi;{-}nu_{tau} with omega --> pi;{+}pi;{-}pi;{0} using a data sample containing nearly 320 x 10;{6}tau pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents, and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode. PMID:19659341
Search for Second-Class Currents in tau- -> omega.pi-.nu_tau
Aubert, B.
2009-04-22
We report an analysis of {tau}{sup -} decaying into {omega}{pi}{sup -} {nu}{sub {tau}} with {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} using a data sample containing nearly 320 million {tau} pairs collected with the BABAR detector at the PEP-II B-Factory. We find no evidence for second-class currents and we set an upper limit of 0.69% at 90% confidence level for the fraction of second-class currents in this decay mode.
Military Curricula for Vocational & Technical Education. Diver Second Class, 15-3.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This curriculum outline, student guide, and instructor guide for a secondary-postsecondary-level course in scuba diving (diver second class) is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Purpose stated for the 425-hour course is to…
Magazines and Postal Policy before the Second-Class Mail Category.
ERIC Educational Resources Information Center
Kielbowicz, Richard B.
An examination of the ways in which United States postal policies affected the development of the magazine industry before Congress passed the second-class mail category in 1863 reveals how a medium is shaped at least in part by the technology, policy, and politics of its delivery systems. In the nineteenth century, magazines depended on the mails…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become aviation structural mechanics (second class). The course materials consist of five pamphlets covering the structural maintenance and repair of aircraft. The first pamphlet…
Quantum Algebra Symmetry of the ASEP with Second-Class Particles
NASA Astrophysics Data System (ADS)
Belitsky, V.; Schütz, G. M.
2015-11-01
We consider a two-component asymmetric simple exclusion process (ASEP) on a finite lattice with reflecting boundary conditions. For this process, which is equivalent to the ASEP with second-class particles, we construct the representation matrices of the quantum algebra U_q[{gl}(3)] that commute with the generator. As a byproduct we prove reversibility and obtain in explicit form the reversible measure. A review of the algebraic techniques used in the proofs is given.
Search for Second-Class Currents in \\tau^-\\to\\omega\\pi^-\
Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2008-09-03
We report on an analysis of {tau}{sup -} decaying into {omega}{pi}{sup -}{nu}{sub {tau}} with {omega} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup 0} using data containing nearly 320 million tau pairs collected with the BABAR detector at the PEP-II asymmetric energy B-Factory. We find no evidence for second-class currents and set an upper limit at 0.69% at a 90% confidence level for the ratio of second- to first-class currents.
Lepton Universality, |V(Us)| and Search for Second Class Current in Tau Decays
Banerjee, Swagato; /Victoria U.
2011-11-10
Several hundred million {tau} decays have been studied with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. Recent results on Charged Current Lepton Universality and two independent measurements of |V{sub us}| using {tau}{sup -} {yields} e{sup -}{bar {nu}}{sub e}{nu}{sub {tau}}, {mu}{sup -}{bar {nu}}{sub {mu}}{nu}{sub {tau}}, {pi}{sup -}{nu}{sub {tau}}, K{sup -} {nu}{sub {tau}} and K{sub S}{sup 0}{pi}{sup -} {nu}{sub {tau}} decays, and a search for Second Class Current in {tau}{sup -} {yields} {pi}{sup -} {omega}{nu}{sub {tau}} decays are presented, where the charge conjugate decay modes are also implied.
Multi-asset Black-Scholes model as a variable second class constrained dynamical system
NASA Astrophysics Data System (ADS)
Bustamante, M.; Contreras, M.
2016-09-01
In this paper, we study the multi-asset Black-Scholes model from a structural point of view. For this, we interpret the multi-asset Black-Scholes equation as a multidimensional Schrödinger one particle equation. The analysis of the classical Hamiltonian and Lagrangian mechanics associated with this quantum model implies that, in this system, the canonical momentums cannot always be written in terms of the velocities. This feature is a typical characteristic of the constrained system that appears in the high-energy physics. To study this model in the proper form, one must apply Dirac's method for constrained systems. The results of the Dirac's analysis indicate that in the correlation parameters space of the multi-assets model, there exists a surface (called the Kummer surface ΣK, where the determinant of the correlation matrix is null) on which the constraint number can vary. We study in detail the cases with N = 2 and N = 3 assets. For these cases, we calculate the propagator of the multi-asset Black-Scholes equation and show that inside the Kummer ΣK surface the propagator is well defined, but outside ΣK the propagator diverges and the option price is not well defined. On ΣK the propagator is obtained as a constrained path integral and their form depends on which region of the Kummer surface the correlation parameters lie. Thus, the multi-asset Black-Scholes model is an example of a variable constrained dynamical system, and it is a new and beautiful property that had not been previously observed.
Constraint algebra in bigravity
Soloviev, V. O.
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Some properties of constraints in theories with degenerate Lagrangians
Nesterenko, V.V.; Chervyakov, A.M.
1986-01-01
The Poisson brackets of the primary constraints are expressed by means of linear differential operators in terms of Lagrangian constraints. In the framework of the Lagrangian formalism the authors propose a sufficient criterion for existence in the theory of second class constraints. It is shown that invariance of the action with respect to transformations with arbitrary functions of the time leads to primary constraints that are in involution with one another and with the canonical Hamiltonian, at least in the weak sense. It follows from the analysis of the functional arbitrariness in the solutions of the Hamilton equations that such primary constraints must be first-class constraints.
Harmonic BRST quantization of systems with irreducible holomorphic bosonic and fermionic constraints
Allen, T.J.; Crossley, D.B. )
1993-06-15
We consider systems with second-class constraints or, equivalently, first-class holomorphic constraints. We show that the harmonic Becchi-Rouet-Stora-Tyutin method of quantizing systems with bosonic holomorphic constraints extends to systems having both bosonic and fermionic holomorphic constraints. The ghosts for bosonic holomorphic constraints in the harmonic BRST method have a Poisson brackets structure different from that of the ghosts in the usual BRST method, which applies to systems with real first-class constraints. Apart from this exotic ghost structure for bosonic constraints, the new feature of the harmonic BRST method is the introduction of two new holomorphic BRST charges [Theta] and [bar [Theta
Lebel, Udi
2014-01-01
Israeli families of terrorist victims have undertaken initiatives to include their dearest in the national pantheon. The objections opposed the penetration of "second-class loss" into the symbolic closure of heroic national bereavement. The "hierarchy of bereavement" is examined through the lens of political culture organized around the veneration held for the army fallen and their families, which has symbolic as well as rehabilitative outcomes. Families of civilian terror victims claims for similar status and treatment had to frame their loss as national in the eyes of the social policy. The article claimed linkage between collective memory and rehabilitation. PMID:24521041
NASA Astrophysics Data System (ADS)
Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Del Amo Sanchez, P.; Hawkes, C. M.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Lewczuk, M.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Neal, H.
2008-06-01
The τ-→ηπ-π+π-ντ decay with the η→γγ mode is studied using 384fb-1 of data collected by the BABAR detector. The branching fraction is measured to be (1.60±0.05±0.11)×10-4. It is found that τ-→f1(1285)π-ντ→ηπ-π+π-ντ is the dominant decay mode with a branching fraction of (1.11±0.06±0.05)×10-4. The first error on the branching fractions is statistical and the second systematic. Note that no particle identification algorithm is applied to the charged tracks to distinguish pions from kaons. In addition, a 90% confidence level upper limit on the branching fraction of the τ-→η'(958)π-ντ decay is measured to be 7.2×10-6. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.
Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, David Nathan; Button-Shafer, J.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.
2008-03-24
The {tau}{sup -} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} decay with the {eta} {yields} {gamma}{gamma} mode is studied using 384 fb{sup -1} of data collected by the BABAR detector. The branching fraction is measured to be (1.60 {+-} 0.05 {+-} 0.11) x 10{sup -4}. It is found that {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -} {nu}{sub {tau}} {yields} {eta}{pi}{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}} is the dominant decay mode with a branching fraction of (1.11 {+-} 0.06 {+-} 0.05) x 10{sup -4}. The first error on the branching fractions is statistical and the second systematic. In addition, a 90% confidence level upper limit on the branching fraction of the {tau}{sup -} {yields} {eta}{prime}(958){pi}{sup -}{nu}{sub {tau}} decay is measured to be 7.2 x 10{sup -6}. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.
Alwyn, K.E.; /Manchester U.
2011-12-01
The {tau}{sup -} {yields} {eta}{pi}{sup -}{pi}+{pi}{sup -}{nu}{tau} decay with the {eta} {yields} {gamma}{gamma} mode is studied using 384 fb{sup -1} of data collected by the BaBar detector. The branching fraction is measured to be (1.60 {+-} 0.05 {+-} 0.11) x 10{sup -4}. It is found that {tau}{sup -} {yields} f1(1285){pi}{sup -}{nu}{tau} {yields} {eta}{pi}{sup -}{pi}+{pi}{sup -}{nu}{tau} is the dominant decay mode with a branching fraction of (1.11 {+-} 0.06 {+-} 0.05) x 10{sup -4}. The first error is statistical and the second systematic. In addition, a 90% confidence level upper limit on the branching fraction of the {tau}{sup -} {yields} {eta}{prime}(958){pi}{sup -}{nu}{tau} decay is measured to be 7.2 x 10{sup -6}. This last decay proceeds through a second-class current and is expected to be forbidden in the limit of isospin symmetry.
Constraint monitoring in TOSCA
NASA Technical Reports Server (NTRS)
Beck, Howard
1992-01-01
The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.
Highly irregular quantum constraints
NASA Astrophysics Data System (ADS)
Klauder, John R.; Little, J. Scott
2006-05-01
Motivated by a recent paper of Louko and Molgado, we consider a simple system with a single classical constraint R(q) = 0. If ql denotes a generic solution to R(q) = 0, our examples include cases where R'(ql) ≠ 0 (regular constraint) and R'(ql) = 0 (irregular constraint) of varying order as well as the case where R(q) = 0 for an interval, such as a <= q <= b. Quantization of irregular constraints is normally not considered; however, using the projection operator formalism we provide a satisfactory quantization which reduces to the constrained classical system when planck → 0. It is noteworthy that irregular constraints change the observable aspects of a theory as compared to strictly regular constraints.
Creating Positive Task Constraints
ERIC Educational Resources Information Center
Mally, Kristi K.
2006-01-01
Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…
Credit Constraints in Education
ERIC Educational Resources Information Center
Lochner, Lance; Monge-Naranjo, Alexander
2012-01-01
We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…
Constraint Reasoning Over Strings
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin
2003-01-01
This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.
Constraints in Quantum Geometrodynamics
NASA Astrophysics Data System (ADS)
Gentle, Adrian P.; George, Nathan D.; Miller, Warner A.; Kheyfets, Arkady
We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.
Constraints in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
1996-01-01
Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.
Constraints complicate centrifugal compressor depressurization
Key, B. ); Colbert, F.L. )
1993-05-10
Blowdown of a centrifugal compressor is complicated by process constraints that might require slowing the depressurization rate and by mechanical constraints for which a faster rate might be preferred. The paper describes design constraints such as gas leaks; thrust-bearing overload; system constraints; flare extinguishing; heat levels; and pressure drop.
A Framework for Dynamic Constraint Reasoning Using Procedural Constraints
NASA Technical Reports Server (NTRS)
Jonsson, Ari K.; Frank, Jeremy D.
1999-01-01
Many complex real-world decision and control problems contain an underlying constraint reasoning problem. This is particularly evident in a recently developed approach to planning, where almost all planning decisions are represented by constrained variables. This translates a significant part of the planning problem into a constraint network whose consistency determines the validity of the plan candidate. Since higher-level choices about control actions can add or remove variables and constraints, the underlying constraint network is invariably highly dynamic. Arbitrary domain-dependent constraints may be added to the constraint network and the constraint reasoning mechanism must be able to handle such constraints effectively. Additionally, real problems often require handling constraints over continuous variables. These requirements present a number of significant challenges for a constraint reasoning mechanism. In this paper, we introduce a general framework for handling dynamic constraint networks with real-valued variables, by using procedures to represent and effectively reason about general constraints. The framework is based on a sound theoretical foundation, and can be proven to be sound and complete under well-defined conditions. Furthermore, the framework provides hybrid reasoning capabilities, as alternative solution methods like mathematical programming can be incorporated into the framework, in the form of procedures.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1993-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
Structure Constraints in a Constraint-Based Planner
NASA Technical Reports Server (NTRS)
Pang, Wan-Lin; Golden, Keith
2004-01-01
In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.
Asteroseismic constraints for Gaia
NASA Astrophysics Data System (ADS)
Creevey, O. L.; Thévenin, F.
2012-12-01
Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteroseismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_Phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation < Δ ν > and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum ν_{max}. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in < Δ ν >, ν_{max}, and atmospheric parameters T_{eff} and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V˜12 stars from Kepler data. We also derive masses and radii which are accurate to within 1σ of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_Phot} through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.
Practical Cleanroom Operations Constraints
NASA Technical Reports Server (NTRS)
Hughes, David; Ginyard, Amani
2007-01-01
This viewgraph presentation reviews the GSFC Cleanroom Facility i.e., Spacecraft Systems Development and Integration Facility (SSDIF) with particular interest in its use during the development of the Wide Field Camera 3 (WFC3). The SSDIF is described and a diagram of the SSDIF is shown. A Constraint Table was created for consistency within Contamination Control Team. This table is shown. Another table that shows the activities that were allowed during the integration under given WFC3 condition and activity location is presented. Three decision trees are shown for different phases of the work: (1) Hardware Relocation, Hardware Work, and Contamination Control Operations.
Superresolution via sparsity constraints
NASA Technical Reports Server (NTRS)
Donoho, David L.
1992-01-01
The problem of recovering a measure mu supported on a lattice of span Delta is considered under the condition that measurements are only available concerning the Fourier Transform at frequencies of Omega or less. If Omega is much smaller than the Nyquist frequency pi/Delta and the measurements are noisy, then stable recovery of mu is generally impossible. It is shown here that if, in addition, it is known that mu satisfies certain sparsity constraints, then stable recovery is possible. This finding validates practical efforts in spectroscopy, seismic prospecting, and astronomy to provide superresolution by imposing support limitations in reconstruction.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
Relative constraints and evolution
NASA Astrophysics Data System (ADS)
Ochoa, Juan G. Diaz
2014-03-01
Several mathematical models of evolving systems assume that changes in the micro-states are constrained to the search of an optimal value in a local or global objective function. However, the concept of evolution requires a continuous change in the environment and species, making difficult the definition of absolute optimal values in objective functions. In this paper, we define constraints that are not absolute but relative to local micro-states, introducing a rupture in the invariance of the phase space of the system. This conceptual basis is useful to define alternative mathematical models for biological (or in general complex) evolving systems. We illustrate this concept with a modified Ising model, which can be useful to understand and model problems like the somatic evolution of cancer.
Neural constraints on learning.
Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P
2014-08-28
Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already
Neural constraints on learning
Sadtler, Patrick T.; Quick, Kristin M.; Golub, Matthew D.; Chase, Steven M.; Ryu, Stephen I.; Tyler-Kabara, Elizabeth C.; Yu, Byron M.; Batista, Aaron P.
2014-01-01
Motor, sensory, and cognitive learning require networks of neurons to generate new activity patterns. Because some behaviors are easier to learn than others1,2, we wondered if some neural activity patterns are easier to generate than others. We asked whether the existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define the constraint. We employed a closed-loop intracortical brain-computer interface (BCI) learning paradigm in which Rhesus monkeys controlled a computer cursor by modulating neural activity patterns in primary motor cortex. Using the BCI paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. These patterns comprise a low-dimensional space (termed the intrinsic manifold, or IM) within the high-dimensional neural firing rate space. They presumably reflect constraints imposed by the underlying neural circuitry. We found that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the IM. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the IM. This result suggests that the existing structure of a network can shape learning. On the timescale of hours, it appears to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess3,4. PMID:25164754
Seismological Constraints on Geodynamics
NASA Astrophysics Data System (ADS)
Lomnitz, C.
2004-12-01
Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over
Fixed Costs and Hours Constraints
ERIC Educational Resources Information Center
Johnson, William R.
2011-01-01
Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…
Credit Constraints for Higher Education
ERIC Educational Resources Information Center
Solis, Alex
2012-01-01
This paper exploits a natural experiment that produces exogenous variation on credit access to determine the effect on college enrollment. The paper assess how important are credit constraints to explain the gap in college enrollment by family income, and what would be the gap if credit constraints are eliminated. Progress in college and dropout…
On Constraints in Assembly Planning
Calton, T.L.; Jones, R.E.; Wilson, R.H.
1998-12-17
Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.
Evolutionary constraints or opportunities?
Sharov, Alexei A.
2014-01-01
Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155
Infrared Kuiper Belt Constraints
Teplitz, V.L.; Stern, S.A.; Anderson, J.D.; Rosenbaum, D.; Scalise, R.J.; Wentzler, P.
1999-05-01
We compute the temperature and IR signal of particles of radius {ital a} and albedo {alpha} at heliocentric distance {ital R}, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of {ital COBE} DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance {ital R}, particle radius {ital a}, and particle albedo {alpha}. We then apply these results to a recently developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40{lt}R{lt}50{endash}90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the solar system of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally, we compare Kuiper belt IR spectra for various parameter values. Results of this work include: (1) numerical limits on Kuiper belt dust as a function of ({ital R}, {ital a}, {alpha}) on the basis of four alternative sets of constraints, including those following from recent discovery of the cosmic IR background by Hauser et al.; (2) application to the two-sector Kuiper belt model, finding mass limits and spectrum shape for different values of relevant parameters including dependence on time elapsed since last passage through a molecular cloud cleared the outer solar system of dust; and (3) potential use of spectral information to determine time since last passage of the Sun through a giant molecular cloud. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}
A Hybrid Constraint Representation and Reasoning Framework
NASA Technical Reports Server (NTRS)
Golden, Keith; Pang, Wan-Lin
2003-01-01
This paper introduces JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint reasoner with a run- time software environment. Attachments in JNET are constraints over arbitrary Java objects, which are defined using Java code, at runtime, with no changes to the JNET source code.
Integrated Science--Reasons & Constraints.
ERIC Educational Resources Information Center
Fox, M.; Oliver, P. M.
1978-01-01
Describes the philosophy and development of an integrated science program in a British secondary school. Discusses constraints to the program including laboratory facilities, money, and fewer laboratory technicians. (MA)
Constraint-based stereo matching
NASA Technical Reports Server (NTRS)
Kuan, D. T.
1987-01-01
The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.
Fluid convection, constraint and causation
Bishop, Robert C.
2012-01-01
Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955
Foundations of support constraint machines.
Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello
2015-02-01
The mathematical foundations of a new theory for the design of intelligent agents are presented. The proposed learning paradigm is centered around the concept of constraint, representing the interactions with the environment, and the parsimony principle. The classical regularization framework of kernel machines is naturally extended to the case in which the agents interact with a richer environment, where abstract granules of knowledge, compactly described by different linguistic formalisms, can be translated into the unified notion of constraint for defining the hypothesis set. Constrained variational calculus is exploited to derive general representation theorems that provide a description of the optimal body of the agent (i.e., the functional structure of the optimal solution to the learning problem), which is the basis for devising new learning algorithms. We show that regardless of the kind of constraints, the optimal body of the agent is a support constraint machine (SCM) based on representer theorems that extend classical results for kernel machines and provide new representations. In a sense, the expressiveness of constraints yields a semantic-based regularization theory, which strongly restricts the hypothesis set of classical regularization. Some guidelines to unify continuous and discrete computational mechanisms are given so as to accommodate in the same framework various kinds of stimuli, for example, supervised examples and logic predicates. The proposed view of learning from constraints incorporates classical learning from examples and extends naturally to the case in which the examples are subsets of the input space, which is related to learning propositional logic clauses. PMID:25380338
Developmental constraints on behavioural flexibility
Holekamp, Kay E.; Swanson, Eli M.; Van Meter, Page E.
2013-01-01
We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298
Data assimilation with inequality constraints
NASA Astrophysics Data System (ADS)
Thacker, W. C.
If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.
Developmental constraints on behavioural flexibility.
Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E
2013-05-19
We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility. PMID:23569298
Genetic map construction with constraints
Clark, D.A.; Rawlings, C.J.; Soursenot, S.
1994-12-31
A pilot program, CME, is described for generating a physical genetic map from hybridization fingerprinting data. CME is implemented in the parallel constraint logic programming language ElipSys. The features of constraint logic programming are used to enable the integration of preexisting mapping information (partial probe orders from cytogenetic maps and local physical maps) into the global map generation process, while parallelism enables the search space to be traversed more efficiently. CME was tested using data from chromosome 2 of Schizosaccharomyces pombe and was found able to generate maps as well as (and sometimes better than) a more traditional method. This paper illustrates the practical benefits of using a symbolic logic programming language and shows that the features of constraint handling and parallel execution bring the development of practical systems based on Al programming technologies nearer to being a reality.
Magnetotail dynamics under isobaric constraints
NASA Technical Reports Server (NTRS)
Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael
1994-01-01
Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.
Constraints on galaxy formation theories
NASA Technical Reports Server (NTRS)
Szalay, A. S.
1986-01-01
The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.
Perceptual Constraints in Phonotactic Learning
ERIC Educational Resources Information Center
Endress, Ansgar D.; Mehler, Jacques
2010-01-01
Structural regularities in language have often been attributed to symbolic or statistical general purpose computations, whereas perceptual factors influencing such generalizations have received less interest. Here, we use phonotactic-like constraints as a case study to ask whether the structural properties of specific perceptual and memory…
Contextual Constraints on Adolescents' Leisure.
ERIC Educational Resources Information Center
Silbereisen, Rainer K.
2003-01-01
Interlinks crucial cultural themes emerging from preceding chapters, highlighting the contextual constraints in adolescents' use of free time. Draws parallels across the nations discussed on issues related to how school molds leisure time, the balance of passive versus active leisure, timing of leisure pursuits, and the cumulative effect of…
Constraint elimination in dynamical systems
NASA Technical Reports Server (NTRS)
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Temporal Constraint Reasoning With Preferences
NASA Technical Reports Server (NTRS)
Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca
2001-01-01
A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.
Constraint Handling in Transmission Network Expansion Planning
NASA Astrophysics Data System (ADS)
Mallipeddi, R.; Verma, Ashu; Suganthan, P. N.; Panigrahi, B. K.; Bijwe, P. R.
Transmission network expansion planning (TNEP) is a very important and complex problem in power system. Recently, the use of metaheuristic techniques to solve TNEP is gaining more importance due to their effectiveness in handling the inequality constraints and discrete values over the conventional gradient based methods. Evolutionary algorithms (EAs) generally perform unconstrained search and require some additional mechanism to handle constraints. In EA literature, various constraint handling techniques have been proposed. However, to solve TNEP the penalty function approach is commonly used while the other constraint handling methods are untested. In this paper, we evaluate the performance of different constraint handling methods like Superiority of Feasible Solutions (SF), Self adaptive Penalty (SP),E-Constraint (EC), Stochastic Ranking (SR) and the ensemble of constraint handling techniques (ECHT) on TNEP. The potential of different constraint handling methods and their ensemble is evaluated using an IEEE 24 bus system with and without security constraints.
Stress constraints in optimality criteria design
NASA Technical Reports Server (NTRS)
Levy, R.
1982-01-01
Procedures described emphasize the processing of stress constraints within optimality criteria designs for low structural weight with stress and compliance constraints. Prescreening criteria are used to partition stress constraints into either potentially active primary sets or passive secondary sets that require minimal processing. Side constraint boundaries for passive constraints are derived by projections from design histories to modify conventional stress-ratio boundaries. Other procedures described apply partial structural modification reanalysis to design variable groups to correct stress constraint violations of unfeasible designs. Sample problem results show effective design convergence and, in particular, advantages for reanalysis in obtaining lower feasible design weights.
Unitarity constraints on trimaximal mixing
Kumar, Sanjeev
2010-07-01
When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.
Macroscopic constraints on string unification
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.
Managing Restaurant Tables using Constraints
NASA Astrophysics Data System (ADS)
Vidotto, Alfio; Brown, Kenneth N.; Beck, J. Christopher
Restaurant table management can have significant impact on both profitability and the customer experience. The core of the issue is a complex dynamic combinatorial problem. We show how to model the problem as constraint satisfaction, with extensions which generate flexible seating plans and which maintain stability when changes occur. We describe an implemented system which provides advice to users in real time. The system is currently being evaluated in a restaurant environment.
Isocurvature constraints on portal couplings
NASA Astrophysics Data System (ADS)
Kainulainen, Kimmo; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville
2016-06-01
We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: mDM/GeV lesssim 0.2λs3/8 (H*/1011 GeV)‑3/2. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.
Infrared Constraint on Ultraviolet Theories
Tsai, Yuhsin
2012-08-01
While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.
Analysis of Space Tourism Constraints
NASA Astrophysics Data System (ADS)
Bonnal, Christophe
2002-01-01
Space tourism appears today as a new Eldorado in a relatively near future. Private operators are already proposing services for leisure trips in Low Earth Orbit, and some happy few even tested them. But are these exceptional events really marking the dawn of a new space age ? The constraints associated to the space tourism are severe : - the economical balance of space tourism is tricky; development costs of large manned - the technical definition of such large vehicles is challenging, mainly when considering - the physiological aptitude of passengers will have a major impact on the mission - the orbital environment will also lead to mission constraints on aspects such as radiation, However, these constraints never appear as show-stoppers and have to be dealt with pragmatically: - what are the recommendations one can make for future research in the field of space - which typical roadmap shall one consider to develop realistically this new market ? - what are the synergies with the conventional missions and with the existing infrastructure, - how can a phased development start soon ? The paper proposes hints aiming at improving the credibility of Space Tourism and describes the orientations to follow in order to solve the major hurdles found in such an exciting development.
Constraint Based Modeling Going Multicellular
Martins Conde, Patricia do Rosario; Sauter, Thomas; Pfau, Thomas
2016-01-01
Constraint based modeling has seen applications in many microorganisms. For example, there are now established methods to determine potential genetic modifications and external interventions to increase the efficiency of microbial strains in chemical production pipelines. In addition, multiple models of multicellular organisms have been created including plants and humans. While initially the focus here was on modeling individual cell types of the multicellular organism, this focus recently started to switch. Models of microbial communities, as well as multi-tissue models of higher organisms have been constructed. These models thereby can include different parts of a plant, like root, stem, or different tissue types in the same organ. Such models can elucidate details of the interplay between symbiotic organisms, as well as the concerted efforts of multiple tissues and can be applied to analyse the effects of drugs or mutations on a more systemic level. In this review we give an overview of the recent development of multi-tissue models using constraint based techniques and the methods employed when investigating these models. We further highlight advances in combining constraint based models with dynamic and regulatory information and give an overview of these types of hybrid or multi-level approaches. PMID:26904548
A Hybrid Constraint Representation and Reasoning Framework
NASA Technical Reports Server (NTRS)
Golden, Keith; Pang, Wanlin
2004-01-01
In this paper, we introduce JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint system with a runtime software environment and improving its applicability. We describe how JNET is applied to a real-world problem - NASA's Earth-science data processing domain, and demonstrate how JNET can be extended, without any knowledge of how it is implemented, to meet the growing demands of real-world applications.
Organizational Constraints on Corporate Public Relations Practitioners.
ERIC Educational Resources Information Center
Ryan, Michael
1987-01-01
Catalogs various internal constraints under which many public relations practitioners work, including constraints on (1) access to management; (2) information collection; (3) dissemination of timely, accurate information; and (4) the public relations mission. Reports that most practitioners see organizational constraints as more of a problem for…
Identification Constraints and Inference in Factor Models
ERIC Educational Resources Information Center
Loken, Eric
2005-01-01
The choice of constraints used to identify a simple factor model can affect the shape of the likelihood. Specifically, under some nonzero constraints, standard errors may be inestimable even at the maximum likelihood estimate (MLE). For a broader class of nonzero constraints, symmetric normal approximations to the modal region may not be…
Cultural and Social Constraints on Portability.
ERIC Educational Resources Information Center
Murray-Lasso, Marco
1990-01-01
Describes 12 constraints imposed by culture on educational software portability. Nielsen's seven-level virtual protocol model of human-computer interaction is discussed as a framework for considering the constraints, a hypothetical example of adapting software for Mexico is included, and suggestions for overcoming constraints and making software…
Learning and Parallelization Boost Constraint Search
ERIC Educational Resources Information Center
Yun, Xi
2013-01-01
Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…
QPO Constraints on Neutron Stars
NASA Technical Reports Server (NTRS)
Miller, M. Coleman
2005-01-01
The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.
Killing symmetries as Hamiltonian constraints
NASA Astrophysics Data System (ADS)
Lusanna, Luca
2016-02-01
The existence of a Killing symmetry in a gauge theory is equivalent to the addition of extra Hamiltonian constraints in its phase space formulation, which imply restrictions both on the Dirac observables (the gauge invariant physical degrees of freedom) and on the gauge freedom. When there is a time-like Killing vector field only pure gauge electromagnetic fields survive in Maxwell theory in Minkowski space-time, while in ADM canonical gravity in asymptotically Minkowskian space-times only inertial effects without gravitational waves survive.
Trajectory constraints in qualitative simulation
Brajnik, G.; Clancy, D.J.
1996-12-31
We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.
Cognitive constraints on motor imagery.
Dahm, Stephan F; Rieger, Martina
2016-03-01
Executed bimanual movements are prepared slower when moving to symbolically different than when moving to symbolically same targets and when targets are mapped to target locations in a left/right fashion than when they are mapped in an inner/outer fashion [Weigelt et al. (Psychol Res 71:238-447, 2007)]. We investigated whether these cognitive bimanual coordination constraints are observable in motor imagery. Participants performed fast bimanual reaching movements from start to target buttons. Symbolic target similarity and mapping were manipulated. Participants performed four action conditions: one execution and three imagination conditions. In the latter they indicated starting, ending, or starting and ending of the movement. We measured movement preparation (RT), movement execution (MT) and the combined duration of movement preparation and execution (RTMT). In all action conditions RTs and MTs were longer in movements towards different targets than in movements towards same targets. Further, RTMTs were longer when targets were mapped to target locations in a left/right fashion than when they were mapped in an inner/outer fashion, again in all action conditions. RTMTs in imagination and execution were similar, apart from the imagination condition in which participants indicated the start and the end of the movement. Here MTs, but not RTs, were longer than in the execution condition. In conclusion, cognitive coordination constraints are present in the motor imagery of fast (<1600 ms) bimanual movements. Further, alternations between inhibition and execution may prolong the duration of motor imagery. PMID:25758054
Reformulating Constraints for Compilability and Efficiency
NASA Technical Reports Server (NTRS)
Tong, Chris; Braudaway, Wesley; Mohan, Sunil; Voigt, Kerstin
1992-01-01
KBSDE is a knowledge compiler that uses a classification-based approach to map solution constraints in a task specification onto particular search algorithm components that will be responsible for satisfying those constraints (e.g., local constraints are incorporated in generators; global constraints are incorporated in either testers or hillclimbing patchers). Associated with each type of search algorithm component is a subcompiler that specializes in mapping constraints into components of that type. Each of these subcompilers in turn uses a classification-based approach, matching a constraint passed to it against one of several schemas, and applying a compilation technique associated with that schema. While much progress has occurred in our research since we first laid out our classification-based approach [Ton91], we focus in this paper on our reformulation research. Two important reformulation issues that arise out of the choice of a schema-based approach are: (1) compilability-- Can a constraint that does not directly match any of a particular subcompiler's schemas be reformulated into one that does? and (2) Efficiency-- If the efficiency of the compiled search algorithm depends on the compiler's performance, and the compiler's performance depends on the form in which the constraint was expressed, can we find forms for constraints which compile better, or reformulate constraints whose forms can be recognized as ones that compile poorly? In this paper, we describe a set of techniques we are developing for partially addressing these issues.
Constraint Embedding for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
Causality constraints in conformal field theory
NASA Astrophysics Data System (ADS)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ ϕ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Constraint-based interactive assembly planning
Jones, R.E.; Wilson, R.H.; Calton, T.L.
1997-03-01
The constraints on assembly plans vary depending on the product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner`s algorithms. Replanning is fast enough to enable a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies. 12 refs., 2 figs., 3 tabs.
Physical constraints for pathogen movement.
Schwarz, Ulrich S
2015-10-01
In this pedagogical review, we discuss the physical constraints that pathogens experience when they move in their host environment. Due to their small size, pathogens are living in a low Reynolds number world dominated by viscosity. For swimming pathogens, the so-called scallop theorem determines which kinds of shape changes can lead to productive motility. For crawling or gliding cells, the main resistance to movement comes from protein friction at the cell-environment interface. Viruses and pathogenic bacteria can also exploit intracellular host processes such as actin polymerization and motor-based transport, if they present the appropriate factors on their surfaces. Similar to cancer cells that also tend to cross various barriers, pathogens often combine several of these strategies in order to increase their motility and therefore their chances to replicate and spread. PMID:26456297
Geomagnetic main field modeling using magnetohydrodynamic constraints
NASA Technical Reports Server (NTRS)
Estes, R. H.
1985-01-01
The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.
Optimality criteria design and stress constraint processing
NASA Technical Reports Server (NTRS)
Levy, R.
1982-01-01
Methods for pre-screening stress constraints into either primary or side-constraint categories are reviewed; a projection method, which is developed from prior cycle stress resultant history, is introduced as an additional screening parameter. Stress resultant projections are also employed to modify the traditional stress-ratio, side-constraint boundary. A special application of structural modification reanalysis is applied to the critical stress constraints to provide feasible designs that are preferable to those obtained by conventional scaling. Sample problem executions show relatively short run times and fewer design cycle iterations to achieve low structural weights; those attained are comparable to the minimum values developed elsewhere.
ERIC Educational Resources Information Center
Alderete, John; Tupper, Paul; Frisch, Stefan A.
2013-01-01
A significant problem in computational language learning is that of inferring the content of well-formedness constraints from input data. In this article, we approach the constraint induction problem as the gradual adjustment of subsymbolic constraints in a connectionist network. In particular, we develop a multi-layer feed-forward network that…
Constraints on Noun Incorporation in Korean.
ERIC Educational Resources Information Center
Khym, Hangyoo
1997-01-01
A study of the noun incorporation phenomenon in Korean suggests that noun incorporation occurs at D-structure and obeys the Head Movement Constraint syntactically, and the Theme-Only Constraint semantically. First, the structure of "sunrise"-type words is identified, showing that before derivation through nominalization of the affix "-i,"…
Gaining Algorithmic Insight through Simplifying Constraints.
ERIC Educational Resources Information Center
Ginat, David
2002-01-01
Discusses algorithmic problem solving in computer science education, particularly algorithmic insight, and focuses on the relevance and effectiveness of the heuristic simplifying constraints which involves simplification of a given problem to a problem in which constraints are imposed on the input data. Presents three examples involving…
On a Surface Structure Constraint in Hungarian.
ERIC Educational Resources Information Center
Szamosi, Michael
It is possible to apply the concept of surface-structure constraint to a particular area of Hungarian syntax. A surface-structure constraint, according to David Perlmutter, can be seen as a template which serves as a filter at some level after the transformational component. In the case of Hungarian cooccurrence of noun phrases and verbs in a…
Domain General Constraints on Statistical Learning
ERIC Educational Resources Information Center
Thiessen, Erik D.
2011-01-01
All theories of language development suggest that learning is constrained. However, theories differ on whether these constraints arise from language-specific processes or have domain-general origins such as the characteristics of human perception and information processing. The current experiments explored constraints on statistical learning of…
COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS
Coe, Dan; Moustakas, Leonidas A.
2009-11-20
Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for approx4000 lenses should constrain the local Hubble constant h to approx0.007 (approx1%), OMEGA{sub de} to approx0.005, and w to approx0.026 (all 1sigma precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for approx100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the 'optimistic Stage IV' constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the 'pivot redshift' of z approx 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.
Trimodal interpretation of constraints for planning
NASA Technical Reports Server (NTRS)
Krieger, David; Brown, Richard
1987-01-01
Constraints are used in the CAMPS knowledge based planning system to represent those propositions that must be true for a plan to be acceptable. CAMPS introduces the make-mode for interpreting a constraint. Given an unsatisfied constraint, make evaluation mode suggests planning actions which, if taken, would result in a modified plan in which the constraint in question may be satisfied. These suggested planning actions, termed delta-tuples, are the raw material of intelligent plan repair. They are used both in debugging an almost-right plan and in replanning due to changing situations. Given a defective plan in which some set of constraints are violated, a problem solving strategy selects one or more constraints as a focus of attention. These selected constraints are evaluated in the make-mode to produce delta-tuples. The problem solving strategy then reviews the delta-tuples according to its application and problem-specific criteria to find the most acceptable change in terms of success likelihood and plan disruption. Finally, the problem solving strategy makes the suggested alteration to the plan and then rechecks constraints to find any unexpected consequences.
Constraint-based evaluation of sequential procedures
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
1990-01-01
Constraining the operation of an agent requires knowledge of the restrictions to physical and temporal capabilities of that agent, as well as an inherent understanding of the desires being processed by that agent. Usually a set of constraints are available that must be adhered to in order to foster safe operations. In the worst case, violation of a constraint may be cause to terminate operation. If the agent is carrying out a plan, then a method for predicting the agent's desires, and therefore possible constraint violations, is required. The conceptualization of constraint-based reasoning used herein assumes that a system knows how to select a constraint for application as well as how to apply that constraint once it is selected. The application of constraint-based reasoning for evaluating certain kinds of plans known as sequential procedures is discussed. By decomposing these plans, it is possible to apply context dependent constraints in production system fashion without incorporating knowledge of the original planning process.
The "No Crossing Constraint" in Autosegmental Phonology.
ERIC Educational Resources Information Center
Coleman, John; Local, John
A discussion of autosegmental phonology (AP), a theory of phonological representation that uses graphs rather than strings as the central data structure, considers its principal constraint, the "No Crossing Constraint" (NCC). The NCC is the statement that in a well-formed autosegmental diagram, lines of association may not cross. After an…
Volcanological constraints of Archaean tectonics
NASA Technical Reports Server (NTRS)
Thurston, P. C.; Ayres, L. D.
1986-01-01
Volcanological and trace element geochemical data can be integrated to place some constraints upon the size, character and evolutionary history of Archean volcanic plumbing, and hence indirectly, Archean tectonics. The earliest volcanism in any greenhouse belt is almost universally tholeitic basalt. Archean mafic magma chambers were usually the site of low pressure fractionation of olivine, plagioclase and later Cpx + or - an oxide phase during evolution of tholeitic liquids. Several models suggest basalt becoming more contaminated by sial with time. Data in the Uchi Subprovince shows early felsic volcanics to have fractionated REE patterns followed by flat REE pattern rhyolites. This is interpreted as initial felsic liquids produced by melting of a garnetiferous mafic source followed by large scale melting of LIL-rich sial. Rare andesites in the Uchi Subprovince are produced by basalt fractionation, direct mantle melts and mixing of basaltic and tonalitic liquids. Composite dikes in the Abitibi Subprovince have a basaltic edge with a chill margin, a rhyolitic interior with no basalt-rhyolite chill margin and partially melted sialic inclusions. Ignimbrites in the Uchi and Abitibi Subprovinces have mafic pumice toward the top. Integration of these data suggest initial mantle-derived basaltic liquids pond in a sialic crust, fractionate and melt sial. The inirial melts low in heavy REE are melts of mafic material, subsequently melting of adjacent sial produces a chamber with a felsic upper part underlain by mafic magma.
Optimal Stopping with Information Constraint
Lempa, Jukka
2012-10-15
We study the optimal stopping problem proposed by Dupuis and Wang (Adv. Appl. Probab. 34:141-157, 2002). In this maximization problem of the expected present value of the exercise payoff, the underlying dynamics follow a linear diffusion. The decision maker is not allowed to stop at any time she chooses but rather on the jump times of an independent Poisson process. Dupuis and Wang (Adv. Appl. Probab. 34:141-157, 2002), solve this problem in the case where the underlying is a geometric Brownian motion and the payoff function is of American call option type. In the current study, we propose a mild set of conditions (covering the setup of Dupuis and Wang in Adv. Appl. Probab. 34:141-157, 2002) on both the underlying and the payoff and build and use a Markovian apparatus based on the Bellman principle of optimality to solve the problem under these conditions. We also discuss the interpretation of this model as optimal timing of an irreversible investment decision under an exogenous information constraint.
Percolation of spatially constraint networks
NASA Astrophysics Data System (ADS)
Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo
2011-03-01
We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.
Hamiltonian constraint in polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2011-01-15
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Reheating Constraints to Inflationary Models
NASA Astrophysics Data System (ADS)
Dai, Liang; Kamionkowski, Marc; Wang, Junpu
2014-07-01
Evidence from the BICEP2 experiment for a significant gravitational-wave background has focused attention on inflaton potentials V(ϕ)∝ϕα with α=2 ("chaotic" or "m2ϕ2" inflation) or with smaller values of α, as may arise in axion-monodromy models. Here we show that reheating considerations may provide additional constraints to these models. The reheating phase preceding the radiation era is modeled by an effective equation-of-state parameter wre. The canonical reheating scenario is then described by wre=0. The simplest α=2 models are consistent with wre=0 for values of ns well within the current 1σ range. Models with α=1 or α=2/3 require a more exotic reheating phase, with -1/3
Natural Constraints to Species Diversification
Lewitus, Eric; Morlon, Hélène
2016-01-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of
Natural Constraints to Species Diversification.
Lewitus, Eric; Morlon, Hélène
2016-08-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of
CONSTRAINT EFFECT IN FRACTURE WHAT IS IT
Lam, P; Prof. Yuh J. Chao, P
2008-10-29
The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.
Astrophysical and cosmological constraints to neutrino properties
NASA Technical Reports Server (NTRS)
Kolb, Edward W.; Schramm, David N.; Turner, Michael S.
1989-01-01
The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.
QCD unitarity constraints on Reggeon Field Theory
NASA Astrophysics Data System (ADS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-08-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Black hole thermodynamics from Euclidean horizon constraints.
Carlip, S
2007-07-13
To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209
Constraints and restraints in crystal structure analysis
Immirzi, Attilio
2009-01-01
The widely used restraint-based approach to structural analysis using diffraction data is critiqued. The convenience of using rigid constraints, through the use of internal coordinates, is discussed. PMID:22477768
Planck 2015 constraints on neutrino physics
NASA Astrophysics Data System (ADS)
Lattanzi, Massimiliano
2016-05-01
Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.
Equilibrium Macroscopic Structure Revisited from Spatial Constraint
NASA Astrophysics Data System (ADS)
Yuge, Koretaka
2016-02-01
In classical systems, we reexamine how macroscopic structures in equilibrium state connect with spatial constraint on the systems. For example, volume and density as the constraint for liquids in rigid box, and crystal lattice as the constraint for crystalline solids. We find that in disordered states, equilibrium macroscopic structure, depending on temperature and on multibody interactions in the system, can be well characterized by a single special microscopic structure independent of temperature and of interactions. The special microscopic structure depends only on the spatial constraint. We demonstrate the present findings providing (i) significantly efficient and systematic prediction of macroscopic structures for possible combination of constituents in multicomponent systems using first-principles calculations, and (ii) unique and accurate prediction of multibody interactions in given system from measured macroscopic structure, without performing trial-and-error simulation.
Constraint-based Attribute and Interval Planning
NASA Technical Reports Server (NTRS)
Jonsson, Ari; Frank, Jeremy
2013-01-01
In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm, based on temporal intervals and attributes. We then show how the plans are naturally expressed by networks of constraints, and show that the process of planning maps directly to dynamic constraint reasoning. In addition, we de ne compatibilities, a compact mechanism for describing planning domains. We describe how this framework can incorporate the use of constraint reasoning technology to improve planning. Finally, we describe EUROPA, an implementation of the CAIP framework.
Boolean constraint satisfaction problems for reaction networks
NASA Astrophysics Data System (ADS)
Seganti, A.; De Martino, A.; Ricci-Tersenghi, F.
2013-09-01
We define and study a class of (random) Boolean constraint satisfaction problems representing minimal feasibility constraints for networks of chemical reactions. The constraints we consider encode, respectively, for hard mass-balance conditions (where the consumption and production fluxes of each chemical species are matched) and for soft mass-balance conditions (where a net production of compounds is in principle allowed). We solve these constraint satisfaction problems under the Bethe approximation and derive the corresponding belief propagation equations, which involve eight different messages. The statistical properties of ensembles of random problems are studied via the population dynamics methods. By varying a chemical potential attached to the activity of reactions, we find first-order transitions and strong hysteresis, suggesting a non-trivial structure in the space of feasible solutions.
REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS
Raszewski, F.; Edwards, T.
2009-12-15
The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated much of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of
Constraint-Muse: A Soft-Constraint Based System for Music Therapy
NASA Astrophysics Data System (ADS)
Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin
Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.
Imposing Constraints from the Source Tree on ITG Constraints for SMT
NASA Astrophysics Data System (ADS)
Yamamoto, Hirofumi; Okuma, Hideo; Sumita, Eiichiro
In the current statistical machine translation (SMT), erroneous word reordering is one of the most serious problems. To resolve this problem, many word-reordering constraint techniques have been proposed. Inversion transduction grammar (ITG) is one of these constraints. In ITG constraints, target-side word order is obtained by rotating nodes of the source-side binary tree. In these node rotations, the source binary tree instance is not considered. Therefore, stronger constraints for word reordering can be obtained by imposing further constraints derived from the source tree on the ITG constraints. For example, for the source word sequence { a b c d }, ITG constraints allow a total of twenty-two target word orderings. However, when the source binary tree instance ((a b) (c d)) is given, our proposed “imposing source tree on ITG” (IST-ITG) constraints allow only eight word orderings. The reduction in the number of word-order permutations by our proposed stronger constraints efficiently suppresses erroneous word orderings. In our experiments with IST-ITG using the NIST MT08 English-to-Chinese translation track's data, the proposed method resulted in a 1.8-points improvement in character BLEU-4 (35.2 to 37.0) and a 6.2% lower CER (74.1 to 67.9%) compared with our baseline condition.
NASA Astrophysics Data System (ADS)
Matsui, Toshihiro; Silaghi, Marius C.; Hirayama, Katsutoshi; Yokoo, Makoto; Matsuo, Hiroshi
Cooperative problem solving with shared resources is important in practical multi-agent systems. Resource constraints are necessary to handle practical problems such as distributed task scheduling with limited resource availability. As a fundamental formalism for multi-agent cooperation, the Distributed Constraint Optimization Problem (DCOP) has been investigated. With DCOPs, the agent states and the relationships between agents are formalized into a constraint optimization problem. However, in the original DCOP framework, constraints for resources that are consumed by teams of agents are not well supported. A framework called Resource Constrained Distributed Constraint Optimization Problem (RCDCOP) has recently been proposed. In RCDCOPs, a limit on resource usage is represented as an n-ary constraint. Previous research addressing RCDCOPs employ a pseudo-tree based solver. The pseudo-tree is an important graph structure for constraint networks. A pseudo-tree implies a partial ordering of variables. However, n-ary constrained variables, which are placed on a single path of the pseudo-tree, decrease efficiency of the solver. We propose another method using (i) a pseudo-tree that is generated ignoring resource constraints and (ii) virtual variables representing the usage of resources. However the virtual variables increase search space. To improve pruning efficiency of search, (iii) we apply a set of upper/lower bounds that are inferred from resource constraints. The efficiency of the proposed method is evaluated by experiment.
Two new constraints for the cumulant matrix
Ramos-Cordoba, Eloy; Salvador, Pedro; Matito, Eduard; Piris, Mario
2014-12-21
We suggest new strict constraints that the two-particle cumulant matrix should fulfill. The constraints are obtained from the decomposition of 〈S-^{sup 2}〉, previously developed in our laboratory, and the vanishing number of electrons shared by two non-interacting fragments. The conditions impose stringent constraints into the cumulant structure without any need to perform an orbital optimization procedure thus carrying very small or no computational effort. These constraints are tested on the series of Piris natural orbital functionals (PNOF), which are among the most accurate ones available in the literature. Interestingly, even though all PNOF cumulants ensure correct overall 〈S{sup ^2}〉 values, none of them is consistent with the local spin structure of systems that dissociate more than one pair of electrons. A careful analysis of the local spin components reveals the most important missing contributions in the cumulant expression thus suggesting a means to improve PNOF5. The constraints provide an inexpensive tool for the construction and testing of cumulant structures that complement previously known conditions such as the N-representability or the square of the total spin angular momentum, 〈S{sup ^2}〉.
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-01-01
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-01-01
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Spatial constraints control cell proliferation in tissues
Streichan, Sebastian J.; Hoerner, Christian R.; Schneidt, Tatjana; Holzer, Daniela; Hufnagel, Lars
2014-01-01
Control of cell proliferation is a fundamental aspect of tissue formation in development and regeneration. Cells experience various spatial and mechanical constraints depending on their environmental context in the body, but we do not fully understand if and how such constraints influence cell cycle progression and thereby proliferation patterns in tissues. Here, we study the impact of mechanical manipulations on the cell cycle of individual cells within a mammalian model epithelium. By monitoring the response to experimentally applied forces, we find a checkpoint at the G1–S boundary that, in response to spatial constraints, controls cell cycle progression. This checkpoint prevents cells from entering S phase if the available space remains below a characteristic threshold because of crowding. Stretching the tissue results in fast cell cycle reactivation, whereas compression rapidly leads to cell cycle arrest. Our kinetic analysis of this response shows that cells have no memory of past constraints and allows us to formulate a biophysical model that predicts tissue growth in response to changes in spatial constraints in the environment. This characteristic biomechanical cell cycle response likely serves as a fundamental control mechanism to maintain tissue integrity and to ensure control of tissue growth during development and regeneration. PMID:24706777
Forces Associated with Nonlinear Nonholonomic Constraint Equations
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Hodges, Dewey H.
2010-01-01
A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.
ERIC Educational Resources Information Center
Batty, Kimberly A.
2011-01-01
The purpose of this study was to document the factors (i.e., motivation and perceived constraints) and processes (i.e., constraint negotiation) that influence students' selection of and satisfaction with their internship choice. The study was conducted using a quantitative approach, which included a focus group, a pilot study, and a…
NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.
Heller, Davide Martin; Giorgetti, Alejandro
2010-07-01
Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint. PMID:20513646
Level of constraint in revision knee arthroplasty.
Indelli, Pier Francesco; Giori, Nick; Maloney, William
2015-12-01
Revision total knee arthroplasty (TKA) in the setting of major bone deficiency and/or soft tissue laxity might require increasing levels of constraint to restore knee stability. However, increasing the level of constraint not always correlates with mid-to-long-term satisfactory results. Recently, modular components as tantalum cones and titanium sleeves have been introduced to the market with the goal of obtaining better fixation where bone deficiency is an issue; theoretically, satisfactory meta-diaphyseal fixation can reduce the mechanical stress at the level of the joint line, reducing the need for high levels of constraint. This article reviews the recent literature on the surgical management of the unstable TKA with the goal to propose a modern surgical algorithm for adult reconstruction surgeons. PMID:26373770
Multi-point gradient calculation with constraints
NASA Astrophysics Data System (ADS)
de Keyser, Johan
Multi-spacecraft missions resolve the space-time ambiguity inherent in single-spacecraft in situ measurements. One particularly useful technique is the computation of the gradients (spaceand time-derivatives) from multi-point observations of scalar and vector fields. Given the diffi- culties inherent in computing derivatives, we propose to improve the determination of gradients by imposing additional information in the form of constraints. We discuss geometric constraints on the orientation of the gradient vectors and physically-motivated constraints. For instance, imposing the divergence-free condition for the magnetic field leads to an improved curlometer. We describe the usefulness of such constrained least-squares gradient techniques as applied to magnetic field and plasma density observations by Cluster.
Propagating Resource Constraints Using Mutual Exclusion Reasoning
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Sanchez, Romeo; Do, Minh B.; Clancy, Daniel (Technical Monitor)
2001-01-01
One of the most recent techniques for propagating resource constraints in Constraint Based scheduling is Energy Constraint. This technique focuses in precedence based scheduling, where precedence relations are taken into account rather than the absolute position of activities. Although, this particular technique proved to be efficient on discrete unary resources, it provides only loose bounds for jobs using discrete multi-capacity resources. In this paper we show how mutual exclusion reasoning can be used to propagate time bounds for activities using discrete resources. We show that our technique based on critical path analysis and mutex reasoning is just as effective on unary resources, and also shows that it is more effective on multi-capacity resources, through both examples and empirical study.
Parametric constraints in multi-beam interference
NASA Astrophysics Data System (ADS)
Burrow, Guy M.; Gaylord, Thomas K.
2012-10-01
Multi-beam interference (MBI) represents a method of producing one-, two-, and three-dimensional submicron periodic optical-intensity distributions for applications including micro- and nano-electronics, photonic crystals, metamaterial, biomedical structures, optical trapping, and numerous other subwavelength structures. Accordingly, numerous optical configurations have been developed to implement MBI. However, these configurations typically provide limited ability to condition the key parameters of each interfering beam. Constraints on individual beam amplitudes and polarizations are systematically considered to understand their effects on lithographically useful MBI periodic patterning possibilities. A method for analyzing parametric constraints is presented and used to compare the optimized optical-intensity distributions for representative constrained systems. Case studies are presented for both square and hexagonal-lattices produced via three-beam interference. Results demonstrate that constraints on individual-beam polarizations significantly impact patterning possibilities and must be included in the systematic design of an MBI system.
General constraints on the Viking biology investigation
NASA Technical Reports Server (NTRS)
Klein, H. P.
1976-01-01
The paper discusses some of the constraints pertaining to the Viking mission for detection of life on Mars, within which the Viking experiments were conceived, designed, and developed. The most important limitation to the entire study is the complete information about the nature of Mars, such as the chemical composition of the surface material of Mars and the exact identification of the constituents of that planet. Ways in which celestial mechanics places severe limitations on the Viking biology investigation are discussed. Major engineering constraints are examined relative to the accomodation of biology instrument inside the Viking lander and to the design of the instrument itself. Other constraints discussed concern the operational aspects of the mission and the testing program.
Astrophysical Constraints of Dark Matter Properties
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Abel, Tom; Brooks, Alyson; Buckley, Matthew; Bullock, James; Collins, Michelle; Cyr-Racine, Francis-Yan; Dawson, William; Drlica-Wagner, Alex; Gaskins, Jennifer; Kaplinghat, Manoj; Keeton, Charles R.; Kim, Stacy; Peter, Annika; Read, Justin; Simon, Joshua D.; Somerville, Rachel S.; Tollerud, Erik Jon; Treu, Tommaso; Wechsler, Risa H.
2016-01-01
The nature of the dark matter that fills the universe remains a profound puzzle in physics and astrophysics. Modern astronomical observations have the potential to produce constraints or measurements on properties of dark matter that may have real power for insights into its particle nature. The key lies with understanding what those constraints may be in a way that is interpretable for both the astronomical and particle physics communities, and establishing a community consensus of how diverse astronomical paths can use a common language. The AAS Special Session on the "Astrophysical constraints of dark matter properties" focuses on framing these questions with concrete proposals for astronomical dark matter metrics and potentially figures of merit, and through a series of presentations that serve as points of departure for discussion, ultimately to reach a community consensus that will be useful for current and future pursuits on this topic.
Inference-based constraint satisfaction supports explanation
Sqalli, M.H.; Freuder, E.C.
1996-12-31
Constraint satisfaction problems are typically solved using search, augmented by general purpose consistency inference methods. This paper proposes a paradigm shift in which inference is used as the primary problem solving method, and attention is focused on special purpose, domain specific inference methods. While we expect this approach to have computational advantages, we emphasize here the advantages of a solution method that is more congenial to human thought processes. Specifically we use inference-based constraint satisfaction to support explanations of the problem solving behavior that are considerably more meaningful than a trace of a search process would be. Logic puzzles are used as a case study. Inference-based constraint satisfaction proves surprisingly powerful and easily extensible in this domain. Problems drawn from commercial logic puzzle booklets are used for evaluation. Explanations are produced that compare well with the explanations provided by these booklets.
10. Exploring the Conformal Constraint Equations
NASA Astrophysics Data System (ADS)
Butscher, Adrian
One method of studying the asymptotic structure of spacetime is to apply Penrose's conformal rescaling technique. In this setting, the rescaled Einstein equations for the metric and the conformal factor in the unphysical spacetime degenerate where the conformal factor vanishes, namely at the boundary representing null infinity. This problem can be avoided by means of a technique of H. Friedrich, which replaces the Einstein equations in the unphysical spacetime by an equivalent system of equations which is regular at the boundary. The initial value problem for these equations produces a system of constraint equations known as the conformal constraint equations. This work describes some of the properties of the conformal constraint equations and develops a perturbative method of generating solutions near Euclidean space under certain simplifying assumptions.
Boosting Set Constraint Propagation for Network Design
NASA Astrophysics Data System (ADS)
Yip, Justin; van Hentenryck, Pascal; Gervet, Carmen
This paper reconsiders the deployment of synchronous optical networks (SONET), an optimization problem naturally expressed in terms of set variables. Earlier approaches, using either MIP or CP technologies, focused on symmetry breaking, including the use of SBDS, and the design of effective branching strategies. This paper advocates an orthogonal approach and argues that the thrashing behavior experienced in earlier attempts is primarily due to a lack of pruning. It studies how to improve domain filtering by taking a more global view of the application and imposing redundant global constraints. The technical results include novel hardness results, propagation algorithms for global constraints, and inference rules. The paper also evaluates the contributions experimentally by presenting a novel model with static symmetric-breaking constraints and a static variable ordering which is many orders of magnitude faster than existing approaches.
Using constraints to model disjunctions in rule-based reasoning
Liu, Bing; Jaffar, Joxan
1996-12-31
Rule-based systems have long been widely used for building expert systems to perform practical knowledge intensive tasks. One important issue that has not been addressed satisfactorily is the disjunction, and this significantly limits their problem solving power. In this paper, we show that some important types of disjunction can be modeled with Constraint Satisfaction Problem (CSP) techniques, employing their simple representation schemes and efficient algorithms. A key idea is that disjunctions are represented as constraint variables, relations among disjunctions are represented as constraints, and rule chaining is integrated with constraint solving. In this integration, a constraint variable or a constraint is regarded as a special fact, and rules can be written with constraints, and information about constraints. Chaining of rules may trigger constraint propagation, and constraint propagation may cause firing of rules. A prototype system (called CFR) based on this idea has been implemented.
''Decoupling'' constraints on massless composite particles
Preskill, J.; Weinberg, S.
1981-08-15
It is pointed out that the use of the ''decoupling'' constraints on the spectrum of composite massles particles in not justified without further assumptions. There is an alternative condition, whose use would not be subject to the same criticisms, which would lead to the same constraints as the decoupling condition, and which would lead to other results as well, for instance that the nonchiral global symmetries in quantum chromodynamics (QCD) with n massless flavors can not be spontaneously broken. However, this condition is found to be violated in a specific model. It is still an open possibility that the chiral symmetries of QCD are unbroken for n not a multiple of 3.
Constraints on hadronically decaying dark matter
Garny, Mathias; Ibarra, Alejandro; Tran, David E-mail: alejandro.ibarra@ph.tum.de
2012-08-01
We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons. We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.
On Reformulating Planning as Dynamic Constraint Satisfaction
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)
2000-01-01
In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.
Space Shuttle capabilities, constraints, and cost
NASA Technical Reports Server (NTRS)
Lee, C. M.
1980-01-01
The capabilities, constraints, and costs of the Space Transportation System (STS), which combines reusable and expendable components, are reviewed, and an overview of the current planning activities for operating the STS in an efficient and cost-effective manner is presented. Traffic forecasts, performance constraints and enhancements, and potential new applications are discussed. Attention is given to operating costs, pricing policies, and the steps involved in 'getting on board', which includes all the interfaces between NASA and the users necessary to come to launch service agreements.
Covariant constraints in ghost free massive gravity
Deffayet, C.; Mourad, J.; Zahariade, G. E-mail: mourad@apc.univ-paris7.fr
2013-01-01
We show that the reformulation of the de Rham-Gabadadze-Tolley massive gravity theory using vielbeins leads to a very simple and covariant way to count constraints, and hence degrees of freedom. Our method singles out a subset of theories, in the de Rham-Gabadadze-Tolley family, where an extra constraint, needed to eliminate the Boulware Deser ghost, is easily seen to appear. As a side result, we also introduce a new method, different from the Stuckelberg trick, to extract kinetic terms for the polarizations propagating in addition to those of the massless graviton.
On the evolutionary constraint surface of hydra
NASA Technical Reports Server (NTRS)
Slobodkin, L. B.; Dunn, K.
1983-01-01
Food consumption, body size, and budding rate were measured simultaneously in isolated individual hydra of six strains. For each individual hydra the three measurements define a point in the three dimensional space with axes: food consumption, budding rate, and body size. These points lie on a single surface, regardless of species. Floating rate and incidence of sexuality map onto this surface. It is suggested that this surface is an example of a general class of evolutionary constraint surfaces derived from the conjunction of evolutinary theory and the theory of ecological resource budgets. These constraint surfaces correspond to microevolutionary domains.
Quantum bit commitment under Gaussian constraints
NASA Astrophysics Data System (ADS)
Mandilara, Aikaterini; Cerf, Nicolas J.
2012-06-01
Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.
On Matrix Representations of Participation Constraints
NASA Astrophysics Data System (ADS)
Hartmann, Sven; Leck, Uwe; Link, Sebastian
We discuss the existence of matrix representations for generalised and minimum participation constraints which are frequently used in database design and conceptual modelling. Matrix representations, also known as Armstrong relations, have been studied in literature e.g. for functional dependencies and play an important role in example-based design and for the implication problem of database constraints. The major tool to achieve the results in this paper is a theorem of Hajnal and Szemerédi on the occurrence of clique graphs in a given graph.
Reduction of Constraints: Applicability of the Homogeneity Constraint for Macrobatch 3
Peeler, D.K.
2001-02-15
The Product Composition Control System (PCCS) is used to determine the acceptability of each batch of Defense Waste Processing Facility (DWPF) melter feed in the Slurry Mix Evaporator (SME). This control system imposes several constraints on the composition of the contents of the SME to define acceptability. These constraints relate process or product properties to composition via prediction models. A SME batch is deemed acceptable if its sample composition measurements lead to acceptable property predictions after accounting for modeling, measurement and analytic uncertainties. The baseline document guiding the use of these data and models is ''SME Acceptability Determination for DWPF Process Control (U)'' by Brown and Postles [1996]. A minimum of three PCCS constraints support the prediction of the glass durability from a given SME batch. The Savannah River Technology Center (SRTC) is reviewing all of the PCCS constraints associated with durability. The purpose of this review is to revisit these constraints in light of the additional knowledge gained since the beginning of radioactive operations at DWPF and to identify any supplemental studies needed to amplify this knowledge so that redundant or overly conservative constraints can be eliminated or replaced by more appropriate constraints.
Identifying and reducing constraints to potato productivity
Technology Transfer Automated Retrieval System (TEKTRAN)
Potato yield in Maine has remained relatively constant for over 50 years, despite increased inputs of pesticides, nutrients, and water. Research is needed to identify and reduce the constraints to potato productivity. We evaluated Status Quo, Soil Conserving, Soil Improving, and Disease Suppressive ...
Language-Universal Constraints on Speech Segmentation.
ERIC Educational Resources Information Center
Norris, Dennis; McQueen, James M.; Cutler, Anne; Butterfield, Sally; Kearns, Ruth
2001-01-01
Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) is a language-specific or language-universal strategy for the segmentation of continuous speech. Examined cases where the residue was either a CVC syllable with a Schwa or a CV syllable with a lax vowel. Showed that the word-spotting results…
Planck 2015 constraints on reionization history
NASA Astrophysics Data System (ADS)
Tristram, Matthieu
2015-08-01
On behalf of the Planck collaboration, we will show the tightest constraints on cosmic reionization extracted from the CMB polarization at low multipole by Planck.The CMB large scales polarization data can gives strong constraints on the reionization history through the measurement of the reionization optical depth. The Thomson optical depth measured is significantly smaller than previously estimated from CMB polarization data. This result reduces the tension between CMB based analyses and constraints from other astrophysical sources. It highlights the necessity of a deep revision of our view on the history of reionization and the dark age. We also combine constraints from low and high l, in particular from the amplitude of the kinetic Sunyaev Zeld’ovitch effect (kSZ), to derive the time and duration of the reionization epoch. In addition, using both a new two-stage parametrization of the ionization fraction, closer to recent self-regulated simulations, and a non parametric reconstruction, we estimate a more realistic beginning, end, and duration of Reionization.
Constraints on Children's Judgments of Magical Causality
ERIC Educational Resources Information Center
Woolley, Jacqueline D.; Browne, Cheryl A.; Boerger, Elizabeth A.
2006-01-01
In 3 studies we addressed the operation of constraints on children's causal judgments. Our primary focus was whether children's beliefs about magical causality, specifically wishing, are constrained by features that govern the attribution of ordinary causality. In Experiment 1, children witnessed situations in which a confederate's wish appeared…
Robust Utility Maximization Under Convex Portfolio Constraints
Matoussi, Anis; Mezghani, Hanen Mnif, Mohamed
2015-04-15
We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.
Physical Constraints on the Noachian Deluge.
ERIC Educational Resources Information Center
Soroka, Leonard G.; Nelson, Charles L.
1983-01-01
To test the literal biblical account of Noah's flood, four sources of possible flood waters were evaluated to determine if a natural (as opposed to supernatural) explanation is possible. Sources include rain, hydrothermal springs, and two types of cometary impact. Thermodynamic constraints preclude a natural means of accounting for the flood.…
Dynamics of load balancing with constraints
NASA Astrophysics Data System (ADS)
Suzuki, Hideyuki
2014-10-01
In this paper, we consider a centralized strategy for scheduling charging patterns of electrical vehicles and other batteries in power grids. We formulate it as a load balancing problem with constraints, which tries to distribute the charging loads both spatially and temporally. We show that a variant of herding system can be applied to load balancing.
Dynamics of load balancing with constraints
NASA Astrophysics Data System (ADS)
Suzuki, Hideyuki
2014-09-01
In this paper, we consider a centralized strategy for scheduling charging patterns of electrical vehicles and other batteries in power grids. We formulate it as a load balancing problem with constraints, which tries to distribute the charging loads both spatially and temporally. We show that a variant of herding system can be applied to load balancing.
Production Constraints on Learning Novel Onset Phonotactics
ERIC Educational Resources Information Center
Redford, Melissa A.
2008-01-01
Three experiments addressed the hypothesis that production factors constrain phonotactic learning in adult English speakers, and that this constraint gives rise to a markedness effect on learning. In Experiment 1, an acoustic measure was used to assess consonant-consonant coarticulation in naturally produced nonwords, which were then used as…
CMB constraints on cosmic strings and superstrings
NASA Astrophysics Data System (ADS)
Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam
2016-06-01
We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.
Constraint Embedding Technique for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with
Constraints on muon-specific dark forces
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; McKeen, David; Pospelov, Maxim
2014-10-01
The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on e-p scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier—in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the g-2 of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity-violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon g-2. However, we also observe that in the absence of a consistent standard model embedding high-energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by (E/mV)2, with E a characteristic energy scale and mV the mass of the mediator. In particular, leptonic W decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.
Importance of parametrizing constraints in quantum-mechanical variational calculations
NASA Technical Reports Server (NTRS)
Chung, Kwong T.; Bhatia, A. K.
1992-01-01
In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.
NASA Technical Reports Server (NTRS)
Moncrief, V.; Teitelboim, C.
1972-01-01
It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.
A fast full constraints unmixing method
NASA Astrophysics Data System (ADS)
Ye, Zhang; Wei, Ran; Wang, Qing Yan
2012-10-01
Mixed pixels are inevitable due to low-spatial resolutions of hyperspectral image (HSI). Linear spectrum mixture model (LSMM) is a classical mathematical model to relate the spectrum of mixing substance to corresponding individual components. The solving of LSMM, namely unmixing, is essentially a linear optimization problem with constraints, which is usually consisting of iterations implemented on decent direction and stopping criterion to terminate algorithms. Such criterion must be properly set in order to balance the accuracy and speed of solution. However, the criterion in existing algorithm is too strict, which maybe lead to convergence rate reducing. In this paper, by broaden constraints in unmixing, a new stopping rule is proposed, which can reduce rate of convergence. The experiments results prove both in runtime and iteration numbers that our method can accelerate convergence processing with only cost of little quality decrease in resulting.
Hamiltonian quantum dynamics with separability constraints
NASA Astrophysics Data System (ADS)
Burić, Nikola
2008-01-01
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton's operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.
Cosmological constraints on the neutron lifetime
NASA Astrophysics Data System (ADS)
Salvati, L.; Pagano, L.; Consiglio, R.; Melchiorri, A.
2016-03-01
We derive new constraints on the neutron lifetime based on the recent Planck 2015 observations of temperature and polarization anisotropies of the CMB. Under the assumption of standard Big Bang Nucleosynthesis, we show that Planck data constrains the neutron lifetime to τn = (907±69) [s] at 68% c.l.. Moreover, by including the direct measurements of primordial Helium abundance of Aver et al. (2015) and Izotov et al. (2014), we show that cosmological data provide the stringent constraints τn = (875±19) [s] and τn = (921±11) [s] respectively. The latter appears to be in tension with neutron lifetime value quoted by the Particle Data Group (τn = (880.3±1.1) [s]). Future CMB surveys as COrE+, in combination with a weak lensing survey as EUCLID, could constrain the neutron lifetime up to a ~ 6 [s] precision.
Modeling Regular Replacement for String Constraint Solving
NASA Technical Reports Server (NTRS)
Fu, Xiang; Li, Chung-Chih
2010-01-01
Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications
Observational constraints on K-inflation models
Li, Sheng; Liddle, Andrew R. E-mail: a.liddle@sussex.ac.uk
2012-10-01
We extend the ModeCode software of Mortonson, Peiris and Easther [1] to enable numerical computation of perturbations in K-inflation models, where the scalar field no longer has a canonical kinetic term. Focussing on models where the kinetic and potential terms can be separated into a sum, we compute slow-roll predictions for various models and use these to verify the numerical code. A Markov chain Monte Carlo analysis is then used to impose constraints from WMAP7 data on the addition of a term quadratic in the kinetic energy to the Lagrangian of simple chaotic inflation models. For a quadratic potential, the data do not discriminate against addition of such a term, while for a quartic (λφ{sup 4}) potential inclusion of such a term is actually favoured. Overall, constraints on such a term from present data are found to be extremely weak.
Dark matter constraints from stellar evolution
NASA Astrophysics Data System (ADS)
Ayala, A.; Domínguez, I.; Straniero, O.
2016-01-01
The study of dark matter constraints from its effect on star evolution has been discussed in recent years. We propose a star evolution simulation approach to determine those costraints from properties related to star evolutionary stages and propose globular cluster observables in order to check those constraints. My work in progress (my PhD project research) employs FRANEC code to simulate complete star evolution from pre-main sequence to AGB phase, and regards several DM candidates like axions or WIMPs, motivated by different unsolved physical problems. Detailed energy production or energy loss due to DM particles are included, taking into account the expected interaction between dark matter particles and stellar plasma within different models.
Decoupling Coupled Constraints Through Utility Design
Li, N; Marden, JR
2014-08-01
Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning to derive a distributed process that guarantees the agents will reach such an equilibrium.
Spin constraints on nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.
2014-02-01
The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.
Compilation of non-contemporaneous constraints
Wray, R.E. III; Laird, J.E.; Jones, R.M.
1996-12-31
Hierarchical execution of domain knowledge is a useful approach for intelligent, real-time systems in complex domains. In addition, well-known techniques for knowledge compilation allow the reorganization of knowledge hierarchies into more efficient forms. However, these techniques have been developed in the context of systems that work in static domains. Our investigations indicate that it is not straightforward to apply knowledge compilation methods for hierarchical knowledge to systems that generate behavior in dynamic environments. One particular problem involves the compilation of non-contemporaneous constraints. This problem arises when a training instance dynamically changes during execution. After defining the problem, we analyze several theoretical approaches that address non-contemporaneous constraints. We have implemented the most promising of these alternatives within Soar, a software architecture for performance and learning. Our results demonstrate that the proposed solutions eliminate the problem in some situations and suggest that knowledge compilation methods are appropriate for interactive environments.
Statistical and constraint factors in cleavage initiation
Odette, G.R.; Edsinger, K.V.; Lucas, G.E.
1997-12-31
The size dependence of effective cleavage initiation toughness K{sub e}(T) (defined by the load-displacement conditions at initiation) of steels are mediated by both statistical and constraint factors. Statistical effects are controlled by the total high stress volume even under plane strain, small scale yielding, e.g., K{sub Ic} {proportional_to} 1/B{sup {minus}1/4}. Constraint loss and reductions in the stress fields occurs for shallow cracks, large scale yielding and deviations from plane strain. The interplay between these factors is examined by analyzing the observed K{sub e}(T) behavior for specimens with different W, B and a/W using FEM simulations of the crack tip fields and confocal microscopy, fracture reconstruction and SEM characterization of the sequence-of-fracture-events. Observed versus actual sequences and complications such as crack tip strain, the transition to ductile tearing and ultimate loss of specimen capacity are discussed.
Congruent Melting Kinetics: Constraints on Chondrule Formation
NASA Technical Reports Server (NTRS)
Greenwood, James P.; Hess, Paul C.
1995-01-01
The processes and mechanisms of melting and their applications to chondrule formation are discussed A model for the kinetics of congruent melting is developed and used to place constraints on the duration and maximum temperature experienced by the interiors of relict-bearing chondrules. Specifically, chondrules containing relict forsteritic olivine or enstatitic pyroxene cannot have been heated in excess of 1901 C or 1577 C, respectively, for more than a few seconds.
Constraints on Mueller matrices of polarization optics
NASA Technical Reports Server (NTRS)
Kostinski, Alexander B.; Givens, Clark R.; Kwiatkowski, John M.
1993-01-01
The issue of physical realizability constraints on depolarizing scattering or imaging systems is addressed. In particular, the overpolarization problem, i.e., the problem of ensuring that the output degree of polarization is always smaller than (or equal to) unity, is discussed in detail. A set of necessary conditions for the elements of a Mueller matrix is derived. These conditions can be used to test the accuracy of polarimetric measurements and computations. Several recent experimental examples from polarization optics and radar are discussed.
Varying alpha: New constraints from seasonal variations
Barrow, John D.; Shaw, Douglas J.
2008-09-15
We analyze the constraints obtained from new atomic clock data on the possible time variation of the fine structure 'constant' and the electron-proton mass ratio, and show how they are strengthened when the seasonal variation of the Sun's gravitational field at the Earth's surface is taken into account. We compare these bounds with those obtainable from tests of the weak equivalence principle and high redshift observations of quasar absorption spectra.
The Probabilistic Admissible Region with Additional Constraints
NASA Astrophysics Data System (ADS)
Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.
The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea
Constraint-Free Theories of Gravitation
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.; Robinson, R. Steve; Wahlquist, Hugo D.
1998-01-01
Lovelock actions (more precisely, extended Gauss-Bonnet forms) when varied as Cartan forms on subspaces of higher dimensional flat Riemannian manifolds, generate well set, causal exterior differential systems. In particular, the Einstein- Hilbert action 4-form, varied on a 4 dimensional subspace of E(sub 10) yields a well set generalized theory of gravity having no constraints. Rcci-flat solutions are selected by initial conditions on a bounding 3-space.
Architecture in Mission Integration, Choreographing Constraints
NASA Technical Reports Server (NTRS)
Jones, Rod
2000-01-01
In any building project the Architect's role and skill is to balance the client's requirements with the available technology, a site and budget. Time, place and resources set the boundaries and constraints of the project. If these boundaries are correctly understood and respected by the Architect they can be choreographed into producing a facility that abides by those constraints and successfully meets the clients needs. The design and assembly of large scale space facilities whether in orbit around or on the surface of a planet require and employs these same skills. In this case the site is the International Space Station (ISS) which operates at a nominal rendezvous altitude of 220 nautical miles. With supplies to support a 7 day mission the Shuttle nominally has a cargo capacity of 35,000 pounds to that altitude. Through the Mission Integration process the Launch Package Management Team choreographs the constraints of ascent performance, hardware design, cargo, rendezvous, mission duration and assembly time in order to meet the mission objective.
Redshift drift constraints on f( T) gravity
NASA Astrophysics Data System (ADS)
Geng, Jia-Jia; Guo, Rui-Yun; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2015-10-01
We explore the impact of the Sandage-Loeb (SL) test on the precision of cosmological constraints for f( T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the "redshift desert" of 2 ≤ z ≤ 5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f( T) gravity theories. Two typical f( T) models are considered, the power-law model f( T) PL and the exponential-form model f( T) EXP . The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ω m and the Hubble constant H 0 in other cosmological observations. For the considered f( T) models, a 30-year observation of the SL test can improve the constraint precision of Ω m and H 0 enormously but cannot effectively improve the constraint precision of the model parameters.
Constraints on α -attractor inflation and reheating
NASA Astrophysics Data System (ADS)
Ueno, Yoshiki; Yamamoto, Kazuhiro
2016-04-01
We investigate a constraint on reheating followed by α -attractor-type inflation (the E-model and T-model) from an observation of the spectral index ns. When the energy density of the Universe is dominated by an energy component with the cosmic equation-of-state parameter wre during reheating, its e -folding number Nre and the reheating temperature Tre are bounded depending on wre. When the reheating epoch consists of two phases—where the energy density of the Universe is dominated by uniform inflaton field oscillations in the first phase and by relativistic nonthermalized particles in the second phase—we find a constraint on the e -folding number of the first oscillation phase, Nsc, depending on the parameters of the inflaton potential. For the simplest perturbative reheating scenario, we find the lower bound for a coupling constant of inflaton decay in the E-model and T-model depending on the model parameters. We also find a constraint on the α parameter, α ≳0.01 , for the T-model and E-model when we assume a broad resonance reheating scenario.
Learning Kinematic Constraints in Laparoscopic Surgery
Huang, Felix C.; Mussa-Ivaldi, Ferdinando A.; Pugh, Carla M.; Patton, James L.
2012-01-01
To better understand how kinematic variables impact learning in surgical training, we devised an interactive environment for simulated laparoscopic maneuvers, using either 1) mechanical constraints typical of a surgical “box-trainer” or 2) virtual constraints in which free hand movements control virtual tool motion. During training, the virtual tool responded to the absolute position in space (Position-Based) or the orientation (Orientation-Based) of a hand-held sensor. Volunteers were further assigned to different sequences of target distances (Near-Far-Near or Far-Near-Far). Training with the Orientation-Based constraint enabled much lower path error and shorter movement times during training, which suggests that tool motion that simply mirrors joint motion is easier to learn. When evaluated in physically constrained (physical box-trainer) conditions, each group exhibited improved performance from training. However, Position-Based training enabled greater reductions in movement error relative to Orientation-Based (mean difference: 14.0 percent; CI: 0.7, 28.6). Furthermore, the Near-Far-Near schedule allowed a greater decrease in task time relative to the Far-Near-Far sequence (mean −13:5 percent, CI: −19:5, −7:5). Training that focused on shallow tool insertion (near targets) might promote more efficient movement strategies by emphasizing the curvature of tool motion. In addition, our findings suggest that an understanding of absolute tool position is critical to coping with mechanical interactions between the tool and trocar. PMID:23293709
Constraints on neutrino masses from weak lensing
Ichiki, Kiyotomo; Takada, Masahiro; Takahashi, Tomo
2009-01-15
Weak lensing (WL) distortions of distant galaxy images are sensitive to neutrino masses by probing the suppression effect on clustering strengths of total matter in large-scale structure. We use the latest measurements of WL correlations, the Canada-France-Hawaii Telescope Legacy Survey data, to explore constraints on neutrino masses. We find that, while the WL data alone cannot place a stringent limit on neutrino masses due to parameter degeneracies, the constraint can be significantly improved when combined with other cosmological probes, such as the WMAP 5-year data (WMAP5) and the distance measurements of type-Ia supernovae (SNe) and baryon acoustic oscillations (BAO). The upper bounds on the sum of neutrino masses are , 0.76, and 0.54 eV (95% CL) for WL+WMAP5, WMAP5+SNe+BAO, and WL+WMAP5+SNe+BAO, respectively, assuming a flat {lambda}CDM model with finite-mass neutrinos. In deriving these constraints, our analysis includes the non-Gaussian covariances of the WL correlation functions to properly take into account significant correlations between different angles.
The Giant Magellan Telescope (GMT): hydrostatic constraints
NASA Astrophysics Data System (ADS)
Gunnels, Steve
2010-07-01
The Giant Magellan Telescope (GMT) is an optical-infrared 25 Meter ELT to be located in Chile. It is being designed and constructed by a group of U.S. and international universities and research institutions1. Structural performance of large telescopes can be enhanced significantly with the added stiffness that results from distributing loads to many points in the structure. In defining the two rotating assemblies in an altitude-over-azimuth mount more than a kinematic set of constraints can lead to hydrostatic bearing oil film failure due to unintended forces that result from runner bearing irregularities. High Frequency Over Constraint (HFOC) increases stiffness without risk of oil film failure. It was used successfully on the Magellan 6.5 Meter Telescopes. GMT will employ this and two additional methods to enhance stiffness at frequencies from DC wind up through the telescope primary mode frequencies of ~11 Hz. This will be achieved without excessive hydrostatic bearing pad forces. Detailed discussion of GMT's hydrostatic constraints, azimuth track and optics support structure (OSS) runner bearing illustrations, and performance criteria are provided for the design.
HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY
Farooq, Omer; Mania, Data; Ratra, Bharat E-mail: mania@phys.ksu.edu
2013-02-20
We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.
Generalized arc consistency for global cardinality constraint
Regin, J.C.
1996-12-31
A global cardinality constraint (gcc) is specified in terms of a set of variables X = (x{sub 1},..., x{sub p}) which take their values in a subset of V = (v{sub 1},...,v{sub d}). It constrains the number of times a value v{sub i} {epsilon} V is assigned to a variable in X to be in an interval [l{sub i}, c{sub i}]. Cardinality constraints have proved very useful in many real-life problems, such as scheduling, timetabling, or resource allocation. A gcc is more general than a constraint of difference, which requires each interval to be. In this paper, we present an efficient way of implementing generalized arc consistency for a gcc. The algorithm we propose is based on a new theorem of flow theory. Its space complexity is O({vert_bar}X{vert_bar} {times} {vert_bar}V{vert_bar}) and its time complexity is O({vert_bar}X{vert_bar}{sup 2} {times} {vert_bar}V{vert_bar}). We also show how this algorithm can efficiently be combined with other filtering techniques.
Hard Constraints in Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.
2008-01-01
This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.
Breaking evolutionary constraint with a tradeoff ratchet.
de Vos, Marjon G J; Dawid, Alexandre; Sunderlikova, Vanda; Tans, Sander J
2015-12-01
Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype-environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor-operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. PMID:26567153
Breaking evolutionary constraint with a tradeoff ratchet
de Vos, Marjon G. J.; Dawid, Alexandre; Sunderlikova, Vanda; Tans, Sander J.
2015-01-01
Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype–environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor–operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance. PMID:26567153
Universal Quantification in a Constraint-Based Planner
NASA Technical Reports Server (NTRS)
Golden, Keith; Frank, Jeremy; Clancy, Daniel (Technical Monitor)
2002-01-01
Constraints and universal quantification are both useful in planning, but handling universally quantified constraints presents some novel challenges. We present a general approach to proving the validity of universally quantified constraints. The approach essentially consists of checking that the constraint is not violated for all members of the universe. We show that this approach can sometimes be applied even when variable domains are infinite, and we present some useful special cases where this can be done efficiently.
SAT Encoding and CSP Reduction for Interconnected Alldiff Constraints
NASA Astrophysics Data System (ADS)
Lardeux, Frederic; Monfroy, Eric; Saubion, Frederic; Crawford, Broderick; Castro, Carlos
Constraint satisfaction problems (CSP) or Boolean satisfiability problem (SAT) are two well known paradigm to model and solve combinatorial problems. Modeling and resolution of CSP is often strengthened by global constraints (e.g., Alldiff constraint). This paper highlights two different ways of handling specific structural information: a uniform propagation framework to handle (interleaved) Alldiff constraints with some CSP reduction rules; and a SAT encoding of these rules that preserves the reduction properties of CSP.
Strategic Planning under Severe Constraints in a State College
ERIC Educational Resources Information Center
Geisler, Jerry L.; Gilliard, Debbie J.
2007-01-01
This paper examines the difficulties of strategic planning under severe constraints in a state college. Constraints include the planning models available, the governance structure of the college and other externalities, and a not-for-profit model of constraints by Newman and Wallender. After presenting the planning challenges, we discuss…
Second-Class Citizen? Contract Workers' Perceived Status, Dual Commitment and Intent to Quit
ERIC Educational Resources Information Center
Boswell, Wendy R.; Watkins, Maria Baskerville; Triana, Maria del Carmen; Zardkoohi, Asghar; Ren, Run; Umphress, Elizabeth E.
2012-01-01
Outsourcing of jobs to contract workers who work alongside a client's employees has changed the human resource landscape of many organizations. In this study we examine how a contract worker's perceived employment status similarity to the client's own standard employees influences his/her affective commitment to both the client and the employer…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…
A Second Class of Acetylcholinesterase-Deficient Mutants of the Nematode CAENORHABDITIS ELEGANS
Culotti, Joseph G.; Von Ehrenstein, Gunter; Culotti, Marilyn R.; Russell, Richard L.
1981-01-01
In Johnson et al. (1981), the Caenorhabditis elegans mutant strain PR1000, homozygous for the ace-1 mutation p1000, is shown to be deficient in the class A subset of acetylcholinesterases, which comprises approximately one-half of the total C. elegans acetylcholinesterase activity. Beginning with this strain, we have isolated 487 new behavioral and morphological mutant strains. Two of these, independently derived, lack approximately 98% of the wild-type acetylcholinesterase activity and share the same specific uncoordinated phenotype; both move forward in a slow and uncoordinated manner, and when mechanically stimulated to induce reversal, both hypercontract and become temporarily paralyzed. In addition to the ace-1 mutation, both strains also harbor recessive mutations in the same newly identified gene, ace-2, which maps to chromosome I and is therefore not linked to ace-1. Gene dosage experiments suggest that ace-2 is a structural gene for the remaining class B acetylcholinesterases, which are not affected by ace-1.—The uncoordinated phenotype of the newly isolated, doubly mutant strains depends on both the ace-1 and ace-2 mutations; homozygosity for either mutation alone produces normally coordinated animals. This result implies functional overlap of the acetylcholinesterases controlled by ace-1 and ace-2, perhaps at common synapses. Consistent with this, light microscopic histochemical staining of permeabilized whole mounts indicates some areas of possible spatial overlap of these acetylcholinesterases (nerve ring, longitudinal nerve cords). In addition, there is at least one area where only ace-2-controlled acetylcholinesterase activity appears (pharyngeo-intestinal valve). PMID:7274655
Not Second-Class: Title IX, Equity, and Girls' High School Sports
ERIC Educational Resources Information Center
Stader, David L.; Surface, Jeanne L.
2014-01-01
Title IX is designed to protect students from discrimination based on sex in any educational institution that receives financial assistance. This article focuses on Title IX as it applies to high school athletic programs by considering the trial of a high school district in California. A federal court found considerable inequalities between boys…
Women as a Second-Class Minority: A Case for Changing Sex-Role Stereotypes.
ERIC Educational Resources Information Center
Nickerson, Eileen T.
Women, with too few exceptions, are hired less often and for less money, get fewer and smaller raises, are promoted on the job less, and are fired more readily than males of comparable ability and experience. In addition, women in the professions (education included) report discriminatory practices in graduate training and while on the job.…
Off-Campus Students, Our Second-Class Citizens: Improving Self-Images.
ERIC Educational Resources Information Center
Rowh, Mark C.
Needs of off-campus students in Southern West Virginia, and specifically students enrolled at Bluefield State College, are considered. The computer college has several off-campus locations, including one 60 miles away, and it serves a population that tends to have low educational attainment levels. One environmental factor that influences student…
Multiple Gigabit-per-Second Class Data Link Enabling WFIRST at L2
NASA Astrophysics Data System (ADS)
Polidan, Ronald S.; Munger, James; Conti, Alberto
2016-01-01
NASA's Wide-Field Infrared Survey Telescope (WFIRST) will be the first of a new generation of missions, expected to generate amounts of data unprecedented in astrophysics from space. This trend is driven by the availability of high resolution, large area detectors, commonly generating simultaneously spatial and spectral information, and the desire to have access to data in the least processed form. Although this increase in data volume is new for astrophysics missions, the data volume and associated rates are well within the realm of Earth science and other space missions.While NASA currently plans to launch WFIRST into a geosynchronous orbit, there are many advantages to placing future observatories outside of Earth's orbit at locations such as the Sun-Earth libration point L2. These advantages include a more benign radiation environment due to the absence of trapped electrons, eclipse-free Sun illumination for power generation and a stable thermal environment because of the much more slowly varying Sun angle. More importantly, a Sun-Earth libration point L2 orbit will allow for longer integration times thereby enhancing many of the WFIRST mission science cases. These advantages can be realized, if a cost effective, high capacity downlink solution is available. Here, we outline our approach to providing link capacities from L2 in excess of 3 Gbps (3x10^9 bits/s) based on existing, flight proven components. At these rates, even very large data sets can be transmitted in short data bursts, an approach that allows highly efficient scheduling of ground stations.
A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints
Xu, You; Chen, Yixin
2008-06-28
We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.
Inflationary freedom and cosmological neutrino constraints
NASA Astrophysics Data System (ADS)
de Putter, Roland; Linder, Eric V.; Mishra, Abhilash
2014-05-01
The most stringent bounds on the absolute neutrino mass scale come from cosmological data. These bounds are made possible because massive relic neutrinos affect the expansion history of the universe and lead to a suppression of matter clustering on scales smaller than the associated free streaming length. However, the resulting effect on cosmological perturbations is relative to the primordial power spectrum of density perturbations from inflation, so freedom in the primordial power spectrum affects neutrino mass constraints. Using measurements of the cosmic microwave background (CMB), the galaxy power spectrum and the Hubble constant, we constrain neutrino mass and number of species for a model-independent primordial power spectrum. Describing the primordial power spectrum by a 20-node spline, we find that the neutrino mass upper limit is a factor 3 weaker than when a power law form is imposed, if only CMB data are used. The primordial power spectrum itself is constrained to better than 10% in the wave vector range k ≈0.01-0.25 Mpc-1. Galaxy clustering data and a determination of the Hubble constant play a key role in reining in the effects of inflationary freedom on neutrino constraints. The inclusion of both eliminates the inflationary freedom degradation of the neutrino mass bound, giving for the sum of neutrino masses Σmν<0.18 eV (at 95% confidence level, Planck+BOSS+H0), approximately independent of the assumed primordial power spectrum model. When allowing for a free effective number of species, Neff, the joint constraints on Σmν and Neff are loosened by a factor 1.7 when the power law form of the primordial power spectrum is abandoned in favor of the spline parametrization.
Constraints on string networks with junctions
NASA Astrophysics Data System (ADS)
Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.
2007-03-01
We consider the constraints on string networks with junctions in which the strings may all be different, as may be found, for example, in a network of (p,q) cosmic superstrings. We concentrate on three aspects of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two colliding strings with different tensions. As before, the important conclusion is that strings do not always reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian strings become stuck in an X configuration), the constraint depending on the angle at which the strings meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another. However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of strings and calculate the average speed at which a junction moves along each of the three strings from which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove the heavy strings from the network leaving a network of predominantly light strings. Furthermore the r.m.s. velocity of strings in a network with junctions is smaller than 1/2, the result for conventional Nambu-Goto strings without junctions in Minkowski space-time.
Dynamical dark energy: Current constraints and forecasts
NASA Astrophysics Data System (ADS)
Upadhye, Amol; Ishak, Mustapha; Steinhardt, Paul J.
2005-09-01
We consider how well the dark energy equation of state w as a function of redshift z will be measured using current and anticipated experiments. We use a procedure which takes fair account of the uncertainties in the functional dependence of w on z, as well as the parameter degeneracies, and avoids the use of strong prior constraints. We apply the procedure to current data from the Wilkinson Microwave Anisotropy Probe, Sloan Digital Sky Survey, and the supernova searches, and obtain results that are consistent with other analyses using different combinations of data sets. The effects of systematic experimental errors and variations in the analysis technique are discussed. Next, we use the same procedure to forecast the dark energy constraints achievable by the end of the decade, assuming 8 years of Wilkinson Microwave Anisotropy Probe data and realistic projections for ground-based measurements of supernovae and weak lensing. We find the 2σ constraints on the current value of w to be Δw0(2σ)=0.20, and on dw/dz (between z=0 and z=1) to be Δw1(2σ)=0.37. Finally, we compare these limits to other projections in the literature. Most show only a modest improvement; others show a more substantial improvement, but there are serious concerns about systematics. The remaining uncertainty still allows a significant span of competing dark energy models. Most likely, new kinds of measurements, or experiments more sophisticated than those currently planned, are needed to reveal the true nature of dark energy.
Placing Observational Constraints on Massive Star Models
NASA Astrophysics Data System (ADS)
Rosenfield, Philip
2011-10-01
The lives and deaths of massive stars are intricately linked to the evolution of galaxies. Yet, despite their integral importance to understanding galaxy evolution, models of massive stars are inconsistent with observations. These uncertainties can be traced to limited observational constraints available for improving massive star models. A sensitive test of the underlying physics of massive stars, e.g., convection, rotation, and mass loss is to measure the ratio of blue core helium burning stars {BHeB} to red core helium burning stars {RHeB}, 5-20Msun stars in the stage evolution immediately following the main sequence. Even the most sophisticated models cannot accurately predict the observed ratio over a range of metallicities, suggesting an insufficient understanding of the underlying physics. However, observational measurements of this ratio over a wide range of environments would provide substantial constraints on the physical parameters governing the evolution of all stars >5 Msun.We propose to place stringent observational constraints on the physics of massive star evolution by uniformly measuring the B/R HeB ratio in a wide range of galaxies. The HST archive contains high quality optical imaging of resolved stellar populations of dozens of nearby galaxies. From the ANGST program, we identified 38 galaxies, spanning 2 dex in metallicity that have significant BHeB and RHeB populations. Using this sample, we will empirically characterize the colors of the BHeB and RHeB sequences as a function of luminosity and metallicity, measure the B/R ratio, and constrain the lifetimes of the BHeB and RHeBs in the Padova stellar evolution models and the Cambridge STARS code.
Molecular and cellular constraints on proteins
NASA Astrophysics Data System (ADS)
Kortemme, Tanja
Engineering proteins with new sequences, structures and functions has many exciting practical applications, and provides new ways to dissect design principles for function. Recent successes in computational protein design provide a cause for optimism. Yet many functions are currently too complex to engineer predictively, and successful design of new biological activities also requires an understanding of the functional pressures acting on proteins in the context of cells and organisms. I will present two vignettes describing our progress with dissecting both molecular and cellular constraints on protein function. In the first, we characterized the cost and benefit of protein production upon sequence perturbations in a classic system for gene regulation, the lac operon. Our results were unexpected in light of the common assumption that the dominant fitness costs are due to protein expression. Instead, we discovered a direct linear relationship between cost and lacpermease activity, not protein or mRNA production. The magnitude of the cost of permease activity, relative to protein production, has consequences for regulation. Our model predicts an advantage of direct regulation of protein activity (not just expression), providing a new explanation for the long-known mechanism of ``inducer exclusion'' that inhibits transport through the permease. Similar pressures and cost/benefit tradeoffs may be key to engineering synthetic systems with improved fitness. In the second vignette, I will describe our recent efforts to develop computational approaches that predict protein sequences consistent with multiple functional conformations. We expect such ``multi-constraint'' models to improve predictions of functional sequences determined by deep mutational scanning in bacteria, to provide insights into how the balance between functional conformations shapes sequence space, and to highlight molecular and cellular constraints that cannot be captured by the model.
Applying Motion Constraints Based on Test Data
NASA Technical Reports Server (NTRS)
Burlone, Michael
2014-01-01
MSC ADAMS is a simulation software that is used to analyze multibody dynamics. Using user subroutines, it is possible to apply motion constraints to the rigid bodies so that they match the motion profile collected from test data. This presentation describes the process of taking test data and passing it to ADAMS using user subroutines, and uses the Morpheus free-flight 4 test as an example of motion data used for this purpose. Morpheus is the name of a prototype lander vehicle built by NASA that serves as a test bed for various experimental technologies (see backup slides for details) MSC.ADAMS"TM" is used to play back telemetry data (vehicle orientation and position) from each test as the inputs to a 6-DoF general motion constraint (details in backup slides) The MSC.ADAMS"TM" playback simulations allow engineers to examine and analyze flight trajectory as well as observe vehicle motion from any angle and at any playback speed. This facilitates the development of robust and stable control algorithms, increasing reliability and reducing development costs of this developmental engine The simulation also incorporates a 3D model of the artificial hazard field, allowing engineers to visualize and measure performance of the developmental autonomous landing and hazard avoidance technology ADAMS is a multibody dynamics solver. It uses forces, constraints, and mass properties to numerically integrate equations of motion. The ADAMS solver will ask the motion subroutine for position, velocity, and acceleration values at various time steps. Those values must be continuous over the whole time domain. Each degree of freedom in the telemetry data can be examined separately; however, linear interpolation of the telemetry data is invalid, since there will be discontinuities in velocity and acceleration.
Constraints on string networks with junctions
Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.
2007-03-15
We consider the constraints on string networks with junctions in which the strings may all be different, as may be found, for example, in a network of (p,q) cosmic superstrings. We concentrate on three aspects of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two colliding strings with different tensions. As before, the important conclusion is that strings do not always reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian strings become stuck in an X configuration), the constraint depending on the angle at which the strings meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another. However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of strings and calculate the average speed at which a junction moves along each of the three strings from which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove the heavy strings from the network leaving a network of predominantly light strings. Furthermore the r.m.s. velocity of strings in a network with junctions is smaller than 1/{radical}(2), the result for conventional Nambu-Goto strings without junctions in Minkowski space-time.
Integrated Analysis of Airport Capacity and Environmental Constraints
NASA Technical Reports Server (NTRS)
Hasan, Shahab; Long, Dou; Hart, George; Eckhause, Jeremy; Hemm, Robert; Busick, Andrew; Graham, Michael; Thompson, Terry; Murphy, Charles; Poage, James
2010-01-01
LMI conducted an integrated analysis of airport capacity and environmental constraints. identifying and ranking the key factors limiting achievement of NextGen capacity goals. The primary metric used was projected throughput, which was estimated for the years 2015 and 2025 based on the unconstrained demand forecast from the Federal Aviation Administration, and planned improvements including those proposed in the NextGen plan. A set of 310 critical airports was identified.. collectively accounting for more than 99 percent of domestic air traffic volume; a one-off analytical approach was used to isolate the constraint being assessed. The study considered three capacity constraints (runway.. taxiway, and gate) and three environmental constraints (fuel, NO(x) emissions, and noise). For the ten busiest airports, runway and noise are the primary and secondary constraints in both 2015 and 2025. For the OEP 35 airports and overall for the remaining airports, the most binding constraint is noise. Six of the 10 busiest airports, will face runway constraints in 2025, and 95 will face gate constraints. Nearly every airport will be subject to constraints due to emissions and NOx. Runway and taxi constraints are more concentrated in the large airports: environmental constraints are present at almost every airport regardless of size.
Automated Derivation of Complex System Constraints from User Requirements
NASA Technical Reports Server (NTRS)
Muery, Kim; Foshee, Mark; Marsh, Angela
2006-01-01
International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.
Effects of anatomical constraints on tumor growth
NASA Astrophysics Data System (ADS)
Capogrosso Sansone, B.; Delsanto, P. P.; Magnano, M.; Scalerandi, M.
2001-08-01
Competition for available nutrients and the presence of anatomical barriers are major determinants of tumor growth in vivo. We extend a model recently proposed to simulate the growth of neoplasms in real tissues to include geometrical constraints mimicking pressure effects on the tumor surface induced by the presence of rigid or semirigid structures. Different tissues have different diffusivities for nutrients and cells. Despite the simplicity of the approach, based on a few inherently local mechanisms, the numerical results agree qualitatively with clinical data (computed tomography scans of neoplasms) for the larynx and the oral cavity.
Modular Constraints on Calabi-Yau Compactifications
NASA Astrophysics Data System (ADS)
Keller, Christoph A.; Ooguri, Hirosi
2013-11-01
We derive global constraints on the non-BPS sector of supersymmetric 2d sigma-models whose target space is a Calabi-Yau manifold. When the total Hodge number of the Calabi-Yau threefold is sufficiently large, we show that there must be non-BPS primary states whose total conformal weights are less than 0.656. Moreover, the number of such primary states grows at least linearly in the total Hodge number. We discuss implications of these results for Calabi-Yau geometry.
Expected Constraints on Rhea's Interior from Cassini
NASA Technical Reports Server (NTRS)
Castillo, J. C.
2005-01-01
We model the interior of Rhea based on observational constraints and the results from geodynamical models available in the literature. Ten main types of models are defined, depending on the presence or absence of a high-pressure ice layer (ice II), and the extent of separation of the rock component from the volatiles. We present degree-two gravity components computed for each of these models in order to assess which properties of the interior are likely to be inferred from Cassini radio science measurements scheduled on November 26, 2005.
Intelligence Constraints on Terrorist Network Plots
NASA Astrophysics Data System (ADS)
Woo, Gordon
Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.
Design of helicopter rotors to noise constraints
NASA Technical Reports Server (NTRS)
Schaeffer, E. G.; Sternfeld, H., Jr.
1978-01-01
Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.
Mission Implementation Constraints on Planetary Muon Radiography
NASA Technical Reports Server (NTRS)
Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank
2011-01-01
Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)
Ghost imaging lidar via sparsity constraints
NASA Astrophysics Data System (ADS)
Zhao, Chengqiang; Gong, Wenlin; Chen, Mingliang; Li, Enrong; Wang, Hui; Xu, Wendong; Han, Shensheng
2012-10-01
For remote sensing, high-resolution imaging techniques are helpful to catch more characteristic information of the target. We extend pseudo-thermal light ghost imaging to the area of remote imaging and propose a ghost imaging lidar system. The experimental results demonstrate that the real-space image of a target at about 1.0 km range with 20 mm resolution is achieved by ghost imaging via sparsity constraints (GISC) technique. The characters of GISC technique compared to the existing lidar systems are also discussed.
Total-variation regularization with bound constraints
Chartrand, Rick; Wohlberg, Brendt
2009-01-01
We present a new algorithm for bound-constrained total-variation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise. We incorporate previous iterative reweighting algorithms to solve the TV portion.
Mirror nuclei constraint in nuclear mass formula
Wang Ning; Liang Zuoying; Liu Min; Wu, Xizhen
2010-10-15
The macroscopic-microscopic mass formula is further improved by considering mirror nuclei constraint. The rms deviation with respect to 2149 measured nuclear masses is reduced to 0.441 MeV. The shell corrections, the deformations of nuclei, the neutron and proton drip lines, and the shell gaps are also investigated to test the model. The rms deviation of {alpha}-decay energies of 46 superheavy nuclei is reduced to 0.263 MeV. The predicted central position of the superheavy island could lie around N=176{approx}178 and Z=116{approx}120 according to the shell corrections of nuclei.
Quintessence reconstructed: New constraints and tracker viability
Sahlen, Martin; Liddle, Andrew R.; Parkinson, David
2007-01-15
We update and extend our previous work reconstructing the potential of a quintessence field from current observational data. We extend the cosmological data set to include new supernova data, plus information from the cosmic microwave background and from baryon acoustic oscillations. We extend the modeling by considering Pade approximant expansions as well as Taylor series, and by using observations to assess the viability of the tracker hypothesis. We find that parameter constraints have improved by a factor of 2, with a strengthening of the preference of the cosmological constant over evolving quintessence models. Present data show some signs, though inconclusive, of favoring tracker models over nontracker models under our assumptions.
Chemical Constraints on the Early Solar System
NASA Technical Reports Server (NTRS)
Wyckoff, Susan
2004-01-01
Chemical abundances of comets and star-forming regions provide p o w d clues to the conditions which prevailed in the outer solar nebula. Hence comparative spectroscopic studies of cometary and molecular cloud gases provide vital insights into conditions in the solar protoplanetary disk at heliocentric distances beyond 5 AU 4.6 Gyr ago. We proposed a research program which combined optical and sub-millimeter techniques with laboratory spectroscopy, and sought to determine key diagnostic constraints on single-star protoplanetary disk models.
Constraint propagation through electromagnetic interaction topologies
NASA Astrophysics Data System (ADS)
Lovetri, Joe; Graham, Darin P. W.
1990-08-01
The effects of electromagnetic interactions in electrical systems are of concern because of the increasing susceptibility of system components. Heuristic methods are used by engineers to solve electromagnetic interaction problems. An approximate symbolic knowledge representation of a single emitter/path/susceptor problem has been described. In this paper the approximate single emitter/path/susceptor attributes are distributed throughout the electromagnetic topology of a complex system. A constraint based approach for the modelling of the electromagnetic interactions in the system is then described. The approach taken here subdivides the modelling task into: (1) the definition of the related physical topology; (2) constraining topological nodes with specific electromagnetic attributes; and (3) the propagation of the electromagnetic constraints to determine the probability of failure. The scheme has been implemented in Quintus Prolog on a Sun Sparcstation. The electromagnet topology is represented in Prolog using an object-oriented knowledge representation methodology. A small database containing some attributes of electromagnetic components found on the Canadian NSA helicopter was developed. A coarse topological decomposition of the helicopter was made and the attributes for the various components were entered. This tool was very useful in providing understanding of all the complex interaction paths existing in complex systems.
Gene teams with relaxed proximity constraint.
Kim, Sun; Choi, Jeong-Hyeon; Yang, Jiong
2005-01-01
Functionally related genes co-evolve, probably due to the strong selection pressure in evolution. Thus we expect that they are present in multiple genomes. Physical proximity among genes, known as gene team, is a very useful concept to discover functionally related genes in multiple genomes. However, there are also many gene sets that do not preserve physical proximity. In this paper, we generalized the gene team model, that looks for gene clusters in a physically clustered form, to multiple genome cases with relaxed constraint. We propose a novel hybrid pattern model that combines the set and the sequential pattern models. Our model searches for gene clusters with and/or without physical proximity constraint. This model is implemented and tested with 97 genomes (120 replicons). The result was analyzed to show the usefulness of our model. Especially, analysis of gene clusters that belong to B. subtilis and E. coli demonstrated that our model predicted many experimentally verified operons and functionally related clusters. Our program is fast enough to provide a sevice on the web at http://platcom. informatics.indiana.edu/platcom/. Users can select any combination of 97 genomes to predict gene teams. PMID:16447961
Energetic Constraints on Species Coexistence in Birds
Pigot, Alexander L.
2016-01-01
The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity. PMID:26974194
Observational constraints on assisted k-inflation
Ohashi, Junko; Tsujikawa, Shinji
2011-05-15
We study observational constraints on the assisted k-inflation models in which multiple scalar fields join an attractor characterized by an effective single field {phi}. This effective single-field system is described by the Lagrangian P=Xg(Y), where X is the kinetic energy of {phi}, {lambda} is a constant, and g is an arbitrary function in terms of Y=Xe{sup {lambda}{phi}}. Our analysis covers a wide variety of k-inflation models such as dilatonic ghost condensate, Dirac-Born-Infeld field, and tachyon, as well as the canonical field with an exponential potential. We place observational bounds on the parameters of each model from the WMAP 7yr data combined with baryon acoustic oscillations and the Hubble constant measurement. Using the observational constraints of the equilateral non-Gaussianity parameter f{sub NL}{sup equil}, we further restrict the allowed parameter space of dilatonic ghost condensate and Dirac-Born-Infeld models. We extend the analysis to more general models with several different choices of g(Y) and show that the models such as g(Y)=c{sub 0}+c{sub p}Y{sup p} (p{>=}3) are excluded by the joint data analysis of the scalar/tensor spectra and primordial non-Gaussianities.
Curvature constraints from large scale structure
NASA Astrophysics Data System (ADS)
Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien
2016-06-01
We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.
Dipole operator constraints on composite Higgs models
NASA Astrophysics Data System (ADS)
König, Matthias; Neubert, Matthias; Straub, David M.
2014-07-01
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the branching ratio and . After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and or flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.
Stochastic population dynamics under resource constraints
NASA Astrophysics Data System (ADS)
Gavane, Ajinkya S.; Nigam, Rahul
2016-06-01
This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.
Sensor Localization from Distance and Orientation Constraints.
Porta, Josep M; Rull, Aleix; Thomas, Federico
2016-01-01
The sensor localization problem can be formalized using distance and orientation constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in many cases such estimation is not available and a method able to determine all the feasible solutions from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance space can not take into account orientations, or they can only deal with one- or two-dimensional problems and their extension to 3D is troublesome. This paper presents a method that addresses these issues. The proposed approach iteratively projects the problem to decrease its dimension, then reduces the ranges of the variable distances, and back-projects the result to the original dimension, to obtain a tighter approximation of the feasible sensor locations. This paper extends previous works introducing accurate range reduction procedures which effectively integrate the orientation constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a sensor moved by a parallel manipulator are used to validate the approach. PMID:27428977
Sensor Localization from Distance and Orientation Constraints
Porta, Josep M.; Rull, Aleix; Thomas, Federico
2016-01-01
The sensor localization problem can be formalized using distance and orientation constraints, typically in 3D. Local methods can be used to refine an initial location estimation, but in many cases such estimation is not available and a method able to determine all the feasible solutions from scratch is necessary. Unfortunately, existing methods able to find all the solutions in distance space can not take into account orientations, or they can only deal with one- or two-dimensional problems and their extension to 3D is troublesome. This paper presents a method that addresses these issues. The proposed approach iteratively projects the problem to decrease its dimension, then reduces the ranges of the variable distances, and back-projects the result to the original dimension, to obtain a tighter approximation of the feasible sensor locations. This paper extends previous works introducing accurate range reduction procedures which effectively integrate the orientation constraints. The mutual localization of a fleet of robots carrying sensors and the position analysis of a sensor moved by a parallel manipulator are used to validate the approach. PMID:27428977
Constraint-based Temporal Reasoning with Preferences
NASA Technical Reports Server (NTRS)
Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca; Sperduti, Alessandro; Venable, K. Brent
2005-01-01
Often we need to work in scenarios where events happen over time and preferences are associated to event distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses giving tractability results. Moreover, we describe two solvers for this class of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness. Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples.
Approximation Schemes for Scheduling with Availability Constraints
NASA Astrophysics Data System (ADS)
Fu, Bin; Huo, Yumei; Zhao, Hairong
We investigate the problems of scheduling n weighted jobs to m identical machines with availability constraints. We consider two different models of availability constraints: the preventive model where the unavailability is due to preventive machine maintenance, and the fixed job model where the unavailability is due to a priori assignment of some of the n jobs to certain machines at certain times. Both models have applications such as turnaround scheduling or overlay computing. In both models, the objective is to minimize the total weighted completion time. We assume that m is a constant, and the jobs are non-resumable. For the preventive model, it has been shown that there is no approximation algorithm if all machines have unavailable intervals even when w i = p i for all jobs. In this paper, we assume there is one machine permanently available and the processing time of each job is equal to its weight for all jobs. We develop the first PTAS when there are constant number of unavailable intervals. One main feature of our algorithm is that the classification of large and small jobs is with respect to each individual interval, thus not fixed. This classification allows us (1) to enumerate the assignments of large jobs efficiently; (2) and to move small jobs around without increasing the objective value too much, and thus derive our PTAS. Then we show that there is no FPTAS in this case unless P = NP.
Depth constraint of electric submersible pumps
Powers, M.L.
1994-05-01
This paper summarizes the various factors that limit electric submersible pump (ESP) operation at increasing depth. It explores in detail two parametrically related constraints, pump-shaft horsepower capacity and thrust-bearing load capacity. The former limits the product of head and rate; the latter limits head. Optimum shaft diameter for standard-configuration pumps is shown to be a compromise between these two factors. Head and rate limits resulting from these constraints are mathematically defined and graphically displayed, and means for expanding deep pumping capabilities are discussed. This paper also analyzes the effect of increased pumping depth on motor cooling. It shows that the temperature increase of fluid traversing a motor is proportional to head, independent of rate, and very sensitive to pump and motor efficiencies. This work also demonstrates the effect of elevated fluid temperatures associated with increasing depth on motor heat transfer coefficients. The purpose of this paper is to help resolve a perceived dilemma. Pump manufacturers do not develop pumps with ultradeep capability because there is no market for them. Oil producers might abandon ultradeep discovery wells with low reservoir pressure because there is no way to pump them. This paper is intended to promote the interest of both groups in potential deep pumping capabilities.
Planck constraints on holographic dark energy
Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin E-mail: xiaodongli@kias.re.kr E-mail: zhangxin@mail.neu.edu.cn
2013-09-01
We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H{sub 0} = 73.8 ± 2.4 kms{sup −1}Mpc{sup −1}) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω{sub m}h{sup 3} and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ{sup 2}{sub Plank+WP+HST}−χ{sup 2}{sub Plank+WP} is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ{sup 2} is equal to 6
ERIC Educational Resources Information Center
Gálvez, Jaime; Conejo, Ricardo; Guzmán, Eduardo
2013-01-01
One of the most popular student modeling approaches is Constraint-Based Modeling (CBM). It is an efficient approach that can be easily applied inside an Intelligent Tutoring System (ITS). Even with these characteristics, building new ITSs requires carefully designing the domain model to be taught because different sources of errors could affect…
Hard and Soft Constraints in Reliability-Based Design Optimization
NASA Technical Reports Server (NTRS)
Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.
2006-01-01
This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.
Direct handling of equality constraints in multilevel optimization
NASA Technical Reports Server (NTRS)
Renaud, John E.; Gabriele, Gary A.
1990-01-01
In recent years there have been several hierarchic multilevel optimization algorithms proposed and implemented in design studies. Equality constraints are often imposed between levels in these multilevel optimizations to maintain system and subsystem variable continuity. Equality constraints of this nature will be referred to as coupling equality constraints. In many implementation studies these coupling equality constraints have been handled indirectly. This indirect handling has been accomplished using the coupling equality constraints' explicit functional relations to eliminate design variables (generally at the subsystem level), with the resulting optimization taking place in a reduced design space. In one multilevel optimization study where the coupling equality constraints were handled directly, the researchers encountered numerical difficulties which prevented their multilevel optimization from reaching the same minimum found in conventional single level solutions. The researchers did not explain the exact nature of the numerical difficulties other than to associate them with the direct handling of the coupling equality constraints. The coupling equality constraints are handled directly, by employing the Generalized Reduced Gradient (GRG) method as the optimizer within a multilevel linear decomposition scheme based on the Sobieski hierarchic algorithm. Two engineering design examples are solved using this approach. The results show that the direct handling of coupling equality constraints in a multilevel optimization does not introduce any problems when the GRG method is employed as the internal optimizer. The optimums achieved are comparable to those achieved in single level solutions and in multilevel studies where the equality constraints have been handled indirectly.
Adaptive laser link reconfiguration using constraint propagation
NASA Technical Reports Server (NTRS)
Crone, M. S.; Julich, P. M.; Cook, L. M.
1993-01-01
This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications
Emergent Constraints for Cloud Feedbacks and Climate Sensitivity
Klein, Stephen A.; Hall, Alex
2015-10-26
Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less
Emergent Constraints for Cloud Feedbacks and Climate Sensitivity
Klein, Stephen A.; Hall, Alex
2015-10-26
Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.
Evolutionary branching under multi-dimensional evolutionary constraints.
Ito, Hiroshi; Sasaki, Akira
2016-10-21
The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. PMID:27444402
Perturbative Solutions of the Extended Constraint Equations in General Relativity
NASA Astrophysics Data System (ADS)
Butscher, Adrian
2007-05-01
The extended constraint equations arise as a special case of the conformal constraint equations that are satisfied by an initial data hypersurface {mathcal{Z}} in an asymptotically simple space-time satisfying the vacuum conformal Einstein equations developed by H. Friedrich. The extended constraint equations consist of a quasi-linear system of partial differential equations for the induced metric, the second fundamental form and two other tensorial quantities defined on {mathcal{Z}} , and are equivalent to the usual constraint equations that {mathcal{Z}} satisfies as a space-like hypersurface in a space-time satisfying Einstein’s vacuum equation. This article develops a method for finding perturbative, asymptotically flat solutions of the extended constraint equations in a neighbourhood of the flat solution on Euclidean space. This method is fundamentally different from the ‘classical’ method of Lichnerowicz and York that is used to solve the usual constraint equations.
Constraints on parton distribution from CDF
Bodek, A.; CDF Collaboration
1995-10-01
The asymmetry in W{sup -} - W{sup +} production in p{bar p} collisions and Drell-Yan data place tight constraints on parton distributions functions. The W asymmetry data constrain the slope of the quark distribution ratio d(x)/u(x) in the x range 0.007-0.27. The published W asymmetry results from the CDF 1992.3 data ({approx} 20 pb{sup -1}) greatly reduce the systematic error originating from the choice of PDF`s in the W mass measurement at CDF. These published results have also been included in the CTEQ3, MRSA, and GRV94 parton distribution fits. These modern parton distribution functions axe still in good agreement with the new 1993-94 CDF data({approx} 108 pb{sup -1} combined). Preliminary results from CDF for the Drell-Yan cross section in the mass range 11-350 GeV/c{sup 2} are discussed.
Pyrolysis of Precambrian kerogens - Constraints and capabilities
NASA Technical Reports Server (NTRS)
Nagy, B.
1982-01-01
Precambrian kerogens are currently considered to be the primary candidates for the search of biochemical fossils. Degradation of kerogens by relatively 'mild' pyrolysis techniques, such as under high vacuum, can liberate indicative structural moieties which were incorporated in, and perhaps shielded by, these solid and highly condensed, basically aromatic substances. It is necessary to observe analytical constraints (sample size and shape, temperature, pressure, time, etc.) in order to prevent an overabundant yield of secondary pyrolyzates (inter- and intramolecular rearrangements) which can prevent kerogen characterization. Potential biochemical fossils have been found in Precambrian kerogens. Demonstratable syngenetic biochemical fossils are expected after kerogen diagenesis and catagenesis is understood in sufficient detail, and when pyrolysis is augmented by multiple, improved analytical techniques.
Planck constraints on neutrino isocurvature density perturbations
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro
2014-10-01
The recent cosmic microwave background data from the Planck satellite experiment, when combined with Hubble Space Telescope determinations of the Hubble constant, are compatible with a larger, nonstandard number of relativistic degrees of freedom at recombination, parametrized by the neutrino effective number Neff . In the curvaton scenario, a larger value for Neff could arise from a nonzero neutrino chemical potential connected to residual neutrino isocurvature density (NID) perturbations after the decay of the curvaton field, the component of which is parametrized by the amplitude αNID . Here we present new constraints on Neff and αNID from an analysis of recent cosmological data. We find that the Planck+WMAP polarization data set does not show any indication of a NID component (severely constraining its amplitude), and that current indications for a nonstandard Neff are further relaxed.
Constraints from Cosmography in Various Parametrizations
NASA Astrophysics Data System (ADS)
Aviles, Alejandro; Gruber, Christine; Luongo, Orlando; Quevedo, Hernando
2015-01-01
We use cosmography to present constraints on the kinematics of the Universe without postulating any underlying theoretical model a priori. To this end, we use a Markov Chain Monte Carlo analysis to perform comparisons to the supernova Ia union 2 compilation, combined with the Hubble Space Telescope measurements of the Hubble constant, and the Hubble parameter datasets. The cosmographic approach to our analysis is revisited and extended for new notions of redshift presented as alternatives to the redshift z. Furthermore, we introduce a new set of fitting parameters describing the kinematical evolution of the Universe in terms of the equation of state of the Universe and derivatives of the total pressure. Our results are consistent with the ΛCDM model, although alternative models, with nearly constant pressure and no cosmological constant, match the results accurately as well.
Continental magnetic anomaly constraints on continental reconstruction
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Crustal magnetic anomalies mapped by the MAGSAT satellite for North and South America, Europe, Africa, India, Australia and Antarctica and adjacent marine areas were adjusted to a common elevation of 400 km and differentially reduced to the radial pole of intensity 60,000 nT. These radially polarized anomalies are normalized for differential inclination, declination and intensity effects of the geomagnetic field, so that in principle they directly reflected the geometric and magnetic polarization attributes of sources which include regional petrologic variations of the crust and upper mantle, and crustal thickness and thermal perturbations. Continental anomalies demonstrate remarkably detailed correlation of regional magnetic sources across rifted margins when plotted on a reconstruction of Pangea. Accordingly, they suggest further fundamental constraints on the geologic evolution of the continents and their reconstructions.
Constraints on topological order in mott insulators.
Zaletel, Michael P; Vishwanath, Ashvin
2015-02-20
We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility. PMID:25763971
Landscape analysis of constraint satisfaction problems.
Krzakala, Florent; Kurchan, Jorge
2007-08-01
We discuss an analysis of constraint satisfaction problems, such as sphere packing, K-SAT, and graph coloring, in terms of an effective energy landscape. Several intriguing geometrical properties of the solution space become in this light familiar in terms of the well-studied ones of rugged (glassy) energy landscapes. A benchmark algorithm naturally suggested by this construction finds solutions in polynomial time up to a point beyond the clustering and in some cases even the thermodynamic transitions. This point has a simple geometric meaning and can be in principle determined with standard statistical mechanical methods, thus pushing the analytic bound up to which problems are guaranteed to be easy. We illustrate this for the graph 3- and 4-coloring problem. For packing problems the present discussion allows to better characterize the J-point, proposed as a systematic definition of random close packing, and to place it in the context of other theories of glasses. PMID:17930021
Observational constraints on finite scale factor singularities
Denkiewicz, Tomasz
2012-07-01
We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is an allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.
Disk Dispersal: Theoretical Understanding and Observational Constraints
NASA Astrophysics Data System (ADS)
Gorti, U.; Liseau, R.; Sándor, Z.; Clarke, C.
2016-05-01
Protoplanetary disks dissipate rapidly after the central star forms, on time-scales comparable to those inferred for planet formation. In order to allow the formation of planets, disks must survive the dispersive effects of UV and X-ray photoevaporation for at least a few Myr. Viscous accretion depletes significant amounts of the mass in gas and solids, while photoevaporative flows driven by internal and external irradiation remove most of the gas. A reasonably large fraction of the mass in solids and some gas get incorporated into planets. Here, we review our current understanding of disk evolution and dispersal, and discuss how these might affect planet formation. We also discuss existing observational constraints on dispersal mechanisms and future directions.
Quantum gravity constraints from unitarity and analyticity
NASA Astrophysics Data System (ADS)
Bellazzini, Brando; Cheung, Clifford; Remmen, Grant N.
2016-03-01
We derive rigorous bounds on corrections to Einstein gravity using unitarity and analyticity of graviton scattering amplitudes. In D ≥4 spacetime dimensions, these consistency conditions mandate positive coefficients for certain quartic curvature operators. We systematically enumerate all such positivity bounds in D =4 and D =5 before extending to D ≥6 . Afterwards, we derive positivity bounds for supersymmetric operators and verify that all of our constraints are satisfied by weakly coupled string theories. Among quadratic curvature operators, we find that the Gauss-Bonnet term in D ≥5 is inconsistent unless new degrees of freedom enter at the natural cutoff scale defined by the effective theory. Our bounds apply to perturbative ultraviolet completions of gravity.
Constraints on the wing morphology of pterosaurs
Palmer, Colin; Dyke, Gareth
2012-01-01
Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137
Regional magnetic anomaly constraints on continental rifting
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.