Science.gov

Sample records for hilbertian operator spaces

  1. Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.

    PubMed

    Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos

    2009-01-01

    In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects. PMID:19694249

  2. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  3. Space Medicine Medical Operations

    NASA Video Gallery

    This is an overview of the Space and Clinical Operations Division whose mission is to optimize the health, fitness and well-being of flight crews, their dependents and employees of the Johnson Spac...

  4. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  5. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  6. Space Operations in the Eighties.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    Highlights activities/accomplishments and future endeavors related to space operations. Topics discussed include the Space Shuttle, recovery/refurbishment operations, payload manipulator, upper stages operations, tracking and data relay, spacelab, space power systems, space exposure facility, space construction, and space station. (JN)

  7. Space Operations Learning Center

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  8. Small satellite space operations

    NASA Technical Reports Server (NTRS)

    Reiss, Keith

    1994-01-01

    CTA Space Systems has played a premier role in the development of the 'lightsat' programs of the 80's and 90's. The high costs and development times associated with conventional LEO satellite design, fabrication, launch, and operations continue to motivate the development of new methodologies, techniques, and generally low cost and less stringently regulated satellites. These spacecraft employ low power 'lightsat' communications (versus TDRSS for NASA's LEO's) and typically fly missions with payload/experiment suites that can succeed, for example, without heavily redundant backup systems and large infrastructures of personnel and ground support systems. Such small yet adaptable satellites are also typified by their very short contract-to-launch times (often one to two years). This paper reflects several of the methodologies and perspectives of our successful involvement in these innovative programs and suggests how they might relieve NASA's mounting pressures to reduce the cost of both the spacecraft and their companion mission operations. It focuses on the use of adaptable, sufficiently powerful yet inexpensive PC-based ground systems for wide ranging user terminal (UT) applications and master control facilities for mission operations. These systems proved themselves in successfully controlling more than two dozen USAF, USN, and ARPA satellites at CTA/SS. UT versions have linked with both GEO and LEO satellites and functioned autonomously in relay roles often in remote parts of the world. LEO applications particularly illustrate the efficacy of these concepts since a user can easily mount a lightweight antenna, usually an omni or helix with light duty rotors and PC-based drivers. A few feet of coax connected to a small transceiver module (the size of a small PC) and a serial line to an associated PC establishes a communications link and together with the PC constitute a viable ground station. Applications included geomagnetic mapping; spaceborne solid state

  9. Field Operators in Real Space.

    PubMed

    Cederbaum, Lorenz S

    2016-05-19

    Field operators are widely used in many-body theory of indistinguishable particles. In this work it is shown that these operators can be represented solely in position space. Explicit expressions for the field operators in position space are given. Using the derived expression, we further show how by generalizing operators in first quantization to arbitrary particle numbers, one can directly connect to the respective operators in second quantization. A few illustrative examples are also presented. PMID:26594868

  10. Space Shuttle operational logistics plan

    NASA Technical Reports Server (NTRS)

    Botts, J. W.

    1983-01-01

    The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

  11. Space Shuttle contingency landing operations

    NASA Technical Reports Server (NTRS)

    Allen, Andrew M.; Fleming, Robert D.

    1991-01-01

    The sites and operations involved in emergency landings of the Space Shuttle are discussed. The role of international agreements in developing such sites is addressed. Rescue operations following emergency landings are examined.

  12. Space Toxicology: Human Health during Space Operations

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  13. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  14. Training and Tactical Operationally Responsive Space Operations

    NASA Astrophysics Data System (ADS)

    Sorensen, B.; Strunce, R., Jr.

    Current space assets managed by traditional space system control resources provide communication, navigation, intelligence, surveillance, and reconnaissance (ISR) capabilities using satellites that are designed for long life and high reliability. The next generation Operationally Responsive Space (ORS) systems are aimed at providing operational space capabilities which will provide flexibility and responsiveness to the tactical battlefield commander. These capabilities do not exist today. The ORS communication, navigation, and ISR satellites are being designed to replace or supplement existing systems in order to enhance the current space force. These systems are expected to rapidly meet near term space needs of the tactical forces. The ORS concept includes new tactical satellites specifically designed to support contingency operations such as increased communication bandwidth and ISR imagery over the theater for a limited period to support air, ground, and naval force mission. The Concept of Operations (CONOPS) that exists today specifies that in addition to operational control of the satellite, the tasking and scheduling of the ORS tactical satellite for mission data collection in support of the tactical warfighter will be accomplished within the Virtual Mission Operations Center (VMOC). This is very similar to what is currently being accomplished in a fixed Mission Operations Center on existing traditional ISR satellites. The VMOC is merely a distributed environment and the CONOPS remain virtually the same. As a result, there is a significant drawback to the current ORS CONOPS that does not account for the full potential of the ORS paradigm for supporting tactical forces. Although the CONOPS approach may be appropriate for experimental Tactical Satellites (TacSat), it ignores the issues associated with the In-Theater Commander's need to own and operate his dedicated TacSat for most effective warfighting as well as the Warfighter specific CONOPS. What is needed

  15. Science Operation in Space: Lessons

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This program (conceived by a group of veteran Shuttle astronauts) shows prospective experimenters how they can better design their experiments for operation onboard Shuttle flights. Shuttle astronauts Dunbar, Seddon, Hoffman, Cleave, Ross, and ChangDiaz also show how crews live and work in space.

  16. International Space Station Medical Operations

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.

    2008-01-01

    NASA is currently the leader, in conjunction with our Russian counterpart co-leads, of the Multilateral Medical Policy Board (MMPB), the Multilateral Medical Operations Panel (MMOP), which coordinates medical system support for International Space Station (ISS) crews, and the Multilateral Space Medicine Board (MSMB), which medically certifies all crewmembers for space flight on-board the ISS. These three organizations have representatives from NASA, RSA-IMBP (Russian Space Agency- Institute for Biomedical Problems), GCTC (Gagarin Cosmonaut Training Center), ESA (European Space Agency), JAXA (Japanese Space Agency), and CSA (Canadian Space Agency). The policy and strategic coordination of ISS medical operations occurs at this level, and includes interactions with MMOP working groups in Radiation Health, Countermeasures, Extra Vehicular Activity (EVA), Informatics, Environmental Health, Behavioral Health and Performance, Nutrition, Clinical Medicine, Standards, Post-flight Activities and Rehabilitation, and Training. Each ISS Expedition has a lead Crew Surgeon from NASA and a Russian Crew Surgeon from GCTC assigned to the mission. Day-to-day issues are worked real-time by the flight surgeons and biomedical engineers (also called the Integrated Medical Group) on consoles at the MCC (Mission Control Center) in Houston and the TsUP (Center for Flight Control) in Moscow/Korolev. In the future, this may also include mission control centers in Europe and Japan, when their modules are added onto the ISS. Private medical conferences (PMCs) are conducted regularly and upon crew request with the ISS crew via private audio and video communication links from the biomedical MPSR (multipurpose support room) at MCC Houston. When issues arise in the day-to-day medical support of ISS crews, they are discussed and resolved at the SMOT (space medical operations team) meetings, which occur weekly among the International Partners. Any medical or life science issue that is not resolved at

  17. Space station operations task force summary report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A companion to the Space Stations Operation Task Force Panels' Reports, this document summarizes all space station program goals, operations, and the characteristics of the expected user community. Strategies for operation and recommendations for implementation are included.

  18. Space station operating system study

    NASA Technical Reports Server (NTRS)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  19. Space shuttle operational risk assessment

    NASA Astrophysics Data System (ADS)

    Fragola, Joseph R.; Maggio, Gaspare

    1996-03-01

    A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

  20. Space Physiology and Operational Space Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  1. Space Station overall management approach for operations

    NASA Technical Reports Server (NTRS)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  2. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  3. Space shuttle operations integration plan

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  4. Legacy of Operational Space Medicine During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

    2011-01-01

    The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

  5. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  6. Space Infrared (SIRE) Operations Concept For Shuttle

    NASA Astrophysics Data System (ADS)

    Ziegler, Daniel H.

    1981-04-01

    The objective of the Space Infrared (SIRE) Sensor program is to measure LWIR radiation of natural and man made sources in space. Measurements will be used to support development and operation of space based space surveillance systems. This paper describes the planned concept for operating SIRE as a non-deployed payload within the payload bay of the Orbiter. The operations concept is prefaced with an overview of the SIRE system addressing the sensor, space segment, ground segment and supporting elements of the Space Transportation System. This is followed by a description of operational concepts and data processing that will be used within the ground segment during flights to plan, command and evaluate SIRE operations. This responsive system provides for inflight evaluation of data and replanning of measurements as necessary to accomodate operational perturbations from the Orbiter and react to unexpected measurement results.

  7. Space operation center - The key to space industrialization

    NASA Technical Reports Server (NTRS)

    Nassiff, S. H.

    1981-01-01

    The concept of a Shuttle-serviced Space Operations Center (SOC) and SOC program development are reviewed. The subjects discussed include: projected operational support capabilities, SOC elements and subsystems, and supporting research and technology.

  8. Space operation center - The key to space industrialization

    NASA Astrophysics Data System (ADS)

    Nassiff, S. H.

    1981-02-01

    The concept of a Shuttle-serviced Space Operations Center (SOC) and SOC program development are reviewed. The subjects discussed include: projected operational support capabilities, SOC elements and subsystems, and supporting research and technology.

  9. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  10. Quadratic Stochastic Operators with Countable State Space

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir

    2016-03-01

    In this paper, we provide the classes of Poisson and Geometric quadratic stochastic operators with countable state space, study the dynamics of these operators and discuss their application to economics.

  11. Operational Space Weather Activities in the US

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  12. Transition to the space shuttle operations era

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The tasks involved in the Space Shuttle Development Program are discussed. The ten major characteristics of an operational Shuttle are described, as well as the changes occurring in Shuttle processing, on-line operations, operations engineering, and support operations. A summary is given of tasks and goals that are being pursued in the effort to create a cost effective and efficient system.

  13. Space Documentation Services: Operations Handbook.

    ERIC Educational Resources Information Center

    Raitt, D. I.

    A description of the system used by Space Documentation Service (SDS) to disseminate combined and accumulated knowledge, as widely as possible, throughout Europe is given. The RECON network, with the full support of NASA, has gradually been extended so that centers in Member States, may, by installing their own terminals, have direct access to the…

  14. Operational Space Weather in USAF Education

    NASA Astrophysics Data System (ADS)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  15. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  16. Microchemical Analysis Of Space Operation Debris

    NASA Technical Reports Server (NTRS)

    Cummings, Virginia J.; Kim, Hae Soo

    1995-01-01

    Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.

  17. The French Space Operations Act: Technical Regulations

    NASA Astrophysics Data System (ADS)

    Lazare, B.

    2013-12-01

    The French Space Operations Act (FSOA) [1] stipulates that one of the National Technical Regulations' prime objectives is to protect people, property, public health and the environment. Compliance with these Technical Regulations has been mandatory since 10 December, 2010 for space operations by French space operators and for space operations conducted on French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by applicant space operators, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting the Technical Regulations are as follows: requirements must, as far as possible, establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being state of the art; requirements must take previous experience into account. The Technical Regulations are divided into three sections covering requirements common to the launch, control and return of a space object. A special section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the Technical Regulations are: operator safety management system; study of risks to people, property, public health and the Earth's environment; impact study on the outer space environment: space debris generated by the operation; planetary protection. The first version of the Technical Regulations [2], issued in March 2011, is dedicated to unmanned space systems.

  18. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  19. Prediction Techniques in Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  20. Operationally Responsive Space Launch for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The

  1. NASA Deep Space Network Operations Scheduling

    NASA Technical Reports Server (NTRS)

    Enari, D. M.

    1982-01-01

    The functioning of the Deep Space Network Operations Scheduling, Jet Propulsion Laboratory, CA is reviewed. The primary objectives of the Operations Scheduling are: to schedule the worldwide global allocation of ground communications, tracking facilities, and equipment; and to provide deep space telecommunications for command, tracking, telemetry, and control in support of flight mission operations and tests. Elements of the earth set are Deep Space Stations (DSS) which provide the telecommunications link between the earth and spacecraft; NASA Communications Network; Network Data Processing Area; Network Operations Control Area which provides operational direction to the DSS; Mission Control and Computing systems; and Mission Support areas which provide flight control of the spacecraft. Elements of the space set include mission priorities and requirements which determine the spacecraft queue for allocating network resources. Scheduling is discussed in terms of long-range (3 years), mid-range (8 weeks), and short-range (2 weeks).

  2. Operational medicine in Space Station era

    NASA Technical Reports Server (NTRS)

    Furukawa, S.; Buchanan, P.

    1984-01-01

    Medical considerations for long duration manned space missions are examined. The requirements and hardware for medical operations on the Space Station are diagrammatically presented. The physiological and psychological changes that have been observed during space flights are discussed. Crew health maintenance and medical care in the Space Station environment require earth-based and in flight continuity. It is also necessary to identify the appropriate zero-G therapeutic methods for treating a patient. Techniques for transferring patients in orbit and to earth are studied. Considerations are given to control and life support systems and data management for medical operations.

  3. k-diskcyclic operators on Banach spaces

    NASA Astrophysics Data System (ADS)

    Bamerni, Nareen; Kılıçman, Adem

    2016-06-01

    In this paper, we define and study new classes of operators on complex Banach spaces, which we call k-diskcyclic. We use these operators to show that the direct sum of a diskcyclic operator with it self k times (k ≥ 2) does not need to be diskcyclic. However, we show that under certain conditions the latter statement holds true. In particular, we show that an operator T satisfies the diskcyclic criterion if and only if T is k-diskcyclic.

  4. ISS Update: SpaceX Dragon Operations

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries talks with Lead Integration and Systems Engineer Paul Brower about SpaceX Dragon operations as the spacecraft's unberthing approaches. Questions? Ask us ...

  5. NASA Now: International Space Station Payload Operations

    NASA Video Gallery

    In this episode of NASA Now, you’ll hear Katie Presson of the Payload Operations Integration team at NASA's Marshall Space Flight Center in Huntsville, Ala., discuss investigations being conducte...

  6. Future In-Space Operations for Astronomy

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.

    2006-12-01

    Our most ambitious free-space space astronomy endeavors can be realized using architectures that could come out of the Vision for Space Exploration. Future in-space operations (FISO) encompass assembly and construction, testing, servicing and maintenance activities in free-space. It is the enabling strategy for large optical and mechanical systems that cannot be autonomously deployed out of a single launch vehicle, and those high value systems for which lifetime enhancement (upgrades, maintenance, repairs) can offer value. Long-range priority goals in astronomy require filled apertures far larger than under development for the JWST. Since these are vastly greater in diameter than can be accommodated within plausible future launch vehicles, complex in-space deployment or assembly will be essential to achieve future goals for astronomy. As the in-space success with the Hubble Space Telescope has demonstrated, human involvement can dramatically benefit service and maintenance of astronomical facilities in space. Advances in capabilities in robotics will augment and complement this. FISO involves advanced systems for space telerobotics, automated rendezvous and docking, power/propulsion, keep-alive utilities (power, comm, nav, attitude, station-keeping, etc), special-purpose tools, environmental protection and verification equipment. In-space operations can make effective use of the technology, facilities and capabilities being created if future applications are anticipated, since FISO is a natural extension of current ESAS and VSE planning.

  7. Technology Interdependency Roadmaps for Space Operations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1995-01-01

    The requirements for Space Technology are outlined in terms of NASA Strategic Plan. The national emphasis on economic revitalization is described along with the environmental changes needed for the new direction. Space Technology Interdependency (STI) is elaborated in terms of its impact on national priority on science, education, and economy. Some suggested approaches to strengthening STI are outlined. Finally, examples of Technology Roadmaps for Space Operations area are included to illustrate the value of STI for national cohesiveness and economic revitalization.

  8. SpaceX Readies Operational Flight

    NASA Video Gallery

    SpaceX is set to launch the first of a dozen operational missions for NASA to deliver more than 1,000 pounds of supplies to the International Space Station on Oct. 7. Launch time is 8:35 p.m. from ...

  9. Future operational aspects of the Space Station

    NASA Astrophysics Data System (ADS)

    Lippner, Gerhard

    The tasks of International Space Station operation definition and execution are discussed. A grouping into hierarchical levels of tasks and their planning/update periods would result in the sequence: (1) strategic management; (2) tactical management; (3) mission management; (4) element operation, aimed at execution of the element time line and module control; (5) module operation, with emphasis on task distribution/control for subsystems, crew, payload, and between onboard and ground operators; and (6) subsystem operation, including subsystem control. Attention is given to ground infrastructure and the optimization of operational costs.

  10. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  11. International Space Station Payload Operations Integration

    NASA Technical Reports Server (NTRS)

    Fanske, Elizabeth Anne

    2011-01-01

    The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).

  12. Operational modules for space station construction

    NASA Technical Reports Server (NTRS)

    Jackson, L. R.; Moses, P. L.; Scotti, S. J.; Blosser, M. L.

    1984-01-01

    Identification of an effective space construction concept is a current objective of NASA studies. One concept, described in this memorandum, consists of repetitive use of operational modules, which minimizes on-orbit stay time for the shuttle. A space station constructed of operational modules may benefit from fabrication and system checkout in ground-based facilities, and since the modules are the primary structure of the space station, a minimum of additional structure, and trips and on-orbit stay time of the shuttle are required.

  13. The Bender-Dunne basis operators as Hilbert space operators

    SciTech Connect

    Bunao, Joseph; Galapon, Eric A. E-mail: eric.galapon@upd.edu.ph

    2014-02-15

    The Bender-Dunne basis operators, T{sub −m,n}=2{sup −n}∑{sub k=0}{sup n}(n/k )q{sup k}p{sup −m}q{sup n−k} where q and p are the position and momentum operators, respectively, are formal integral operators in position representation in the entire real line R for positive integers n and m. We show, by explicit construction of a dense domain, that the operators T{sub −m,n}'s are densely defined operators in the Hilbert space L{sup 2}(R)

  14. The Future of Operational Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.

  15. Autonomy issues for an operational space station

    NASA Technical Reports Server (NTRS)

    Daly, K. C.; Cox, K. J.

    1983-01-01

    Within the last decade, both the U.S. and the Soviet space programs have taken significant preliminary steps in developing technology and systems which are appropriate for the establishment of space stations. The degree of autonomy which will be provided for the station and the role of the crew represents one of the most critical considerations. The present investigation is concerned with a review of the major autonomy issues associated with a permanent, low earth orbit, operational space station. It is shown that both operational effectiveness and crew safety issues require a relatively high degree of space station autonomy. The autonomy level should, for instance, be higher than that of the present space shuttle. Attention is given to various levels of spacecraft autonomy, system integrity, attitude determination and control, navigation and orbit maintenance, system maintenance and resupply, mission support, and implementation of autonomy.

  16. Space Weather Operational Products in the NOAA Space Environment Center

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.; Onsager, T. G.

    2006-12-01

    The NOAA Space Environment Center (SEC) is the Nation's official source of space weather alerts and warnings, and provides real-time monitoring and forecasting of solar and geophysical events. The SEC, a 24- hour/day operations center, provides space weather products to the scientific and user communities in the United States and around the world. This presentation will provide a brief overview of the SEC current suite of space weather products, with an emphasis on models and products recently introduced into the Operations Center. Customer uses of products will be discussed, which will highlight the diverse customer base for space weather services. Also, models in SEC's testbed will be introduced. SEC's testbed facility is dedicated to moving space environment models from a research-development mode to an operational mode. The status of efforts to replace NASA's aging real-time monitor (ACE) in the solar wind ahead of Earth, an "upstream data buoy", will also be described. Numerous existing and planned space weather products and models rely on near real-time solar wind data.

  17. Space station program operations - Making it work

    NASA Technical Reports Server (NTRS)

    Parker, G. R.

    1985-01-01

    The Space Station Program (SSP) will consist, in part, of a permanently orbiting facility composed of a mix of manned and unmanned elements. To insure that such a facility will be an operationally viable and productive one, capable of performing a myriad of assigned missions, special attention must be given to the following operational disciplines during the design and development of the SSP systems and subsystems: (1) Automation/Autonomy, (2) Customer Interfaces/Operations, (3) Habitability/Crew Productivity, (4) Maintainability, and (5) Logistics. In order to properly address these disciplines, from an operations point of view, the Director of the Space Station Task Force (SSTF) formed the Operations Working Group (OWG) in July 1982, and chartered this group to develop the top level operational technical and management-approach philosophies and requirements for the SSP. This paper attempts to summarize the results and conclusions reached by the OWG after an 18 month intensive study effort.

  18. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  19. Operability engineering in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilkinson, Belinda

    1993-01-01

    Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.

  20. Space Operations Center - A concept analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  1. Operational Space Weather Entering a New Era

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2009-10-01

    U.S. operational space weather is caught between two competing factors. On one hand, directed agency funding at about $1 billion for model development over the past decade has brought modeling maturity to five broad Sun-to-Earth domains, i.e., the Sun, heliosphere, magnetosphere, ionosphere, and thermosphere. On the other hand, agency funding for transitioning these models into operations has been a small fraction of the level provided for model development. This situation has left implementation of operational space weather largely unfunded and woefully undirected, with the exception of a few U.S. Air Force Weather Agency projects. A new vision is needed so that operational space weather can help solve 21st-century challenges.

  2. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  3. Knowledge representation in space flight operations

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1989-01-01

    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.

  4. Operational Implementation of Space Debris Mitigation Procedures

    NASA Astrophysics Data System (ADS)

    Gicquel, Anne-Helene; Bonaventure, Francois

    2013-08-01

    During the spacecraft lifetime, Astrium supports its customers to manage collision risks alerts from the Joint Space Operations Center (JSpOC). This was previously done with hot-line support and a manual operational procedure. Today, it is automated and integrated in QUARTZ, the Astrium Flight Dynamics operational tool. The algorithms and process details for this new 5- step functionality are provided in this paper. To improve this functionality, some R&D activities such as the study of dilution phenomenon and low relative velocity encounters are going on. Regarding end of life disposal, recent operational experiences as well as studies results are presented.

  5. Multimegawatt power sources for commercial space operations

    SciTech Connect

    Dearien, J.A.; Martinell, J.S.

    1988-01-01

    There is a great deal of interest in commercial operation in space today, but very little consideration of where the power to run such an operation is to come from. For any commercial operation in space, the power source, especially those involving kilowatts and megawatts of power, must be considered at the very onset of the venture. The Multimegawatt Space Reactor Program at the Idaho National Engineering Laboratory is working this problem in conjunction with the development of Strategic Defense Initiative needs. The same type of up-front power development program needs to be considered in all discussions associated with commercial development in space. A system developed for a commercial operation in space will most likely be a hybrid system utilizing both electrical and thermal energy. Even if the commercial process consists totally of high power thermal energy usage, there will be a certain amount of electricity required for controls, mass transport, environmental control (if manned), and communications. The optimum system will thus require a great deal of planning and coordination with the development of the commercial process. 2 refs., 4 figs.

  6. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  7. Agile Development Methods for Space Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Webster, Chris

    2012-01-01

    Main stream industry software development practice has gone from a traditional waterfall process to agile iterative development that allows for fast response to customer inputs and produces higher quality software at lower cost. How can we, the space ops community, adopt state of the art software development practice, achieve greater productivity at lower cost, and maintain safe and effective space flight operations? At NASA Ames, we are developing Mission Control Technologies Software, in collaboration with Johnson Space Center (JSC) and, more recently, the Jet Propulsion Laboratory (JPL).

  8. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi-Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the life-cycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reachback support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-ofthe- art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  9. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  10. Space Operations Center: A concept analysis

    NASA Technical Reports Server (NTRS)

    Livingston, L. E.

    1979-01-01

    The Space Operations Center is a concept for a shuttle-service, permanent, manned facility in low Earth orbit. An analysis of this concept was conducted and the results are reported. It is noted that there are no NASA plans at present to implement such a concept. The results are intended for consideration in future planning.

  11. Telescience Operations on International Space Station

    NASA Technical Reports Server (NTRS)

    Schubert, Kathleen E.

    1999-01-01

    This paper describes the concept of telescience operations for the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity science research to enter into a new era of increased scientific and technological data return. The National Aeronautics and Space Administration (NASA) has a vision of distributed ground operations which enables the Principal Investigator direct interaction with his/her on-board experiment from his/her home location. This is the concept of telescience and is essential for maximizing the use of the long duration science environment that ISS provides. The goal of telescience is to provide the capability to fully tele-operate an experiment from any ground location in such a way as to increase the amount and quality of scientific and technological data return and decrease the operations cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes the NASA Lewis Research Center (LeRC) implementation approach for the LeRC Telescience Support Center (TSC) and Principal Investigator Science Operations Sites (SOS) which will fully meet the concept of telescience as prescribed by the Agency.

  12. Centaur operations at the space station

    NASA Technical Reports Server (NTRS)

    Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.

    1987-01-01

    A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.

  13. Technical and operational assessment of molecular nanotechnology for space operations

    NASA Astrophysics Data System (ADS)

    McKendree, Thomas Lawrence

    2001-07-01

    This study assesses the performance of conventional technology and three levels of molecular nanotechnology (MNT) for space operations. The measures of effectiveness are technical performance parameters for five space transportation architectures, and the total logistics cost for an evaluation scenario with mining, market and factory locations on the Moon, Mars and asteroids. On these measures of effectiveness, improvements of 2--4 orders of magnitude are seen in chemical rockets, solar electric ion engines, solar sail accelerations (but not transit times), and in structural masses for planetary skyhooks and towers. Improvements in tether performance and logistics costs are nearer to 1 order of magnitude. Appendices suggest additional improvements may be possible in space mining, closed-environment life support, flexible operations, and with other space transportation architectures. In order to assess logistics cost, this research extends the facility location problem of location theory to orbital space. This extension supports optimal siting of a single facility serving circular, coplanar orbits, locations in elliptic planetary and moon orbits, and heuristic siting of multiple facilities. It focuses on conventional rocket transportation, and on high performance rockets supplying at least 1 m/s2 acceleration and 500,000 m/s exhaust velocity. Mathematica implementations are provided in appendices. Simple MNT allows diamond and buckytube construction. The main benefits are in chemical rocket performance, solar panel specific power, solar electric ion engine performance, and skyhook and tower structural masses. Complex MNT allows very small machinery, permitting large increases in solar panel specific power, which enables solar electric ion engines that are high performance rockets, and thus reduces total logistics costs an order of magnitude. Most Advance MNT allows molecular manufacturing, which enables self-repair, provides at least marginal improvements in nearly

  14. Automation of Hubble Space Telescope Mission Operations

    NASA Technical Reports Server (NTRS)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  15. Space station proximity operations and window design

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1988-01-01

    On-orbit proximity operations (PROX-OPS) consist of all extravehicular activity (EVA) within 1 km of the space station. Because of the potentially large variety of PROX-OPS, very careful planning for space station windows is called for and must consider a great many human factors. The following topics are discussed: (1) basic window design philosophy and assumptions; (2) the concept of the local horizontal - local vertical on-orbit; (3) window linear dimensions; (4) selected anthropomorphic considerations; (5) displays and controls relative to windows; and (6) full window assembly replacement.

  16. Phase-space contraction and quantum operations

    SciTech Connect

    Garcia-Mata, Ignacio; Spina, Maria Elena; Saraceno, Marcos; Carlo, Gabriel

    2005-12-15

    We give a criterion to differentiate between dissipative and diffusive quantum operations. It is based on the classical idea that dissipative processes contract volumes in phase space. We define a quantity that can be regarded as 'quantum phase space contraction rate' and which is related to a fundamental property of quantum channels: nonunitality. We relate it to other properties of the channel and also show a simple example of dissipative noise composed with a chaotic map. The emergence of attractor-like structures is displayed.

  17. Solar Drivers for Space Weather Operations (Invited)

    NASA Astrophysics Data System (ADS)

    White, S. M.

    2013-12-01

    Most space weather effects can be tied back to the Sun, and major research efforts are devoted to understanding the physics of the relevant phenomena with a long-term view of predicting their occurrence. This talk will focus on the current state of knowledge regarding the solar drivers of space weather, and in particular the connection between the science and operational needs. Topics covered will include the effects of solar ionizing flux on communications and navigation, radio interference, flare forecasting, the solar wind and the arrival of coronal mass ejections at Earth.

  18. Space time neural networks for tether operations in space

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    A space shuttle flight scheduled for 1992 will attempt to prove the feasibility of operating tethered payloads in earth orbit. due to the interaction between the Earth's magnetic field and current pulsing through the tether, the tethered system may exhibit a circular transverse oscillation referred to as the 'skiprope' phenomenon. Effective damping of skiprope motion depends on rapid and accurate detection of skiprope magnitude and phase. Because of non-linear dynamic coupling, the satellite attitude behavior has characteristic oscillations during the skiprope motion. Since the satellite attitude motion has many other perturbations, the relationship between the skiprope parameters and attitude time history is very involved and non-linear. We propose a Space-Time Neural Network implementation for filtering satellite rate gyro data to rapidly detect and predict skiprope magnitude and phase. Training and testing of the skiprope detection system will be performed using a validated Orbital Operations Simulator and Space-Time Neural Network software developed in the Software Technology Branch at NASA's Lyndon B. Johnson Space Center.

  19. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  20. Space Operations Center: Shuttle interaction study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The implication of using the Shuttle with the Space Operation Center (SOC), including constraints that the Shuttle will place upon the SOC design. The study identifies the considerations involved in the use of the Shuttle as a part of the SOC concept, and also identifies the constraints to the SOC imposed by the Shuttle in its interactions with the SOC, and on the design or technical solutions which allow satisfactory accomplishment of the interactions.

  1. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  2. Space flight operations communications phraseology and techniques

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1986-01-01

    Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

  3. Cryogenic Electronics Being Developed for Space Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    2002-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that can operate efficiently and reliably in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units to maintain the surrounding temperature of the onboard electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures would not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures. Thereby, such electronics would reduce system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results because semiconductor and dielectric materials have better behavior and tolerance in their electrical and thermal properties at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center is focusing on the research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and in deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial off-the-shelf as well as developed components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, dc-dc converters, operational amplifiers, and oscillators are also being investigated for potential use in low-temperature applications. For example, the output response of an advanced oscillator at room temperature and at -190 C is shown. Most oscillators can operate at temperatures

  4. Space Operation of the MOLA Laser

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.

    2000-01-01

    Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.

  5. NASA's Spitzer Space Telescope's operational mission experience

    NASA Astrophysics Data System (ADS)

    Wilson, Robert K.; Scott, Charles P.

    2006-06-01

    Spitzer Space Telescope, the fourth and final of NASA's Great Observatories, and the cornerstone to NASA's Origins Program, launched on 25 August 2003 into an Earth-trailing solar orbit to acquire infrared observations from space. Spitzer has an 85cm diameter beryllium telescope, which operates near absolute zero utilizing a liquid helium cryostat for cooling the telescope. The helium cryostat though designed for a 2.5 year lifetime, through creative usage now has an expected lifetime of 5.5 years. Spitzer has completed its in-orbit checkout/science verification phases and the first two years of nominal operations becoming the first mission to execute astronomical observations from a solar orbit. Spitzer was designed to probe and explore the universe in the infrared utilizing three state of the art detector arrays providing imaging, photometry, and spectroscopy over the 3-160 micron wavelength range. Spitzer is achieving major advances in the study of astrophysical phenomena across the expanses of our universe. Many technology areas critical to future infrared missions have been successfully demonstrated by Spitzer. These demonstrated technologies include lightweight cryogenic optics, sensitive detector arrays, and a high performance thermal system, combining radiation both passive and active cryogenic cooling of the telescope in space following its warm launch. This paper provides an overview of the Spitzer mission, telescope, cryostat, instruments, spacecraft, its orbit, operations and project management approach and related lessons learned.

  6. SPACE MEDICINE and Medical Operations Overview

    NASA Technical Reports Server (NTRS)

    Dervay, Joe

    2009-01-01

    This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.

  7. Security aspects of space operations data

    NASA Technical Reports Server (NTRS)

    Schmitz, Stefan

    1993-01-01

    This paper deals with data security. It identifies security threats to European Space Agency's (ESA) In Orbit Infrastructure Ground Segment (IOI GS) and proposes a method of dealing with its complex data structures from the security point of view. It is part of the 'Analysis of Failure Modes, Effects Hazards and Risks of the IOI GS for Operations, including Backup Facilities and Functions' carried out on behalf of the European Space Operations Center (ESOC). The security part of this analysis has been prepared with the following aspects in mind: ESA's large decentralized ground facilities for operations, the multiple organizations/users involved in the operations and the developments of ground data systems, and the large heterogeneous network structure enabling access to (sensitive) data which does involve crossing organizational boundaries. An IOI GS data objects classification is introduced to determine the extent of the necessary protection mechanisms. The proposal of security countermeasures is oriented towards the European 'Information Technology Security Evaluation Criteria (ITSEC)' whose hierarchically organized requirements can be directly mapped to the security sensitivity classification.

  8. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  9. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  10. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  11. 76 FR 20717 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  12. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  13. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  14. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space...

  15. International Space Station Increment Operations Services

    NASA Astrophysics Data System (ADS)

    Michaelis, Horst; Sielaff, Christian

    2002-01-01

    The Industrial Operator (IO) has defined End-to-End services to perform efficiently all required operations tasks for the Manned Space Program (MSP) as agreed during the Ministerial Council in Edinburgh in November 2001. Those services are the result of a detailed task analysis based on the operations processes as derived from the Space Station Program Implementation Plans (SPIP) and defined in the Operations Processes Documents (OPD). These services are related to ISS Increment Operations and ATV Mission Operations. Each of these End-to-End services is typically characterised by the following properties: It has a clearly defined starting point, where all requirements on the end-product are fixed and associated performance metrics of the customer are well defined. It has a clearly defined ending point, when the product or service is delivered to the customer and accepted by him, according to the performance metrics defined at the start point. The implementation of the process might be restricted by external boundary conditions and constraints mutually agreed with the customer. As far as those are respected the IO has the free choice to select methods and means of implementation. The ISS Increment Operations Service (IOS) activities required for the MSP Exploitation program cover the complete increment specific cycle starting with the support to strategic planning and ending with the post increment evaluation. These activities are divided into sub-services including the following tasks: - ISS Planning Support covering the support to strategic and tactical planning up to the generation - Development &Payload Integration Support - ISS Increment Preparation - ISS Increment Execution These processes are tight together by the Increment Integration Management, which provides the planning and scheduling of all activities as well as the technical management of the overall process . The paper describes the entire End-to-End ISS Increment Operations service and the

  16. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  17. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based

  18. Space-based Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.

    2003-01-01

    The Space based Operations Grid is intended to integrate the "high end" network services and compute resources that a remote payload investigator needs. This includes integrating and enhancing existing services such as access to telemetry, payload commanding, payload planning and internet voice distribution as well as the addition of services such as video conferencing, collaborative design, modeling or visualization, text messaging, application sharing, and access to existing compute or data grids. Grid technology addresses some of the greatest challenges and opportunities presented by the current trends in technology, i.e. how to take advantage of ever increasing bandwidth, how to manage virtual organizations and how to deal with the increasing threats to information technology security. We will discuss the pros and cons of using grid technology in space-based operations and share current plans for the prototype. It is hoped that early on the prototype can incorporate many of the existing as well as future services that are discussed in the first paragraph above to cooperating International Space Station Principle Investigators both nationally and internationally.

  19. Operational Space Weather Products at IPS

    NASA Astrophysics Data System (ADS)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  20. Distributed decision-making for space operations

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Gardner, J. A.; Willoughby, J. K.

    1990-01-01

    A programmatic and technical perspective in the context of future space applications is presented, that includes some of the management challenges that arise as the decision-making process becomes increasingly more decentralized. Three challenges are discussed: (1) the degree to which the planners must communicate with each other and with those who are seeking space operations resources, (2) the collection, management, employment and dissemination of the information needed to make decisions, and (3) the challenges connected with schedule integration. The technical perspective presented leads to recommended adaptations to the normal scheduling algorithms that retain the 'degrees of freedom' in the planning result. It is shown that these adaptations are specific technical responses to the programmatic challenges discussed.

  1. Transitioning NASA Space Operations to Commercial Services

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Major considerations associated with "Transitioning NASA Space Operations to Commercial Services" are presented in viewgraph form. Specific topics include: 1) Government use of commercial frequencies vs. commercial use of commercial frequencies for government use; 2) Commercial use of government frequencies; 3) Government vs commercial: Access techniques, data formats, and modulation and coding; 4) Government need for multiple sources: backup and competition; 5) Government in perceived competition with commercial service providers if TDRSS is used for commercial purposes; and 6) Coordination required among plans for CSOC, NSCP, and satellite industry.

  2. A flexible telerobotic system for space operations

    NASA Technical Reports Server (NTRS)

    Sliwa, N. O.; Will, R. W.

    1987-01-01

    The objective and design of a proposed goal-oriented knowledge-based telerobotic system for space operations is described. This design effort encompasses the elements of the system executive and user interface and the distribution and general structure of the knowledge base, the displays, and the task sequencing. The objective of the design effort is to provide an expandable structure for a telerobotic system that provides cooperative interaction between the human operator and computer control. The initial phase of the implementation provides a rule-based, goal-oriented script generator to interface to the existing control modes of a telerobotic research system, in the Intelligent Systems Research Lab at NASA Research Center.

  3. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  4. Quantum Mechanical Operators in Multiresolution Hilbert Spaces

    NASA Astrophysics Data System (ADS)

    Pipek, János

    2007-12-01

    Wavelet analysis, which is a shorthand notation for the concept of multiresolution analysis (MRA), becomes increasingly popular in high efficiency storage algorithms of complex spatial distributions. This approach is applied for describing wave functions of quantum systems. At any resolution level of MRA expansions a physical observable is represented by an infinite matrix which is "canonically" chosen as the projection of its operator in the Schrödinger picture onto the subspace of the given resolution. It is shown that this canonical choice is only a particular member of possible operator representations. Among these, there exits an optimal choice, usually different from the canonical one, which gives the best numerical values in eigenvalue problems. This construction works even in those cases, where the canonical definition is unusable. The commutation relation of physical operators is also studied in MRA subspaces. It is shown that the required commutation rules are satisfied in the fine resolution limit, whereas in coarse grained spaces a correction appears depending only on the representation of the momentum operator.

  5. National Space Transportation System Reference. Volume 2: Operations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.

  6. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  7. Solar thematic maps for space weather operations

    USGS Publications Warehouse

    Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.

    2012-01-01

    Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.

  8. Robotic vision techniques for space operations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1994-01-01

    Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.

  9. Space Technology 5 Launch and Operations

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Concha, Marco A.; Morrissey, James R.; Placanica, Samuel J.; Russo, Angela M.; Tsai, Dean C.

    2007-01-01

    The three spacecraft that made up the Space Technology 5 (ST5) mission were successfully launched and deployed from their Pegasus launch vehicle on March 22, 2006. Final contact with the spacecraft occurred on June 30, 2006, with all Level 1 requirements met. By the end of the mission, all ST5 technologies had been validated, all on-board attitude control system (ACS) modes had been successfully demonstrated, and the desired constellation configurations had been achieved to demonstrate the ability of small spacecraft to take quality science measurements, However, during those 100 days (ST5 was planned to be a 90-day mission), there were a number of anomalies that made achieving the mission goals very challenging. This paper will discuss: the chronology of the ST5 launch and early operations, work performed to diagnose and work-around a sun sensor anomaly, spacecraft tests devised to demonstrate correct operation of all onboard ACS modes, the maneuver plan performed to achieve the desired constellation, investigations performed by members of the ST5 GN&C and Science teams of an anomalous spin down condition, and the end-of-life orbit and passivating operations performed on the three spacecraft.

  10. Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

  11. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  12. Space Station Initial Operational Concept (IOC) operations and safety view - Automation and robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1989-01-01

    The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.

  13. JPL Space Telecommunications Radio System Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  14. Economic consequences of commercial space operations

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  15. Operator space entanglement entropy in a transverse Ising chain

    SciTech Connect

    Prosen, Tomaz; Pizorn, Iztok

    2007-09-15

    The efficiency of time-dependent density matrix renormalization group methods is intrinsically connected to the rate of entanglement growth. We introduce a measure of entanglement in the space of operators and show, for a transverse Ising spin-1/2 chain, that the simulation of observables, contrary to the simulation of typical pure quantum states, is efficient for initial local operators. For initial operators with a finite index in Majorana representation, the operator space entanglement entropy saturates with time to a level which is calculated analytically, while for initial operators with infinite index the growth of operator space entanglement entropy is shown to be logarithmic.

  16. Space Operations Learning Center Facebook Application

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  17. Performance Support Tools for Space Medical Operations

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Schmid, Josef; Barshi, Immanuel

    2010-01-01

    Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons.

  18. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  19. Space operations and the human factor

    NASA Astrophysics Data System (ADS)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  20. Operational Aspects of Space Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Weyland, M. D.; Johnson, A. S.; Semones, E. J.; Shelfer, T.; Dardano, C.; Lin, T.; Zapp, N. E.; Rutledge, R.; George, T.

    2005-01-01

    Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.

  1. Critical Function Models for Operation of the International Space Station

    SciTech Connect

    Nelson, William Roy; Bagian, T. M.

    2000-11-01

    Long duration and exploration class space missions will place new requirements on human performance when compared to current space shuttle missions. Specifically, assembly and operation of the International Space Station (ISS) will place significant new demands on the crew. For example, maintenance of systems that provide habitability will become an ongoing activity for the international flight crews. Tasks for maintaining space station habitability will need to be integrated with tasks associated with scientific research. In addition, tasks and resources will need to be prioritized and allocated dynamically in response to changing operational conditions and unplanned system breakdowns. This paper describes an ongoing program to develop a habitability index (HI) for space operations based on the critical function approach. This pilot project focuses on adaptation of the critical function approach to develop a habitability index specifically tailored for space operations. Further work will then be needed to expand and validate the habitability index for application in the ISS operational environment.

  2. A distributed planning concept for Space Station payload operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  3. Space Shuttle Propulsion Materials, Manufacturing, and Operational Challenges

    NASA Technical Reports Server (NTRS)

    Owen, James; Welzyn, Ken; Vanhooser, Katherine; Moore, Dennis; Wood, David

    2011-01-01

    Presentations in this session include: (1) External Tank (ET) Materials, Manufacturing, and Operational Challenges; (2) Space Shuttle Main Engine (SSME) Materials, Manufacturing, and Operational Challenges,(3) Reusable Solid Rocket Motor (RSRM) Materials, Manufacturing, and Operational Challenges and (4) Solid Rocket Booster (SRB) Materials, Manufacturing, and Operational Challenges.

  4. Revitalizing Space Operations through Total Quality Management

    NASA Technical Reports Server (NTRS)

    Baylis, William T.

    1995-01-01

    The purpose of this paper is to show the reader what total quality management (TQM) is and how to apply TQM in the space systems and management arena. TQM is easily understood, can be implemented in any type of business organization, and works.

  5. An Open Specification for Space Project Mission Operations Control Architectures

    NASA Technical Reports Server (NTRS)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  6. Requirements and specifications of the space telescope for scientific operations

    NASA Technical Reports Server (NTRS)

    West, D. K.

    1976-01-01

    Requirements for the scientific operations of the Space Telescope and the Science Institute are used to develop operational interfaces between user scientists and the NASA ground system. General data systems are defined for observatory scheduling, daily science planning, and science data management. Hardware, software, manpower, and space are specified for several science institute locations and support options.

  7. Space Station - An integrated approach to operational logistics support

    NASA Technical Reports Server (NTRS)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  8. Economics in ground operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1973-01-01

    The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.

  9. Statistical porcess control in Deep Space Network operation

    NASA Technical Reports Server (NTRS)

    Hodder, J. A.

    2002-01-01

    This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).

  10. Dirac operators on quasi-Hamiltonian G-spaces

    NASA Astrophysics Data System (ADS)

    Song, Yanli

    2016-08-01

    We construct twisted spinor bundles as well as twisted pre-quantum bundles on quasi-Hamiltonian G-spaces, using the spin representation of loop group and the Hilbert space of Wess-Zumino-Witten model. We then define a Hilbert space together with a Dirac operator acting on it. The main result of this paper is that we show the Dirac operator has a well-defined index given by positive energy representation of the loop group. This generalizes the geometric quantization of Hamiltonian G-spaces to quasi-Hamiltonian G-spaces.

  11. An operations management system for the Space Station

    NASA Astrophysics Data System (ADS)

    Savage, Terry R.

    A description is provided of an Operations Management System (OMS) for the planned NASA Space Station. The OMS would be distributed both in space and on the ground, and provide a transparent interface to the communications and data processing facilities of the Space Station Program. The allocation of OMS responsibilities has, in the most current Space Station design, been fragmented among the Communications and Tracking Subsystem (CTS), the Data Management System (DMS), and a redefined OMS. In this current view, OMS is less of a participant in the real-time processing, and more an overseer of the health and management of the Space Station operations.

  12. Fire safety concerns in space operations

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1987-01-01

    This paper reviews the state-of-the-art in fire control techniques and identifies important issues for continuing research, technology, and standards. For the future permanent orbiting facility, the space station, fire prevention and control calls for not only more stringent fire safety due to the long-term and complex missions, but also for simplified and flexible safety rules to accommodate the variety of users. Future research must address a better understanding of the microgravity space environment as it influences fire propagation and extinction and the application of the technology of fire detection, extinguishment, and material assessment. Spacecraft fire safety should also consider the adaptation of methods and concepts derived from aircraft and undersea experience.

  13. Water sprays in space retrieval operations

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  14. Expert systems and advanced automation for space missions operations

    NASA Technical Reports Server (NTRS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  15. Operational Space Weather Needs - Perspectives from SEASONS 2014

    NASA Astrophysics Data System (ADS)

    Comberiate, J.; Kelly, M. A.; Paxton, L. J.; Schaefer, R. K.; Bust, G. S.; Sotirelis, T.; Fox, N. J.

    2014-12-01

    A key challenge for the operational space weather community is the gap between the latest scientific data, models, methods, and indices and those that are currently used in operational systems. The November 2014 SEASONS (Space Environment Applications, Systems, and Operations for National Security) Workshop at JHU/APL in Laurel, Maryland, brings together representatives from the operational and scientific communities. The theme of SEASONS 2014 is "Beyond Climatology," with a focus on how space weather events threaten operational assets and disrupt missions. Here we present perspectives from SEASONS 2014 on new observations, models in development, and forecasting methods that are of interest to the operational space weather community. Highlighted topics include ionospheric data assimilation and forecasting models, HF propagation models, radiation belt observations, and energetic particle modeling. The SEASONS 2014 web site can be found at https://secwww.jhuapl.edu/SEASONS/

  16. Logistics: An integral part of cost efficient space operations

    NASA Technical Reports Server (NTRS)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  17. Cross support overview and operations concept for future space missions

    NASA Technical Reports Server (NTRS)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  18. Space station operations task force. Panel 4 report: Management integration

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  19. User interface and operational issues with thermionic space power systems

    NASA Technical Reports Server (NTRS)

    Dahlberg, R. C.; Fisher, C. R.

    1987-01-01

    Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.

  20. Performance Support Tools for Space Medical Operations

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky E.; Schmidt, Josef; Barshi, Immanuel

    2009-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Human factors personnel at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground. This area of research involved the feasibility of Just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction were captured. Information needed by the FS during ISS mission support, especially for an emergency situation (e.g. fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS

  1. Space operations center: Shuttle interaction study extension, executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) is conceived as a permanent facility in low Earth orbit incorporating capabilities for space systems construction; space vehicle assembly, launching, recovery and servicing; and the servicing of co-orbiting satellites. The Shuttle Transportation System is an integral element of the SOC concept. It will transport the various elements of the SOC into space and support the assembly operation. Subsequently, it will regularly service the SOC with crew rotations, crew supplies, construction materials, construction equipment and components, space vehicle elements, and propellants and spare parts. The implications to the SOC as a consequence of the Shuttle supporting operations are analyzed. Programmatic influences associated with propellant deliveries, spacecraft servicing, and total shuttle flight operations are addressed.

  2. Development of operational models for space weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, Siqing; Gong, Jiancun

    Since space weather prediction is currently at the stage of transition from human experience to objective forecasting methods, developing operational forecasting models becomes an important way to improve the capabilities of space weather service. As the existing theoretical models are not fully operational when it comes to space weather prediction, we carried out researches on developing operational models, considering the user needs for prediction of key elements in space environment, which have vital impacts on space assets security. We focused on solar activities, geomagnetic activities, high-energy particles, atmospheric density, plasma environment and so forth. Great progresses have been made in developing 3D dynamic asymmetric magnetopause model, plasma sheet energetic electron flux forecasting model and 400km-atmospheric density forecasting model, and also in the prediction of high-speed solar-wind streams from coronal holes and geomagnetic AE indices. Some of these models have already been running in the operational system of Space Environment Prediction Center, National Space Science Center (SEPC/NSSC). This presentation will introduce the research plans for space weather prediction in China, and current progresses of developing operational models and their applications in daily space weather services in SEPC/NSSC.

  3. Operational support considerations in Space Shuttle prelaunch processing

    NASA Technical Reports Server (NTRS)

    Schuiling, Roelof L.

    1991-01-01

    This paper presents an overview of operational support for Space Shuttle payload processing at the John F. Kennedy Space Center. The paper begins with a discussion of the Shuttle payload processing operation itself. It discusses the major organizational roles and describes the two major classes of payload operations: Spacelab mission payload and vertically-installed payload operations. The paper continues by describing the Launch Site Support Team and the Payload Processing Test Team. Specific areas of operational support are then identified including security and access, training, transport and handling, documentation and scheduling. Specific references for further investigatgion are included.

  4. TAMU: A New Space Mission Operations Paradigm

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  5. Ground operation of robotics on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.

    1993-01-01

    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.

  6. Operational Space Weather Forecasting: Requirements and Future Needs

    NASA Astrophysics Data System (ADS)

    Henley, E.; Gibbs, M.; Jackson, D.; Marsh, M. S.

    2015-12-01

    The Met Office has over 150 years' experience in providing operational forecasting to meet the UK's terrestrial weather needs, and is developing a similar capability in space weather. Since April 2014 the Met Office Space Weather Operations Centre (MOSWOC) has issued 24/7 operational forecasts, alerts and warnings on space weather which can have impacts on electricity grids, radio communications and satellite electronics. In this talk we will summarise the current requirements and future needs for operational space weather forecasting. We will review what the terrestrial weather community considers as operational forecasts, and use MOSWOC as an example of the underpinning research, IT and collaborations required to accomplish this. We will also discuss the policy, science evidence base and user support requirements needed to obtain sufficient long-term funding for operational activities, illustrating this with the UK's national risk register, Royal Academy of Engineering report, and the forthcoming IPSP economic study, as well as work done with users to ensure services match their needs. These are similar activities to those being undertaken in SWORM and the COSPAR/ILWS Space Weather Shield to Society Roadmap. Future needs will also be considered, considering the need for operational observations, particularly focussing on the role an L5 mission could play; a chain of coupled operational models covering the Sun, Earth, and intervening space; and how these observations and models can be integrated via data assimilation.

  7. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  8. Engineering, construction, and operations in space

    NASA Astrophysics Data System (ADS)

    Johnson, Stewart W.; Wetzel, John P.

    The century-old Mond process for carbonyl extraction of metals from ore shows great promise as an efficient low energy scheme for producing high-purity Fe, Ni, Cr, Mn, and Co from lunar or asteroidal feedstocks. Scenarios for winning oxygen from the lunar regolith can be enhanced by carbonyl processing of the metallic alloy by-products of such operations. The native metal content of asteroidal regoliths is even more suitable to carbonyl processing. High-purity, corrosion resistant Fe and Ni can be extracted from asteroidial feedstocks along with a Co-rich residue containing 0.5 percent platinum-group metals. The resulting gaseous metal carbonyl can produce a variety of end products using efficient vapor forming techniques.

  9. Engineering, construction, and operations in space

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W. (Editor); Wetzel, John P. (Editor)

    1990-01-01

    The century-old Mond process for carbonyl extraction of metals from ore shows great promise as an efficient low energy scheme for producing high-purity Fe, Ni, Cr, Mn, and Co from lunar or asteroidal feedstocks. Scenarios for winning oxygen from the lunar regolith can be enhanced by carbonyl processing of the metallic alloy by-products of such operations. The native metal content of asteroidal regoliths is even more suitable to carbonyl processing. High-purity, corrosion resistant Fe and Ni can be extracted from asteroidial feedstocks along with a Co-rich residue containing 0.5 percent platinum-group metals. The resulting gaseous metal carbonyl can produce a variety of end products using efficient vapor forming techniques.

  10. Space Shuttle Proximity Operation Sensor Study

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Alem, W. K.

    1978-01-01

    The performance of the Kuband radar was analyzed in detail, and the performance was updated and summarized. In so doing, two different radar design philosophies were described, and the corresponding differences in losses were enumerated. The resulting design margins were determined for both design philosophies and for both the designated and nondesignated range modes of operation. In some cases, the design margin was about zero, and in other cases it was significantly less than zero. With the point of view described above, the recommended solution is to allow more scan time but at the present scan rate. With no other changes in the present configuration, the radar met design detection specifications for all design philosophies at a range of 11.3 nautical miles.

  11. Glan Clwyd operating space is transformed.

    PubMed

    Baillie, Jonathan

    2012-08-01

    Turnkey construction company, MTX Contracts, has recently completed a suite of five 'modern and future-proofed' operating theatres at the Ysbyty Glan Clwyd in Bodelwyddan, Denbighshire, in the first phase of a 90-phase, 89.9 million pounds sterling redevelopment of facilities at the North Wales hospital being undertaken by Laing O'Rourke for the Betsi Cadwaladr University Health Board. According to Dr Eileen Williams, a consultant anaesthetist at the hospital, and the clinical lead on the hospital redevelopment project, the new theatre facilities will enable surgeons to undertake a wide range of surgical procedures, equipped with the most modern technology, in an environment that is not only lighter, brighter, and better laid out than the six previous theatres, but will also improve patient flow, aid infection control, and greatly enhance overall working efficiencies. PMID:22984742

  12. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  13. Kennedy Space Center Medical Operations and Medical Kit

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip

    2011-01-01

    This slide presentation reviews the emergency medical operations at Kennedy Space center, the KSC launch and landing contingency modes, the triage site, the medical kit, and the medications available.

  14. How Long Can the Hubble Space Telescope Operate Reliably?

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  15. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  16. Orbital Dynamics of Space Debris around operational artificial satellites

    NASA Astrophysics Data System (ADS)

    Sampaio, Jarbas

    2016-07-01

    The increasing number of space debris, orbiting the Earth justifies and requires more efforts to observe and track them to avoid collisions among them and the earth's satellites. In this way, several studies are important to preserve the operability of the artificial satellites. In this work, the orbital dynamics of space debris are studied in the neighborhood of operational artificial satellites. The results show that the collision risks between these objects is high and solutions to avoid these events are necessary.

  17. Space operations center applications of satellite service equipment

    NASA Technical Reports Server (NTRS)

    Mccaffrey, R. W.

    1982-01-01

    Satellite servicing requirements for a continuously manned Space Operations Center (SOC) are discussed. Applications for Orbiter developed service equipment are described, together with representative satellite servicing operations for use on SOC. These services cover the full mission cycle from orbital deployment to on-orbit maintenance/repair and, eventually, removal from orbit. An orbiting base, such as the SOC, can provide many of the same services at less cost than the Space Shuttle transportation system.

  18. Natural environment support guidelines for Space Shuttle tests and operations

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Brown, S. C.

    1974-01-01

    The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.

  19. An Operations Management System for the Space Station

    NASA Astrophysics Data System (ADS)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  20. Validating Physics-based Space Weather Models for Operational Use

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Singer, Howard; Millward, George; Toth, Gabor; Welling, Daniel

    2016-07-01

    The Geospace components of the Space Weather Modeling Framework developed at the University of Michigan is presently transitioned to operational use by the NOAA Space Weather Prediction Center. This talk will discuss the various ways the model is validated and skill scores are calculated.

  1. Space Station Freedom payload operations from the user's perspective

    NASA Technical Reports Server (NTRS)

    Robey, J. L.; Leech, S. A.

    1992-01-01

    This report describes the Microgravity Science and Applications Division's (MSAD) operations concept for using the Space Station Freedom (SSF) program ground data systems and services, and the plans for and capabilities of the MSAD remote User Operations Facilities (UOF) from which the MSAD SSF payloads will be operated. Attention is given to the MSAD operational phases, the MSAD UOF concept, and UOF operations teams. MSAD is planning remote payload operations for a number of Spacelab missions which will supply MSAD valuable information for application to the development of UOFs in the SSF era.

  2. Space Shuttle Main Engine (SSME) Systems Operation Overview and Evolution

    NASA Technical Reports Server (NTRS)

    Benefield, Philip A.; Kan, Kenneth C.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a large thrust class, reusable, staged combustion cycle rocket engine employing liquid hydrogen and liquid oxygen propellants. A cluster of three SSMEs is used on every space shuttle mission to propel the space shuttle orbiter vehicle into low earth orbit. Development of the SSME began in the early 70's and the first flight of the space shuttle occurred in 1981. Today, the SSME has accrued over one million seconds of ground test and flight operational time, launching 129 space shuttle missions. The systems operation of the SSME was developed and evolved to support the specific requirements of the Space Shuttle Program (SSP). This paper provides a systems operation overview of the SSME, including: engine cycle, propellant flowpaths, and major components; control system; operations during pre-start, start, mainstage, and shutdown phases; launch commit criteria (LCCs) and operational redlines. Furthermore, this paper will discuss how changes to the SSME over its history have impacted systems operations.

  3. Near Real Time Data for Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2014-12-01

    Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.

  4. How the Station will operate. [operation, management, and maintenance in space

    NASA Technical Reports Server (NTRS)

    Cox, John T.

    1988-01-01

    Aspects of the upcoming operational phase of the Space Station (SS) are examined. What the crew members will do with their time in their specialized roles is addressed. SS maintenance and servicing and the interaction of the SS Control Center with Johnson Space Center is discussed. The planning of payload operations and strategic planning for the SS are examined.

  5. Transportation and operations aspects of space energy systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.

    1989-01-01

    A brief comparative analysis was made for three concepts of supplying large-scale electrical energy to Earth from space. The concepts were: (1) mining helium-3 on the Moon and returning it to Earth; (2) constructing solar power satellites in geosynchronous orbit from lunar materials (the energy is beamed by microwave to receivers on Earth); and (3) constructing power collection and beaming systems on the Moon itself and transmitting the energy to Earth by microwave. This analysis concerned mainly space transportation and operations, but each of the systems is briefly characterized to provide a basis for space transportation and operations analysis.

  6. Lights Out Operations of a Space, Ground, Sensorweb

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Tran, Daniel; Johnston, Mark; Davies, Ashley Gerard; Castano, Rebecca; Rabideau, Gregg; Cichy, Benjamin; Doubleday, Joshua; Pieri, David; Scharenbroich, Lucas; Kedar, Sharon; Chao, Yi; Mandl, Dan; Frye, Stuart; Song, WenZhan; Kyle, Philip; LaHusen, Rick; Cappelaere, Patrice

    2008-01-01

    We have been operating an autonomous, integrated sensorweb linking numerous space and ground sensors in 24/7 operations since 2004. This sensorweb includes elements of space data acquisition (MODIS, GOES, and EO-1), space asset retasking (EO-1), integration of data acquired from ground sensor networks with on-demand ground processing of data into science products. These assets are being integrated using web service standards from the Open Geospatial Consortium. Future plans include extension to fixed and mobile surface and subsurface sea assets as part of the NSF's ORION Program.

  7. Survey on nonlocal games and operator space theory

    NASA Astrophysics Data System (ADS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  8. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  9. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  10. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2002-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  11. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2001-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  12. Development of a Space Station Operations Management System

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  13. Centaur operations at the space station: Cost and transportation analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A study was conducted to expand on the results of an initial study entitled Centaur Operations at the Space Station. The previous study developed technology demonstration missions (TDMs) that utilized the Centaur G-prime upper stage to advance OTV technologies required for accomodations and operations at the Space Station. An initial evaluation was performed of the cost to NASA for TDM implementation. Due to the potential for commercial communication satellite operation utilizing the TDM hardware, an evaluation of the Centaur's transportation potential was also performed.

  14. Development of a Space Station Operations Management System

    NASA Astrophysics Data System (ADS)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  15. DSN co-observing operations to support space VLBI missions

    NASA Technical Reports Server (NTRS)

    Altunin, Valery I.; Kuiper, Thomas B.; Wolken, Pamela R.

    1994-01-01

    Reliable radio astronomy support of space very long baseline interferometry (VLBI) missions by ground radio telescopes is mandatory in order to achieve a high scientific return from the missions. The 70 m DSN antennas along with other ground radio telescopes will perform as the ground segment of the earth-space interferometer. Improvements of radio astronomy VLBI operations at the DSN to achieve higher reliability, efficiency, flexibility, and lower operations costs is a major goal in preparing for radio astronomy support of SVLBI. To help realize this goal, a remote control and monitoring mode for radio astronomy operations at the DSN has been developed.

  16. Space station operations task force. Panel 2 report: Ground operations and support systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.

  17. On condition numbers of spectral operators in a hilbert space

    NASA Astrophysics Data System (ADS)

    Gil', Michael

    2015-12-01

    We consider a linear unbounded operator A in a separable Hilbert space. with the following property: there is a normal operator D with a discrete spectrum, such Vert A-DVert <∞ . Besides, all the Eigen values of D are different. Under certain assumptions it is shown that A is similar to a normal operator and a sharp bound for the condition number is suggested. Applications of that bound to spectrum perturbations and operator functions are also discussed. As an illustrative example we consider a non-selfadjoint differential operator.

  18. A Space Data System Standard for Telerobotic Operations

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Martinez, Lindolfo

    2014-01-01

    The Telerobotics Working Group of the Mission Operations and Information Management Services Area of the Consultative Committee for Space Data Systems is drafting a document that will help bound the scope of an eventual international standard for telerobotic operations services. This paper will present the work in progress and provide background for how the international community is beginning to define standards in telerobotic operations that will help ensure the success of complex missions to explore beyond Earth orbit.

  19. USAF engineering and service roles in space operations - Building the foundation for our future space infrastructure

    NASA Astrophysics Data System (ADS)

    Martin, Robert J.

    The USAF Engineering and Services (E&S) is described in terms of its activities that support ground stations, launch bases, and space-based facilities. E&S is structured according to a master plan for space support and exploitation which includes infrastructure operations and management, infrastructure acquisition, environmental protection, and technology transfer. Also included in the E&S masterplan are personnel education and development, human services, and readiness objectives for the support of space operations and general USAF operations. The USAF E&S operations are expected to support the modernization of space-launch and -range infrastructure, develop training methods and personnel for space support, and improve traditional E&S support technologies and techniques.

  20. International Space Station Alpha user payload operations concept

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.

    1994-01-01

    International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.

  1. Distributed networks enable advances in US space weather operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    2011-06-01

    Space weather, the shorter-term variable impact of the Sun’s photons, solar wind particles, and interplanetary magnetic field upon the Earth’s environment, adversely affects our technological systems. These technological systems, including their space component, are increasingly being seen as a way to help solve 21st Century problems such as climate change, energy access, fresh water availability, and transportation coordination. Thus, the effects of space weather on space systems and assets must be mitigated and operational space weather using automated distributed networks has emerged as a common operations methodology. The evolution of space weather operations is described and the description of distributed network architectures is provided, including their use of tiers, data objects, redundancy, and time domain definitions. There are several existing distributed networks now providing space weather information and the lessons learned in developing those networks are discussed along with the details of examples for the Solar Irradiance Platform (SIP), Communication Alert and Prediction System (CAPS), GEO Alert and Prediction System (GAPS), LEO Alert and Prediction System (LAPS), Radiation Alert and Prediction System (RAPS), and Magnetosphere Alert and Prediction System (MAPS).

  2. IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.

  3. Remote manual operator for space station intermodule ventilation valve

    NASA Technical Reports Server (NTRS)

    Guyaux, James R.

    1996-01-01

    The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.

  4. Hubble Space Telescope on-line operations coordination

    NASA Astrophysics Data System (ADS)

    Lychenheim, David E.; Pepe, Joyce; Knapp, Debra

    2002-12-01

    An important aspect of the Hubble Space Telescope (HST) operations is the ability to quickly disseminate and coordinate spacecraft commanding and ground system information for both routine spacecraft operations and Space Shuttle Servicing Missions. When deviating from preplanned activities all new spacecraft commanding, ground system and space system configurations must be reviewed, authorized and executed in an efficient manner. The information describing the changes must be disseminated to and coordinated by a large group of users. In the early years of the HST mission a paper-based Operational Request System was used. The system worked, but was cumbersome to efficiently coordinate with a large geographically dispersed group of users in a timely manner. As network and server technology matured, the HST Project developed an on-line interactive Operations Request System. This Operations Request System is a server-based system (access via HST Net) that provides immediate access to command and ground system information to both local and remotely based Instrument Engineers, Flight Operations Team Controllers, Subsystem Engineers and Project Management. This paper describes the various aspects of the system's submission, review, authorization and implementation processes. Also described is the methodology used to arrive at the current system design and the Graphical User Interface (GUI). This system has been used successfully for all routine and special HST operations for the last five years. This approach to operations coordination is adaptable to spacecraft of any complexity.

  5. Predicting Space Weather: Challenges for Research and Operations

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  6. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  7. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, James A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  8. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, Jim

    2010-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  9. Space Operations Training Concepts Benchmark Study (Training in a Continuous Operations Environment)

    NASA Astrophysics Data System (ADS)

    Johnston, A. E.

    2002-01-01

    The NASA/USAF Benchmark Space Operations Training Concepts Study will perform a comparative analysis of the space operations training programs utilized by the United States Air Force Space Command with those utilized by the National Aeronautics and Space Administration. The concentration of the study will be focused on Ground Controller/Flight Controller Training for the International Space Station Payload Program. The duration of the study is expected to be five months with report completion by 30 June 2002. The U.S. Air Force Space Command was chosen as the most likely candidate for this benchmark study because their experience in payload operations controller training and user interfaces compares favorably with the Payload Operations Integration Center's training and user interfaces. These similarities can be seen in the dynamics of missions/payloads, controller on-console requirements, and currency/ proficiency challenges to name a few. It is expected that the report will look at the respective programs and investigate goals of each training program, unique training challenges posed by space operations ground controller environments, processes of setting up controller training programs, phases of controller training, methods of controller training, techniques to evaluate adequacy of controller knowledge and the training received, and approaches to training administration. The report will provide recommendations to the respective agencies based on the findings. Following selection of participants and an approval to proceed, initial contact will be made with U.S. Air Force Space Command Directorate of Training to discuss steps to accomplish the study.

  10. Operational Concepts for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Vaden, Karl R.; Jones, Robert E.; Roberts, Anthony M.

    2015-01-01

    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  11. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  12. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  13. Parallel CFD Supporting NASA's Space Operations Mission Directorate

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2008-01-01

    This slide presentation reviews the use of parallel Computational Fluid Dynamics (CFD) in support of NASA's space operations. Particular attention was devoted to the development of the Space Shuttle, and the use of CFD in designing the shuttle and the work after the Columbia accident. The presentation ends with a discussion of the reasons for CFD and the use of parallel computers in the design and testing of spacecraft.

  14. Analysis of remote operating systems for space-based servicing operations, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  15. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  16. NOAA Operational Space Environmental Monitoring - Current Capabilities and Future Directions

    NASA Astrophysics Data System (ADS)

    Denig, William; Redmon, Rob; Mulligan, Patricia

    2014-05-01

    During the next few years the U.S. National Oceanic and Atmospheric Administration (NOAA) will field new operational capabilities for monitoring the near-earth space environment in addition to maintaining continued measurements in geostationary orbit. The most exciting new capability will be transitioning routine solar wind and magnetic field measurements at L1 (240 Re) from the NASA Advanced Composition Explorer (ACE) satellite to the Deep Space Climate Observatory (DSCOVR) which will be launched in early 2015 with a projected on-orbit readiness in mid-2015. Also under consideration is a solar-sail demonstration mission, called SUNJAMMER, for acquiring plasma and field measurements at twice the L1 location. Both DSCOVR and SUNJAMMER will provide a near-term advanced warning of impending space weather events that can adversely affect communications, satellite operations, GPS positioning and commercial air transportation. NESDIS has also supported the development of a Compact Coronagraph (CCOR) which could provide a several day warning of space weather when coupled with an interplanetary disturbance propagation model like ENLIL. Routine monitoring of the ionosphere will be provided by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) II as a system which is a partnership among the Taiwan's National Space Organization, the U.S. Air Force and NOAA. The new operational capabilities provided by DSCOVR, SUNJAMMER, CCOR and COSMIC II are provided against the backdrop of continued space environmental measurements from the Geostationary Operational Environmental Satellites (GOES) which, in the near future, will transition to the GOES-R series of advanced space weather sensors. Continued space environmental measurements in polar low earth orbit (LEO) will continue to be provided by the remaining Polar Operational Environmental Satellites (POES) and the European MetOp satellites. Instrument specialists at the National Geophysical Data Center

  17. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  18. Application of System Operational Effectiveness Methodology to Space Launch Vehicle Development and Operations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Kelley, Gary W.

    2012-01-01

    The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.

  19. Boundedness of generalized Cesaro averaging operators on certain function spaces

    NASA Astrophysics Data System (ADS)

    Agrawal, M. R.; Howlett, P. G.; Lucas, S. K.; Naik, S.; Ponnusamy, S.

    2005-08-01

    We define a two-parameter family of Cesaro averaging operators , where , is analytic on the unit disc [Delta], and F(a,b;c;z) is the classical hypergeometric function. In the present article the boundedness of , , on various function spaces such as Hardy, BMOA and a-Bloch spaces is proved. In the special case b=1+[alpha] and c=1, becomes the [alpha]-Cesaro operator , . Thus, our results connect the special functions in a natural way and extend and improve several well-known results of Hardy-Littlewood, Miao, Stempak and Xiao.

  20. Technology for a NASA Space-Based Science Operations Grid

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.

    2003-01-01

    This viewgraph representation presents an overview of a proposal to develop a space-based operations grid in support of space-based science experiments. The development of such a grid would provide a dynamic, secure and scalable architecture based on standards and next-generation reusable software and would enable greater science collaboration and productivity through the use of shared resources and distributed computing. The authors propose developing this concept for use on payload experiments carried aboard the International Space Station. Topics covered include: grid definitions, portals, grid development and coordination, grid technology and potential uses of such a grid.

  1. Space station proximity operations windows: Human factors design guidelines

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Proximity operations refers to all activities outside the Space Station which take place within a 1-km radius. Since there will be a large number of different operations involving manned and unmanned vehicles, single- and multiperson crews, automated and manually controlled flight, a wide variety of cargo, and construction/repair activities, accurate and continuous human monitoring of these operations from a specially designed control station on Space Station will be required. Total situational awareness will be required. This paper presents numerous human factors design guidelines and related background information for control windows which will support proximity operations. Separate sections deal with natural and artificial illumination geometry; all basic rendezvous vector approaches; window field-of-view requirements; window size; shape and placement criteria; window optical characteristics as they relate to human perception; maintenance and protection issues; and a comprehensive review of windows installed on U.S. and U.S.S.R. manned vehicles.

  2. The Triangle of the Space Launch System Operations

    NASA Astrophysics Data System (ADS)

    Fayolle, Eric

    2010-09-01

    Firemen know it as “fire triangle”, mathematicians know it as “golden triangle”, sailormen know it as “Bermuda triangle”, politicians know it as “Weimar triangle”… This article aims to present a new aspect of that shape geometry in the space launch system world: “the triangle of the space launch system operations”. This triangle is composed of these three following topics, which have to be taken into account for any space launch system operation processing: design, safety and operational use. Design performance is of course taking into account since the early preliminary phase of a system development. This design performance is matured all along the development phases, thanks to consecutives iterations in order to respect the financial and timing constraints imposed to the development of the system. This process leads to a detailed and precise design to assess the required performance. Then, the operational use phase brings its batch of constraints during the use of the system. This phase is conducted by specific procedures for each operation. Each procedure has sequences for each sub-system, which have to be conducted in a very precise chronological way. These procedures can be processed by automatic way or manual way, with the necessity or not of the implication of operators, and in a determined environment. Safeguard aims to verify the respect of the specific constraints imposed to guarantee the safety of persons and property, the protection of public health and the environment. Safeguard has to be taken into account above the operational constraints of any space operation, without forgetting the highest safety level for the operators of the space operation, and of course without damaging the facilities or without disturbing the external environment. All space operations are the result of a “win-win” compromise between these three topics. Contrary to the fire triangle where one of the topics has to be suppressed in order to avoid the

  3. Operational considerations for a crewed nuclear powered space transportation vehicle

    NASA Astrophysics Data System (ADS)

    Borrer, Jerry L.; Hoffman, Stephen J.

    1993-01-01

    Applying nuclear propulsion technology to human space travel will require new approaches to conducting human operations in space. Due to the remoteness of these types of missions, the crew and their vehicle must be capable of operating independent from Earth-based support. This paper discusses current operational studies which address methods for performing these types of remote and autonomous missions. Methods of managing the hazards to humans who will operate these high-energy nuclear-powered transportation vehicles also is reviewed. Crew training for both normal and contingency operations is considered. Options are evaluated on how best to train crews to operate and maintain the systems associated with a nuclear engine. Methods of maintaining crew proficiency during the long months of space travel are discussed. Vehicle health maintenance also will be a primary concern during these long missions. A discussion is presented on how on-board vehicle health maintenance systems will monitor system trends, identified system weaknesses, and either isolate critical failures or provide the crew with adequate warning of impending problems.

  4. Modular Software Interfaces for Revolutionary Flexibility in Space Operations

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Braham, Stephen; Pollack, Jay

    2005-01-01

    To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation

  5. First Commerical Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nall, Mark E.; Robinson, Robert K.; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    As part of NASA's mission of furthering the commercial development of space, the Space Product Development Office has sponsored the flight of seven commercial payloads to the International Space Station (ISS) during calendar year 2001. Most of these payloads, which are among the first users of this new laboratory, build upon successful commercial investigations that previously were restricted to the limited flight duration of the Space Shuttle. These commercial operations range from multi-media, in the form of Dreamtime, to biotechnology such as in Advanced Astroculture, to advanced materials such as Zeolite Crystal Growth. Industry investment in the commercial program has continued to remain high, while awaiting long term access to space, which the ISS provides. While the majority of early commercial use of the ISS is in the area of biotechnology, there is a significant shift towards commercial materials research over the next two years. In order to take fall advantage of the ISS, much of the commercial hardware is designed to be left on Station, while the Shuttle brings samples up and down. This not only makes good use of this valuable space resource, it has the added benefit of having commercial hardware available on the ISS for scientific users. In order to provide benefit to the entire NASA microgravity program, the scientific community on a space available basis can use a variety of commercial apparatus at very low cost. In addition to the solution crystal growth capability of Creosote Crystal Growth, in 2002 containerless processing will be available in the form of Space-DRUMS, and in 2003, thermophysical properties research can be performed in the Vulcan furnace. The first commercial operations on the ISS provides not only a much needed capability to the commercial development of space program, it also has the potential to augment the science program as well.

  6. The design and orbital operation of Space Flyer Unit

    NASA Astrophysics Data System (ADS)

    Kuriki, K.; Ninomiya, K.; Nagatomo, M.; Tsuya, N.; Kawachi, M.; Ijichi, K.; Kimura, H.

    The Space Flyer Unit is a retrievable and re-usable multipurpose platform. The first SFU mission (SFU-1) will be launched by Japanese H-II rocket and retrieved by the United States Space Shuttle. SFU system consists of the core system and payloads. The core system provides standardized interfaces and services for payload integration and operation. The core system is reusable with proper post mission maintenances. Electrical furnaces for material processing, technology development experiments such as two-dimensionally deployable mechanism, electric propulsion experiment, a partial model of Japanese Experiment Module of the Space Station and a space infrared telescope are among the payloads of SFU-1. In addition to ground based system, SFU will be equipped with an onboard navigation and guidance system which will be used for the rendezvous with Space Shuttle. The SFU-1 launch date is targeted for the first quarter of 1994 and retrieved after several months of operation in orbit. The brief description of the core system and the in-orbit operation, emphasized on retrieval phase, will be presented in this paper.

  7. Applications of triggered lightning to space vehicle operations

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Sanicandro, Rocco; Rompalla, John; Wohlman, Richard

    1992-01-01

    Kennedy Space Center (KSC) and the USAF Eastern Space Missile Center (ESMC) covering an area of 25 x 40 km are frequently called America's Spaceport. This title is earned through the integration, by labor and management, of many skills in a wide variety of engineering fields to solve many technical problems that occur during the launch processing of space vehicles. Weather is one of these problems, and although less frequent in time and duration when compared to engineering type problems, has caused costly and life threatening situations. This sensitivity to weather, especially lightning, was recognized in the very early pioneer days of space operations. The need to protect the many v\\facilities, space flight hardware, and personnel from electrified clouds capable of producing lightning was a critical element in improving launch operations. A KSC lightning committee was formed and directed to improve lightning protection, detection, and measuring systems and required that all theoretical studies be confirmed by KSC field data. Over the years, there have been several lightning incidents involving flight vehicles during ground processing as well as launch. Subsequent investigations revealed the need to improve these systems as well as the knowledge of the electrical atmosphere and its effects on operations in regard to cost and safety. Presented here is how, KSC Atmospheric Science Field Laboratory (AFSL), in particular Rocket Triggered Lightning, is being used to solve these problems.

  8. Servicing operations for the SIRTF Observatory at the Space Station

    NASA Technical Reports Server (NTRS)

    Wiltsee, Christopher B.; Manning, Larry A.

    1987-01-01

    This paper describes the servicing requirements, plans, and proposed Space Station-based servicing operations for the Space Infrared Telescope Facility (SIRTF) Observatory. SIRTF is a cryogenically-cooled, long-life, one meter class space telescope which will be operated by NASA as a free-flying observatory for infrared astronomy, in the mid-1990's. To achieve its 5-year lifetime requirement (10 year goal), SIRTF must be replenished periodically with cryogenic helium and have its life-limited modular subsystems replaced; capability for contingency repair of warm components will also be provided in the Observatory design. A general description of the SIRTF Observatory is given, including options for the support systems (spacecraft). The overall servicing philosophy and plans are addressed with scheduling and needed support elements described. A proposed Space Station-based servicing scenario is described, including orbital transfer, servicing and checkout operations. A detailed description and timeline for liquid helium replenishment operations is provided, including a conceptual design and technology development program for the cryogenic helium transfer dewar (tanker). Finally, a preliminary SIRTF spares/logistics philosophy is outlined, including tradeoffs to be considered.

  9. Initiating Sustainable Operations at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Orrell, Josh

    2003-01-01

    Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.

  10. Space Station Freedom technology payload user operations facility concept

    NASA Technical Reports Server (NTRS)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  11. Assessment of Emerging Networks to Support Future NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Younes, Badri; Chang, Susan; Berman, Ted; Burns, Mark; LaFontaine, Richard; Lease, Robert

    1998-01-01

    Various issues associated with assessing emerging networks to support future NASA space operations are presented in viewgraph form. Specific topics include: 1) Emerging commercial satellite systems; 2) NASA LEO satellite support through commercial systems; 3) Communications coverage, user terminal assessment and regulatory assessment; 4) NASA LEO missions overview; and 5) Simulation assumptions and results.

  12. Simulating the operations of the reusable shuttle space vehicle.

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Byers, J. K.

    1971-01-01

    A stochastic simulation model has been developed using the General Purpose Simulation System (GPSS) II language to analyze the operations of a fleet of Shuttle space vehicles. This paper presents the approach used in developing the model, results obtained from some of the analyses performed to date, and an interpretation of the results as they were presented to management personnel.

  13. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  14. Real-Time Data Use for Operational Space Weather Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Nobis, T. E.

    2010-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Division of the Space and Missile Systems Center (AFSPC SYAG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command’s (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products were developed to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems in real/near-real time. This real-time attribute is the primary factor in allowing for actual operational product output, but it’s also responsible for a variety of detrimental effects that need to be considered, researched, mitigated, or otherwise eliminated in future/upgrade product applications. This presentation will provide brief overviews of the SEEFS products, along with information and recommendations concerned with their near/real-time data acquisition and use, to include: input data requirements, inputs/outputs ownership, observation cadence, transmission/receipt links and cadence, data latency, quality control, error propagation and associated confidence level applications, and ensemble model run potentials. Validation issues related to real-time data will also be addressed, along with recommendations for new real-time data archiving that should prove operationally beneficial.

  15. Orbital Debris: the Growing Threat to Space Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.

  16. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  17. Asynchronous Message Service for Deep Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2006-01-01

    While the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) provides internationally standardized file transfer functionality that can offer significant benefits for deep space mission operations, not all spacecraft communication requirements are necessarily best met by file transfer. In particular, continuous event-driven asynchronous message exchange may also be useful for communications with, among, and aboard spacecraft. CCSDS has therefore undertaken the development of a new Asynchronous Message Service (AMS) standard, designed to provide common functionality over a wide variety of underlying transport services, ranging from shared memory message queues to CCSDS telemetry systems. The present paper discusses the design concepts of AMS, their applicability to deep space mission operations problems, and the results of preliminary performance testing obtained from exercise of a prototype implementation.

  18. Integrated Ground Operations Demonstration for Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Johnson, Robert G.; Notardonato, William U.

    2014-01-01

    The NASA Advanced Exploration Systems (AES) program has a three year project to develop and demonstrate technologies to fundamentally change the way ground servicing activities support future access to space architectures. The AES Integrated Ground Operation Demonstration Units (IGODU) project has created two test beds for investigating and maturing two key elements of spaceport processing activities. The first is the GODU Integrated Refrigeration and Storage test bed that is demonstrating zero-loss storage of liquid hydrogen propellants and studying the storage and transfer of densified propellants. The second activity is the GODU Autonomous Control test bed that is implementing health management technologies and autonomous control capability of the propellant loading process to reduce the standing army of experts historically needed to ensure safe propellant loading operations. This presentation will give an overview of the activities at the Kennedy Space Center on these two test beds and its potential impact on future access to space programs.

  19. Design reuse experience of space and hazardous operations robots

    NASA Technical Reports Server (NTRS)

    Oneil, P. Graham

    1994-01-01

    A comparison of design drivers for space and hazardous nuclear waste operating robots details similarities and differences in operations, performance and environmental parameters for these critical environments. The similarities are exploited to provide low risk system components based on reuse principles and design knowledge. Risk reduction techniques are used for bridging areas of significant differences. As an example, risk reduction of a new sensor design for nuclear environment operations is employed to provide upgradeable replacement units in a reusable architecture for significantly higher levels of radiation.

  20. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  1. Modeling and simulation for space medicine operations: preliminary requirements considered.

    PubMed

    Dawson, D L; Billica, R D; McDonald, P V

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed. PMID:11317721

  2. Autonomous Payload Operations Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.

    2007-01-01

    Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.

  3. Expanding Remote Science Operations Capabilities Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig A.; Dyer, Steven V.; Gibbs, Richard E., III; Cech, John G.

    2004-01-01

    EXPRESS Racks have been supporting payload science operations onboard the International Space Station (ISS) since April of 2001. EXPRESS is an acronym that stands for "EXpedite the PRocessing of Experiments to Space Station." This name reflects NASA's focus to simplify the process of manifesting experiments and maximizing scientific research capabilities by providing a robust, remotely operated payload support platform. The EXPRESS Rack System was developed by NASA's Marshall Space Flight Center (MSFC) and built by The Boeing Company in Huntsville, Alabama. Eight EXPRESS racks were built and five are currently onboard the ISS supporting science operations. The design and development of the EXPRESS Rack System is a long story that has been documented in previous publications. This paper briefly describes the facilities used to develop and verify flight software, test operational capabilities. It then traces the advancements made in the operational capabilities of the EXPRESS Racks from the time they were launched on STS-100 through the present. The paper concludes with a description of potential enhancements that will make the EXPRESS racks one of the most advanced and capable remote science platforms ever developed.

  4. On Volterra quadratic stochastic operators with continual state space

    SciTech Connect

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.

  5. On Volterra quadratic stochastic operators with continual state space

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-01

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (V λ )(A ) = ∫X ∫X P (x ,y ,A )d λ (x )d λ (y ), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim n →∞ Vn(λ ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.

  6. Aircraft operability methods applied to space launch vehicles

    SciTech Connect

    Young, D.

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The {open_quotes}building in{close_quotes} of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program. {copyright} {ital 1997 American Institute of Physics.}

  7. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  8. Microbiology operations and facilities aboard restructured Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.

  9. Generalized space and linear momentum operators in quantum mechanics

    SciTech Connect

    Costa, Bruno G. da

    2014-06-15

    We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p{sup ^}{sub q}, and its canonically conjugate deformed position operator x{sup ^}{sub q}. A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed.

  10. Space Test and Operations Port for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    2004-01-01

    The International Space Station (ISS) has from its inception included plans to support the testing of exploration vehicle/systems technology, the assembly of space transport vehicles, and a variety of operations support (communications, crew transfer, cargo handling, etc). Despite the fact that the ISS has gone through several re-designs and reductions in size and capabilities over the past 20 years, it still has the key capabilities, truss structure, docking nodes, etc required to support these exploration mission activities. ISS is much like a frontier outpost in the Old West, which may not have been in optimum location (orbit) for assisting travelers on their way to California (the Moon and Mars), but nevertheless because it had supplies and other support services (regular logistics from Earth, crewmembers, robotics, and technology test and assembly support capabilities) was regularly used as a stopover and next trip phase preparation site by all kinds of travelers. This paper will describe some of the ISS capabilities which are being used currently, and are being planned for use, by various payload sponsors, developers and Principal Investigators, sponsored by the NASA Office of Space Flight (Code M ISS Research Program Office - Department of Defense (DoD), NASA Hqs Office of Space Communications, Italian Space Agency, etc.). Initial ideas and concepts for payloads and technology testing which are being planned, or which are being investigated, for use in support of advanced space technology development and verification and exploration mission activities will be summarized. Some of the future ISS payloads and test activities already identified include materials and system component space environment testing, laser space communication system demonstrations (leading to the possible development of an ISS deep space communication node), and an advanced space propulsion testbed and ISS based, free-flying platform.

  11. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    NASA Technical Reports Server (NTRS)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  12. Space Mission Operations Ground Systems Integration Customer Service

    NASA Technical Reports Server (NTRS)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  13. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  14. Operational training for the mission operations at the Brazilian National Institute for Space Research (INPE)

    NASA Technical Reports Server (NTRS)

    Rozenfeld, Pawel

    1993-01-01

    This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.

  15. Joint Space Operations Center (JSpOC) Mission System (JMS)

    NASA Astrophysics Data System (ADS)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  16. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called "Lie manifolds" -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  17. Science operations with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Sonneborn, George; Pollizzi, Joe; Brown, Thomas; Isaacs, John

    2012-09-01

    The James Webb Space Telescope (JWST) will be a powerful space observatory whose four science instruments will deliver rich imaging and multiplexed spectroscopic datasets to the astronomical and planetary science communities. The ground segment for JWST, now being designed and built, will carry out JWST's science operations. The ground segment includes: software that the scientific community will use to propose and specify new observations; systems that will schedule science and calibration observations in a way that respects physical and investigator-specified constraints, while satisfying preferences for efficient observing, low background levels, and distributed subscription across a year; the infrastructure to regularly measure and maintain the telescope's wavefront; orbit determination, ranging, and tracking; communication via the Deep Space Network to command the observatory and retrieve scientific data; onboard scripts that execute each observing program in an event-driven fashion, with occasional interruptions for targets of opportunity or time-critical observations; and a system that processes and calibrates the data into science-ready products, automatically recalibrates when calibrations improve, and archives the data for timely access by the principal investigator and later worldwide access by the scientific community. This ground system builds on experience from operating the Hubble Space Telescope, while solving challenges that are unique to JWST. In this paper, we describe the elements of the JWST ground system, how it will work operationally from the perspective of the observatory itself, and how a typical user will interact with the system to turn their idea into scientific discovery.

  18. Activity of Science and Operational Research of NICT Space Weather

    NASA Astrophysics Data System (ADS)

    Ishii, Mamoru; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Tsugawa, Takuya; Kubo, Yuki

    Operational space weather forecast is for contribution to social infrastructure than for academic interests. These user need will determine the target of research, e.g., the precision level, spatial and temporal resolution and/or required lead time. We, NICT, aim two target in the present mid-term strategic plan, which are (1) forecast of ionospheric disturbance influencing to satellite positioning, and (2) forecast of disturbance in radiation belt influencing to satellite operation. We have our own observation network and develop empirical and numerical models for achieving each target. However in actual situation, it is much difficult to know the user needs quantitatively. Most of space weather phenomena makes the performance of social infrastructure poor, for example disconnect of HF communication, increase of GNSS error. Most of organizations related to these operation are negative to open these information. We have personal interviews to solve this issue. In this interview, we try to collect incident information related to space weather in each field, and to retrieve which space weather information is necessary for users. In this presentation we will introduce our research and corresponding new service, in addition to our recent scientific results.

  19. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    NASA Astrophysics Data System (ADS)

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  20. Application of human error analysis to aviation and space operations

    SciTech Connect

    Nelson, W.R.

    1998-03-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) the authors have been working to apply methods of human error analysis to the design of complex systems. They have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. They are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. The primary vehicle the authors have used to develop and apply these methods has been a series of projects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. They are currently adapting their methods and tools of human error analysis to the domain of air traffic management (ATM) systems. Under the NASA-sponsored Advanced Air Traffic Technologies (AATT) program they are working to address issues of human reliability in the design of ATM systems to support the development of a free flight environment for commercial air traffic in the US. They are also currently testing the application of their human error analysis approach for space flight operations. They have developed a simplified model of the critical habitability functions for the space station Mir, and have used this model to assess the affects of system failures and human errors that have occurred in the wake of the collision incident last year. They are developing an approach so that lessons learned from Mir operations can be systematically applied to design and operation of long-term space missions such as the International Space Station (ISS) and the manned Mars mission.

  1. Extending the International Space Station Life and Operability

    NASA Technical Reports Server (NTRS)

    Cecil, Andrew J.; Pitts, R. Lee; Sparks, Ray N.; Wickline, Thomas W.; Zoller, David A.

    2012-01-01

    The International Space Station (ISS) is in an operational configuration with final assembly complete. To fully utilize ISS and extend the operational life, it became necessary to upgrade and extend the onboard systems with the Obsolescence Driven Avionics Redesign (ODAR) project. ODAR enabled a joint project between the Johnson Space Center (JSC) and Marshall Space Flight Center (MSFC) focused on upgrading the onboard payload and Ku-Band systems, expanding the voice and video capabilities, and including more modern protocols allowing unprecedented access for payload investigators to their on-orbit payloads. The MSFC Huntsville Operations Support Center (HOSC) was tasked with developing a high-rate enhanced Functionally Distributed Processor (eFDP) to handle 300Mbps Return Link data, double the legacy rate, and incorporate a Line Outage Recorder (LOR). The eFDP also provides a 25Mbps uplink transmission rate with a Space Link Extension (SLE) interface. HOSC also updated the Payload Data Services System (PDSS) to incorporate the latest Consultative Committee for Space Data Systems (CCSDS) protocols, most notably the use of the Internet Protocol (IP) Encapsulation, in addition to the legacy capabilities. The Central Command Processor was also updated to interact with the new onboard and ground capabilities of Mission Control Center -- Houston (MCC-H) for the uplink functionality. The architecture, implementation, and lessons learned, including integration and incorporation of Commercial Off The Shelf (COTS) hardware and software into the operational mission of the ISS, is described herein. The applicability of this new technology provides new benefits to ISS payload users and ensures better utilization of the ISS by the science community

  2. Constraint and Flight Rule Management for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  3. Information prioritization for control and automation of space operations

    NASA Technical Reports Server (NTRS)

    Ray, Asock; Joshi, Suresh M.; Whitney, Cynthia K.; Jow, Hong N.

    1987-01-01

    The applicability of a real-time information prioritization technique to the development of a decision support system for control and automation of Space Station operations is considered. The steps involved in the technique are described, including the definition of abnormal scenarios and of attributes, measures of individual attributes, formulation and optimization of a cost function, simulation of test cases on the basis of the cost function, and examination of the simulation scenerios. A list is given comparing the intrinsic importances of various Space Station information data.

  4. Robust operative diagnosis as problem solving in a hypothesis space

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1988-01-01

    This paper describes an approach that formulates diagnosis of physical systems in operation as problem solving in a hypothesis space. Such a formulation increases robustness by: (1) incremental hypotheses construction via dynamic inputs, (2) reasoning at a higher level of abstraction to construct hypotheses, and (3) partitioning the space by grouping fault hypotheses according to the type of physical system representation and problem solving techniques used in their construction. It was implemented for a turbofan engine and hydraulic subsystem. Evaluation of the implementation on eight actual aircraft accident cases involving engine faults provided very promising results.

  5. Space Operations Analysis Using the Synergistic Engineering Environment

    NASA Technical Reports Server (NTRS)

    Angster, Scott; Brewer, Laura

    2002-01-01

    The Synergistic Engineering Environment has been under development at the NASA Langley Research Center to aid in the understanding of the operations of spacecraft. This is accomplished through the integration of multiple data sets, analysis tools, spacecraft geometric models, and a visualization environment to create an interactive virtual simulation of the spacecraft. Initially designed to support the needs of the International Space Station, the SEE has broadened the scope to include spacecraft ranging from low-earth orbit to deep space missions. Analysis capabilities within the SEE include rigid body dynamics, kinematics, orbital mechanics, and payload operations. This provides the user the ability to perform real-time interactive engineering analyses in areas including flight attitudes and maneuvers, visiting vehicle docking scenarios, robotic operations, plume impingement, field of view obscuration, and alternative assembly configurations. The SEE has been used to aid in the understanding of several operational procedures related to the International Space Station. This paper will address the capabilities of the first build of the SEE, present several use cases of the SEE, and discuss the next build of the SEE.

  6. Command and control displays for space vehicle operations

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Zetocha, Paul; Aleva, Denise

    2010-04-01

    This paper shall examine several command and control facility display architectures supporting space vehicle operations, to include TacSat 2, TacSat 3, STPSat 2, and Communications Navigation Outage Forecasting System (CNOFS), located within the Research Development Test & Evaluation Support Complex (RSC) Satellite Operations Center 97 (SOC-97) at Kirtland Air Force Base. A principal focus is to provide an understanding for the general design class of displays currently supporting space vehicle command and control, e.g., custom, commercial-off-the-shelf, or ruggedized commercial-off-the-shelf, and more specifically, what manner of display performance capabilities, e.g., active area, resolution, luminance, contrast ratio, frame/refresh rate, temperature range, shock/vibration, etc., are needed for particular aspects of space vehicle command and control. Another focus shall be to address the types of command and control functions performed for each of these systems, to include how operators interact with the displays, e.g., joystick, trackball, keyboard/mouse, as well as the kinds of information needed or displayed for each function. [Comparison with other known command and control facilities, such as Cheyenne Mountain and NORAD Operations Center, shall be made.] Future, anticipated display systems shall be discussed.

  7. Space Operations Training Concepts Benchmark Study (Training in a Continuous Operations Environment)

    NASA Technical Reports Server (NTRS)

    Johnston, Alan E.; Gilchrist, Michael; Underwood, Debrah (Technical Monitor)

    2002-01-01

    The NASA/USAF Benchmark Space Operations Training Concepts Study will perform a comparative analysis of the space operations training programs utilized by the United States Air Force Space Command with those utilized by the National Aeronautics and Space Administration. The concentration of the study will be focused on Ground Controller/Flight Controller Training for the International Space Station Payload Program. The duration of the study is expected to be five months with report completion by 30 June 2002. The U.S. Air Force Space Command was chosen as the most likely candidate for this benchmark study because their experience in payload operations controller training and user interfaces compares favorably with the Payload Operations Integration Center's training and user interfaces. These similarities can be seen in the dynamics of missions/payloads, controller on-console requirements, and currency/proficiency challenges to name a few. It is expected that the report will look at the respective programs and investigate goals of each training program, unique training challenges posed by space operations ground controller environments, processes of setting up controller training programs, phases of controller training, methods of controller training, techniques to evaluate adequacy of controller knowledge and the training received, and approaches to training administration. The report will provide recommendations to the respective agencies based on the findings. Attached is a preliminary outline of the study. Following selection of participants and an approval to proceed, initial contact will be made with U.S. Air Force Space Command Directorate of Training to discuss steps to accomplish the study.

  8. Behavioral Health and Performance Operations During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  9. Enabling CSPA Operations Through Pilot Involvement in Longitudinal Approach Spacing

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol (Technical Monitor); Pritchett, Amy

    2003-01-01

    Several major airports around the United States have, or plan to have, closely-spaced parallel runways. This project complemented current and previous research by examining the pilots ability to control their position longitudinally within their approach stream.This project s results considered spacing for separation from potential positions of wake vortices from the parallel approach. This preventive function could enable CSPA operations to very closely spaced runways. This work also considered how pilot involvement in longitudinal spacing could allow for more efficient traffic flow, by allowing pilots to keep their aircraft within tighter arrival slots then air traffic control (ATC) might be able to establish, and by maintaining space within the arrival stream for corresponding departure slots. To this end, this project conducted several research studies providing an analytic and computational basis for calculating appropriate aircraft spacings, experimental results from a piloted flight simulator test, and an experimental testbed for future simulator tests. The following sections summarize the results of these three efforts.

  10. Operations Concepts for Deep-Space Missions: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.

    2010-01-01

    Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations

  11. A Hybrid Cadre Concept for International Space Station (ISS) Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Mears, Teri

    2000-01-01

    The International Space Station (ISS) is a continuously operating on-orbit facility, with a ten to fifteen year lifetime. The staffing and rotation concepts defined and implemented for the ISS program must take into account the unique aspects associated with long duration mission operations. Innovative approaches to mission design and operations support must be developed and explored which address these unique aspects. Previous National Aeronautics and Space Administration (NASA) man-based space programs, with the exception of Skylab, dealt primarily with short duration missions with some amount of down time between missions; e.g., Shuttle, Spacelab, and Spacehab programs. The ISS Program on the other hand requires continuous support, with no down time between missions. ISS operations start with the first element launch and continue through the end of the program. It is this key difference between short and long duration missions that needs to be addressed by the participants in the ISS Program in effectively and efficiently staffing the positions responsible for mission design and operations. The primary drivers considered in the development of staffing and rotation concepts for the ISS Program are budget and responsiveness to change. However, the long duration aspects of the program necessitate that personal and social aspects also be considered when defining staffing concepts. To satisfy these needs, a Hybrid Cadre concept has been developed and implemented in the area of mission design and operations. The basic premise of the Hybrid Cadre concept is the definition of Increment-Independent and Increment-Dependent cadre personnel. This paper provides: definitions of the positions required to implement the concept, the rotation scheme that is applied to the individual positions, and a summary of the benefits and challenges associated with implementing the Hybrid Cadre concept.

  12. Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Bliss, David A.

    2006-01-01

    The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.

  13. The Race Toward Becoming Operationally Responsive in Space

    NASA Astrophysics Data System (ADS)

    Nagy, J.; Hernandez, V.; Strunce, R.

    The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started

  14. Assessment of possible environmental effects of space shuttle operations

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Stedman, D. H.; Stolarski, R. S.; Dingle, A. N.; Cellarius, R. A.

    1973-01-01

    The potential of shuttle operations to contribute to atmospheric pollution is investigated. Presented in this interim report are results of the study to date on rocket exhaust inventory, exhaust interactions, dispersion of the ground cloud, detection and measurement of hydrochloric acid and aluminum oxide, environmental effects of hydrochloric acid and aluminum oxide, stratospheric effects of shuttle effluents, and mesospheric and ionospheric effects of orbiter reentry. The results indicate space shuttle operation will not result in adverse environmental effects if appropriate launch constraints are met.

  15. FIESTA: An operational decision aid for space network fault isolation

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve

    1987-01-01

    The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.

  16. Space Station external thermal control system design and operational overview

    NASA Technical Reports Server (NTRS)

    Raetz, John; Dominick, Jeff

    1992-01-01

    The driving design requirements and resulting design characteristics for a two-phase ammonia system of the Space Shuttle are reviewed with particular attention given to operational and station assembly issues related to system activation and steady-state operation. Design is described at an overall system level and an orbit replaceable unit level. It is concluded that a system flow network must be designed and ammonia pressures must be controlled to acquire waste heat efficiently from all contributing heat sources at a controlled temperature.

  17. Issues associated with establishing control zones for international space operations

    NASA Technical Reports Server (NTRS)

    Nader, Blair A.; Krishen, Kumar

    1991-01-01

    Cooperative missions in Earth orbit can be facilitated by developing a strategy to regulate the manner in which vehicles interact in orbit. One means of implementing such a strategy is to utilize a control zones technique that assigns different types of orbital operations to specific regions of space surrounding a vehicle. Considered here are issues associated with developing a control zones technique to regulate the interactions of spacecraft in proximity to a manned vehicle. Technical and planning issues, flight hardware and software issues, mission management parameter, and other constraints are discussed. Also covered are manned and unmanned vehicle operations, and manual versus automated flight control. A review of the strategies utilized by the Apollo Soyuz Test Project and the Space Station Freedom Program is also presented.

  18. Automated space vehicle control for rendezvous proximity operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  19. Automated space vehicle control for rendezvous proximity operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  20. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.

  1. Minimal Coordinate Formulation of Contact Dynamics in Operational Space

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Crean, Cory; Ku, Calvin; Myint, Steven; vonBremen, Hubertus

    2012-01-01

    In recent years, complementarity techniques have been developed for modeling non-smooth contact and collision dynamics problems for multi-link robotic systems. Normally, in this approach, a linear complementarity problem (LCP) is set up using 6n non-minimal coordinates for a system with n links together with all the unilateral constraints and inter-link bilateral constraints on the system. In this paper, we use operational space dynamics to develop a complementarity formulation for contact and collision dynamics that uses minimal coordinates. The use of such non-redundant coordinates results in much smaller size LCP problems and the automatic enforcement of the inter-link bilateral constraints. Furthermore, we exploit operational space low-order computational algorithms to overcome some of the bottlenecks in using minimal coordinates.

  2. Methods for Determining Operation Lifetime of Space Reactors

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.; El-Genk, Mohamed S.

    2007-01-01

    Space fission reactors can provide reliable, high power levels for periods of more than 10 years to support human outposts and for space travel to the farthest planets in the solar system. The operation lifetimes of these reactors depend on many factors chief among which are the hot-clean excess reactivity and the fuel burnup rate (or operation power) and the accumulation and decay of fission products. Other important parameters are the fuel average temperature and fissile inventory and the Doppler reactivity effect. Determining the operation lifetime for space reactors is a critical input to mission planning, requiring the use of sophisticated fuel burnup and criticality computational tools and benchmarking the results against actual data, if readily available. This paper performs parametric and comparative studies using widely used codes and a simplified approach for determining the operation lifetimes of two space reactors: the Sectored, Compact Reactor (SCoRe) that is liquid metal cooled, and the Submersion-Subcritical, Safe Space (S∧4) reactor that is cooled by a He-Xe binary gas mixture. The codes investigated against experimental data from a LWR are: (a) Monteburns 2.0, coupling MCNP5 1.30 to Origen2.2, (b) MCNPX 2.6b's internal burn package incorporating CINDER90, and (c) TRITON a code in the SCALE5 package using NEWT and Origen-S. From the results Monteburns and MCNPX performed the best, and are selected to compare their predictions of the lifetimes of the two space reactors with those of a simplified method. This method couples MCNP5 to a burnup analysis model in Simulink® considering only the 10 most probable low Z and 10 most probable high Z elements of the fission yield peaks plus 149Sm. Results show that the predicted operational lifetimes using the simplified method are within -6.6 to 12.8% of those calculated using the widely used Monteburns 2.0 and MCNPX 2.6bc1 codes.

  3. Methods for Determining Operation Lifetime of Space Reactors

    SciTech Connect

    Schriener, Timothy M.; El-Genk, Mohamed S.

    2007-01-30

    Space fission reactors can provide reliable, high power levels for periods of more than 10 years to support human outposts and for space travel to the farthest planets in the solar system. The operation lifetimes of these reactors depend on many factors chief among which are the hot-clean excess reactivity and the fuel burnup rate (or operation power) and the accumulation and decay of fission products. Other important parameters are the fuel average temperature and fissile inventory and the Doppler reactivity effect. Determining the operation lifetime for space reactors is a critical input to mission planning, requiring the use of sophisticated fuel burnup and criticality computational tools and benchmarking the results against actual data, if readily available. This paper performs parametric and comparative studies using widely used codes and a simplified approach for determining the operation lifetimes of two space reactors: the Sectored, Compact Reactor (SCoRe) that is liquid metal cooled, and the Submersion-Subcritical, Safe Space (S and 4) reactor that is cooled by a He-Xe binary gas mixture. The codes investigated against experimental data from a LWR are: (a) Monteburns 2.0, coupling MCNP5 1.30 to Origen2.2, (b) MCNPX 2.6b's internal burn package incorporating CINDER90, and (c) TRITON a code in the SCALE5 package using NEWT and Origen-S. From the results Monteburns and MCNPX performed the best, and are selected to compare their predictions of the lifetimes of the two space reactors with those of a simplified method. This method couples MCNP5 to a burnup analysis model in Simulink registered considering only the 10 most probable low Z and 10 most probable high Z elements of the fission yield peaks plus 149Sm. Results show that the predicted operational lifetimes using the simplified method are within -6.6 to 12.8% of those calculated using the widely used Monteburns 2.0 and MCNPX 2.6bc1 codes.

  4. Challenges of space medical operations and life sciences management

    NASA Technical Reports Server (NTRS)

    Haddad, S. G.

    1992-01-01

    The Kennedy Space Center (KSC) has been the premier launch and landing site for America's space program since the early 1960s. Visitors are cognizant of space vehicles, processing facilities and launch pads which are treasured national resources. However, most are unaware of the unique organization which supports launch and landing activities and manages the center's occupational medicine, environmental health, ecological and environmental monitoring functions, as well as human and plant research programs. Management of this multifaceted organization can be complex because funding its different functions comes from a number of sources. Additionally the diverse disciplines of personnel present a special challenge in maintaining professional competencies while assuring efficiency in cyclical operations. This article explains the organization's structure and reviews some of its accomplishments.

  5. Operability driven space system concept with high leverage technologies

    SciTech Connect

    Woo, H.H.

    1997-01-01

    One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts. {copyright} {ital 1997 American Institute of Physics.}

  6. The flight telerobotic servicer: NASA's first operational space robot

    NASA Technical Reports Server (NTRS)

    Fuechsel, Charles F.

    1989-01-01

    Alternatives to the exploration of Mars by direct human presence are under consideration by both the United States and the Soviet Union. In these concepts, autonomous surface vehicles would navigate the planet performing a variety of detailed exploratory functions such as mapping, seismic measurements, sample collection and analysis. Both of these approaches to the exploration of Mars depend to a high degree on the ability of robotic machinery to perform complex functions without real time human direction. Closer to home and in time, robotics will begin to play a role in space operations in the construction and maintenance of Space Station Freedom. The Flight Telerobotic Servicer Project is introduced as an element of the Space Station Freedom, and its objectives and some special challenges it faces are discussed.

  7. An Engineering Look at Space Shuttle and ISS Operations

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.

    2004-01-01

    This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

  8. Dynamic Geomagnetic Hazard Maps in Space Weather Operations

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Pulkkinen, A. A.; Balch, C. C.; Wiltberger, M. J.

    2014-12-01

    Traditionally, the use of geomagnetic data in space weather operations has been limited to specific geographic coordinates (i.e., magnetic observatories), or to global indices that average magnetic measurements into latitudinal bands of relatively general space weather interest (e.g., Dst, Kp, AE). However, modern technological systems (e.g., power grids, directional drilling platforms) are beginning to require and request information about ground magnetic variations that is more tailored to a specific locale. One solution is to simply install magnetic observatories near every newly built technological system, but this is both economically and operationally impractical. We have chosen instead to adopt an optimal interpolation scheme that inverts for spherical elementary current systems (SECS, Amm-1997), which in turn are used to fill gaps between magnetic observatories. The SECS technique has undergone extensive scientific vetting over the last decade-and-a-half, and will soon be implemented operationally over the continental U.S. as a joint NASA-NOAA-USGS space weather data product, disseminated by the Space Weather Prediction Center (SWPC). Because it will employ a relatively sparse array of high-quality geomagnetic observatories as input, it is important to characterize its ability to reproduce spatial variations in geomagnetic field at sub-continental scales, so the Lyon-Fedder-Mobarry (LFM) global geospace model is used to generate realistic synthetic observations. These include virtual magnetic observatories as input, and a regular geographic grid to serve as a proxy for "ground truth". We look specifically at LFM output for the Whole Heliosphere Interval (WHI) in order to obtain statistically valid performance measures for a variety of quiet-to-moderate space weather conditions.

  9. Deep Space Habitat Concept of Operations for Transit Mission Phases

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.

  10. Assessment of Space Station design and operation through bioastronautics

    NASA Technical Reports Server (NTRS)

    Klein, K. E.; Wegmann, H. M.; Bluth, B. J.

    1986-01-01

    The main elements which affect human well-being and productivity during a mission on the Space Station are reviewed. These include: the physical environment, the nature of operations the crew is required to perform, man's physiological response to microgravity, and the psychological and social conditions. The individual components of each of these elements are presented, and special design and support needs are identified. Particular attention is given to noise pollution, ionizing radiation, and behavioral factors.

  11. Applying AI tools to operational space environmental analysis

    NASA Technical Reports Server (NTRS)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  12. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  13. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine

    NASA Technical Reports Server (NTRS)

    Rodenberg, H.; Myers, K. J.

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  14. Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Erickson, L. K.

    1999-09-01

    Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.

  15. NASA's Ares I and Ares V Launch Vehicles--Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Dumbacher, Daniel L.; Lyles, Gary M.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) is charting a renewed course for lunar exploration, with the fielding of a new human-rated space transportation system to replace the venerable Space Shuttle, which will be retired after it completes its missions of building the International Space Station (ISS) and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Altair Lunar Lander, which will be delivered by the Ares V Cargo Launch Vehicle (fig. 1). This configuration will empower rekindled investigation of Earth's natural satellite in the not too distant future. This new exploration infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit (LEO) for extended lunar missions and preparation for the first long-distance journeys to Mars. All space-based operations - to LEO and beyond - are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective architecture solutions to sustain this multi-billion-dollar program across several decades. Leveraging SO years of lessons learned, NASA is partnering with private industry and academia, while building on proven hardware experience. This paper outlines a few ways that the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Constellation Program and its project offices to streamline ground operations concepts by designing for operability, which reduces lifecycle costs and promotes sustainable space exploration.

  16. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware

  17. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    NASA Technical Reports Server (NTRS)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  18. Manifold learning to interpret JET high-dimensional operational space

    NASA Astrophysics Data System (ADS)

    Cannas, B.; Fanni, A.; Murari, A.; Pau, A.; Sias, G.; JET EFDA Contributors, the

    2013-04-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption.

  19. Transitioning Space Weather Models Into Operations: The Basic Building Blocks

    NASA Astrophysics Data System (ADS)

    Araujo-Pradere, Eduardo A.

    2009-10-01

    New and improved space weather models that provide real-time or near-real time operational awareness to the long list of customers that the NOAA Space Weather Prediction Center (SWPC) serves are critically needed. Recognizing this, SWPC recently established a Developmental Testbed Center (DTC [see Kumar, 2009]) at which models will be vetted for operational use. What characteristics should models have if they are to survive this transition? The difficulties around the implementation of real-time models are many. From the stability of the data input (frequently coming from third parties) to the elevated information technology (IT) security atmosphere present everywhere, scientists and developers are confronting a series of challenges in the implementation of their models. Quinn et al. [2009] noted that “the transition challenges are numerous and require ongoing interaction between model developers and users.” However, the 2006 Report of the Assessment Committee for the National Space Weather Program (NSWP; see http://www.nswp.gov/nswp_acreport0706.pdf) found that “there is an absence of suitable connection[s] for ‘academia-to-operations’ knowledge transfer and for the transition of research to operations in general.”

  20. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human space exploration. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture has been designed to reduce the complexity and labor intensity of ground operations for America's next journeys beyond low-Earth orbit (LEO). A deliberate effort is being made to ensure a high level of system operability to significantly increase safety and system availability as well as reduce recurring costs for this new launch vehicle. The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. This simplicity will come from using simpler, proven engine designs, as in the case of the J-2X upper stage engine and RS-68 engine; improving existing hardware, as in the case of the Shuttle-heritage 5-segment solid rocket motor; and using common propulsion and instrument unit elements between Ares I and Ares V. Furthermore, lessons learned while developing Ares I will be applied directly to Ares V operations. In 2009, the Ares Projects plan to conduct the first flight test of Ares I, designated Ares I-X. Ares I-X preparations have already prompted changes to the vehicle stacking and launch infrastructure at Kennedy Space Center (KSC), including removing Shuttle-specific fixtures from the Vehicle Assembly Building (VAB) to accommodate Ares I-style stacking operations, new firing room computers and infrastructure in the VAB Launch Control Center, and new lightning protection system towers at Launch

  1. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  2. Development of Space Shuttle Rescue and Recovery Operations

    NASA Technical Reports Server (NTRS)

    Chandler, Michael

    2011-01-01

    As the first Space Shuttle launch was still in our future, many from NASA, the Department of Defense (DoD) and NASA contractors were busy planning for not only a nominal launch and return, but contingency operations at the launch pad and landing sites. Prior to the first launch, detailed coordination, planning and simulations were conducted at all three locations and internal rescue procedures were taught at Kennedy Space Center (KSC). Later in the Program, the Transoceanic Abort Landing (TAL) sites were added in Europe and Africa. For the 51L mission a new TAL site was brought on line in Morocco. However, upon launch, the Shuttle Program experienced it's first lost. During the following months a complete review of all contingency operations (launch and landing) was completed. Many enhancements were made based on the reviews following. A Mode VIII water rescue was developed for NASA by the DoD before the STS-26 launch. Different concepts were explored and being debated by NASA. Training of the contingency forces was required before final decisions were made forcing the teaching of two different sets of procedures. To assist with training, a video was developed for the fire/crash/rescue personnel. This accompanied the detailed extraction procedures that were developed by a combination of KSC and DoD firemen. Training for the fire/crash/rescue personnel at Vandenberg AFB was also being planned before the accident happen. The fire/crash/rescue mockup that was being built at Chanute AFB was diverted to Edwards AFB. Educational Objectives: With the emphasis on Commercial Crew Programs for Space flight it is important that all involved understand what is required to prepare for contingencies. Cost effective means of being prepared for contingencies are needed. Questions: 1. When should planning for nominal and contingency operations begin? 2. What type of training aids are needed for contingency operations? 3. Who were the major contributors to Shuttle contingency

  3. Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations

    NASA Technical Reports Server (NTRS)

    Gonzalez, Steven A.

    2002-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.

  4. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  5. "Smart" Magnetic Fluids Experiment Operated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Lekan, Jack F.

    2004-01-01

    InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the

  6. Verification and operation of adaptive materials in space.

    SciTech Connect

    Dargaville, Tim Richard; Elliott, Julie M.; Jones, Gary D.; Celina, Mathias Christopher

    2006-12-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest as smart materials for novel space-based telescope applications. Dimensional adjustments of adaptive thin polymer films are achieved via controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric property changes that develop during space environmental exposure. The overall materials performance is governed by a combination of chemical and physical degradation processes occurring in low Earth orbit as established by our past laboratory-based materials performance experiments (see report SAND 2005-6846). Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The current project extension has allowed us to design and fabricate small experimental units to be exposed to low Earth orbit environments as part of the Materials International Space Station Experiments program. The space exposure of these piezoelectric polymers will verify the observed trends and their degradation pathways, and provide feedback on using piezoelectric polymer films in space. This will be the first time that PVDF-based adaptive polymer films will be operated and exposed to combined atomic oxygen, solar UV and temperature variations in an actual space environment. The experiments are designed to be fully autonomous, involving cyclic application of excitation voltages, sensitive film position sensors and remote data logging. This mission will provide critically needed feedback on the long-term performance and degradation of such materials, and ultimately the feasibility of large adaptive and low weight optical systems utilizing these polymers in space.

  7. Deep Space Network Revitalization: Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) supports unmanned space missions through a Deep Space Network (DSN) that is developed and operated by the Jet Propulsion Laboratory (JPL and its subcontractors. The DSN capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered from three Deep Space Communications Complexes (DSCC's) near Goldstone, California, Madrid, Spain, and Canberra, Australia. At present each DSCC includes large antennas with diameters from 11 meters to 70 meters, that operate largely in S-band and X-band frequencies. In addition each DSCC includes all the associated electronics to receive and process the low-level telemetry signals, and radiate the necessary command with high-power transmitters. To accommodate support of the rapidly increasing number of missions by NASA and other space agencies, and to facilitate maintaining and increasing the level of service in a shrinking budget environment, JPL has initiated a bold road map with three key components: 1. A Network Simplification Project (NSP) to upgrade aging electronics, replacing them with modem commercially based components. NSP and related replacement tasks are projected to reduce the cost of operating the DSN by 50% relative to the 1997 levels. 2. Upgrade of all 34-m and 70-m antennas to provision of Ka-Band telemetry downlink capability, complemented by an existing X-band uplink capability. This will increase the effective telemetry downlink capacity by a factor of 4, without building any new antennas. 3. Establishment of an optical communications network to support for high data rate unmanned missions that cannot be accommodated with radiofrequency (RF) communications, as well as establish a path toward support of manned missions at Mars. In this paper we present the mission loading projected for 1998-2008 and the elements of the JPL road map that will enable supporting it with a reduced budget. Particular emphasis will be on

  8. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  9. International Cooperation of Payload Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  10. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.

  11. How the Space Data Center Is Improving Safety of Space Operations

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    2010-09-01

    In an effort to mitigate the risks associated with satellite close approaches in the geostationary belt, satellite operators began to come together in early 2008 to establish a prototype GEO data center. That prototype provided a framework for operators to share orbital data for their fleets to be used to perform conjunction analysis and provide automated notifications of close approaches via the SOCRATES-GEO service. That service was extended to LEO operations in mid-2009 and, as of early 2010, the prototype was supporting 20 operators from over a dozen countries by automatically screening 300 satellites for close approaches twice each day. In April 2010, the prototype data center operated by the Center for Space Standards & Innovation (CSSI) was a key reason AGI was selected by the Space Data Association (SDA) to develop the SDA’s new Space Data Center (SDC). This paper will address how the SDC will use a service-oriented architecture (SOA) to support orbital operations by increasing the efficiency of analysis to mitigate the risk of conjunctions and radio frequency interference, thereby enhancing overall safety of flight.

  12. Space Environment NanoSat Experiment (SENSE) - A New Frontier in Operational Space Environmental Monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Kalamaroff, K. I.; Thompson, D. C.; Cooke, D. L.; Gentile, L. C.; Bonito, N. A.; La Tour, P.; Sondecker, G.; Bishop, R. L.; Nicholas, A. C.; Doe, R. A.

    2013-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats built by Boeing Phantom Works. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements. Launch is scheduled for November 2013, and we will discuss the first 30 days of on-orbit operations.

  13. Conformal algebra on Fock space and conjugate pairs of operators

    SciTech Connect

    Sibold, Klaus; Burkhard, Eden

    2010-11-15

    Using the moment construction, we represent the generators of the conformal algebra as bilinear products of creation and annihiliation operators on the Fock space of the massless real scalar field in four dimensions. A complete set of one-particle eigenstates of the dilatation generator is given. Next, a complete set of one-particle eigenstates of the conformal generator is constructed in two distinct ways, once directly and once through an expansion in terms of dilatation eigenstates. The second approach uses an analytic continuation of the dilatation eigenvalue away from the real axis; the validity of the method is illustrated by the consistency with the first approach. Drawing upon this technique, we finally ponder the idea of building conjugates to the four components of the momentum operator by suitably modifying the action of the conformal generators on dilatation eigenstates. The construction of eigenstates of these new operators proceeds as for the conformal generator itself.

  14. Forecasting the Economic Impact of Future Space Station Operations

    NASA Technical Reports Server (NTRS)

    Summer, R. A.; Smolensky, S. M.; Muir, A. H.

    1967-01-01

    Recent manned and unmanned Earth-orbital operations have suggested great promise of improved knowledge and of substantial economic and associated benefits to be derived from services offered by a space station. Proposed application areas include agriculture, forestry, hydrology, public health, oceanography, natural disaster warning, and search/rescue operations. The need for reliable estimates of economic and related Earth-oriented benefits to be realized from Earth-orbital operations is discussed and recent work in this area is reviewed. Emphasis is given to those services based on remote sensing. Requirements for a uniform, comprehensive and flexible methodology are discussed. A brief review of the suggested methodology is presented. This methodology will be exercised through five case studies which were chosen from a gross inventory of almost 400 user candidates. The relationship of case study results to benefits in broader application areas is discussed, Some management implications of possible future program implementation are included.

  15. University Partnering for Operational Support (UPOS) Space Environmental Projects

    NASA Astrophysics Data System (ADS)

    Carr, S. S.; Meng, C. I.; McMorrow, D. J.

    2002-05-01

    UPOS provides a mechanism for DOD warfighters to partner directly with university scientists, exploit near term science and technology advances, and solve operational readiness problems. By working directly with the warfighter, university researchers are able to understand operational requirements and focus research efforts to solve real world problems. Allowing the developers of the new technology solutions to work directly with users shortens the cycle time for bringing new ideas to the field and provides an effective mechanism to fine tune the products. This presentation will summarize some of the many successful products UPOS has recently produced, such as an operational auroral boundary and particle precipitation nowcasting product, and discuss some of the many products that are currently being worked such as the HF propagation modeling product and the space weather effects on GPS guided munitions product.

  16. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  17. A step towards space-station user operations - An operational test-bed

    NASA Technical Reports Server (NTRS)

    Biddis, G. T.; Cornett, K. G.; Frimout, D. D.; Richards, M. L.

    1992-01-01

    A joint ESA/NASA project for researching and evaluating various remote payload operations for Space Station Freedom, using the ATLAS-1 Solar Constant (SOLCON) experiment as a representative payload and the MSFC Payload Operations Center (POCC) command and telemetry system as the base operations system, is described. A basic remote-user-center capability is to be implemented within the Columbus Crew Workstation facility at ESTEC in Noordwijk (NL), to demonstrate the ability to monitor real-time payload operations remotely and allow some command and control functions through the MSFC POCC. After the test-bed system is demonstrated for SOLCON, it is proposed to improve the capability and make it a standard service for Spacelab operations. This paper discusses POCC telemetry, command, and operations issues, NASA communications issues, SOLCON experiment-specific issues, NASA/ESA procedural issues, and system verification issues relating to the project.

  18. Ground controlled robotic assembly operations for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1991-01-01

    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.

  19. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  20. CO2 on the International Space Station: An Operations Update

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Alexander, David

    2016-01-01

    PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.

  1. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  2. Development of the Space Operations Incident Reporting Tool (SOIRT)

    NASA Technical Reports Server (NTRS)

    Minton, Jacquie

    1997-01-01

    The space operations incident reporting tool (SOIRT) is an instrument used to record information about an anomaly occurring during flight which may have been due to insufficient and/or inappropriate application of human factors knowledge. We originally developed the SOIRT form after researching other incident reporting systems of this type. We modified the form after performing several in-house reviews and a pilot test to access usability. Finally, crew members from Space Shuttle flights participated in a usability test of the tool after their missions. Since the National Aeronautics and Space Administration (NASA) currently has no system for continuous collection of this type of information, the SOIRT was developed to report issues such as reach envelope constraints, control operation difficulties, and vision impairments. However, if the SOIRT were to become a formal NASA process, information from crew members could be collected in a database and made available to individuals responsible for improving in-flight safety and productivity. Potential benefits include documentation to justify the redesign or development of new equipment/systems, provide the mission planners with a method for identifying past incidents, justify the development of timelines and mission scenarios, and require the creation of more appropriate work/rest cycles.

  3. Cryogenic Fluid Technologies for Long Duration In-Space Operations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Tramel, Terri L.

    2008-01-01

    Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.

  4. Space facilities: Meeting future needs for research, development, and operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  5. Space station payload operations scheduling with ESP2

    NASA Technical Reports Server (NTRS)

    Stacy, Kenneth L.; Jaap, John P.

    1988-01-01

    The Mission Analysis Division of the Systems Analysis and Integration Laboratory at the Marshall Space Flight Center is developing a system of programs to handle all aspects of scheduling payload operations for Space Station. The Expert Scheduling Program (ESP2) is the heart of this system. The task of payload operations scheduling can be simply stated as positioning the payload activities in a mission so that they collect their desired data without interfering with other activities or violating mission constraints. ESP2 is an advanced version of the Experiment Scheduling Program (ESP) which was developed by the Mission Integration Branch beginning in 1979 to schedule Spacelab payload activities. The automatic scheduler in ESP2 is an expert system that embodies the rules that expert planners would use to schedule payload operations by hand. This scheduler uses depth-first searching, backtracking, and forward chaining techniques to place an activity so that constraints (such as crew, resources, and orbit opportunities) are not violated. It has an explanation facility to show why an activity was or was not scheduled at a certain time. The ESP2 user can also place the activities in the schedule manually. The program offers graphical assistance to the user and will advise when constraints are being violated. ESP2 also has an option to identify conflict introduced into an existing schedule by changes to payload requirements, mission constraints, and orbit opportunities.

  6. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Hayley, Elizabeth P.

    2009-01-01

    Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.

  7. Development of a satellite structural architecture for operationally responsive space

    NASA Astrophysics Data System (ADS)

    Arritt, Brandon J.; Buckley, Steven J.; Ganley, Jeffrey M.; Welsh, Jeffry S.; Henderson, Benjamin K.; Lyall, M. Eric; Williams, Andrew D.; Preble, Jeffrey C.; DiPalma, John; Mehle, Greg; Roopnarine, R.

    2008-03-01

    The Air Force Research Laboratory/Space Vehicles Directorate (AFRL/RV) is developing a satellite structural architecture in support of the Department of Defense's Operationally Responsive Space (ORS) initiative. Such a structural architecture must enable rapid Assembly, Integration, and Test (AI&T) of the satellite, accommodate multiple configurations (to include structural configurations, components, and payloads), and incorporate structurally integrated thermal management and electronics, while providing sufficient strength, stiffness, and alignment accuracy. The chosen approach will allow a wide range of satellite structures to be assembled from a relatively small set of structural components. This paper details the efforts of AFRL, and its contractors, to develop the technology necessary to realize these goals.

  8. Operator vision aids for space teleoperation assembly and servicing

    NASA Technical Reports Server (NTRS)

    Brooks, Thurston L.; Ince, Ilhan; Lee, Greg

    1992-01-01

    This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.

  9. Analysis of space tug operating techniques. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design requirements for space tug systems and cost analysis of the refurbishment phases are discussed. The vehicle is an integral propulsion stage using liquid hydrogen and liquid oxygen as propellants and is capable of operating either as a fully or a partially autonomous vehicle. Structural features are an integral liquid hydrogen tank, a liquid oxygen tank, a meteoroid shield, an aft conical docking and structural support ring, and a staged combustion main engine. The vehicle is constructed of major modules for ease of maintenance. Line drawings and block diagrams are included to explain the maintenance requirements for the subsystems.

  10. Telescience Testbed Pilot Project - Evaluation environment for Space Station operations

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Leiner, Barry M.

    1988-01-01

    The objectives of the Telescience Testbed Pilot Program (TTPP) are discussed. The purpose of the TTPP, which involves 15 universities in cooperation with various NASA centers, is to demonstrate the utility of a user-oriented rapid prototyping testbed approach to developing and refining science requirements and validation concepts and approaches for the information systems of the Space Station era and beyond. It is maintained that the TTPP provides an excellent environment, with low programmatic schedule and budget risk, for testing and evaluating new operations concepts and technologies.

  11. Operational considerations for the Space Station Life Science Glovebox

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  12. Space Science and Space Weather: A Research to Operations Continuum at NOAA

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Millward, G. H.; Balch, C. C.; Onsager, T. G.

    2014-12-01

    NOAA's Space Weather Prediction Center (SWPC) is the nation's official source of space weather alerts, watches and warnings with a mission to "deliver space weather products and services that meet the evolving needs of the nation." The scope of SWPC activities ranges from understanding the needs of those affected by space weather to the delivery of products and services that protect national assets and human activities. To carry out this work we benefit from partnerships such as those with other agencies, universities, the international community and commercial service providers. In this presentation we will describe the continuum of activities involved in the research to operations process and the essential role played by scientific research throughout the process. We will identify research that is needed to provide better scientific understanding, to enable improved models and to carry out much needed observations. The presentation will highlight recent work on the transition of space weather models to operations and focus on examples related to large scale numerical models of the Geospace environment. As an example of the process for evaluating potential new products, we will describe initial research results that examine the prediction of storm enhanced density affecting Global Position System navigation services.

  13. Magnetic tape recorder for long operating life in space.

    NASA Technical Reports Server (NTRS)

    Bahm, E. J.; Hoffman, J. K.

    1971-01-01

    Magnetic tape recorders have long been used on satellites and spacecraft for onboard storage of large quantities of data. As satellites enter into commercial service, long operating life at high reliability becomes important. Also, the presently planned long-duration space flights to the outer planets require long-life tape recorders. Past satellite tape recorders have achieved a less than satisfactory performance record and the operating life of other spacecraft tape recorders has been relatively short and unpredictable. Most failures have resulted from malfunctions of the mechanical tape transport. Recent advances in electric motors and static memories have allowed the development of a new tape recorder which uses a very simple tape transport with few possible failure modes. It consists only of two brushless dc motors, two tape guides, and the recording heads. Relatively low tape tension, wide torque capability, and precise speed control facilitate design for mechanical reliability to match that of tape-recorder electronics.

  14. Large Space Telescope - Orbital crew EV maintenance operations

    NASA Technical Reports Server (NTRS)

    Fisher, H. T.

    1975-01-01

    The paper shows that orbital EV maintenance by the crew has a tremendous impact on several areas of the program, including operations, Shuttle interfaces, support equipment rendezvous and berthing, checkout and verification, levels of servicing achievable, logistics and spares and scientific instruments in order to permit changeout and possible future refurbishment. To achieve on-orbit EV maintenance, such challenges as designing for suited-astronaut access to all subsystem equipment elements, minimization for contamination, handling of extremely sensitive instruments, development of translation techniques, and use of existing GFE and hardware must be faced early in the preliminary design and operations analysis phases. All studies to date indicate that on-orbit EV manned maintenance of the LST (Large Space Telescope) is not only feasible but can be designed to be readily within the capability of the EV functioning astronaut. Both 1-g and neutral buoyancy man-in-the-loop simulations further support this point.

  15. Evaluating Space Network (SN) scheduling operations concepts through statistical analysis

    NASA Technical Reports Server (NTRS)

    Kwadrat, Carl; Happell, Nadine

    1994-01-01

    The Network Control Center (NCC) currently uses the NCC Data System (NCCDS) to schedule customer spacecraft communication requests for the Space Network (SN). The NCC/Request Oriented Scheduling Engine (NCC/ROSE), which implements an operational concept called flexible scheduling, is being tested as a potential replacement for the NCCDS scheduler in an effort to increase the efficiency of the NCC scheduling operations. This paper describes the high fidelity benchmark tests being conducted on NCC/ROSE, the evaluation techniques used to compare schedules, and the results of the tests. This testing will verify the increases in efficiency and productivity that can help the NCC meet the anticipated scheduling loads well into the next century.

  16. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    NASA Astrophysics Data System (ADS)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  17. Changes of Space Debris Orbits After LDR Operation

    NASA Astrophysics Data System (ADS)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  18. New developments in SOLAR2000 for space research and operations

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Bouwer, S. Dave

    The SOLAR2000 (S2K) project provides solar spectral irradiances and integrated solar irradiance proxies for space researchers as well as ground- and space-based operational users. The S2K model currently represents empirical solar irradiances and integrated irradiance proxies covering the spectral range from the X-rays through the far infrared and has evolved through 23 version releases since October 1999. Variability is provided for time frames ranging from 1947 to 2052. The combination of variability through multiple time periods with spectral formats ranging from resolved emission lines through integrated irradiance proxies is a unique feature that provides researchers and operational users the same solar energy for a given day but in formats suitable for their distinctly different applications. We report on new developments in the SOLAR2000 version 2.24 model. There are several models and reference spectra now included in SOLAR2000 including the S2K extreme ultraviolet (EUV) irradiance model provided by Tobiska (S2K: 1 121 nm), the vacuum ultraviolet (VUV) model provided by Woods (VUV2002: 1 420 nm), and the ASTM-E490 reference spectrum (122 1,000,000 nm). Improved model accuracy in the XUV EUV spectral regions is obtained with the inclusion of the new TIMED SEE version 7 dataset. We report on integrated irradiance products including some revisions to previously reported proxies, E10.7, QEUV, Peuv, T∞, RSN, and S, and an introduction to seven new integrated irradiance proxies. They include E1_40, XE10.7, Xb10, Xhf, X10.7, ESRC, and ESRB. The Schatten solar dynamo model output is included in the S2K Operational Grade model and provides forecast proxies out to five solar cycles. The SOLAR2000 Research Grade (RG) model provides historical irradiances and proxies for space research and is freely available, via web download, to users of any platform through the use of an IDL virtual machine (VM) graphic user interface (GUI) application. The SOLAR2000 Professional

  19. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  20. Toward an embedded training tool for Deep Space Network operations

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Sturdevant, Kathryn F.; Johnson, W. L.

    1993-01-01

    There are three issues to consider when building an embedded training system for a task domain involving the operation of complex equipment: (1) how skill is acquired in the task domain; (2) how the training system should be designed to assist in the acquisition of the skill, and more specifically, how an intelligent tutor could aid in learning; and (3) whether it is feasible to incorporate the resulting training system into the operational environment. This paper describes how these issues have been addressed in a prototype training system that was developed for operations in NASA's Deep Space Network (DSN). The first two issues were addressed by building an executable cognitive model of problem solving and skill acquisition of the task domain and then using the model to design an intelligent tutor. The cognitive model was developed in Soar for the DSN's Link Monitor and Control (LMC) system; it led to several insights about learning in the task domain that were used to design an intelligent tutor called REACT that implements a method called 'impasse-driven tutoring'. REACT is one component of the LMC training system, which also includes a communications link simulator and a graphical user interface. A pilot study of the LMC training system indicates that REACT shows promise as an effective way for helping operators to quickly acquire expert skills.

  1. Rapid Turnaround of Costing/Designing of Space Missions Operations

    NASA Technical Reports Server (NTRS)

    Kudrle, Paul D.; Welz, Gregory A.; Basilio, Eleanor

    2008-01-01

    The Ground Segment Team (GST), at NASA's Jet Propulsion Laboratory in Pasadena, California, provides high-level mission operations concepts and cost estimates for projects that are in the formulation phase. GST has developed a tool to track costs, assumptions, and mission requirements, and to rapidly turnaround estimates for mission operations, ground data systems, and tracking for deep space and near Earth missions. Estimates that would often take several weeks to generate are now generated in minutes through the use of an integrated suite of cost models. The models were developed through interviews with domain experts in areas of Mission Operations, including but not limited to: systems engineering, payload operations, tracking resources, mission planning, navigation, telemetry and command, and ground network infrastructure. Data collected during interviews were converted into parametric cost models and integrated into one tool suite. The tool has been used on a wide range of missions from small Earth orbiters, to flagship missions like Cassini. The tool is an aid to project managers and mission planners as they consider different scenarios during the proposal and early development stages of their missions. The tool is also used for gathering cost related requirements and assumptions and for conducting integrated analysis of multiple missions.

  2. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  3. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2010-01-01

    Crewed space vehicles have a common requirement to remove the carbon dioxide (CO2) created by the metabolic processes of the crew. The space shuttle [Space Transportation System (STS)] and International Space Station (ISS) each have systems in place that allow control and removal of CO2 from the habitable cabin environment. During periods in which the space shuttle is docked to the ISS, known as "joint docked operations," the space shuttle and ISS share a common atmosphere environment. During this period, an elevated amount of CO2 is produced through the combined metabolic activity of the STS and ISS crews. This elevated CO2 production, together with the large effective atmosphere created by collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe individual CO2 control plans implemented by STS and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. The paper will also discuss some of the issues and anomalies experienced by both engineering teams.

  4. Operational environments for electrical power wiring on NASA space systems

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  5. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  6. Solar observations from PROBA2: ready for space weather operations

    NASA Astrophysics Data System (ADS)

    Berghmans, David; Hochedez, Jean-François

    The ESA micro satellite PROBA2 was launched on November 2, 2009. It carries two solar instruments, the radiometer LYRA and the coronal imager SWAP whose commissioning ended in March 2010. LYRA (PI: J.-F. Hochedez) observes the solar irradiance in 4 wavelengths chosen for their relevance to space weather, solar physics and Earth aeronomy. LYRA is able to follow the time evolution of solar flares at very high temporal resolution. SWAP (PI: D. Berghmans) takes an image of the EUV corona of the sun every minute in an extended field of view. SWAP is able to image all space weather significant events such as flares, coronal holes, dimmings, etc. We will present the technical capabilities of the two instruments and show their complementarity with e.g. SDO. We will discuss the SWAP and LYRA data products and how to make use of them in an operational space weather context. More information is available at http://proba2.sidc.be.

  7. Application of thermospheric general circulation models for space weather operations

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T.; Minter, C.; Codrescu, M.

    Solar irradiance is the dominant source of heat, ionization, and dissociation of the thermosphere, and to a large extent drives the global dynamics, and controls the neutral composition and density structure. Neutral composition is important for space weather applications because of its impact on ionospheric loss rates, and neutral density is critical for satellite drag prediction. The future for thermospheric general circulation models for space weather operations lies in their use as state propagators in data assimilation techniques. The physical models can match empirical models in accuracy provided accurate drivers are available, but their true value comes when combined with data in an optimal way. Two such applications have recently been developed. The first utilizes a Kalman filter to combine space-based observation of airglow with physical model predictions to produce global maps of neutral composition. The output of the filter will be used within the GAIM (Global Assimilation of Ionospheric Measurement) model developed under a parallel effort. The second filter uses satellite tracking and remote sensing data for specification of neutral density. Both applications rely on accurate estimates of the solar EUV and magnetospheric drivers.

  8. A Space Operations Network Alternative: Using the Globally Connected Research and Education Networks for Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  9. Application of space-time neural networks to detect tether skiprope phenomenon in space operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1992-01-01

    The feasibility of operating tethered payloads in earth orbit will be studied during a space shuttle flight scheduled for 1992. Tethered systems may exhibit a circular transverse oscillation or skiprope phenomenon due to interaction between the earth's magnetic field and current pulsing through the tether. Effective damping of this skiprope motion depends on rapid and accurate detection of its magnitude and phase. Satellite attitude motion has characteristic oscillations as well as many other perturbations and therefore the relationship between skiprope parameters and attitude time history is very complex and nonlinear. A space-time neural network (STNN) for filtering satellite rate gyro data is proposed for rapid detection and prediction of skiprope magnitude and phase. A validated orbital operations simulator and STNN software will be used for training and testing of this skiprope detection system. The advantages of STNNs are discussed and STNN configurations and preliminary results are presented.

  10. The space exploration initiative. Operational efficiency panel space-basing technology requirements

    NASA Technical Reports Server (NTRS)

    Pena, Luis R.

    1991-01-01

    The topics covered include the following: (1) space basing technology requirements sources; (2) orbit transfer vehicle (OTV) processing heritage; (3) ground processing progression to space processing; (4) technology requirements for space based OTV servicing and maintenance; (5) design and development schedule for OTV's and OTV accommodations/ support hardware; (6) cryogenic technology test program development; (7) cryogenic propellant transfer, storage, and reliquefaction management summary; (8) propellant transfer technology analysis and ground testing; (8) OTV propellant storage depot development critical scaling relationships; (9) flight experiment options; (10) OTV maintenance; (11) automated fault detection/ isolation and system checkout summary; (12) engine replacement; (13) alternative docking operation; (14) OTV/payload integration; and (15) technology criticality and capability assessment. This document is presented in viewgraph form.

  11. Hubble Space Telescope First Servicing Mission Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Hubble Space Telescope (HST) is a high-performance astronomical telescope system designed to operate in low-Earth orbit. It is approximately 43 feet long, with a diameter of 10 feet at the forward end and 14 feet at the aft end. Weight at launch was approximately 25,000 pounds. In principle, it is no different than the reflecting telescopes in ground-based astronomical observatories. Like ground-based telescopes, the HST was designed as a general-purpose instrument, capable of using a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic allows the HST to be used as a national facility, capable of supporting the astronomical needs of an international user community. The telescope s planned useful operational lifetime is 15 years, during which it will make observations in the ultraviolet, visible, and infrared portions of the spectrum. The extended operational life of the HST is possible by using the capabilities of the Space Transportation System to periodically visit the HST on-orbit to replace failed or degraded components, install instruments with improved capabilities, re-boost the HST to higher altitudes compensating for gravitational effects, and to bring the HST back to Earth when the mission is terminated. The largest ground-based observatories, such as the 200-inch aperture Hale telescope at Palomar Mountain, California, can recognize detail in individual galaxies several billion light years away. However, like all earthbound devices, the Hale telescope is limited because of the blurring effect of the Earth s atmosphere. Further, the wavelength region observable from the Earth s surface is limited by the atmosphere to the visible part of the spectrum. The very important ultraviolet portion of the spectrum is lost. The HST uses a 2.4-meter reflective optics system designed to capture data over a wavelength region that reaches far into the ultraviolet and infrared portions of the spectrum.

  12. Command and Telemetry Latency Effects on Operator Performance during International Space Station Robotics Operations

    NASA Technical Reports Server (NTRS)

    Currie, Nancy J.; Rochlis, Jennifer

    2004-01-01

    International Space Station (ISS) operations will require the on-board crew to perform numerous robotic-assisted assembly, maintenance, and inspection activities. Current estimates for some robotically performed maintenance timelines are disproportionate and potentially exceed crew availability and duty times. Ground-based control of the ISS robotic manipulators, specifically the Special Purpose Dexterous Manipulator (SPDM), is being examined as one potential solution to alleviate the excessive amounts of crew time required for extravehicular robotic maintenance and inspection tasks.

  13. Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations

    NASA Technical Reports Server (NTRS)

    Cutri-Kohart, Rebecca M.

    2011-01-01

    The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.

  14. Apollo experience report: Photographic equipment and operations during manned space-flight programs

    NASA Technical Reports Server (NTRS)

    Kuehnel, H. A.

    1972-01-01

    The evolution of crew-operated photographic equipment and the procedures for manned space-flight photographic operations are reviewed. The establishment of program requirements is described. Photographic operations are discussed, including preflight testing and inflight operations.

  15. New Factorization Techniques and Fast Serial and Parrallel Algorithms for Operational Space Control of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean

    1997-01-01

    In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.

  16. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... CONTACT: Dr. Bette Siegel, Exploration Systems Mission Directorate, National Aeronautics and Space... Report. Space Operations Mission Directorate/Exploration Systems Mission Directorate Merger Update. ] International Space Station Mars Analog Status Update. Commercial Orbital Transportation Services/Cargo...

  17. A radiological assessment of space nuclear power operations near Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stevenson, Steve

    1990-01-01

    In order to accomplish NASA's more ambitious exploration goals, nuclear reactors may be used in the vicinity of Space Station Freedom (SSF) either as power sources for coorbiting platforms or as part of the propulsion system for departing and returning personnel or cargo vehicles. This study identifies ranges of operational parameters, such as parking distances and reactor cooldown times, which would reasonably guarantee that doses to the SSF crew from all radiation sources would be below guidelines recently recommended by the National Council of Radiation Protection and Measurements. The specific scenarios considered include: (1) the launch and return of a nuclear electric propulsion vehicle, (2) the launch and return of a nuclear thermal rocket vehicle, (3) the operation of an SP-100 class reactor on a coorbiting platform, (4) the activation of materials near operating reactors, (5) the storage and handling of radioisotope thermal generator units, and (6) the storage and handling of fresh and previously operated reactors. Portable reactor shield concepts were examined for relaxing the operational constraints imposed by unshielded (for human proximity operations) reactors and that might also be used to provide additional SSF crew protection from natural background radiation.

  18. Linear operation of PRIZ space-time light modulators

    NASA Astrophysics Data System (ADS)

    Bryskin, L. I.; Korovin, L. I.; Petrov, M. P.

    1984-08-01

    A theory is presented for describing the dynamics of the field and charge distributions in a PRIZ space-time light modulator (STLM) using the internal transverse electrooptic effect. The PRIZ STLM consists of transparent electrodes deposited on the front and back sides of a photorefractive crystal wafer and operates at the writing (input) light wavelengths of 0.44 to 0.48 microns. The diffraction efficiency of the time-linear modulator is obtained for a case when the phase difference between the ordinary and the extraordinary rays is proportional to the exposure to the writing light. It is noted that a dielectric film placed between the sample and the metal electrode increases the diffraction efficiency at low frequencies, however requiring larger voltages to be applied. The efficiency is also analyzed with respect to the spatial modulation frequency of the writing light.

  19. Space Operations Center, shuttle interaction study, volume 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of the shuttle remote manipulator system (SRMS)-aided space operations center (SOC)/orbiter berthing was evaluated to determine: (1) whether the initial rates between the SOC and the orbiter can be removed by the arm; (2) what is the best strategy to be used; (3) whether the post-capture and maneuvering loads are within the capability of the SRMS; (4) can the SOC berthing port be brought in the immediate proximity of the orbiter berthing port; and (5) what is the best way to remove the residual relative motions. Various notational conventions are established and various important locations on the orbiter and SOC structures are defined. Reference frames are defined together with the mass properties of both the SOC and the orbiter.

  20. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1991-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. An operational view of the NSSDC, outlining current policies and procedures that have been implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives is presented.

  1. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1992-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. This paper will present an operational view of the NSSDC, outlining current policies and procedures that were implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives.

  2. Natural environment support guidelines for space shuttle tests and operations

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Brown, S. C.

    1974-01-01

    All space shuttle events from launch through solid rocket booster recovery and orbiter landing are considered in terms of constraints placed on those operations by the natural environment. Thunderstorm activity is discussed as an example of a possible hazard. The activities most likely to require advanced detection and monitoring techniques are identified as those from deorbit decision to Orbiter landing. The inflexible flight plan will require the transmission of real time wind profile information below 24 km and warnings of thunderstorms or turbulence in the Orbiter flight path. Extensive aerial reconnaissance and communication facilities and procedures to permit immediate transmission of aircraft reports to the mission control authority and to the Orbiter will also be required.

  3. Information for Lateral Aircraft Spacing Enabling Closely-Spaced Runway Operations During Instrument-Weather Conditions

    NASA Technical Reports Server (NTRS)

    Thrush, Trent; Pritchett, Amy; Johnson, Eric; Hansman, R. John; Shafto, Michael (Technical Monitor)

    1994-01-01

    In an effort to increase airport capacity, the U.S. plans on investing nearly $6 billion a year to properly maintain and improve the nation's major airports. Current FAA standards however, require a reduction in terminal operations during instrument-weather conditions at many airports, causing delays and reducing airport capacity. NASA, in cooperation with the FAA, has developed the Terminal Area Productivity Program to achieve clear-weather capacity in instrument- weather conditions for all phases of flight. This paper describes a series of experiments planned to investigate the conceptual design of different systems that provide information to flight crews regarding nearby traffic during the approach phase of flight. The purpose of this investigation is to identify and evaluate different display and auditory interfaces to the crew for use in closely-spaced parallel runway operations. Three separate experiments are planned for the investigation. The first two experiments will be conducted using part-task flight simulators located at the MIT Aeronautical Systems Laboratory and at NASA Ames. The third experiment will be conducted in the Advanced Concepts Flight Simulator, a generic "glass-cockpit" simulator at NASA Ames. Subjects for each experiment will be current glass-cockpit pilots from major U.S. air carriers. Subject crews will fly several experimental scenarios in which pseudo-aircraft are "blundered" into the subject aircraft simulation. Runway spacing, longitudinal aircraft separation, aircraft performance and traffic information will be varied. Analyses of the subject reaction times in evading the blundering aircraft and the resulting closest points of approach will be conducted. This paper presents a preliminary examination of the data recorded during the part-task experiments. The impact of traffic information on closely-spaced parallel runway operations is discussed, cockpit displays to aid these operations are examined, and topics for future research

  4. Hubble Space Telescope Servicing Mission 3A Rendezvous Operations

    NASA Technical Reports Server (NTRS)

    Lee, S.; Anandakrishnan, S.; Connor, C.; Moy, E.; Smith, D.; Myslinski, M.; Markley, L.; Vernacchio, A.

    2001-01-01

    The Hubble Space Telescope (HST) hardware complement includes six gas bearing, pulse rebalanced rate integrating gyros, any three of which are sufficient to conduct the science mission. After the loss of three gyros between April 1997 and April 1999 due to a known corrosion mechanism, NASA decided to split the third HST servicing mission into SM3A, accelerated to October 1999, and SM3B, scheduled for November 2001. SM3A was developed as a quick turnaround 'Launch on Need' mission to replace all six gyros. Loss of a fourth gyro in November 1999 caused HST to enter Zero Gyro Sunpoint (ZGSP) safemode, which uses sun sensors and magnetometers for attitude determination and momentum bias to maintain attitude stability during orbit night. Several instances of large attitude excursions during orbit night were observed, but ZGSP performance was adequate to provide power-positive sun pointing and to support low gain antenna communications. Body rates in ZGSP were estimated to exceed the nominal 0.1 deg/sec rendezvous limit, so rendezvous operations were restructured to utilize coarse, limited life, Retrieval Mode Gyros (RMGs) under Hardware Sunpoint (HWSP) safemode. Contingency procedures were developed to conduct the rendezvous in ZGSP in the event of RMGA or HWSP computer failure. Space Shuttle Mission STS-103 launched on December 19, 1999 after a series of weather and Shuttle-related delays. After successful rendezvous and grapple under HWSP/RMGA, the crew changed out all six gyros. Following deploy and systems checkout, HST returned to full science operations.

  5. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  6. Life-span knowledge engineering for space operations

    NASA Technical Reports Server (NTRS)

    Hays, Dan

    1988-01-01

    Ordinarily, knowledge engineering is thought of as the process of translating the knowledge and problem solving strategies of a human expert into rules and procedures incorporated into a machine based expert system which can, given adequate input, solve the same sorts of problems as the expert. One appeal of these knowledge based systems is their ability to take care of problems without having a human expert present. For work in space, being independent of humans is especially important both for situations where devices will be in remote or dangerous locales and for situations such as space stations where human resources are limited and schedules are tight. In qualification of the above ideas, it is argued herein that the notion of knowledge engineering and the expectations for its application should be extended beyond the period of construction of unit expert systems to the entire knowledge system management associated with one or another real systems, whether it is a piece of hardware or an entire human-machine operation such as a lunar factory.

  7. SpaceDock: A Performance Task Platform for Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.

    2003-01-01

    Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.

  8. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  9. Worldwide differential GPS for Space Shuttle landing operations

    NASA Technical Reports Server (NTRS)

    Loomis, Peter V. W.; Denaro, Robert P.; Saunders, Penny

    1990-01-01

    Worldwide differential Global Positioning System (WWDGPS) is viewed as an effective method of offering continuous high-quality navigation worldwide. The concept utilizes a network with as few as 33 ground stations to observe most of the error sources of GPS and provide error corrections to users on a worldwide basis. The WWDGPS real-time GPS tracking concept promises a threefold or fourfold improvement in accuracy for authorized dual-frequency users, and in addition maintains an accurate and current ionosphere model for single-frequency users. A real-time global tracking network also has the potential to reverse declarations of poor health on marginal satellites, increasing the number of satellites in the constellation and lessening the probability of GPS navigation outage. For Space Shuttle operations, the use of WWDGPS-aided P-code equipment promises performance equal to or better than other current landing guidance systems in terms of accuracy and reliability. This performance comes at significantly less cost to NASA, which will participate as a customer in a system designed as a commercial operation serving the global civil navigation community.

  10. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  11. Fire monitoring from space: from research to operation

    NASA Astrophysics Data System (ADS)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  12. Anomaly Detection for Next-Generation Space Launch Ground Operations

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.

    2010-01-01

    NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.

  13. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch...

  14. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch...

  15. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch...

  16. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch...

  17. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch...

  18. Kennedy Space Center Orion Processing Team Planning for Ground Operations

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  19. Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.

  20. Space Shuttle Day-of-Launch Trajectory Design Operations

    NASA Technical Reports Server (NTRS)

    Harrington, Brian E.

    2011-01-01

    A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to specific structural limits which will yield certain performance characteristics of mass to orbit. Some limits cannot be certified generically and must be checked with each mission design. The most sensitive limits require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which increase the probability of launch. The day-of-launch trajectory design and verification process is critical to the vehicle s safety. The Day-Of-Launch I-Load Update (DOLILU) is the process by which the National Aeronautics and Space Administration's (NASA) Space Shuttle Program tailors the vehicle steering commands to fit that day s environmental conditions and then rigorously verifies the integrated vehicle trajectory s loads, controls, and performance. This process has been successfully used for almost twenty years and shares many of the same elements with other launch vehicles that execute a day-of-launch trajectory design or day-of-launch trajectory verification. Weather balloon data is gathered at the launch site and transmitted to the Johnson Space Center s Mission Control. The vehicle s first stage trajectory is then adjusted to the measured wind and atmosphere data. The resultant trajectory must satisfy loads and controls constraints. Additionally, these assessments statistically protect for non-observed dispersions. One such dispersion is the change in the wind from the last measured balloon to launch time. This process is started in the hours before launch and is repeated several times as the launch count proceeds. Should the trajectory design

  1. Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan; Mathai, Varghese

    2011-09-01

    In this paper, we quantize universal gauge groups such as SU(∞), as well as their homogeneous spaces, in the σ- C*-algebra setting. More precisely, we propose concise definitions of σ- C*-quantum groups and σ- C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute these groups for the quantum homogeneous spaces associated to the quantum version of the universal gauge group SU(∞).

  2. Space station operations task force. Panel 3 report: User development and integration

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  3. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  4. Space Operations Center system analysis study extension. Volume 4, book 2: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.

  5. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  6. ISS Space-Based Science Operations Grid for the Ground Systems Architecture Workshop (GSAW)

    NASA Technical Reports Server (NTRS)

    Welch, Clara; Bradford, Bob

    2003-01-01

    Contents include the following:What is grid? Benefits of a grid to space-based science operations. Our approach. Score of prototype grid. The security question. Short term objectives. Long term objectives. Space-based services required for operations. The prototype. Score of prototype grid. Prototype service layout. Space-based science grid service components.

  7. Operational Space Weather Models: Trials, Tribulations and Rewards

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2009-12-01

    There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of

  8. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  9. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    NASA Astrophysics Data System (ADS)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  10. Leadership and Cultural Challenges in Operating the International Space Station

    NASA Technical Reports Server (NTRS)

    Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.

    2006-01-01

    Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.

  11. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  12. Space adaptation syndrome: Incidence and operational implications for the space transportation system program

    NASA Technical Reports Server (NTRS)

    Homick, J. L.; Reschke, M. F.; Vanderploeg, J. M.

    1984-01-01

    Better methods for the prediction, prevention, and treatment of the space adaptation syndome (SAS) were developed. A systematic, long range program of operationally oriented data collection on all individuals flying space shuttle missions was initiated. Preflight activities include the use of a motion experience questionnaire, laboratory tests of susceptibility to motion sickness induced by Coriolis stimuli and determinations of antimotion sickness drug efficacy and side effects. During flight, each crewmember is required to provide a daily report of symptom status, use of medications, and other vestibular related sensations. Additional data are obtained postflight. During the first nine shuttle missions, the reported incidence of SAS has been48%. Self-induced head motions and unusual visual orientation attitudes appear to be the principal triggering stimuli. Antimotion sickness medication, was of limited therapeutic value. Complete recovery from symptoms occurred by mission day three or four. Also of relevance is the lack of a statistically significant correlation between the ground based Coriolis test and SAS. The episodes of SAS have resulted in no impact to shuttle mission objectives and, no significant impact to mission timelines.

  13. Medical operations and life sciences activities on space station

    NASA Technical Reports Server (NTRS)

    Johnson, P. C. (Editor); Mason, J. A. (Editor)

    1982-01-01

    Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.

  14. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  15. Discrete analogue of generalized Hardy spaces and multiplication operators on homogenous trees

    NASA Astrophysics Data System (ADS)

    Muthukumar, Perumal; Ponnusamy, Saminathan

    2016-08-01

    In this article, we define discrete analogue of generalized Hardy spaces and its separable subspace on a homogenous rooted tree and study some of its properties such as completeness, inclusion relations with other spaces, separability, growth estimate for functions in these spaces and their consequences. Equivalent conditions for multiplication operators to be bounded and compact are also obtained. Furthermore, we discuss about point spectrum, approximate point spectrum and spectrum of multiplication operators and discuss when a multiplication operator is an isometry.

  16. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  17. Communications satellite systems operations with the space station. Volume 3: Supplementary technical report

    NASA Technical Reports Server (NTRS)

    Price, K. M.; Russell, P.; Weyandt, C.

    1988-01-01

    The NASA space station has the potential to provide significant economic benefits to commercial communications satellite operators. The initial reports qunatified the benefits of space-based activities and assessed the impacts on the satellite design and the space station. Results are given for the following additional tasks: quantify the value of satellite retrievability operations and define its operational aspects; evaluate the use of expendable launch vehicles for transportation of satellites from the Earth to the space station; and quantify the economic value of modular satellites that are assembled and serviced in space.

  18. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  19. Community Coordinated Modeling Center: Paving the Way for Progress in Space Science Research to Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.

    2013-12-01

    Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.

  20. Hubble Space Telescope (HST) shipping container test operations at KSC

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Ground crews look on as a crane lifts the 11,500 pound aluminum cap from the Hubble Space Telescope (HST) shipping container in front of the Multiuse Mission Support Equipment (MMSE) Building at the Kennedy Space Center (KSC). KSC workers continue to test and checkout the container which will be used to transport the 43 foot long, 14 foot diameter telescope from Lockheed in Sunnyvale, California to KSC next year. The telescope is scheduled for launch aboard the space shuttle in November 1988. View provided by KSC with alternate KSC number KSC-87PC-502.

  1. Adaption of space station technology for lunar operations

    NASA Technical Reports Server (NTRS)

    Garvey, J. M.

    1992-01-01

    Space Station Freedom technology will have the potential for numerous applications in an early lunar base program. The benefits of utilizing station technology in such a fashion include reduced development and facility costs for lunar base systems, shorter schedules, and verification of such technology through space station experience. This paper presents an assessment of opportunities for using station technology in a lunar base program, particularly in the lander/ascent vehicles and surface modules.

  2. SEI in-space operations and support challenges

    NASA Astrophysics Data System (ADS)

    Caldwell, Ronald

    A modeling and assessment process used to integrate SEI operations and support (OAS) planning processes with the systems engineering design, and system integration disciplines. Four areas of the OAS activity require the development of large infrastructures to maintain an operational capability: earth, orbital, transorbital, and lunar/Martian surface locations. An analytical process that can be used to develop OAS requirements is illustrated. Relationships of manufacturing, prelaunch operations, and orbital operations when deriving requirements are shown. If a concurrent engineering process is used, a more operationally efficient design can be defined early in the program to support all functions. Challenges associated with SEI logistics, the necessity for using functional analyses in the development of system requirements, some candidate operational lunar or Mars systems, and analytical modeling results on the candidate designs are discussed.

  3. Spectrum of the Wilson Dirac operator at finite lattice spacings

    SciTech Connect

    Akemann, G.; Damgaard, P. H.; Splittorff, K.; Verbaarschot, J. J. M.

    2011-04-15

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energy constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.

  4. Overview and Results of ISS Space Medicine Operations Team (SMOT) Activities

    NASA Technical Reports Server (NTRS)

    Johnson, H. Magee; Sargsyan, Ashot E.; Armstrong, Cheryl; McDonald, P. Vernon; Duncan, James M.; Bogomolov, V. V.

    2007-01-01

    The Space Medicine Operations Team (SMOT) was created to integrate International Space Station (ISS) Medical Operations, promote awareness of all Partners, provide emergency response capability and management, provide operational input from all Partners for medically relevant concerns, and provide a source of medical input to ISS Mission Management. The viewgraph presentation provides an overview of educational objectives, purpose, operations, products, statistics, and its use in off-nominal situations.

  5. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  6. Operational radiological support for the US manned space program

    NASA Technical Reports Server (NTRS)

    Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.

    1993-01-01

    Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.

  7. Space shuttle/payload interface analysis. Volume 4: Business Risk and Value of Operations in Space (BRAVO). Part 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Background information is provided which emphasizes the philosophy behind analytical techniques used in the business risk and value of operations in space (BRAVO) study. The focus of the summary is on the general approach, operation of the procedures, and the status of the study. For Vol. 1, see N74-12493; for Vol. 2, see N74-14530.

  8. Operability of Space Station Freedom's meteoroid/debris protection system

    NASA Technical Reports Server (NTRS)

    Kahl, Maggie S.; Stokes, Jack W.

    1992-01-01

    The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.

  9. Space Shuttle utilization characteristics with special emphasis on payload design, economy of operation and effective space exploitation

    NASA Technical Reports Server (NTRS)

    Turner, D. N.

    1981-01-01

    The reusable manned Space Shuttle has made new and innovative payload planning a reality and opened the door to a variety of payload concepts formerly unavailable in routine space operations. In order to define the payload characteristics and program strategies, current Shuttle-oriented programs are presented: NASA's Space Telescope, the Long Duration Exposure Facility, the West German Shuttle Pallet Satellite, and the Goddard Space Flight Center's Multimission Modular Spacecraft. Commonality of spacecraft design and adaptation for specific mission roles minimizes payload program development and STS integration costs. Commonality of airborne support equipment assures the possibility of multiple program space operations with the Shuttle. On-orbit maintenance and repair was suggested for the module and system levels. Program savings from 13 to over 50% were found obtainable by the Shuttle over expendable launch systems, and savings from 17 to 45% were achievable by introducing reuse into the Shuttle-oriented programs.

  10. Engineering, construction, and operations in space - III: Space '92; Proceedings of the 3rd International Conference, Denver, CO, May 31-June 4, 1992. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z. (Editor); Sture, Stein (Editor); Miller, Russell J. (Editor)

    1992-01-01

    The present volume on engineering, construction, and operations in space discusses surface structures on the moon and Mars, surface equipment, construction, and transportation on the moon and Mars, in situ materials use and processing, and space energy. Attention is given to such orbital structures as LEO and the space station, space mining and excavation, space materials, space automation and robotics, and space life support systems. Topics addressed include lunar-based astronomy, space systems integration, terrestrial support for space functions, and space education. Also discussed are space plans, policy, and history, space science and engineering, geoengineering and space exploration, and the construction and development of a human habitat on Mars.

  11. Integrated Ground Operations Demonstration for Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Johnson, Robert G.; Notardonato, William U.

    2013-01-01

    Integrated Ground Operations Demonstration Units (IGODU) project developed to mature, integrate and demonstrate advancements in cryogenics, system health management and command and control technologies. Two Distinct Testing Environments: a) GODU Integrated Refrigeration and Storage - GODU LH2; b) GODU Autonomous Control - GODU LO2. Scope: I. GODU LH2: a) Investigate alternative storage and distribution architecture for future cryogenic propellant operations. b) Demonstrate advanced cryogenic propellant handling operations (liquefaction, storage and distribution) of normal boiling point and sub-cooled cryogenic propellants. II. GODU L02: a) Develop and demonstrate advanced control and health management technologies and techniques to autonomously control cryogenic propellant servicing operations. b) Investigate modern COTS hardware and control systems in an effort to reduce the "standing army" of engineers associated with maintaining and operating ground systems through the use of health management and autonomous control technologies. Goals: a) Raise Technology Readiness Levels (TRL) and Integration Readiness Levels (IRL) of several key technology development areas. b) Reduce operations lifecycle costs of future test programs and launch complexes. c) Demonstrate technologies for future exploration beyond low earth orbit. d) Serve as test environments for extraterrestrial surface operations.

  12. Operational design factors for advanced space transportation vehicles

    NASA Astrophysics Data System (ADS)

    Whitehair, C. L.; Hickman, R. A.; Adams, J. D.; Wolfe, M. G.

    1992-08-01

    The tools and techniques needed to provide design decision-makers with balanced quantitative assessments of the potential operability consequences of their decisions are addressed. The factors controlling operability are identified, and a methodology to predict the impact of these factors on a specific launch vehicle is developed. Requirements to control these factors are established, and analytical tools developed specifically for performing detailed simulations to verify specific operability characteristics are described. An approach to collect, store, organize, and access high-quality historical, current, and future launch system data for the benefit of the USAF and the U.S. launch system community at large is outlined.

  13. Timeline-Based Space Operations Scheduling with External Constraints

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe a timeline-based scheduling algorithm developed for mission operations of the EO-1 earth observing satellite. We first describe the range of operational constraints for operations focusing on maneuver and thermal constraints that cannot be modeled in typical planner/schedulers. We then describe a greedy heuristic scheduling algorithm and compare its performance to both the prior scheduling algorithm - documenting an over 50% increase in scenes scheduled with estimated value of millions of dollars US. We also compare to a relaxed optimal scheduler showing that the greedy scheduler produces schedules with scene count within 15% of an upper bound on optimal schedules.

  14. Topological vector spaces of harmonic functions and the trace operator

    NASA Astrophysics Data System (ADS)

    Sansò, F.; Venuti, G.

    2005-07-01

    Many problems in physical geodesy can be formulated in terms of boundary-value problems (BVPs) for the gravitational potential; many of them can be ultimately formulated as a Dirichlet problem. For this reason, there is a flourishing literature of geodetic contributions to potential theory. In this paper, the authors pick up some classical arguments from the mathematical analysis of BVPs and show, by using only Hilbert spaces of harmonic functions, how they can be systematically cast into a functional scheme clarifying the role of duality when dealing with the harmonic subspaces of classical Sobolev spaces, of any real order. The analysis is here restricted to the case of functions harmonic in spherical domains to make the results transparent and more readable by geodesists. A further step is then taken showing how to generalize the Dirichlet problem for the space of all the functions that are harmonic outside a sphere, which exploits the more general theory of Fréchet topological spaces. Basically, the result is that any functions harmonic in the exterior of a sphere can be uniquely identified by a suitably defined trace on the sphere. The paper concludes with comments and discussion of future work.

  15. Legal Issues inherent in space shuttle operations. [reviewed by NASA Deputy General Counsel

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The legal issues inherent in NASA's proceeding into the day-to-day operations of the space shuttle and other elements of the Space Transportation System are considered in light of the National Aeronautics and Space Act of 1958. Based on this review, it was concluded that there is no immediate need for substantive amendments to that legislation.

  16. Space Operations for a New Era of Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2010-01-01

    Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicles. The combined Ares I/Ares V architecture was designed to reduce the complexity and labor intensity of ground operations for America s next journeys beyond low-Earth orbit (LEO). The Ares Projects goal is to instill operability as part of the vehicles requirements development, design, and operations. Since completing the Preliminary Design Review in 2008, work has continued to push the Ares I beyond the concept phase and into full vehicle development, while tackling fresh engineering challenges and performing pathfinding activities related to vehicle manufacturing and ground operations.

  17. A simulation program for the analysis of on-orbit Space Station maintenance and logistics operations

    NASA Technical Reports Server (NTRS)

    Furlong, Kelly L.; Dejulio, Edmund T.

    1988-01-01

    This paper describes the analysis approach adopted by NASA's Space Station Maintenance Planning and Analysis (MPA) Study and focuses on the development and use of a simulation program called Simulation of Manned Space System Logistics Support (SIMSYLS) for modeling the Space Station operations environment. The basic assumptions and groundrules used in the development of SIMSYLS are presented, including its capabilities, limitations and samples of analyses performed. Finally, a proposed simulation outgrowth entitled Space Applications System Simulation (SASS) is described. SIMSYLS will constitute the foundation for SASS which will provide a full system operational RAM analysis tool for Space Station and its logistics support environment.

  18. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  19. Moving Toward Space Internetworking via DTN: Its Operational Challenges, Benefits, and Management

    NASA Technical Reports Server (NTRS)

    Barkley, Erik; Burleigh, Scott; Gladden, Roy; Malhotra, Shan; Shames, Peter

    2010-01-01

    The international space community has begun to recognize that the established model for management of communications with spacecraft - commanded data transmission over individual pair-wise contacts - is operationally unwieldy and will not scale in support of increasingly complex and sophisticated missions such as NASA's Constellation project. Accordingly, the international Inter-Agency Operations Advisory Group (IOAG) ichartered a Space Internetworking Strategy Group (SISG), which released its initial recommendations in a November 2008 report. The report includes a recommendation that the space flight community adopt Delay-Tolerant Networking (DTN) to address the problem of interoperability and communication scaling, especially in mission environments where there are multiple spacecraft operating in concert. This paper explores some of the issues that must be addressed in implementing, deploying, and operating DTN as part of a multi-mission, multi-agency space internetwork as well as benefits and future operational scenarios afforded by DTN-based space internetworking.

  20. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  1. The Priority Mismatch Between Space Science and Satellite Operations

    NASA Astrophysics Data System (ADS)

    O'Brien, T. P., III; Mazur, J. E.; Fennell, J.; Guild, T. B.

    2014-12-01

    A satellite contends with four primary hazards presented by the radiation and plasma environment in space: Single event effects, internal charging, surface charging, and event total dose. Single event effects (SEE) are caused by protons and heavy ions with energies of 10s of MeV/amu; internal charging is caused by highly dynamic belts of electrons with energies above about 100 keV that penetrate inside a vehicle; surface charging is caused by electrons with energies of 10s of keV that interact with spacecraft surfaces; event total dose is caused primarily by solar protons and possibly also by transient belts of trapped particles, typically protons with energies near 10 MeV. We believe that all of these hazards are neglected in one way or another by the scientific component of the space weather community.

  2. Prospective of tethered system in space station operations

    NASA Astrophysics Data System (ADS)

    Vallerani, E.; Manarini, G.; Lorenzini, E.

    1983-10-01

    The use of satellite tethers for satellite launching and space station constellations is described. The tethers permit exploitation of the gravity gradient effect for stabilization, and also serve as momentum transfer devices between spacecraft at either end. Satellites can be launched into higher orbits when released outwards (away from the earth) by the unreeling of the tether line. The tether can also serve for rendezvous with a satellite in a higher orbit, allowing soft-docking to occur and enhancing the safety of the Orbiter. Modules of a space station can be separated and stabilized in constellations through the use of tethers. Spinning the tethers about their vertical axis will keep the tethers stretched. Free-flying platforms can be raised or lowered to proper orbits without propulsive maneuvers. Finally, fluid can be pumped downward between spacecraft without using on-board power.

  3. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  4. Apollo experience report: Flight planning for manned space operations

    NASA Technical Reports Server (NTRS)

    Oneill, J. W.; Cotter, J. B.; Holloway, T. W.

    1972-01-01

    The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.

  5. Health care delivery system for long duration manned space operations

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Shulman, E. L.; Johnson, P. C.

    1983-01-01

    Specific requirements for medical support of a long-duration manned facility in a low earth orbit derive from inflight medical experience, projected medical scenarios, mission related spacecraft and environmental hazards, health maintenance, and preventive medicine. A sequential buildup of medical capabilities tailored to increasing mission complexity is proposed. The space station health maintenance facility must provide preventive, diagnostic, and therapeutic medical support as immediate rescue capability may not exist.

  6. Space Operations Center system analysis study extension. Volume 4, book 1: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.

  7. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  8. Development of a prototype real-time automated filter for operational deep space navigation

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  9. RKH space approximations for the feedback operator in a linear hereditary control system

    NASA Technical Reports Server (NTRS)

    Reneke, J. A.; Fennell, R. E.

    1987-01-01

    Computational implementation of feedback control laws for linear hereditary systems requires the approximation of infinite dimensional feedback operators with finite dimensional operators. The dense subspaces of K-polygonal functions in reproducing kernel Hilbert spaces, RKH spaces, suggest finite dimensional approximations of the matrix representations of the control operators. A convergence theorem is developed for the approximations and the numerical implementation of the approximations is discussed.

  10. Operator-coached machine vision for space telerobotics

    NASA Technical Reports Server (NTRS)

    Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.

    1991-01-01

    A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.

  11. Meteorological support for space operations: Review and recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The current meteorological support provided to NASA by NOAA, Air Weather Service, and other contractors is reviewed and suggestions are offered for its improvement. These recommendations include improvement in NASA's internal management organizational structure that would accommodate continued improvement in operational weather support, installation of new observing systems, improvement in analysis and forecasting procedures, and the establishment of an Applied Research and Forecasting Facility.

  12. Comparative evaluation operability of large space structure connectors

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.

    1981-01-01

    The evaluation of several connector concepts in the neutral buoyancy simulator is discussed. Parameters for evaluating the fasteners included subject comments and hardware damage. Evaluation results include a rank ordering of the candidates with descriptions of the acceptable and unacceptable points of each. General design recommendations established as a result of neutral buoyancy testing are defined. Recommendations include detailed hardware and operational design requirements.

  13. Wireless Network Communications Overview for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2009-01-01

    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information.

  14. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  15. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  16. Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.

    2005-01-01

    This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

  17. Generalized Effect Algebras of Positive Operators Densely Defined on Hilbert Spaces

    NASA Astrophysics Data System (ADS)

    Polakovič, Marcel; Riečanová, Zdenka

    2011-04-01

    Axioms of quantum structures, motivated by properties of some sets of linear operators in Hilbert spaces are studied. Namely, we consider examples of sets of positive linear operators defined on a dense linear subspace D in a (complex) Hilbert space ℋ. Some of these operators may have a physical meaning in quantum mechanics. We prove that the set of all positive linear operators with fixed such D and ℋ form a generalized effect algebra with respect to the usual addition of operators. Some sub-algebras are also mentioned. Moreover, on a set of all positive linear operators densely defined in an infinite dimensional complex Hilbert space, the partial binary operation is defined making this set a generalized effect algebra.

  18. Lessons Learned From the Development, Operation, and Review of Mechanical Systems on the Space Shuttle, International Space Station, and Payloads

    NASA Technical Reports Server (NTRS)

    Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan

    2006-01-01

    The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.

  19. Phase-space-region operators and the Wigner function: Geometric constructions and tomography

    NASA Astrophysics Data System (ADS)

    Ellinas, Demosthenes; Bracken, Anthony J.

    2008-11-01

    Quasiprobability measures on a canonical phase space give rise through the action of Weyl’s quantization map to operator-valued measures and, in particular, to region operators. Spectral properties, transformations, and general construction methods of such operators are investigated. Geometric trace-increasing maps of density operators are introduced for the construction of region operators associated with one-dimensional domains, as well as with two-dimensional shapes (segments, canonical polygons, lattices, etc.). Operational methods are developed that implement such maps in terms of unitary operations by introducing extensions of the original quantum system with ancillary spaces (qubits). Tomographic methods of reconstruction of the Wigner function based on the radon transform technique are derived by the construction methods for region operators. A Hamiltonian realization of the region operator associated with the radon transform is provided, together with physical interpretations.

  20. Earth based approaches to enhancing the health and safety of space operations

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.

    1985-01-01

    This paper provides an overview of the current state of our earth based knowledge of space safety hazards; identification of several key areas of concern for space operations; and proposed approaches to providing technology enhancement and information needed to improve the health and safety to those conducting space operations. Included are a review of the identified hazards for space oeprations by hazard classification; a summarization of the information currently available on space experiences and an assessment of potential hazards for long duration spaceflight; a discussion of potential failure modes and their significance for Space Station work: and an assessment of current work which indicates additional research and experimentation which can only be accomplished in actual space missions.

  1. The Space Weather Prediction Testbed: Bridging the Gap Between Research and Operations

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2012-12-01

    The Space Weather Prediction Testbed (SWPT), was established to facilitate the transition of research models into operational Space Weather Forecast Offices. The SWPT is part of the National Weather Service's Space Weather Prediction Center. In addition to transitioning models from research to operations (R2O) the SWPT also identifies the most urgent needs and requirements of the Forecast Office and translates them into research and model development needs so that the scientists can better identify ways in which these operational requirements can be met by current research activities (O2R). The current high priority operational requirements for improved space weather products and services will be discussed along with the data and modeling activities needed to meet these requirements. Some of the SWPT model development activities and how they apply to the operational requirements will also be presented.

  2. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Technical Reports Server (NTRS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    1990-01-01

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  3. Virtual Operations in Common Information Spaces: Boundary Objects and Practices

    NASA Astrophysics Data System (ADS)

    Akoumianakis, Demosthenes; Milolidakis, Giannis; Stefanakis, Dimitrios; Akrivos, Anargyros; Vellis, George; Kotsalis, Dimitrios; Plemenos, Anargyros; Vidakis, Nikolaos

    The paper presents a field study aimed at identifying and analyzing the role of boundary artifacts in cross-organization virtual communities of practice (CoP). Our analysis is informed by a recent case study in vacation package assembly (VPA), which is defined as the distributed collective practice carried out by members of a boundary-spanning virtual alliance inhabiting a ‘common’ information space (CIS). The CIS forms the virtuality through which members of the alliance engage in coordinative actions on boundary artifacts. The CIS implements the facilities required for constructing, negotiating and reconstructing these boundary artifacts so as to assemble personalized regional vacation packages for tourists. The results lead to several conclusions on the design of CIS as computational host of virtual communities of practice.

  4. Continuation of research in software for space operations support

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.

    1989-01-01

    Software technologies relevant to workstation executives are discussed. Evaluations of problems, potential or otherwise, seen with IBM's Workstation Executive (WEX) 2.5 preliminary design and applicable portions of the 2.5 critical design are presented. Diverse graphics requirements of the Johnson Space Center's Mission Control Center Upgrade (MCCU) are also discussed. The key is to use tools that are portable, compatible with the X window system, and best suited to the requirements of the associated application. This will include a User Interface Language (UIL), an interactive display builder, and a graphic plotting/modeling system. Work sheets are provided for POSIX 1003.4 real-time extensions and the requirements for the Center's automated information systems security plan, referred to as POSIX 1003.6, are discussed.

  5. Automating Stowage Operations for the International Space Station

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  6. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  7. Space Operations Center system analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.

  8. Automatic sequencing and control of Space Station airlock operations

    NASA Technical Reports Server (NTRS)

    Himel, Victor; Abeles, Fred J.; Auman, James; Tqi, Terry O.

    1989-01-01

    Procedures that have been developed as part of the NASA JSC-sponsored pre-prototype Checkout, Servicing and Maintenance (COSM) program for pre- and post-EVA airlock operations are described. This paper addresses the accompanying pressure changes in the airlock and in the Advanced Extravehicular Mobility Unit (EMU). Additionally, the paper focuses on the components that are checked out, and includes the step-by-step sequences to be followed by the crew, the required screen displays and prompts that accompany each step, and a description of the automated processes that occur.

  9. Space shuttle descent design: From development to operations

    NASA Technical Reports Server (NTRS)

    Crull, T. J.; Hite, R. E., III

    1985-01-01

    The descent guidance system, the descent trajectories design, and generating of the associated flight products are discussed. The programs which allow the successful transitions from development to STS operations, resulting in reduced manpower requirements and compressed schedules for flight design cycles are addressed. The topics include: (1) continually upgraded tools for the job, i.e., consolidating tools via electronic data transfers, tailoring general purpose software for needs, easy access to tools through an interactive approach, and appropriate flexibility to allow design changes and provide growth capability; (2) stabilizing the flight profile designs (I-loads) in an uncertain environment; and (3) standardizing external interfaces within performance and subsystems constraints of the Orbiter.

  10. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  11. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  12. SpaceOps 1992: Proceedings of the Second International Symposium on Ground Data Systems for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Second International Symposium featured 135 oral presentations in these 12 categories: Future Missions and Operations; System-Level Architectures; Mission-Specific Systems; Mission and Science Planning and Sequencing; Mission Control; Operations Automation and Emerging Technologies; Data Acquisition; Navigation; Operations Support Services; Engineering Data Analysis of Space Vehicle and Ground Systems; Telemetry Processing, Mission Data Management, and Data Archiving; and Operations Management. Topics focused on improvements in the productivity, effectiveness, efficiency, and quality of mission operations, ground systems, and data acquisition. Also emphasized were accomplishments in management of human factors; use of information systems to improve data retrieval, reporting, and archiving; design and implementation of logistics support for mission operations; and the use of telescience and teleoperations.

  13. Natural world physical, brain operational, and mind phenomenal space-time

    NASA Astrophysics Data System (ADS)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  14. Digital Motion Imagery, Interoperability Challenges for Space Operations

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney

    2012-01-01

    With advances in available bandwidth from spacecraft and between terrestrial control centers, digital motion imagery and video is becoming more practical as a data gathering tool for science and engineering, as well as for sharing missions with the public. The digital motion imagery and video industry has done a good job of creating standards for compression, distribution, and physical interfaces. Compressed data streams can easily be transmitted or distributed over radio frequency, internet protocol, and other data networks. All of these standards, however, can make sharing video between spacecraft and terrestrial control centers a frustrating and complicated task when different standards and protocols are used by different agencies. This paper will explore the challenges presented by the abundance of motion imagery and video standards, interfaces and protocols with suggestions for common formats that could simplify interoperability between spacecraft and ground support systems. Real-world examples from the International Space Station will be examined. The paper will also discuss recent trends in the development of new video compression algorithms, as well likely expanded use of Delay (or Disruption) Tolerant Networking nodes.

  15. Piezoelectric PVDF materials performance and operation limits in space environments.

    SciTech Connect

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-11-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

  16. Profiler Support for Operations at Space Launch Ranges

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Wilfong, Timothy; Lambert, Winifred; Short, David; Decker, Ryan; Ward, Jennifer

    2006-01-01

    Accurate vertical wind profiles are essential to successful launch or landing. Wind changes can make it impossible to fly a desired trajectory or avoid dangerous vehicle loads, possibly resulting in loss of mission. Balloons take an hour to generate a profile up to 20 km, but major wind changes can occur in 20 minutes. Wind profilers have the temporal response to detect such last minute hazards. They also measure the winds directly overhead while balloons blow downwind. At the Eastern Range (ER), altitudes from 2 to 20 km are sampled by a 50-MHz profiler every 4 minutes. The surface to 3 km is sampled by five 915-MHz profilers every 15 minutes. The Range Safety office assesses the risk of potential toxic chemical dispersion. They use observational data and model output to estimate the spatial extent and concentration of substances dispersed within the boundary layer. The ER uses 915-MHz profilers as both a real time observation system and as input to dispersion models. The WR has similar plans. Wind profilers support engineering analyses for the Space Shuttle. The 50-IVl11z profiler was used recently to analyze changes in the low frequency wind and low vertical wavenumber content of wind profiles in the 3 to 15 km region of the atmosphere. The 915-MHz profiler network was used to study temporal wind change within the boundary layer.

  17. Real-Time Payload Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cissom, Rick D.; Watson, Kristi

    2004-01-01

    This paper will focus on the challenges that Payload Operations have faced as Payload Utilization has evolved over the last three years of real-time experience. Specifically the paper will focus on the planning challenges and the constant battle over program allocation between core systems and payloads, the process of developing and implementing crew training in a centralized location that is being support by a payload development community spread out all over the US, the unique challenges associated with deployed pressurized payload payloads that are not located within an ISPR, and the importance of documenting specific requirements that the payload development community must implement to get through the crew reviews associated with training and procedures. The authors will focus on specific lessons learned and improvements that have been made in both the streamlining of the processes and the associated documentation.

  18. PI Microgravity Services Role for International Space Station Operations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  19. Multimegabit Operation Multiplexer System. [PCM telemetry unit for space applications

    NASA Technical Reports Server (NTRS)

    Giri, R. R.; Maxwell, M. S.

    1973-01-01

    The Multimegabit Operation Multiplexer System (MOMS) is a high-data-rate PCM telemetry unit capable of sampling and encoding 60 scanning radiometer and four vidicon channels at 250 kilosamples/second and 5 megasamples/second, respectively. This sampling capacity plus the seven-bit quantization requires a total throughput rate of 40 megasamples/second and 280 megabits/second. To produce these rates efficiently, the system was divided into a pair of identical 140-megabit blocks. A low-power 20-MHz analog multiplexer and analog-to-digital converter were developed together with a video sample-and-hold that features an aperture time error of less than 50 psec. Breadboard testing of these basic building blocks confirmed the design prediction that the total system would consume 27 watts of power. Two 140-megabit output parts are suitable for quadriphase modulation.

  20. Heavy-Lift for a New Paradigm in Space Operations

    NASA Technical Reports Server (NTRS)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  1. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  2. Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1994-01-01

    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations.

  3. Robotic space simulation integration of vision algorithms into an orbital operations simulation

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1987-01-01

    In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.

  4. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  5. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  6. Structure of the isotropic transport operators in three independent space variables

    NASA Technical Reports Server (NTRS)

    Abu-Shumays, I. K.; Bareiss, E. H.

    1969-01-01

    Based on the idea of separation of variables, a spectral theory for the three-dimensional, stationary, isotropic transport operator in a vector space of complex-valued Borel functions results in continuous sets of regular and generalized eigenfunctions.

  7. Sensor Data Qualification for Autonomous Operation of Space Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Sowers, T. Shane

    2006-01-01

    NASA's new Exploration initiative for both robotic and manned missions will require higher levels of reliability, autonomy and reconfiguration capability to make the missions safe, successful and affordable. Future systems will require diagnostic reasoning to assess the health of the system in order to maintain the system s functionality. The diagnostic reasoning and assessment will involve data qualification, fault detection, fault isolation and remediation control. A team of researchers at the NASA Glenn Research Center is currently working on a Sensor Data Qualification (SDQ) system that will support these critical evaluation processes, for both automated and human-in-the-loop applications. Data qualification is required as a first step so that critical safety and operational decisions are based on good data. The SDQ system would monitor a network of related sensors to determine the health of individual sensors within that network. Various diagnostic systems such as the Caution and Warning System would then use the sensor health information with confidence. The proposed SDQ technology will be demonstrated on a variety of subsystems that are relevant to NASA s Exploration systems, which currently include an electrical power system and a cryogenic fluid management system. The focus of this paper is the development and demonstration of a SDQ application for a prototype power distribution unit that is representative of a Crew Exploration Vehicle electrical power system; this provides a unique and relevant environment in which to demonstrate the feasibility of the SDQ technology.

  8. Mission Operations and Data Systems Directorate's operational/development network (MODNET) at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.

  9. Economic benefits of the Space Station to commercial communication satellite operators

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  10. The Operational Role of the Belgian User Support and Operations Centre for the Atmosphere-Space Interactions Monitor (ASIM) on-board the International Space Station.

    NASA Astrophysics Data System (ADS)

    Muller, C.; Moreau, D., Sr.; Pandey, P. K.; Crosby, N. B.

    2014-12-01

    The Belgian User Support and Operations Centre (B.USOC) is an operational centre managing technological and scientific payloads on the International Space Station (ISS). B.USOC is the Facility Responsible Centre (FRC) for the European Space Agency's (ESA) Atmosphere-Space Interactions Monitor (ASIM) payload and also manages the Scientific Mission Centre of the Centre National d'Etudes Spatiales (CNES) PICARD satellite that monitors solar activity, among various other space missions. In this respect, B.USOC is ideally positioned to manage possible synergies between ASIM, the satellite TARANIS (Tool for the Analysis of RAdiation from lightNIng and Sprites), other space missions and ground-based networks. The ASIM mission (Neubert, 2009) consists of a package of two nadir instruments: one for the visible spectrum and another for X-ray and gamma-ray frequencies. In the normal operating mode "trigger mode" both instruments continuously measure, but, do not record data below certain thresholds. Another mode is a "timed mode", where, during a certain time the observations are recorded even in the absence of triggers. The "timed mode" demands a lot of flexibility from both scientific teams and B.USOC, as, ASIM's main targets of investigation (sprites and elves) are related to intense thunderstorms and thus, require reliable meteorological forecasts in the entire range of ISS latitudes. Moreover, ASIM is sensitive to a large number of phenomena of which most have a direct relationship with solar activity and therefore would probably need support from the ESA SSA (Space Situational Awareness) Space Weather Coordination Centre (SSCC) that shares the same campus with B.USOC. Local cooperation between the two centres, together with other space payloads such as TARANIS and ground-based networks will greatly optimize ASIM payload operations as well as scientific return. Neubert, T., and the ASIM Team, ASIM - an Instrument Suite for the International Space Station, Corte Workshop

  11. Space Operations Center system analysis. Volume 3, book 1: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program and its elements are described. A work breakdown structure is presented and elements for the habitat and service modules, docking tunnel and airlock modules defined. The basis for the element's design is given. Mass estimates for the elements are presented in the work breakdown structure.

  12. Potential applications of expert systems and operations research to space station logistics functions

    NASA Technical Reports Server (NTRS)

    Lippiatt, Thomas F.; Waterman, Donald

    1985-01-01

    The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.

  13. Flight Simulator: Use of SpaceGraph Display in an Instructor/Operator Station. Final Report.

    ERIC Educational Resources Information Center

    Sher, Lawrence D.

    This report describes SpaceGraph, a new computer-driven display technology capable of showing space-filling images, i.e., true three dimensional displays, and discusses the advantages of this technology over flat displays for use with the instructor/operator station (IOS) of a flight simulator. Ideas resulting from 17 brainstorming sessions with…

  14. Cognitive Operations on Space and Their Impact on the Precision of Location Memory

    ERIC Educational Resources Information Center

    Lansdale, Mark; Humphries, Joyce; Flynn, Victoria

    2013-01-01

    Learning about object locations in space usually involves the summation of information from different experiences of that space and requires various cognitive operations to make this possible. These processes are poorly understood and, in the extreme, may not occur--leading to mutual exclusivity of memories (Baguley, Lansdale, Lines, & Parkin,…

  15. Space Operations Center system analysis study extension. Volume 2: Programmatics and cost

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of Space Operations Center (SOC) orbital space station costs, program options and program recommendations is presented. Program structure, hardware commonality, schedules and program phasing are considered. Program options are analyzed with respect to mission needs, design and technology options, and anticipated funding constraints. Design and system options are discussed.

  16. Sex differences in operant responding and survivability following exposure to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions, such as a mission to Mars, astronauts will be exposed to types and doses of radiation (galactic cosmic rays [GCR]) which are not experienced in low earth orbit where the space shuttle and International Space Station operate. Despite the fact that the crew on such a mi...

  17. Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor)

    1992-01-01

    Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions.

  18. Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle

    NASA Technical Reports Server (NTRS)

    Myers, K. Jeffrey; Tipton, David A.; Woodard, Daniel; Long, Irene D.

    1992-01-01

    The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.

  19. Emergency medical operations at Kennedy Space Center in support of space shuttle

    NASA Technical Reports Server (NTRS)

    Myers, K. J.; Tipton, D. A.; Woodard, D.; Long, I. D.

    1992-01-01

    The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.

  20. Using Spacelab as a precursor of science operations for the Space Station

    NASA Technical Reports Server (NTRS)

    Marmann, R. A.

    1997-01-01

    For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.

  1. Impacting Space Station Freedom design with operations and safety requirements - An availability process

    NASA Technical Reports Server (NTRS)

    Garegnani, Jerry J.; Schondorf, Steven Y.

    1990-01-01

    The unusually long mission duration of Space Station Freedom leads to operations costs that have significant impacts on life-cycle cost relative to previous manned space programs. Maintaining an affordable program requires that operations costs be considered throughout the design process. An appropriate means of impacting the design with operations concerns is to specify requirements that ensure operational effectiveness when implemented. The Space Station Freedom Program has developed a process defining such requirements. It focuses on specifying functional profiles and allocating resources such that designers gain a better understanding of the operational envelope in which their systems must perform. This paper examines the details of the process, where it came from, and why it is effective.

  2. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  3. Spaces of phylogenetic networks from generalized nearest-neighbor interchange operations.

    PubMed

    Huber, Katharina T; Linz, Simone; Moulton, Vincent; Wu, Taoyang

    2016-02-01

    Phylogenetic networks are a generalization of evolutionary or phylogenetic trees that are used to represent the evolution of species which have undergone reticulate evolution. In this paper we consider spaces of such networks defined by some novel local operations that we introduce for converting one phylogenetic network into another. These operations are modeled on the well-studied nearest-neighbor interchange operations on phylogenetic trees, and lead to natural generalizations of the tree spaces that have been previously associated to such operations. We present several results on spaces of some relatively simple networks, called level-1 networks, including the size of the neighborhood of a fixed network, and bounds on the diameter of the metric defined by taking the smallest number of operations required to convert one network into another. We expect that our results will be useful in the development of methods for systematically searching for optimal phylogenetic networks using, for example, likelihood and Bayesian approaches. PMID:26037483

  4. Exploration of the Equilibrium Operating Space For NSTX-Upgrade

    SciTech Connect

    S.P. Gerhardt, R. Andre and J.E. Menard

    2012-04-25

    . Scenarios are presented which can be sustained for 8-10 seconds, or (20-30)τCR, at βN=3.8-4.5, facilitating, for instance, the study of disruption avoidance for very long pulse. Scenarios have been documented which can operate with βT~25% and equilibrated qmin>1. The value of qmin can be controlled at either fixed non-inductive fraction of 100% or fixed plasma current, by varying which beam sources are used, opening the possibility for feedback qmin control. In terms of quantities like collisionality, neutron emission, non-inductive fraction, or stored energy, these scenarios represent a significant performance extension compared to NSTX and other present spherical torii.

  5. Joint operations planning for space surveillance missions on the MSX satellite

    NASA Technical Reports Server (NTRS)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  6. Application of the French Space Operation Act and the Development of Space Activities in the Field of Launchers

    NASA Astrophysics Data System (ADS)

    Cahuzac, F.; Biard, A.

    2012-01-01

    The development of space activities has led France to define a new legal framework: French Space Operation Act (FSOA). The aim of this act, is to define the conditions according to which the French government authorizes and checks the spatial operations under its jurisdiction or its international responsibility as State of launch, according to the international treaties of the UN on space, in particular the Treaty (1967) on Principles Governing the Activities of States in the Exploration and Use of Outer Space, the Convention ( 1972 ) on International Liability for Damage Caused by Space Objects, and the Convention (1975) on Registration of Objects Launched into Outer Space. The main European space centre is the Guiana Space Centre (CSG), settled in France. A clarification of the French legal framework was compulsory to allow the arrival of new launchers (Soyuz and Vega). This act defines the competent authority, the procedure of authorization and licenses, the regime for operations led from foreign countries, the control of spatial objects, the enabling of inspectors, the delegation of monitoring to CNES, the procedure for urgent measures necessary for the safety, the registration of spatial objects. In this framework, the operator is fully responsible of the operation that he leads. He is subjected to a regime of authorization and to governmental technical monitoring delegated to CNES. In case of litigation, the operator gets the State guarantee above a certain level of damage to third party. The introduction of FSOA has led to issue a Technical Regulation set forth, in particular for the safety of persons and property, the protection of public health and the environment. This general regulation is completed by a specific regulation applicable to CSG that covers the preparation phase of the launch, and all specificities of the launch range, as regards the beginning of the launch. The Technical Regulation is based on 30 years of Ariane's activities and on the

  7. Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor)

    1994-01-01

    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations.

  8. On-orbit operations of the Space Station Freedom attached payloads accommodations equipment

    NASA Technical Reports Server (NTRS)

    Lane, Jean Folse; Stivaletti, Joseph

    1989-01-01

    The Space Station Freedom which will serve as a base of operations for instruments performing space science is discussed. The Attached Payload Accommodation Equipment (APAE) will be a set of equipment designed to provide standard structural, power, data and thermal interfaces between payloads and the space station. The APAE is designed to minimize and simplify the on-orbit operations required for payload installation, replacement, and servicing. In addition, the APAE supplies launch support for small payloads and attitude control for payloads that required it.

  9. The Consolidated Planning and Scheduling System for Space Transportation and Space Station operations - Successful development experience

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.; Gardner, Jo A.; Shinkle, Gerald L.

    1993-01-01

    In 1992, NASA made the decision to evolve a Consolidated Planning System (CPS) by adding the Space Transportation System (STS) requirements to the Space Station Freedom (SSF) planning software. This paper describes this evolutionary process, which began with a series of six-month design-build-test cycles, using a domain-independent architecture and a set of developmental tools known as the Advanced Scheduling Environment. It is shown that, during these tests, the CPS could be used at multiple organizational levels of planning and for integrating schedules from geographically distributed (including international) planning environments. The potential for using the CPS for other planning and scheduling tasks in the SSF program is being currently examined.

  10. Expendable second stage reusable space shuttle booster. Volume 5: Operations and resources

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The operations and resources required to support the expendable second stage reusable space shuttle booster are analyzed. The subjects discussed are: (1) operations plan, (2) facilities utilization and manufacturing plan, (3) engineering and development plan, (4) test plan, (5) logistics and maintenance plan, and (6) program management plan.

  11. Korn's inequality and Donati's theorem for the conformal Killing operator on pseudo-Euclidean space

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2008-09-01

    We prove the Korn's inequality for the conformal Killing operator on pseudo-Euclidean space , and an existence theorem for solutions to the non-homogeneous conformal Killing equation, which is a pseudo-Euclidean conformal generalization of Donati's theorem for Euclidean Killing operator.

  12. Space shuttle guidance, navigation and control design equations. Volume 3: Orbital operations

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Revised specifications are presented of the equations necessary to perform the guidance, navigation, and control onboard computation functions for the space shuttle orbiter vehicle. The orbital operations covered include: (1) orbital coast, (2) orbital powered flight, (3) rendezvous mission phase, (4) station keeping mission phase, (5) docking and undocking, and (6) docked operations.

  13. Structured methods for identifying and correcting potential human errors in space operations.

    PubMed

    Nelson, W R; Haney, L N; Ostrom, L T; Richards, R E

    1998-01-01

    Human performance plays a significant role in the development and operation of any complex system, and human errors are significant contributors to degraded performance, incidents, and accidents for technologies as diverse as medical systems, commercial aircraft, offshore oil platforms, nuclear power plants, and space systems. To date, serious accidents attributed to human error have fortunately been rare in space operations. However, as flight rates go up and the duration of space missions increases, the accident rate could increase unless proactive action is taken to identity and correct potential human errors in space operations. The Idaho National Engineering and Environmental Laboratory (INEEL) has developed and applied structured methods of human error analysis to identify potential human errors, assess their effects on system performance, and develop strategies to prevent the errors or mitigate their consequences. These methods are being applied in NASA-sponsored programs to the domain of commercial aviation, focusing on airplane maintenance and air traffic management. The application of human error analysis to space operations could contribute to minimize the risks associated with human error in the design and operation of future space systems. PMID:11541925

  14. Structured methods for identifying and correcting potential human errors in space operations

    NASA Astrophysics Data System (ADS)

    Nelson, William R.; Haney, Lon N.; Ostrom, Lee T.; Richards, Robert E.

    Human performance plays a significant role in the development and operation of any complex system, and human errors are significant contributors to degraded performance, incidents, and accidents for technologies as diverse as medical systems, commercial aircraft, offshore oil platforms, nuclear power plants, and space systems. To date, serious accidents attributed to human error have fortunately been rare in space operations. However, as flight rates go up and the duration of space missions increases, the accident rate could increase unless proactive action is taken to identify and correct potential human errors in space operations. The Idaho National Engineering and Environmental Laboratory (INEEL) has developed and applied structured methods of human error analysis to identify potential human errors, assess their effects on system performance, and develop strategies to prevent the errors or mitigate their consequences. These methods are being applied in NASA-sponsored programs to the domain of commercial aviation, focusing on airplane maintenance and air traffic management. The application of human error analysis to space operations could contribute to minimize the risks associated with human error in the design and operation of future space systems.

  15. Transitioning Models and Model Output to Space Weather Operations: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Berrios, David; Chulaki, Anna; Kuznetsova, Maria M.; MacNeice, Peter J.; Maddox, Mario; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center.

  16. Forecasting toxic hazards in support of space and missile operations at the eastern range

    SciTech Connect

    Parks, C.R.; Overbeck, K.B.; Evans, R.J.

    1996-12-31

    As one of the two major launch sites in support of America`s Space Program, the United States Air Force`s (USAF) Eastern Range (ER) processes and launches dozens of space vehicles each year. Located on Florida`s east coast, the ER supports launches from the National Aeronautics and Space Administration`s (NASA) Kennedy Space Center (KSC) and the adjacent USAF Cape Canaveral Air Station. Toxic vapor emissions may occur during all phases of launch operations, including: launch preparations, normal successful launches, and (worst case) catastrophic aborts. Range Safety must adequately prevent toxic emissions from presenting a safety hazard to workers and to the general public. Restrictive federal and local guidelines force stringent human exposure limits for which accurate launch GO or NO-GO safety forecasts must be prepared. This paper discusses toxic hazard prediction requirements for space and missile operations, and the problems and methods in meeting those requirements at the ER.

  17. The determination of operational and support requirements and costs during the conceptual design of space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles; Beasley, Kenneth D.

    1992-01-01

    The first year of research to provide NASA support in predicting operational and support parameters and costs of proposed space systems is reported. Some of the specific research objectives were (1) to develop a methodology for deriving reliability and maintainability parameters and, based upon their estimates, determine the operational capability and support costs, and (2) to identify data sources and establish an initial data base to implement the methodology. Implementation of the methodology is accomplished through the development of a comprehensive computer model. While the model appears to work reasonably well when applied to aircraft systems, it was not accurate when used for space systems. The model is dynamic and should be updated as new data become available. It is particularly important to integrate the current aircraft data base with data obtained from the Space Shuttle and other space systems since subsystems unique to a space vehicle require data not available from aircraft. This research only addressed the major subsystems on the vehicle.

  18. Object oriented Simulation of Maintenance and Operations for Space Systems (OSMOSSYS)

    NASA Technical Reports Server (NTRS)

    Doran, Linda; Nguyen, Vien; Nguyen, Judy; Blumentritt, Will

    1993-01-01

    This paper describes the NASA/JSC Research Technology Opportunity Program (RTOP) activity to assess the supportability of space systems throughout their life cycles. Supportability analyses for space systems present unique attributes and problems. The OSMOSSYS (Object oriented Simulation of Maintenance and Operations for Space Systems) was developed using object-oriented design concepts to provide NASA an analysis tool which addresses the question `Will a proposed space facility be able to successfully perform the missions for which it is designed?' This model integrates the complete configuration of the system including the reliability and maintainability characteristics of each component, the logistics support, and the mission operations of the facility to assess the success rate of the planned mission(s). Two parallel design processes are being utilized; developing core modules utilizing C++, and incorporating as much code and ideas as possible from existing NASA models. The space station was used as a test case to demonstrate the applicability of the model.

  19. Proposed preliminary criteria for space shuttle access equipment at the operational site

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1971-01-01

    A comparison was made between the methods of access utilized, or proposed, by the military, commercial airlines, and the space shuttle Phase B contractors. The methodology was subjected to consideration for space shuttle use and similarity to current space shuttle access concepts. The Phase B contractor concepts were in turn examined for degree of use of the state-of-the-art and progressive extension of new cost-effective ideas. This comparison disclosed a need for better definition of the criteria/requirements for space shuttle access equipment. Preliminary criteria, needed prior to initiation of the detail design (Phase C/D effort) of ground hardware for the operational site, are presented.

  20. Flight Validation of On-Demand Operations: The Deep Space One Beacon Monitor Operations Experiment

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Sherwood, Rob; Sue, Miles; Szijjarto, John

    2000-01-01

    After a brief overview of the operational concept, this paper will provide a detailed description of the _as-flown_ flight software components, the DS1 experiment plan, and experiment results to date. Special emphasis will be given to experiment results and lessons learned since the basic system design has been previously reported. Mission scenarios where beacon operations is highly applicable will be described. Detailed cost savings estimates for a sample science mission will be provided as will cumulative savings that are possible over the next fifteen years of NASA missions.

  1. The Hubble Space Telescope servicing missions: Past, present, and future operational challenges

    NASA Technical Reports Server (NTRS)

    Ochs, William R.; Barbehenn, George M.; Crabb, William G.

    1996-01-01

    The Hubble Space Telescope was designed to be serviced by the Space Shuttle to upgrade systems, replace failed components and boost the telescope into higher orbits. There exists many operational challenges that must be addressed in preparation for the execution of a servicing mission, including technical and managerial issues. The operational challenges faced by the Hubble operations and ground system project for the support of the first servicing mission and future servicing missions, are considered. The emphasis is on those areas that helped ensure the success of the mission, including training, testing and contingency planning.

  2. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; Himmel, Seymour C.; Fitch, Dennis E.; Parmet, Norman R.; McDonald, John F.McDonald; Stewart, John G.

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  3. Using VR to improve the performance of low-earth orbit space robot operations.

    PubMed

    Lapointe, Jean-François; Massicotte, Philippe

    2003-10-01

    The operations of current robotics systems in low-earth orbit could benefit from the use of virtual reality (VR) systems to improve their performance. This paper presents an example of the type of contribution such a system could provide to assist the space robot operators in their operations, by using the increased situational awareness and the ease of use associated with VR systems. PMID:14583130

  4. EVA operational guidelines and considerations for use during the Space Station Freedom design review process

    NASA Technical Reports Server (NTRS)

    Trevino, Robert

    1992-01-01

    The EVA hardware interfaces, standards, and considerations are examined, as are guidelines that EVA operations engineer will use when reviewing the design packages from the EVA operational point of view. By utilizing both the EVA and robotics interfaces standards, design requirements, and the EVA operational guidelines and considerations, the Space Station Freedom program design can be more cost effective in the long term and also more compatible and friendly for on-orbit assembly and on-orbit maintenance and repair.

  5. Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions

    NASA Astrophysics Data System (ADS)

    Bonet, José; Galindo, Pablo; Lindström, Mikael

    2008-04-01

    We determine the spectra of composition operators acting on weighted Banach spaces of analytic functions on the unit disc defined for a radial weight v, when the symbol of the operator has a fixed point in the open unit disc. We also investigate in this case the growth rate of the Koenigs eigenfunction and its relation with the essential spectral radius of the composition operator.

  6. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    NASA Astrophysics Data System (ADS)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  7. Identifying On-Orbit Test Targets for Space Fence Operational Testing

    NASA Astrophysics Data System (ADS)

    Pechkis, D.; Pacheco, N.; Botting, T.

    2014-09-01

    Space Fence will be an integrated system of two ground-based, S-band (2 to 4 GHz) phased-array radars located in Kwajalein and perhaps Western Australia [1]. Space Fence will cooperate with other Space Surveillance Network sensors to provide space object tracking and radar characterization data to support U.S. Strategic Command space object catalog maintenance and other space situational awareness needs. We present a rigorous statistical test design intended to test Space Fence to the letter of the program requirements as well as to characterize the system performance across the entire operational envelope. The design uses altitude, size, and inclination as independent factors in statistical tests of dependent variables (e.g., observation accuracy) linked to requirements. The analysis derives the type and number of necessary test targets. Comparing the resulting sample sizes with the number of currently known targets, we identify those areas where modelling and simulation methods are needed. Assuming hypothetical Kwajalein radar coverage and a conservative number of radar passes per object per day, we conclude that tests involving real-world space objects should take no more than 25 days to evaluate all operational requirements; almost 60 percent of the requirements can be tested in a single day and nearly 90 percent can be tested in one week or less. Reference: [1] L. Haines and P. Phu, Space Fence PDR Concept Development Phase, 2011 AMOS Conference Technical Papers.

  8. Cross-cultural issues in space operations: A survey study among ground personnel of the European Space Agency

    NASA Astrophysics Data System (ADS)

    Sandal, Gro Mjeldheim; Manzey, Dietrich

    2009-12-01

    Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.

  9. True space transportation - The key to a new era in space operations. I, II

    NASA Astrophysics Data System (ADS)

    Hannigan, Russell J.; Sved, John

    1992-12-01

    It is presently conjectured that the development of true aerospaceplanes will lower the costs of missions to LEO to the point where much more intensive observational campaigns for earth and the rest of the solar system, on the one hand, and such industrial operations as the mining of He-3 on the lunar surface, will become realistic undertakings. Lunar mining is presently conceived as based on a VTOL SSTO launch vehicle that can avail itself of lunar liquefied oxygen supplies.

  10. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  11. The ODDI Odyssey: Developing and Integrating Operations for the International Space Station

    NASA Astrophysics Data System (ADS)

    Deal, Ryan W.

    2002-01-01

    International Space Station (ISS) comprise the deliverable products (OP-01 Reports) of the Boeing Operations Data Development and Integration (ODDI) Integrated Product Team (IPT) to the NASA customer. The ODDI IPT's mission is to exceed the customer's expectations by providing high-quality data and sound techniques for assembling and operating the ISS. strategies in order to streamline the generation of operations products that the Mission Operations Directorate (MOD) utilizes for its crew and ground operations procedures development. Just as for other business practices, operations is a transformation process, converting inputs (resources) into outputs (products) based on a strategy that works best for the established competitive priorities of the operations organization. product reviews, and supporting other ISS operations duties (such as Mission Evaluation Room support) must be balanced with meeting schedules for delivery of the ODDI IPT's OP-01 Reports in accordance with the ISS assembly sequence timeline.

  12. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  13. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDRs approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to

  14. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDR's approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to

  15. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  16. Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic

  17. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is

  18. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  19. Future In-Space Operations (FISO): A Working Group and Community Engagement

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  20. Operational radiation monitoring in near-Earth space based on the system of multiple small satellites

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Brilkov, I. A.; Vlasova, N. A.; Kalegaev, V. V.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2015-11-01

    The operational monitoring of radiation conditions in different orbits in near-Earth space is crucial for ensuring the radiation safety of space flights. The intensity of ionizing radiation fluxes in near-Earth space varies within several orders of magnitude. Therefore, existing averaged empirical models cannot always be used to estimate specific radiation conditions in orbits. The forecast of solar cosmic rays is even less reliable. This paper presents a version of the global system of radiation monitoring in near-Earth space based on the system of multiple small satellites. The considered system of satellites with identical radiometric equipment will provide operational information on the fluxes of electrons and protons of Earth radiation belts and solar cosmic rays, which will make it possible to create 3D pictures of the distribution of particle fluxes in real time.