Sample records for hind limb ischemia

  1. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model.

    PubMed

    Murphy, Adrian D; McCormack, Michael C; Bichara, David A; Nguyen, John T; Randolph, Mark A; Watkins, Michael T; Lee, Raphael C; Austen, William G

    2010-06-01

    Ischemia-reperfusion injury can activate pathways generating reactive oxygen species, which can injure cells by creating holes in the cell membranes. Copolymer surfactants such as poloxamer 188 are capable of sealing defects in cell membranes. The authors postulated that a single-dose administration of poloxamer 188 would decrease skeletal myocyte injury and mortality following ischemia-reperfusion injury. Mice underwent normothermic hind-limb ischemia for 2 hours. Animals were treated with 150 microl of poloxamer 188 or dextran at three time points: (1) 10 minutes before ischemia; (2) 10 minutes before reperfusion; and (3) 2 or 4 hours after reperfusion. After 24 hours of reperfusion, tissues were analyzed for myocyte injury (histology) and metabolic dysfunction (muscle adenosine 5'-triphosphate). Additional groups of mice were followed for 7 days to assess mortality. When poloxamer 188 treatment was administered 10 minutes before ischemia, injury was reduced by 84 percent, from 50 percent injury in the dextran group to 8 percent injury in the poloxamer 188 group (p < 0.001). When administered 10 minutes before reperfusion, poloxamer 188 animals demonstrated a 60 percent reduction in injury compared with dextran controls (12 percent versus 29 percent). Treatment at 2 hours, but not at 4 hours, postinjury prevented substantial myocyte injury. Preservation of muscle adenosine 5'-triphosphate paralleled the decrease in myocyte injury in poloxamer 188-treated animals. Poloxamer 188 treatment significantly reduced mortality following injury (10 minutes before, 75 percent versus 25 percent survival, p = 0.0077; 2 hours after, 50 percent versus 8 percent survival, p = 0.032). Poloxamer 188 administered to animals decreased myocyte injury, preserved tissue adenosine 5'-triphosphate levels, and improved survival following hind-limb ischemia-reperfusion injury.

  2. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice.

    PubMed

    Crawford, Robert S; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A; Abularrage, Christopher J; Yoo, Hyung-Jin; Lamuraglia, Glenn M; Watkins, Michael T

    2013-08-01

    We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Divergent Systemic and Local Inflammatory Response to Hind Limb Demand Ischemia in Wild Type And ApoE−/− Mice

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.

    2013-01-01

    Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286

  4. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  5. Possible role of thromboxane A2 in remote hind limb preconditioning-induced cardioprotection.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2016-01-01

    Remote hind limb preconditioning (RIPC) is a protective strategy in which short episodes of ischemia and reperfusion in a remote organ (hind limb) protects the target organ (heart) against sustained ischemic reperfusion injury. The present study was designed to investigate the possible role of thromboxane A2 in RIPC-induced cardioprotection in rats. Remote hind limb preconditioning was performed by four episodes of 5 min of inflation and 5 min of deflation of pressure cuff. Occlusion of the hind limb with blood pressure cuff is most feasible, non-invasive, clinically relevant, and safe method for inducing RIPC. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120-min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. The extent of myocardial infarct size along with the functional parameters including left ventricular developed pressure (LVDP), dp/dtmax, and dp/dtmin were also measured. Ozagrel (thromboxane synthase inhibitor) and seratrodast (thromboxane A2 receptor antagonist) were employed as pharmacological modulators of thromboxane A2. Remote hind limb preconditioning significantly attenuated ischemia/reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of ozagrel and seratrodast completely abolished the cardioprotective effects of RIPC suggesting the key role of thromboxane A2 in RIPC-induced cardioprotection. It may be concluded that brief episodes of preconditioning ischemia and reperfusion activates the thromboxane synthase enzyme that produces thromboxane A2, which may elicit cardioprotection either involving humoral or neurogenic pathway.

  6. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice.

    PubMed

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul

    2014-11-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells

    PubMed Central

    Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat

    2013-01-01

    Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of

  8. Inhalation of Carbon Monoxide Reduces Skeletal Muscle Injury Following Hind Limb Ischemia Reperfusion Injury in Mice

    PubMed Central

    Patel, Rajendra; Albadawi, Hassan; Steudel, Wolfgang; Hashmi, Faraz F.; Kang, Jeanwan; Yoo, Hyung-Jin; Watkins, Michael T.

    2011-01-01

    Introduction The purpose of this study was to determine if inhaled carbon monoxide (CO) can ameliorate skeletal muscle injury, modulate endogenous heme oxygenase-1 (HO) expression, improve indices of tissue integrity and inflammation following hind limb ischemia reperfusion(IR). Methods C57BL6 mice inhaling CO (250ppm) or room air were subjected to 1.5 hrs of ischemia followed by limb reperfusion for either 3 or 6 hours (total treatment time of 4.5 or 7.5 hrs). After the initial period of reperfusion, all mice breathed only room air until 24 hours after the onset of ischemia. Mice were sacrificed at either the end of CO treatment or at 24 hours reperfusion. Skeletal muscle was subjected to histologic and biochemical analysis. Results CO treatment for 7.5 hours protected skeletal muscle from histologic and structural evidence of skeletal muscle injury. Serum and tissue cytokines were significantly reduced (p<0.05) in mice treated with CO for 7.5 hours. Tubulin, Heme Oxygenase, and ATP levels were higher in CO treated mice. Conclusions Inhaled CO protected muscle from structural injury and energy depletion following IR. PMID:22450026

  9. Investigations on the role of leukotrienes in remote hind limb preconditioning-induced cardioprotection in rats.

    PubMed

    Singh, Baljeet; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2016-05-01

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well established, but its mechanisms still remain to be explored. Therefore, the present study was aimed to explore the possible involvement of 5-lipoxygenase-derived leukotrienes in RIPC. The hind limb was tied by a pressure cuff and was subjected to four episodes of inflation and deflation (5min each) to induce remote hind-limb preconditioning. Thereafter, the hearts were isolated and were subjected to global ischemia (30min) followed by reperfusion (120min) on the Langendorff apparatus. The extent of myocardial injury was assessed by measuring lactate dehydrogenase (LDH) and creatine kinase (CK) levels in the coronary effluent; the infarct size using TTC staining, and the hemodynamic parameters including LVDP, dp/dtmax and dp/dtmin. RIPC significantly decreased ischemia and reperfusion-induced increase in LDH, CK release, infarct size and improved LVDP, dp/dtmax and dp/dtmin. Administration of montelukast, leukotriene receptor antagonist (10 and 20mg/kg) and zileuton, 5-lipoxygenase inhibitor, (2.5 and 5mg/kg) abolished RIPC-induced cardioprotection. It may be concluded that hind limb ischemia stimulates 5-lipoxygenase to release leukotrienes which may elicit cardioprotection by humoral or neurogenic pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Poly ADP-Ribose Polymerase Inhibition Ameliorates Hind Limb Ischemia Reperfusion Injury in a Murine Model of Type 2 Diabetes

    PubMed Central

    Long, Chandler A.; Boloum, Valy; Albadawi, Hassan; Tsai, Shirling; Yoo, Hyung-Jin; Oklu, Rahmi; Goldman, Mitchell H.; Watkins, Michael T.

    2013-01-01

    Introduction Diabetes is known to increase poly-ADP-ribose-polymerase (PARP) activity and posttranslational poly-ADP-ribosylation of several regulatory proteins involved in inflammation and energy metabolism. These experiments test the hypothesis that PARP inhibition will modulate hind limb ischemia reperfusion (IR) in a mouse model of type-II diabetes; ameliorate the ribosylation and the activity/transnuclear localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Methods db/db mice underwent 1.5hrs of hind limb ischemia followed by 1, 7, or 24hrs reperfusion. The treatment group received the PARP inhibitor PJ34 (PJ34) over a 24hrs period; the untreated group received Lactated ringer’s (LR) at the same time points. IR muscles were analyzed for indices of PARP activity, fiber injury, metabolic activity, inflammation, GAPDH activity /intracellular localization and poly-ADP-ribosylation of GAPDH. Results PARP activity was significantly lower in the PJ34 treated groups compared to the LR group at 7 and 24 hours reperfusion. There was significantly less muscle fiber injury in the PJ34 treated group compared to LR treated mice at 24 hrs reperfusion. PJ34 lowered levels of select proinflammatory molecules at 7hrs and 24hrs IR. There were significant increases in metabolic activity only at 24 hours IR in the PJ34 group, which temporally correlated with increase in GAPDH activity, decreased GAPDH poly ADP-ribosylation and nuclear translocation of GAPDH. Conclusions PJ34 reduced PARP activity, GAPDH ribosylation, GAPDH translocation, ameliorated muscle fiber injury, and increased metabolic activity following hind limb IR injury in a murine model of type-II diabetes. PARP inhibition might be a therapeutic strategy following IR in diabetic humans. PMID:23549425

  11. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation.

    PubMed

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Hind-limb ischemia was induced in 10-12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium.

  12. Protease-activated receptor (PAR)2, but not PAR1, is involved in collateral formation and anti-inflammatory monocyte polarization in a mouse hind limb ischemia model.

    PubMed

    van den Hengel, Lisa G; Hellingman, Alwine A; Nossent, Anne Yael; van Oeveren-Rietdijk, Annemarie M; de Vries, Margreet R; Spek, C Arnold; van Zonneveld, Anton Jan; Reitsma, Pieter H; Hamming, Jaap F; de Boer, Hetty C; Versteeg, Henri H; Quax, Paul H A

    2013-01-01

    In collateral development (i.e. arteriogenesis), mononuclear cells are important and exist as a heterogeneous population consisting of pro-inflammatory and anti-inflammatory/repair-associated cells. Protease-activated receptor (PAR)1 and PAR2 are G-protein-coupled receptors that are both expressed by mononuclear cells and are involved in pro-inflammatory reactions, while PAR2 also plays a role in repair-associated responses. Here, we investigated the physiological role of PAR1 and PAR2 in arteriogenesis in a murine hind limb ischemia model. PAR1-deficient (PAR1-/-), PAR2-deficient (PAR2-/-) and wild-type (WT) mice underwent femoral artery ligation. Laser Doppler measurements revealed reduced post-ischemic blood flow recovery in PAR2-/- hind limbs when compared to WT, while PAR1-/- mice were not affected. Upon ischemia, reduced numbers of smooth muscle actin (SMA)-positive collaterals and CD31-positive capillaries were found in PAR2-/- mice when compared to WT mice, whereas these parameters in PAR1-/- mice did not differ from WT mice. The pool of circulating repair-associated (Ly6C-low) monocytes and the number of repair-associated (CD206-positive) macrophages surrounding collaterals in the hind limbs were increased in WT and PAR1-/- mice, but unaffected in PAR2-/- mice. The number of repair-associated macrophages in PAR2-/- hind limbs correlated with CD11b- and CD115-expression on the circulating monocytes in these animals, suggesting that monocyte extravasation and M-CSF-dependent differentiation into repair-associated cells are hampered. PAR2, but not PAR1, is involved in arteriogenesis and promotes the repair-associated response in ischemic tissues. Therefore, PAR2 potentially forms a new pro-arteriogenic target in coronary artery disease (CAD) patients.

  13. Exploring the Role of TRPV and CGRP in Adenosine Preconditioning and Remote Hind Limb Preconditioning-Induced Cardioprotection in Rats.

    PubMed

    Singh, Amritpal; Randhawa, Puneet Kaur; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2017-04-01

    The cardioprotective effects of remote hind limb preconditioning (RIPC) are well known, but mechanisms by which protection occurs still remain to be explored. Therefore, the present study was designed to investigate the role of TRPV and CGRP in adenosine and remote preconditioning-induced cardioprotection, using sumatriptan, a CGRP release inhibitor and ruthenium red, a TRPV inhibitor, in rats. For remote preconditioning, a pressure cuff was tied around the hind limb of the rat and was inflated with air up to 150 mmHg to produce ischemia in the hind limb and during reperfusion pressure was released. Four cycles of ischemia and reperfusion, each consisting of 5 min of inflation and 5 min of deflation of pressure cuff were used to produce remote limb preconditioning. An ex vivo Langendorff's isolated rat heart model was used to induce ischemia reperfusion injury by 30 min of global ischemia followed by 120 min of reperfusion. RIPC demonstrated a significant decrease in ischemia reperfusion-induced significant myocardial injury in terms of increase in LDH, CK, infarct size and decrease in LVDP, +dp/dt max and -dp/dt min . Moreover, pharmacological preconditioning with adenosine produced cardioprotective effects in a similar manner to RIPC. Pretreatment with sumatriptan, a CGRP release blocker, abolished RIPC and adenosine preconditioning-induced cardioprotective effects. Administration of ruthenium red, a TRPV inhibitor, also abolished adenosine preconditioning-induced cardioprotection. It may be proposed that the cardioprotective effects of adenosine and remote preconditioning are possibly mediated through activation of a TRPV channels and consequent, release of CGRP.

  14. Thromboxane A2 moderates permeability after limb ischemia.

    PubMed Central

    Lelcuk, S; Alexander, F; Valeri, C R; Shepro, D; Hechtman, H B

    1985-01-01

    Reperfusion after limb ischemia results in muscle edema as well as excess secretion of thromboxane A2 (TxA2), an agent associated with permeability increase in other settings. This study tests whether TxA2 moderates the permeability following limb ischemia. A tourniquet inflated to 300 mmHg was applied for 2 hours around the hind limb of four groups of dogs. In untreated animals (N = 25), 2 hours following tourniquet release, plasma TxB2 values rose from 320 pg/ml to 2416 pg/ml (p less than 0.001), and popliteal lymph values rose from 378 pg/ml to 1046 pg/ml (p less than 0.001). Platelet TxB2 was unaltered and plasma 6-keto-PGF1 alpha levels did not vary. Following ischemia, lymph flow (QL) increased from 0.07 to 0.37 ml/h (p less than 0.05), while the lymph/plasma (L/P) protein ratio was unchanged at 0.41. These measurements indicate increased permeability since increase in hydrostatic pressure in a second group by tourniquet inflation to 50 mmHg (N = 7) led to a rise in QL from 0.07 to 0.22 ml/h, but a fall in the L/P ratio to 0.32, a value lower than the ischemic group (p less than 0.05). Pretreatment with the imidazole derivative ketoconazole (N = 11) reduced platelet Tx synthesis from 42 ng to 2 ng/10(9) platelets, but lymph TxB2 levels rose to 1703 pg/ml after ischemia, indicating an extravascular or vessel wall site of synthesis not inhibited by ketoconazole. Pretreatment with a lower molecular weight imidazole derivative OKY 046 (N = 9) inhibited all Tx synthesis after ischemia. Prior to tourniquet inflation, both OKY 046 and ketoconazole lowered plasma TxB2 levels as well as the L/P ratio (p less than 0.05). After ischemia, OKY 046, but not ketoconazole, maintained the L/P ratio at 0.33, a value below that of untreated animals (p less than 0.05). These results indicate that nonplatelet-derived TxA2 modulates both baseline and ischemia-induced increases in microvascular permeability in the dog hind limb. PMID:3840349

  15. Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2016-08-01

    Remote ischemic preconditioning is a well reported therapeutic strategy that induces cardioprotective effects but the underlying intracellular mechanisms have not been widely explored. The current study was designed to investigate the involvement of TRP and especially TRPV channels in remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus (4 alternate cycles of inflation and deflation of 5 min each) was delivered using a blood pressure cuff tied on the hind limb of the anesthetized rat. Using Langendorff's system, the heart was perfused and subjected to 30-min ischemia and 120-min reperfusion. The myocardial injury was assessed by measuring infarct size, lactate dehydrogenase (LDH), creatine kinase (CK), LVDP, +dp/dtmax, -dp/dtmin, heart rate, and coronary flow rate. Gadolinium, TRP blocker, and ruthenium red, TRPV channel blocker, were employed as pharmacological tools. Remote hind limb preconditioning significantly reduced the infarct size, LDH release, CK release and improved coronary flow rate, hemodynamic parameters including LVDP, +dp/dtmax, -dp/dtmin, and heart rate. However, gadolinium (7.5 and 15 mg kg(-1)) and ruthenium red (4 and 8 mg kg(-1)) significantly attenuated the cardioprotective effects suggesting the involvement of TRP especially TRPV channels in mediating remote hind limb preconditioning-induced cardioprotection. Remote hind limb preconditioning stimulus possibly activates TRPV channels on the heart or sensory nerve fibers innervating the heart to induce cardioprotective effects. Alternatively, remote hind limb preconditioning stimulus may also activate the mechanosensitive TRP and especially TRPV channels on the sensory nerve fibers innervating the skeletal muscles to trigger cardioprotective neurogenic signaling cascade. The cardioprotective effects of remote hind limb preconditioning may be mediated via activation of mechanosensitive TRP and especially TRPV channels.

  16. Scaling and functional morphology in strigiform hind limbs

    PubMed Central

    Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.

    2017-01-01

    Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549

  17. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    PubMed

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice

    PubMed Central

    Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.

    2016-01-01

    Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999

  19. Objective assessment of the compensatory effect of clinical hind limb lameness in horses: 37 cases (2011-2014).

    PubMed

    Maliye, Sylvia; Marshall, John F

    2016-10-15

    OBJECTIVE To characterize and describe the compensatory load redistribution that results from unilateral hind limb lameness in horses. DESIGN Retrospective case series. ANIMALS 37 client-owned horses. PROCEDURES Medical records were reviewed to identify horses with unilateral hind limb lameness that responded positively (by objective assessment) to diagnostic local anesthesia during lameness evaluation and that were evaluated before and after diagnostic local anesthesia with an inertial sensor-based lameness diagnosis system. Horses were grouped as having hind limb lameness only, hind limb and ipsilateral forelimb lameness, or hind limb and contralateral forelimb lameness. Measures of head and pelvic movement asymmetry before (baseline) and after diagnostic local anesthesia were compared. The effect of group on baseline pelvic movement asymmetry variables was analyzed statistically. RESULTS Maximum pelvic height significantly decreased from the baseline value after diagnostic local anesthesia in each of the 3 lameness groups and in all horses combined. Minimum pelvic height significantly decreased after the procedure in all groups except the hind limb and contralateral forelimb lameness group. Head movement asymmetry was significantly decreased after diagnostic local anesthesia for horses with hind limb and ipsilateral forelimb lameness and for all horses combined, but not for those with hind limb lameness only or those with hind limb and contralateral forelimb lameness. CONCLUSIONS AND CLINICAL RELEVANCE Results supported that hind limb lameness can cause compensatory load redistribution evidenced as ipsilateral forelimb lameness. In this population of horses, contralateral forelimb lameness was not compensatory and likely reflected true lameness. Further studies are needed to investigate the source of the contralateral forelimb lameness in such horses.

  20. Lipoate ameliorates ischemia-reperfusion in animal models.

    PubMed

    Freisleben, H J

    2000-01-01

    Ischemia and reperfusion were studied in isolated working rat hearts and in exarticulated rat hind limbs. Free radicals are known to be generated in ischemia/reperfusion and to propagate complications. To reduce reperfusion injury, conditions were ameliorated including the treatment with antioxidants, lipoate or dihydrolipoate. In isolated working rat hearts, cardiac and mitochondrial parameters are impaired during hypoxia and partially recover in reperfusion. Dihydrolipoate, if added into the perfusion buffer at 0.3 microM concentration, keeps the pH higher (7.15) during hypoxia, as compared to controls (6.98). This compound accelerates and stabilizes the recovery of the aortic flow. With dihydrolipoate, ATP synthesis is increased, ATPase activity (ATP hydrolysis) reduced, intracellular creatine kinase activity maintained and thus phosphocreatine contents are higher than in controls. For exarticulated rat hind limbs, the dihydrolipoate group contained 8.3 microM in the modified reperfusate. Recovery of the contractile function was 49% vs. 34% in controls and muscle flexibility was maintained whereas it decreased by 15% in the controls. Release of creatine kinase from cells was significantly lower with dihydrolipoate. Lipoate/dihydrolipoate effectively reduced reperfusion injury in isolated working rat hearts and in exarticulated rat hind limbs after extended ischemia. Finally, the compound was successfully applied in an in vivo pig hind limb model.

  1. Comparison of LDPI to SPECT perfusion imaging using (99m)Tc-sestamibi and (99m)Tc-pyrophosphate in a murine ischemic hind limb model of neovascularization.

    PubMed

    Hendrikx, Geert; Vries, Mark H; Bauwens, Matthias; De Saint-Hubert, Marijke; Wagenaar, Allard; Guillaume, Joël; Boonen, Levinia; Post, Mark J; Mottaghy, Felix M

    2016-12-01

    We aimed to determine the accuracy of laser Doppler perfusion imaging (LDPI) in an animal model for hind limb ischemia. We used a murine (C57Bl/6 mice) ischemic hind limb model in which we compared LDPI with the clinically used (99m)Tc-sestamibi SPECT perfusion imaging (n = 7). In addition, we used the SPECT tracer (99m)Tc-pyrophosphate ((99m)Tc-PyP) to image muscular damage (n = 6). LDPI indicated a quick and prominent decrease in perfusion immediately after ligation, subsequently recovering to 21.9 and 25.2 % 14 days later in the (99m)Tc-sestamibi and (99m)Tc-PyP group, respectively. (99m)Tc-sestamibi SPECT scans also showed a quick decrease in perfusion. However, nearly full recovery was reached 7 days post ligation. Muscular damage, indicated by the uptake of (99m)Tc-PyP, was highest at day 3 and recovered to baseline levels at day 14 post ligation. Postmortem histology supported these findings, as a significantly increased collateral diameter was found 7 and 14 days after ligation and peak macrophage infiltration and TUNEL positivity was found on day 3 after ligation. Here, we indicate that LDPI strongly underestimates perfusion recovery in a hind limb model for profound ischemia.

  2. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  3. Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice.

    PubMed

    Albadawi, Hassan; Tzika, A Aria; Rask-Madsen, Christian; Crowley, Lindsey M; Koulopoulos, Michael W; Yoo, Hyung-Jin; Watkins, Michael T

    2016-09-01

    Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nanoparticle-mediated endothelial cell-selective delivery of pitavastatin induces functional collateral arteries (therapeutic arteriogenesis) in a rabbit model of chronic hind limb ischemia.

    PubMed

    Oda, Shinichiro; Nagahama, Ryoji; Nakano, Kaku; Matoba, Tetsuya; Kubo, Mitsuki; Sunagawa, Kenji; Tominaga, Ryuji; Egashira, Kensuke

    2010-08-01

    We recently demonstrated in a murine model that nanoparticle-mediated delivery of pitavastatin into vascular endothelial cells effectively increased therapeutic neovascularization. For the development of a clinically applicable approach, further investigations are necessary to assess whether this novel system can induce the development of collateral arteries (arteriogenesis) in a chronic ischemia setting in larger animals. Chronic hind limb ischemia was induced in rabbits. They were administered single injections of nanoparticles loaded with pitavastatin (0.05, 0.15, and 0.5 mg/kg) into ischemic muscle. Treatment with pitavastatin nanoparticles (0.5 mg/kg), but not other nanoparticles, induced angiographically visible arteriogenesis. The effects of intramuscular injections of phosphate-buffered saline, fluorescein isothiocyanate (FITC)-loaded nanoparticles, pitavastatin (0.5 mg/kg), or pitavastatin (0.5 mg/kg) nanoparticles were examined. FITC nanoparticles were detected mainly in endothelial cells of the ischemic muscles for up to 4 weeks. Treatment with pitavastatin nanoparticles, but not other treatments, induced therapeutic arteriogenesis and ameliorated exercise-induced ischemia, suggesting the development of functional collateral arteries. Pretreatment with nanoparticles loaded with vatalanib, a vascular endothelial growth factor receptor (VEGF) tyrosine kinase inhibitor, abrogated the therapeutic effects of pitavastatin nanoparticles. Separate experiments with mice deficient for VEGF receptor tyrosine kinase demonstrated a crucial role of VEGF receptor signals in the therapeutic angiogenic effects. The nanotechnology platform assessed in this study (nanoparticle-mediated endothelial cell-selective delivery of pitavastatin) may be developed as a clinically feasible and promising strategy for therapeutic arteriogenesis in patients. Copyright (c) 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  5. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.

  6. Genetic regulation of canine skeletal traits: trade-offs between the hind limbs and forelimbs in the fox and dog

    PubMed Central

    Kharlamova, Anastasia V.; Trut, Lyudmila N.; Carrier, David R.; Chase, Kevin; Lark, Karl G.

    2008-01-01

    Synopsis Genetic variation in functionally integrated skeletal traits can be maintained over 10 million years despite bottlenecks and stringent selection. Here, we describe an analysis of the genetic architecture of the canid axial skeleton using populations of the Portuguese Water Dog Canis familiaris) and silver fox (Vulpes vulpes). Twenty-one skeletal metrics taken from radiographs of the forelimbs and hind limbs of the fox and dog were used to construct separate anatomical principal component (PC) matrices of the two species. In both species, 15 of the 21 PCs exhibited significant heritability, ranging from 25% to 70%. The second PC, in both species, represents a trade-off in which limb-bone width is inversely correlated with limb-bone length. PC2 accounts for approximately 15% of the observed skeletal variation, ~30% of the variation in shape. Many of the other significant PCs affect very small amounts of variation (e.g., 0.2–2%) along trade-off axes that partition function between the forelimbs and hind limbs. These PCs represent shape axes in which an increase in size of an element of the forelimb is associated with a decrease in size of an element of the hind limb and vice versa. In most cases, these trade-offs are heritable in both species and genetic loci have been identified in the Portuguese Water Dog for many of these. These PCs, present in both the dog and the fox, include ones that affect lengths of the forelimb versus the hind limb, length of the forefoot versus that of the hind foot, muscle moment (i.e., lever) arms of the forelimb versus hind limb, and cortical thickness of the bones of the forelimb versus hind limb. These inverse relationships suggest that genetic regulation of the axial skeleton results, in part, from the action of genes that influence suites of functionally integrated traits. Their presence in both dogs and foxes suggests that the genes controlling the regulation of these PCs of the forelimb versus hind limb may be found in

  7. Postischemic Treatment With Ethyl Pyruvate Prevents Adenosine Triphosphate Depletion, Ameliorates Inflammation, and Decreases Thrombosis in a Murine Model of Hind-Limb Ischemia and Reperfusion

    PubMed Central

    Crawford, Robert S.; Albadawi, Hassan; Atkins, Marvin D.; Jones, John J.; Conrad, Mark F.; Austen, William G.; Fink, Mitchell P.; Watkins, Michael T.

    2011-01-01

    Introduction Experiments were designed to investigate the effects of ethyl pyruvate (EP) in a murine model of hind-limb ischemia-reperfusion (IR) injury. Methods C57BL6 mice underwent 90 minutes of unilateral ischemia followed by 24 hours of reperfusion using two treatment protocols. For the preischemic treatment (pre-I) protocol, mice (n = 6) were given 300 mg/kg EP before ischemia, followed by 150 mg/kg of EP just before reperfusion and at 6 hours and 12 hours after reperfusion. In a postischemic treatment (post-I) protocol, mice (n = 7) were treated with 300 mg/kg EP at the end of the ischemic period, then 15 minutes later, and 2 hours after reperfusion and 150 mg/kg of EP at 4 hours, 6 hours, 10 hours, 16 hours, and 22 hours after reperfusion. Controls mice for both protocols were treated with lactated Ringers alone at time intervals identical to EP. Skeletal muscle levels of adenosine triphosphate (ATP), interleukin-1β, keratinocyte chemoattractant protein, and thrombin antithrombin-3 complex were measured. Skeletal muscle architectural integrity was assessed microscopically. Results ATP levels were higher in mice treated with EP compared with controls under the both treatment protocols (p = 0.02). Interleukin-1β, keratinocyte chemoattractant protein, thrombin antithrombin-3 complex (p < 0.05), and the percentage of injured fibers (p < 0.0001) were significantly decreased in treated versus control mice under the both protocols. Conclusion Muscle fiber injury and markers of tissue thrombosis and inflammation were reduced, and ATP was preserved with EP in pre-I and post-I protocols. Further investigation of the efficacy of EP to modulate IR injury in a larger animal model of IR injury is warranted. PMID:21217488

  8. Cryopreservation and replantation of amputated rat hind limbs

    PubMed Central

    2014-01-01

    Background In spite of the relatively high success rate of limb replantation, many patients cannot undergo replantation surgery because the preservation time of an amputated limb is only about six hours. In addition, although allotransplantation of composite tissues is being performed more commonly with increasingly greater success rates, the shortage of donors limits the number of patients that can be treated. So the purpose of this study is to examine the feasibility of cryopreservation and replantation of limbs in a rat model. Methods Twelve five-month-old Sprague-Dawley rats were divided evenly into group A (above-knee amputation) and group B (Syme’s amputation). One hind limb was amputated from each rat. The limbs were irrigated with cryoprotectant, cooled in a controlled manner to -140°C, and placed in liquid nitrogen. Thawing and replantation were performed 14 days later. Results In group A, the limbs became swollen after restoration of blood flow resulting in blood vessel compression and all replantations failed. In group B, restoration of blood flow was noted in all limbs after replantation. In one case, the rat chewed the replanted limb and replantation failed. The other five rats were followed for three months with no abnormalities noted in the replanted limbs. Conclusions Limbs with a minimal amount of muscle tissue can be successfully cryopreserved and replanted. PMID:24886622

  9. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  10. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia.

    PubMed

    Ryu, Jae Choon; Davidson, Brian P; Xie, Aris; Qi, Yue; Zha, Daogang; Belcik, J Todd; Caplan, Evan S; Woda, Juliana M; Hedrick, Catherine C; Hanna, Richard N; Lehman, Nicholas; Zhao, Yan; Ting, Anthony; Lindner, Jonathan R

    2013-02-12

    Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPCs) promotes recovery of blood flow through the recruitment of proangiogenic monocytes. Hind-limb ischemia was produced in mice by iliac artery ligation, and MAPCs were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPCs indicated that cells survived for 1 week. Contrast-enhanced ultrasound on days 3, 7, and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX(3)CR-1-positive monocytes were significantly higher in MAPC-treated mice than in the control groups at days 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold-greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or tumor necrosis factor-α-treated cremaster muscle demonstrated that MAPCs migrate to perimicrovascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14(+) monocytes was 10-fold greater in response to MAPC-conditioned than basal media. In limb ischemia, MAPCs stimulate the recruitment of proangiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond the MAPC lifespan, suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.

  11. Hind limb malformations in free-living northern leopard frogs (Rana pipiens) from Maine, Minnesota, and Vermont suggest multiple etiologies

    USGS Publications Warehouse

    Meteyer, C.U.; Loeffler, I.K.; Fallon, J.F.; Converse, K.A.; Green, E.; Helgen, J.C.; Kersten, S.; Levey, R.; Eaton-Poole, L.; Burkhart, J.G.

    2000-01-01

    Background Reports of malformed frogs have increased throughout the North American continent in recent years. Most of the observed malformations have involved the hind limbs. The goal of this study was to accurately characterize the hind limb malformations in wild frogs as an important step toward understanding the possible etiologies. Methods During 1997 and 1998, 182 recently metamorphosed northern leopard frogs (Rana pipiens) were collected from Minnesota, Vermont, and Maine. Malformed hind limbs were present in 157 (86%) of these frogs, which underwent necropsy and radiographic evaluation at the National Wildlife Health Center. These malformations are described in detail and classified into four major categories: (1) no limb (amelia); (2) multiple limbs or limb elements (polymelia, polydactyly, polyphalangy); (3) reduced limb segments or elements (phocomelia, ectromelia, ectrodactyly, and brachydactyly; and (4) distally complete but malformed limb (bone rotations, bridging, skin webbing, and micromelia). Results Amelia and reduced segments and/or elements were the most common finding. Frogs with bilateral hind limb malformations were not common, and in only eight of these 22 frogs were the malformations symmetrical. Malformations of a given type tended to occur in frogs collected from the same site, but the types of malformations varied widely among all three states, and between study sites within Minnesota. Conclusions Clustering of malformation type suggests that developmental events may produce a variety of phenotypes depending on the timing, sequence, and severity of the environmental insult. Hind limb malformations in free-living frogs transcend current mechanistic explanations of tetrapod limb development.

  12. Biochemical markers of acute limb ischemia, rhabdomyolysis, and impact on limb salvage.

    PubMed

    Watson, J Devin B; Gifford, Shaun M; Clouse, W Darrin

    2014-12-01

    Biochemical markers of ischemia reperfusion injury have been of interest to vascular surgeons and researchers for many years. Acute limb ischemia is the quintessential clinical scenario where these markers would seem relevant. The use of biomarkers to preoperatively or perioperatively predict which patients will not tolerate limb-salvage efforts or who will have poor functional outcomes after salvage is of immense interest. Creatinine phosphokinase, myoglobin, lactate, lactate dehydrogenase, potassium, bicarbonate, and neutrophil/leukocyte ratios are a few of the studied biomarkers available. Currently, the most well-studied aspect of ischemia reperfusion injury is rhabdomyolysis leading to acute kidney injury. The last 10 years have seen significant progression and improvement in the treatment of rhabdomyolysis, from minor supportive care to use of continuous renal replacement therapy. Identification of specific biomarkers with predictive outcome characteristics in the setting of ischemia reperfusion injury will help guide therapeutic development and potentially mitigate pathophysiologic changes in acute limb ischemia, including rhabdomyolysis. These may further lead to improvements in short- and long-term surgical outcomes and limb salvage, as well as a better understanding of the timing and selection of intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    PubMed

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  14. Pressure hyperalgesia in hind limb suspended rats.

    PubMed

    Chowdhury, Parimal; Soulsby, Michael E; Jayroe, John; Akel, Nisreen S; Gaddy, Dana; Dobretsov, Maxim

    2011-10-01

    Spaceflight and simulated microgravity often associate with pain and prediabetes. Streptozotocin (STZ)-induced moderate insulinopenia rat models of prediabetes result in pressure hyperalgesia. The current study was designed to determine whether or not simulated microgravity induced by hind limb suspension (HLS) in rats lead to insulinopenia and pressure hyperalgesia. Adult male rats were divided into HLS (N = 20) and control, non-suspended (N = 16) groups, respectively. Bodyweight and hind limb pressure-pain withdrawal threshold (PPT) were measured at regular 2-5 d intervals for 7 d before and 12-13 d after HLS. Bodyweights and PPT of control and HLS animals measured on the day of suspension were not different. During the experiment, control rats gained 61 +/- 5 g, but maintained their PPT at the baseline level. Suspended rats gained 26 +/- 3 g of weight during the same time period and their PPT declined from 105 +/- 6 g to 84 +/- 6 g. Neither blood glucose nor pancreatic islet density and area were affected by HLS. However, the random plasma insulin of HLS rats was significantly lower than that of control animals (1.6 +/- 0.2 vs. 2.7 +/- 0.2 ng ml(-1)). The observed relationship between insulin and PPT levels in the HLS rats was similar to that observed in rats with STZ-induced insulinopenia. These data suggest that moderate insulinopenia may affect the rat's sensitivity to deep pressure directly, without affecting glucose homeostasis. In addition, our data suggest that HLS rats may develop peripheral neuropathy.

  15. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning

    PubMed Central

    Ren, Chuancheng; Gao, Xuwen; Steinberg, Gary K.; Zhao, Heng

    2009-01-01

    Remote ischemic preconditioning is an emerging concept for stroke treatment, but its protection against focal stroke has not been established. We tested whether remote preconditioning, performed in the ipsilateral hind limb, protects against focal stroke and explored its protective parameters. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery (MCA) combined with a 30 minute occlusion of the bilateral common carotid arteries (CCA) in male rats. Limb preconditioning was generated by 5 or 15 minute occlusion followed with the same period of reperfusion of the left hind femoral artery, and repeated for 2 or 3 cycles. Infarct was measured 2 days later. The results showed that rapid preconditioning with 3 cycles of 15 minutes performed immediately before stroke reduced infarct size from 47.7±7.6% of control ischemia to 9.8±8.6%; at 2 cycles of 15 minutes, infarct was reduced to 24.7±7.3%; at 2 cycles of 5 minutes, infarct was not reduced. Delayed preconditioning with 3 cycles of 15 minutes conducted 2 days before stroke also reduced infarct to 23.0 ±10.9%, but with 2 cycles of 15 minutes it offered no protection. The protective effects at these two therapeutic time windows of remote preconditioning are consistent with those of conventional preconditioning, in which the preconditioning ischemia is induced in the brain itself. Unexpectedly, intermediate preconditioning with 3 cycles of 15 minutes performed 12 hours before stroke also reduced infarct to 24.7±4.7%, which contradicts the current dogma for therapeutic time windows for the conventional preconditioning that has no protection at this time point. In conclusion, remote preconditioning performed in one limb protected against ischemic damage after focal cerebral ischemia. PMID:18201834

  16. Outcomes of lower extremity bypass performed for acute limb ischemia

    PubMed Central

    Baril, Donald T.; Patel, Virendra I.; Judelson, Dejah R.; Goodney, Philip P.; McPhee, James T.; Hevelone, Nathanael D.; Cronenwett, Jack L.; Schanzer, Andres

    2013-01-01

    Objective Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. Methods All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Results Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation

  17. Outcomes of lower extremity bypass performed for acute limb ischemia.

    PubMed

    Baril, Donald T; Patel, Virendra I; Judelson, Dejah R; Goodney, Philip P; McPhee, James T; Hevelone, Nathanael D; Cronenwett, Jack L; Schanzer, Andres

    2013-10-01

    Acute limb ischemia remains one of the most challenging emergencies in vascular surgery. Historically, outcomes following interventions for acute limb ischemia have been associated with high rates of morbidity and mortality. The purpose of this study was to determine contemporary outcomes following lower extremity bypass performed for acute limb ischemia. All patients undergoing infrainguinal lower extremity bypass between 2003 and 2011 within hospitals comprising the Vascular Study Group of New England were identified. Patients were stratified according to whether or not the indication for lower extremity bypass was acute limb ischemia. Primary end points included bypass graft occlusion, major amputation, and mortality at 1 year postoperatively as determined by Kaplan-Meier life table analysis. Multivariable Cox proportional hazards models were constructed to evaluate independent predictors of mortality and major amputation at 1 year. Of 5712 lower extremity bypass procedures, 323 (5.7%) were performed for acute limb ischemia. Patients undergoing lower extremity bypass for acute limb ischemia were similar in age (66 vs 67; P = .084) and sex (68% male vs 69% male; P = .617) compared with chronic ischemia patients, but were less likely to be on aspirin (63% vs 75%; P < .0001) or a statin (55% vs 68%; P < .0001). Patients with acute limb ischemia were more likely to be current smokers (49% vs 39%; P < .0001), to have had a prior ipsilateral bypass (33% vs 24%; P = .004) or a prior ipsilateral percutaneous intervention (41% vs 29%; P = .001). Bypasses performed for acute limb ischemia were longer in duration (270 vs 244 minutes; P = .007), had greater blood loss (363 vs 272 mL; P < .0001), and more commonly utilized prosthetic conduits (41% vs 33%; P = .003). Acute limb ischemia patients experienced increased in-hospital major adverse events (20% vs 12%; P < .0001) including myocardial infarction, congestive heart failure exacerbation, deterioration in renal function

  18. A nationwide analysis of 30-day readmissions related to critical limb ischemia.

    PubMed

    Masoomi, Reza; Shah, Zubair; Quint, Clay; Hance, Kirk; Vamanan, Karthik; Prasad, Anand; Hoel, Andrew; Dawn, Buddhadeb; Gupta, Kamal

    2018-06-01

    Objectives There is paucity of information regarding critical limb ischemia-related readmission rates in patients admitted with critical limb ischemia. We studied 30-day critical limb ischemia-related readmission rate, its predictors, and clinical outcomes using a nationwide real-world dataset. Methods We did a secondary analysis of the 2013 Nationwide Readmissions Database. We included all patients with a primary diagnosis of extremity rest pain, ulceration, and gangrene secondary to peripheral arterial disease. From this group, all patients readmitted with similar diagnosis within 30 days were recorded. Results Of the total 25,111 index hospitalization for critical limb ischemia, 1270 (5%) were readmitted with a primary diagnosis of critical limb ischemia within 30 days. The readmission rate was highest (9.5%) for the group that did not have any intervention (revascularization or major amputation) and was lowest for surgical revascularization and major amputation groups (2.6% and 1.3%, P value <0.001 for all groups). Severity of critical limb ischemia at index admission was associated with a significantly higher rate of 30-day readmission. Critical limb ischemia-related readmission was associated with a higher rate of major amputation (29.6% vs. 16.2%, P<0.001), a lower rate of any revascularization procedure (46% vs. 62.6%, P<0.001), and a higher likelihood of discharge to a skilled nursing facility (43.2% vs. 32.2%, P<0.001) compared to index hospitalization. Conclusions In patients with primary diagnosis of critical limb ischemia, 30-day critical limb ischemia-related readmission rate was affected by initial management strategy and the severity of critical limb ischemia. Readmission was associated with a significantly higher rate of amputation, increased length of stay, and a more frequent discharge to an alternate care facility than index admission and thus may serve as a useful quality of care metric in critical limb ischemia patients.

  19. Is Atherectomy the Best First-Line Therapy for Limb Salvage in Patients With Critical Limb Ischemia?

    PubMed Central

    Loor, Gabriel; Skelly, Christopher L.; Wahlgren, Carl-Magnus; Bassiouny, Hisham S.; Piano, Giancarlo; Shaalan, Wael

    2010-01-01

    Objective To determine the efficacy of atherectomy for limb salvage compared with open bypass in patients with critical limb ischemia. Methods Ninety-nine consecutive bypass and atherectomy procedures performed for critical limb ischemia between January 2003 and October 2006 were reviewed. Results A total of 99 cases involving TASC C (n = 43, 44%) and D (n = 56, 56%) lesions were treated with surgical bypass in 59 patients and atherectomy in 33 patients. Bypass and atherectomy achieved similar 1-year primary patency (64% vs 63%; P = .2). However, the 1-year limb salvage rate was greater in the bypass group (87% vs 69%; P = .004). In the tissue loss subgroup, there was a greater limb salvage rate for bypass patients versus atherectomy (79% vs 60%; P = .04). Conclusions Patients with critical limb ischemia may do better with open bypass compared with atherectomy as first-line therapy for limb salvage. PMID:19640919

  20. Vascular access in critical limb ischemia.

    PubMed

    Kang, Won Yu; Campia, Umberto; Ota, Hideaki; Didier, Romain J; Negi, Smita I; Kiramijyan, Sarkis; Koifman, Edward; Baker, Nevin C; Magalhaes, Marco A; Lipinski, Michael J; Escarcega, Ricardo O; Torguson, Rebecca; Waksman, Ron; Bernardo, Nelson L

    2016-01-01

    Currently, percutaneous endovascular intervention is considered a first line of therapy for treating patients with critical limb ischemia. As the result of remarkable development of techniques and technologies, percutaneous endovascular intervention has led to rates of limb salvage comparable to those achieved with bypass surgery, with fewer complications, even in the presence of lower rates of long-term patency. Currently, interventionalists have a multiplicity of access routes including smaller arteries, with both antegrade and retrograde approaches. Therefore, the choice of the optimal access site has become an integral part of the success of the percutaneous intervention. By understanding the technical aspects, as well as the advantages and limitations of each approach, the interventionalists can improve clinical outcomes in patients with severe peripheral arterial disease. This article reviews the access routes in critical limb ischemia, their advantages and disadvantages, and the clinical outcomes of each. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Morphology of the pelvis and hind limb of the red panda (Ailurus fulgens) evidenced by gross osteology, radiography and computed tomography.

    PubMed

    Makungu, M; du Plessis, W M; Groenewald, H B; Barrows, M; Koeppel, K N

    2015-12-01

    The red panda (Ailurus fulgens) is a quadrupedal arboreal animal primarily distributed in the Himalayas and southern China. It is a species commonly kept in zoological collections. This study was carried out to describe the morphology of the pelvis and hind limb of the red panda evidenced by gross osteology, radiography and computed tomography as a reference for clinical use and identification of skeletons. Radiography of the pelvis and right hind limb was performed in nine and seven animals, respectively. Radiographic findings were correlated with bone specimens from three adult animals. Computed tomography of the torso and hind limb was performed in one animal. The pelvic bone had a wide ventromedial surface of the ilium. The trochlea of the femur was wide and shallow. The patella was similar to that seen in feline species. The medial fabella was not seen radiographically in any animal. The cochlea grooves of the tibia were shallow with a poorly defined intermediate ridge. The trochlea of the talus was shallow and presented with an almost flattened medial ridge. The tarsal sesamoid bone was always present. The lateral process of the base of the fifth metatarsal (MT) bone was directed laterally. The MT bones were widely spaced. The morphology of the pelvis and hind limb of the red panda indicated flexibility of the pelvis and hind limb joints as an adaptation to an arboreal quadrupedal lifestyle. © 2014 Blackwell Verlag GmbH.

  2. [Intramuscular injection of lentivirus-mediated EPAS1 gene improves hind limb ischemia and its mechanism in a rat model of peripheral artery vascular disease].

    PubMed

    Wang, Zhihong; Gu, Hongbin; Yang, Fan; Xie, Huajie; Sheng, Lei; Li, Mingfei

    2017-11-01

    Objective To investigate the effect of over-expressed endothelial Per-Arnt-Sim domain protein 1 (EPAS1) on peripheral arterial disease (PAD) in a rat model. Methods PAD rat model was established by external iliac artery ligation followed by lentivirus-mediated EPAS1 gene injection into rat right adductor magnus. The models were evaluated by quantitative analysis of gait disturbance. The changes of blood flow in the posterior extremity of the rats were detected using laser Doppler. The expressions of EPAS1, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) mRNAs were tested by real-time quantitative PCR. The expression of α-smooth muscle actin (αSMA) was detected by immunohistochemical staining. Results Compared with lenti-EGFP group, rat hind limb function and circulation got recovered obviously 7 days after lenti-EPAS1 injection. The mRNA expressions of EPAS1, HGF, bFGF, and VEGF were up-regulated in the lenti-EPAS1-treated sites.The expression of αSMA showed an obvious increase in the lenti-EPAS1-treated muscles. Conclusion Over-expressed lenti-EPAS1 can promote angiogenesis via the up-regulation of EPAS1-related angiogenic factors in the muscles of the affected hind limb and reduce gait disturbance.

  3. Consumed Ischemia of Lower Limbs in the Newborn: A Case Report

    PubMed Central

    Hamid, Jiber; Rita, Hajji; Youssef, Zrihni; Abdellatif, Bouarhroum

    2013-01-01

    The limb ischemia is a rare phenomenon in the newborn. It is most often a postnatal ischemia secondary to arterial or venous catheterization, to neonatal infection. Maternal diabetes is most often implicated. The diagnosis implies an urgent situation which may result in extremity gangrene and ultimate loss of limb. PMID:24251263

  4. Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking.

    PubMed

    O'Neill, Matthew C; Lee, Leng-Feng; Demes, Brigitte; Thompson, Nathan E; Larson, Susan G; Stern, Jack T; Umberger, Brian R

    2015-09-01

    The common chimpanzee (Pan troglodytes) is a facultative biped and our closest living relative. As such, the musculoskeletal anatomies of their pelvis and hind limbs have long provided a comparative context for studies of human and fossil hominin locomotion. Yet, how the chimpanzee pelvis and hind limb actually move during bipedal walking is still not well defined. Here, we describe the three-dimensional (3-D) kinematics of the pelvis, hip, knee and ankle during bipedal walking and compare those values to humans walking at the same dimensionless and dimensional velocities. The stride-to-stride and intraspecific variations in 3-D kinematics were calculated using the adjusted coefficient of multiple correlation. Our results indicate that humans walk with a more stable pelvis than chimpanzees, especially in tilt and rotation. Both species exhibit similar magnitudes of pelvis list, but with segment motion that is opposite in phasing. In the hind limb, chimpanzees walk with a more flexed and abducted limb posture, and substantially exceed humans in the magnitude of hip rotation during a stride. The average stride-to-stride variation in joint and segment motion was greater in chimpanzees than humans, while the intraspecific variation was similar on average. These results demonstrate substantial differences between human and chimpanzee bipedal walking, in both the sagittal and non-sagittal planes. These new 3-D kinematic data are fundamental to a comprehensive understanding of the mechanics, energetics and control of chimpanzee bipedalism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Human primary CD34+ cells transplantation for critical limb ischemia.

    PubMed

    Lian, Weishuai; Hu, Xiaoxiao; Pan, Long; Han, Shilong; Cao, Chuanwu; Jia, Zhongzhi; Li, Maoquan

    2018-06-11

    The goal of this study was to characterize the properties of human CD34 + cells in culture and investigate the feasibility and efficacy of CD34 + transplantation in a mouse model of limb ischemia and in patients with no-option critical limb ischemia. Human CD34 + cells isolated from peripheral blood and grown in culture for up to four passages stained positively for the surface markers CD34 and CD133 and showed high viability after cryopreservation and recovery. Seven days after surgery to induce limb ischemia, ischemic muscles of nude mice were injected with CD34 + cells. Two weeks later, mice were scored for extent of ischemic injury, and muscle tissue was collected for immunohistochemical analysis of vascular endothelial cells and RT-PCR analysis of cytokine expression. Injury scores of CD34 + -treated, but not control, mice were significantly different before and after transplantation. Vascular density and expression of VEGF and bFGF mRNAs were also significantly increased in the treated mice. Patients with severe lower extremity arterial ischemia were injected with their own CD34 + cells in the affected calf, foot, or toe. Significant improvements were observed in peak pain-free walking time, ankle-brachial index, and transcutaneous partial oxygen pressure. These findings demonstrate that growth of human CD34 + cells in vitro and cryopreservations are feasible. Such cells may provide a renewable source of stem cells for transplantation, which appears to be a feasible, safe, and effective treatment for patients with critical limb ischemia. © 2018 Wiley Periodicals, Inc.

  6. Management of Infrapopliteal Arterial Disease: Critical Limb Ischemia.

    PubMed

    Mustapha, Jihad A; Diaz-Sandoval, Larry J

    2014-10-01

    According to the TransAtlantic Inter-Society Consensus Document on Management of Peripheral Arterial Disease, "there is increasing evidence to support a recommendation for angioplasty in patients with critical limb ischemia and infrapopliteal artery occlusion." Management of infrapopliteal artery disease starts with diagnosis using modern preprocedural noninvasive and invasive imaging. Interventionalists need to learn the role of chronic total occlusion cap analysis and collateral zone recognition in angiosome-directed interventions for management of critical limb ischemia and be familiar with equipment and device selection and a stepwise approach for endovascular interventions. Interventionalists need to know which crossing tools to use to successfully cross-complex chronic total occlusion caps. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  8. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  9. Transcriptomics provides mechanistic indicators of fluoride toxicology on endochondral ossification in the hind limb of Bufo gargarizans.

    PubMed

    Chao, Wu; Zhang, Yuhui; Chai, Lihong; Wang, Hongyuan

    2018-06-10

    Endochondral ossification, the process by which most of the bone is formed, is regulated by many specific groups of molecules and extracellular matrix components. Hind limb of Bufo gargarizans is a model to study endochondral ossification during metamorphosis. Chinese toad (Bufo gargarizans) were exposed to different fluoride concentrations (0, 1, 5, 10 and 20 mg L -1 ) from G3 to G42. The development of hind limb of B. gargarizans was observed using the double staining methodology. The transcriptome of hind limb of B. gargarizans was conducted using RNA-seq approach, and differentially expressed gene was also validated. In addition, the location of Sox9 and Ihh in the growth cartilage was determined using in situ hybridization. Our results showed that 5 mg L -1 stimulated bone mineralization, while 10 and 20 mg L -1 exposure could inhibit the tibio-fibula, tarsus and metacarpals ossification. Besides, 10 mg F/L treatment could down-regulate Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 expression, while up-regulate ObRb and HHAT mRNA expression in the hind limb of B. gargarizans. Transcript level changes of Ihh, Sox9, D2, D3, TRα, TRβ, Wnt10, FGF3 and BMP6 were consistent with the results of RT-qPCR. In situ hybridization revealed that Ihh was expressed in prehypertrophic chondrocytes, while Sox9 was abundantly expressed in proliferous, prehypertrophic and hypertrophic chondrocytes. However, 10 mg F-/L did not cause any affect in the location of the Ihh and Sox9 mRNA. Therefore, high concentration of fluoride could affect the ossification-related genes mRNA expression and then inhibit the endochondral ossification. The present study thus will greatly contribute to our understanding of the effect of environmental contaminant on ossification in amphibian. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display.

    PubMed

    Mangiamele, Lisa A; Fuxjager, Matthew J; Schuppe, Eric R; Taylor, Rebecca S; Hödl, Walter; Preininger, Doris

    2016-05-17

    Physical gestures are prominent features of many species' multimodal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Androgenic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possibility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We examined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by performing both vocalizations and hind limb gestural signals, called "foot flags." Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expression in key muscles that control signal production to support adaptive motor performance.

  11. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display

    PubMed Central

    Mangiamele, Lisa A.; Fuxjager, Matthew J.; Schuppe, Eric R.; Taylor, Rebecca S.; Hödl, Walter; Preininger, Doris

    2016-01-01

    Physical gestures are prominent features of many species’ multimodal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Androgenic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possibility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We examined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by performing both vocalizations and hind limb gestural signals, called “foot flags.” Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expression in key muscles that control signal production to support adaptive motor performance. PMID:27143723

  12. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.

    PubMed

    Lerner, Zachary F; Gadomski, Benjamin C; Ipson, Allison K; Haussler, Kevin K; Puttlitz, Christian M; Browning, Raymond C

    2015-08-01

    Sheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces. We constructed the skeletal geometry of the model from computed topography images. Dual-energy x-ray absorptiometry was utilized to establish the inertial properties of each model segment. Detailed dissection and tendon excursion experiments established the requisite muscle lines of actions. We used OpenSim and experimentally-collected marker trajectories and ground reaction forces to quantify muscle and joint contact forces during treadmill walking at 0.25 m• s(-1) and 0.75 m• s(-1) . Peak compressive and anterior-posterior tibiofemoral contact forces were 20% (0.38 BW, p = 0.008) and 37% (0.17 BW, p = 0.040) larger, respectively, at the moderate gait speed relative to the slower speed. Medial-lateral tibiofemoral contact forces were not significantly different. Adjusting treadmill speed appears to be a viable method to modulate compressive and anterior-posterior tibiofemoral contact forces in the sheep hind limb. The musculoskeletal model is freely-available at www.SimTK.org. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    PubMed

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  14. Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Regan, John; Spain, Tammy A.; Caruso, Joseph D.; Rodriquez, Maricela; Luthra, Rajiv; Forsberg, Jonathon; Crane, Nicole J.; Elster, Eric

    2014-03-01

    Ischemia and reperfusion injuries present major challenges for both military and civilian medicine. Improved methods for assessing the effects and predicting outcome could guide treatment decisions. Specific issues related to ischemia and reperfusion injury can include complications arising from tourniquet use, such as microvascular leakage in the limb, loss of muscle strength and systemic failures leading to hypotension and cardiac failure. Better methods for assessing the viability of limbs/tissues during ischemia and reducing complications arising from reperfusion are critical to improving clinical outcomes for at-risk patients. The purpose of this research is to develop and assess possible prediction models of outcome for acute limb ischemia using a pre-clinical model. Our model relies only on non-invasive imaging data acquired from an animal study. Outcome is measured by pathology and functional scores. We explore color, texture, and temporal features derived from both color and thermal motion imagery acquired during ischemia and reperfusion. The imagery features form the explanatory variables in a model for predicting outcome. Comparing model performance to outcome prediction based on direct observation of blood chemistry, blood gas, urinalysis, and physiological measurements provides a reference standard. Initial results show excellent performance for the imagery-base model, compared to predictions based direct measurements. This paper will present the models and supporting analysis, followed by recommendations for future investigations.

  15. Understanding hind limb lameness signs in horses using simple rigid body mechanics.

    PubMed

    Starke, S D; May, S A; Pfau, T

    2015-09-18

    Hind limb lameness detection in horses relies on the identification of movement asymmetry which can be based on multiple pelvic landmarks. This study explains the poorly understood relationship between hind limb lameness pointers, related to the tubera coxae and sacrum, based on experimental data in context of a simple rigid body model. Vertical displacement of tubera coxae and sacrum was quantified experimentally in 107 horses with varying lameness degrees. A geometrical rigid-body model of pelvis movement during lameness was created in Matlab. Several asymmetry measures were calculated and contrasted. Results showed that model predictions for tubera coxae asymmetry during lameness matched experimental observations closely. Asymmetry for sacrum and comparative tubera coxae movement showed a strong association both empirically (R(2)≥ 0.92) and theoretically. We did not find empirical or theoretical evidence for a systematic, pronounced adaptation in the pelvic rotation pattern with increasing lameness. The model showed that the overall range of movement between tubera coxae does not allow the appreciation of asymmetry changes beyond mild lameness. When evaluating movement relative to the stride cycle we did find empirical evidence for asymmetry being slightly more visible when comparing tubera coxae amplitudes rather than sacrum amplitudes, although variation exists for mild lameness. In conclusion, the rigidity of the equine pelvis results in tightly linked movement trajectories of different pelvic landmarks. The model allows the explanation of empirical observations in the context of the underlying mechanics, helping the identification of potentially limited assessment choices when evaluating gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reproducable Paraplegia by Thoracic Aortic Occlusion in a Murine Model of Spinal Cord Ischemia-reperfusion

    PubMed Central

    Bell, Marshall T.; Reece, T. Brett; Smith, Phillip D.; Mares, Joshua; Weyant, Michael J.; Cleveland, Joseph C.; Freeman, Kirsten A.; Fullerton, David A.; Puskas, Ferenc

    2014-01-01

    Background Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion. Methods Adult male C57BL6 mice were anesthetized with isoflurane. Through a cervicosternal incision the aorta was exposed. The descending thoracic aorta and left subclavian arteries were identified without entrance into pleural space. Skeletonization of these arteries was followed by immediate closure (Sham) or occlusion for 4 min (moderate ischemia) or 8 min (prolonged ischemia). The sternotomy and skin were closed and the mouse was transferred to warming bed for recovery.  Following recovery, functional analysis was obtained at 12 hr intervals until 48 hr. Results Mice that underwent sham surgery showed no observable hind limb deficit. Mice subjected to moderate ischemia for 4 min had minimal functional deficit at 12 hr followed by progression to complete paralysis at 48 hr. Mice subjected to prolonged ischemia had an immediate paralysis with no observable hind-limb movement at any point in the postoperative period. There was no observed intraoperative or post operative mortality. Conclusion Reproducible lower extremity paralysis whether immediate or delayed can be achieved in a murine model. Additionally, by using a median sternotomy and careful dissection, high survival rates, and reproducibility can be achieved. PMID:24637534

  17. Reproducable paraplegia by thoracic aortic occlusion in a murine model of spinal cord ischemia-reperfusion.

    PubMed

    Bell, Marshall T; Reece, T Brett; Smith, Phillip D; Mares, Joshua; Weyant, Michael J; Cleveland, Joseph C; Freeman, Kirsten A; Fullerton, David A; Puskas, Ferenc

    2014-03-03

    Lower extremity paralysis continues to complicate aortic interventions. The lack of understanding of the underlying pathology has hindered advancements to decrease the occurrence this injury. The current model demonstrates reproducible lower extremity paralysis following thoracic aortic occlusion. Adult male C57BL6 mice were anesthetized with isoflurane. Through a cervicosternal incision the aorta was exposed. The descending thoracic aorta and left subclavian arteries were identified without entrance into pleural space. Skeletonization of these arteries was followed by immediate closure (Sham) or occlusion for 4 min (moderate ischemia) or 8 min (prolonged ischemia). The sternotomy and skin were closed and the mouse was transferred to warming bed for recovery. Following recovery, functional analysis was obtained at 12 hr intervals until 48 hr. Mice that underwent sham surgery showed no observable hind limb deficit. Mice subjected to moderate ischemia for 4 min had minimal functional deficit at 12 hr followed by progression to complete paralysis at 48 hr. Mice subjected to prolonged ischemia had an immediate paralysis with no observable hind-limb movement at any point in the postoperative period. There was no observed intraoperative or post operative mortality. Reproducible lower extremity paralysis whether immediate or delayed can be achieved in a murine model. Additionally, by using a median sternotomy and careful dissection, high survival rates, and reproducibility can be achieved.

  18. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia.

    PubMed

    Dash, Biraja C; Thomas, Dilip; Monaghan, Michael; Carroll, Oliver; Chen, Xizhe; Woodhouse, Kimberly; O'Brien, Timothy; Pandit, Abhay

    2015-10-01

    Critical limb ischemia is a major clinical problem. Despite rigorous treatment regimes, there has been only modest success in reducing the rate of amputations in affected patients. Reduced level of blood flow and enhanced inflammation are the two major pathophysiological changes that occur in the ischemic tissue. The objective of this study was to develop a controlled dual gene delivery system capable of delivering therapeutic plasmid eNOS and IL-10 in a temporal manner. In order to deliver multiple therapeutic genes, an elastin-like polypeptide (ELP) based injectable system was designed. The injectable system was comprised of hollow spheres and an in situ-forming gel scaffold of elastin-like polypeptide capable of carrying gene complexes, with an extended manner release profile. In addition, the ELP based injectable system was used to deliver human eNOS and IL-10 therapeutic genes in vivo. A subcutaneous dose response study showed enhanced blood vessel density in the treatment groups of eNOS (20 μg) and IL-10 (10 μg)/eNOS (20 μg) and reduced inflammation with IL-10 (10 μg) alone. Next, we carried out a hind-limb ischemia model comparing the efficacy of the following interventions; Saline; IL-10, eNOS and IL-10/eNOS. The selected dose of eNOS, exhibited enhanced angiogenesis. IL-10 treatment groups showed reduction in the level of inflammatory cells. Furthermore, we demonstrated that eNOS up-regulated major proangiogenic growth factors such as vascular endothelial growth factors, platelet derived growth factor B, and fibroblast growth factor 1, which may explain the mechanism of this approach. These factors help in formation of a stable vascular network. Thus, ELP injectable system mediating non-viral delivery of human IL10-eNOS is a promising therapy towards treating limb ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metastatic carcinoma presenting as hind-limb lameness: diagnosis by synovial fluid cytology.

    PubMed

    Meinkoth, J H; Rochat, M C; Cowell, R L

    1997-01-01

    A dog presented for evaluation of left hind-limb lameness and pain associated with manipulation of the tail. Synovial metastasis of a carcinoma was diagnosed by joint fluid examination. A primary bronchiolar-alveolar carcinoma with widespread (including synovial and skeletal) metastases was diagnosed on postmortem examination. Metastasis to synovial surfaces is uncommon, but when it occurs, the metastasis-induced arthritis may be the initial presenting complaint for which medical attention is sought. Although rarely reported, cytological examination of synovial fluid may be diagnostic. This paper presents an interesting clinical case and reviews the literature concerning metastatic disease of the synovium.

  20. Diagnosis and treatment of limb fractures associated with acute peripheral ischemia.

    PubMed

    Popescu, G I; Lupescu, O; Nagea, M; Patru, C

    2013-01-01

    Acute Peripheral Ischemia (API) is the most severe acute complication after both open and closed fractures, as ischemia compromises not only the vitality of the affected limb, but also the patient's life, because metabolic anaerobic changes following ischemia have serious local and general consequences. These explain why early diagnosis of API is very important for the prognosis of the traumatized limb.The authors analyse cases when API was not diagnosed immediately after trauma, but some time after the first examination, due to either low systolic BP or to late onset of API. The patients were analysed concerning the type of the fracture, the reason for delayed diagnosis of API, the moment of API diagnosis and the arterial injury. In all those cases, surgery was performed immediately after API diagnosis, in order to identify and treat the complex injuries(bone and vascular). Celsius.

  1. Effect of demedullation on freezing injury in hind limbs of rats

    NASA Astrophysics Data System (ADS)

    Dhingra, Shashi; Bhatia, B.; Chhina, G. S.; Singh, Baldev

    1987-09-01

    Freezing incidence and tissue loss on exposure of hind limbs of female Wistar rats to freezing mixture was reduced by demedullation 6 days prior to cold exposure (p<0.01 and p<0.001 respectively); demedullation 1 h after freezing injury had no effect on tissue loss. Noradrenaline (1 mg/kg i.p.) 5 min before exposure increased the freezing incidence in intact (p<0.05) as well as in demedullated rats (p<0.01), with no effect on tissue loss. Adrenaline (500 mg/kg i.p.) had no effect on either. A sustained fall in plasma adrenaline after demedullation leading to reduced reactivity of the blood vessels to some vasoactive agents is postulated.

  2. Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice

    PubMed Central

    Pavlicev, Mihaela; Wagner, Günter P.; Noonan, James P.; Hallgrímsson, Benedikt; Cheverud, James M.

    2013-01-01

    Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation. PMID:24065733

  3. Gender related Long-term Differences after Open Infrainguinal Surgery for Critical Limb Ischemia.

    PubMed

    Lejay, A; Schaeffer, M; Georg, Y; Lucereau, B; Roussin, M; Girsowicz, E; Delay, C; Schwein, A; Thaveau, F; Geny, B; Chakfe, N

    2015-10-01

    The role of gender on long-term infrainguinal open surgery outcomes still remains uncertain in critical limb ischemia patients. The aim of this study is to evaluate the gender-specific differences in patient characteristics and long-term clinical outcomes in terms of survival, primary patency and limb salvage among patients undergoing infrainguinal open surgery for CLI. All consecutive patients undergoing infrainguinal open surgery for critical limb ischemia between 2003 and 2012 were included. Survival, limb salvage and primary patency rates were assessed. Independent outcome determinants were identified by the Cox proportional hazard ratio using age and gender as adjustment factors. 584 patients (269 women and 315 men, mean age 76 and 71 years respectively) underwent 658 infrainguinal open surgery (313 in women and 345 in men). Survival rate at 6 years was lower among women compared to men with 53.5% vs 70.9% (p < 0.001). The same applied to primary patency (35.9% vs 52.4%, p < 0.001) and limb salvage (54.3% vs 81.1%, p < 0.001) at 6 years. Female-gender was an independent factor predicting death (hazard ratio 1.50), thrombosis (hazard ratio 2.37) and limb loss (hazard ratio 7.05) in age and gender-adjusted analysis. Gender-related disparity in critical limb ischemia open surgical revascularization outcomes still remains. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Predictors for adverse outcome after iliac angioplasty and stenting for limb-threatening ischemia.

    PubMed

    Timaran, Carlos H; Stevens, Scott L; Freeman, Michael B; Goldman, Mitchell H

    2002-09-01

    The role of iliac artery angioplasty and stenting (IAS) for the treatment of limb-threatening ischemia is not defined. IAS has been used primarily for patients with disabling claudication. Because poorer results have been shown in patients with critical ischemia after iliac artery angioplasty, the purpose of this study was to estimate the influence of risk factors on the outcome of iliac angioplasty and stent placement in patients with limb-threatening ischemia. During a 5-year period (from 1996 to 2001), 85 iliac angioplasty and stent placement procedures (107 stents) were performed in 31 women and 43 men with limb-threatening ischemia. Patients with claudication were specifically excluded. The criteria prepared by the Ad Hoc Committee on Reporting Standards (Society for Vascular Surgery/International Society for Cardiovascular Surgery) were followed to define the variables. The TransAtlantic InterSociety Consensus classification was used to characterize the type of iliac lesions. Both univariate (Kaplan-Meier [KM]) and multivariate analyses (Cox proportional hazards model) were used to determine the association between variables, cumulative patency, limb salvage, and survival. Indications for iliac angioplasty with stenting were ischemic rest pain (56%) and tissue loss (44%). Primary stenting was performed in 36 patients (42%). Stents were placed selectively after iliac angioplasty mainly for residual stenosis or pressure gradient (43%). Overall, primary stent patency rate was 90% at 1 year, 74% at 3 years, and 69% at 5 years. Primary stent patency rate was significantly reduced in women compared with men (KM, log-rank test, P <.001). Primary patency rates at 1, 3, and 5 years were 79%, 57%, and 38% for women and 92%, 88%, and 88% for men. Primary stent patency rate also was significantly reduced in patients with renal insufficiency (creatinine level, >1.6 mg/dL; KM, log-rank test, P <.001). Cox regression analysis identified female gender (relative risk, 5.1; 95

  5. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury

    PubMed Central

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-01-01

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day−1, 5 days week−1 for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI. PMID:24535438

  6. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury.

    PubMed

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-04-15

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day(-1), 5 days week(-1) for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI.

  7. Update and validation of the Society for Vascular Surgery wound, ischemia, and foot infection threatened limb classification system.

    PubMed

    Mills, Joseph L

    2014-03-01

    The diagnosis of critical limb ischemia, first defined in 1982, was intended to delineate a patient cohort with a threatened limb and at risk for amputation due to severe peripheral arterial disease. The influence of diabetes and its associated neuropathy on the pathogenesis-threatened limb was an excluded comorbidity, despite its known contribution to amputation risk. The Fontaine and Rutherford classifications of limb ischemia severity have also been used to predict amputation risk and the likelihood of tissue healing. The dramatic increase in the prevalence of diabetes mellitus and the expanding techniques of arterial revascularization has prompted modification of peripheral arterial disease classification schemes to improve outcomes analysis for patients with threatened limbs. The diabetic patient with foot ulceration and infection is at risk for limb loss, with abnormal arterial perfusion as only one determinant of outcome. The wound extent and severity of infection also impact the likelihood of limb loss. To better predict amputation risk, the Society for Vascular Surgery Lower Extremity Guidelines Committee developed a classification of the threatened lower extremity that reflects these important clinical considerations. Risk stratification is based on three major factors that impact amputation risk and clinical management: wound, ischemia, and foot infection. This classification scheme is relevant to the patient with critical limb ischemia because many are also diabetic. Implementation of the wound, ischemia, and foot infection classification system in critical limb ischemia patients is recommended and should assist the clinician in more meaningful analysis of outcomes for various forms of wound and arterial revascularizations procedures required in this challenging, patient population. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Endogenous developmental endothelial locus-1 limits ischemia-related angiogenesis by blocking inflammation

    PubMed Central

    Klotzsche - von Ameln, Anne; Cremer, Sebastian; Hoffmann, Jedrzej; Schuster, Peggy; Khedr, Sherif; Korovina, Irina; Troulinaki, Maria; Neuwirth, Ales; Sprott, David; Chatzigeorgiou, Antonios; Economopoulou, Matina; Orlandi, Alessia; Hain, Andreas; Zeiher, Andreas M.; Deussen, Andreas; Hajishengallis, George; Dimmeler, Stefanie; Chavakis, Triantafyllos; Chavakis, Emmanouil

    2017-01-01

    We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin–dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischemia-related angiogenesis. Intriguingly, Del-1–deficient mice displayed increased neovascularization in two independent ischemic models (retinopathy of prematurity and hind-limb ischemia), as compared to Del-1–proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischemic neovascularization in Del-1-deficiency was linked to higher infiltration of the ischemic tissue by CD45+ hematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin–dependent adhesion of hematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischemic muscles in vivo. Consistently, the increased hind limb ischemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularization in Del-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognized function of endogenous Del-1 as a local inhibitor of ischemia-induced angiogenesis by restraining LFA-1–dependent homing of pro-angiogenic hematopoietic cells to ischemic tissues. Our findings are relevant for the optimization of therapeutic approaches in the context of ischemic diseases. PMID:28447099

  9. Collateral circulation of the rat lower limb and its significance in ischemia-reperfusion studies.

    PubMed

    Rosero, Olivér; Németh, Károly; Turóczi, Zsolt; Fülöp, András; Garbaisz, Dávid; Győrffy, András; Szuák, András; Dorogi, Bence; Kiss, Mátyás; Nemeskéri, Ágnes; Harsányi, László; Szijártó, Attila

    2014-12-01

    Rats are the most commonly used animal model for studies of acute lower limb ischemia-reperfusion. The ischemia induced by arterial clamping may cause milder damage than the application of a tourniquet if the presence of a possible collateral system is considered. Male Wistar rats were randomized into three groups: in group A, the muscle weight affected by ischemia was measured; in group B, the severity of muscle damage caused by the application of a tourniquet and by infrarenal aortic occlusion was examined. Blood and muscle samples were taken from group B to assess the serum necroenzyme, potassium and TNF-α levels, as well as the muscle fiber viability and for histological examinations. In group C, the identification of the lower limb collateral system was performed using corrosion casting. Tourniquet application affected the lower muscle mass and resulted in significantly more severe injury compared to infrarenal aortic occlusion. This difference was reflected in the serum necroenzyme, potassium and TNF-α levels. The histological examination and viability assay confirmed these findings. The corrosion casts showed several anastomoses capable of supplying the lower limb. Tourniquet application proved to be capable of inducing absolute lower limb ischemia, in contrast to infrarenal aortic ligation, where a rich collateral system is considered to help mitigate the injury.

  10. The effects of L-carnitine on spinal cord ischemia/reperfusion injury in rabbits.

    PubMed

    Tetik, O; Yagdi, T; Islamoglu, F; Calkavur, T; Posacioglu, H; Atay, Y; Ayik, F; Canpolat, L; Yuksel, M

    2002-02-01

    Paraplegia after distal aortic aneurysm repair remains a persistent clinical problem. We hypothesized that the tolerance of the spinal cord to an ischemic period could be improved with hypothermic Ringer's Lactate containing L-Carnitine. Twenty-eight New Zealand white rabbits were used as spinal cord ischemia models. We separated rabbits into four equal groups and clamped each animal's abdominal aorta distal to the left renal artery. We occluded the aortas above the iliac bifurcation for 30 minutes. In group I, the infrarenal aorta was clamped without infusing any solution. In group II, Ringer's Lactate solution was infused at + 25degrees C for 3 minutes at a rate of 5 ml/min into the isolated aortic segments immediately after cross-clamping and the last 3 minutes of ischemia. In group III, Ringer's Lactate solution at +3 degrees C was given in the same method as that of group II. In group IV, Ringer's Lactate solution at +3 degrees C plus 100 mg/kg of L-carnitine was infused using the same technique. We assessed the neurological status of the hind limbs 24 and 48 hours after operation according to Tarlov's criteria. All animals were sacrificed and spinal cords were harvested for histological analyses. The neurological status in groups III and IV was significantly superior to that of groups I and II. All the animals in group I had complete hind-limb paraplegia. Complete hind-limb paraplegia occurred in 5 rabbits in group II. Two of the 7 animals in group III had spastic paraplegia, and none at all in group IV. Histological analysis of the cross-clamped segments of the rabbits with paraplegia in group I, II and III revealed changes consistent with ischemic injury, while findings were normal for the normal animals in group III and IV. In this model, the infusion of hypothermic Ringer's Lactate contained L-carnitine provided sufficient spinal cord protection against ischemia. Clinically, this may be a useful adjunct for prevention of paraplegia during surgery of the

  11. Evaluation of different captive bolt lengths and breed influence upon post-stun hind limb and forelimb activity in fed cattle at a commercial slaughter facility.

    PubMed

    Martin, Miriam S; Kline, Helen C; Wagner, Dana R; Alexander, Lacey R; Edwards-Callaway, Lily N; Grandin, Temple

    2018-05-03

    The objective of this study was to assess the effects of captive bolt length and breed type on post-stun leg activity in cattle. A total of 2850 Holstein (HOL) and non-Holstein British/Continental bred (NHOL) steers and heifers were observed post-stunning at a large commercial slaughter facility. A pneumatically powered penetrating captive bolt stunner was used with three different bolt lengths: CON, 15.24 cm; MED, 16.51 cm; and LON, 17.78 cm. Hind limb kicking, forelimb activity, take away belt stops, carcass swing and number of knife sticks during exsanguination were recorded for each animal from video recording. Hind limb and forelimb kicks observed ranged from 0 to 25 and 0 to 8, respectively. Analysis of post-stun hind limb and forelimb activity indicated that increasing pneumatically powered penetrating captive bolt length does not decrease post-stun leg activity. There was a higher percentage of cattle experiencing take away belt stops and carcass swing in HOL as compared with NHOL. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Outcomes of Peripheral Vascular Interventions in Select Patients With Lower Extremity Acute Limb Ischemia.

    PubMed

    Inagaki, Elica; Farber, Alik; Kalish, Jeffrey A; Eslami, Mohammad H; Siracuse, Jeffrey J; Eberhardt, Robert T; Rybin, Denis V; Doros, Gheorghe; Hamburg, Naomi M

    2018-04-12

    Contemporary data on patients presenting with acute limb ischemia (ALI), who are selected for treatment with endovascular peripheral vascular interventions (PVI), are limited. Our study examined outcomes following endovascular PVI in patients with ALI by comparing with patients treated for chronic critical limb ischemia using a regional quality improvement registry. Of the 11 035 patients in the Vascular Study Group of New England PVI database (2010-2014), we identified 365 patients treated for lower extremity ALI who were 5:1 frequency matched (by procedure year and arterial segments treated) to 1808 patients treated for critical limb ischemia. ALI patients treated with PVI had high burden of atherosclerotic risk factors and were more likely to have had prior ipsilateral revascularizations. ALI patients were less likely to be treated with self-expanding stents and more likely to undergo thrombolysis than patients with critical limb ischemia. In multivariable analysis, ALI was associated with higher technical failure (odds ratio 1.7, 95% confidence interval, 1.1%-2.5%), increased rate of distal embolization (odds ratio 2.7, 95% confidence interval, 1.5%-4.9%), longer length of stay (means ratio 1.6, 95% confidence interval, 1.4%-1.8%), and higher in-hospital mortality (odds ratio 2.8, 95% confidence interval, 1.3%-5.9%). ALI was not associated with risk of major amputation or mortality at 1 year. In a multicenter cohort of patients treated with PVI, we found that ALI patients selected for treatment with endovascular techniques experienced greater short-term adverse events but similar long-term outcomes as their critical limb ischemia counterparts. Further studies are needed to refine the selection of ALI patients who are best served by PVI. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia

    PubMed Central

    Mitić, Tijana; Caporali, Andrea; Floris, Ilaria; Meloni, Marco; Marchetti, Micol; Urrutia, Raul; Angelini, Gianni D; Emanueli, Costanza

    2015-01-01

    Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia. PMID:25189741

  14. Effects of Hind Limb Unloading on Pharmacokinetics of Procainamide in Mice

    NASA Technical Reports Server (NTRS)

    Risin, Semyon A.; Dasgupta, Amitava; Ramesh, Govindarajan T.; Risin, Diana

    2007-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in space. It is prudent to expect that low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration. Among the medications of special interest are the cardiovascular drugs, especially the antiarrhythmic agents. In this study we used hind limb unloaded (HLU) mice as a model to investigate possible changes in the PK of a common antiarrhythmic drug procainamide (PA). Prior to drug administration the experimental animals were tail suspended for 24 hours and the control animals were kept free. PA (150-250 mg per kg) was given orally by a gavage procedure. After that the experimental mice were kept suspended for additional 1, 2, 3 and 6 hours. At these time points the serum concentration of PA and N-acetyl-procainamide (NAPA), an active metabolite which is formed by N-acetyltransferase in the liver, were measured by the fluorescence polarization immunoassay (FPIA) on the AxSYM autoanalyzer (Abbott Laboratories, Abbott Park, IL). The serum level of PA in HLU mice at 1 hour after administration was almost 40% lower than in controls. At 2-3 hours the difference still maintained, however, it was not statistically significant; at 6 hours no difference was detected. The level of NAPA in HLU mice was slightly lower at 1 and 2 hours but the difference did not reach statistical significance. The estimated PA half-life time in HLU mice was almost 55% longer than in control animals. These results confirm that hind limb unloading and related hemodynamic changes significantly alter the PK of PA. The effects are most likely primarily associated with a decrease in the drug absorption, especially within the first two hours after administration. At the same time prolongation of the PA half

  15. Optimal use of atherectomy in critical limb ischemia.

    PubMed

    Rundback, John H; Herman, Kevin Chaim

    2014-09-01

    Critical limb ischemia (CLI) is the most severe and debilitating form of peripheral arterial disease and is associated with high rates of limb loss and cardiovascular mortality. The unique physical environment of tibial occlusive disease underlying most CLI cases limits treatment options and long-term durability, with resulting frequent rates of persistent obstruction, restenosis, and reintervention. Atherectomy represents a potential strategy to improve acute and late results when treating patients with CLI. Available atherectomy devices each have specific performance characteristics, evidentiary rationale, and limitations that mandate a clear understanding of the optimal albeit evolving use of this category of interventional tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

    PubMed Central

    Poole, Kristin M.; McCormack, Devin R.; Patil, Chetan A.; Duvall, Craig L.; Skala, Melissa C.

    2014-01-01

    Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies. PMID:25574425

  17. Valine partitioning and kinetics between the gastrointestinal tract and hind limbs in lambs with an adult Trichostrongylus colubriformis burden.

    PubMed

    Bermingham, E N; McNabb, W C; Sinclair, B R; Tavendale, M H; Roy, N C

    2011-11-01

    Intestinal parasitic infection increases the demand for AA because of increased protein synthesis in the intestine and increased luminal losses of AA, and these increased demands may be supported by increased mobilization of AA from the skeletal muscles. Two experiments were conducted to determine the effects of parasitic infection on valine kinetics within the gastrointestinal tract and hind limbs of lambs fed fresh forages. On d 1, lambs were given 6,000 stage-3 Trichostrongylus colubriformis larvae per day for 6 d (n = 6) or kept as parasite-free controls (n = 6) and fed fresh lucerne (Medicago sativa; Exp. 1) or fresh sulla (Hedysarum coronarium; Exp. 2). On d 48, valine kinetics within the mesenteric- (MDV) and portal-drained viscera (PDV) and hind limbs were obtained by carrying out concurrent infusions of para-amminohippuric acid into the mesenteric vein and indocyanin green into the abdominal aorta (for blood flow), and [3,4-(3)H]valine into the jugular vein and [1-(13)C]valine into the abomasum for 8 h (for kinetics). During the infusions, blood was collected from the mesenteric and portal veins and from the mesenteric artery and vena cava, and plasma was harvested. After the 8-h infusion, lambs were euthanized, ileal digesta were collected, and tissues were sampled from the intestine and muscle (biceps femoris). Tissues, digesta, and plasma were analyzed for valine concentration, specific radioactivity, and isotopic enrichment. In both experiments, intestinal worm burdens on d 48 were greater in parasitized lambs (P = 0.0001 and 0.003). In Exp. 1, parasitic infection increased (P = 0.03) the total valine irreversible loss rate (ILR) in the MDV and PDV. In Exp. 2, luminal ILR of valine in the MDV was reduced (P = 0.01); however, ILR of valine in the PDV was unaffected. Despite these changes within the MDV and PDV, parasitic infection did not affect the ILR of valine within the hind limbs, and valine transport rates were largely unchanged. We suggest that

  18. Bone morphology of the hind limbs in two caviomorph rodents.

    PubMed

    de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F

    2013-04-01

    In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.

  19. Ontogenetic scaling of fore limb and hind limb joint posture and limb bone cross-sectional geometry in vervets and baboons.

    PubMed

    Burgess, M Loring; Schmitt, Daniel; Zeininger, Angel; McFarlin, Shannon C; Zihlman, Adrienne L; Polk, John D; Ruff, Christopher B

    2016-09-01

    Previous studies suggest that the postures habitually adopted by an animal influence the mechanical loading of its long bones. Relatively extended limb postures in larger animals should preferentially reduce anteroposterior (A-P) relative to mediolateral (M-L) bending of the limb bones and therefore decrease A-P/M-L rigidity. We test this hypothesis by examining growth-related changes in limb bone structure in two primate taxa that differ in ontogenetic patterns of joint posture. Knee and elbow angles of adult and immature vervets (Chlorocebus aethiops, n = 16) were compared to published data for baboons (Papio hamadryas ursinus, n = 33, Patel et al., ). Ontogenetic changes in ratios of A-P/M-L bending rigidity in the femur and humerus were compared in skeletal samples (C. aethiops, n = 28; P. cynocephalus, n = 39). Size changes were assessed with linear regression, and age group differences tested with ANOVA. Only the knee of baboons shows significant postural change, becoming more extended with age and mass. A-P/M-L bending rigidity of the femur decreases during ontogeny in immature and adult female baboons only. Trends in the humerus are less marked. Adult male baboons have higher A-P/M-L bending rigidity of the femur than females. The hypothesized relationship between more extended joints and reduced A-P/M-L bending rigidity is supported by our results for immature and adult female baboon hind limbs, and the lack of significant age changes in either parameter in forelimbs and vervets. Adult males of both species depart from general ontogenetic trends, possibly due to socially mediated behavioral differences between sexes. Am J Phys Anthropol 161:72-83, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Importance of postprocedural Wound, Ischemia, and foot Infection (WIfI) restaging in predicting limb salvage.

    PubMed

    Leithead, Charles; Novak, Zdenek; Spangler, Emily; Passman, Marc A; Witcher, Adam; Patterson, Mark A; Beck, Adam W; Pearce, Benjamin J

    2018-02-01

    The Wound, Ischemia, and foot Infection (WIfI) classification system was created to encompass demographic changes and expanding techniques of revascularization to perform meaningful analyses of outcomes in the treatment of the threatened limb. The WIfI index is intended to be analogous to the TNM staging system for cancer, with restaging to be done after control of infection and after revascularization. Our goal was to evaluate the effectiveness of WIfI restaging after therapy in the prediction of limb outcomes. Preoperative WIfI scoring was performed prospectively for all critical limb ischemia patients who underwent revascularization from January 2014 to June 2015. WIfI restaging and assessment of outcomes were performed retrospectively through August 2016. WIfI classification was determined at the following intervals: preoperatively, immediately postoperatively, and 1 month and 6 months after intervention. Amputation-free survival (AFS) was the primary end point. Kaplan-Meier plot analysis and comparisons of preoperative grades with respective postoperative grades were performed using paired t-test, χ 2 test, and correlation analyses. A total of 180 limbs and 172 critical limb ischemia patients underwent revascularization, of which 29 limbs had major amputations (16%). Wound grades generally improved after surgery across the entire cohort. Major amputation was associated with preoperative wound grade and remained associated with wound grade at postoperative restaging at 1 month and beyond on the basis of amputation frequency analysis (preoperatively, 1 month, and 6 months, P = .03, < .001, and < .001, respectively). Wound grade was significantly associated with AFS at 1 month and 6 months after intervention (log-rank, P < .001 for restaging intervals). Ischemia grades improved initially with a slight decline across the cohort at 6 months. Ischemia grade at 1 month postoperatively was associated with AFS (log-rank, P = .03). Foot infection grades

  1. Outcomes of Critical Limb Ischemia in Hemodialysis Patients After Distal Bypass Surgery - Poor Limb Prognosis With Stage 4 Wound, Ischemia, and Foot Infection (WIfI).

    PubMed

    Hoshina, Katsuyuki; Yamamoto, Kota; Miyata, Tetsuro; Watanabe, Toshiaki

    2016-10-25

    Distal bypass is the first-line treatment for patients with critical limb ischemia (CLI). In Japanese high-volume centers, approximately half of these patients are on hemodialysis (HD). We have treated such patients first with bypass using a multidisciplinary perioperative strategy. We reveal the recent characteristics of patients who underwent distal bypass and the surgical outcomes in Japan, especially focusing on the foot conditions by using the wound, ischemia, and foot infection (WIfI) classification.Methods and Results:The 152 patients underwent distal bypass in a tertiary center hospital, and we compared patients on HD (HD group) to those not on HD (non-HD group). There were significant differences between the 2 groups in the overall survival, major adverse cardiac event-free survival and amputation-free survival (AFS) rates (P<0.0001). The procedural outcomes were analyzed via primary and secondary patency, and there was no difference. In the subanalysis of limb status using WIfI stage, the AFS rate of the HD group was significantly worse than that of the non-HD group for WIfI stage 4 patients. The life and limb prognoses of patients with CLI and HD were worse than those of non-HD patients. There was no difference in surgical outcomes suggested by the graft patency rates between the 2 groups. AFS in WIfI stage 4 was significantly worse in the HD group, which indicated the importance of preoperative limb status. (Circ J 2016; 80: 2382-2387).

  2. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury.

    PubMed

    Lee, Dongwon; Bae, Soochan; Ke, Qingen; Lee, Jiyoo; Song, Byungjoo; Karumanchi, S Ananth; Khang, Gilson; Choi, Hak Soo; Kang, Peter M

    2013-12-28

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the generation of high level of hydrogen peroxide (H2O2). In this study, we report a novel diagnostic and therapeutic strategy for I/R injury based on H2O2-activatable copolyoxalate nanoparticles using a murine model of hind limb I/R injury. The nanoparticles are composed of hydroxybenzyl alcohol (HBA)-incorporating copolyoxalate (HPOX) that, in the presence of H2O2, degrades completely into three known and safe compounds, cyclohexanedimethanol, HBA and CO2. HPOX effectively scavenges H2O2 in a dose-dependent manner and hydrolyzes to release HBA which exerts intrinsic antioxidant and anti-inflammatory activities both in vitro and in vivo models of hind limb I/R. HPOX nanoparticles loaded with fluorophore effectively and robustly image H2O2 generated in hind limb I/R injury, demonstrating their potential for bioimaging of H2O2-associated diseases. Furthermore, HPOX nanoparticles loaded with anti-apoptotic drug effectively release the drug payload after I/R injury, exhibiting their effectiveness for a targeted drug delivery system for I/R injury. We anticipate that multifunctional HPOX nanoparticles have great potential as H2O2 imaging agents, therapeutics and drug delivery systems for H2O2-associated diseases. © 2013.

  3. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    PubMed

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1 , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6- Lsq1-3 ). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3 Ile81 , but not BAG3 Met81 , improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 Ile81 (n=9), but not BAG3 Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3 Met81 , BAG3 Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  4. Using multimodal imaging techniques to monitor limb ischemia: a rapid noninvasive method for assessing extremity wounds

    NASA Astrophysics Data System (ADS)

    Luthra, Rajiv; Caruso, Joseph D.; Radowsky, Jason S.; Rodriguez, Maricela; Forsberg, Jonathan; Elster, Eric A.; Crane, Nicole J.

    2013-03-01

    Over 70% of military casualties resulting from the current conflicts sustain major extremity injuries. Of these the majority are caused by blasts from improvised explosive devices. The resulting injuries include traumatic amputations, open fractures, crush injuries, and acute vascular disruption. Critical tissue ischemia—the point at which ischemic tissues lose the capacity to recover—is therefore a major concern, as lack of blood flow to tissues rapidly leads to tissue deoxygenation and necrosis. If left undetected or unaddressed, a potentially salvageable limb may require more extensive debridement or, more commonly, amputation. Predicting wound outcome during the initial management of blast wounds remains a significant challenge, as wounds continue to "evolve" during the debridement process and our ability to assess wound viability remains subjectively based. Better means of identifying critical ischemia are needed. We developed a swine limb ischemia model in which two imaging modalities were combined to produce an objective and quantitative assessment of wound perfusion and tissue viability. By using 3 Charge-Coupled Device (3CCD) and Infrared (IR) cameras, both surface tissue oxygenation as well as overall limb perfusion could be depicted. We observed a change in mean 3CCD and IR values at peak ischemia and during reperfusion correlate well with clinically observed indicators for limb function and vitality. After correcting for baseline mean R-B values, the 3CCD values correlate with surface tissue oxygenation and the IR values with changes in perfusion. This study aims to not only increase fundamental understanding of the processes involved with limb ischemia and reperfusion, but also to develop tools to monitor overall limb perfusion and tissue oxygenation in a clinical setting. A rapid and objective diagnostic for extent of ischemic damage and overall limb viability could provide surgeons with a more accurate indication of tissue viability. This may

  5. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  6. Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia.

    PubMed

    Su, Shiau-Tsz; Yeh, Chiu-Li; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling

    2017-02-01

    Diabetes is a metabolic disorder with increased risk of vascular diseases. Tissue ischemia may occur with diabetic vascular complications. Bone marrow-derived endothelial progenitor cells (EPCs) constitute a reparative response to ischemic injury. This study investigated the effects of oral glutamine (GLN) supplementation on circulating EPC mobilization and expression of tissue EPC-releasing markers in diabetic mice subjected to limb ischemia. Diabetes was induced by a daily intraperitoneal injection of streptozotocin for 5 days. Diabetic mice were divided into 2 nonischemic groups and 6 ischemic groups. One of the nonischemic and 3 ischemic groups were fed the control diet, while the remaining 4 groups received diets with identical components except that part of the casein was replaced by GLN. The respective diets were fed to the mice for 3 weeks, and then the nonischemic mice were sacrificed. Unilateral hindlimb ischemia was created in the ischemic groups, and mice were sacrificed at 1, 7 or 21 days after ischemia. Their blood and ischemic muscle tissues were collected for further analyses. Results showed that plasma matrix metallopeptidase (MMP)-9 and the circulating EPC percentage increased after limb ischemia in a diabetic condition. Compared to groups without GLN, GLN supplementation up-regulated plasma stromal cell-derived factor (SDF)-1 and muscle MMP-9, SDF-1, hypoxia-inducible factor-1 and vascular endothelial growth factor gene expression. The CD31-immunoreactive intensities were also higher in the ischemic limb. These findings suggest that GLN supplementation enhanced circulating EPC mobilization that may promote endothelium repair at ischemic tissue in diabetic mice subjected to limb ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Alimentary Limb Ischemia During Roux-en-Y Gastric Bypass and its Management.

    PubMed

    Mittal, Tarun; Dey, Ashish; Nali, Abhilash; Taha Mustafa, Sheikh Mohammad; Malik, Vinod K

    2018-05-01

    Ischemia of the tip of the alimentary limb involving the gastrojejunostomy (GJ) is an unusual complication during Roux-en-Y gastric bypass (RYGB). Revision of the GJ may be needed to manage this complication. We present a case of inadvertent perforation of the jejunum by a gastric calibration tube, which was recognized on the table and appropriate measures are then taken. Repair of this enterotomy however then led to ischemia of the tip of alimentary limb extending to a portion of the GJ anastomosis. We present its subsequent management. Our patient is a morbidly obese female patient with a BMI value of 44.6 kg/msq undergoing RYGB. We performed an antecolic, antegastric linear-stapled gastrojejunostomy of 2.5 cm. After hand-sewn closure of the common enterotomy, we tried passing a 38-F Bougie through the anastomosis into the Roux limb. During this maneuver, the Bougie inadvertently perforated the Roux limb at the mesenteric border. Following the repair of this jejunal rent, the distal part of the Roux limb became dusky and involved a portion of the gastrojejunal anastomosis. The gastrojejunostomy was therefore completely revised. Intraoperatively, methylene blue dye test was done which showed no leak. Post-operative gastrografin study revealed no leak and liquids were started on POD1. Inadvertent injury by a Bougie is a rare but known complication in laparoscopic RYGB. Intraoperative recognition of the complication is essential to prompt the necessary repair. Revision of the gastrojejunostomy is necessary if the Roux limb or the anastomosis itself is ischemic and can be accomplished with good results.

  8. Effect of walking velocity on ground reaction force variables in the hind limb of clinically normal horses.

    PubMed

    Khumsap, S; Clayton, H M; Lanovaz, J L

    2001-06-01

    To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.

  9. Doppler ultrasonography and single-fiber laser Doppler flowmetry for measurement of hind limb blood flow in anesthetized horses.

    PubMed

    Raisis, A L; Young, L E; Taylor, P M; Walsh, K P; Lekeux, P

    2000-03-01

    To use Doppler ultrasonography and single-fiber laser Doppler flowmetry (LDF) to evaluate blood flow in the dependent and nondependent hind limbs of anesthetized horses and to evaluate changes in femoral arterial blood flow and microvascular skeletal muscle perfusion in response to administration of phenylephrine hydrochloride or dobutamine hydrochloride. 6 healthy adult horses. Horses were anesthetized and positioned in left lateral recumbency. Doppler ultrasonography was used to measure velocity and volumetric flow in the femoral vessels. Single-fiber LDF was used to measure relative microvascular perfusion at a single site in the semimembranosus muscles. Phenylephrine or dobutamine was then administered to decrease or increase femoral arterial blood flow, and changes in blood flow and microvascular perfusion were recorded. Administration of phenylephrine resulted in significant decreases in femoral arterial and venous blood flows and cardiac output and significant increases in mean aortic blood pressure, systemic vascular resistance, and PCV. Administration of dobutamine resulted in significant increases in femoral arterial blood flow, mean aortic blood pressure, and PCV. Significant changes in microvascular perfusion were not detected. Results suggest that Doppler ultrasonography and single-fiber LDF can be used to study blood flows in the hind limbs of anesthetized horses. However, further studies are required to determine why changes in femoral arterial blood flows were not associated with changes in microvascular perfusion.

  10. Critical Limb Ischemia in Association with Charcot Neuroarthropathy: Complex Endovascular Therapy for Limb Salvage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palena, Luis Mariano, E-mail: marianopalena@hotmail.com; Brocco, Enrico; Manzi, Marco

    2013-05-09

    Charcot neuroarthropathy is a low-incidence complication of diabetic foot and is associated with ankle and hind foot deformity. Patients who have not developed deep ulcers are managed with offloading and supportive bracing or orthopedic arthrodesis. In patients who have developed ulcers and severe ankle instability and deformity, below-the-knee amputation is often indicated, especially when deformity and cutaneous involvement result in osteomyelitis. Ischemic association has not been described but can be present as a part of peripheral arterial disease in the diabetic population. In this extreme and advanced stage of combined neuroischemic diabetic foot disease, revascularization strategies can support surgical andmore » orthopedic therapy, thus preventing osteomyelitis and leading to limb and foot salvage.« less

  11. Rheolytic thrombectomy in the management of limb ischemia: 30-day results from a multicenter registry.

    PubMed

    Ansel, Gary M; George, Barry S; Botti, Charles F; McNamara, Thomas O; Jenkins, J Stephen; Ramee, Steven R; Rosenfield, Kenneth; Noethen, Alice A; Mehta, Tejas

    2002-08-01

    To evaluate the use of rheolytic thrombectomy (RT) with the AngioJet catheter for treatment of lower extremity ischemia due to arterial/graft thrombotic occlusion. A retrospective multicenter review was performed of 99 consecutive patients (52 men; mean age 67 +/- 13 years, range 30-90) who underwent RT for thrombotic occlusions in native arteries (n=80) or bypass grafts (n=19). Pre- and postprocedural limb ischemia and in-hospital events were evaluated. Amputation and mortality rates at 30 days were determined. The majority of patients (78.8%) presented within 14 days of symptom onset. RT resulted in substantial to complete thrombus removal in 70 (70.7%) patients and partial in 22 (22.2%); there was no angiographic change in 7 (7.1%). Adjunctive post RT thrombolysis was used in 37 patients. Underlying stenoses found in 81 limbs were treated with one or more of the following procedures: balloon angioplasty (n=62), stenting (n=35), or nonemergent surgical revision (n=5). In-hospital complications included 2 major amputations, 5 cases of minor tissue loss, 7 rethromboses, and 3 cases of transient renal insufficiency. Four (4.0% patients died in-hospital; the 95 surviving patients all had viable limbs at discharge. Mortality and amputation rates at 30 days were 7.1% and 4.0%, respectively. Percutaneous treatment of thrombotic occlusions with RT, followed by definitive treatment of the underlying stenosis, is a promising therapeutic option for patients with limb-threatening ischemia.

  12. Severe limb ischemia syndrome.

    PubMed

    Suchý, T

    1991-01-01

    In the course of the study of the syndrome of severe limb ischemia (SLI) in a representative clinical material of 300 patients and a number of experimental studies, we arrived to the proposal of this optimal methodical procedure for acute vascular closures of traumatic and non-traumatic origin in the limbs: a) In every injury and sudden pain with a change of the function of the limb, it is necessary to think of the SLI syndrome and to search targetedly for it. b) In injuries connected with bleeding our first-rate task is the control of this bleeding. For a temporary arrest of the bleeding it is necessary to prefer more physiological methods sparing collateral circulation to the still most used tourniquet. For this purpose a new device for temporary hemostasis called Hemostop has proved itself, designed by the author and attested both experimentally and clinically, protected as a Czechoslovak patent. From surgical measures have acquitted themselves from this viewpoint the insertion of vascular clamp, ligature of the vessel or its temporary cannulation. c) To set the diagnosis of SLI, it usually suffices a careful anamnesis and clinical examination, advantageous is the investigation by ultrasound. The angiography because of time consumption should be used only in indicated cases. d) The time factor--"race against the time"--has to be always borne on our mind. It is necessary to achieve the recovery of blood circulation in the limb up to 6 or at the latest up to 10 hours from the onset of injury or closure. e) For shortening of the period of tissue hypoxia it is of advantage to use the temporary cannulation of injured vessels. This should be used always, whenever because of any reasons, it is not possible to execute the final reconstructive operation up to 10 hours since the injury, e. g. in polytraumatism, transport difficulties and the like. f) In isolated vascular injuries without bleeding (about 45%) and in all non-traumatic SLI the patients must be efficiently

  13. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading

    NASA Astrophysics Data System (ADS)

    Walb, M. C.; Black, P. J.; Payne, V. S.; Munley, M. T.; Willey, J. S.

    2015-07-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this

  14. Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product.

    PubMed

    MacAskill, Mark G; Saif, Jaimy; Condie, Alison; Jansen, Maurits A; MacGillivray, Thomas J; Tavares, Adriana A S; Fleisinger, Lucija; Spencer, Helen L; Besnier, Marie; Martin, Ernesto; Biglino, Giovanni; Newby, David E; Hadoke, Patrick W F; Mountford, Joanne C; Emanueli, Costanza; Baker, Andrew H

    2018-03-28

    Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31 + /CD144 + ), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    NASA Astrophysics Data System (ADS)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  16. Myocardial and Peripheral Ischemia Causes an Increase in Circulating Pregnancy-Associated Plasma Protein-A in Non-atherosclerotic, Non-heparinized Pigs.

    PubMed

    Steffensen, Lasse Bach; Poulsen, Christian Bo; Shim, Jeong; Bek, Marie; Jacobsen, Kevin; Conover, Cheryl A; Bentzon, Jacob Fog; Oxvig, Claus

    2015-12-01

    The usefulness of circulating pregnancy-associated plasma protein-A (PAPP-A) as a biomarker for acute coronary syndrome (ACS) is widely debated. We used the pig as a model to assess PAPP-A dynamics in the setting of myocardial ischemia. Induction of myocardial ischemia by ligation of the left anterior descending (LAD) coronary artery caused a systemic rise in PAPP-A. However, the ischemic myocardium was excluded as the source of PAPP-A. Interestingly, induction of ischemia in peripheral tissues by ligation of the left femoral artery caused a systemic rise in PAPP-A originating from the left hind limb. This is the first study to demonstrate PAPP-A elevations in the absence of atherosclerosis or heparin during myocardial ischemia. Our findings thus add to the current discussion of the usefulness of PAPP-A as a biomarker for ACS.

  17. Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia.

    PubMed

    Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Gamrekelashvili, Jaba; Beger, Christian; Häger, Christine; Lozanovski, Vladimir J; Falk, Christine S; Napp, L Christian; Bauersachs, Johann; Mack, Matthias; Haller, Hermann; Weber, Christian; Adams, Ralf H; Limbourg, Florian P

    2017-10-16

    Ischemia causes an inflammatory response that is intended to restore perfusion and homeostasis yet often aggravates damage. Here we show, using conditional genetic deletion strategies together with adoptive cell transfer experiments in a mouse model of hind limb ischemia, that blood vessels control macrophage differentiation and maturation from recruited monocytes via Notch signaling, which in turn promotes arteriogenesis and tissue repair. Macrophage maturation is controlled by Notch ligand Dll1 expressed in vascular endothelial cells of arteries and requires macrophage canonical Notch signaling via Rbpj, which simultaneously suppresses an inflammatory macrophage fate. Conversely, conditional mutant mice lacking Dll1 or Rbpj show proliferation and transient accumulation of inflammatory macrophages, which antagonizes arteriogenesis and tissue repair. Furthermore, the effects of Notch are sufficient to generate mature macrophages from monocytes ex vivo that display a stable anti-inflammatory phenotype when challenged with pro-inflammatory stimuli. Thus, angiocrine Notch signaling fosters macrophage maturation during ischemia.Molecular mechanisms of macrophage-mediated regulation of artery growth in response to ischemia are poorly understood. Here the authors show that vascular endothelium controls macrophage maturation and differentiation via Notch signaling, which in turn promotes arteriogenesis and ischemic tissue recovery.

  18. Allogeneic transplantation of programmable cells of monocytic origin (PCMO) improves angiogenesis and tissue recovery in critical limb ischemia (CLI): a translational approach.

    PubMed

    Berndt, Rouven; Hummitzsch, Lars; Heß, Katharina; Albrecht, Martin; Zitta, Karina; Rusch, Rene; Sarras, Beke; Bayer, Andreas; Cremer, Jochen; Faendrich, Fred; Groß, Justus

    2018-04-27

    Employing growth factor-induced partial reprogramming in vitro, peripheral human blood monocytes can acquire a state of plasticity along with expression of various markers of pluripotency. These so-called programmable cells of monocytic origin (PCMO) hold great promise in regenerative therapies. The aim of this translational study was to explore and exploit the functional properties of PCMO for allogeneic cell transplantation therapy in critical limb ischemia (CLI). Using our previously described differentiation protocol, murine and human monocytes were differentiated into PCMO. We examined paracrine secretion of pro-angiogenic and tissue recovery-associated proteins under hypoxia and induction of angiogenesis by PCMO in vitro. Allogeneic cell transplantation of PCMO was performed in a hind limb ischemia mouse model in comparison to cell transplantation of native monocytes and a placebo group. Moreover, we analyzed retrospectively four healing attempts with PCMO in patients with peripheral artery disease (PAD; Rutherford classification, stage 5 and 6). Statistical analysis was performed by using one-way ANOVA, Tukey's test or the Student's t test, p < 0.05. Cell culture experiments revealed good resilience of PCMO under hypoxia, enhanced paracrine release of pro-angiogenic and tissue recovery-associated proteins and induction of angiogenesis in vitro by PCMO. Animal experiments demonstrated significantly enhanced SO 2 saturation, blood flow, neoangiogenesis and tissue recovery after treatment with PCMO compared to treatment with native monocytes and placebo. Finally, first therapeutic application of PCMO in humans demonstrated increased vascular collaterals and improved wound healing in patients with chronic CLI without exaggerated immune response, malignant processes or extended infection after 12 months. In all patients minor and/or major amputations of the lower extremity could be avoided. In summary, PCMO improve angiogenesis and tissue recovery in chronic

  19. Engendering Allograft Ignorance in a Mouse Model of Allogeneic Skin Transplantation to the Distal Hind Limb

    PubMed Central

    Agarwal, Shailesh; Loder, Shawn; Wood, Sherri; Cederna, Paul S.; Bishop, D. Keith; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    Objective The aim of this study was to demonstrate lymphatic isolation in a model of hind limb lymph node (LN) excision, consisting of ipsilateral popliteal and inguinal LN excision and to evaluate the immunologic response to allogeneic skin transplanted onto this region of lymphatic isolation. Methods To study lymphatic flow, C57BL/6 mice underwent lymphadenectomy (n = 5), sham lymphadenectomy (n = 5), or no intervention (n = 5), followed by methylene blue injection. Mice were dissected to determine whether methylene blue traveled to the iliac LN. To study host response to skin transplantation, C57BL/6 mice underwent allogeneic skin transplantation with LN excision (n = 6), allogeneic skin transplantation alone (n = 6), or syngeneic skin transplantation (n = 4). Skin grafts were placed distal to the popliteal fossa and mice were euthanized at day 10. Grafts were stained for endothelial cell and proliferation markers (CD31 and Ki67, respectively). Secondary lymphoid tissues (spleen, ipsilateral axillary LN, and contralateral inguinal LN) were removed and rechallenged with BALB/c alloantigen in vitro with subsequent assay of interferon-γ and interleukin 4 cell expression using ELISPOT technique. Results Mice that underwent LN excision had no evidence of methylene blue in the iliac nodes; mice without surgical intervention or with sham LN excision consistently had methylene blue visible in the ipsilateral iliac nodes. Mice treated with allogeneic skin transplantation and LN excision had lower expression of interferon-γ and interleukin 4 in the secondary lymphoid tissues. Conclusions Lymph node excision completely interrupts lymphatic flow of the hind limb. This model of lymphatic isolation impairs the ability of the transplant recipient to acutely mount a Th1 or Th2 response to allogeneic skin transplants. PMID:24509194

  20. Critical appraisal of surgical revascularization for critical limb ischemia.

    PubMed

    Conte, Michael S

    2013-02-01

    Peripheral artery disease is growing in global prevalence and is estimated to afflict between 8 and 12 million Americans. Its most severe form, critical limb ischemia (CLI), is associated with high rates of limb loss, morbidity, and mortality. Revascularization is the cornerstone of limb preservation in CLI, and has traditionally been accomplished with open surgical bypass. Advances in catheter-based technologies, coupled with their broad dissemination among specialists, have led to major shifts in practice patterns in CLI. There is scant high-quality evidence to guide surgical decision making in this arena, and market forces have exerted profound influences. Despite this, available data suggest that the expected outcomes for both endovascular and open surgery in CLI are strongly dependent on definable patient factors such as anatomic distribution of disease, vein quality, and comorbidities. Optimal patient selection is paramount for maximizing benefit with each technique. This review summarizes some of the existing data and suggests a selective approach to revascularization in CLI, which continues to rely on vein bypass surgery as a primary option in appropriately selected patients. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  1. Successful limb salvage through staged bypass combined with free gracilis muscle transfer for critical limb ischemia with osteomyelitis after failed endovascular therapy.

    PubMed

    Miyake, Keisuke; Kikuchi, Shinsuke; Okuda, Hiroko; Koya, Atsuhiro; Abe, Satomi; Sawa, Yoshiki; Ota, Tetsuo; Azuma, Nobuyoshi

    2018-05-02

    Critical limb ischemia with osteomyelitis is so difficult to treat that even appropriate revascularization and wound therapy cannot achieve limb salvage because of uncontrollable infection. It is still difficult to judge the possibility of limb salvage before revascularization. A 73-year-old male complained of a small ulcer on his left toe, which was treated with multiple endovascular therapy. After failed endovascular therapy, he suffered extensive tissue loss with tibial osteomyelitis. We carried out staged surgery that was composed of dual bypass to the sural artery and posterior tibial artery. After intensive debridement and wound care, insertion of a subsequent free gracilis muscle flap to cover the exposed tibial bone was performed, achieving functional limb salvage. Even in the threatened limb with extensive tissue loss and osteomyelitis, intensive and multidisciplinary treatment with staged revascularization, muscle transfer, and appropriate wound care achieved functional limb salvage.

  2. Society for Vascular Surgery Wound, Ischemia, foot Infection (WIfI) score correlates with the intensity of multimodal limb treatment and patient-centered outcomes in patients with threatened limbs managed in a limb preservation center.

    PubMed

    Robinson, William P; Loretz, Lorraine; Hanesian, Colleen; Flahive, Julie; Bostrom, John; Lunig, Nicholas; Schanzer, Andres; Messina, Louis

    2017-08-01

    The Society for Vascular Surgery Wound, Ischemia, foot Infection (WIfI) system aims to stratify threatened limbs according to their anticipated natural history and estimate the likelihood of benefit from revascularization, but whether it accurately stratifies outcomes in limbs undergoing aggressive treatment for limb salvage is unknown. We investigated whether the WIfI stage correlated with the intensity of limb treatment required and patient-centered outcomes. We stratified limbs from a prospectively maintained database of consecutive patients referred to a limb preservation center according to WIfI stage (October 2013-May 2015). Comorbidities, multimodal limb treatment, including foot operations and revascularization, and patient-centered outcomes (wound healing, limb salvage, amputation-free survival, maintenance of ambulatory and independent living status, and mortality) were compared among WIfI stages. Multivariate analysis was performed to identify predictors of wound healing and limb salvage. We identified 280 threatened limbs encompassing all WIfI stages in 257 consecutive patients: stage 1, 48 (17%); stage 2, 67 (24%); stage 3, 64 (23%); stage 4, 83 (30%); and stage 5 (unsalvageable), 18 (6%). Operative foot débridement, minor amputation, and use of revascularization increased with increasing WIfI stage (P ≤ .04). Revascularization was performed in 106 limbs (39%), with equal use of open and endovascular procedures. Over a median follow-up of 209 days (interquartile range, 95, 340) days, 1-year Kaplan-Meier wound healing cumulative incidence was 71%, and the proportion with complete wound healing decreased with increasing WIfI stage. Major amputation was required in 26 stage 1 to 4 limbs (10%). Increasing WIfI stage was associated with decreased 1-year Kaplan-Meier limb salvage (stage 1: 96%, stage 2: 84%, stage 3: 90%, and stage 4: 78%; P = .003) and amputation-free survival (P = .006). Stage 4 WIfI independently predicted amputation (hazard ratio

  3. Molecular Imaging of the Paracrine Proangiogenic Effects of Progenitor Cell Therapy in Limb Ischemia

    PubMed Central

    Ryu, Jae Choon; Davidson, Brian P.; Xie, Aris; Qi, Yue; Zha, Daogang; Belcik, J. Todd; Caplan, Evan S.; Woda, Juliana M.; Hedrick, Catherine C.; Hanna, Richard N.; Lehman, Nicholas; Zhao, Yan; Ting, Anthony; Lindner, Jonathan R.

    2013-01-01

    Background Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPC) promotes recovery of blood flow through the recruitment of pro-angiogenic monocytes. Methods and Results Hindlimb ischemia was produced in mice by iliac artery ligation and MAPC were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPC indicated that cells survived for 1 week. Contrast-enhanced ultrasound on day 3, 7 and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX3CR-1-positive monocytes was significantly higher in MAPC-treated than control groups at day 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or TNF-α-treated cremaster muscle demonstrated that MAPC migrate to peri-microvascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14+ monocytes was 10-fold greater in response to MAPC-conditioned than basal media. Conclusions In limb ischemia, MAPC stimulate the recruitment of pro-angiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond MAPC lifespan suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype. PMID:23307829

  4. Enhanced maximal exercise capacity, vasodilation to electrical muscle contraction, and hind limb vascular density in ASIC1a null mice.

    PubMed

    Drummond, Heather A; Xiang, Lusha; Chade, Alejandro R; Hester, Robert

    2017-08-01

    Acid-sensing ion channel (ASIC) proteins form extracellular proton-gated, cation-selective channels in neurons and vascular smooth muscle cells and are proposed to act as extracellular proton sensors. However, their importance to vascular responses under conditions associated with extracellular acidosis, such as strenuous exercise, is unclear. Therefore, the purpose of this study was to determine if one ASIC protein, ASIC1a, contributes to extracellular proton-gated vascular responses and exercise tolerance. To determine if ASIC1a contributes to exercise tolerance, we determined peak oxygen (O 2 ) uptake in conscious ASIC1a -/- mice during exhaustive treadmill running. Loss of ASIC1a was associated with a greater peak running speed (60 ± 2 vs. 53 ± 3 m·min -1 , P  = 0.049) and peak oxygen (O 2 ) uptake during exhaustive treadmill running (9563 ± 120 vs. 8836 ± 276 mL·kg -1 ·h -1 , n  = 6-7, P  = 0.0082). There were no differences in absolute or relative lean body mass, as determined by EchoMRI. To determine if ASIC1a contributes to vascular responses during muscle contraction, we measured femoral vascular conductance (FVC) during a stepwise electrical stimulation (0.5-5.0 Hz at 3 V for 60 sec) of the left major hind limb muscles. FVC increased to a greater extent in ASIC1a -/- versus ASIC1a +/+ mice (0.44 ± 0.03 vs. 0.30 ± 0.04 mL·min -1 ·100 g hind limb mass -1 · mmHg -1 , n  = 5 each, P  = 0.0009). Vasodilation following local application of external protons in the spinotrapezius muscle increased the duration, but not the magnitude, of the vasodilatory response in ASIC1a -/- mice. Finally, we examined hind limb vascular density using micro-CT and found increased density of 0-80  μ m vessels ( P  <   0.05). Our findings suggest an increased vascular density and an enhanced vasodilatory response to local protons, to a lesser degree, may contribute to the enhanced vascular conductance and increased peak exercise capacity

  5. Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.

    PubMed

    Chen, Jin; Zhang, Bo; Chen, Wei; Kang, Jian-Yi; Chen, Kui-Jun; Wang, Ai-Min; Wang, Jian-Min

    2016-01-01

    The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.

  6. Effect of picroside II on hind limb ischemia reperfusion injury in rats

    PubMed Central

    Kılıç, Yiğit; Özer, Abdullah; Tatar, Tolga; Zor, Mustafa Hakan; Kirişçi, Mehmet; Kartal, Hakan; Dursun, Ali Doğan; Billur, Deniz; Arslan, Mustafa; Küçük, Ayşegül

    2017-01-01

    Introduction Many structural and functional damages are observed in cells and tissues after reperfusion of previously viable ischemic tissues. Acute ischemia reperfusion (I/R) injury of lower extremities occurs especially when a temporary cross-clamp is applied to the abdominal aorta during aortic surgery. Research regarding the treatment of I/R injury has been increasing day-by-day. In this study, we aimed to investigate the effect of picroside II on skeletal muscle of rats experiencing simulated I/R. Materials and methods Twenty-four male Wistar albino rats weighing between 210 and 300 g were used in this study. Rats were randomly divided into 4 groups of 6 rats each (control, I/R, control + picroside II, and I/R + picroside II). The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R group. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg kg−1) was administered intraperitoneally to the animals in control + picroside II and I/R + picroside II groups. At the end of the study, skeletal muscle tissue was obtained for the determination of total oxidant status (TOS) and total antioxidant status (TAS) levels. Apoptosis was evaluated by TUNEL experiment. Results TOS levels were significantly higher in I/R group than that of control and I/R + picroside II groups (P=0.014, P=0.005, respectively). TAS levels were significantly higher in I/R group than that of control and I/R + picroside II groups (P=0.007 P=0.005, respectively). TUNEL assay revealed that picroside II reduced cell necrosis. Conclusion The results of this study demonstrated that picroside II plays a critical role to prevent I/R injury. Even though our results were found to be satisfactory, it should be encouraging to those who want to conduct future research on this topic. PMID:28721011

  7. Predictive ability of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system following infrapopliteal endovascular interventions for critical limb ischemia.

    PubMed

    Darling, Jeremy D; McCallum, John C; Soden, Peter A; Meng, Yifan; Wyers, Mark C; Hamdan, Allen D; Verhagen, Hence J; Schermerhorn, Marc L

    2016-09-01

    The Society for Vascular Surgery (SVS) Lower Extremity Guidelines Committee has composed a new threatened lower extremity classification system that reflects the three major factors that impact amputation risk and clinical management: Wound, Ischemia, and foot Infection (WIfI). Our goal was to evaluate the predictive ability of this scale following any infrapopliteal endovascular intervention for critical limb ischemia (CLI). From 2004 to 2014, a single institution, retrospective chart review was performed at the Beth Israel Deaconess Medical Center for all patients undergoing an infrapopliteal angioplasty for CLI. Throughout these years, 673 limbs underwent an infrapopliteal endovascular intervention for tissue loss (77%), rest pain (13%), stenosis of a previously treated vessel (5%), acute limb ischemia (3%), or claudication (2%). Limbs missing a grade in any WIfI component were excluded. Limbs were stratified into clinical stages 1 to 4 based on the SVS WIfI classification for 1-year amputation risk, as well as a novel WIfI composite score from 0 to 9. Outcomes included patient functional capacity, living status, wound healing, major amputation, major adverse limb events, reintervention, major amputation, or stenosis (RAS) events (> ×3.5 step-up by duplex), amputation-free survival, and mortality. Predictors were identified using Kaplan-Meier survival estimates and Cox regression models. Of the 596 limbs with CLI, 551 were classified in all three WIfI domains on a scale of 0 (least severe) to 3 (most severe). Of these 551, 84% were treated for tissue loss and 16% for rest pain. A Cox regression model illustrated that an increase in clinical stage increases the rate of major amputation (hazard ratio [HR], 1.6; 95% confidence interval [CI], 1.1-2.3). Separate regression models showed that a one-unit increase in the WIfI composite score is associated with a decrease in wound healing (HR, 1.2; 95% CI, 1.1-1.4) and an increase in the rate of RAS events (HR, 1

  8. Practical importance and modern methods of the evaluation of skin microcirculation during chronic lower limb ischemia in patients with peripheral arterial occlusive disease and/or diabetes.

    PubMed

    Kluz, J; Małecki, R; Adamiec, R

    2013-02-01

    Skin ischemia is one of the crucial phenomena during chronic lower limb ischemia in patients with peripheral arterial occlusive disease and/or diabetes. However, risk stratification for development of ischemic ulceration and/or skin necrosis in those patients is not easy, mostly due to the complex structure of the dermal vascular bed and limited possibilities for studying the skin capillaries in everyday practice. All definitions of critical limb ischemia thus far have considered mostly the clinical symptoms and the degree of macrocirculatory impairment. Despite the fact that the reduction of absolute dermal perfusion and improper distribution of perfusion in ischemic feet, primarily diminished perfusion or even a complete loss of blood flow in nutritional capillaries, rather than arterial occlusion per se, is the eventual reason for critical limb ischemia symptoms, the vessels of the microcirculation are not routinely assessed in clinical practice. Monitoring of microcirculatory parameters, as a part of integrated diagnostic approach, may have a considerable value in the evaluation of risk, progression of the disease and the effectiveness of therapeutic intervention in individual patients. Relative simplicity and availability of different non-invasive methods, including video capillaroscopy and laser Doppler fluxmetry, should constitute a premise to their wider application in clinical management of chronic limb ischemia.

  9. Low-molecular weight heparin protamine complex augmented the potential of adipose-derived stromal cells to ameliorate limb ischemia.

    PubMed

    Kishimoto, Satoko; Inoue, Ken-Ichi; Nakamura, Shingo; Hattori, Hidemi; Ishihara, Masayuki; Sakuma, Masashi; Toyoda, Shigeru; Iwaguro, Hideki; Taguchi, Isao; Inoue, Teruo; Yoshida, Ken-Ichiro

    2016-06-01

    Heparin/protamine micro/nanoparticles (LH/P-MPs) were recently developed as low-molecular weight, biodegradable carriers for adipose-derived stromal cells (ADSCs). These particles can be used for a locally delivered stem cell therapy that promotes angiogenesis. LH/P-MPs bind to the cell surface of ADSCs and promote cell-to-cell interaction and aggregation of ADSCs. Cultured ADSC/LH/P-MP aggregates remain viable. Here, we examined the ability of these aggregates to rescue limb loss in a mouse model of hindlimb ischemia. Unilateral hindlimb ischemia was induced in adult male BALB/c mice by ligation of the iliac artery and hindlimb vein. For allotransplantation of ADSCs from the same inbred strain, we injected ADSC alone or ADSC/LH/P-MP aggregates or control medium (sham-treated) directly into the ischemic muscles. Ischemic limb blood perfusion, vessel density, and vessel area were recorded. The extent of ischemic limb necrosis or limb loss was assessed on postoperative days 2, 7, and 14. Compared with the sham-treatment control, treatment with ADSCs alone showed modest effects on blood perfusion recovery and increased the number of α-SMA-positive vessels. Response to ADSC/LH/P-MP aggregates was significantly greater than ADSCs alone for every endpoint. ADSC/LH/P-MP aggregates more effectively prevented the loss of ischemic hindlimbs than ADSCs alone or the sham-treatment. The LH/P-MPs augmented the effects of ADSCs on angiogenesis and reversal of limb ischemia. Use of ADSC/LH/P-MP aggregates offers a novel and convenient treatment method and potentially represents a promising new therapeutic approach to inducing angiogenesis in ischemic diseases. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. [Acute limb ischemia from the general surgeon's point of view. How much knowledge of vascular surgery is necessary?].

    PubMed

    Kopp, R; Weidenhagen, R; Hornung, H; Jauch, K W; Lauterjung, L

    2003-12-01

    The diagnosis of acute peripheral ischemia can be obtained based on clinical presentation, inspection, and palpation of the affected extremity. Unfractionated heparin as a single shot is immediately given followed by continuous infusion when diagnosis is clinically evident and contraindications are excluded. Thromboembolectomy using a Fogarty catheter is immediately performed in patients with evidence of arterial embolization and signs of advanced ischemia (TASC IIb/III) followed by intraoperative angiography. Patients with evidence of arterial thrombosis require urgent angiography followed by thrombectomy and probably subsequent endovascular or surgical interventions and vascular reconstruction. For patients with moderate ischemia (TASC IIa), initial diagnostic angiography is recommended followed by primary thrombectomy with subsequent intraoperative angiography and immediate endovascular or operative treatment of remaining vascular problems. As an alternative therapeutic option initial catheter-guided local thrombolysis can be performed in selected patients with the intention of subsequent limb revascularization or unmasking relevant vessel alterations leading to specific endovascular or surgically performed vascular reconstruction. Possible development of muscle ischemia because of increased compartment pressure should be considered and fasciotomy performed when indicated. Primary amputation of the severely ischemic limb after initial thrombectomy might be recommended in patients with life-threatening organ failure related to muscle necrosis.

  11. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab

    2013-04-19

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM usingmore » a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV ({sub 25}Mn K{sub {alpha}} x-ray). K{sub {alpha}}- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.« less

  12. Young's modulus and SEM analysis of leg bones exposed to simulated microgravity by hind limb suspension (HLS)

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar D.; Mehta, Rahul; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2013-04-01

    The aim of this study was to determine composition of the leg bone tissue of rats that were exposed to simulated microgravity by Hind-Limb Suspension (HLS) by tail for one week. The leg bones were cross sectioned, cleaned of soft tissues, dried and sputter coated, and then placed horizontally on the stage of a Scanning Electron Microscope (SEM) for analysis. Interaction of a 17.5 keV electron beam, incident from the vertical direction on the sample, generated images using two detectors. X-rays emitted from the sample during electron bombardment were measured with an Energy Dispersive Spectroscopy (EDS) feature of SEM using a liquid-nitrogen cooled Si(Li) detector with a resolution of 144 eV at 5.9 keV (25Mn Kα x-ray). Kα- x-rays from carbon, oxygen, phosphorus and calcium formed the major peaks in the spectrum. Relative percentages of these elements were determined using a software that could also correct for ZAF factors namely Z(atomic number), A(X-ray absorption) and F(characteristic fluorescence). The x-rays from the control groups and from the experimental (HLS) groups were analyzed on well-defined parts (femur, tibia and knee) of the leg bone. The SEM analysis shows that there are definite changes in the hydroxyl or phosphate group of the main component of the bone structure, hydroxyapatite [Ca10(PO4)6(OH)2], due to hind limb suspension. In a separate experiment, entire leg bones (both from HLS and control rats) were subjected to mechanical stress by mean of a variable force. The stress vs. strain graph was fitted with linear and polynomial function, and the parameters reflecting the mechanical strength of the bone, under increasing stress, were calculated. From the slope of the linear part of the graph the Young's modulus for HLS bones were calculated and found to be 2.49 times smaller than those for control bones.

  13. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation.

    PubMed

    Hsieh, Ming-Jer; Liu, Hsien-Ta; Wang, Chao-Nin; Huang, Hsiu-Yun; Lin, Yuling; Ko, Yu-Shien; Wang, Jong-Shyan; Chang, Vincent Hung-Shu; Pang, Jong-Hwei S

    2017-03-01

    BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation. BPC 157 promotes angiogenesis in CAM assay and tube

  14. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection.

    PubMed

    Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik

    2016-03-01

    Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC.

  15. Cutting balloon angioplasty of the popliteal and infrapopliteal vessels for symptomatic limb ischemia.

    PubMed

    Ansel, Gary M; Sample, Nancy S; Botti III, Charles F; Tracy, Amy J; Silver, Mitchell J; Marshall, Brian J; George, Barry S

    2004-01-01

    Options for lower limb percutaneous revascularization are limited especially for complex vessel obstruction. Cutting balloon angioplasty (CBA) has been described in the coronary literature as effective for complex disease. We analyzed our peripheral vascular database and report procedural outcomes along with the clinical success at a mean of 1-year follow-up in 73 patients with symptomatic lower limb ischemia undergoing CBA. CBA was successfully completed in all 73 patients (93 vessels; 100%) with predilation necessary in 4% of vessels. Severe intimal dissection or inadequate hemodynamic result necessitated in adjunctive stenting in 20%. There were no incidents of vessel perforation or surgical target vessel revascularization. One patient (1.5%) died during the periprocedural period due to renal failure. After mean follow-up of 1 year (6-21 months), 89.5% of threatened limbs were salvaged. CBA is a safe and feasible option for the treatment of popliteal and infrapopliteal vessels. Copyright 2004 Wiley-Liss, Inc.

  16. Arboreal Day Geckos (Phelsuma madagascariensis) Differentially Modulate Fore- and Hind Limb Kinematics in Response to Changes in Habitat Structure

    PubMed Central

    Zhuang, Mingna V.; Higham, Timothy E.

    2016-01-01

    By using adhesion, geckos can move through incredibly challenging habitats. However, continually changing terrain may necessitate modulation of the adhesive apparatus in order to maximize its effectiveness over a range of challenges. Behaviorally modulating how the adhesive system is applied can occur by altering the alignment of the foot relative to the long axis of the body and/or the angles between the digits (interdigital angle). Given the directionality of the adhesive system, geckos likely vary the application of the system via these mechanisms as they run. We quantified 3D movements (using high-speed video) of the day gecko, Phelsuma madagascariensis, running on a range of ecologically relevant inclines (0°, 45°, 90°) and perch diameters (1.5 cm, 10 cm and broad). We measured the instantaneous sum of interdigital angles and foot alignment relative to the body, as well as other kinematic variables, throughout each stride and across treatments. Modulation of foot alignment at 45° and 90° was similar between the forelimb and hind limb, but differed at 0°, suggesting that P. madagascariensis is able to exert an adhesive force using multiple strategies. Both the sum of interdigital angles and alignment in the fore- and hind foot were modulated. Differences in modulation between the limbs are likely related to the underlying morphology. The modulation of interdigital angle and foot alignment suggests that aspects other than the mechanism of adhesion, such as joint morphology, are important for arboreal movement in geckos. Our study of foot usage in arboreal locomotion reveals patterns that may be widespread across pad-bearing lizards. In addition to understanding the constraints exerted by the adhesive apparatus, we highlight how biomechanical traits may respond to the evolution of novel adaptations and morphologies. PMID:27145027

  17. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    PubMed

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  18. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis.

    PubMed

    Xu, Yan-Jun; Elimban, Vijayan; Dhalla, Naranjan S

    2017-08-01

    In this study, we investigated the effects of CO 2 water-bath therapy on blood flow and angiogenesis in the ischemic hind limb, as well as some plasma angiogenic factors in peripheral ischemic model. The hind limb ischemia was induced by occluding the femoral artery for 2 weeks in rats and treated with or without CO 2 water-bath therapy at 37 °C for 4 weeks (20 min treatment every day for 5 days per week). The peak blood flow and minimal and mean blood flow in the ischemic skeletal muscle were markedly increased by the CO 2 water-bath therapy. This increase in blood flow was associated with development of angiogenesis in the muscle, as well as reduction in the ischemia-induced increase in plasma malondialdehyde levels. Although plasma vascular endothelial growth factor and nitric oxide levels were increased in animals with peripheral ischemia, the changes in these biomarkers were not affected by CO 2 water-bath therapy. These results suggest that augmentation of blood flow in the ischemic hind limb by CO 2 water-bath therapy may be due to the development of angiogenesis and reduction in oxidative stress.

  19. A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice.

    PubMed

    Kelly, Scott A; Bell, Timothy A; Selitsky, Sara R; Buus, Ryan J; Hua, Kunjie; Weinstock, George M; Garland, Theodore; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2013-12-01

    Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.

  20. Critical Ischemia Times and the Effect of Novel Preservation Solutions HTK-N and TiProtec on Tissues of a Vascularized Tissue Isograft.

    PubMed

    Messner, Franka; Hautz, Theresa; Blumer, Michael J F; Bitsche, Mario; Pechriggl, Elisabeth J; Hermann, Martin; Zelger, Bettina; Zelger, Bernhard; Öfner, Dietmar; Schneeberger, Stefan

    2017-09-01

    We herein investigate critical ischemia times and the effect of novel preservation solutions such as new histidine-tryptophan-ketoglutarate (HTK-N) and TiProtec on the individual tissues of a rat limb isograft. Orthotopic hind-limb transplantations were performed in male Lewis rats after 2 hours, 6 hours, or 10 hours of cold ischemia (CI). Limbs were flushed and stored in HTK-N, TiProtec, HTK, or saline solution. Muscle, nerve, vessel, skin, and bone samples were procured on day 10 for histology, immunohistochemistry, confocal and electron microscopy, and quantitative real-time polymerase chain reaction analysis. Histomorphology of the muscle showed a mainly perivascular inflammatory infiltrate, fibrotic degeneration, and neovascularization after 6 hours and 10 hours of CI. However, centrally aligned nuclei observed in muscle fibers suggest for muscle regeneration in these samples. In addition to Wallerian degeneration, nerve injury was significantly aggravated (P = 0.032) after prolonged CI. Proinflammatory and regulatory cytokines were most significantly upregulated after 2-hour CI. Our data suggest no superiority of novel perfusates HTK-N and TiProtec in terms of tissue preservation, compared with HTK and saline. Limiting CI time for less than 6 hours is the most significant factor to reduce tissue damage in vascularized tissue transplantation. Signs of muscle regeneration give rise that ischemic muscle damage in limb transplantation might be reversible to a certain extent.

  1. Propionyl-L-carnitine improves endothelial function, microcirculation and pain management in critical limb ischemia.

    PubMed

    De Marchi, S; Zecchetto, S; Rigoni, A; Prior, M; Fondrieschi, L; Scuro, A; Rulfo, F; Arosio, E

    2012-10-01

    Chronic critical limb ischemia (CLI) is a severe condition of hypo-perfusion of lower limbs, which is associated with inflammation and a pro-coagulative state. It is a disease at high risk of amputation and cardiovascular death. Propionyl-L-carnitine (PLC) is efficacious in improving pain free walking distance in peripheral arterial disease with claudication; it also exerts favorable effects on the arterial wall and on endothelial function. The purpose of this study was to evaluate the effects of PLC on microcirculation, endothelial function and pain relief in patients affected by CLI not suitable for surgical intervention. We enrolled 48 patients with CLI. Patients were randomized into two groups: the first group was treated with PLC, the second was treated with saline solution. All of them underwent the following tests: laser Doppler flowmetry at the forefoot at rest and after ischemia, trans cutaneous oxygen partial pressure and carbon dioxide partial pressure at the forefoot at rest and after ischemia, endothelium dependent dilation of the brachial artery. All tests were repeated after treatments. Pain was assessed by visual analog pain scale. Endothelium dependent dilation increased after PLC (9.5 ± 3.2 vs 4.9 ± 1.4 %; p < 0.05). Post-ischemic peak flow with laser-Doppler flow increased after PLC. TcPO2 increased, while TcPCO2 decreased after PLC; CO2 production decreased after PLC. VAS showed a significant reduction in pain perception after active treatment. In CLI patients, PLC can improve microcirculation (post ischemic hyperemia, TcPO2 and TcPCO2 production). PLC also enhances endothelium dependent dilation and reduces analgesic consumption and pain perception.

  2. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI).

    PubMed

    Mills, Joseph L; Conte, Michael S; Armstrong, David G; Pomposelli, Frank B; Schanzer, Andres; Sidawy, Anton N; Andros, George

    2014-01-01

    Critical limb ischemia, first defined in 1982, was intended to delineate a subgroup of patients with a threatened lower extremity primarily because of chronic ischemia. It was the intent of the original authors that patients with diabetes be excluded or analyzed separately. The Fontaine and Rutherford Systems have been used to classify risk of amputation and likelihood of benefit from revascularization by subcategorizing patients into two groups: ischemic rest pain and tissue loss. Due to demographic shifts over the last 40 years, especially a dramatic rise in the incidence of diabetes mellitus and rapidly expanding techniques of revascularization, it has become increasingly difficult to perform meaningful outcomes analysis for patients with threatened limbs using these existing classification systems. Particularly in patients with diabetes, limb threat is part of a broad disease spectrum. Perfusion is only one determinant of outcome; wound extent and the presence and severity of infection also greatly impact the threat to a limb. Therefore, the Society for Vascular Surgery Lower Extremity Guidelines Committee undertook the task of creating a new classification of the threatened lower extremity that reflects these important considerations. We term this new framework, the Society for Vascular Surgery Lower Extremity Threatened Limb Classification System. Risk stratification is based on three major factors that impact amputation risk and clinical management: Wound, Ischemia, and foot Infection (WIfI). The implementation of this classification system is intended to permit more meaningful analysis of outcomes for various forms of therapy in this challenging, but heterogeneous population. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  3. Quantitative evaluation of bone development of the distal phalanx of the cow hind limb using computed tomography.

    PubMed

    Tsuka, T; Ooshita, K; Sugiyama, A; Osaki, T; Okamoto, Y; Minami, S; Imagawa, T

    2012-01-01

    Computed tomography (CT) was performed on 400 claws (200 inner and 200 outer claws) of 100 pairs of bovine hind limbs to investigate the etiological theory that an exacerbating factor for ulceration is exostosis of the tuberculum flexorium within the distal phalanx. A variety of morphological changes of the tuberculum flexorium of bovine hind limb claws was visualized by 3-dimensional CT, and the geometry of these claws suggested a growth pattern of bone development with respect to the assumed daily loading patterns. This growth occurs initially at the abaxial caudal aspect of the distal phalanx and is followed by horizontal progression toward the axial aspect. The length of downward bone development on the solar face of the distal phalanx was 2.73±1.32 mm in the outer claws, significantly greater than in the inner claws (2.38±0.96 mm). Ratios of downward (vertical) bone development to the thickness of the subcutis and the corium (VerBD ratios) did not differ between the outer and inner claws (36.7 vs. 38.3%, respectively). Ratios of horizontal bone development to the axial-to-abaxial line of the tuberculum flexorium (HorBD ratios) were approximately 60% for both outer and inner claws. These quantitative measures regarding horizontal and vertical bone development within the distal phalanx were positively correlated with age and VerBD ratios (r=0.53 and r=0.36 for the inner and outer claws, respectively). Correlations between claw width of the outer claw and length of vertical bone development (r=0.43), the HorBD ratio (r=0.51), and the VerBD ratio (r=0.42) suggested that the relative size difference between the inner and outer claws enhances bone development in the outer claw. Correlation coefficients between VerBD and HorBD ratios (r=0.52 and 0.63 for the inner and outer claws, respectively) suggested that horizontal and vertical bone development occurs as a synchronized process within the tuberculum flexorium. This age-related progress of bone development

  4. Combined morphine and limb remote ischemic perconditioning provides an enhanced protection against myocardial ischemia/reperfusion injury by antiapoptosis.

    PubMed

    Wang, Shi-Yu; Cui, Xin-Long; Xue, Fu-Shan; Duan, Ran; Li, Rui-Ping; Liu, Gao-Pu; Yang, Gui-Zhen; Sun, Chao

    2016-05-01

    Both morphine and limb remote ischemic perconditioning (RIPer) can protect against myocardial ischemia/reperfusion injury (IRI). This experiment was designed to assess whether combined morphine and limb RIPer could provide and enhanced protection against myocardial IRI in an in vivo rat model. One hundred male Sprague-Dawley rats were randomly allocated to six groups: sham, ischemia/reperfusion (IR), ischemic preconditioning, RIPer, morphine (M), and combined morphine and remote ischemic perconditioning (M + RIPer). Ventricular arrhythmias that occurred during ischemia and early reperfusion were scored, and serum creatine kinase isoenzyme and cardiac troponin I levels were assayed. The infarct size was determined by Evans blue and triphenyl tetrazolium chloride staining. The apoptosis in the myocardial ischemic core, ischemic border, and nonischemic areas was assessed through real-time polymerase chain reaction for Bax and Bcl-2 and with the transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The infarct size, serum cardiac troponin I level, incidence, and score of the arrhythmias during the initial reperfusion were significantly reduced in the M + RIPer group compared with the IR group but did not differ significantly between the ischemic preconditioning and M + RIPer groups. Transferase-mediated deoxyuridine triphosphate-biotin nick end labeling-positive cells were significantly decreased, and the Bcl-2/Bax ratio was significantly increased in the M + RIPer group compared with the IR group. This experiment demonstrates that combined morphine and limb RIPer provides an enhanced protection against myocardial IRI by the Bcl-2-linked apoptotic signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  6. Review of the Latest Percutaneous Devices in Critical Limb Ischemia.

    PubMed

    Haghighat, Leila; Altin, Sophia Elissa; Attaran, Robert R; Mena-Hurtado, Carlos; Regan, Christopher J

    2018-04-14

    Critical limb ischemia (CLI) is a terminal stage of peripheral arterial disease that, in the absence of intervention, may lead to lower extremity amputation or death. Endovascular interventions have become a first-line approach to the management of CLI and have advanced considerably within the past decade. This review summarizes the types of percutaneous devices and the techniques that are available for the management of CLI and the data supporting their use. These include devices that establish and maintain vessel patency, including percutaneous transluminal angioplasty, drug-coated balloons, bare metal stents, drug-eluting stents, bioresorbable vascular scaffolds, and atherectomy; devices that provide protection from embolization; and, cell-based therapies. Additionally, ongoing trials with important implications for the field are discussed.

  7. Vertical head and pelvic movement symmetry at the trot in dogs with induced supporting limb lameness.

    PubMed

    Gómez Álvarez, C B; Gustås, P; Bergh, A; Rhodin, M

    2017-11-01

    Compensatory limb loading has been studied in lame dogs; however, little is known about how these compensations relate to motion of the head and pelvis, assessment of which is an important component of lameness examinations. The aim of this study was to describe the patterns of vertical head and pelvic motion symmetry at the trot in dogs with induced supporting limb lameness in the forelimbs or hind limbs. Ten sound dogs were trotted on a treadmill before and after temporary induction of moderate lameness (grade 2/5) in each limb. Reflective markers were located on the head, pelvis and right forelimb, and kinematic data were captured with a motion capture system. Upper body symmetry parameters were calculated, including differences in the highest (HDmax) and in the lowest (HDmin) positions of the head, and in the highest (PDmax) and in the lowest (PDmin) positions of the mid-pelvis, with a value of zero indicating symmetry. The head was lowered more during the sound limb stance phase and lowered less during the lame limb stance phase in supporting forelimb lameness (HDmin: 4.6mm in dogs when sound, -18.3mm when left limb lameness was induced and 20.5mm when right limb lameness was induced). The mid-pelvis was lowered more during the sound limb stance phase and lowered and lifted less during the lame limb stance phase in supporting hind limb lameness (PDmin: 1mm in dogs when sound, -10.1mm in left limb lameness and 8.4mm in right limb lameness). The hip of the lame side, measured at the level of the greater trochanter, had an increased downwards displacement during the lame limb swing phase (-21mm in left hind limb lameness, P=0.005; 23.4mm in right hind limb lameness, P=0.007). Asymmetry in the lowering of the head or mid-pelvis is a more sensitive indicator of supporting forelimb and hind limb lameness, respectively, than asymmetry in the raising of the head. Increased displacement of the hip ('hip drop' of the lame side during its swing phase) is a good indicator

  8. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Percutaneous ex-vivo femoral arterial bypass: a novel approach for treatment of acute limb ischemia as a complication of femoral arterial catheterization.

    PubMed

    Merhi, William M; Turi, Zoltan G; Dixon, Simon; Safian, Robert D

    2006-09-01

    This report describes the use of a percutaneous ex-vivo femoral arterial bypass in three patients with acute lower extremity ischemia that occurred as a complication of femoral artery catheterization. Utilizing standard equipment and techniques, a percutaneous ex-vivo femoral artery bypass can restore antegrade flow to the ischemic limb in patients with impaired aorto-iliac inflow circulation, which may arise from iatrogenic dissection or the need for large in-dwelling sheaths required for hemodynamic support. This technique is considered a temporizing measure when conventional therapies are not possible. Contrast angiography is recommended to localize and define the cause of limb ischemia, and to permit safe placement of vascular sheaths in the "donor and recipient" arteries.

  10. A Novel Intronic Single Nucleotide Polymorphism in the Myosin heavy polypeptide 4 Gene Is Responsible for the Mini-Muscle Phenotype Characterized by Major Reduction in Hind-Limb Muscle Mass in Mice

    PubMed Central

    Kelly, Scott A.; Bell, Timothy A.; Selitsky, Sara R.; Buus, Ryan J.; Hua, Kunjie; Weinstock, George M.; Garland, Theodore; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2013-01-01

    Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics. PMID:24056412

  11. Transcriptomic insights into the genetic basis of mammalian limb diversity.

    PubMed

    Maier, Jennifer A; Rivas-Astroza, Marcelo; Deng, Jenny; Dowling, Anna; Oboikovitz, Paige; Cao, Xiaoyi; Behringer, Richard R; Cretekos, Chris J; Rasweiler, John J; Zhong, Sheng; Sears, Karen E

    2017-03-23

    From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.

  12. Decision-Making in Critical Limb Ischemia: A Markov Simulation.

    PubMed

    Deutsch, Aaron J; Jain, C Charles; Blumenthal, Kimberly G; Dickinson, Mark W; Neilan, Anne M

    2017-11-01

    Critical limb ischemia (CLI) is a feared complication of peripheral vascular disease that often requires surgical management and may require amputation of the affected limb. We developed a decision model to inform clinical management for a 63-year-old woman with CLI and multiple medical comorbidities, including advanced heart failure and diabetes. We developed a Markov decision model to evaluate 4 strategies: amputation, surgical bypass, endovascular therapy (e.g. stent or revascularization), and medical management. We measured the impact of parameter uncertainty using 1-way, 2-way, and multiway sensitivity analyses. In the base case, endovascular therapy yielded similar discounted quality-adjusted life months (26.50 QALMs) compared with surgical bypass (26.34 QALMs). Both endovascular and surgical therapies were superior to amputation (18.83 QALMs) and medical management (11.08 QALMs). This finding was robust to a wide range of periprocedural mortality weights and was most sensitive to long-term mortality associated with endovascular and surgical therapies. Utility weights were not stratified by patient comorbidities; nonetheless, our conclusion was robust to a range of utility weight values. For a patient with CLI, endovascular therapy and surgical bypass provided comparable clinical outcomes. However, this finding was sensitive to long-term mortality rates associated with each procedure. Both endovascular and surgical therapies were superior to amputation or medical management in a range of scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Efficacy of regional saturation of oxygen monitor using near-infrared spectroscopy for lower limb ischemia during minimally invasive cardiac surgery.

    PubMed

    Toya, Teppei; Fujita, Tomoyuki; Fukushima, Satuki; Shimahara, Yusuke; Kume, Yuta; Yamashita, Kizuku; Matsumoto, Yorihiko; Kawamoto, Naonori; Kobayashi, Junjiro

    2018-06-25

    Lower limb ischemia with an occlusive cannula is a potential complication of minimally invasive cardiac surgery (MICS). We evaluated intraoperative local oxygen supply-demand balance by monitoring regional saturation of oxygen (rSO 2 ) using near-infrared spectroscopy (NIRS), and analyzed the correlation between cannula size and fluctuation range of rSO 2 . Fifty-four patients undergoing MICS surgery using femoral artery cannulation from April 2015 to August 2016 were enrolled. The rSO 2 of both the cannulated and uncannulated lower limbs were measured using NIRS. The association between the decline of rSO 2 from baseline (delta-rSO 2 ) and the ratio of the cannula diameter to the femoral artery diameter (Cd/FAd) was analyzed. Of the 54 patients, 16 (30%) (Group 1) showed values over 0.65 for Cd/FAd, and the remaining 38 (70%) (Group 2) showed values under 0.65. No patient developed postoperative lower limb ischemia. No patient was treated with an ipsilateral distal perfusion cannula. There were significant differences between Group 1 and Group 2 in the decrease of rSO 2 at the point of cannulation on the cannulated limb. In the lower limb on the cannulated side, delta-rSO 2 showed a significant decrease in Group 1 compared to Group 2 (Group 1 vs Group 2: 19.9 vs 11.0%; p < 0.001). Delta-rSO 2 was significantly correlated with body surface aera (BSA), but not with gender or age. Decreasing rSO 2 correlates with the Cd/FAd index. Low BSA, Cd/Fad > 0.65 is considered as the risk factor for decline of rSO 2 in cannulated limb in MICS.

  14. Correction of ankle and hind foot deformity in Charcot neuroarthropathy using a retrograde hind foot nail-The Kings' Experience.

    PubMed

    Vasukutty, N; Jawalkar, H; Anugraha, A; Chekuri, R; Ahluwalia, R; Kavarthapu, V

    2017-04-28

    Corrective fusion for the unstable deformed hind foot and mid foot in Charcot Neuroarthropathy (CN) is quite challenging and is best done in tertiary centres under the supervision of multidisciplinary teams. We present a follow up to our initial report with a series of 42 hind foot corrections in 40 patients from a tertiary level teaching hospital in the United Kingdom. The mean patient age was 59 (33-82). 17 patients had type1diabetes mellitus, 23 had type 2. 23 feet in 22 patients had chronic ulceration despite offloading. 17 patients were ASA 2 and 23 were ASA grade 3. All patients had hind foot nail fusion performed through a standard technique by the senior author and managed perioperatively by the multidisciplinary team. At a mean follow up of 42 months (12-99) we achieved 100% limb salvage initially and a 97% fusion rate. One patient with persisting non-union of ankle and subtalar joint with difficulty in bracing has been offered below-knee amputation. We achieved deformity correction in 100% and ulcer healing in 83%. 83% patients are able to mobilize and manage independent activities of daily living. There were 11 patients with one or more complications including metal work failure, infection and ulcer reactivation. There have been nine repeat procedures including one revision fixation and one vascular procedure. Single stage corrective fusion for hind foot deformity in CN is an effective procedure when delivered by a skilled multidisciplinary team. Copyright © 2017. Published by Elsevier Ltd.

  15. Independence and mobility after infrainguinal lower limb bypass surgery for critical limb ischemia.

    PubMed

    Ambler, Graeme K; Dapaah, Andrew; Al Zuhir, Naail; Hayes, Paul D; Gohel, Manjit S; Boyle, Jonathan R; Varty, Kevin; Coughlin, Patrick A

    2014-04-01

    Critical limb ischemia (CLI) is a common condition associated with high levels of morbidity and mortality. Most work to date has focused on surgeon-oriented outcomes such as patency, but there is increasing interest in patient-oriented outcomes such as mobility and independence. This study was conducted to determine the effect of infrainguinal lower limb bypass surgery (LLBS) on postoperative mobility in a United Kingdom tertiary vascular surgery unit and to investigate causes and consequences of poor postoperative mobility. We collected data on all patients undergoing LLBS for CLI at our institution during a 3-year period and analyzed potential factors that correlated with poor postoperative mobility. During the study period, 93 index LLBS procedures were performed for patients with CLI. Median length of stay was 11 days (interquartile range, 11 days). The 12-month rates of graft patency, major amputation, and mortality were 75%, 9%, and 6%, respectively. Rates of dependence increased fourfold during the first postoperative year, from 5% preoperatively to 21% at 12 months. Predictors of poor postoperative mobility were female sex (P = .04) and poor postoperative mobility (P < .001), initially and at the 12-month follow-up. Patients with poor postoperative mobility had significantly prolonged hospital length of stay (15 vs 8 days; P < .001). Patients undergoing LLBS for CLI suffer significantly impaired postoperative mobility, and this is associated with prolonged hospital stay, irrespective of successful revascularization. Further work is needed to better predict patients who will benefit from revascularization and in whom a nonoperative strategy is optimal. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  16. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  17. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart

  18. Late recurrent peripheral upper limb ischemia after non-union of a clavicle fracture.

    PubMed

    Stella, Marco; Santolini, Emmanuele; Briano, Stefania; Santolini, Federico

    2015-12-01

    A 74-year-old woman was referred to our hospital due to recurrent episodes of upper limb ischemia. Her past medical history included a clavicle non-union developed after a clavicle midshaft fracture that had occurred 30 years previously. After a long asymptomatic period, she started showing symptoms of chronic ischemia to the left arm that were misdiagnosed. Thoracic outlet syndrome (TOS) is a rare but possible complication of mal-union and non-union of clavicle fractures; symptoms related to arterial involvement (ATOS) amount to less than 1% of all existing forms of thoracic outlet syndrome. In case of clavicle non-union, local instability plays a key role in determining the initial injury to the vessels and the recurrence of symptoms. Restoration of local bone stability and anatomy, obtained by compression plating and autologous bone grafting, combined with an appropriate vascular surgery, is essential to achieve a clinical resolution of symptoms and to avoid the recurrence of symptomatology as seen in the herein case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Longitudinal outcomes after tibioperoneal angioplasty alone compared to tibial stenting and atherectomy for critical limb ischemia.

    PubMed

    Reynolds, Shaun; Galiñanes, Edgar Luis; Dombrovskiy, Viktor Y; Vogel, Todd R

    2013-10-01

    There are limited data available evaluating longitudinal outcomes after tibioperoneal angioplasty (TA) alone compared to adjunctive tibial procedures including stenting and atherectomy. Using the Centers for Medicare & Medicaid Services inpatient claims (2005-2007), patients evaluated TA only, TA plus stent placement (TA + S), and TA plus atherectomy (TA + A). A total of 2080 patients with critical limb ischemia underwent percutaneous tibioperoneal intervention for the indication of ulceration. Procedures included TA (56.3%), TA + S (16.2%), and TA + A (27.5%). Rates of amputation were not statistically different between the groups at 30, 90, and 365 days after the intervention. Mean total hospital charges were TA ($35,867), TA + A ($41,698; P = .0004), and TA + S ($51,040; P < .0001). Patients undergoing TA alone compared to concomitant stenting or atherectomy for ulceration demonstrated no improvement in limb salvage. Future analysis of adjunctive tibioperoneal interventions is essential to temper cost, as they fail to improve long-term limb salvage.

  20. Morphological changes in hind limb muscles elicited by adjuvant-induced arthritis of the rat knee.

    PubMed

    Ozawa, J; Kurose, T; Kawamata, S; Yamaoka, K

    2010-02-01

    We investigated qualitative and quantitative changes in rat hind limb muscles caused by complete Freund's adjuvant (CFA)-induced knee joint pain. One week after CFA injection, muscle atrophy was induced only on the CFA-injected side. Wet weight of the rectus femoris (RF) and soleus (SOL) muscles were significantly decreased by 20% and 19%, respectively. The reduction in cross-sectional areas by CFA was similar for fast and slow muscle fibers in the RF (10% vs 15%, respectively) and SOL muscles (16% vs 16%, respectively). At the light microscopic level, pathological changes were not found in the RF muscles on both sides, although the infiltration of mononuclear cells and muscle regeneration were found in the SOL muscles on CFA-injected and contralateral control sides. On the other hand, electron microscopy revealed degenerative changes in the RF and SOL muscles on the CFA-injected side. Interestingly, sarcomere hypercontraction, indicating overexercise, was observed to a limited extent in the SOL muscles on the control side. In conclusions, knee joint pain can trigger the rapid development of muscle atrophy with degenerative changes not only in thigh but also calf muscles. This indicates that early interventions to inhibit joint pain or inflammation may prevent muscle atrophy.

  1. [Postconditioning can reduce long-term lung injury after lower limb ischemia-reperfusion].

    PubMed

    Garbaisz, Dávid; Turóczi, Zsolt; Fülöp, András; Rosero, Olivér; Arányi, Péter; Ónody, Péter; Lotz, Gábor; Rakonczay, Zoltán; Balla, Zsolt; Harsányi, László; Szijártó, Attila

    2013-06-01

    Operation on the infrarenal aorta could cause ischemic-reperfusion (IR) injury in local tissues and remote organs (e.g. the lung). Our aim was to reduce long-term lung damage, after lower limb IR with postconditioning. Male Wistar rats underwent 180 minutes of bilateral lower limb ischemia. Animals were divided into three groups: Sham-operated, IR, Postconditioned (PostC) and further to two subgroups according to reperfusion time: 24 h and 72 h. Serum free radical and IL-6 levels, histological changes, Wet/Dry (W/D) ratio, tissue myeloperoxidase (MPO) activity and Hsp72 levels were investigated. Postconditioning can reduce histological changes in the lung. Free radical levels are significantly lower in PostC groups than in IR groups (42.9 ± 8.0 vs. 6.4 ± 3.4; 27.3 ± 4.4 vs. 8.3 ± 4.0 RLU%; p < 0.05). IL-6 level (238.4 ± 31.1 vs. 209.1 ± 18.8; 190.0 ± 8.8 vs. 187.0 ± 14.9 pg/ml) and Hsp72 expression did not show any significant difference. Compared to the IR group, lung MPO activity did not change in the PostC groups. W/D ratio in PostC groups is significantly lower at all measured time-points (68% vs. 65%; 72% vs. 68%; p < 0.05). Postconditioning may reduce long-term damages of the lung after lower limb ischemic-reperfusion injury.

  2. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis.

    PubMed

    Ai, Min; Yan, Chang-Fu; Xia, Fu-Chun; Zhou, Shuang-Lu; He, Jian; Li, Cui-Ping

    2016-06-01

    Critical limb ischemia (CLI) is a major health problem worldwide, affecting approximately 500-1000 people per million per annum. Cell-based therapy has given new hope for the treatment of limb ischemia. This study assessed the safety and efficacy of cellular therapy CLI treatment. We searched the PubMed, Embase and Cochrane databases through October 20, 2015, and selected the controlled trials with cell-based therapy for CLI treatment compared with cell-free treatment. We assessed the results by meta-analysis using a variety of outcome measures, as well as the association of mononuclear cell dosage with treatment effect by dose-response meta-analysis. Twenty-five trials were included. For the primary evaluation index, cell-based therapy significantly reduced the rate of major amputation (odds ratio [OR] 0.44, 95% confidence interval [CI] 0.32-0.60, P = 0.000) and significantly increased the rate of amputation-free survival (OR 2.80, 95% CI 1.70-4.61, P = 0.000). Trial sequence analysis indicated that optimal sample size (n = 3374) is needed to detect a plausible treatment effect in all-cause mortality. Cell-based therapy significantly improves ankle brachial index, increases the rate of ulcer healing, increases the transcutaneous pressure of oxygen, reduces limb pain and improves movement ability. Subgroup analysis indicated heterogeneity is caused by type of control, design bias and transplant route. In the dose-response analysis, there was no significant correlation between cell dosage and the therapeutic effect. Cell-based therapy has a significant therapeutic effect on CLI, but randomized double-blind placebo-controlled trials are needed to improve the credibility of this conclusion. Assessment of all-cause mortality also requires a larger sample size to arrive at a strong conclusion. In dose-response analysis, increasing the dosage of cell injections does not significantly improve the therapeutic effects of cell-based therapy. Copyright © 2016

  3. Comparative anatomy of the hind limb vessels of the bearded capuchins (Sapajus libidinosus) with apes, baboons, and Cebus capucinus: with comments on the vessels' role in bipedalism.

    PubMed

    Aversi-Ferreira, Roqueline A G M F; de Abreu, Tainá; Pfrimer, Gabriel A; Silva, Sylla F; Ziermann, Janine M; Carneiro-E-Silva, Frederico O; Tomaz, Carlos; Tavares, Maria Clotilde H; Maior, Rafael S; Aversi-Ferreira, Tales A

    2013-01-01

    Capuchin monkeys are known to exhibit sporadic bipedalism while performing specific tasks, such as cracking nuts. The bipedal posture and locomotion cause an increase in the metabolic cost and therefore increased blood supply to lower limbs is necessary. Here, we present a detailed anatomical description of the capuchin arteries and veins of the pelvic limb of Sapajus libidinosus in comparison with other primates. The arterial pattern of the bearded capuchin hind limb is more similar to other quadrupedal Cebus species. Similarities were also found to the pattern observed in the quadruped Papio, which is probably due to a comparable pelvis and the presence of the tail. Sapajus' traits show fewer similarities when compared to great apes and modern humans. Moreover, the bearded capuchin showed unique patterns for the femoral and the short saphenous veins. Although this species switches easily from quadrupedal to bipedal postures, our results indicate that the bearded capuchin has no specific or differential features that support extended bipedal posture and locomotion. Thus, the explanation for the behavioral differences found among capuchin genera probably includes other aspects of their physiology.

  4. [A persistent sciatic artery revealed by acute ischemia of the right lower limb: A case report].

    PubMed

    Benleghib, N; Boukabache, L; Aziza, B; Boudine, L; Boulacel, A; Boussafsaf, B

    2017-09-19

    The Persistent Sciatic Artery (PSA) is an unusual anatomical variation due to the persistence of an embryological artery, which should disappear before the 3rd month of intrauterine life. The reported case is that of a woman who developed an acute ischemia of the right lower limb, revealing the presence of persistent sciatic artery. Diagnosis was made only belatedly by means of angio-CT. The amputation was the inevitable choice of treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function.

    PubMed

    Cooper, Tyler T; Sherman, Stephen E; Kuljanin, Miljan; Bell, Gillian I; Lajoie, Gilles A; Hess, David A

    2018-05-01

    Blood-derived progenitor cell transplantation holds potential for the treatment of severe vascular diseases. Human umbilical cord blood (UCB)-derived hematopoietic progenitor cells purified using high aldehyde dehydrogenase (ALDH hi ) activity demonstrate pro-angiogenic functions following intramuscular (i.m.) transplantation into immunodeficient mice with hind-limb ischemia. Unfortunately, UCB ALDH hi cells are rare and prolonged ex vivo expansion leads to loss of high ALDH-activity and diminished vascular regenerative function. ALDH-activity generates retinoic acid, a potent driver of hematopoietic differentiation, creating a paradoxical challenge to expand UCB ALDH hi cells while limiting differentiation and retaining pro-angiogenic functions. We investigated whether inhibition of ALDH-activity during ex vivo expansion of UCB ALDH hi cells would prevent differentiation and expand progeny that retained pro-angiogenic functions after transplantation into non-obese diabetic/severe combined immunodeficient mice with femoral artery ligation-induced unilateral hind-limb ischemia. Human UCB ALDH hi cells were cultured under serum-free conditions for 9 days, with or without the reversible ALDH-inhibitor, diethylaminobenzaldehyde (DEAB). Although total cell numbers were increased >70-fold, the frequency of cells that retained ALDH hi /CD34+ phenotype was significantly diminished under basal conditions. In contrast, DEAB-inhibition increased total ALDH hi /CD34+ cell number by ≥10-fold, reduced differentiation marker (CD38) expression, and enhanced the retention of multipotent colony-forming cells in vitro. Proteomic analysis revealed that DEAB-treated cells upregulated anti-apoptotic protein expression and diminished production of proteins implicated with megakaryocyte differentiation. The i.m. transplantation of DEAB-treated cells into mice with hind-limb ischemia stimulated endothelial cell proliferation and augmented recovery of hind-limb perfusion. DEAB

  6. Predictors of failure and success of tibial interventions for critical limb ischemia.

    PubMed

    Fernandez, Nathan; McEnaney, Ryan; Marone, Luke K; Rhee, Robert Y; Leers, Steven; Makaroun, Michel; Chaer, Rabih A

    2010-10-01

    The efficacy of tibial artery endovascular intervention (TAEI) for critical limb ischemia (CLI) and particularly for wound healing is not fully defined. The purpose of this study is to determine predictors of failure and success for TAEI in the setting of CLI. All TAEI for tissue loss or rest pain (Rutherford classes 4, 5, and 6) from 2004 to 2008 were retrospectively reviewed. Clinical outcomes and patency rates were analyzed by multivariable Cox proportional hazards regression and life table analysis. One hundred twenty-three limbs in 111 patients (62% male, mean age 74) were treated. Sixty-seven percent of patients were diabetics, 55% had renal insufficiency, and 21% required hemodialysis. One hundred two limbs (83%) exhibited tissue loss; all others had ischemic rest pain. All patients underwent tibial angioplasty (PTA). Tibial excimer laser atherectomy was performed in 14% of the patients. Interventions were performed on multiple tibial vessels in 20% of limbs. Isolated tibial procedures were performed on 50 limbs (41%), while 73 patients had concurrent ipsilateral superficial femoral artery or popliteal interventions. The mean distal popliteal and tibial runoff score improved from 11.8 ± 3.6 to 6.7 ± 1.6 (P < .001), and the mean ankle-brachial index increased from 0.61 ± 0.26 to 0.85 ± 0.22 (P < .001). Surgical bypass was required in seven patients (6%). The mean follow up was 6.8 ± 6.6 months, while the 1-year primary, primary-assisted, and secondary patency rates were 33%, 50%, and 56% respectively. Limb salvage rate at 1 year was 75%. Factors found to be associated with impaired limb salvage included renal insufficiency (hazard ratio [HR] = 5.7; P = .03) and the need for pedal intervention (HR = 13.75; P = .04). TAEI in an isolated peroneal artery (odds ratio = 7.80; P = .01) was associated with impaired wound healing, whereas multilevel intervention (HR = 2.1; P = .009) and tibial laser atherectomy (HR = 3.1; P = .01) were predictors of wound healing

  7. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  8. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  9. Wound healing of critical limb ischemia with tissue loss in patients on hemodialysis.

    PubMed

    Honda, Yohsuke; Hirano, Keisuke; Yamawaki, Masahiro; Mori, Shinsuke; Shirai, Shigemitsu; Makino, Kenji; Tokuda, Takahiro; Takama, Takuro; Tsutumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Ito, Yoshiaki

    2017-06-01

    We assessed wound healing in patients on hemodialysis (HD) with critical limb ischemia (CLI). This study enrolled 267 patients (including 120 patients on HD and 147 patients not on HD) who underwent endovascular therapy (EVT) for CLI. The primary endpoint was wound-healing rate at two years. Secondary endpoints were time to wound healing, wound recurrence rate, and limb salvage at two years. The percentage of male and young patients was higher in the HD patients ( p < 0.01). A lower patency of the pedal arch after EVT was observed frequently in HD patients ( p < 0.01). The wound-healing rate was significantly lower in HD patients (79.5% vs. 92.4%, p < 0.001). Time to wound healing was significantly longer in HD patients (median 132 days vs. 82 days, p = 0.005). Wound recurrence was observed more frequently in HD patients (25.0% vs. 10.2%, p = 0.007). Limb salvage (72.8% vs. 86.4%, p = 0.002) was significantly lower in HD patients. In a cox proportional hazard model, HD was an independent predictor of wound healing (risk ratio (RR), 0.46; 95% confidence interval (CI), 0.33-0.62; p < 0.001) and wound recurrence (RR, 1.58; 95% CI, 1.11-2.22; p = 0.01). HD was independently associated with lower and delayed wound healing, and wound recurrence.

  10. Improved amputation-free survival in unreconstructable critical limb ischemia and its implications for clinical trial design and quality measurement.

    PubMed

    Benoit, Eric; O'Donnell, Thomas F; Kitsios, Georgios D; Iafrati, Mark D

    2012-03-01

    Amputation-free survival (AFS), a composite endpoint of mortality and amputation, is the preferred outcome measure in critical limb ischemia (CLI). Given the improvements in systemic management of atherosclerosis and interventional management of limb ischemia over the past 2 decades, we examined whether these outcomes have changed in patients with CLI without revascularization options (no option-critical limb ischemia [NO-CLI]). We reviewed the literature for published 1-year AFS, mortality, and amputation rates from control groups in NO-CLI trials. Summary proportions of events were estimated by conducting a random effects meta-analysis of proportions. To determine whether there had been any change in event rates over time, we performed a random effects meta-regression and a mixed effects logistic regression, both regressed against the variable "final year of recruitment." Eleven trials consisting of 886 patients satisfied search criteria, 7 of which presented AFS data. Summary proportion of events (95% confidence interval) were 0.551 (0.399 to 0.693) for AFS; 0.198 (0.116 to 0.317) for death; and 0.341 (0.209 to 0.487) for amputation. Regression analyses demonstrated that AFS has risen over time as mortality rates have fallen, and these improvements are statistically significant. The decrease in amputation rates failed to reach statistical significance. The lack of published data precluded a quantitative evaluation of any change in the clinical severity or comorbidities in the NO-CLI population. AFS and mortality rates in NO-CLI have improved over the past 2 decades. Due to declining event rates, clinical trials may underestimate treatment effects and thus fail to reach statistical significance unless sample sizes are increased or unless a subgroup with a higher event rate can be identified. Alternatively, comparing outcomes to historical values for quality measurement may overestimate treatment effects. Benchmark values of AFS and morality require periodic

  11. [Limb remote ischemic preconditioning attenuates liver ischemia reperfusion injury by activating autophagy via modulating PPAR-γ pathway].

    PubMed

    Ruan, Wei; Liu, Qing; Chen, Chan; Li, Suobei; Xu, Junmei

    2016-09-28

    To investigate the effect of limb remote ischemic preconditioning (RIPC) on hepatic ischemia/reperfusion (IR) injury and the underlying mechanisms.
 Rats were subjected to partial hepatic IR (60 min ischemia followed by 24 hours reperfusion) with or without RIPC, which was achieved by 3 cycles of 10 min-occlusion and 10 min-
reperfusion at the bilateral femoral arteries interval 30 min before ischemia. Some rats were treated with a new PPAR-γ inhibitor, T0070907, before RIPC.
 At the end of reperfusion, liver injury was significantly increased (increases in Suzike's injury score, AST and ALT release), concomitant with elevated oxidative stress (increases in MDA formation, MPO activity, as well as the decrease in SOD activity) and inflammation (increases in TNF-α and IL-6 levels, decrease in IL-10 content). RIPC improved liver function and reduced histologic damage, accompanied by the increased PPAR-γ activation and autophagosome formation as well as the reduced autophagosome clearance. The beneficial effects of RIPC were markedly attenuated by T0070907, an inhibitor of PPAR-γ.
 RIPC exerts the protective effects on liver by activation of autophagy via PPAR-γ.

  12. Comparative Anatomy of the Hind Limb Vessels of the Bearded Capuchins (Sapajus libidinosus) with Apes, Baboons, and Cebus capucinus: With Comments on the Vessels' Role in Bipedalism

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; de Abreu, Tainá; Pfrimer, Gabriel A.; Silva, Sylla F.; Ziermann, Janine M.; Carneiro-e-Silva, Frederico O.; Tomaz, Carlos; Tavares, Maria Clotilde H.; Maior, Rafael S.; Aversi-Ferreira, Tales A.

    2013-01-01

    Capuchin monkeys are known to exhibit sporadic bipedalism while performing specific tasks, such as cracking nuts. The bipedal posture and locomotion cause an increase in the metabolic cost and therefore increased blood supply to lower limbs is necessary. Here, we present a detailed anatomical description of the capuchin arteries and veins of the pelvic limb of Sapajus libidinosus in comparison with other primates. The arterial pattern of the bearded capuchin hind limb is more similar to other quadrupedal Cebus species. Similarities were also found to the pattern observed in the quadruped Papio, which is probably due to a comparable pelvis and the presence of the tail. Sapajus' traits show fewer similarities when compared to great apes and modern humans. Moreover, the bearded capuchin showed unique patterns for the femoral and the short saphenous veins. Although this species switches easily from quadrupedal to bipedal postures, our results indicate that the bearded capuchin has no specific or differential features that support extended bipedal posture and locomotion. Thus, the explanation for the behavioral differences found among capuchin genera probably includes other aspects of their physiology. PMID:24396829

  13. Hybrid Revascularization for Critical Limb Ischemia Triggered by Multiple Organ Dysfunction Due to Acute Pneumonia; Urgent Catheter Intervention Followed by Low-Density-Lipoprotein Apheresis and Elective Peripheral Bypass Surgery

    PubMed Central

    2014-01-01

    A 66-year-old man was referred for treatment of critical limb ischemia arising with multiple organ dysfunction due to acute pneumonia. Angiographic examinations demonstrated total obstruction of the bilateral external iliac arteries and the bilateral superficial femoral arteries with collateral circulation to the distal vessels. Urgent percutaneous transluminal angioplasty dissolved the obstruction of the left external iliac artery, and subsequent low-density-lipoprotein apheresis ameliorated his progressive ischemia in the lower extremities. Femoro-femoral and bilateral femoro-popliteal bypasses were performed 31 days after the endovascular intervention, which achieved successful limb salvage with the relief of ischemic symptoms related to arteriosclerotic obliterans. PMID:24995063

  14. Outcomes of Critical Limb Ischemia in an Urban, Safety Net Hospital Population with High WIfI Amputation Scores

    PubMed Central

    Ward, Robert; Dunn, Joie; Clavijo, Leonardo; Shavelle, David; Rowe, Vincent; Woo, Karen

    2017-01-01

    Background Patients presenting to a public hospital with critical limb ischemia (CLI) typically have advanced disease with significant comorbidities. The purpose of this study was to assess the influence of revascularization on 1-year amputation rate of CLI patients presenting to Los Angeles County USC Medical Center, classified according to the Society for Vascular Surgery Wound, Ischemia and foot Infection (WIfI). Methods A retrospective review of patients who presented to a public hospital with CLI from February 2010 to July 2014 was performed. Patients were classified according to the WIfI system. Only patients with complete data who survived at least 12 months after presentation were included. Results Ninety-three patients with 98 affected limbs were included. The mean age was 62.8 years. Eighty-two patients (84%) had hypertension and 71 (72%) had diabetes. Fifty (57.5%) limbs had Trans-Atlantic Inter-Society Consensus (TASC) C or D femoral–popliteal lesions and 82 (98%) had significant infrapopliteal disease. The majority had moderate or high WIfI amputation and revascularization scores. Eighty-four (86%) limbs underwent open, endovascular, or hybrid revascularization. Overall, one year major amputation (OYMA) rate was 26.5%. In limbs with high WIfI amputation score, the OYMA was 34.5%: 21.4% in those who were revascularized and 57% in those who were not. On univariable analysis, factors associated with increased risk of OYMA were nonrevascularization (P = 0.005), hyperlipidemia (P = 0.06), hemodialysis (P = 0.005), gangrene (P = 0.02), ulcer classification (P = 0.05), WIfI amputation score (P = 0.026), and WIfI wound grade (P = 0.04). On multivariable analysis, increasing WIfI amputation score (odds ratio [OR] 1.84, 95% confidence interval [CI] 1.0–3.39) was associated with increased risk of OYMA while revascularization (OR 0.24, 95% CI 0.07–0.80) was associated with decreased risk of OYMA. Conclusions The OYMA rates in this population were consistent

  15. Outcomes of Critical Limb Ischemia in an Urban, Safety Net Hospital Population with High WIfI Amputation Scores.

    PubMed

    Ward, Robert; Dunn, Joie; Clavijo, Leonardo; Shavelle, David; Rowe, Vincent; Woo, Karen

    2017-01-01

    Patients presenting to a public hospital with critical limb ischemia (CLI) typically have advanced disease with significant comorbidities. The purpose of this study was to assess the influence of revascularization on 1-year amputation rate of CLI patients presenting to Los Angeles County USC Medical Center, classified according to the Society for Vascular Surgery Wound, Ischemia and foot Infection (WIfI). A retrospective review of patients who presented to a public hospital with CLI from February 2010 to July 2014 was performed. Patients were classified according to the WIfI system. Only patients with complete data who survived at least 12 months after presentation were included. Ninety-three patients with 98 affected limbs were included. The mean age was 62.8 years. Eighty-two patients (84%) had hypertension and 71 (72%) had diabetes. Fifty (57.5%) limbs had Trans-Atlantic Inter-Society Consensus (TASC) C or D femoral-popliteal lesions and 82 (98%) had significant infrapopliteal disease. The majority had moderate or high WIfI amputation and revascularization scores. Eighty-four (86%) limbs underwent open, endovascular, or hybrid revascularization. Overall, one year major amputation (OYMA) rate was 26.5%. In limbs with high WIfI amputation score, the OYMA was 34.5%: 21.4% in those who were revascularized and 57% in those who were not. On univariable analysis, factors associated with increased risk of OYMA were nonrevascularization (P = 0.005), hyperlipidemia (P = 0.06), hemodialysis (P = 0.005), gangrene (P = 0.02), ulcer classification (P = 0.05), WIfI amputation score (P = 0.026), and WIfI wound grade (P = 0.04). On multivariable analysis, increasing WIfI amputation score (odds ratio [OR] 1.84, 95% confidence interval [CI] 1.0-3.39) was associated with increased risk of OYMA while revascularization (OR 0.24, 95% CI 0.07-0.80) was associated with decreased risk of OYMA. The OYMA rates in this population were consistent with those predicted by the

  16. Peripheral Stent Thrombosis Leading to Acute Limb Ischemia and Major Amputation: Incidence and Risk Factors in the Aortoiliac and Femoropopliteal Arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr; Al-Lamki, Said A. M.; Parthipun, Aneeta

    PurposeTo report the real-world incidence and risk factors of stent thrombosis in the aortoiliac and femoropopliteal arteries in case of bare nitinol stent (BNS) or covered nitinol stent (CNS) placement from a single-centre retrospective audit.Materials and MethodsMedical records of consecutive patients treated with peripheral stent placement for claudication or critical limb ischemia were audited for definite stent thrombosis defined as imaging confirmed stent thrombosis that presented as acute limb-threatening ischemia. Cases were stratified between aortoiliac and femoropopliteal anatomy. Cox regression analysis was employed to adjust for baseline clinical and procedural confounders and identify predictors of stent thrombosis and major limbmore » loss.Results256 patients (n = 277 limbs) were analysed over a 5-year period (2009–2014) including 117 aortoiliac stents (34 CNS; 12.8 ± 5.0 cm and 83 BNS; 7.8 ± 4.0 cm) and 160 femoropopliteal ones (60 CNS; 21.1 ± 11.0 cm and 100 BNS; 17.5 ± 11.9 cm). Median follow-up was 1 year. Overall stent thrombosis rate was 6.1% (17/277) after a median of 43 days (range 2–192 days) and affected almost exclusively the femoropopliteal segment (12/60 in the CNS cohort vs. 4/100 in the BNS; p = 0.001). Annualized stent thrombosis rates (per 100 person-years) were 12.5% in case of CNS and 1.4% in case of BNS (HR 6.3, 95% CI 2.4–17.9; p = 0.0002). Corresponding major amputations rates were 8.7 and 2.5%, respectively (HR 4.5, 95% CI 2.7–27.9; p = 0.0006). On multivariable analysis, critical leg ischemia and CNS placement were the only predictors of stent thrombosis. Diabetes, critical leg ischemia, femoropopliteal anatomy, long stents and CNS were independent predictors of major amputations.ConclusionsPlacement of long femoropopliteal covered nitinol stents is associated with an increased incidence of acute stent thrombosis and ensuing major amputation. Risks are significantly lower in the aortoiliac

  17. [The use of genetic angiogenesis inductors in surgical treatment of chronic lower limb ischemia].

    PubMed

    Gavrilenko, A V; Voronov, D A; Bochkov, N P

    2013-01-01

    The efficacy and safety of gene-engineering recombinant constructions with endothelial growth factor gene and angiogenin for the treatment of the chronic lower limb ischemia were studied. 134 patients were included in prospective controlled study. The main group, who received both traditional treatment and genetic therapy, consisted of 74 patients. The rest 60 patients were included into the control group. Of 74 patients from the main group, genetic therapy was used together with conservative means in 39 patients and with reconstructive vascular operations in 35 patients. The gene-engineering angiogenesis stimulation therapy proved to be effective and safe. The combination of angiogenesis genetic stimulation with reconstructive vascular surgery demonstrated significantly better results, then monotherapy.

  18. Data set incongruence and correlated character evolution: An example of functional convergence in the hind-limbs of stifftail diving ducks

    USGS Publications Warehouse

    McCracken, K.G.; Harshman, J.; Mcclellan, D.A.; Afton, A.D.

    1999-01-01

    The unwitting inclusion of convergent characters in phylogenetic estimates poses a serious problem for efforts to recover phylogeny. Convergence is not inscrutable, however, particularly when one group of characters tracks phylogeny and another set tracks adaptive history. In such cases, convergent characters may be correlated with one or a few functional anatomical units and readily identifiable by using comparative methods. Stifftail ducks (Oxyurinae) offer one such opportunity to study correlated character evolution and function in the context of phylogenetic reconstruction. Morphological analyses place stifftail ducks as part of a large clade of diving ducks that includes the sea ducks (Mergini), Hymenolaimus, Merganetta, and Tachyeres, and possibly the pochards (Aythyini). Molecular analyses, on the other hand, place stifftails far from other diving ducks and suggest, moreover, that stifftails are polyphyletic. Mitochondrial cytochrome b gene sequences of eight stifftail species traditionally supposed to form a clade were compared with each other and with sequences from 50 other anseriform and galliform species. Stifftail ducks are not the sister group of sea ducks but lie outside the typical ducks (Anatinae). Of the four traditional stifftail genera, monophyly of Oxyura and its sister group relationship with Nomonyx are strongly supported. Heteronetta probably is the sister group of that clade, but support is weak. Biziura is not a true stifftail. Within Oxyura, Old World species (O. australis, O. leucocephala, O. mnccoa) appear to form a clade, with New World species (O. jamaicensis, O. vittata) branching basally. Incongruence between molecules and morphology is interpreted to be the result of adaptive specialization and functional convergence in the hind limbs of Biziura and true stifftails. When morphological characters are divided into classes, only hind-limb characters are significantly in conflict with the molecular tree. Likewise, null models of

  19. Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia.

    PubMed

    Zhang, Xuejing; Tang, Xuelian; Hamblin, Milton H; Yin, Ke-Jie

    2018-06-11

    Angiogenesis is a complex process that depends on the delicate regulation of gene expression. Dysregulation of transcription during angiogenesis often leads to various human diseases. Emerging evidence has recently begun to show that long non-coding RNAs (lncRNAs) may mediate angiogenesis in both physiological and pathological conditions; concurrently, underlying molecular mechanisms are largely unexplored. Previously, our lab identified metastasis associates lung adenocarcinoma transcript 1 ( Malat1 ) as an oxygen-glucose deprivation (OGD)-responsive endothelial lncRNA. Here we reported that genetic deficiency of Malat1 leads to reduced blood vessel formation and local blood flow perfusion in mouse hind limbs at one to four weeks after hindlimb ischemia. Malat1 and vascular endothelial growth factor receptor 2 ( VEGFR2 ) levels were found to be increased in both cultured mouse primary skeletal muscle microvascular endothelial cells (SMMECs) after 16 h OGD followed by 24 h reperfusion and in mouse gastrocnemius muscle that underwent hindlimb ischemia followed by 28 days of reperfusion. Moreover, Malat1 silencing by locked nucleic acid (LNA)-GapmeRs significantly reduced tube formation, cell migration, and cell proliferation in SMMEC cultures. Mechanistically, RNA subcellular isolation and RNA-immunoprecipitation experiments demonstrate that Malat1 directly targets VEGFR2 to facilitate angiogenesis. The results suggest that Malat1 regulates cell-autonomous angiogenesis through direct regulation of VEGFR2.

  20. An investigation of mechanical nociceptive thresholds in dogs with hind limb joint pain compared to healthy control dogs.

    PubMed

    Harris, L K; Whay, H R; Murrell, J C

    2018-04-01

    This study investigated the effects of osteoarthritis (OA) on somatosensory processing in dogs using mechanical threshold testing. A pressure algometer was used to measure mechanical thresholds in 27 dogs with presumed hind limb osteoarthritis and 28 healthy dogs. Mechanical thresholds were measured at the stifles, radii and sternum, and were correlated with scores from an owner questionnaire and a clinical checklist, a scoring system that quantified clinical signs of osteoarthritis. The effects of age and bodyweight on mechanical thresholds were also investigated. Multiple regression models indicated that, when bodyweight was taken into account, dogs with presumed osteoarthritis had lower mechanical thresholds at the stifles than control dogs, but not at other sites. Non-parametric correlations showed that clinical checklist scores and questionnaire scores were negatively correlated with mechanical thresholds at the stifles. The results suggest that mechanical threshold testing using a pressure algometer can detect primary, and possibly secondary, hyperalgesia in dogs with presumed osteoarthritis. This suggests that the mechanical threshold testing protocol used in this study might facilitate assessment of somatosensory changes associated with disease progression or response to treatment. Copyright © 2017. Published by Elsevier Ltd.

  1. Preventable Complications Driving Rising Costs in Management of Patients with Critical Limb Ischemia.

    PubMed

    Dua, Anahita; Desai, Sapan S; Patel, Bhavin; Seabrook, Gary R; Brown, Kellie R; Lewis, Brian; Rossi, Peter J; Malinowski, Michael; Lee, Cheong J

    2016-05-01

    This study aimed to identify factors that drive increasing health-care costs associated with the management of critical limb ischemia in elective inpatients. Patients with a primary diagnosis code of critical limb ischemia (CLI) were identified from the 2001-2011 Nationwide Inpatient Sample. Demographics, CLI management, comorbidities, complications (bleeding, surgical site infection [SSI]), length of stay, and median in-hospital costs were reviewed. Statistical analysis was completed using Students' t-test and Mann-Kendall trend analysis. Costs are reported in 2011 US dollars corrected using the consumer price index. From 2001 to 2011, there were a total of 451,823 patients who underwent open elective revascularization as inpatients for CLI. Costs to treat CLI increased by 63% ($12,560 in 2001 to $20,517 in 2011, P < 0.001 in trend analysis). Endovascular interventions were 20% more expensive compared with open surgery ($19,566 vs. $16,337, P < 0.001). Age, gender, and insurance status did not affect the cost of care. From 2001 to 2011, the number of patient comorbidities (7.56-12.40) and percentage of endovascular cases (13.4% to 27.4%) increased, accounting for a 6% annual increase in total cost despite decreased median length of stay (6 to 5 days). Patients who developed SSI had total costs 83% greater than patients without SSIs ($30,949 vs. $16,939; P < 0.001). Patients who developed bleeding complications had total costs 41% greater than nonbleeding patients ($23,779 vs. $16,821, P < 0.001). Overall, there was a 32% reduction in SSI rates but unchanged rates of bleeding complications during this period. The cost of CLI treatment is increasing and driven by rising endovascular use, SSI, and bleeding in the in-patient population. Further efforts to reduce complications in this patient population may contribute to a reduction in health care-associated costs of treating CLI. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Impact of angiosome- and nonangiosome-targeted peroneal bypass on limb salvage and healing in patients with chronic limb-threatening ischemia.

    PubMed

    Ricco, Jean-Baptiste; Gargiulo, Mauro; Stella, Andrea; Abualhin, Mohammad; Gallitto, Enrico; Desvergnes, Mathieu; Belmonte, Romain; Schneider, Fabrice

    2017-11-01

    Direct (DIR) or indirect (IND) revascularization of pedal angiosomes in patients with chronic limb-threatening ischemia (CLTI) has an unclear impact on limb salvage and healing. The aim of this study was to evaluate the outcomes of DIR and IND revascularization in patients with a peroneal bypass and tissue loss. We conducted a retrospective study of a prospectively maintained database in two European university centers from 2004 to 2015. We extracted from this database all patients with CLTI and tissue loss who had received a bypass to the peroneal artery. All patients underwent angiography before bypass. Revascularization was considered DIR if the wound was in a peroneal angiosome. Wounds, ischemia, and infection were categorized according to the Wound, Ischemia, and foot Infection (WIfI) classification. Limb salvage and amputation-free survival were calculated using the Kaplan-Meier method. Cox regression was used to compare the role of patient characteristics, including diabetes, peroneal runoff, pedal arch angiosome, WIfI grade, chronic kidney disease, and diabetes, in amputation-free-survival. From January 2004 through October 2015, there were 120 peroneal bypasses performed in 120 patients with CLTI and foot tissue loss. Only 55 wounds (46%) could be ascribed to a peroneal angiosome. At 3 years, amputation-free survival in patients with DIR revascularization was 54.9% ± 7.3% compared with 56.5% ± 6.3% in patients with IND revascularization (P = .44), with no significant difference in wound healing. Amputation-free survival at 3 years in patients with two patent peroneal branches was 74.8% ± 6.9% compared with 45.0% ± 6.0% in patients with one patent peroneal branch (P = .003). Amputation-free survival at 3 years in patients with a patent pedal arch (Rutherford 0-1) was 73.0% ± 7.0% vs 45.7% ± 6.0% in patients with incomplete pedal arch (Rutherford 2-3; P = .0002). Amputation-free survival at 3 years in patients with grade 1 or grade 2 WIf

  3. Superiority of Transcutaneous Oxygen Tension Measurements in Predicting Limb Salvage After Below-the-Knee Angioplasty: A Prospective Trial in Diabetic Patients With Critical Limb Ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redlich, Ulf; Xiong, Yan Y.; Pech, Maciej

    2011-04-15

    Purpose: To assess postprocedural angiograms, the ankle-brachial index (ABI), and transcutaneous oxygen tension (TcPO{sub 2}) to predict outcome after infrageniculate angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI) scheduled for amputation. Materials and Methods: PTA was performed in 28 diabetic patients with CLI confined to infrapopliteal vessels. We recorded patency of crural vessels, including the vascular supply of the foot as well as the ABI and TcPO{sub 2} of the foot. Results: Technical success rate was 92.9% (n = 26), and limb-salvage rate at 12 months was 60.7% (n = 17). The number of patent straight vessels abovemore » and below the level of the malleoli increased significantly in patients avoiding amputation. Amputation was unnecessary in 88.2% (n = 15) patients when patency of at least one tibial artery was achieved. In 72.7% (n = 8) of patients, patency of the peroneal artery alone was not sufficient for limb salvage. ABI was of no predictive value for limb salvage. TcPO{sub 2} values increased significantly only in patients not requiring amputation (P = 0.015). In patients with only one tibial artery supplying the foot or only a patent peroneal artery in postprocedural angiograms, TcPO{sub 2} was capable of reliably predicting the outcome. Conclusion: Below-the-knee PTA as an isolated part of therapy was effective to prevent major amputation in more than a half of diabetic patients with CLI. TcPO{sub 2} was a valid predictor for limb salvage, even when angiographic outcome criteria failed.« less

  4. Intracellular and extracellular expression of the major inducible 70kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord.

    PubMed

    Awad, Hamdy; Suntres, Zacharias; Heijmans, John; Smeak, Daniel; Bergdall-Costell, Valerie; Christofi, Fievos L; Magro, Cynthia; Oglesbee, Michael

    2008-08-01

    Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.

  5. Use of the Wound, Ischemia, foot Infection classification system in hemodialysis patients after endovascular treatment for critical limb ischemia.

    PubMed

    Tokuda, Takahiro; Hirano, Keisuke; Sakamoto, Yasunari; Mori, Shisuke; Kobayashi, Norihiro; Araki, Motoharu; Yamawaki, Masahiro; Ito, Yoshiaki

    2017-12-07

    The Wound, Ischemia, foot Infection (WIfI) classification system is used to predict the amputation risk in patients with critical limb ischemia (CLI). The validity of the WIfI classification system for hemodialysis (HD) patients with CLI is still unknown. This single-center study evaluated the prognostic value of WIfI stages in HD patients with CLI who had been treated with endovascular therapy (EVT). A retrospective analysis was performed of collected data on CLI patients treated with EVT between April 2007 and December 2015. All patients were classified according to their wound status, ischemia index, and extent of foot infection into the following four groups: very low risk, low risk, moderate risk, and high risk. Comorbidities and vascular lesions in each group were analyzed. The prognostic value of the WIfI classification was analyzed on the basis of the wound healing rate and amputation-free survival at 1 year. This study included 163 consecutive CLI patients who underwent HD and successful endovascular intervention. The rate of the high-risk group (36%) was the highest among the four groups, and the proportions of very-low-risk, low-risk, and moderate-risk patients were 10%, 18%, and 34%, respectively. The mean follow-up duration was 784 ± 650 days. The wound healing rates at 1 year were 92%, 70%, 75%, and 42% in the very-low-risk, low-risk, moderate-risk, and high-risk groups, respectively (P <.01). A similar trend was observed for the 1-year amputation-free survival among the groups (76%, 58%, 61%, and 46%, respectively; P = .02). The WIfI classification system predicted the wound healing and amputation risks in a highly selected group of HD patients with CLI treated with EVT, with a statistically significant difference between high-risk patients and other patients. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia.

    PubMed

    Tu, Chengyi; Das, Subhamoy; Baker, Aaron B; Zoldan, Janeta; Suggs, Laura J

    2015-01-01

    Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.

  7. Effect of recovery mode following hind-limb suspension on soleus muscle composition in the rat

    NASA Technical Reports Server (NTRS)

    McNulty, A. L.; Otto, A. J.; Kasper, C. E.; Thomas, D. P.

    1992-01-01

    The purpose of this study was to compare the effects of two different recovery modes from hind-limb suspension-induced hypodynamia on whole body and muscle (soleus) growth as well as soleus composition and size changes of different fiber types within this same muscle. Following 28 days of tail-suspension, rats were returned to their cages and sedentarily recovered (HS), or were exercised by running on a treadmill 5 days/wk, at progressively increasing workloads (HR) for one month. Sedentary and running control groups of animals (CS, CR) were also evaluated for comparative purposes. The exercise program, which was identical for CR and HR groups, had no effect on body wt., soleus wt., soleus muscle composition or fiber size in CR rats. Atrophied soleus muscle and reduced soleus wt./body wt. ratio (both 60% of control) had returned to control values by day 7 of recovery in both suspended groups despite the fact that whole body wt. gain was significantly reduced (p less than 0.05) in HR as compared to HS rats. Atrophied soleus Type I fiber mean cross-sectional area in both HR and HS groups demonstrated similar and significant (p less than 0.01) increases during recovery. Increases in Type IIa and IIc fiber area during this same period were significant only in the HR group. While the percentage area of muscle composed of Type I fibers increased in both hypodynamic groups during recovery, the reduction in area percentage of muscle made up of Type IIa fibers was again only significant in the HR group.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option.

    PubMed

    Neale, Joshua P H; Pearson, James T; Katare, Rajesh; Schwenke, Daryl O

    2017-01-01

    Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.

  9. CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model.

    PubMed

    Kim, MiJung; Kim, Dong-Ik; Kim, Eun Key; Kim, Chan-Wha

    2017-02-16

    We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.

  10. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity

    NASA Technical Reports Server (NTRS)

    Duke, Jackie C.

    1983-01-01

    The effect of excess gravity on in vitro mammalian limb chondrogenesis is studied. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured, and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis.

  11. Transpedal access after failed anterograde recanalization of complex below-the-knee and femoropoliteal occlusions in critical limb ischemia.

    PubMed

    Ruzsa, Zoltán; Nemes, Balázs; Bánsághi, Zoltán; Tóth, Károly; Kuti, Ferenc; Kudrnova, Slavka; Berta, Balázs; Hüttl, Kálmán; Merkely, Béla

    2014-05-01

    Successful angioplasty is one of the main factor of limb salvage during critical limb ischemia. In complex femoropopliteal to infrapopliteal occlusions, an anterograde recanalization attempt can fail in up to 20% of the cases. The purpose of this dual center pilot study was to evaluate the acute success and clinical impact of retrograde transpedal access for retrograde below-the-knee and femoropopliteal chronic total occlusions after failed anterograde attempt and to access the late complications at the puncture site. The clinical and angiographic data of 51 consecutive patients with CLI treated by retrograde transpedal recanalization between 2010 and 2011 were evaluated in a pilot study. We have examined the 2-month and 1 year major adverse events (MAEs) and clinical success. In all cases after failure of the anterograde recanalization of occluded below-the-knee segments due to unsuccessful penetration or failed re-entry, the anterior tibial or posterior tibial artery was punctured under fluoroscopic guidance and retrograde recanalization was performed. Direct revascularization was tried firstly following the angiographic zones, but in failed cases indirect revascularization was carried out with increasing the collateral flow to the wound. Successful direct retrograde revascularization was achieved successfully in 40 patients (78.4%) and indirect revascularization was done in 10 patients (19.6%). Revascularization was failed in one patient (2%). MAE at 2 and 12 months follow-up was 6 (11.7%) and 11 (24%). Limb salvage at 2 and 12 months was 93% and 82.3%, respectively. Balloon angioplasty was performed in all interventions and provisional stenting was done in 34 patients (66.7%). One major and three minor vascular complications occurred after the procedure. The mean basal and control creatinine level was 120.9 ± 133.4 and 123.8 ± 131.3 μmol/L (P = 0.83) after the procedure. Failed antegrade attempts to recanalize CTO-s of femoropopliteal and

  12. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.

    PubMed

    Kawano, Sandy M; Blob, Richard W

    2013-08-01

    The invasion of land was a pivotal event in vertebrate evolution that was associated with major appendicular modifications. Although fossils indicate that the evolution of fundamentally limb-like appendages likely occurred in aquatic environments, the functional consequences of using early digited limbs, rather than fins, for terrestrial propulsion have had little empirical investigation. Paleontological and experimental analyses both have led to the proposal of an early origin of "hind limb-driven" locomotion among tetrapods or their ancestors. However, the retention of a pectoral appendage that had already developed terrestrial adaptations has been proposed for some taxa, and few data are available from extant functional models that can provide a foundation for evaluating the relative contributions of pectoral and pelvic appendages to terrestrial support among early stem tetrapods. To examine these aspects of vertebrate locomotor evolution during the invasion of land, we measured three-dimensional ground reaction forces (GRFs) produced by isolated pectoral fins of mudskipper fishes (Periophthalmus barbarus) during terrestrial crutching, and compared these to isolated walking footfalls by the forelimbs and hind limbs of tiger salamanders (Ambystoma tigrinum), a species with subequally-sized limbs that facilitate comparisons to early tetrapods. Pectoral appendages of salamanders and mudskippers exhibited numerous differences in GRFs. Compared with salamander forelimbs, isolated fins of mudskippers bear lower vertical magnitudes of GRFs (as a proportion of body weight), and had GRFs that were oriented more medially. Comparing the salamanders' forelimbs and hind limbs, although the peak net GRF occurs later in stance for the forelimb, both limbs experience nearly identical mediolateral and vertical components of GRF, suggesting comparable contributions to support. Thus, forelimbs could also have played a significant locomotor role among basal tetrapods that had limbs

  13. Criteria predictive of limb viability at 1 year in patients with chronic severe ischemia--TcPO2 and demographic parameters.

    PubMed

    Chomard, D; Habault, P; Eveno, D; Le Lamer, S; Ledemeney, M; Haon, C

    2000-09-01

    Following an earlier study, the investigators sought to identify and define objective prognostic criteria of viability at 1 year of a limb with severe chronic ischemia. A study was undertaken in 116 patients (118 limbs) (74 men and 42 women), with a mean age of 71.9 years for men and 81.6 years for women. Static transcutaneous oxygen pressure (TcPO2) was measured with a verticalization sensitization test and inhalation of oxygen on JO and viability of the limb noted 1 year later. Logistic analysis was made of 13 oximetry parameters and two demographic parameters (age and gender). Results were analyzed in absolute terms and by tissue oxygenation ratio (TOR) (ratio between absolute TcPO2 at the foot and at a chest reference electrode). Six factors appeared to be prognostic factors of limb viability at 1 year, statistically significant at 6% according to threshold values: age, verticalization TcPO2, TcPO2 after 1 minute's inhalation of oxygen, TcPO2 after 4 minutes' inhalation of oxygen, and slope of TcPO2 and slope of TOR between 1 and 4 minutes' inhalation. A 1 year viability index integrating these criteria is suggested.

  14. Midterm Outcomes From a Pilot Study of Percutaneous Deep Vein Arterialization for the Treatment of No-Option Critical Limb Ischemia.

    PubMed

    Kum, Steven; Tan, Yih Kai; Schreve, Michiel A; Ferraresi, Roberto; Varcoe, Ramon L; Schmidt, Andrej; Scheinert, Dierk; Mustapha, Jihad A; Lim, Darryl M; Ho, Derek; Tang, Tjun Y; Alexandrescu, Vlad-Adrian; Mutirangura, Pramook

    2017-10-01

    To report the initial clinical experience with percutaneous deep vein arterialization (PDVA) to treat critical limb ischemia (CLI) via the creation of an arteriovenous fistula. Seven patients (median age 85 years; 5 women) with CLI and no traditional endovascular or surgical revascularization options (no-option CLI) were recruited in a pilot study to determine the safety of PDVA. All patients were diabetic; 4 had Rutherford category 6 ischemia. Six were classified at high risk of amputation based on the Society for Vascular Surgery WIfI (wound, ischemia, and foot infection) classification. The primary safety endpoints were major adverse limb events and major adverse coronary events through 30 days and serious adverse events through 6 months. Secondary objectives included clinical efficacy based on outcome measures including thermal measurement, transcutaneous partial pressure of oxygen (TcPO 2 ), clinical improvement at 6 months, and wound healing. The primary safety endpoints were achieved in 100% of patients, with no deaths, above-the-ankle amputations, or major reinterventions at 30 days. The technical success rate was 100%. Two myocardial infarctions occurred within 30 days, each with minor clinical consequences. All patients demonstrated symptomatic improvement with formation of granulation tissue, resolution of rest pain, or both. Complete wound healing was achieved in 4 of 7 patients and 5 of 7 patients at 6 and 12 months, respectively, with a median healing time of 4.6 months (95% confidence interval 84-192). Median postprocedure peak TcPO 2 was 61 mm Hg compared to a preprocedure level of 8 mm Hg (p=0.046). At the time of wound healing, 4 of 5 of patients achieved TcPO 2 levels of >40 mm Hg. There were 2 major amputations, 1 above the knee after PDVA thrombosis and 1 below the knee for infection. Three patients died of causes unrelated to the procedure or study device at 6, 7, and 8 months, respectively. Limb salvage was 71% at 12 months. PDVA is an

  15. Single hind limb burn injury to mice alters nuclear factor-κB expression and [¹⁸F] 2-fluoro-2-deoxy-D-glucose uptake.

    PubMed

    Carter, Edward A; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A; Jung, Walter; Tompkins, Ronald G; Fischman, Alan J

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism ([18F] 2-fluoro-2-deoxy-D-glucose [18FDG] uptake) by brown adipose tissue (BAT) and nuclear factor (NF)-κB activity in several tissues including skeletal muscle. This study examined the effect of a single hind limb burn in mice on 18FDG uptake by NF-κB activity in vivo, and blood flow was determined by laser Doppler techniques. Male NF-κB luciferase reporter mice (28-30 g) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham-treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 mL, i.p.). The individual animals were placed in wire bottom cages with no food and free access to water. After 24 hours, the animals were imaged with laser Doppler for measuring blood flow in the hind limb. The animals were then unanesthetized with 50 μCi of FDG or luciferin (1.0 mg, i.v.) via tail vein. Five minutes after luciferin injection, NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. One hour after 18FDG injection, the animals were killed with carbon dioxide overdose, and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full-thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than that in the contralateral limb. Similarly, luciferase activity and blood flow in the burned leg were lower than those in the contralateral leg. 18FDG uptake by BAT and heart increased, whereas that by brain decreased. In conclusion, the present study suggests that burn injury to a single leg decreased FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression compared with the

  16. Predictive scoring model of mortality after surgical or endovascular revascularization in patients with critical limb ischemia.

    PubMed

    Shiraki, Tatsuya; Iida, Osamu; Takahara, Mitsuyoshi; Okamoto, Shin; Kitano, Ikurou; Tsuji, Yoshihiko; Terashi, Hiroto; Uematsu, Masaaki

    2014-08-01

    The latest guideline points to life expectancy of <2 years as the main determinant in revascularization modality selection (bypass surgery [BSX] or endovascular therapy [EVT]) in patients with critical limb ischemia (CLI). This study examined predictors and a predictive scoring model of 2-year mortality after revascularization. We performed Cox proportional hazards regression analysis of data in a retrospective database, the Bypass and Endovascular therapy Against Critical limb ischemia from Hyogo (BEACH) registry, of 459 consecutive CLI patients who underwent revascularization (396 EVT and 63 BSX cases between January 2007 and December 2011) to determine predictors of 2-year mortality. The predictive performance of the score was assessed with the area under the time-dependent receiver operating characteristic curve. Of 459 CLI patients (mean age, 72 ± 10 years; 64% male; 49% nonambulatory status, 68% diabetes mellitus, 47% on regular dialysis, and 18% rest pain and 82% tissue loss as treatment indication), 84 died within 2 years after revascularization. In a multivariate model, age >75 years (hazard ratio [HR], 1.77; 95% confidence interval [CI], 1.10-2.85), nonambulatory status (HR, 5.32; 95% CI, 2.96-9.56), regular dialysis (HR, 1.90; 95% CI, 1.10-3.26), and ejection fraction <50% (HR, 2.49; 95% CI, 1.48-4.20) were independent predictors of 2-year mortality. The area under the time-dependent receiver operating characteristic curve for the developed predictive BEACH score was 0.81 (95% CI, 0.76-0.86). Predictors of 2-year mortality after EVT or BSX in CLI patients included age >75 years, nonambulatory status, regular dialysis, and ejection fraction <50%. The BEACH score derived from these predictors allows risk stratification of CLI patients undergoing revascularization. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  17. Clinical efficacy of concomitant tibial interventions associated with superficial femoral artery interventions in critical limb ischemia.

    PubMed

    Smolock, Christopher J; Anaya-Ayala, Javier E; El-Sayed, Hosam F; Naoum, Joseph J; Lumsden, Alan B; Davies, Mark G

    2013-01-01

    Combined superficial femoral artery (SFA) and tibial angioplasty (TA) are a common treatment for critical limb ischemia. Poor tibial runoff significantly compromises durability and clinical effectiveness of SFA interventions. The aim of this study is to determine clinical and anatomic outcomes of SFA interventions in patients with equally compromised runoff, with and without concomitant TA. The database of patients undergoing endovascular treatment of SFA (1999-2009) was retrospectively queried. Patients with poor runoff, scored>10 by modified Society for Vascular Surgery criteria, were selected. Preoperative angiograms were reviewed to assess distal popliteal and tibial runoff. Kaplan-Meier analyses were performed to assess time-dependent outcomes. Factor analyses were performed for time-dependent variables. A total of 162 limbs with a runoff score>10 (56% men; average age, 69 years) underwent endovascular intervention for symptomatic SFA disease: 61 (54% men) underwent TA but the remaining 101 (57% men) did not. The groups were matched for age, sex, and SFA anatomy (Trans-Atlantic Inter-Society Consensus II C/D lesions: 56% no TA vs 62% TA; P=.5). Presenting symptoms were similar between no TA and TA groups (rest pain: 40% vs 32%; tissue loss: 60% vs 68%; P=.3). Three-year survival favored the TA group (79%±5%) vs no TA (68%±5%; P=.06). Three-year anatomic outcomes in no TA vs TA group, including primary patency (45%±6% vs 63%±8%; P=.04), assisted primary patency (55%±6% vs 75%±7%; P=.03), and secondary patency (57%±6% vs 77%±7%; P=.03) were all superior in the TA group. Target vessel revascularization in no TA vs TA (61%±6% vs 74%±8%; P=.002) and target extremity revascularization (42%±6% vs 59%±8%; P=.06) also favored the TA group. However the comparison of no TA vs TA for clinical success (39%±6% vs 47%±8%; P=.6), freedom from recurrent symptoms (59%±6% vs 60%±9%; P=.1), amputation-free survival (46%±5% vs 63%±7%; P=.06), and limb salvage at

  18. Three-Year Outcomes of Surgical Versus Endovascular Revascularization for Critical Limb Ischemia

    PubMed Central

    Takahara, Mitsuyoshi; Soga, Yoshimitsu; Kodama, Akio; Terashi, Hiroto; Azuma, Nobuyoshi

    2017-01-01

    Background— The aim of this study was to compare clinical outcomes between surgical reconstruction and endovascular therapy (EVT) for critical limb ischemia (CLI) in today’s real-world settings. Methods and Results— This multicenter, prospective, observational study registered and followed 548 Japanese CLI patients. The registration was in advance of revascularization; 197 patients were scheduled to receive surgical reconstruction, and the remaining 351 were scheduled to receive EVT. The primary end point was 3-year amputation-free survival, compared between the 2 treatments in an intention-to-treat manner, using propensity score matching. Interaction analysis was additionally performed to explore which subgroups had better outcomes with surgical reconstruction or EVT. After propensity score matching, the 3-year amputation-free survival was not significantly different between the 2 groups (52% [95% confidence interval, 43%–60%] and 52% [95% confidence interval, 44–60%]; P=0.26). Subsequent interaction analysis identified (1) Wound, Ischemia, and foot Infection (WIfI) classification W-3, (2) fI-2/3, (3) history of ipsilateral minor amputation, (4) history of revascularization after CLI onset, and (5) bilateral CLI as the factors more favorable for surgical reconstruction, whereas (1) diabetes mellitus, (2) renal failure, (3) anemia, (4) history of nonadherence to cardiovascular risk management, and (5) contralateral major amputation were as those less favorable for surgical reconstruction. Conclusions— The 3-year amputation-free survival was not different between surgical reconstruction and EVT in the overall CLI population. The subsequent interaction analysis suggested that there would be a subgroup more suited for surgical reconstruction and another benefiting more from EVT. Clinical Trial Registration— URL: http://www.umin.ac.jp/ctr/. Unique identifier: UMIN000007050. PMID:29246911

  19. Retrograde Ascending Aortic Dissection after Stent Grafting for Stanford Type B Aortic Dissection with Severe Limb Ischemia.

    PubMed

    Higuchi, Yoshiro; Tochii, Masato; Takami, Yoshiyuki; Kobayashi, Akihiro; Yanagisawa, Tsutomu; Amano, Kentaro; Sakurai, Yusuke; Ishida, Michiko; Ishikawa, Hiroshi; Hattori, Koji; Takagi, Yasushi

    2017-03-24

    We report a rare case of retrograde Stanford type A aortic dissection after endovascular repair for complicated Stanford type B aortic dissection. A 45-year-old man presented with a sudden onset of back pain and was transferred to our hospital. Computed tomography demonstrated acute Stanford type B aortic dissection with lower limb ischemia. Emergency endovascular surgery was planned for repair of the Stanford type B aortic dissection. The patient suddenly developed recurrent chest pain 10 days after the initial procedure. Computed tomography revealed retrograde Stanford type A aortic dissection involving the ascending aorta and aortic arch. The patient underwent a successful emergency total aortic arch replacement.

  20. Risk Factors for Long-Term Mortality and Amputation after Open and Endovascular Treatment of Acute Limb Ischemia.

    PubMed

    Genovese, Elizabeth A; Chaer, Rabih A; Taha, Ashraf G; Marone, Luke K; Avgerinos, Efthymios; Makaroun, Michel S; Baril, Donald T

    2016-01-01

    Acute limb ischemia (ALI) is a highly morbid and fatal vascular emergency with little known about contemporary, long-term patient outcomes. The goal was to determine predictors of long-term mortality and amputation after open and endovascular treatment of ALI. A retrospective review of ALI patients at a single institution from 2005 to 2011 was performed to determine the impact of revascularization technique on 5-year mortality and amputation. For each main outcome 2 multivariable models were developed; the first adjusted for preoperative clinical presentation and procedure type, the second also adjusted for postoperative adverse events (AEs). A total of 445 limbs in 411 patients were treated for ALI. Interventions included surgical thrombectomy (48%), emergent bypass (18%), and endovascular revascularization (34%). Mean age was 68 ± 15 years, 54% were male, and 23% had cancer. Most patients presented with Rutherford classification IIa (54%) or IIb (39%). The etiology of ALI included embolism (27%), in situ thrombosis (28%), thrombosed bypass grafts (32%), and thrombosed stents (13%). Patients treated with open procedures had significantly more advanced ischemia and higher rates of postoperative respiratory failure, whereas patients undergoing endovascular interventions had higher rates of technical failure. Rates of postprocedural bleeding and cardiac events were similar between both treatments. Excluding Rutherford class III patients (n = 12), overall 5-year mortality was 54% (stratified by treatment, 65% for thrombectomy, 63% for bypass, and 36% for endovascular, P < 0.001); 5-year amputation was 28% (stratified by treatment, 18% for thrombectomy, 27% for bypass, and 17% for endovascular, P = 0.042). Adjusting for comorbidities, patient presentation, AEs, and treatment method, the risk of mortality increased with age (hazard ratio [HR] = 1.04, P < 0.001), female gender (HR = 1.50, P = 0.031), cancer (HR = 2.19, P < 0.001), fasciotomy (HR = 1.69, P = 0.204) in

  1. Endovascular reconstruction of popliteal and infrapopliteal arteries for limb salvage and wound healing in patients with critical limb ischemia – A retrospective analysis

    PubMed Central

    Khanolkar, Uday B.; Ephrem, Biju

    2016-01-01

    Background Advancement in endovascular techniques has led to rapid growth in endovascular revascularization, and it has emerged as a treatment for critical limb ischemia (CLI). Clinical effectiveness of revascularization has been frequently judged by vessel patency and limb salvage, but there is paucity of reports on outcomes of the wound. We present a retrospective analysis of immediate angiographic and 3-month clinical outcome of patients who underwent endovascular reconstruction of popliteal and infrapopliteal arteries for CLI. Methods All patients who underwent endovascular reconstruction of popliteal and/or infrapopliteal arteries for CLI and >70% stenosis on digital subtraction angiography between March 2010 and November 2014 and had a clinical follow-up of at least 3 months were selected for analysis. Results 34 patients underwent endovascular reconstruction. 9 patients (26%) underwent only POBA and remaining 25 (74%) underwent additional stenting. 13 patients (38%) had multiple segmental revascularization. 24 patients (71%) had successful vessel recanalization. Linear flow to foot in at least one artery could be achieved in 20 patients (59%) post revascularization. Successful wound healing occurred in 11 (35%) patients with an additional 7 (21%) patients showing clinical improvement in their wounds. Limb salvage was achieved in 33 patients (97%) at 3-month follow-up. Conclusion Endovascular revascularization of popliteal and infrapopliteal arteries is a feasible, safe, and effective procedure for the treatment of CLI. Normal inflow and outflow with at least one of the three infrapopliteal vessels being patent is essential for adequate healing of chronic ulcers and prevention of major amputation. PMID:26896272

  2. [The physiopathology of critical ischemia of the lower limbs].

    PubMed

    Novo, S; Abrignani, M G; Liquori, M; Sangiorgi, G B; Strano, A

    1993-10-01

    Peripheral obstructive arterial disease (POAD) of the lower limbs is the third main complication of atherosclerosis, after coronary artery disease and cerebrovascular disease. In 15-20% of cases POAD have an unfavourable evolution toward critical leg ischemia (CLI). This clinical condition is characterized by the onset of rest pain and/or trophic cutaneous lesions until gangrene appears. In some cases amputation is needed. The pathophysiological, clinical and therapeutic aspects of CLI were recently discussed in two Consensus Conferences held in Berlin in 1989 and in Rudesheim in 1991, with the elaboration of a final draft published on circulation. CLI appears when peripheral perfusion critically decreases due to macro and microcirculatory alterations. Atherosclerotic plaque is the primum movens, but often there are more plaques in sequence along the ilio-femoro-popliteal axis. The pathophysiological and clinical consequences are more severe if the stenosis is haemodynamically important, after a rapid progression of plaque growth or when thrombotic complications develop. The reduction in distal perfusion induces troubles in the microcirculation and an embalancement between the microvascular defense system (MDS) and the microvascular flow regulating system (MFRS) with endothelial dysfunction, platelet and leucocytes activation, worsening of blood viscosity due to the increase in fibrinogen levels and to the red cells deformability changes, activation of coagulation and impairment of fibrinolysis. So, a vicious circle appears with further worsening of distal perfusion and onset of trophic lesions. A further worsening of CLI can derive from local recurrent infections particularly frequent in diabetic patients.

  3. [Neurolitic block of the lumbar sympathetic chain improves chronic pain in a patient with critical lower limb ischemia].

    PubMed

    Barreto Junior, Elton Pereira de Sá; Nascimento, Jedson Dos Santos; de Castro, Anita Perpetua Carvalho Rocha

    Sympathectomy is one of the therapies used in the treatment of chronic obstructive arterial disease (COAD). Although not considered as first-line strategy, it should be considered in the management of pain difficult to control. This clinical case describes the evolution of a patient with inoperable COAD who responded properly to the lumbar sympathetic block. A female patient, afro-descendant, 69 years old, ASA II, admitted to the algology service due to refractory ischemic pain in the lower limbs. The patient had undergone several surgical procedures and conservative treatments without success. Vascular surgery considered the case as out of therapeutic possibility, unless limb amputation. At that time, sympathectomy was indicated. After admission to the operating room, the patient was monitored, positioned and sedated. The blockade was performed with the aid of radioscopy, bilaterally, at L2-L3-L4 right and L3 left levels. On the right side, at each level cited, 3mL of absolute alcohol with 0.25% bupivacaine were injected without vasoconstrictor, and on the left side only local anesthetic. The procedure was performed uneventfully. The patient was discharged with complete remission of the pain. Neurolitic block of the lumbar sympathetic chain is an effective and safe treatment option for pain control in patients with critical limb ischemia patients in whom the only possible intervention would be limb amputation. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  4. Risk factors for adverse outcomes after endovascular therapy for critical limb ischemia with tissue loss due to infrainguinal artery disease.

    PubMed

    Tnishibe, Toshiya; Yamamoto, Kiyohito; Toguchi, Kayo; Seike, Yoshimasa; Ito, Naoki; Nishibe, Masayasu; Koizumi, Jun; Dardik, Alan; Ogino, Hitoshi

    2016-10-01

    The purpose of this study was to analyze the risk factors for an adverse outcome after endovascular therapy (EVT) for critical limb ischemia (CLI) with tissue loss due to infrainguinal artery disease. We retrospectively reviewed the charts of patients with tissue loss (Rutherford class 5 and 6) due to infrainguinal artery disease who were managed with endovascular therapy (EVT) between January 2006 and December 2013. The primary endpoint was amputation-free survival (AFS), while the secondary endpoints were freedom from a major adverse limb event (MALE) plus perioperative (30 days) death (POD), limb salvage, and survival rates at one year. Multivariable perioperative predictors of AFS were identified using the stepwise Cox proportional hazards regression model. A total of 65 patients underwent EVT for infrainguinal artery disease on 72 limbs. The technical success rate was 94% (68/72), while the clinical success was attained in 54 of 72 limbs (72%). The AFS, MALE + POD, limb salvage, and survival rates at one year were 76%, 86%, 91%, and 81%, respectively. The multivariate analysis demonstrated that major tissue loss classified as Rutherford class 6 (HR, 5.68; 95% CI, 2.29-14.13; P<0.05) was negatively associated with decreased AFS, while clinical success (HR, 0.25; 95% CI, 0.11-0.60; P<0.05) was positively associated with increased AFS. EVT resulted in an acceptable rate of AFS, MALE+POD, limb salvage, and survival. However, we must keep in mind that there are significant limitations to be considered for EVT in patients with major tissue loss, and that, even if revascularization could be successfully performed, a significant number of the treated limbs are still in a critical situation, such as major amputation or death.

  5. Use of the Boomerang catalyst advantage closure device to facilitate complex multistaged percutaneous revascularization procedures for the treatment of critical limb ischemia.

    PubMed

    Garcia, Joel A; Casserly, Ivan P

    2009-07-01

    An increasing spectrum of complex peripheral arterial disease may be successfully treated using percutaneous revascularization techniques. A pair of challenging peripheral revascularization procedures in patients with critical limb ischemia is presented, where an array of interventional tools and techniques were required, and the off-label use of the Boomerang catalyst system closure device was important in managing a variety of complex arterial access issues and ultimately allowing procedural success. Copyright 2009 Wiley-Liss, Inc.

  6. Limb myokymia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albers, J.W.; Allen, A.A.; Bastron, J.A.

    Thirty-eight patients with myokymic discharges localized to limb muscles on needle electromyography had various neurologic lesions, both acute and chronic. Of the 38 patients, 27 had had previous radiation therapy and the clinical diagnosis of radiation-induced plexopathy, myelopathy, or both. For the remaining 11 patients, the diagnoses included multiple sclerosis, inflammatory polyradiculoneuropathy, ischemic neuropathy, inflammatory myopathy, and chronic disorders of the spinal cord and peripheral nerves. The clinical presentations and results of local ischemia, peripheral nerve block, and percutaneous stimulation suggest that most limb myokymic discharges arise focally at the site of a chronic peripheral nerve lesion.

  7. MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor

    PubMed Central

    Magdoom, Kulam Najmudeen; Pishko, Gregory L.; Rice, Lori; Pampo, Chris; Siemann, Dietmar W.; Sarntinoranont, Malisa

    2014-01-01

    Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) - controlled infusion of the drug directly into the tissue - has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. PMID:24619021

  8. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds at a walk.

    PubMed

    Lauer, Susanne K; Hillman, Robert B; Li, Li; Hosgood, Giselle L

    2009-05-01

    To evaluate the effect of treadmill incline on muscle activity and joint range of motion (ROM) in hind limbs of dogs. 8 purpose-bred healthy adult hounds. Activities of the hamstring (semimembranosus, semitendinosus, and biceps femoris muscles), gluteal (superficial, middle, and deep gluteal muscles), and quadriceps (femoris, vastus lateralis, vastus intermedius, and vastus medialis muscles) muscle groups and hip and stifle joint ROM were measured with surface electrogoniometric and myographic sensors in hounds walking on a treadmill at 0.54 m/s at inclines of 5%, 0%, and -5% in random order. Mean electromyographic activities and mean ROMs at each inclination were compared for swing and stance phases. Treadmill inclination did not affect duration of the stance and swing phases or the whole stride. When treadmill inclination was increased from -5% to 5%, hip joint ROM increased and the degree of stifle joint extension decreased significantly. In the beginning of the stance phase, activity of the hamstring muscle group was significantly increased when walking at a 5% incline versus a 5% decline. In the end of the stance phase, that activity was significantly increased when walking at a 5% incline versus at a 5% decline or on a flat surface. Activity of the gluteal and quadriceps muscle groups was not affected when treadmill inclination changed. Treadmill inclination affected joint kinematics only slightly. Walking on a treadmill at a 5% incline had more potential to strengthen the hamstring muscle group than walking on a treadmill with a flat or declined surface.

  9. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2013-07-01

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.

  10. Claw and limb disorders in 12 Norwegian beef-cow herds

    PubMed Central

    Fjeldaas, Terje; Nafstad, Ola; Fredriksen, Bente; Ringdal, Grethe; Sogstad, Åse M

    2007-01-01

    Background The main aim of the study was to assess the prevalence of claw and limb disorders in Norwegian beef-cow herds. Methods Twenty-six herds with ≥15 cow-years were selected by computerized systematic assignment from the three most beef cattle-dense regions of Norway. The study population consisted of 12 herds with 28 heifers and 334 cows. The animals were trimmed and examined once by claw trimmers during the late winter and spring of 2003. The seven claw trimmers had been taught diagnosing and recording of claw lesions. Environment, feeding and management routines, age and breed, culling and carcass characteristics were also recorded. Results Lameness was recorded in 1.1% of the animals, and only in hind claws. Pericarpal swellings were recorded in one animal and peritarsal lesions in none. In total, claw and limb disorders including lameness were recorded in 29.6% of the animals, 4.1% with front and 28.2% with hind limb disorders, respectively. Most lesions were mild. Laminitis-related claw lesions were recorded in 18.0% of the animals and infectious lesions in 16.6%. The average claw length was 84 mm in front claws and 89 mm in hind claw. Both laminitis-related and infectious claw lesions were more prevalent with increasing age. Carcasses from animals with claw and limb disorders were on average 34 kg heavier than carcasses from animals without such disorders (p = 0.02). Our results also indicate association between some management factors and claw lesions. Conclusion The study shows that the prevalence of lameness was low in 12 Norwegian beef-cow herds compared to beef-cattle herds in other countries and also that there were less claw and limb disorders in these herds compared to foreign dairy-cattle herds. The prevalence of lameness and white-line fissures was approximately the same as in Norwegian dairy herds whereas less dermatitis, heel-horn erosions, haemorrhages of the sole and the white line and sole ulcers were recorded. PMID:17892582

  11. Early Outcomes following Endovascular, Open Surgical, and Hybrid Revascularization for Lower Extremity Acute Limb Ischemia.

    PubMed

    Davis, Frank M; Albright, Jeremy; Gallagher, Katherine A; Gurm, Hitinder S; Koenig, Gerald C; Schreiber, Theodore; Grossman, P Michael; Henke, Peter K

    2018-03-05

    Acute limb ischemia (ALI) of the lower extremity is a potentially devastating condition that requires urgent and definitive management. This challenging scenario is often treated with endovascular, open surgical, or hybrid revascularization (HyR) in an urgent basis, but the comparative effects of such therapies remain poorly defined. The purpose of this study was to compare the outcomes of endovascular, open surgical, and HyR for ALI in the contemporary era. A large statewide cardiovascular consortium of 45 hospitals was queried for patients between January 2012 and June 2015 who underwent an endovascular, open surgical, or HyR for ALI deemed at high risk of limb loss if not treated within 24 hr (Rutherford class IIA or IIB). A propensity score weighted analysis was performed controlling for demographics, medical history, and procedure type for patients. The primary outcomes were 30-day morbidity and mortality. A total of 1,480 patients underwent endovascular revascularization (ER; n = 818), open surgical revascularization (OSR; n = 195), or hybrid revascularization (HyR; n = 467) for ALI. The mean age was similar across revascularization technique with an increased predominance of male gender in open surgery cohort. Comorbidities for all groups were consistent with peripheral arterial disease. The most common endovascular procedures were angioplasty (93%) and thrombolysis (49.8%), whereas the most common surgical revascularization was femoral to popliteal bypass (32.8%), femoral to tibial bypass (28.2%), and thrombectomy (19.0%); ER as compared with OSR and HyR procedures was associated with less transfusion (OSR versus ER, odds ratio [OR] 2.7; HyR versus ER, OR 2.8; P < 0.001) and major amputation (OSR versus ER, OR 3.4; HyR versus ER, OR 4.0; P < 0.001) within 30 days of intervention. There was no difference in 30-day freedom from reintervention, myocardial infarction (MI), or mortality. Among patients requiring urgent revascularization for Rutherford

  12. Heme oxygenase-1 mediates the protective effects of ischemic preconditioning on mitigating lung injury induced by lower limb ischemia-reperfusion in rats.

    PubMed

    Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen

    2011-05-15

    Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Long term effects of below-the-knee angioplasty in diabetic patients with critical ischemia of lower limbs referred to Sina Hospital during 2010-2011.

    PubMed

    Zafarghandi, Mohammad-Reza; Nazari, Iraj; Taghavi, Morteza; Rashidi, Abbas; Dardashti, Sanaz Karimi; Sadid, Donya; Esmaili, Leyli; Mahmoodi, Seyed Mostafa; Mousavi, Masood

    2015-03-01

    Despite significant advances in the treatment of diabetic foot ulcers and below-the-knee critical ischemia, there are ongoing efforts to achieve a method with low complication, high success rate and persistence of long-term effects. The aim of the study was to examine the outcome of angioplasty in patients with below-the-knee critical ischemia referred to Hospital. This semi-experimental study conducted on diabetics patients treated with PTA (Percutaneous transluminal angioplasty) with critical ischemia of lower limbs referred to Sina Hospital. After discharge, the patients were followed weekly for the first month and then monthly up to 12 months. The procedure short-term effects were examined through evaluation of wound healing as well as patients' recovery and pain relief, after one month. Given the distribution type, parametric and non-parametric test were used to compare the results before and after treatment. Pearson's correlation coefficient was used to determine the correlation between variables. Twenty four patients participated in this study. The mean ankle-brachial index (ABI) at baseline was 0.55 ± 0.17. A month after angioplasty, the index increased statistically significant to 0.93 ± 0.16. The mean health score expressed by the patients at baseline was 5.48 ± 1.39. A month after angioplasty, it was significantly increased (6.32 ± 1.24). The mean pain score before enrollment was 6.68 ± 2.52 (according to VAS scale). There was a significant decrease over time (3.45 ± 1.13). The overall mean score of all patients at Rutherford Classification was 3.88 ± 0.63 at baseline. During the 1st month and 6th month follow-up, it was changed to Class 0 that was statistically significant in the first month. This study represents the mid-term outcomes of PTA. Although PTA treatment was associated with improved pain scores, satisfaction with health, classification of limb ischemia and diabetic foot ulcers, the effects only remain short-term and mid-term. However

  14. Mid-Term Outcomes of Endovascular Treatment for TASC-II D Femoropopliteal Occlusive Disease with Critical Limb Ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Blanco, Álvaro, E-mail: atorres658@yahoo.es; Edo-Fleta, Gemma; Gómez-Palonés, Francisco

    2016-03-15

    PurposeThe purpose of the study was to assess the safety and midterm effectiveness of endovascular treatment in Trans-Atlantic Inter-Society Consensus II (TASC-II) D femoropopliteal occlusions in patients with critical limb ischemia (CLI).MethodsPatients with CLI who underwent endovascular treatment for TASC-D de novo femoropopliteal occlusive disease between September 2008 and December 2013 were selected. Data included anatomic features, pre- and postprocedure ankle-brachial index, duplex ultrasound, and periprocedural complications. Sustained clinical improvement, limb salvage rate, freedom from target lesion revascularization (TLR), and freedom from target extremity revascularization (TER) were assessed by Kaplan–Meier estimation and predictors of restenosis/occlusion with Cox analysis.ResultsThirty-two patients underwentmore » treatment of 35 TASC-D occlusions. Mean age was 76 ± 9. Mean lesion length was 23 ± 5 cm. Twenty-eight limbs (80 %) presented tissue loss. Seventeen limbs underwent treatment by stent, 13 by stent-graft, and 5 by angioplasty. Mean follow-up was 29 ± 20 months. Seven patients required major amputation and six patients died during follow-up. Eighteen endovascular and three surgical TLR procedures were performed due to restenosis or occlusion. Estimated freedom from TLR and TER rates at 2 years were 41 and 76 %, whereas estimated primary and secondary patency rates were 41 and 79 %, respectively.ConclusionsEndovascular treatment for TASC II D lesions is safe and offers satisfying outcomes. This patient subset would benefit from a minimally invasive approach. Follow-up is advisable due to a high rate of restenosis. Further follow-up is necessary to know the long-term efficacy of these procedures.« less

  15. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei).

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C

    2013-12-01

    Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Therapeutic Angiogenesis by Gene Therapy for Critical Limb Ischemia: Choice of Biological Agent.

    PubMed

    Sanada, Fumihiro; Taniyama, Yoshiaki; Azuma, Junya; Yuka, Ikeda-Iwabe; Kanbara, Yasuhiro; Iwabayashi, Masaaki; Rakugi, Hiromi; Morishita, Ryuichi

    2014-04-01

    Peripheral artery disease (PAD) is caused by atherosclerosis, hardening and narrowing arteries over time due to buildup of fatty deposit in vascular bed called plaque. Severe blockage of an artery of the lower extremity markedly reduce blood flow, resulting in critical limb ischemia (CLI) manifested by a variety of clinical syndromes including rest pain in the feet or toes, ulcer and gangrene with infection. Despite significant advances in clinical care and interventions for revascularization, patients with CLI remain at high risk for amputation and cardiovascular death. To overcome this unmet need, therapeutic angiogenesis using angiogenic growth factors has evolved in an attempt to increase blood flow in ischemic limb. Initial animal studies and phase I clinical trials with vascular endothelial growth factor (VEGF) or fibroblast growth factor (FGF) demonstrated promising results, inspiring scientists to progress forward. However, more rigorous phase II and III clinical trials have failed to demonstrate beneficial effects of these angiogenic growth factors to date. Recently, two multicenter, double-blind, placebo-controlled clinical trials in Japan (phase III) and US (phase II) demonstrated that hepatocyte growth factor (HGF) gene therapy for CLI significant improved primary end points and tissue oxygenation up to two years in comparison to placebo. These clinical results implicate a distinct action of HGF on cellular processes involved in vascular remodeling under pathological condition. This review presents data from phase I-III clinical trials of therapeutic angiogenesis by gene therapy in patients with PAD. Further, we discuss the potential explanation for the success or failure of clinical trials in the context of the biological mechanisms underlying angiogenesis and vascular remodeling, including cellular senescence, inflammation, and tissue fibrosis.

  17. The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits.

    PubMed

    Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi

    2003-06-01

    In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.

  18. The Impact of Decline in Activities of Daily Living (ADL) of Patients With Critical Limb Ischemia (CLI) After Endovascular Treatment.

    PubMed

    Tokuda, Takahiro; Hirano, Keisuke; Yamawaki, Masahiro; Araki, Motoharu; Kobayashi, Norihiro; Sakamoto, Yasunari; Mori, Shisuke; Tsutsumi, Masakazu; Honda, Yosuke; Ito, Yoshiaki

    2018-01-01

    Certain patients with critical limb ischemia (CLI) experience significant decline in activities of daily living (ADL) during hospitalization. The prognosis of decline in ADL during hospitalization remains unknown. A retrospective analysis was performed on collected data of patients with CLI treated by endovascular treatment between April 2007 and December 2015. We evaluated CLI in patients ADL at the time of hospitalization and after discharge using the Barthel index. We classified all patients into patients with decline in ADL and stable in ADL and compared clinical outcomes (cumulative incidence of wound healing, amputation-free survival at 1 year) between the 2 groups. Two hundred and fifty-five consecutive patients with CLI (221 limbs), who underwent successful endovascular intervention, were enrolled in this study. Of all patients, 22 patients were classified into the decline group. The prevalence of wound, Ischemia, foot infection (WIfI) classification high grade was higher in the decline group (30.7% vs 63.6%; P < .01). The wound healing rates were worse in the decline group than in the stable group (40% vs 78% at 1 year; P < .01). The same trends were observed in the amputation-free survival (37% vs 78%; P < .01). After multivariate analysis, decline in ADL was an independent predictor of wound healing and amputation-free survival (odds ratio [OR]: 2.85, 95% confidence interval [CI]: 1.61-3.35, P < .01; OR: 2.46, 95% CI: 1.26-4.53, P = .01). Patients with CLI with decline in ADL during hospitalization were found to have a poor prognosis suggesting that a decline in ADL may affect the clinical outcomes.

  19. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    PubMed

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (p<0.05, p<0.01 and p<0.01, respectively). Furthermore, the limb blood perfusion ratios of the Mg-PLGA-rhbFGF and PLGA-rhbFGF groups were dramatically increased, at 99.1±2.9% and 80.7±3.2%, respectively, whereas the ischemic limb did not recover in the control group. The biocompatibility of the implants was also evaluated. In conclusion, Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery. The results suggest potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia. Magnesium (Mg)-based implant has been already used in patients with critical limb ischemia. Site-specific controlled release of recombinant human basic fibroblast growth factor (rhb

  20. An en bloc approach to CT perfusion for the evaluation of limb ischemia.

    PubMed

    Barfett, Joe; Velauthapillai, Nivethan; Kloeters, Christian; Mikulis, David J; Jaskolka, Jeffrey D

    2012-12-01

    We examine volumetric CT perfusion in soft tissues of the entire foot with an en bloc technique to provide a meaningful measure of differentiation between mild and major vascular impairment. With Institutional Review Board approval, 22 healthy male subjects between the ages of 21 and 50 (mean 37) were enrolled. Volumetric computed tomography using an en bloc technique was conducted on 14 subjects for validation while unilateral vascular obstruction was simulated in the calves of the remaining 8 subjects. Perfusion estimates were made using in-house software and differences in perfusion estimates between feet were evaluated with Student's t-test at 95% confidence. Subjects with simulated major vascular obstruction (calf blood pressure cuff inflated to 200 mmHg) showed significantly higher ratios of perfusion estimates between the unobstructed and obstructed foot compared to subjects with simulated mild vascular obstruction (cuff inflated to 120 mmHg), mean 4.6, SD 2.6 vs. mean 1.3, SD 0.2; P = 0.05. CT perfusion using an en bloc technique shows promise for the future evaluation of patients with critical limb ischemia and particularly for re-characterization post medical, surgical or endovascular intervention.

  1. Remote limb ischemic preconditioning (rIPC) activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in renal ischemia/reperfusion injury.

    PubMed

    Hussein, Abdelaziz M; Harraz, Ahmed M; Awadalla, Amira; Barakat, Nashwa; Khater, Shery; Shokeir, Ahmed A

    2016-01-01

    The mechanisms underlying the renoprotective effect for remote limb ischemic preconditioning (rIPC) against renal ischemia/reperfusion injury need further elucidation. In our work, one hundred and twenty male Sprague Dawley rats were randomized into 3 groups; sham, I/R group (left renal 45 min ischemia) and rIPC (as I/R group with 3 cycles of left femoral ischemic PC just before renal ischemia). Rats were sacrificed at 2 h, 24 h, 48 h and 7 days. Serum creatinine and urea were measured at the baseline and endpoints. Also, histopathological examination and assessment of the expression of inflammatory cytokines e.g. TNF-α, IL-1β and ICAM-1 and antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 in left kidney were done by the end of experiment. The results of this study demonstrated that, rIPC caused significant improvement in serum creatinine and BUN levels and in the expression of antioxidant genes and Bcl-2 antiapoptotic gene with significant attenuation of pro-inflammatory cytokines and histopathological damage score at all-time points compared to I/R group (p ≤ 0.05). In conclusion, inhibition of inflammatory cytokine (TNF-α, IL-1β and ICAM-1) formation and activation of antioxidant genes: Nrf2, HO-1 and NQO-1 and anti-apoptotic gene Bcl-2 could be possible underlying mechanisms for the renoprotective effect of rIPC.

  2. The Incidence, Risk Factors, and Outcomes of Contrast-Induced Nephropathy In Patients With Critical Limb Ischemia Following Lower Limb Angiography.

    PubMed

    Cury, Marcus Vinícius Martins; Matielo, Marcelo Fernando; Brochado Neto, Francisco Cardoso; Soares, Rafael de Athayde; Adami, Vinícius Lopes; Morais, Jalíese Dantas Fernandes; Futigami, Aline Yoshimi; Sacilotto, Roberto

    2018-01-01

    Intra-arterial digital subtraction angiography (DSA) is commonly used for the diagnosis and treatment of patients with critical limb ischemia (CLI). The aim of this study was to analyze the incidence of contrast-induced nephropathy (CIN) in patients with CLI and to assess their outcomes. Between May 2013 and May 2014, a prospective and observational study was conducted with 107 patients admitted exclusively for CLI treatment. The main outcomes included hemodialysis independence (HI) and overall survival (OS), as assessed by Kaplan-Meier curves. Overall, there was a predominance of males (57%), with a mean age of 70.5 (10.7) years. The incidence of CIN was 35.5%, and chronic kidney failure was the only factor associated with elevated risk of this condition (relative risk [RR] = 1.9; 95% confidence interval = 1.17-3.09; P = .017). The median follow-up was 645 days, and in 720-day analyses, patients who experienced CIN had worse HI (81.2% vs 96.3%; P = .0107) and OS (49.5% vs 66.3%; P = .0463). The current study found a high incidence of CIN in patients with CLI after DSA. This renal impairment was associated with a worse prognosis in terms of survival.

  3. Infrapopliteal stenting with silicon carbide-coated stents in critical limb ischemia: a 12 month follow-up study.

    PubMed

    Atar, Eli; Avrahami, Ram; Koganovich, Yuri; Litvin, Sergey; Knizhnik, Michael; Belenky, Alexander

    2009-10-01

    Critical limb ischemia is an increasingly common condition that has high surgical morbidity and limited non-surgical options. To evaluate the use of silicon carbide-coated Motion stents, as compared to reported data for bare metal stents, in elderly patients with infrapopliteal artery stenoses causing critical limb ischemia after failed or complicated percutaneous transluminal angioplasty. Between January 2003 and March 2004, 41 stents were inserted into 17 consecutive patients (11 males, 6 females, mean age 82 years, range 75-93) following unsuccessful or complicated PTA. Seven patients had one-vessel run-off, six had two-vessel and four had three vessel run-off. All patients suffered from CLI, had up to three lesions and more than one co-morbid condition, and were considered at high surgical risk. Silicon carbide-coated Motion coronary stents, 2.5-4 mm diameterand 25 and 30 mm length, were used. Pre-intervention assessment included clinical condition, ankle brachial index, Doppler ultrasound and digital subtracted angiography. Postintervention evaluation included clinical condition, ABI and Doppler ultrasound at 3, 6 and 12 months. The technical success rate per lesion was 100% (41/41). Two patients died of unrelated causes after 2 and 8 months respectively. Primary patency rates with duplex ultrasound were 68.7% (11/16) at 3 months, 43.7% (7/16) at 6 months and 40% (6/15) after 12 months. Nine patients developed complete occlusion in 13 stents; three of these patients underwent a below-knee amputation and two patients a partial foot amputation. Re-intervention (PTA only) was performed in 7 patients (43.7%). Secondary patency rate was 81.2% (13/16) at 6 months and 60% (9/15) at one year. Mean ABI index had improved at 6 months from 0.32 to 0.67, and to 0.53 at one year. Clinical improvement was evident in 87.5% (14/16) at 6 months and in 66.6% (10/15) at one year. Silicon carbide-coated stents are comparable to bare metal stents after 6 and 12 months in

  4. The Society for Vascular Surgery lower extremity threatened limb classification system based on Wound, Ischemia, and foot Infection (WIfI) correlates with risk of major amputation and time to wound healing.

    PubMed

    Zhan, Luke X; Branco, Bernardino C; Armstrong, David G; Mills, Joseph L

    2015-04-01

    The purpose of this study was to evaluate whether the new Society for Vascular Surgery (SVS) Wound, Ischemia, and foot Infection (WIfI) classification system correlates with important clinical outcomes for limb salvage and wound healing. A total of 201 consecutive patients with threatened limbs treated from 2010 to 2011 in an academic medical center were analyzed. These patients were stratified into clinical stages 1 to 4 on the basis of the SVS WIfI classification. The SVS objective performance goals of major amputation, 1-year amputation-free survival (AFS) rate, and wound healing time (WHT) according to WIfI clinical stages were compared. The mean age was 58 years (79% male, 93% with diabetes). Forty-two patients required major amputation (21%); 159 (78%) had limb salvage. The amputation group had a significantly higher prevalence of advanced stage 4 patients (P < .001), whereas the limb salvage group presented predominantly as stages 1 to 3. Patients in clinical stages 3 and 4 had a significantly higher incidence of amputation (P < .001), decreased AFS (P < .001), and delayed WHT (P < .002) compared with those in stages 1 and 2. Among patients presenting with stage 3, primarily as a result of wound and ischemia grades, revascularization resulted in accelerated WHT (P = .008). These data support the underlying concept of the SVS WIfI, that an appropriate classification system correlates with important clinical outcomes for limb salvage and wound healing. As the clinical stage progresses, the risk of major amputation increases, 1-year AFS declines, and WHT is prolonged. We further demonstrated benefit of revascularization to improve WHT in selected patients, especially those in stage 3. Future efforts are warranted to incorporate the SVS WIfI classification into clinical decision-making algorithms in conjunction with a comorbidity index and anatomic classification. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. An early validation of the Society for Vascular Surgery lower extremity threatened limb classification system.

    PubMed

    Cull, David L; Manos, Ginger; Hartley, Michael C; Taylor, Spence M; Langan, Eugene M; Eidt, John F; Johnson, Brent L

    2014-12-01

    The Society for Vascular Surgery (SVS) recently established the Lower Extremity Threatened Limb Classification System, a staging system using Wound characteristic, Ischemia, and foot Infection (WIfI) to stratify the risk for limb amputation at 1 year. Although intuitive in nature, this new system has not been validated. The purpose of the following study was to determine whether the WIfI system is predictive of limb amputation and wound healing. Between 2007 and 2010, we prospectively obtained data related to wound characteristics, extent of infection, and degree of postrevascularization ischemia in 139 patients with foot wounds who presented for lower extremity revascularization (158 revascularization procedures). After adapting those data to the WIfI classifications, we analyzed the influence of wound characteristics, extent of infection, and degree of ischemia on time to wound healing; empirical Kaplan-Meier survival curves were compared with theoretical outcomes predicted by WIfI expert consensus opinion. Of the 158 foot wounds, 125 (79%) healed. The median time to wound healing was 2.7 months (range, 1-18 months). Factors associated with wound healing included presence of diabetes mellitus (P = .013), wound location (P = .049), wound size (P = .007), wound depth (P = .004), and degree of ischemia (P < .001). The WIfI clinical stage was predictive of 1-year limb amputation (stage 1, 3%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and wound nonhealing (stage 1, 8%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and correlated with the theoretical outcome estimated by the SVS expert panel. The theoretical framework for risk stratification among patients with critical limb ischemia provided by the SVS expert panel appears valid. Further validation of the WIfI classification system with multicenter data is justified. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Contemporary critical limb ischemia: Asian multidisciplinary consensus statement on the collaboration between endovascular therapy and wound care.

    PubMed

    Kawarada, Osami; Zen, Kan; Hozawa, Koji; Ayabe, Shinobu; Huang, Hsuan-Li; Choi, Donghoon; Kim, Su Hong; Kim, Jiyoun; Kato, Taku; Tsubakimoto, Yoshinori; Nakama, Tasuya; Ichihashi, Shigeo; Fujimura, Naoki; Higashimori, Akihiro; Fujihara, Masahiko; Sato, Tomoyasu; Yan, Bryan Ping-Yen; Pang, Skyi Yin-Chun; Wongwanit, Chumpol; Leong, Yew Pung; Chua, Benjamin; George, Robbie K; Yokoi, Yoshiaki; Motomura, Hisashi; Obara, Hideaki

    2018-04-13

    The burden of peripheral artery disease (PAD) and diabetes in Asia is projected to increase. Asia also has the highest incidence and prevalence of end-stage renal disease (ESRD) in the world. Therefore, most Asian patients with PAD might have diabetic PAD or ESRD-related PAD. Given these pandemic conditions, critical limb ischemia (CLI) with diabetes or ESRD, the most advanced and challenging subset of PAD, is an emerging public health issue in Asian countries. Given that diabetic and ESRD-related CLI have complex pathophysiology that involve arterial insufficiency, bacterial infection, neuropathy, and foot deformity, a coordinated approach that involves endovascular therapy and wound care is vital. Recently, there is increasing interaction among cardiologists, vascular surgeons, radiologists, orthopedic surgeons, and plastic surgeons beyond specialty and country boundaries in Asia. This article is intended to share practical Asian multidisciplinary consensus statement on the collaboration between endovascular therapy and wound care for CLI.

  7. Bilateral persistent sciatic arteries complicated with chronic lower limb ischemia

    PubMed Central

    Wang, Bin; Liu, Zhenjie; Shen, Laigen

    2011-01-01

    INTRODUCTION Persistent sciatic artery (PSA) is a rare vascular anomaly associated with a higher rate of aneurysm formation or thromboembolic complications causing lower extremity ischemia. PRESENTATION Of Case A 15-year-old female patient with bilateral PSA presented with lower extremity ischemia. Considering the age and symptoms of the patient, we did not perform any intervention, but continued surveillance with duplex ultrasonography in case of the high incidence of aneurysmal formation or thromboembolic event. DISCUSSION Epidemiology, development, anatomical structure, diagnosis and treatments of PSAs are discussed. CONCLUSION PSAs, are prone to early atheromatous degeneration and aneurysm formation. Treatment of a PSA mainly dependent on the symptoms is either by surgical procedures or by endovascular interventions. PMID:22096762

  8. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine.

    PubMed

    Steensrud, Tor; Li, Jing; Dai, Xiaojing; Manlhiot, Cedric; Kharbanda, Rajesh K; Tropak, Michael; Redington, Andrew

    2010-11-01

    We have previously shown that remote ischemic preconditioning (rIPC) by transient limb ischemia leads to the release of a circulating factor(s) that induces potent myocardial protection. Intra-arterial injection of adenosine into a limb also leads to cardioprotection, but the mechanism of its signal transduction is poorly understood. Eleven groups of rabbits received saline control or rIPC or adenosine administration with additional pretreatment with the nitric oxide (NO) synthase blocker N(G)-nitro-l-arginine methyl ester, the NO donor S-nitroso-N-acetylpenicillamine, its non-NO-donating derivative N-acetylpenicillamine, or femoral nerve section. Blood was then drawn from each animal, and the dialysate of the plasma was used to perfuse a naïve heart from an untreated donor. Infarct size was measured after 30 min of global ischemia and 120 min reperfusion. When compared with that of the control, mean infarct size was significantly smaller in groups treated with rIPC alone (P < 0.01) and intra-arterial adenosine (P < 0.01). Pretreatment with N(G)-nitro-l-arginine methyl ester or N-acetylpenicillamine did not affect the level of protection induced by rIPC (P = not significant, compared with rIPC alone) or intra-arterial adenosine (P = not significant, compared with intra-arterial adenosine alone), but prior femoral nerve transection or pretreatment with S-nitroso-N-acetylpenicillamine abolished the cardioprotective effect of intra-arterial adenosine and rIPC. Intra-arterial adenosine, like rIPC, releases a blood-borne cardioprotective factor(s) that is dependent on an intact femoral nerve and is inhibited by pretreatment with a NO donor. These results may be important when designing or assessing the results of clinical trials of adenosine or rIPC cardioprotection, where NO donors are used as part of therapy.

  9. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.

    PubMed

    Duke, J C

    1983-06-01

    This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.

  10. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

    PubMed Central

    Kopp, Hans-Georg; Hooper, Andrea T.; Broekman, M. Johan; Avecilla, Scott T.; Petit, Isabelle; Luo, Min; Milde, Till; Ramos, Carlos A.; Zhang, Fan; Kopp, Tabitha; Bornstein, Paul; Jin, David K.; Marcus, Aaron J.; Rafii, Shahin

    2006-01-01

    Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell–derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis. PMID:17143334

  11. Sex and the single (-eared) female: leg function, limb autotomy and mating history trade-offs in field crickets (Gryllus bimaculatus)

    PubMed Central

    Bateman, Philip W; Fleming, Patricia A

    2005-01-01

    Both male and female field crickets (Gryllus bimaculatus) autotomize front (tympanal) limbs more slowly than hind limbs. Arguably, this pattern could reflect possible differences in the mechanism of limb autotomy. However, we demonstrate that, for females, limb autotomy is also dependent on their mating status: virgin females autotomize front legs significantly more slowly than mated females. This response suggests a central control for leg autotomy in these animals, and less readiness to autotomize a front leg, possibly because the tympanum is crucial for mate location. PMID:17148319

  12. Natural language processing of clinical notes for identification of critical limb ischemia.

    PubMed

    Afzal, Naveed; Mallipeddi, Vishnu Priya; Sohn, Sunghwan; Liu, Hongfang; Chaudhry, Rajeev; Scott, Christopher G; Kullo, Iftikhar J; Arruda-Olson, Adelaide M

    2018-03-01

    Critical limb ischemia (CLI) is a complication of advanced peripheral artery disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. However, automated identification of cases from electronic health records (EHRs) is challenging due to absence of a single definitive International Classification of Diseases (ICD-9 or ICD-10) code for CLI. In this study, we extend a previously validated natural language processing (NLP) algorithm for PAD identification to develop and validate a subphenotyping NLP algorithm (CLI-NLP) for identification of CLI cases from clinical notes. We compared performance of the CLI-NLP algorithm with CLI-related ICD-9 billing codes. The gold standard for validation was human abstraction of clinical notes from EHRs. Compared to billing codes the CLI-NLP algorithm had higher positive predictive value (PPV) (CLI-NLP 96%, billing codes 67%, p < 0.001), specificity (CLI-NLP 98%, billing codes 74%, p < 0.001) and F1-score (CLI-NLP 90%, billing codes 76%, p < 0.001). The sensitivity of these two methods was similar (CLI-NLP 84%; billing codes 88%; p < 0.12). The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Saving the limb in diabetic patients with ischemic foot lesions complicated by acute infection.

    PubMed

    Clerici, Giacomo; Faglia, Ezio

    2014-12-01

    Ischemia and infection are the most important factors affecting the prognosis of foot ulcerations in diabetic patients. To improve the outcome of these patients, it is necessary to aggressively treat 2 important pathologies--namely, occlusive arterial disease affecting the tibial and femoral arteries and infection of the ischemic diabetic foot. Each of these 2 conditions may lead to major limb amputation, and the presence of both critical limb ischemia (CLI) and acute deep infection is a major risk factor for lower-extremity amputation. Thus, the management of diabetic foot ulcers requires specific therapeutic approaches that vary significantly depending on whether foot lesions are complicated by infection and/or ischemia. A multidisciplinary team approach is the key to successful treatment of a diabetic foot ulcer: ischemic diabetic foot ulcers complicated by acute deep infection pose serious treatment challenges because high levels of skill, organization, accuracy, and timing of intervention are required to maximize the chances of limb salvage: these complex issues are better managed by a multidisciplinary clinical group. © The Author(s) 2014.

  14. 8. MAIN INLET FROM FILTER GALLERY AND CANAL INTO HINDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. MAIN INLET FROM FILTER GALLERY AND CANAL INTO HINDS PLANT. VIEW LOOKING DUE WEST OF HINDS COMPLEX IN BACKGROUND OF SAND FILTERS. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  15. Evaluation of Chitotriosidase as a Marker of Inflammatory Status in Critical Limb Ischemia.

    PubMed

    Ciocan, Răzvan A; Drugan, Cristina; Gherman, Claudia D; Cătană, Cristina-Sorina; Ciocan, Andra; Drugan, Tudor C; Bolboacă, Sorana D

    2017-11-01

    Chitotriosidase is an enzyme secreted by activated macrophages. This study aims to investigate the usefulness of circulating chitotriosidase activity as a marker of inflammatory status in patients with critical limb ischemia (CLI). An observational gender-matched case-control study was conducted on patients hospitalized with the primary diagnosis of CLI, as well as a control group. The control group consisted of healthy volunteers. Forty-three patients were included in each group. Similar demographic characteristics (median age of 60-62 years and overweight) were observed in both groups. Chitotriosidase activity ranged from 110 nmol/ml/hr to 1530 nmol/ml/hr in the CLI group and from 30 nmol/ml/hr to 440 nmol/ml/hr in the control group; demonstrating significantly elevated values in the CLI group ( p <0.001). Median plasma chitotriosidase activity was significantly elevated in smokers compared with non-smokers in both groups ( p <0.05). However, this activity had higher values in CLI than in control subjects. Receiver operating characteristic (ROC) analysis was then performed in order to verify the diagnostic accuracy of chitotriosidase as an inflammatory biomarker in CLI. Circulating chitotriosidase is a test which can potentially be used for the monitoring of CLI patients without other inflammatory conditions. However, the interpretation of elevated values must take into account the inflammatory response induced by tobacco exposure. © 2017 by the Association of Clinical Scientists, Inc.

  16. Alternative Techniques for Treatment of Complex Below-the Knee Arterial Occlusions in Diabetic Patients With Critical Limb Ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandini, Roberto; Uccioli, Luigi; Spinelli, Alessio

    The purpose of this study was to describe alternative endovascular (EV) techniques and assess their feasibility and efficacy in minimizing failure rates in limb salvage for the treatment of complex below-the knee (BTK) occlusions that could not be crossed with a conventional antegrade access. Between December 2007 and November 2010, 1,035 patients (557 male) underwent EV treatment for critical limb ischemia in our institution. In 124 (12% [83 male], mean age 68.2 {+-} 0.5 years) patients, transfemoral antegrade revascularization attempt failed, and an alternative approach was used. Follow-up was performed at 1 and 6 months. Results were compared with 56more » patients treated between November 2002 and November 2007, in whom conventional technique was unsuccessful and unconventional techniques were not adopted. Technical success was achieved in 119 (96%) patients. The limb-salvage rates were 96.8% and 83% at 1- and 6-month follow-up, respectively. Sixteen (12.9%) and 33 (26.6%) patients underwent reintervention at 1- and 6-month follow-up, respectively. Transcutaneous oxygen tension increased at 1 month (44.7 {+-} 1.1 vs. 15.7 {+-} 0.8 mmHg; p < 0.001) and remained stable at follow-up. Twenty (16.1%) patients required major amputation. Thirteen (10.4%) patients died during follow-up. In our previous experience, percutaneous transluminal angioplasty failure, amputation, and death rates were 10.9, 39.2, and 23.2%, respectively. Alternative techniques allowed a significant decrease of major amputation and death rates (p = 0.0001 and p = 0.02, respectively). The use of alternative techniques seems feasible in case of a failed antegrade BTK revascularization attempt and could minimize failure rates in the treatment of complex occlusions while providing satisfying clinical success rates at 6 months.« less

  17. Longitudinal study of arteriogenesis with swept source optical coherence tomography and hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.

    2014-03-01

    Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.

  18. 5-AZA-2'-DEOXYCYTIDINE INDUCED CYTOTOXICITY AND LONG BONE REDUCTION DEFECTS IN THE MURINE LIMB

    EPA Science Inventory

    The antineoplastic drug 5-aza-2'-deoxycytidine (dAZA) is a DNA hypomethylating agent that can be used to induce hind limb phocomelia in the offspring of CD-1 Swiss Webster mice. Previously, our laboratory investigated the possibility that dAZA induced alterations in gene express...

  19. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase C674 promotes ischemia- and hypoxia-induced angiogenesis via coordinated endothelial cell and macrophage function.

    PubMed

    Mei, Yu; Thompson, Melissa D; Shiraishi, Yasunaga; Cohen, Richard A; Tong, Xiaoyong

    2014-11-01

    Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia. Copyright © 2014

  20. [Mechanism of vacuum sealing drainage therapy attenuating ischemia-reperfusion injury of skeletal muscle in rabbit].

    PubMed

    Wang, Xiang; Yang, Fan; Guan, Zhen; Wang, Dongfang; Bai, Xiangjun; Gao, Wei

    2016-04-01

    To investigate the mechanism of how vacuum sealing drainage (VSD) ameliorating ischemia reperfusion (I/R) injury in skeletal muscle I/R model. Thirty New Zealand white rabbits were divided into three groups: control (sham operation) group, I/R group, VSD+ I/R group.The ischemia of the left hind limb of the animal was induced by clamping the common femoral artery and vein. After 4 hours of ischemia, the clamp was removed and the hind limp underwent 6 hours reperfusion. VSD treated animals received the treatment at the beginning of reperfusion. The concentrations of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) in muscular tissues were assayed. HE stained pathological section was used to evaluate the degree of edema of muscular tissues, and the immunohistochemistry was used to detect the percentage of positive cells expressing high mobility group protein B1 (HMGB1). Q-RT-PCR and Western Blot were used to detect the mRNA levels and protein expression of HMGB1 in myocyte respectively. The experimental data was tested using variance analysis. The levels of inflammatory factors and antioxidant factors in muscular tissues were significantly different in the I/R group compared to the VSD group and control group (the levels of MPO in I/R group, I/R+ VSD group and control group were 0.91±0.22, 0.53±0.08, 0.31±0.10, respectively, F=26.48, P=0.000; MDA were 2.04±0.92, 1.65±1.02, 1.01±0.12, F=4.250, P=0.040; SOD were 35.97±9.23, 55.99±18.97, 61.83±14.91, F=5.240, P=0.020; CAT were 31.42±16.27, 48.50±17.86, 75.95±13.09, F=9.720, P=0.002; GSH were 1.48±0.90, 3.54±1.88, 3.84±2.08, F=5.240, P=0.020). HE staining showed an increased intercellular space ratio in the I/R group (F=16.47, P<0.05). Immunohistochemistry staining showed that percentage of HMGB1 positive myocytes in control, I/R and I/R+ VSD group are 1.94%, 18.63% and 61.36%, respectively. There was significant difference among groups (F=853

  1. Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models.

    PubMed

    Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C; Iruela-Arispe, M Luisa; Nih, Lina R; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand

    2013-04-01

    Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.

  2. Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models

    PubMed Central

    Cristofaro, Brunella; Shi, Yu; Faria, Marcella; Suchting, Steven; Leroyer, Aurelie S.; Trindade, Alexandre; Duarte, Antonio; Zovein, Ann C.; Iruela-Arispe, M. Luisa; Nih, Lina R.; Kubis, Nathalie; Henrion, Daniel; Loufrani, Laurent; Todiras, Mihail; Schleifenbaum, Johanna; Gollasch, Maik; Zhuang, Zhen W.; Simons, Michael; Eichmann, Anne; le Noble, Ferdinand

    2013-01-01

    Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4+/- mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4+/- mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality. PMID:23533173

  3. Autologous Bone Marrow Mononuclear Cell Therapy is Safe and Promotes Amputation Free Survival in Patients with Critical Limb Ischemia

    PubMed Central

    Murphy, Michael P.; Lawson, Jeffrey H.; Rapp, Brian M.; Dalsing, Michael C.; Klein, Janet; Wilson, Michael G.; Hutchins, Gary D.; March, Keith L.

    2011-01-01

    Objective The purpose of this phase I open label non-randomized trial was to assess the safety and efficacy of autologous bone marrow mononuclear cell (ABMNC) therapy in promoting amputation free survival (AFS) in patients with critical limb ischemia (CLI). Methods Between September 2005 and March 2009 twenty-nine patients (30 limbs), with a median age of 66 (range 23–84) (14 male,15 female) with CLI were enrolled . Twentyone limbs presented with rest pain (RP), six with RP and ulceration, and three with ulcer only. All patients were not candidates for surgical bypass due to absence of a patent artery below the knee and/or endovascular approaches to improving perfusion was not possible as determined by an independent vascular surgeon. Patients were treated with an average dose of 1.7 ± 0.7 × 109 ABMNC injected intramuscularly in the index limb distal to the anterior tibial tuberosity. The primary safety endpoint was accumulation of serious adverse events and the primary efficacy endpoint was AFS at one year. Secondary endpoints at 12 weeks post-treatment were changes in first toe pressure (FTP), toe-brachial index (TBI), ankle-brachial index (ABI), and transcutaneous oxygen measurements (TcPO2). Perfusion of the index limb was measured with PET-CT with intra-arterial infusion of H2O15. Rest pain (RP), using a 10-cm visual analog scale, quality of life using the VascuQuol questionnaire, and ulcer healing were assessed at each follow-up interval. Subpopulations of endothelial progenitor cells were quantified prior to ABMNC administration using immunocytochemistry and fluorescent activated cell sorting. Results There were two serious adverse events however there no procedure related deaths. Amputation-free survival at one-year was 86.3%. There was a significant increase in FTP (10.2+ 6.2 mmHg, P=.02) and TBI (0.10± 0.05, P=.02) and a trend in improvement in ABI (0.08±0.04, P=.73). Perfusion Index by PET-CT H2O15 increased by 19.3 ± 3.1 and RP decreased

  4. Optimizing the use of Limb Tourniquets in Tactical Combat Casualty Care: TCCC Guidelines Change 14-02

    DTIC Science & Technology

    2014-02-01

    Sebesta JA, Blackbourne LH, Herbert GS, Kauvar DS, Baer DG, Walters TJ, Mullenix PS, Holcomb JB, 31 st Combat Support Hospital Research Group...K, Dixon P, Cowart J, Spencer J, Rasmussen TE. Hemorrhagic shock worsens neuromuscular recovery in a porcine model of hind limb vascular injury and

  5. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    PubMed

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  6. Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)

    PubMed Central

    Lee, Jangwoo; Gardiner, David M.

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640

  7. Heterochrony in the regulation of the developing marsupial limb.

    PubMed

    Chew, Keng Yih; Shaw, Geoffrey; Yu, Hongshi; Pask, Andrew J; Renfree, Marilyn B

    2014-02-01

    At birth, marsupial neonates have precociously developed forelimbs. The development of the tammar wallaby (Macropus eugenii) hindlimbs lags significantly behind that of the forelimbs. This differs from the grey short-tailed opossum, Monodelphis domestica, which has relatively similar fore- and hindlimbs at birth. This study examines the expression of the key patterning genes TBX4, TBX5, PITX1, FGF8, and SHH in developing limb buds in the tammar wallaby. All genes examined were highly conserved with orthologues from opossum and mouse. TBX4 expression appeared earlier in development than in the mouse, but later than in the opossum. SHH expression is restricted to the zone of polarising activity, while TBX5 (forelimb) and PITX1 (hindlimb) showed diffuse mRNA expression. FGF8 is specifically localised to the apical ectodermal ridge, which is more prominent than in the opossum. The most marked divergence in limb size in marsupials occurs in the kangaroos and wallabies. The faster development of the fore limb compared to that of the hind limb correlates with the early timing of the expression of the key patterning genes in these limbs. Copyright © 2013 Wiley Periodicals, Inc.

  8. Atherectomy offers no benefits over balloon angioplasty in tibial interventions for critical limb ischemia.

    PubMed

    Todd, Kevin E; Ahanchi, Sadaf S; Maurer, Christian A; Kim, Jung H; Chipman, Candice R; Panneton, Jean M

    2013-10-01

    Endovascular adjuncts, like atherectomy, were developed to improve outcomes of endovascular arterial interventions. The true impact of atherectomy on endovascular outcomes remains to be determined, and little data exist on the influence of atherectomy on tibial interventions. Our study compares early and late outcomes of tibial intervention with angioplasty vs atherectomy-assisted interventions. We completed a retrospective review of all tibial interventions between 2008 and 2010. Outcomes were analyzed using single and multivariate analysis, Cox regression, and Kaplan-Meier curves. Primary outcomes were primary, primary assisted, and secondary patency rates, as well as limb salvage and survival rates. Over a 2-year period, 480 tibial interventions were completed for 421 patients. Eighty-seven percent (n = 418) of interventions were performed for critical limb ischemia (CLI) and 13% (n = 62) for claudication. The CLI cohort of 418 interventions was analyzed. These patients had a mean age of 71 years with a mean follow-up time of 16 ± 15 months (range, 0-59 months). Of the 418 interventions, 339 underwent percutaneous transluminal angioplasty (PTA): 333 PTA alone, six PTA + stent. The remaining 79 interventions received atherectomy: 33 laser, 13 directional, and 33 orbital either alone or in conjunction with PTA (11 atherectomy only, 68 atherectomy + PTA). The groups did not differ significantly in terms of demographics, risk factors, or technical success. The atherectomy group had more TASC B lesions (54% vs 38%; P = .013), while the PTA-alone group had more TASC D lesions (25% vs 13%; P = .004). TASC A and C lesions did not differ significantly between the groups. No significant differences existed with respect to the early (30-day) outcomes of loss of patency (11% vs 13%; P = .699), complications (8% vs 13%; P = .292), or major amputation (17% vs 13%; P = .344) in the PTA-alone group vs the atherectomy-assisted group. Kaplan-Meier analysis revealed no difference

  9. Application of autologous platelet-rich plasma to enhance wound healing after lower limb revascularization: A case series and literature review.

    PubMed

    Massara, Mafalda; Barillà, David; De Caridi, Giovanni; Serra, Raffaele; Volpe, Alberto; Surace, Rosangela; Foti, Giovanni; Marcuccio, Daniela; Pucci, Giulia; Volpe, Pietro

    2015-01-01

    Dermal tissue loss in patients affected by critical limb ischemia represents a serious wound-healing problem, with high morbidity, prolonged hospital stay, and high patient care costs. Treatment of ischemic foot lesions requires limb revascularization by endovascular or open surgical intervention and individualized patient-specific wound care, including antibiotic therapy; devitalized/infected wound debridement; and advanced wound dressing. In selected patients, spinal cord stimulation, vacuum-assisted closure therapy, and bioengineered tissue or skin substitutes and growth factors have been shown to improve wound healing. In this study, we present our preliminary results on topical application of autologous platelet-rich plasma to enhance the process of wound healing after revascularization of lower limbs in patients affected by critical limb ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Society for Vascular Surgery limb stage and patient risk correlate with outcomes in an amputation prevention program.

    PubMed

    Causey, Marlin W; Ahmed, Ayman; Wu, Bian; Gasper, Warren J; Reyzelman, Alex; Vartanian, Shant M; Hiramoto, Jade S; Conte, Michael S

    2016-06-01

    Clinical decision making and accurate outcomes comparisons in advanced limb ischemia require improved staging systems. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System (Wound extent, Ischemia, and foot Infection [WIfI]) was designed to stratify limb outcomes based on three major factors-wound extent, ischemia, and foot infection. The Project or Ex-Vivo vein graft Engineering via Transfection III (PREVENT) III (PIII) risk score was developed to stratify patients by expected amputation-free survival (AFS) after surgical revascularization. This study was designed to prospectively assess limb and patient-based staging for predicting outcomes of hospitalized patients in an amputation prevention program. This study undertook a retrospective analysis of prospectively gathered registry data of consecutive patients with limb-threatening conditions admitted to a fully integrated vascular/podiatry service over a 16-month period. Upon admission, limb risk was stratified using the WIfI system and patient risk was categorized using PIII classification. Patients were assessed for perioperative and postdischarge outcomes, and their relationship to staging at admission was analyzed. There were 174 threatened limbs (143 hospitalized patients) stratified by WIfI stage (1%-12%, 2%-28%, 3%-24%, 4%-28%, 5%-3%, unstaged-5%) and PIII risk (34% low, 49% moderate, and 17% high risk). Diabetes and end-stage renal disease were associated with WIfI stage (P = .006 and P = .018) and PIII risk (P = .003 and P < .001). Perioperative (30-day) events included 3% mortality, 8% major adverse cardiovascular events and 2.4% major amputation. There were 119 limbs (71%) that underwent revascularization, including 108 infrainguinal reconstructions (endovascular or open revascularization). Rate of revascularization increased with WIfI stage (P < .001), concomitant with the number of podiatric procedures, minor amputations, and initial hospital duration of stay

  11. Neutrophil-to-lymphocyte ratio is effective prognostic indicator for post-amputation patients with critical limb ischemia

    PubMed Central

    Wang, Qi; Liu, Han; Sun, Siqiao; Cheng, Zhihua; Zhang, Yang; Sun, Xiwei; Wang, Zhongying; Wang, Shuai

    2017-01-01

    Objectives: To confirm whether neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are indicators for the prognosis of post-amputation patients with critical limb ischemia (CLI). Methods: In this retrospective observational study a total 270 post-amputation patients with CLI were included between January 2010 and December 2014 in the First Hospital of Jilin University, Changchun, China. The neutrophil and lymphocyte counts were recorded before amputations. Neutrophil-to-lymphocyte ratio was calculated and NLR ≥8.08 was defined as elevated. Logistic regression analysis was conducted to test the prognostic value. Results: According to the statistical analysis, it was indicated that NLR ≥8.08 (odds ratio [OR] 26.228, 95% confidence interval [CI]: 5.801-118.583, p<0.001), PLR ≥237.14 (OR: 3.464, 95% CI: 1.289-9.308, p=0.014) and coronary heart disease (OR: 2.739, 95% CI: 1.060-7.082, p=0.038) were the independent prognostic indicators for the patients. Conclusion: Neutrophil-to-lymphocyte ratio, PLR, and coronary heart disease are independent prognostic indicators for post-amputation patients with CLI. PMID:28042626

  12. Transpopliteal stenting of femoral occlusions in patients with critical limb ischemia using a 4-French system.

    PubMed

    Spreen, Marlon; Vink, Ted; Knippenberg, Bob; Reekers, Jim; van Dijk, Lukas; Wever, Jan; van Eps, Randolph; van Overhagen, Hans

    2014-08-01

    In many patients with critical limb ischemia (CLI), transfemoral endovascular recanalization is the preferred treatment. Transpopliteal treatment may be used in patients with inaccessible groins. This retrospective study regards transpopliteal stenting of superficial femoral artery (SFA) occlusions using a 4F system. Eleven patients (4 male and 7 female [mean age 77 years]) underwent 12 attempts of transpopliteal recanalization of long SFA occlusions (Trans-Atlantic InterSociety Consensus B through D). All patients had CLI (Rutherford 4 to 6) and were nonoperable due to poor general condition. Indications for transpopliteal access were proximal/flush SFA occlusions (n = 5), failure of antegrade recanalization (n = 4), infected femoral-femoral crossover bypass (n = 2), and occlusion of both the native SFA and the femoral-popliteal bypass (n = 1). The popliteal artery was punctured under ultrasound guidance. Occlusions were recanalized subintimally, and 4F compatible stents were implanted. Technical success rate (<30 % residual stenosis) was achieved in 83 % of cases. In two patients, stent dislocation occurred while the sheath was removed. One arteriovenous fistula was successfully treated with additional stenting. During 6-month follow-up, there were no major amputations, and three patients died from nonrelated causes. Fifty percent of patients alive after 6 months improved to Rutherford score ≤3. The duplex restenosis (>50 %) rate at 6 months was 50 %. Transpopliteal primary stenting of complex SFA lesions in CLI for a temporary bypass is now technically feasible using a 4F system. Technical results are promising. Clinical results after 6 months are acceptable when taking into consideration that this approach may be the last option for limb salvage.

  13. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl

    PubMed Central

    2014-01-01

    Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb. PMID:25063185

  14. Glutathione adducts on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase Cys-674 regulate endothelial cell calcium stores and angiogenic function as well as promote ischemic blood flow recovery.

    PubMed

    Thompson, Melissa D; Mei, Yu; Weisbrod, Robert M; Silver, Marcy; Shukla, Praphulla C; Bolotina, Victoria M; Cohen, Richard A; Tong, Xiaoyong

    2014-07-18

    The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is key to Ca(2+) homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca(2+) uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca(2+) studies showed decreased nitric oxide (·NO)-induced (45)Ca(2+) uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca(2+) stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca(2+) influx. Adenoviral overexpression of calreticulin, an ER Ca(2+) binding protein, increased ionomycin-releasable stores, VEGF-induced Ca(2+) influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca(2+) homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca(2+) stores. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Soy undecapeptide induces Drosophila hind leg grooming via dopamine receptor.

    PubMed

    Karim, M Rezaul; Yanagawa, Aya; Ohinata, Kousaku

    2018-05-15

    β-Conglycinin α subunit (323-333) [βCGα(323-333)] is an exogenous neuromodulating undecapeptide found from enzymatic digest of β-conglycinin, a soy major storage protein by mice behavior tests. We investigated effect of βCGα(323-333) on Drosophila behavior. Oral administration of βCGα(323-333) in Drosophila increased hind leg grooming, which may act through specific sets of neurons. It was reported that dopamine receptor (DopR) meditates hind leg grooming, and we tested involvement of DopR in βCGα(323-333)-induced hind leg grooming by using DopR knockout flies. In the wild type but not in the DopR-knockout flies, βCGα(323-333) increased hind leg grooming. These results suggest that βCGα(323-333) induces hind leg grooming via activating the DopR. This is the first report showing that exogenously administered peptide changes fly behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation

    PubMed Central

    Negredo, Pilar; Rivero, José-Luis L; González, Beatriz; Ramón-Cueto, Almudena; Manso, Rafael

    2008-01-01

    Paralysed skeletal muscle of rats with spinal cord injury (SCI) undergoes atrophy and a switch in gene expression pattern which leads to faster, more fatigable phenotypes. Olfactory ensheathing glia (OEG) transplants have been reported to promote axonal regeneration and to restore sensory-motor function in animals with SCI. We hypothesized that OEG transplants could attenuate skeletal muscle phenotypic deterioration and that this effect could underlie the functional recovery observed in behavioural tests. A variety of morphological, metabolic and molecular markers were assessed in soleus (SOL) and extensor digitorum longus (EDL) muscles of spinal cord transected (SCT), OEG-transplanted rats 8 months after the intervention and compared with non-transplanted SCT rats and sham-operated (without SCT) controls (C). A multivariate analysis encompassing all the parameters indicated that OEG-transplanted rats displayed skeletal muscle phenotypes intermediate between non-transplanted and sham-operated controls, but different from both. A high correlation was observed between behaviourally tested sensory-motor functional capacity and expression level of slow- and fast-twitch hind limb skeletal muscle phenotypic markers, particularly the histochemical glycerol-3-phosphate dehydrogenase activity (−0.843, P < 0.0001) and the fraction of variant 2s of the slow regulatory myosin light chain isoform (0.848, P < 0.0001) in SOL. Despite the mean overall effect of OEG transplants in patterning skeletal muscle protein expression towards normal, in 6 out of 9 animals they appeared insufficient to overcome fibre type switching and to support a consistent and generalized long-term maintenance of normal skeletal muscle characteristics. The interplay of OEG and exercise-mediated neurotrophic actions is a plausible mechanism underlying OEG transplantation effects on paralysed skeletal muscle. PMID:18372308

  17. John Bowlby and ethology: an annotated interview with Robert Hinde.

    PubMed

    Bowlby, John

    2007-12-01

    From the 1950s, John Bowlby, one of the founders of attachment theory, was in personal and scientific contact with leading European scientists in the field of ethology (e.g., Niko Tinbergen, Konrad Lorenz, and especially Robert Hinde). In constructing his new theory on the nature of the bond between children and their caregivers, Bowlby profited highly from their new approach to (animal) behavior. Hinde and Tinbergen in their turn were influenced and inspired by Bowlby's new thinking. On the basis of extensive interviews with bowlby's colleague and lifelong friend Robert Hinde and on the basis of archival materials, both the relationship between John Bowlby and Robert Hinde and the cross-fertilization of ethology and attachment theory are described.

  18. FDA perspective on objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia.

    PubMed

    Kumar, Allison; Brooks, Steven S; Cavanaugh, Kenneth; Zuckerman, Bram

    2009-12-01

    The article by Conte et al.(1) on behalf of the Society for Vascular Surgery (SVS) in this issue of the Journal of Vascular Surgery provides guidelines for improving the consistency and interpretability of clinical trials intended to evaluate treatment options for patients with critical limb ischemia (CLI). This article identifies a number of key challenges with conducting and comparing CLI trials, including the wide spectrum of clinical presentations that CLI encompasses, the use of disparate eligibility criteria and endpoint measurements, and logistical and economic considerations that can limit study initiation and completion. The authors propose definitions for a number of performance goals derived from historical surgical literature as a means of reducing the negative impact of these factors. The current editorial reviews aspects of this proposal from the perspective of the authors in terms of their understanding of the statutory obligations of the U.S. Food and Drug Administration (FDA) to regulate the marketing of cardiovascular devices based on valid scientific evidence.

  19. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  20. Validation of the Wound, Ischemia, foot Infection (WIfI) classification system in nondiabetic patients treated by endovascular means for critical limb ischemia.

    PubMed

    Beropoulis, Efthymios; Stavroulakis, Konstantinos; Schwindt, Arne; Stachmann, Arne; Torsello, Giovanni; Bisdas, Theodosios

    2016-07-01

    The Society for Vascular Surgery Lower Extremity Guidelines Committee developed the Wound, Ischemia, foot Infection (WIfI) a classification system to predict the amputation risk in patients with critical limb ischemia (CLI). A number of published studies have already evaluated its prognostic value. However, most of the included patients were diabetic, and the validation was done independent of the revascularization procedure. This single-center study evaluated the prognostic value of WIfI stages in nondiabetic patients treated by endovascular means. A retrospective analysis was performed of prospectively collected data of nondiabetic patients treated by endovascular means between January 2013 and September 2014. All patients were classified according to their wound status, ischemia index, and extent of foot infection to four classes: very low risk, low risk, moderate risk, and high risk. Comorbidities and vascular lesions for each group were analyzed. The prognostic value of WIfI was analyzed based on the amputation-free survival, overall survival rate, and freedom from amputation at 12 months. Data from 302 CLI patients treated in the study period were reviewed. A total of 219 patients (73%) underwent an endovascular intervention, and among them, 126 nondiabetic patients (58%) were enrolled in this study. Most patients were classified as low risk (33%), and the prevalence of very low-risk, moderate-risk, and very high-risk patients was 23%, 23%, and 21%, respectively. The modified Edifoligide for the Prevention of Infrainguinal Vein Graft Failure (PREVENT III) score was statistically significantly higher in the high-risk group (5.2 ± 2.4) than in the very low-risk, low-risk, and moderate-risk groups (4.3 ± 2.5, 3.5 ± 2.3, 4.5 ± 2.2, respectively; P = .048). One major amputation (1%) was performed during the hospital stay in a high-risk patient. Mean follow-up was 14 ± 8 months. The amputation-free survival at 12 months was 87%, 81%, 81%, and 62%, in

  1. Rationale and design of the SAIL trial for intramuscular injection of allogeneic mesenchymal stromal cells in no-option critical limb ischemia.

    PubMed

    Wijnand, Joep G J; Teraa, Martin; Gremmels, Hendrik; van Rhijn-Brouwer, Femke C C; de Borst, Gert J; Verhaar, Marianne C

    2018-02-01

    Critical limb ischemia (CLI) represents the most severe form of peripheral artery disease and has an immense impact on quality of life, morbidity, and mortality. A considerable proportion of CLI patients are ineligible for revascularization, leaving amputation as the only option. Mesenchymal stromal cells (MSCs), because of their vasculoregenerative and immunomodulatory characteristics, have emerged as a potential new treatment. The primary objective of this trial is to investigate whether intramuscular administration of allogeneic bone marrow (BM)-derived MSCs is safe and potentially effective. The SAIL (allogeneic mesenchymal Stromal cells for Angiogenesis and neovascularization in no-option Ischemic Limbs) trial is a double-blind, placebo-controlled randomized clinical trial to investigate the effect of allogeneic BM-MSCs in patients with CLI who are not eligible for conventional revascularization. A total of 66 patients will be included and randomized (1:1) to undergo 30 intramuscular injections with either BM-MSCs (5 × 10 6 MSCs per injection) or placebo in the ischemic lower extremity. Primary outcome, that is, therapy success, a composite outcome consisting of mortality, limb status, clinical status, and changes in pain score, will be assessed at 6 months. All study-related procedures will take place in the University Medical Center Utrecht in The Netherlands. If our results indicate that intramuscular allogeneic BM-MSC therapy for CLI is safe and potentially effective, this will have important consequences for treatment of patients with CLI. A large multicenter clinical trial with longer follow-up focusing on hard end points should then be initiated to confirm these findings. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Cost-effectiveness in the contemporary management of critical limb ischemia with tissue loss.

    PubMed

    Barshes, Neal R; Chambers, James D; Cohen, Joshua; Belkin, Michael

    2012-10-01

    The care of patients with critical limb ischemia (CLI) and tissue loss is notoriously challenging and expensive. We evaluated the cost-effectiveness of various management strategies to identify those that would optimize value to patients. A probabilistic Markov model was used to create a detailed simulation of patient-oriented outcomes, including clinical events, wound healing, functional outcomes, and quality-adjusted life-years (QALYs) after various management strategies in a CLI patient cohort during a 10-year period. Direct and indirect cost estimates for these strategies were obtained using transition cost-accounting methodology. Incremental cost-effectiveness ratios (ICERs), in 2009 U.S. dollars per QALYs, were calculated compared with the most conservative management strategy of local wound care with amputation as needed. With an ICER of $47,735/QALY, an initial surgical bypass with subsequent endovascular revision(s) as needed was the most cost-effective alternative to local wound care alone. Endovascular-first management strategies achieved comparable clinical outcomes but at higher cost (ICERs ≥$101,702/QALY); however, endovascular management did become cost-effective when the initial foot wound closure rate was >37% or when procedural costs were decreased by >42%. Primary amputation was dominated (less effectiveness and more costly than wound care alone). Contemporary clinical effectiveness and cost estimates show an initial surgical bypass is the most cost-effective alternative to local wound care alone for CLI with tissue loss and can be supported even in a cost-averse health care environment. Copyright © 2012. Published by Mosby, Inc.

  3. Survival benefits of revascularization in patients with critical limb ischemia and renal insufficiency.

    PubMed

    Ortmann, Jana; Gahl, Brigitta; Diehm, Nicolas; Dick, Florian; Traupe, Tobias; Baumgartner, Iris

    2012-09-01

    Evidence for the best treatment strategy for patients with critical limb ischemia (CLI) at different stages of renal insufficiency (RI) is rare. Therefore, we determined the benefit of revascularization vs medical therapy (MT) only in CLI patients with different levels of RI. This intention-to-treat cohort study with follow-up at 2, 6, and 12 months was conducted in a consecutive series of 351 patients with CLI. Revascularization by surgical (78 patients) or endovascular techniques (191 patients) was performed in 269 patients. MT as first-line therapy was administered in 82 patients. Patients were grouped according to glomerular filtration rate (GFR), estimated with the Modification of Diet in Renal Disease equation, into absent/mild RI (estimated GFR [eGFR], ≥ 60 mL/min/1.73 m(2)), moderate RI (eGFR, 30-59 mL/min/1.73 m(2)), and severe RI (eGFR, <30 mL/min/1.73 m(2) or dialysis). Primary outcome measures were overall and amputation-free survival. Cox regression models adjusted for baseline characteristics after Kaplan-Meier survival estimates were performed. The mean age differed significantly between groups (P < .001), and patients with absent/mild RI were more often men (P < .001) or smokers (P < .001) and less often hypertensive (P < .001). Risk factor adjustment showed that revascularized CLI patients with absent/mild RI had a longer amputation-free survival (hazard ratio [HR], 0.46; 95% confidence interval [CI], 0.26-0.82; P = .008), higher limb salvage (HR, 0.29; 95% CI, 0.17-0.91; P < .029), and better clinical success than MT patients (HR, 0.33; 95% CI, 0.17-0.65; P = .001). The moderate RI group benefited from revascularization in overall survival (HR, 0.51; 95% CI, 0.26-0.99; P = .049), amputation-free survival (HR, 0.51; 95% CI, 0.29-0.90; P = .020), and clinical success (HR, 0.42; 95% CI, 0.22-0.80; P = .008). A beneficial effect on overall survival was found even in patients with severe RI when revascularized (HR, 0.33; 95% CI, 0.12-0.91; P = .032

  4. Hox gene expression in the specialized limbs of the Iberian mole (Talpa occidentalis).

    PubMed

    Bickelmann, Constanze; van der Vos, Wessel; de Bakker, Merijn A G; Jiménez, Rafael; Maas, Saskia; Sánchez-Villagra, Marcelo R

    2017-01-01

    Fossorial talpid moles use their limbs predominantly for digging, which explains their highly specialized anatomy. The humerus is particularly short and dorsoventrally rotated, with broadened distal and proximal parts where muscles attach and which facilitate powerful abductive movements. The radius and ulna are exceptionally robust and short. The ulna has an expanded olecranon process. The femur is generalized, but the fused tibia-fibula complex is short and robust. To understand the developmental bases of these specializations, we studied expression patterns of four 5' Hox genes in the fossorial Iberian mole (Talpa occidentalis). These genes are known to play major roles in patterning the developing limb skeleton in the mouse, with which comparisons were made (Mus musculus, C57BL/6Jico strain). We find that HoxA9 expression is spatially expanded in the developing stylopodial area in the mole forelimb, compared to the less specialized mouse forelimb and mole hind limb. HoxD9 expression does not extend into the thoracic body wall in the mole forelimb in contrast to the mouse, and is also reduced in the presumptive zeugopodium in mole forelimb, compared to mouse. Expression of HoxD11 is upregulated in the mole in the postaxial area of the hind limb zeugopod, compared to the mouse. On the other hand, HoxD13 is downregulated in the postaxial zeugopodial area in the forelimb of the mole, compared to the mouse. The differences in the expression patterns of these 5' Hox genes between Talpa and Mus are an indication of the developmental changes going hand in hand with anatomical digging adaptations in the mole adult. © 2016 Wiley Periodicals, Inc.

  5. Impact of Duplex arterial mapping on decision making in non-acute ischemic limb patients.

    PubMed

    Elbadawy, A; Aly, H; Ibrahim, M; Bakr, H

    2015-12-01

    The aim of this study was to demonstrate the impact of Duplex arterial mapping on decision making in non-acute ischemic limb patient group reporting pain onset between 15 days and 3 months. We prospectively evaluated patients presented with critical limb ischemia who reported pain onset of duration between 15 days and 3 months in one-year period. Our series included thirty cases (mean age=61.3 years old), as Duplex arterial mapping was the sole preoperative imaging tool performed in all of them. All patients, in whom duplex indicated thrombosis in long occluded segments, were candidates for fluoroscopically guided thrombectomy. When Duplex defined chronic arterial occlusions, patients underwent endovascular or bypass revascularisation procedures. Impact of Duplex wall interrogation on decision-making between the two groups (subacute and chronic) was measured. Duplex arterial mapping categorized correctly all 30 patients into either subacute ischemia with removable clot (N.=14) or chronic ischemia (N.=16). Fluoroscopic guided thrombectomy was performed in 14 cases when Duplex advised long occluded arterial segments as indicted by intact intima with echogenic thrombus inside. Bypass surgery was performed in 8 patients. Percutaneous transluminal angioplasty (PTA) was done in 7 cases and thrombendartrectomy of common femoral artery in a single case. One-year patency rate in our series was 86.6%. It was 71.4% in thrombosis group. Limb salvage rate was 93.3%. Duplex arterial mapping could be used to differentiate the subacute ischemia with removable thrombus and chronic arterial occlusions guiding for the best revascularization procedure accordingly.

  6. Outcomes of Infrainguinal Revascularizations with Endovascular First Strategy in Critical Limb Ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Conijn, Anne P., E-mail: a.p.conijn@amc.uva.nl; Frans, Franceline A., E-mail: f.a.frans@amc.uva.nl

    PurposeThis study was designed to study the outcome of infrainguinal revascularization in patients with critical limb ischemia (CLI) in an institution with a preference towards endovascular intervention first in patients with poor condition, unfavourable anatomy for surgery, no venous material for bypass, and old age.MethodsA prospective, observational cohort study was conducted between May 2007 and May 2010 in patients presenting with CLI. At baseline, the optimal treatment was selected, i.e., endovascular or surgical treatment. In case of uncertainty about the preferred treatment, a multidisciplinary team (MDT) was consulted. Primary endpoints were quality of life and functional status 6 and 12 monthsmore » after initial intervention, assessed by the VascuQol and AMC Linear Disability Score questionnaires, respectively.ResultsIn total, 113 patients were included; 86 had an endovascular intervention and 27 had surgery. During follow-up, 41 % underwent an additional ipsilateral revascularisation procedure. For the total population, and endovascular and surgery subgroups, the VascuQol sum scores improved after 6 and 12 months (p < 0.01 for all outcomes) compared with baseline. The functional status improved (p = 0.043) after 12 months compared with baseline for the total population. Functional status of the surgery subgroup improved significantly after 6 (p = 0.031) and 12 (p = 0.044) months, but not that of the endovascular subgroup.ConclusionsOverall, the strategy of performing endovascular treatment first in patients with poor condition, unfavourable anatomy for surgery, no venous material for bypass, and old age has comparable or even slightly better results compared with the BASIL trial and other cohort studies. All vascular groups should discuss whether their treatment strategy should be directed at treating CLI patients preferably endovascular first and consider implementing an MDT to optimize patient outcomes.« less

  7. Revascularization for critical limb ischemia using the SpiderFX embolic protection device in the below-the-knee circulation: initial results.

    PubMed

    Ward, Thomas J; Piechowiak, Rachel L; Patel, Rahul S; Fischman, Aaron M; Nowakowski, F Scott; Kim, Edward; Ellozy, Sharif H; Faries, Peter L; Lookstein, Robert A

    2014-10-01

    To examine the safety and efficacy of the SpiderFX embolic protection device (EPD) in the below-the-knee (BTK) circulation in patients with critical limb ischemia (CLI). A single-center retrospective review was performed to identify patients with CLI and single-vessel runoff in whom the SpiderFX EPD was used in the BTK circulation. Technical success and device-related complications were the primary endpoints. Retrieval of macroscopic debris in the EPD, 1-year freedom from major adverse limb events (MALEs), and 30-day perioperative death were also evaluated. A major amputation, surgical bypass, endovascular thrombectomy, or endovascular thrombolysis was considered a MALE. Thirty-six patients (21 men; mean age, 75.8 y) treated between 2008 and 2013 had endovascular revascularization with use of the SpiderFX EPD in the BTK circulation. The SpiderFX EPD was successfully deployed in all cases; the technical success rate of revascularization was 100%. Two minor and zero major complications were observed related to the SpiderFX. Two MALEs, a major amputation and a subsequent surgical bypass, were observed in the cohort. All MALEs occurred within 1 year of treatment (1-y freedom from MALE rate, 90%). Debris was retrieved in the SpiderFX device in 47% of patients. The use of the SpiderFX EPD in the BTK circulation in patients with CLI is safe and frequently retrieves debris. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  8. Influence of sildenafil and donepezil administration on the serum redox balance in experimentally induced lower limb critical ischemia.

    PubMed

    Constantinescu, Mihaela Ioana; Constantinescu, Dan Petru; Andercou, Aurel; Mironiuc, Ion Aurel

    2013-01-01

    Chronic lower limb ischemia (CLLI) leads to endothelial cell dysfunctions and endothelial lesions. The use of substances that release nitric oxide and activate endothelial nitric oxide synthase has proved to be useful in increasing angiogenesis and arteriogenesis under critical ischemia conditions. To investigate the therapeutic effect of Sildenafil and Donepezil with a vasodilating action in experimentally induced CLLI and on serum redox homeostasis. The research was performed in 3 groups of rats (n=10 animals/group) with experimentally induced CLLI: group I - control group; group II - animals treated postoperatively with a therapeutic dose of sildenafil, and group III - animals treated postoperatively with a therapeutic dose of donepezil. Oxidative stress (OS) indicators (malondialdehyde - MDA, protein carbonyls - PC), antioxidant (AO) defense indicators (reduced glutathione - GSH and oxidized glutathione - GSSH), and ceruloplasmin (CP) were determined on days 7, 14, 21 and 30. Statistical processing was performed using the Excel application (Microsoft Office 2007), with the StatsDirect v.2.7.2 software. Changes in OS were evidenced in all groups on account of a decrease in MDA and PC. The greatest OS decrease in all groups was on day 30. AO defence changes were represented by decreased levels of GSH and GSSG in all groups, at the studied moments. Intracellular AO defense in the cytosol, nucleus and mitochondria was similar in all groups, (decreased GSH, GSSG and GSH/GSSG ratio). We found increased extracellular levels of GSH, GSSG, and CP and increased extracellular GSH/GSSG ratio at level compared to values on day 7. 1) The administration of sildenafil (group II) and donepezil (group III) has favorable effects on reducing OS in experimentally induced CLLI. 2) Sildenafil and Donepezil administration stimulates extracellular AO defense on account of CP. 3) Sildenafil and Donepezil administration influences intracellular redox homeostasis on account of the GSH

  9. Characteristics and clinical outcomes of repeat endovascular therapy after infrapopliteal balloon angioplasty in patients with critical limb ischemia.

    PubMed

    Kobayashi, Norihiro; Hirano, Keisuke; Yamawaki, Masahiro; Araki, Motoharu; Sakai, Tsuyoshi; Sakamoto, Yasunari; Mori, Shinsuke; Tsutsumi, Masakazu; Honda, Yohsuke; Tokuda, Takahiro; Makino, Kenji; Shirai, Shigemitsu; Ito, Yoshiaki

    2018-02-15

    We clarified characteristics and clinical outcomes of critical limb ischemia (CLI) patients who underwent repeat endovascular therapy (EVT) for infrapopliteal lesions. High restenosis rate after infrapopliteal EVT remains a major concern. Patients with CLI who underwent EVT between April 2007 and February 2014, were divided into the following three groups according to how often EVT was repeated: Group A, no repeat of EVT; Group B, EVT repeated once/twice; and Group C, EVT repeated ≥3 times. Wound healing rates at 1 year were 93.9% in Group A, 77.1% in Group B, and 27.3% in Group C (P < 0.001). Limb salvage rates at 3 years were 93.0, 88.5, and 57.1%, respectively (P = 0.001). Amputation-free survival rates at 3 years were 60.8, 51.2, and 29.2%, respectively (P = 0.019). Multivariate analysis revealed that hemodialysis (OR 3.413, 95% CI 1.263-9.225, P = 0.016), low ejection fraction (OR 7.758, 1.049-57.360, P = 0.045), and clinical stage assessed by SVS WIfI (OR 2.440, 1.417-4.203, P = 0.001) were independent predictors of repeat EVT. The rate of requirement for repeat EVT significantly increased as clinical stage became more severe (repeat EVT rate: 0% in CS 1, 28.6% in CS 2, 34.0% in CS 3, and 45.7% in CS 4, P < 0.001). The clinical outcomes of CLI patients requiring repeat EVT three or more times were poor. The SVS WIfI clinical stage may be useful to predict the necessity of repeat EVT. © 2017 Wiley Periodicals, Inc.

  10. Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs.

    PubMed

    Katare, Rajesh; Rawal, Shruti; Munasinghe, Pujika Emani; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Fujii, Yutaka; Dixit, Parul; Umetani, Keiji; Kangawa, Kenji; Shirai, Mikiyasu; Schwenke, Daryl O

    2016-02-01

    Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.

  11. Diannexin Protects against Renal Ischemia Reperfusion Injury and Targets Phosphatidylserines in Ischemic Tissue

    PubMed Central

    Wever, Kimberley E.; Wagener, Frank A. D. T. G.; Frielink, Cathelijne; Boerman, Otto C.; Scheffer, Gert J.; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A.

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo. PMID:21918686

  12. 'Real angiosome' assessment from peripheral tissue perfusion using tissue oxygen saturation foot-mapping in patients with critical limb ischemia.

    PubMed

    Kagaya, Y; Ohura, N; Suga, H; Eto, H; Takushima, A; Harii, K

    2014-04-01

    The "tissue oxygen saturation (StO2) foot-mapping" method was developed using a non-invasive near-infrared tissue oximeter monitor to classify the foot regions as ischemic and non-ischemic areas. The purpose of this study was to evaluate StO2 foot-mapping as a reliable method to detect ischemic areas in the feet of patients with critical limb ischemia (CLI), and to compare the results with assessments from the angiosome model. The foot areas of 20 CLI patients and 20 healthy controls were classified into four regions: (1) 0 ≤ StO2 < 30%, (2) 30 ≤ StO2 < 50%, (3) 50 ≤ StO2 < 70%, and (4) 70 ≤ StO2 ≤ 100% to perform StO2 foot-mapping. Each area occupancy rate was compared between the two groups, and the threshold StO2 value for detecting ischemia was set. Next, the locations of ulcers (in 16 patients) were compared to the predicted ischemic regions by the StO2 foot-mapping and by the angiosome model and angiography. In regions (1) and (2) (StO2 < 50%), the area occupancy rate was significantly higher in the CLI group and almost zero in the control group, so that the threshold StO2 value for detecting ischemia was set at 50%. The locations of ulcers were compatible with StO2 foot-mapping in 87.5% of the cases (14/16), while they were compatible with the assessment from the angiosome model in 68.8% of the cases (11/16). This study suggests that StO2 foot-mapping can successfully and non-invasively detect ischemic areas in the peripheral tissue of the foot, and also more appropriately than the assessment provided by the angiosome model. StO2 foot-mapping can be used to evaluate the real angiosome: the real distribution of the peripheral tissue perfusion in the CLI patient's foot, which is determined by the peripheral microvascular blood flow, rather than the main arterial blood flow. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Nanoparticle-mediated delivery of pioglitazone enhances therapeutic neovascularization in a murine model of hindlimb ischemia.

    PubMed

    Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke

    2012-10-01

    Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery

  14. Physiologic Cryoamputation in Managing Critically Ill Patients with Septic, Advanced Acute Limb Ischemia.

    PubMed

    Chen, Samuel L; Kuo, Isabella J; Kabutey, Nii-Kabu; Fujitani, Roy M

    2017-07-01

    Certain critically ill patients with advanced acute limb ischemia with a nonviable extremity may be unsuitable for transport to the operating room to undergo definitive amputation. In these unstable patients, rapid regional cryotherapy allows for prompt infectious source control and correction of hemodynamic and metabolic abnormalities, thereby lessening the risk associated with definitive surgical amputation. We describe our refined technique for lower extremity physiologic cryoamputation and review our institutional experience. After adequate analgesia is administered to the patient, a heating pad is secured circumferentially at the proximal amputation margin and the affected extremity is placed in a customized Styrofoam cooler. A circumferential seal is secured at the proximal chill zone without use of a tourniquet and dry ice is placed into the cooler to surround the entire affected leg. Delayed definitive lower extremity amputation is later performed when hemodynamic and metabolic derangements are corrected. We reviewed 5 patients who underwent lower extremity cryoamputation with this technique identified at our institution between 2005 and 2015. Age ranged from 31 to 79 years old. All presented with severe foot infection and septic shock requiring vasopressor support. All 5 patients stabilized hemodynamically following the initial cryoamputation and later underwent definitive lower extremity amputation, with a median time of 3 days following initial cryoamputation. Lower extremity physiologic cryoamputation is an effective, immediate bedside procedure that can provide local source control and the opportunity for correction of metabolic derangements in initially unstable patients to lessen the risk for definitive major lower extremity amputation. Refinement of the cryoamputation technique, as described in this report, allows for a predictable and reproducible physiologic amputation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Social rank affects the haematologic profile in red deer hinds.

    PubMed

    Ceacero, Francisco; Gaspar-López, Enrique; Landete-Castillejos, Tomás; Gallego, Laureano; García, Andrés J

    2018-04-14

    We studied the effects of social rank on the haematologic profile in a herd of 24 female Iberian red deer hinds. Social rank hierarchy was determined and blood samples were taken and analysed. After adjusting for age and body mass, dominance ranking showed a significant negative effect (ie, lower values in dominant hinds) on white blood cell (WBC) count, haemoglobin and haematocrit. Our results are similar to those reported for stressed individuals due to physical immobilisation, but do not support the predicted enhanced erythropoiesis due to higher levels of androgens. The results for WBC numbers may also reflect that subordinate hinds must allocate a higher amount of resources to immunity as a result of injuries incurred from dominant hinds, while simultaneously facing restricted access to food sources. For red blood cell (RBC) counts, the results may be due to subordinate hinds likely needing increased haematocrit and haemoglobin levels for fast flight responses. Our data show that social rank influences haematologic profile, and thus it should be considered when correctly interpreting blood analyses in social cervid species. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. HD 38452 - J. R. Hind's star that changed colour

    NASA Technical Reports Server (NTRS)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  17. RESISTANCE TO X-IRRADIATION BY EMBRYONIC CELLS OF THE LIMB-BUDS OF TADPOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.M.; Ewell, L.M.

    1959-01-01

    Both total-body irradiation and shielding of the trunk were used to study the effects of x irradiation from 1000 to 30000 r upon the limb-buds of Bufo boreas and Hyla regilla tadpoles. The object was to test the view that the younger the cells the more sensitive they are to irradiation. The answer is negative. If there is any special susceptibility of these undifferentiated cells it should appear at levels far below the 30000 r maximum employed. A sharp distinction is made between the very susceptible mitotic cells and the resistant non-dividing embryonic cells that have been accumulated in suchmore » numbers that they may rapidly differentiate into the characteristic limb tissues under the stimulus of the thyroid hormone. Many irradiated ectoderm cells were changed to form bizarre excrescences but were not destroyed. Unicellular cuthneous gland cells continued to arise even after the heaviest irradiation. Irradiated tadpoles with hind limb-buds from 0.6 mm down to 0.2 mm length were unable to develop normal limbs. This capacity was propontional to the number of non-dividing embryonic cells stored at the time of irradiation. Irradiation of 5000, equal degree but the rapidity was greatest in the cases of higher dosage. Not only did these levels of irradiation fail to destroy the non-dividing embryonic cells but they did not effect their pre-deterrmined specificity nor modify their capacity for subsequent differentiation and growth. Exposure to a thyroxin solution caused the hind limb-buds without visible differentiation of cells to grow from a length of 0.8 or 0.9 mm or 1.0 mm at the time of irradiation to a length of as much as 5.0 mm in the course of 7 days. Development of thigh, shank, ankle, and toes was complete. Microscopic studies showed characteristic tissues such as cartilage, connective tissue, and muscle, developed to a comparable degree in control and irradiated specimens. (auth)« less

  18. Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer's disease.

    PubMed

    Merkulova-Rainon, Tatyana; Mantsounga, Chris S; Broquères-You, Dong; Pinto, Cristina; Vilar, José; Cifuentes, Diana; Bonnin, Philippe; Kubis, Nathalie; Henrion, Daniel; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2018-03-07

    The pathophysiology of sporadic Alzheimer's disease (AD) remains uncertain. Along with brain amyloid-β (Aβ) deposits and neurofibrillary tangles, cerebrovascular dysfunction is increasingly recognized as fundamental to the pathogenesis of AD. Using an experimental model of limb ischemia in transgenic APPPS1 mice, a model of AD (AD mice), we showed that microvascular impairment also extends to the peripheral vasculature in AD. At D70 following femoral ligation, we evidenced a significant decrease in cutaneous blood flow (- 29%, P < 0.001), collateral recruitment (- 24%, P < 0.001), capillary density (- 22%; P < 0.01) and arteriole density (- 28%; P < 0.05) in hind limbs of AD mice compared to control WT littermates. The reactivity of large arteries was not affected in AD mice, as confirmed by unaltered size, and vasoactive responses to pharmacological stimuli of the femoral artery. We identified blood as the only source of Aβ in the hind limb; thus, circulating Aβ is likely responsible for the impairment of peripheral vasculature repair mechanisms. The levels of the majority of pro-angiogenic mediators were not significantly modified in AD mice compared to WT mice, except for TGF-β1 and PlGF-2, both of which are involved in vessel stabilization and decreased in AD mice (P = 0.025 and 0.019, respectively). Importantly, endothelin-1 levels were significantly increased, while those of nitric oxide were decreased in the hind limb of AD mice (P < 0.05). Our results suggest that vascular dysfunction is a systemic disorder in AD mice. Assessment of peripheral vascular function may therefore provide additional tools for early diagnosis and management of AD.

  19. Attenuation of Skeletal Muscle and Renal Injury to the Lower Limb following Ischemia-Reperfusion Using mPTP Inhibitor NIM-811

    PubMed Central

    Garbaisz, David; Turoczi, Zsolt; Aranyi, Peter; Fulop, Andras; Rosero, Oliver; Hermesz, Edit; Ferencz, Agnes; Lotz, Gabor; Harsanyi, Laszlo; Szijarto, Attila

    2014-01-01

    Introduction Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Objectives Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Materials and methods Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Results Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. Conclusion NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb

  20. Attenuation of skeletal muscle and renal injury to the lower limb following ischemia-reperfusion using mPTP inhibitor NIM-811.

    PubMed

    Garbaisz, David; Turoczi, Zsolt; Aranyi, Peter; Fulop, Andras; Rosero, Oliver; Hermesz, Edit; Ferencz, Agnes; Lotz, Gabor; Harsanyi, Laszlo; Szijarto, Attila

    2014-01-01

    Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-α and IL-6 levels were measured. Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-α and IL-6 levels were significantly lower (TNF-α: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury.

  1. H₂S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats.

    PubMed

    Qi, Qi Ying Chun; Chen, Wen; Li, Xiao Ling; Wang, Yu Wei; Xie, Xiao Hua

    2014-06-01

    To investigate the effect of H₂S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NaHS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NaHS (0.78 mg/kg) as exogenous H₂S donor and PPG (60 mg/kg) which can suppress endogenous H₂S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP₁), aquaporin-5 (AQP₅) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR₄), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-κB as indexes of inflammation. LIR induced lung injury was accompanied with upregulation of TLR₄-Myd88-NF-κB pathway and downregulation of AQP1/AQP₅. NaHS pre-treatment reduced lung injury with increasing AQP₁/AQP₅ expression and inhibition of TLR₄-Myd88-NF-κB pathway, but PPG adjusted AQP₁/AQP₅ and TLR4 pathway to the opposite side and exacerbated lung injury. Endogenous H₂S, TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ were involved in LIR induced lung injury. Increased H₂S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ expression to reduce inflammatory reaction and lessen pulmonary edema. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. A functional murine model of hindlimb demand ischemia.

    PubMed

    Peck, Michael A; Crawford, Robert S; Abularrage, Christopher J; Patel, Virendra I; Conrad, Mark F; Yoo, Jin Hyung; Watkins, Michael T; Albadawi, Hassan

    2010-05-01

    To date, murine models of treadmill exercise have been used to study general exercise physiology and angiogenesis in ischemic hindlimbs. The purpose of these experiments was to develop a murine model of demand ischemia in an ischemic limb to mimic claudication in humans. The primary goal was to determine whether treadmill exercise reflected a hemodynamic picture which might be consistent with the hyperemic response observed in humans. Aged hypercholesterolemic ApoE null mice (ApoE(-/-), n = 13) were subjected to femoral artery ligation (FAL) and allowed to recover from the acute ischemic response. Peripheral perfusion of the hindlimbs at rest was determined by serial evaluation using laser Doppler imaging (LDI) on days 0, 7, and 14 following FAL. During the experiments, mice were also assessed on an established five-point clinical ischemic score, which assessed the degree of digital amputation, necrosis, and cyanosis compared to the nonischemic contralateral limb. After stabilization of the LDI ratio (ischemic limb flux/contralateral nonischemic limb flux) and clinical ischemic score, mice underwent 2 days of treadmill training (10 min at 10 m/min, incline of 10 degrees ) followed by 60 min of daily treadmill exercise (13 m/min, incline of 10 degrees ) through day 25. An evaluation of preexercise and postexercise perfusion using LDI was performed on two separate occasions following the onset of daily exercise. During the immediate 15 min postexercise evaluation, LDI scanning was obtained in quadruplicate, to allow identification of peak flux ratios. Statistical analysis included unpaired t-tests and analysis of variance. After FAL, the LDI flux ratio reached a nadir between days 1 and 2, then stabilized by day 14 and remained stable through day 25. The clinical ischemic score stabilized at day 7 and remained stable throughout the rest of the experiment. Based on stabilization of both the clinical ischemic score and LDI ratio, exercise training began on day 15. The

  3. Use of Tourniquets and their Effects on Limb Function in the Modern Combat Environment

    DTIC Science & Technology

    2010-03-01

    pressure by tightening a tourniquet, the pressure can soon damage nerves (>500 mm Hg) while remaining ineffective. Many tourniquet manufacturers are unaware...testing, and clinical use.2,57 TOURNIQUET USE, TISSUE ISCHEMIA, AND LIMB FUNCTION Skin , bone, tendon, fat, fascia, joints, and vessels tolerate ischemia...injury in a combat support hospital: results of a case control study. J Trauma 2008;64(Suppl 2):S99–106 [discussion: S106–7]. 21. Bellamy RF . The

  4. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study.

    PubMed

    Kakinohana, O; Hefferan, M P; Nakamura, S; Kakinohana, M; Galik, J; Tomori, Z; Marsala, J; Yaksh, T L; Marsala, M

    2006-09-01

    Transient spinal cord ischemia may lead to a progressive degeneration of spinal interneurons and subsequently to increased hind limb motor tone. In the present work we sought to characterize the rigidity and spasticity components of this altered motor function by: i) tonic electromyographic activity measured in gastrocnemius muscle before and after ischemia, ii) measurement of muscle resistance during the period of ankle flexion and corresponding changes in electromyographic activity, iii) changes in Hoffmann reflex, and, iv) motor evoked potentials. In addition the effect of intrathecal treatment with baclofen (GABAB receptor agonist; 1 microg), nipecotic acid (GABA uptake inhibitor; 300 microg) and dorsal L2-L5 rhizotomy on spasticity and rigidity was studied. Finally, the changes in spinal choline acetyltransferase (ChAT) and vesicular glutamate transporter 2 and 1 (VGLUT2 and VGLUT1) expression were characterized using immunofluorescence and confocal microscopy. At 3-7 days after ischemia an increase in tonic electromyographic activity with a variable degree of rigidity was seen. In animals with modest rigidity a velocity-dependent increase in muscle resistance and corresponding appearance in electromyographic activity (consistent with the presence of spasticity) was measured during ankle rotation (4-612 degrees /s rotation). Measurement of the H-reflex revealed a significant increase in Hmax/Mmax ratio and a significant loss of rate-dependent inhibition. In the same animals a potent increase in motor evoked potential amplitudes was measured and this change correlated positively with the increased H-reflex responses. Spasticity and rigidity were consistently present for a minimum of 3 months after ischemia. Intrathecal treatment with baclofen (GABA B receptor agonist) and nipecotic acid (GABA uptake inhibitor) provided a significant suppression of spasticity, rigidity, H-reflex or motor evoked potentials. Dorsal L2-L5 rhizotomy significantly decreased muscle

  5. ROS-Responsive Microspheres for On Demand Antioxidant Therapy in a Model of Diabetic Peripheral Arterial Disease

    PubMed Central

    Poole, KM; Nelson, CE; Joshi, RV; Martin, JR; Gupta, MK; Haws, SC; Kavanaugh, TE; Skala, MC; Duvall, CL

    2014-01-01

    A new microparticle-based delivery system was synthesized from reactive oxygen species (ROS)-responsive poly(propylene sulfide) (PPS) and tested for “on demand” antioxidant therapy. PPS is hydrophobic but undergoes a phase change to become hydrophilic upon oxidation and thus provides a useful platform for ROS-demanded drug release. This platform was tested for delivery of the promising anti-inflammatory and antioxidant therapeutic molecule curcumin, which is currently limited in use in its free form due to poor pharmacokinetic properties. PPS microspheres efficiently encapsulated curcumin through oil-in-water emulsion and provided sustained, on demand release that was modulated in vitro by hydrogen peroxide concentration. The cytocompatible, curcumin-loaded microspheres preferentially targeted and scavenged intracellular ROS in activated macrophages, reduced in vitro cell death in the presence of cytotoxic levels of ROS, and decreased tissue-level ROS in vivo in the diabetic mouse hind limb ischemia model of peripheral arterial disease. Interestingly, due to the ROS scavenging behavior of PPS, the blank microparticles also showed inherent therapeutic properties that were synergistic with the effects of curcumin in these assays. Functionally, local delivery of curcumin-PPS microspheres accelerated recovery from hind limb ischemia in diabetic mice, as demonstrated using non-invasive imaging techniques. This work demonstrates the potential for PPS microspheres as a generalizable vehicle for ROS-demanded drug release and establishes the utility of this platform for improving local curcumin bioavailability for treatment of chronic inflammatory diseases. PMID:25522975

  6. Sources of Delay in the Acute Limb Ischemia Patient Pathway.

    PubMed

    Normahani, Pasha; Standfield, Nigel J; Jaffer, Usman

    2017-01-01

    Acute limb ischemia (ALI) continues to pose a significant challenge to clinicians and is associated with an unacceptably high rate of morbidity and mortality. Despite its time critical nature, little is known regarding the delays encountered during the patient pathway. The aim of this study was to identify sources of delay in the patient pathway at our institution. Sixty-seven cases of ALI of the lower extremities from 66 patients, who had presented to our center between May 2003 and April 2014, were identified for retrospective analysis. Data were retrieved from the patient records, discharge summaries and hospital laboratory, emergency department and radiology databases. Median time from onset of symptom to arrival at our institution was 11.35 hr (interquartile range [IQR] 6.27-72). Median cumulative time taken from arrival to vascular team review was 40 min (22.5-120), to imaging being performed was 4.75 hr (2.42-17.25), and to intervention being performed was 10.2 hr (4-31). There were significantly longer delays to presentation in those transferred from inpatient beds as compared with those transferred from the emergency department of other hospitals (66 hr [10.3-98] vs. 8 hr [5.6-14.9], P = 0.007). In total, 84.6% of patients underwent preoperative arterial imaging. Time taken from arrival to diagnostic arterial imaging was significantly longer in patients presenting out-of-ours (15 hr [6.5-20.75]) as compared with patients presenting in-hours (3.5 hr [2-6.5], P = 0.014) or during the weekend (2 hr [2-3], P = 0.022). Time from presentation to intervention was significantly shorter in patients presenting over the weekend (3.9 hr [2.6-5.1]) as compared with those presenting in-hours (14.2 hr [6.2-29], P = 0.006) and out-of-hours (16 hr [10-33], P = 0.021). Out-of-hours, a significant portion of the delay, was attributable to imaging (median time to imaging 15 hr). This study demonstrates the systematic nature of delays in the patient

  7. [Brain protection against cerebral ischemia].

    PubMed

    Kitagawa, Kazuo

    2013-01-01

    Previous clinical trials failed to show the benefit of several potentially protective drugs in acute ischemic stroke. However, there would be three main approaches for brain protection against stroke. The first is to develop a novel thrombolytic agent which is more efficient and safer than alteplase. Tenecteplase and desmoteplase are in progress as a new thrombolytic drug. The second strategy is to augment collateral circulation through leptomeningeal anastomosis. Administration of G-CSF could enhance arteriogenesis, but it takes several days to develop functional collateral. For this purpose, partial aortic balloon clumping or stimulation of pterygopalatine ganglion may be promising. The third one is to protect neurovascular unit against reperfusion injury. Brain hypothermia is the most effective strategy in experimental ischemia, and the clinical trial for hypothermia combined with thrombolysis therapy is in progress. Activation of endogenous protective response, as presented by ischemic tolerance, has focused on remote ischemic conditioning. Although the precise mechanisms of remote preconditioning remain unclear, intermittent limb ischemia is a safe approach. Remote ischemic conditioning is now investigated in acute patients with thrombolysis therapy.

  8. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study.

    PubMed

    Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi

    2007-08-01

    Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.

  9. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients.

    PubMed

    Pareznik, Roman; Knezevic, Rajko; Voga, Gorazd; Podbregar, Matej

    2006-01-01

    To determine changes in the rate of thenar muscles tissue deoxygenation during stagnant ischemia in patients with severe sepsis and septic shock. Prospective observational study in the medical ICU of a general hospital. Consecutive patients admitted to ICU with septic shock (n=6), severe sepsis (n=6), localized infection (n=3), and healthy volunteers (n=15). Upper limb ischemia was induced by rapid automatic pneumatic cuff inflation around upper arm. Thenar muscle tissue oxygen saturation (StO2) was measured continuously by near-infrared spectroscopy before and during upper limb ischemia. StO(2) before intervention was comparable in patients with septic shock, severe sepsis, or localized infection and healthy volunteers (89 [65, 92]% vs. 82 [72, 91]% vs. 87 [85, 92]% vs. 83 [79, 93]%, respectively; p>0.1). The rate of StO(2) decrease during stagnant ischemia after initial hemodynamic stabilization was slower in septic shock patients than in those with severe sepsis or localized infection and in controls (-7.0 [-3.6, -11.0] %/min vs. -10.4 [-7.8, -13.3] %/min vs. -19.5 [-12.3, -23.3] vs. -37.4 [-27.3, -56.2] %/min, respectively; p=0.041). At ICU discharge the rate of StO2 decrease did not differ between the septic shock, severe sepsis, and localized infection groups (-17.0 [-9.3, -28.9] %/min vs. -19.9 [-13.3, -23.6] %/min vs. -23.1 [-20.7, -26.2] %/min, respectively), but remained slower than in controls (p<0.01). The rate of StO2 decrease was correlated with Sequential Organ Failure Assessment (SOFA) score (r=0.739, p<0.001). After hemodynamic stabilization thenar muscle tissue oxygen saturation during stagnant ischemia decreases slower in septic shock patients than in patients with severe sepsis or localized infection and in healthy volunteers. During ICU stay and improvement of sepsis the muscle tissue deoxygenation rate increases in survivors of both septic shock and severe sepsis and was correlated with SOFA score.

  10. Computer-assisted kinematic evaluation of induced compensatory movements resembling lameness in horses trotting on a treadmill.

    PubMed

    Kelmer, Gal; Keegan, Kevin G; Kramer, Joanne; Wilson, David A; Pai, Frank P; Singh, Prableen

    2005-04-01

    To characterize compensatory movements of the head and pelvis that resemble lameness in horses. 17 adult horses. Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis. Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%. Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs.

  11. [The long-term results and indications for use of Gore-Texgrafts in the femoropopliteal position in patients with atherosclerotic lesion of lower limb arteries].

    PubMed

    Pokrovskiĭ, A V; Dan, V N; Zotikov, A E; Chupin, A V; Shubin, A A; Chikharev, M V

    2004-01-01

    Presented herein are the long-term results of femoropopliteal reconstructions above the knee joint fisure in patients with atherosclerotic lesion of the femoropopliteal segment using Gore-Tex grafts. The retrospective study accrued 108 patients. Of these, IIB degree lower limb ischemia (according to the A.V. Pokrovsky classification) was initially present in 64 (60.2%) and critical ischemia in 52 (40.8%) patients. Patients suffering from lower limb ischemia of varying degree did not significantly differ in the age or coexistent diseases. The mean value of the ankle/brachial index (ABI) accounted for 0.46+/-0.23 in patients with IIB degree ischemia and for 0.40+/-0.27 in patients with critical lower limb ischemia. All the patients were evaluated for the condition of the distal bed according to the scheme proposed by Rutherford et al. in 1997. The patients were distributed into three groups: patients with "good" runoff (from 1 to 4 points, n=65), patients with "satisfactory" runoff (from 5 to 7 points, n=36), and those with an "unsatisfactory" condition of the distal bed (runoff point over 7, n=7). The long-term results were assessed in 81 (75%) patients over the period as long as 105 months. The mean follow up accounted for 58,4 months. One year later the graft patency in the total patient group constituted 73.1%, after 3 years it was equal to 54.8%, and after 5 years to 49.9%. It is demonstrated that the initial runoff point exerted a significant effect on the graft patency. It is noteworthy that in patients with an initially "good" runoff point, 57.5% of the grafts were patent 5 years after operation whereas in patients with a "satisfactory" point only 35.3% turned out patent (p<0.05). Patients with an initially "unsatisfactory" runoff point developed thrombosis of all grafts over the period as long as 6 months following operation. The five-year limb salvage was observed in 77.6% of patients. It has been revealed over the 5-year period that the degree of initial

  12. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography.

    PubMed

    Scremin, Oscar U; Figoni, Stephen F; Norman, Keith; Scremin, A M Erika; Kunkel, Charles F; Opava-Rutter, Dorene; Schmitter, Eric D; Bert, Alberto; Mandelkern, Mark

    2010-06-01

    To establish whether muscle blood flow (MBF) measurements with O-water positron emission tomography could reliably identify patients with critical limb ischemia and detect and quantify a distal deficit in skeletal MBF in these cases. O-water positron emission tomography scans were performed at rest or during unloaded ankle plantar and dorsiflexion exercise of the diseased leg in 17 subjects with leg ischemia or on a randomly selected leg of 18 age-matched healthy control subjects. TcPO2 was evaluated with Novametrix monitors and perfusion of skin topically heated to 44 degrees C and adjacent nonheated areas with a Moor Instruments laser Doppler imaging scanner. The enhancement of MBF induced by exercise was significantly lower in ischemic than in normal legs, and the sensitivity and specificity of this phenomenon were similar to those of laser Doppler imaging or TcPO2 in identifying ischemia subjects. In addition, the exercise MBF deficit was predominant at the distal-leg levels, indicating the ability of the technique to help determine the correct level of amputation. Skeletal MBF of legs with severe ischemia can be detected accurately with O-water positron emission tomography and could add valuable information about viability of skeletal muscle in the residual limb when deciding the level of an amputation.

  13. Use of isovolemic hemodilution in the management of arterial ischemia in patients with polycythemia.

    PubMed

    Shah, D M; Buchbinder, D; Balko, A; Karmody, A M; Leather, R P

    1981-08-01

    The management of patients with both polycythemia and limb-threatening ischemia presents many difficulties because in this population, vascular surgical procedures carry a particularly high incidence of hemorrhagic and thromboembolic complications. We evaluated the use of acute isovolemic hemodilution in 12 polycythemic patients who required urgent surgery due to severe ischemia and threatened limb loss. Within 48 hours, blood was withdrawn in units of 500 ml and simultaneously replaced with 1,500 ml of lactated Ringer's solution until a hematocrit of 35 to 40 percent was achieved. After hemodilution, two patients had such a marked improvement that no further therapeutic measures were required immediately. Four patients showed definite improvement in pulmonary vascular resistance tracings and segmental Doppler pressures, but ischemia was not fully ameliorated. These patients together with the remaining six patients underwent vascular surgery within 1 to 14 days after hemodilution. A hematocrit of 32 to 40 percent was maintained during the perioperative period. All arterial reconstructions were successfully completed and there were no perioperative failures. No pulmonary emboli, myocardial infarctions, or deaths occurred in this period. These results indicate that in polycythemic patients, urgent vascular surgery can be performed more safely with the concomitant use of acute isovolemic hemodilution.

  14. Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.

    PubMed

    Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre

    2013-03-01

    Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.

  15. Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review.

    PubMed

    Benoit, Eric; O'Donnell, Thomas F; Patel, Amit N

    2013-01-01

    Researchers have accumulated a decade of experience with autologous cell therapy in the treatment of critical limb ischemia (CLI). We conducted a systematic review of clinical trials in the literature to determine the safety and efficacy of cell therapy in CLI. We searched the literature for clinical trials of autologous cell therapy in CLI, including observational series of five or more patients to accrue a large pool of patients for safety analysis. Safety analysis included evaluation of death, cancer, unregulated angiogenesis, and procedural adverse events such as bleeding. Efficacy analysis included the clinical endpoints amputation and death as well as functional and surrogate endpoints. We identified 45 clinical trials, including seven RCTs, and 1,272 patients who received cell therapy. The overall adverse event rate was low (4.2%). Cell therapy patients did not have a higher mortality rate than control patients and demonstrated no increase in cancer incidence when analyzed against population rates. With regard to efficacy, cell therapy patients had a significantly lower amputation rate than control patients (OR 0.36, p = 0.0004). Cell therapy also demonstrated efficacy in a variety of functional and surrogate outcomes. Clinical trials differed in the proportion of patients with risk factors for clinical outcomes, and these influenced rates of amputation and death. Cell therapy presents a favorable safety profile with a low adverse event rate and no increase in severe events such as mortality and cancer and treatment with cell therapy decreases the risk of amputation. Cell therapy has a positive benefit-to-risk ratio in CLI and may be a valuable treatment option, particularly for those challenging patients who cannot undergo arterial reconstruction.

  16. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats.

    PubMed

    Krompecher, T; Fryc, O

    1978-01-01

    The use of new methods and an appropriate apparatus has allowed us to make successive measurements of rigor mortis and a study of its evolution in the rat. By a comparative examination on the front and hind limbs, we have determined the following: (1) The muscular mass of the hind limbs is 2.89 times greater than that of the front limbs. (2) In the initial phase rigor mortis is more pronounced in the front limbs. (3) The front and hind limbs reach maximum rigor mortis at the same time and this state is maintained for 2 hours. (4) Resolution of rigor mortis is accelerated in the front limbs during the initial phase, but both front and hind limbs reach complete resolution at the same time.

  17. Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter.

    PubMed

    Ezzati, Mojgan; Bainbridge, Alan; Broad, Kevin D; Kawano, Go; Oliver-Taylor, Aaron; Rocha-Ferreira, Eridan; Alonso-Alconada, Daniel; Fierens, Igor; Rostami, Jamshid; Jane Hassell, K; Tachtsidis, Ilias; Gressens, Pierre; Hristova, Mariya; Bennett, Kate; Lebon, Sophie; Fleiss, Bobbi; Yellon, Derek; Hausenloy, Derek J; Golay, Xavier; Robertson, Nicola J

    2016-08-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter. © The Author(s) 2015.

  18. Spinal Cord Ischemia Secondary to Hypovolemic Shock

    PubMed Central

    Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak

    2014-01-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable. PMID:25558328

  19. Population characteristics of a recovering US Virgin Islands red hind spawning aggregation following protection

    PubMed Central

    Nemeth, Richard S.

    2006-01-01

    Many species of groupers form spawning aggregations, dramatic events where 100s to 1000s of individuals gather annually at specific locations for reproduction. Spawning aggregations are often targeted by local fishermen, making them extremely vulnerable to over fishing. The Red Hind Bank Marine Conservation District located in St. Thomas, United States Virgin Islands, was closed seasonally in 1990 and closed permanently in 1999 to protect an important red hind Epinephelus guttatus spawning site. This study provides some of the first information on the population response of a spawning aggregation located within a marine protected area. Tag-and-release fishing and fish transects were used to evaluate population characteristics and habitat utilization patterns of a red hind spawning aggregation between 1999 and 2004. Compared with studies conducted before the permanent closure, the average size of red hind increased mostly during the seasonal closure period (10 cm over 12 yr), but the maximum total length of male red hind increased by nearly 7 cm following permanent closure. Average density and biomass of spawning red hind increased by over 60% following permanent closure whereas maximum spawning density more than doubled. Information from tag returns indicated that red hind departed the protected area following spawning and migrated 6 to 33 km to a ca. 500 km2 area. Protection of the spawning aggregation site may have also contributed to an overall increase in the size of red hind caught in the commercial fishery, thus increasing the value of the grouper fishery for local fishermen. PMID:16612415

  20. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less

  1. Arteriographic Patterns of Atherosclerosis and the Association between Diabetes Mellitus and Ethnicity in Chronic Critical Limb Ischemia.

    PubMed

    Chung, Jayer; Modrall, J Gregory; Knowles, Martyn; Xiang, Qun; Lavery, Lawrence A; Timaran, Carlos H; Valentine, R James

    2017-04-01

    Disparate outcomes in critical limb ischemia (CLI) persist between ethnicities. The contribution of modifiable factors versus intrinsic biologic differences remains unclear. Hence, we aimed to quantify the associations between ethnicity and anatomic patterns of arterial occlusive disease in CLI, adjusting for known atherosclerotic risk factors. We performed a retrospective, single-center review of consecutive patients presenting to the vascular surgery service with CLI. Arterial lesions were defined by location (aortoiliac = aorta and iliac arteries; femoral = common, profunda, and superficial femoral arteries; and popliteal-tibial = infrapopliteal and tibial arteries). Stenoses ≥50% were deemed hemodynamically significant. Associations between the patients' baseline arteriographic patterns, demographics, and medical comorbidities were defined using Kruskal-Wallis, χ 2 , and Mantel-Haenszel χ 2 tests. Between August 2010 and January 2014, 286 CLI patients (n = 172 male, n = 176 tissue loss) were evaluated by the Vascular Surgery service. Two hundred seventy subjects had baseline arteriograms for analysis (black n = 134, 50%; Hispanic n = 78, 29%; Caucasian n = 58, 21%.) All ethnicities presented most frequently with simultaneous disease in all infrainguinal segments (n = 124, 46%). Of Hispanics, 30% (n = 23) presented with isolated infrapopliteal disease, which was higher than any other ethnic group (P = 0.02, χ 2 ). Caucasians (n = 8, 14%) presented more frequently with isolated aortoiliac occlusive disease than either Hispanics (n = 0, 0%) or blacks (n = 2, 1%; P = 0.06). Diabetes mellitus was most prevalent among Hispanics (n = 72, 85%) relative to blacks (n = 77, 55%) and Caucasians (n = 32, 52%; P < 0.001, χ 2 ). Median hemoglobin A 1c (HbA 1c ) was also highest among Hispanics (7.3%, interquartile range [IQR] 6.2-9.9) versus blacks and Caucasians (6.6%, IQR 5.8-8.2 and 6.0%, IQR 5.6-7.6; P = 0.002, Kruskal

  2. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  3. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    PubMed

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  4. A Porcine Model for Endolaparoscopic Abdominal Aortic Repair and Endoscopic Training

    PubMed Central

    Zarins, Christopher K.; Daunt, David A.; Coleman, Leslie A.; Saenz, Yamil; Fogarty, Thomas J.; Hermann, George D.; Nezhat, Camran R.; Olsen, Eric K.

    2003-01-01

    Objective: The goals of this laboratory model were to evaluate the performance of the surgical team and endolaparoscopic techniques in the porcine model of infrarenal abdominal aortic repair. Methods: Twenty-four pigs underwent full endolaparoscopic aorto-aortic graft implantation with voice-activated computerized robotics. The first group of 10 pigs (acute) was sacrificed while under anesthesia at 0.5 hours (5 animals) and 2 hours (5 animals). The second group of 14 pigs (survival) were recovered from anesthesia and maintained for 7 hours (5 pigs) and 7 days (9 pigs) prior to sacrifice. Survival animals were observed for evidence of hind limb dysfunction. All grafts were visually inspected at autopsy. Results: All animals survived the operation. All grafts were successfully implanted, and all were patent with intact anastomoses at autopsy. Mean aortic clamp time for each group was as follows: acute, 92.9±28.04 minutes; survival, 59.6±13.8 minutes; P=0.0008. Total operative time for each group was as follows: acute, 179±39.6 minutes; survival, 164.6±48 minutes; P=0.44 ns. Estimated blood loss for each group was as follows: acute, 214±437.8 mL; survival 169.2±271 mL; P=0.76 ns. The following outcomes were observed: 1 animal died from respiratory arrest; 1 animal suffered motor sensory dysfunction of the hind limbs (spinal cord ischemia); significant bleeding occurred in 6 of 24 pigs; 8 of the 9 seven-day survivors required minimal pain medication and had normal hind limb function. Conclusions: The reduction in aortic clamp time, total operative time, and blood loss as the study progressed indicate the feasibility of this surgical protocol and the maturation of the learning process, which is paramount in prevention of 2 main sources of morbidity: bleeding and spinal cord ischemia. The reduction in aortic clamp time between the acute and survival groups was dramatic and statistically significant. An intensive formal training program combining dry and live

  5. Cost-Effectiveness Analysis of Initial Treatment Strategies for Nonembolic Acute Limb Ischemia Using Real-Word Data.

    PubMed

    Vaidya, Varun; Gangan, Nilesh; Comerota, Anthony; Lurie, Fedor

    2017-02-01

    Nonembolic acute limb ischemia (ALI) is a condition characterized by a sudden decrease in limb perfusion and requires immediate interventions. There are multiple treatment options available including surgery, catheter-directed thrombolysis (CDT), endovascular procedures, and hybrid treatment (a combination of open and endovascular techniques). Randomized trials provide information only on clinical efficacy, but not on economic outcomes. The objective of the study was to perform the cost-effective analysis comparing different treatment alternatives of ALI. The data were collected from 4r ProMedica community hospitals in the Northwest Ohio from January 2009 to December 2012. Patients were included if they were treated within 14 days of onset of symptoms for nonembolic ALI and were divided into groups of receiving CDT, surgery, endovascular, or hybrid treatments. Demographics, comorbidities, medications taken before admission, and smoking status were collected at baseline for all patients and were compared among the treatment groups. A cost-effectiveness decision tree was developed to calculate expected costs and life years gained associated with available treatment options. A probabilistic sensitivity analysis was also performed to check the robustness of the model. A population of 205 patients with the diagnosis of ALI was included and divided into different treatment groups. There was no major significant difference in baseline characteristics among the studied groups (P > 0.05). The total costs were $17,163.47 for surgery, $20,620.39 for endovascular, $21,277.61 for hybrid, and $30,675.42 for CDT. The life years gained were 17.25 for surgery, 18 for endovascular, 18 for hybrid, and 17 for CDT. CDT was dominated because of the high cost and the low effectiveness, while hybrid treatment was dominated when compared with endovascular treatment because these 2 treatments have similar outcomes. The incremental cost-effectiveness ratio of the endovascular group over

  6. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  7. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    PubMed Central

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured

  8. The effects of topical oxygen therapy on equine distal limb dermal wound healing.

    PubMed

    Tracey, Alexandra K; Alcott, Cody J; Schleining, Jennifer A; Safayi, Sina; Zaback, Peter C; Hostetter, Jesse M; Reinertson, Eric L

    2014-12-01

    Topical oxygen therapy (TOT) has been used in human medicine to promote healing in chronic wounds. To test the efficacy and safety of TOT in horses, an experimental wound model was created by making 1 standardized dermal wound on each limb of 4 healthy horses (n = 16). Each wound was fitted with an oxygen delivery cannula and covered with a bandage. One limb of each front and hind pair was randomly assigned to the treatment group (fitted with an oxygen concentrator device), with the contralateral limb assigned to the control group (no device). Wound area, epithelial area, and contraction were measured every 3 to 4 d. Biopsy samples and culture swabs were taken on days 16 and 32 to evaluate angiogenesis, fibroplasia, epithelial hyperplasia, inflammation and bacterial growth. Mean healing time in treated wounds (45 d, range: 38 to 52 d) was not significantly different from that in the paired control wounds (50 d, range: 38 to 62 d). Topical oxygen therapy had little effect on dermal wound healing in this experimental wound model in healthy horses.

  9. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  10. Permanent antibiotic impregnated intramedullary nail in diabetic limb salvage: a case report and literature review

    PubMed Central

    Woods, Jason B.; Lowery, Nicholas J.; Burns, Patrick R.

    2012-01-01

    Managing complications after attempted hind foot and ankle arthrodesis with intramedullary nail fixation is a challenge. This situation becomes more problematic in the patient with diabetes mellitus and multiple comorbidities. Infection and subsequent osteomyelitis can be a devastating, limb threatening complication associated with these procedures. The surgeon must manage both the infectious process and the skeletal instability concurrently. This article provides a literature review and detailed management strategies for a modified technique of employing antibiotic impregnated polymethylmethacrylate-coated intramedullary nailing. PMID:22396833

  11. Comparative effectiveness of peripheral vascular intervention versus surgical bypass for critical limb ischemia in the Vascular Study Group of Greater New York.

    PubMed

    Meltzer, Andrew J; Sedrakyan, Art; Isaacs, Abby; Connolly, Peter H; Schneider, Darren B

    2016-11-01

    In this study, the effectiveness of peripheral vascular intervention (PVI) was compared with surgical bypass grafting (BPG) for critical limb ischemia (CLI) in the Vascular Study Group of Greater New York (VSGGNY). Patients undergoing BPG or PVI for CLI at VSGGNY centers (2011-2013) were included. The Society for Vascular Surgery objective performance goals for CLI were used to directly compare the safety and effectiveness of PVI and BPG. Propensity score matching was used for risk-adjusted comparisons of PVI with BPG. A total of 414 patients (268 PVI, 146 BPG) were treated for tissue loss (69%) or rest pain (31%). Patients undergoing PVI were more likely to have tissue loss (74.6% vs 57.5%; P < .001) and comorbidities such as diabetes (69.3% vs 57.5%; P = .02), heart failure (22% vs 13.7%; P = .04), and severe renal disease (13.1% vs 4.1%; P = .004). No significant differences were found between the groups across a panel of safety objective performance goals. In unadjusted analyses at 1 year, BPG was associated with higher rates of freedom from reintervention, amputation, or restenosis (90.4% vs 81.7%; P = .02) and freedom from reintervention or amputation (92.5% vs 85.8%, P = .045). After propensity score matching, PVI was associated with improved freedom from major adverse limb events and postoperative death at 1 year (95.6% vs 88.5%; P < .05). By unadjusted comparison, early reintervention and restenosis are more prevalent with PVI. However, risk-adjusted comparison underscores the safety and effectiveness of PVI in the treatment of CLI. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  12. A New Approach: Regional Nerve Blockade for Angioplasty of the Lower Limb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcus, A.J., E-mail: Adrian.Marcus@bcf.nhs.uk; Lotzof, K.; Kamath, B.S.K.

    2006-04-15

    Purpose. An audit study investigated the pilot use of regional nerve block analgesia (as an alternative to sedative/opiate, general or central neuraxial anesthesia) performed by radiologists with the assistance of imaging techniques during complex prolonged angiography. Methods. Radiologists were trained by anesthetic consultants to administer and use lower limb peripheral nerve block for difficult prolonged angioplasty procedures for patients with severe lower limb rest pain who were unable to lie in the supine position. In a pilot study 25 patients with limb-threatening ischemia received sciatic and femoral nerve blockade for angioplasty. The technique was developed and perfected in 12 patientsmore » and in a subsequent 13 patients the details of the angiography procedures, peripheral anesthesia, supplementary analgesia, complications, and pain assessment scores were recorded. Pain scores were also recorded in 11 patients prior to epidural/spinal anesthesia for critical ischemic leg angioplasty. Results. All patients with peripheral nerve blockade experienced a reduction in their ischemic rest pain to a level that permitted angioplasty techniques to be performed without spinal, epidural or general analgesia. In patients undergoing complex angioplasty intervention, the mean pain score by visual analogue scale was 3.7, out of a maximum score of 10. Conclusions. The successful use of peripheral nerve blocks was safe and effective as an alternative to sedative/opiate, epidural or general anesthesia in patients undergoing complex angiography and has optimized the use of radiological and anesthetic department resources. This has permitted the frequent radiological treatment of patients with limb-threatening ischemia and reduced delays caused by the difficulty in enlisting the help of anesthetists, often at short notice, from the busy operating lists.« less

  13. Improving Ischemia Reperfusion Injury in Vascularized Composite Tissue Allotransplantation Via Histone Deacetylase Modulation

    DTIC Science & Technology

    2017-10-01

    of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...IRI) in scenarios relevant to limb transplantation using mouse models for experimentation. Limitations in tolerated ischemia times limits the scope

  14. Subintimal recanalization of femoropopliteal occlusive lesions in patients with critical ischemia: 66 cases.

    PubMed

    Mousnier, Aurélien; Jean-Baptiste, Elixène; Sadaghianloo, Nirvana; Declemy, Serge; Brizzi, Sophie; Hassen-Khodja, Réda

    2013-05-01

    Subintimal recanalization allows for the treatment of percutaneously extended occlusive lesions. The aim of this study was to evaluate the feasibility and short- and mid-term results of subintimal recanalization in the treatment of femoropopliteal occlusive lesions in patients with critical ischemia. Between January 2009 and December 2010, consecutive patients with critical ischemia presenting with femoropopliteal arterial occlusion were included in this study. These patients underwent subintimal recanalization, and all patients had clinical and ultrasound follow-up. Sixty-six procedures were performed on 66 patients (mean age, 79±10 yrs). All patients were American Society of Anesthesiologists classification 3 or 4. Thirty-two patients had diabetes and 27 had chronic renal insufficiency. More than two-thirds (76%) of the lesions had a Trans-Atlantic Inter-Society Classification of C or D. The mean occlusion length was 13.5±7 cm. The rate of technical success was 85%. The peroperative complication rate was 4.5%. There were no cases of operative mortality. Occlusion length was the only predictive factor of restenosis (P=0.049). At 1 year, primary and secondary patency rates were 56% and 70%, respectively, for a 92% rate of limb salvage. The subintimal recanalization technique is feasible and minimally invasive. At 1 year postprocedure, the primary patency is poor, but this technique is associated with a high rate of limb salvage. It is suitable for the treatment of critical ischemia, taking into account the often precarious clinical backgrounds of these patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Hemorheological changes in ischemia-reperfusion: an overview on our experimental surgical data.

    PubMed

    Nemeth, Norbert; Furka, Istvan; Miko, Iren

    2014-01-01

    Blood vessel occlusions of various origin, depending on the duration and extension, result in tissue damage, causing ischemic or ischemia-reperfusion injuries. Necessary surgical clamping of vessels in vascular-, gastrointestinal or parenchymal organ surgery, flap preparation-transplantation in reconstructive surgery, as well as traumatological vascular occlusions, all present special aspects. Ischemia and reperfusion have effects on hemorheological state by numerous ways: besides the local metabolic and micro-environmental changes, by hemodynamic alterations, free-radical and inflammatory pathways, acute phase reactions and coagulation changes. These processes may be harmful for red blood cells, impairing their deformability and influencing their aggregation behavior. However, there are still many unsolved or non-completely answered questions on relation of hemorheology and ischemia-reperfusion. How do various organ (liver, kidney, small intestine) or limb ischemic-reperfusionic processes of different duration and temperature affect the hemorheological factors? What is the expected magnitude and dynamics of these alterations? Where is the border of irreversibility? How can hemorheological investigations be applied to experimental models using laboratory animals in respect of inter-species differences? This paper gives a summary on some of our research data on organ/tissue ischemia-reperfusion, hemorheology and microcirculation, related to surgical research and experimental microsurgery.

  16. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

    PubMed Central

    Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James

    2010-01-01

    Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711

  17. Novel Biomarkers of Arterial and Venous Ischemia in Microvascular Flaps

    PubMed Central

    Nguyen, Gerard K.; Monahan, John F. W.; Davis, Gabrielle B.; Lee, Yong Suk; Ragina, Neli P.; Wang, Charles; Zhou, Zhao Y.; Hong, Young Kwon; Spivak, Ryan M.; Wong, Alex K.

    2013-01-01

    The field of reconstructive microsurgery is experiencing tremendous growth, as evidenced by recent advances in face and hand transplantation, lower limb salvage after trauma, and breast reconstruction. Common to all of these procedures is the creation of a nutrient vascular supply by microsurgical anastomosis between a single artery and vein. Complications related to occluded arterial inflow and obstructed venous outflow are not uncommon, and can result in irreversible tissue injury, necrosis, and flap loss. At times, these complications are challenging to clinically determine. Since early intervention with return to the operating room to re-establish arterial inflow or venous outflow is key to flap salvage, the accurate diagnosis of early stage complications is essential. To date, there are no biochemical markers or serum assays that can predict these complications. In this study, we utilized a rat model of flap ischemia in order to identify the transcriptional signatures of venous congestion and arterial ischemia. We found that the critical ischemia time for the superficial inferior epigastric fasciocutaneus flap was four hours and therefore performed detailed analyses at this time point. Histolgical analysis confirmed significant differences between arterial and venous ischemia. The transcriptome of ischemic, congested, and control flap tissues was deciphered by performing Affymetrix microarray analysis and verified by qRT-PCR. Principal component analysis revealed that arterial ischemia and venous congestion were characterized by distinct transcriptomes. Arterial ischemia and venous congestion was characterized by 408 and 1536>2-fold differentially expressed genes, respectively. qRT-PCR was used to identify five candidate genes Prol1, Muc1, Fcnb, Il1b, and Vcsa1 to serve as biomarkers for flap failure in both arterial ischemia and venous congestion. Our data suggests that Prol1 and Vcsa1 may be specific indicators of venous congestion and allow clinicians to

  18. Predictors of improved quality of life and claudication in patients undergoing spinal cord stimulation for critical lower limb ischemia.

    PubMed

    Tshomba, Yamume; Psacharopulo, Daniele; Frezza, Serena; Marone, Enrico Maria; Astore, Domenico; Chiesa, Roberto

    2014-04-01

    The aim of this study was to determine predictors of improved quality of life and claudication in patients undergoing spinal cord stimulation (SCS) for critical lower limb ischemia. We retrospectively analyzed 101 consecutive patients with few meter claudication and nonhealing ulcer who underwent definitive SCS. These patients were selected among 274 SCS patients treated at our center from 1995 to 2012. All presented with non-reconstructable critical leg ischemia (NR-CLI) and underwent supervised exercise therapy, best medical care and regular ulcers standard or advanced medications for at least 1 month before SCS implantation. We measured self-perceived quality of life using the SF-36 questionnaire. Patients with an improved walking distance of at least 30 meters after SCS had significant improvement on SF-36 questionnaire scores. We considered 30 meters as the cut-off for clinically significant improvement in pain-free walking distance, and we defined this value as functional success. Logistic regression was applied to assess baseline and other patient variables as possible predictors of functional success. Neither perioperative mortality nor significant complications were found. At a median follow-up of 69 months (range 1-202 months), mortality, major amputation, and minor amputation were 8.9%, 5.9%, and 6.9%, respectively. Functional clinical success was reported in 25.7% of cases. Independent predictors of functional success at univariate analysis included delay between the onset of the ulcer and SCS (P < 0.001) and the pain-free walking distance before SCS (P < 0.002). The only predictive factor of functional success at multivariate analysis was the delay between the onset of ulcer and SCS (median delay in patients with and without functional success was 3 and 15 months, respectively). In particular, comparable to pain-free walking distance before SCS, the success rate decreased by 40% for each month elapsed from onset of ulcer to SCS. In our series of

  19. Aging and Outcome in Patients With Peripheral Artery Disease and Critical Limb Ischemia.

    PubMed

    Skonetzki, Saskia; Lüders, Florian; Engelbertz, Christiane; Malyar, Nasser M; Freisinger, Eva; Meyborg, Matthias; Reinecke, Holger

    2016-10-01

    Aging of the population is one of the major challenges facing public health systems. The impact of aging on acute and long-term outcome of patients with peripheral artery disease (PAD) and critical limb ischemia (CLI) is currently not sufficiently clarified. This analysis consists of comprehensive, anonymized data obtained from the largest public health insurance in Germany. A total of 41,740 PAD patients with an index hospitalization between January 1, 2009, and December 31, 2011, and a follow-up time up to 4 years were included (40-49 years: n = 1179; 50-59 years: n = 5415; 60-69 years: n = 10,565; 70-79 years: n = 13,313; 80-89 years: n = 9714; and 90-100 years: n = 1554). Advanced age was associated with female gender (men-women ratio up to 1:3.3), less smoking, less frequent obesity, more often chronic heart failure (up to 9-fold), chronic kidney disease (up to 4-fold), fewer angiographies (up to 0.8-fold), fewer endovascular (up to 0.5-fold) and surgical revascularizations (up to 0.9-fold), higher rates of amputation (up to 2.5-fold), acute renal failure (up to 3.7-fold), in-hospital mortality (up to 12-fold), myocardial infarction (up to 2.8-fold), ischemic stroke (up to 1.5-fold), infection (up to 1.4-fold), and sepsis (up to 1.8-fold) (each P < .001). During follow-up, advanced age was a highly significant independent predictor of long-term mortality, myocardial infarction, and stroke (each P < .001). Lengths of hospital stay (up to 1.3-fold longer) and reimbursement costs (up to 1.1-fold higher) were clearly associated with advanced age (each P < .001). This study demonstrates the impact of aging on morbidity, in-hospital treatment, complications, and acute and long-term outcome of PAD patients. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  20. Radiographic features of the limbs of juvenile and subadult loggerhead sea turtles (Caretta caretta)

    PubMed Central

    Valente, Ana Luisa; Marco, Ignasi; Zamora, Maria Angeles; Parga, Maria Luz; Lavín, Santiago; Alegre, Ferran; Cuenca, Rafaela

    2007-01-01

    This study aimed to provide the normal radiographic anatomic appearance of the limbs of the loggerhead sea turtle, Caretta caretta. Dorsopalmar and dorsoplantar radiographs were taken of the forelimbs and hindlimbs of 15 juvenile and 15 subadult loggerhead sea turtles, 17 alive and 13 dead. For comparison, computed tomographic, gross anatomic, osteologic, and histologic studies were performed on the limbs of 5 of the sea turtles. Bones from the distal part of the fore and hind flippers were seen in detail with a mammographic film–screen combination. The pectoral and pelvic girdles, superimposed by the carapace, were better seen on standard radiographs with the use of rare-earth intensifying screens. Mammographic radiographs of the manus of 5 small juvenile turtles showed active growth zones. Visualization of bone contours in the distal part of the limbs was clearer than in mammals owing to the very few superimpositions. The presence of a substantial amount of cartilage in the epiphyses produced better visibility of limb ends. We conclude that use of a mammography film–screen combination is the best way to evaluate the bony and joint structures of the limbs of sea turtles. Radiography provides reliable images for clinical purposes. Considering the low cost and logistics of this technique, it is a practical ancillary test for marine animal rehabilitation centers to use. PMID:17955906

  1. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity

    PubMed Central

    Capoccia, Benjamin J.; Robson, Debra L.; Levac, Krysta D.; Maxwell, Dustin J.; Hohm, Sarah A.; Neelamkavil, Marian J.; Bell, Gillian I.; Xenocostas, Anargyros; Link, Daniel C.; Piwnica-Worms, David; Nolta, Jan A.

    2009-01-01

    The development of cell therapies to treat peripheral vascular disease has proven difficult because of the contribution of multiple cell types that coordinate revascularization. We characterized the vascular regenerative potential of transplanted human bone marrow (BM) cells purified by high aldehyde dehydrogenase (ALDHhi) activity, a progenitor cell function conserved between several lineages. BM ALDHhi cells were enriched for myelo-erythroid progenitors that produced multipotent hematopoietic reconstitution after transplantation and contained nonhematopoietic precursors that established colonies in mesenchymal-stromal and endothelial culture conditions. The regenerative capacity of human ALDHhi cells was assessed by intravenous transplantation into immune-deficient mice with limb ischemia induced by femoral artery ligation/transection. Compared with recipients injected with unpurified nucleated cells containing the equivalent of 2- to 4-fold more ALDHhi cells, mice transplanted with purified ALDHhi cells showed augmented recovery of perfusion and increased blood vessel density in ischemic limbs. ALDHhi cells transiently recruited to ischemic regions but did not significantly integrate into ischemic tissue, suggesting that transient ALDHhi cell engraftment stimulated endogenous revascularization. Thus, human BM ALDHhi cells represent a progenitor-enriched population of several cell lineages that improves perfusion in ischemic limbs after transplantation. These clinically relevant cells may prove useful in the treatment of critical ischemia in humans. PMID:19324906

  2. PEGylated carboxyhemoglobin bovine (SANGUINATE): results of a phase I clinical trial.

    PubMed

    Misra, Hemant; Lickliter, Jason; Kazo, Friedericke; Abuchowski, Abraham

    2014-08-01

    PEGylated carboxyhemoglobin bovine (SANGUINATE) is a dual action carbon monoxide releasing (CO)/oxygen (O2 ) transfer agent for the treatment of hypoxia. Its components inhibit vasoconstriction, decrease extravasation, limit reactive oxygen species production, enhance blood rheology, and deliver oxygen to the tissues. Animal models of cerebral ischemia, peripheral ischemia, and myocardial ischemia demonstrated SANGUINATE's efficacy in reducing myocardial infarct size, limiting necrosis from cerebral ischemia, and promoting more rapid recovery from hind limb ischemia. In a Phase I trial, three cohorts of eight healthy volunteers received single ascending doses of 80, 120, or 160 mg/kg of SANGUINATE. Two volunteers within each cohort served as a saline control. There were no serious adverse events. Serum haptoglobin decreased, but did not appear to be dose related. The T1/2 was dose dependent and ranged from 7.9 to 13.8 h. In addition to the Phase I trial, SANGUINATE was used under an expanded access emergency Investigational New Drug. SANGUINATE was found to be safe and well tolerated in a Phase I clinical trial, and therefore it will advance into further clinical trials in patients. © 2014 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).

  3. Remote Ischemic Preconditioning Enhances the Expression of Genes Encoding Antioxidant Enzymes and Endoplasmic Reticulum Stress-Related Proteins in Rat Skeletal Muscle.

    PubMed

    Park, Ui Jun; Kim, Hyoung Tae; Cho, Won Hyun; Park, Jae Hyoung; Jung, Hye Ra; Kim, Min Young

    2016-12-01

    Ischemic preconditioning (IPC), including remote IPC (rIPC) and direct IPC (dIPC), is a promising method to decrease ischemia-reperfusion (IR) injury. This study tested the effect of both rIPC and dIPC on the genes for antioxidant enzymes and endoplasmic reticulum (ER) stress-related proteins. Twenty rats were randomly divided into the control and study groups. In the control group (n=10), the right hind limb was sham-operated. The left hind limb (IscR) of the control group underwent IR injury without IPC. In the study group (n=10), the right hind limb received IR injury after 3 cycles of rIPC. The IscR received IR injury after 3 cycles of dIPC. Gene expression was analyzed by Quantitative real-time polymerase chain reaction from the anterior tibialis muscle. The expression of the antioxidant enzyme genes including glutathione peroxidase (GPx), superoxide dismutase (SOD) 1 and catalase (CAT) were significantly reduced in IscR compared with sham treatment. In comparison with IscR, rIPC enhanced the expression of GPx, SOD2, and CAT genes. dIPC enhanced the expression of SOD2 and CAT genes. The expression of SOD2 genes was consistently higher in rIPC than in dIPC, but the difference was only significant for SOD2. The expression of genes for ER stress-related proteins tended to be reduced in IscR in comparison with sham treatment. However, the difference was only significant for C/EBP homologous protein (CHOP). In comparison with IscR, rIPC significantly up-regulated activating transcription factor 4 and CHOP, whereas dIPC up-regulated CHOP. Both rIPC and dIPC enhanced expression of genes for antioxidant enzymes and ER stress-related proteins.

  4. Influence of training on the biokinematics in trotting Andalusian horses.

    PubMed

    Cano, M R; Miró, F; Diz, A M; Agüera, E; Galisteo, A M

    2000-11-01

    The aim of this study was to determine the influence of a 10-month training programme on the linear, temporal and angular characteristics of the fore and hind limbs at the trot in the Andalusian horse, using standard computer-aided videography. Sixteen male Andalusian horses were observed before and after training. Six strides were randomly selected for analysis in each horse and linear, temporal and angular parameters were calculated for fore and hind limbs. The training programme used here produced significant changes in kinematic parameters, such as shortening of stride length, and increase in swing duration and a decrease in hind limb stance percentage. No significant differences were recorded in the angular values for the forelimb joints. In trained horses, the more proximal joints of the hind limb, especially the hip and stifle, had a greater flexion while the fetlock showed a smaller extension angle. At the beginning of the swing phase, hip and stifle joints presented angles that were significantly more flexed. When the hind limbs came into contact with the ground, all the joints presented greater flexion after training.

  5. Length asymmetry of the bovine digits.

    PubMed

    Muggli, E; Sauter-Louis, C; Braun, U; Nuss, K

    2011-06-01

    The lengths of the digital bones of the fore- and hind-limbs obtained post mortem from 40 cattle of different ages were measured using digital radiographs. The lengths of the individual digital bones and the overall length of the digit were determined using computer software. The lateral metacarpal/metatarsal condyle, and lateral P1 and P2 were significantly longer than their medial counterparts, whereas P3 of the medial digit was longer than its lateral partner. Measured from the cannon bone epiphysis to the tip of the pedal bone, the mean increased length of the lateral digit was 0.8 mm in the fore- and 1.5 mm in the hind-limb. When the lengths of the digital bones were summed, the mean length of the lateral digit was 1.8 mm longer in the fore-limb and 2.1 mm longer in the hind-limb. Based on these findings, it can be concluded that the lengths of the paired digits differ in cattle. The majority of cattle have longer lateral digits in the fore- and hind-limbs. This asymmetry might explain why the lateral hind-limb claws are predisposed to sole ulcers on hard surfaces. In the hind-limbs, the impact is transferred from the pelvis directly to the longer lateral digit. In the fore-limb claws, the tenomuscular attachment to the trunk may be involved in a more even weight distribution and in a shift of weight to the medial claw. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness.

    PubMed

    Rhodin, M; Pfau, T; Roepstorff, L; Egenvall, A

    2013-12-01

    Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    NASA Technical Reports Server (NTRS)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  8. Interaction of the elytra and hind wing of a rhinoceros beetle (Trypoxylus dichotomus) during a take-off mode

    NASA Astrophysics Data System (ADS)

    Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae

    2015-11-01

    The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.

  9. Effects of simulated weightlessness and sympathectomy on maximum VO2 of male rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Stump, C. S.; Beaulieu, S. M.; Rahman, Z.; Sebastian, L. A.

    1989-01-01

    The effects of simulated weightlessness (hind-limb suspension) and chemical sympathectomy (by repeated injections with guanethidine sulfate) on the maximum oxygen consumption (VO2 max) of female rats were investigated in rats assigned for 14 days to one of three groups: a head-down hind-limb suspension, a horizontal suspension with hind limbs weight bearing, or the caged control. The VO2 max values were assessed by having rats run on a treadmill enclosed in an airtight chamber. The hind-limb-suspended sympathectomized rats were found to exhibit shorter run times and lower mechanical efficiencies, compared to their presuspension values or the values from saline-injected suspended controls. On the other hand, the suspended sympathectomized rats did not demonstrate a decrease in the VO2 max values that was observed in saline-injected controls.

  10. Geometric morphometrics analysis of the hind wing of leaf beetles: proximal and distal parts are separate modules.

    PubMed

    Ren, Jing; Bai, Ming; Yang, Xing-Ke; Zhang, Run-Zhi; Ge, Si-Qin

    2017-01-01

    The success of beetles is mainly attributed to the possibility to hide the hindwings under the sclerotised elytra. The acquisition of the transverse folding function of the hind wing is an important event in the evolutionary history of beetles. In this study, the morphological and functional variances in the hind wings of 94 leaf beetle species (Coleoptera: Chrysomelinae) is explored using geometric morphometrics based on 36 landmarks. Principal component analysis and Canonical variate analysis indicate that changes of apical area, anal area, and middle area are three useful phylogenetic features at a subtribe level of leaf beetles. Variances of the apical area are the most obvious, which strongly influence the entire venation variance. Partial least squares analysis indicates that the proximal and distal parts of hind wings are weakly associated. Modularity tests confirm that the proximal and distal compartments of hind wings are separate modules. It is deduced that for leaf beetles, or even other beetles, the hind wing possibly exhibits significant functional divergences that occurred during the evolution of transverse folding that resulted in the proximal and distal compartments of hind wings evolving into separate functional modules.

  11. Validation of the Society for Vascular Surgery's objective performance goals for critical limb ischemia in everyday vascular surgery practice.

    PubMed

    Goodney, Philip P; Schanzer, Andres; Demartino, Randall R; Nolan, Brian W; Hevelone, Nathanael D; Conte, Michael S; Powell, Richard J; Cronenwett, Jack L

    2011-07-01

    To develop standardized metrics for expected outcomes in lower extremity revascularization for critical limb ischemia (CLI), the Society for Vascular Surgery (SVS) has developed objective performance goals (OPGs) based on aggregate data from randomized trials of lower extremity bypass (LEB). It remains unknown, however, if these targets can be achieved in everyday vascular surgery practice. We applied SVS OPG criteria to 1039 patients undergoing 1039 LEB operations for CLI with autogenous vein (excluding patients on dialysis) within the Vascular Study Group of New England (VSGNE). Each of the individual OPGs was calculated within the VSGNE dataset, along with its surrounding 95% confidence intervals (CIs) and compared to published SVS OPGs using χ(2) comparisons and survival analysis. Across most risk strata, patients in the VSGNE and SVS OPG cohorts were similar (clinical high-risk [age >80 years and tissue loss]: 15.3% VSGNE; 16.2% SVS OPG; P = .58; anatomic high risk [infrapopliteal target artery]: 57.8% VSGNE; 60.2% SVS OPG; P = .32). However, the proportion of VSGNE patients designated as conduit high-risk (lack of single-segment great saphenous vein) was lower (10.2% VSGNE; 26.9% SVS OPG;P < .001). The primary safety endpoint, major adverse limb events (MALE) at 30 days, was lower in the VSGNE cohort (3.2%; 95% CI, 2.3-4.6) than the SVS OPG cohort (6.2%; 95% CI, 4.2-8.1; P = .05). The primary efficacy OPG endpoint, freedom from any MALE or postoperative death within the first year (MALE + postoperative death [POD]), was similar between VSGNE and SVS OPG cohorts (77%; 95% CI, 74%-80%) SVS OPG, 74% (95% CI, 71%-77%) VSGNE, P = .58). In the remaining safety and efficacy OPGs, the VSGNE cohort met or exceeded the benchmarks established by the SVS OPG cohort. Community and academic centers in everyday vascular surgery practice can meet OPGs derived from centers of excellence in LEB. Quality improvement initiatives, as well as clinical trials, should incorporate

  12. Involvement of serotoninergic pathways in the control of luteinizing hormone secretion in red deer hinds.

    PubMed

    Villa-Diaz, L G; Barrell, G K

    1999-01-01

    Two experiments were conducted to determine whether serotoninergic pathways, which are implicated in the neuroendocrine regulation of luteininzing hormone (LH) secretion in domestic animals, have a similar action in red deer hinds. In the non-breeding season (August), ovariectomized (n = 5) and ovariectomized-thyroidectomized (n = 5) hinds received a vehicle solution followed 4 h later by either serotonin (66 microg kg(-1) i.v.) every 10 min for a further 4 h or the serotonin antagonist, cyproheptadine (3 mg kg(-1) i.v.) as a single injection. This procedure was repeated in the breeding season (June). In the non-breeding season serotonin was without effect, but cyproheptadine reduced LH pulse frequency and amplitude in ovariectomized-thyroidectomized hinds (P<0.01). During the breeding season, serotonin reduced LH pulse amplitude in ovariectomized hinds (P<0.05) and cyproheptadine reduced LH pulse frequency in both ovariectomized and ovariectomized-thyroidectomized hinds (P<0.05 and P<0.01, respectively). On each occasion, cyproheptadine increased (P<0.01) plasma prolactin concentration, whereas serotonin had no effect. These results indicate a stimulatory role for serotoninergic neurons on the hypothalamic GnRH pulse generator mechanism of red deer hinds during the breeding season. In a second experiment, the LH response to GnRH (5 microg i.v.) was examined in ovariectomized hinds (n = 5) following administration of a serotonin infusion (6.6 microg kg(-1) min(-1) i.v. for 15 min), cyproheptadine (3 mg kg(-1) i.v. as a single dose) or vehicle, in the breeding season (July) after induction of halothane anaesthesia and in the non-breeding season (December) without anaesthesia. Halothane anaesthesia eliminated endogenous pulses of LH. In comparison with the vehicle-treated controls, the response of plasma LH to exogenous GnRH was not altered by serotonin or cyproheptadine in either season, which shows that serotonin has no effect on LH release at the pituitary gland

  13. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.

    PubMed

    MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F

    2017-11-01

    Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.

  14. Hinds Community College MSEIP program

    NASA Image and Video Library

    2005-06-24

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  15. Hinds Community College MSEIP program

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Student Assistant Antoinette Davis (left) of Utica; Carmella Forsythe, 13, of Clinton; Terri Henderson, 14, of Clinton; Tyra Greer, 12, of Port Gibson; and Kala Battle, 14, of Edwards, answer curriculum questions about NASA's Return to Flight mission exhibit at StenniSphere, the visitor center at NASA's Stennis Space Center (SSC) near Bay St. Louis, Miss. The girls were on a field trip to StenniSphere with fellow participants in Hinds Community College's MSEIP (Minority Science Engineering Improvement Program) summer program. MSEIP encourages students to pursue and prepare for careers in science, technology, engineering and math.

  16. Retrograde Transpedal Access for Revascularization of Below-the-Knee Arteries in Patients with Critical Limb Ischemia after an Unsuccessful Antegrade Transfemoral Approach.

    PubMed

    Goltz, J P; Planert, M; Horn, M; Wiedner, M; Kleemann, M; Barkhausen, J; Stahlberg, E

    2016-10-01

    might be the re-entry following subintimal retrograde lesion crossing.• After a failed attempt at antegrade revascularization of a BTK occlusion, a retrograde approach should be performed. Citation Format: • Goltz JP, Planert M, Horn M et al. Retrograde Transpedal Access for Revascularization of Below-the-Knee Arteries in Patients with Critical Limb Ischemia after an Unsuccessful Antegrade Transfemoral Approach. Fortschr Röntgenstr 2016; 188: 940 - 948. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury

    PubMed Central

    GAO, JIANZHI; ZHAO, LINJING; WANG, YONGLING; TENG, QINGLEI; LIANG, LIDONG; ZHANG, JINYING

    2013-01-01

    The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 preconditioning was administered 15 min before reperfusion. In the LY294002+LIPC group, following LIPC, LY294002 was administered 15 min before reperfusion. The relative expression of myocardial Bcl-2 and caspase-3 mRNA and the apoptotic index for each group were determined by reverse transcription-polymerase chain reaction (RT-PCR) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), respectively. The ultrastructure of the cardiac muscle tissues was observed by election microscopy. Compared with the sham group, the expression of caspase-3 mRNA in the MIRI group significantly increased (P<0.05) and the expression of Bcl-2 mRNA clearly decreased. Compared with the MIRI group, LIPC reduced the expression of caspase-3 and increased the expression of Bcl-2 mRNA (P<0.05). There were no significant differences between the LY294002+LIPC group and the MIRI group. Compared with the sham group, the apoptotic index of myocardial cells in the MIRI group significantly increased (P<0.05). Compared with the MIRI group, LIPC significantly decreased the apoptotic index of myocardial cells (P<0.05) and LY294002 increased the apoptotic index of myocardial cells. Compared with the LIPC group, LY294002+LIPC significantly increased the apoptotic index of myocardial cells (P<0.05). There were no significant differences between the LY294002+LIPC and MIRI groups. In conclusion, LIPC increased the expression of Bcl-2 and decreased caspase-3 mRNA and

  18. Neutrophil-to-Lymphocyte Ratio and Its Association with Critical Limb Ischemia in PAOD Patients

    PubMed Central

    Gary, Thomas; Pichler, Martin; Belaj, Klara; Hafner, Franz; Gerger, Armin; Froehlich, Harald; Eller, Philipp; Pilger, Ernst; Brodmann, Marianne

    2013-01-01

    Background The Neutrophil-to-Lymphocyte ratio (NLR) is an easy to perform test from the white blood cell count. An increase in NLR has been associated with vascular endpoints reflecting inflammation in atherosclerotic lesions. Atherosclerosis is a global threat and vascular endpoints, like myocardial infarction or critical limb ischemia (CLI), are a leading cause of death in industrialized countries. We therefore investigated NLR and its association with CLI and other vascular endpoints in peripheral arterial occlusive disease (PAOD) patients. Methods and Findings We evaluated 2121 PAOD patients treated at our institution from 2005 to 2010. NLR was calculated and the cohort was divided into tertiles according to the NLR. An optimal cut-off value for the continuous NLR was calculated by applying a receiver operating curve analysis to discriminate between CLI and non-CLI. In our cohort occurrence of CLI significantly increased with an increase in NLR. As an optimal cut-off a NLR of 3.95 was identified. Two groups were categorized, one containing 1441 patients (NLR≤3.95) and a second group with 680 patients (NLR>3.95). CLI was more frequent in NLR>3.95 patients (330(48.5%)) compared to NLR≤3.95 patients (350(24.3%)) (p<0.001), as were prior myocardial infarction (48(7.0%) vs. 47(3.3%), p<0.001) and stroke (73(10.7) vs. 98(6.8%), p<0.001). Regarding other inflammatory parameters, C-reactive protein (median 5.6 mg/l (2.3–19.1) vs. median 3 mg/l (1.5–5.5)) and fibrinogen (median 412 mg/dl (345.5–507.5) vs. 344 mg/dl (308–403.5)) also significantly differed in the two patient groups (both p<0.001). A NLR>3.95 was associated with an OR of 2.5 (95%CI 2.3–2.7) for CLI even after adjustment for other vascular risk factors. Conclusions An increased NLR is significantly associated with patients at high risk for CLI and other vascular endpoints. The NLR is an easy to perform test, which could be used to highlight patients at high risk for vascular endpoints. PMID

  19. Rearfoot Transcutaneous Oximetry is a Useful Tool to Highlight Ischemia of the Heel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, Valentina, E-mail: valentina-izzo@virgilio.it; Meloni, Marco, E-mail: meloni.marco@libero.it; Fabiano, Sebastiano, E-mail: sebas575@yahoo.it

    PurposeTo demonstrate the usefulness of rearfoot transcutaneous oximetry to assess the peripheral arterial disease in diabetic patients with heel ulcer.MethodsFrom our database of 550 critical limb ischemia diabetic patients followed after a percutaneous transluminal angioplasty, we have selected patients with below the knee arterial disease. Patients were grouped according to the dorsal transcutaneous oximetry value (Group A < 30 mmHg; Group B ≥ 30 mmHg). Patients of Group B had a second oximetry performed at the rearfoot, close to the lesion localized in all cases at the heel. Finally, the analysis of the arterial pattern disease has been done.ResultsWe selected 191 patients: Group A (151 patients),more » dorsal transcutaneous oximetry of 11.8 ± 0.7 mmHg; Group B (40 patients), dorsal transcutaneous oximetry of 44.2 ± 10.1 mmHg. In Group B, rearfoot oximetry was 20.5 ± 5 mmHg, significantly lower than dorsal oximetry (p = 0.0179). The anterior tibial artery was involved in all patients of Group A. In Group B, the anterior tibial artery was involved in 15 subjects and never alone; the posterior tibial artery was involved in 20 subjects and in 11 cases alone. The peroneal artery was affected in 20 subjects and in 14 patients alone.ConclusionWhen a heel lesion is present and the transcutaneous oximetry recorded on the dorsum of the foot does not confirm the presence of critical limb ischemia (not ≤30 mmHg), a second oximetry recorded on the rearfoot is useful to point out ischemia of the peroneal artery and/or of the posterior tibial artery.« less

  20. Spatial Distribution and Conservation of Speckled Hind and Warsaw Grouper in the Atlantic Ocean off the Southeastern U.S.

    PubMed Central

    Farmer, Nicholas A.; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28–33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25–27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3–8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14–29% of

  1. Role of the plasma cascade systems in ischemia/reperfusion injury of bone.

    PubMed

    Zhang, Shengye; Wotzkow, Carlos; Bongoni, Anjan K; Shaw-Boden, Jane; Siegrist, Mark; Taddeo, Adriano; Blank, Fabian; Hofstetter, Willy; Rieben, Robert

    2017-04-01

    Ischemia/reperfusion (I/R) injury has been extensively studied in organs such as heart, brain, liver, kidney, and lung. As a vascularized organ, bone is known to be susceptible to I/R injury too, but the respective mechanisms are not well understood to date. We therefore hypothesized that, similar to other organs, plasma cascade-induced inflammation also plays a role in bone I/R injury. Reperfusion injury in rat tibia was induced by unilateral clamping of the femoral artery and additional use of a tourniquet, while keeping the femoral vein patent to prevent venous congestion. Rats were subjected to 4h ischemia and 24h reperfusion. Deposition of complement fragment C3b/c and fibrin as well as expression of tissue factor (TF), tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1), and E-selectin was detected by immunohistochemistry. In plasma, the levels of high mobility group box1 (HMGB1) were measured by ELISA. The total level of complement in serum was assessed by the CH50 test. Our results show that deposition of C3b/c was significantly increased with respect to healthy controls in cortical bone as well as in marrow of reperfused limbs. C3b/c deposition was also increased in cortical bone, but not in bone marrow, of contralateral limbs. Deposition of fibrin, as well as expression of PAI-1, was significantly increased in bone after ischemia and reperfusion, whereas expression of tPA was reduced. These differences were most prominent in vessels of bone, both in marrow and cortical bone, and both in reperfused and contralateral limbs. However, PAI-1, was only increased in vessels of reperfused cortical bone and there were no significant changes in expression of E-selectin. With respect to solid bone tissue, a significant increase of C3b/c and fibrin deposition was shown in osteocytes, and for fibrin also in the bone matrix, in both contralateral and reperfused cortical bone compared with normal healthy controls. A slight expression of TF was

  2. Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells

    PubMed Central

    Rosová, Ivana; Dao, Mo; Capoccia, Ben; Link, Daniel; Nolta, Jan A.

    2010-01-01

    Mesenchymal stem cells (MSC) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSC have been shown to improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSC are cultured under ambient, or normoxic, conditions (21% oxygen). However, the physiological niches for MSC in the bone marrow and other sites have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSC cultured in standard conditions must adapt from 21% oxygen in culture to less than 1% oxygen in the ischemic tissue. We therefore examined the effects of preculturing human bone marrow-derived MSC in hypoxic conditions (1%–3% oxygen) to elucidate the best conditions that enhance their tissue regenerative potential. We demonstrated that MSC cultured in hypoxia activate the Akt signaling pathway while maintaining their viability and cell cycle rates. We also showed that MSC cultured in hypoxia induced expression of cMet, the major receptor for hepatocyte growth factor (HGF), and enhanced cMet signaling. MSC cultured in hypoxic conditions increased their migration rates. Since migration and HGF responsiveness are thought to be key mediators of MSC recruitment and/or activation in vivo, we next examined the tissue regenerative potential of MSC cultured under hypoxic conditions, using a murine hind limb ischemia model. We showed that local expression of HGF is increased in ischemic muscle in this model. Intra-arterial injection of MSC cultured in either normoxic or hypoxic conditions 24 hours after surgical induction of hind limb ischemia enhanced revascularization compared with saline controls. However, restoration of blood flow was observed significantly earlier in mice that had been injected with hypoxic preconditioned MSC. Collectively, these data suggest that preculturing MSC under hypoxic conditions prior to transplantation improves their tissue regenerative potential. PMID:18511601

  3. Topical Nitroglycerine for Neonatal Arterial Associated Peripheral Ischemia following Cannulation: A Case Report and Comprehensive Literature Review

    PubMed Central

    Mosalli, Rafat; Elbaz, Mohamed; Paes, Bosco

    2013-01-01

    Arterial cannulation in neonates is usually performed for frequent blood pressure monitoring and blood sampling. The procedure, while easily executed by skilled neonatal staff, can be associated with serious complications such as vasospasm, thrombosis, embolism, hematoma, infection, peripheral nerve damage, ischemia, and tissue necrosis. Several treatment options are available to reverse vascular induced ischemia and tissue damage. Applied interventions depend on the extent of tissue involvement and whether the condition is progressive and deemed life threatening. Standard, noninvasive measures include immediate catheter removal, limb elevation, and warming the contralateral extremity. Topical vasodilators, anticoagulation, thrombolysis, and surgery are considered secondary therapeutic strategies. A comprehensive literature search indicates that topical nitroglycerin has been utilized for the treatment of tissue ischemia in three preterms with umbilical arterial catheters and four with peripheral arterial lines. We report the first successful use of nitroglycerine ointment in a critically ill preterm infant with ischemic hand changes after brachial artery cannulation. PMID:24251058

  4. Remote limb ischemic conditioning enhances motor learning in healthy humans

    PubMed Central

    Cherry-Allen, Kendra M.; Gidday, Jeff M.; Lee, Jin-Moo; Hershey, Tamara

    2015-01-01

    Brief bouts of sublethal ischemia have been shown to protect exposed tissue (ischemic conditioning) and tissues at remote sites (remote ischemic conditioning) against subsequent ischemic challenges. Given that the mechanisms of this protective phenomenon are multifactorial and epigenetic, we postulated that remote limb ischemic conditioning (RLIC) might enhance mechanisms responsible for neural plasticity, and thereby facilitate learning. Specifically, we hypothesized that conditioning of the nervous system with RLIC, achieved through brief repetitive limb ischemia prior to training, would facilitate the neurophysiological processes of learning, thus making training more effective and more long-lasting. Eighteen healthy adults participated in this study; nine were randomly allocated to RLIC and nine to sham conditioning. All subjects underwent seven consecutive weekday sessions and 2-wk and 4-wk follow-up sessions. We found that RLIC resulted in significantly greater motor learning and longer retention of motor performance gains in healthy adults. Changes in motor performance do not appear to be due to a generalized increase in muscle activation or muscle strength and were not associated with changes in serum brain-derived neurotrophic factor (BDNF) concentration. Of note, RLIC did not enhance cognitive learning on a hippocampus-dependent task. While future research is needed to establish optimal conditioning and training parameters, this inexpensive, clinically feasible paradigm might ultimately be implemented to enhance motor learning in individuals undergoing neuromuscular rehabilitation for brain injury and other pathological conditions. PMID:25867743

  5. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design.

    PubMed

    Benoit, Eric; O'Donnell, Thomas F; Iafrati, Mark D; Asher, Enrico; Bandyk, Dennis F; Hallett, John W; Lumsden, Alan B; Pearl, Gregory J; Roddy, Sean P; Vijayaraghavan, Krishnaswami; Patel, Amit N

    2011-09-27

    Autologous bone marrow-derived stem cells have been ascribed an important therapeutic role in No-Option Critical limb Ischemia (NO-CLI). One primary endpoint for evaluating NO-CLI therapy is major amputation (AMP), which is usually combined with mortality for AMP-free survival (AFS). Only a trial which is double blinded can eliminate physician and patient bias as to the timing and reason for AMP. We examined factors influencing AMP in a prospective double-blinded pilot RCT (2:1 therapy to control) of 48 patients treated with site of service obtained bone marrow cells (BMAC) as well as a systematic review of the literature. Cells were injected intramuscularly in the CLI limbs as either BMAC or placebo (peripheral blood). Six month AMP rates were compared between the two arms. Both patient and treating team were blinded of the assignment in follow-up examinations. A search of the literature identified 9 NO-CLI trials, the control arms of which were used to determine 6 month AMP rates and the influence of tissue loss. Fifteen amputations occurred during the 6 month period, 86.7% of these during the first 4 months. One amputation occurred in a Rutherford 4 patient. The difference in amputation rate between patients with rest pain (5.6%) and those with tissue loss (46.7%), irrespective of treatment group, was significant (p = 0.0029). In patients with tissue loss, treatment with BMAC demonstrated a lower amputation rate than placebo (39.1% vs. 71.4%, p = 0.1337). The Kaplan-Meier time to amputation was longer in the BMAC group than in the placebo group (p = 0.067). Projecting these results to a pivotal trial, a bootstrap simulation model showed significant difference in AFS between BMAC and placebo with a power of 95% for a sample size of 210 patients. Meta-analysis of the literature confirmed a difference in amputation rate between patients with tissue loss and rest pain. BMAC shows promise in improving AMP-free survival if the trends in this pilot study are validated

  6. Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizations

    NASA Astrophysics Data System (ADS)

    Matthews, Cameron Anthony

    Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds' oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of

  7. Animal Productivity and Health Responses to Hind-Gut Acidosis

    USDA-ARS?s Scientific Manuscript database

    Microbial fermentation of carbohydrates in the large intestine of dairy cattle is responsible for 5 to 10% of total tract carbohydrate digestion. When dietary, animal, and/or environmental factors contribute to abnormal, excessive flow of fermentable carbohydrates to the large intestine, hind-gut ac...

  8. Acidic preconditioning of endothelial colony-forming cells (ECFC) promote vasculogenesis under proinflammatory and high glucose conditions in vitro and in vivo.

    PubMed

    Mena, Hebe Agustina; Zubiry, Paula Romina; Dizier, Blandine; Schattner, Mirta; Boisson-Vidal, Catherine; Negrotto, Soledad

    2018-05-02

    We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. Cord blood-derived CD34 + cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14-21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced

  9. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  10. Males that drop a sexually selected weapon grow larger testes.

    PubMed

    Joseph, Paul N; Emberts, Zachary; Sasson, Daniel A; Miller, Christine W

    2018-01-01

    Costly sexually selected weapons are predicted to trade off with postcopulatory traits, such as testes. Although weapons can be important for achieving access to females, individuals of some species can permanently drop (i.e. autotomize) their weapons, without regeneration, to escape danger. We capitalized on this natural behavior to experimentally address whether the loss of a sexually selected weapon leads to increased testes investment in the leaf-footed cactus bug, Narnia femorata Stål (Hemiptera: Coreidae). In a second experiment, we measured offspring production for males that lost a weapon during development. As predicted, males that dropped a hind limb during development grew significantly larger testes than the control treatments. Hind-limb autotomy did not result in the enlargement of other nearby traits. Our results are the first to experimentally demonstrate that males compensate for natural weapon loss by investing more in testes. In a second experiment we found that females paired with males that lost a hind limb had 40% lower egg hatching success than females paired with intact males, perhaps because of lower mating receptivity to males with a lost limb. Importantly, in those cases where viable offspring were produced, males missing a hind limb produced 42% more offspring than males with intact limbs. These results suggest that the loss of a hind-limb weapon can, in some cases, lead to greater fertilization success. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Combination of autologous transplantation of G-CSF-mobilized peripheral blood mononuclear cells and Panax notoginseng saponins in the treatment of unreconstructable critical limb ischemia.

    PubMed

    Wang, Xiuchun; Jiang, Liping; Wang, Xuemei; Yin, Fengling; Li, Guixin; Feng, Xueqiang; Wang, Kai; Sun, Shunji

    2014-08-01

    The aim of this study is to explore the efficacy and safety of the combination of autologous transplantation of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (PBMNCs) and Panax notoginseng saponins (PNS) in the treatment of unreconstructable critical limb ischemia (CLI). We performed an open-label, parallel-group, single-center, randomized clinical trial in this study. A total of 52 patients were enrolled and randomly divided into 2 groups (the PBMNC + PNS group and the PBMNC group) in a 1:1 ratio. Evaluation variables, including changes in the ankle-brachial index (ABI) of ischemic limbs, ulcer area, severity of rest pain, transcutaneous oxygen pressure (T(C)PO2), and 6-min walk distance from baseline to week 8 and 16, as well as angiographic scores for new collateral vessel formation at week 16, were used to compare the benefits of these 2 treatment approaches. After 16 weeks of treatment, improvement in ABI, T(C)PO2, and 6-min walk distance was significantly better in the PBMNC + PNS group. In addition, the combination of PBMNC transplantation and PNS administration yielded a greater reduction in ulcer area and severity of rest pain than did PBMNC transplantation alone. The proportion of patients experiencing any adverse event was similar between both treatment groups. Adverse events caused by PBMNC transplantation or PNS were generally mild and no serious adverse events occurred throughout the entire period of study. A combination of PNS and PBMNC transplantation appears to be a safe and effective treatment for patients with unreconstructable CLI. This combination may have great potential advantages in comparison with PBMNC transplantation alone and might constitute a novel therapeutic option for unreconstructable CLI. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Modulating the Vascular Response to Limb Ischemia Angiogenic and Cell Therapies

    PubMed Central

    Cooke, John P.; Losordo, Douglas W.

    2016-01-01

    The age-adjusted prevalence of peripheral arterial disease in the US population has been estimated to approach 12%. The clinical consequences of occlusive peripheral arterial disease include pain on walking (claudication), pain at rest, and loss of tissue integrity in the distal limbs; the latter may ultimately lead to amputation of a portion of the lower extremity. Surgical bypass techniques and percutaneous catheter-based interventions may successfully reperfuse the limbs of certain patients with peripheral arterial disease. In many patients, however, the anatomic extent and distribution of arterial occlusion is too severe to permit relief of pain and healing of ischemic ulcers. No effective medical therapy is available for the treatment of such patients, for many of whom amputation represents the only hope for alleviation of symptoms. The ultimate failure of medical treatment and procedural revascularization in significant numbers of patients has led to attempts to develop alternative therapies for ischemic disease. These strategies include administration of angiogenic cytokines, either as recombinant protein or as gene therapy, and more recently, to investigations of stem/progenitor cell therapy. The purpose of this review is to provide an outline of the preclinical basis for angiogenic and stem cell therapies, review the clinical research that has been done, summarize the lessons learned, identify gaps in knowledge, and suggest a course toward successfully addressing an unmet medical need in a large and growing patient population. PMID:25908729

  13. Multiparametric evaluation of hindlimb ischemia using time-series indocyanine green fluorescence imaging.

    PubMed

    Guang, Huizhi; Cai, Chuangjian; Zuo, Simin; Cai, Wenjuan; Zhang, Jiulou; Luo, Jianwen

    2017-03-01

    Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time-series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time-series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post-ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time-varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time-series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo-perfused tissues from well-perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis. The estimated perfusion rate and vascular perfusion density maps (left) and the time-varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Temporary arterial shunts to maintain limb perfusion after arterial injury: an animal study

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Putnam, A. T.; Light, J. T.; Ihnat, D. M.; Kissinger, D. P.; Rasmussen, T. E.; Bradley, D. V. Jr

    1999-01-01

    BACKGROUND: Temporary shunt placement can quickly restore perfusion after extremity arterial injury. This study examined the adequacy of limb blood flow with shunt use, non-heparin-bonded shunt patency over prolonged periods, and the safety of this technique. METHODS: Common iliac arteries were divided and 4.0-mm Silastic Sundt shunts placed in 16 anesthetized pigs. Eight (group I) had shunts placed immediately; eight others (group II) were shunted after an hour of limb ischemia and hemorrhagic shock. Physiologic parameters and femoral artery blood flow in both hindlimbs were continuously monitored. Limb lactic acid generation, oxygen utilization, and hematologic and metabolic effects were serially evaluated for 24 hours. RESULTS: Shunts remained patent in 13 of 16 pigs. Shunts thrombosed in two group I animals because of technical errors, but functioned well after thrombectomy and repositioning. Patency could not be maintained in one animal that died from shock. Flow in group I shunted limbs was 57 (+/-11 SD) % of control. For group II animals in shock, shunted limb flow initially averaged 46 +/- 15% of control, but 4 hours after shunt placement, the mean limb blood flow was the same as in group I. Increased oxygen extraction compensated for the lower flow. Lactic acid production was not increased in comparison to control limbs. CONCLUSION: Shunts provided adequate flow in this model of extremity trauma. Correctly placed shunts stayed patent for 24 hours, without anticoagulation, if shunt placement followed resuscitation.

  15. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  16. Perfect polydactylism in hind feet of a gray squirrel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunaway, P.B.

    1969-01-01

    An adult gray squirrel from an isolated natural population had seven toes and nine plantar tubercles on each hind foot. The extra digits were articulated with supernumerary cuneiforms and appeared to have been functional. Polydactylism in wild adult rodents is probably a rare anomaly. 6 references, 2 figures.

  17. Pit Bull attack causing limb threatening vascular trauma -A case series.

    PubMed

    Harnarayan, Patrick; Islam, Shariful; Ramsingh, Christi; Naraynsingh, Vijay

    2018-01-01

    Non-fatal human dog bites are commonplace amongst animal attacks on human beings and these present with mainly skin and soft tissue injuries. However, they can also present with life threatening head and neck injuries, massive soft tissue trauma, as well as combined orthopedic and vascular extremity injuries where a high possibility of limb loss exists. We present two adult dog bite victims with multiple bites inflicted by large canines identified as Pit-Bull Terriers. They were presented with deep lacerations to the axillary area resulting in limb ischemia and loss of upper limb pulses. The right axillary artery was crushed in both patients whilst the axillary vein was lacerated in one. The vessels were repaired; the wounds debrided and both limbs were salvaged. Canine attacks by Pit Bull Terriers and Rottweiler's can occur at any age and in any anatomical area of the body particularly the limbs. Injuries involving the extremities presenting with no pulses or pulsatile bleeding demand an urgent exploration as any undue delay is intolerable especially if there are bony injuries like fractures or fracture/dislocation. All patients with complex neurovascular injuries should be managed by a multidisciplinary team for an optimal outcome. Attacks by Pit Bull Terriers are more likely to cause severe morbidity than other breeds of dogs. Immediate surgical exploration is required to prevent catastrophic outcomes, especially limb loss. Stronger animal control laws, public education and responsible dog ownership may reduce deaths from these canines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Determinants of midterm functional outcomes, wound healing, and resources used in a hospital-based limb preservation program.

    PubMed

    Ramanan, Bala; Ahmed, Ayman; Wu, Bian; Causey, Marlin W; Gasper, Warren J; Vartanian, Shant M; Reyzelman, Alexander M; Hiramoto, Jade S; Conte, Michael S

    2017-12-01

    The objective of this study was to assess midterm functional status, wound healing, and in-hospital resource use among a prospective cohort of patients treated in a tertiary hospital, multidisciplinary Center for Limb Preservation. Data were prospectively gathered on all consecutive admissions to the Center for Limb Preservation from July 2013 to October 2014 with follow-up data collection through January 2016. Limbs were staged using the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) threatened limb classification scheme at the time of hospital admission. Patients with nonatherosclerotic vascular disorders, acute limb ischemia, and trauma were excluded. The cohort included 128 patients with 157 threatened limbs; 8 limbs with unstageable disease were excluded. Mean age (±standard deviation [SD]) was 66 (±13) years, and median follow-up duration (interquartile range) was 395 (80-635) days. Fifty percent (n = 64/128) of patients were readmitted at least once, with a readmission rate of 20% within 30 days of the index admission. Mean total number of admissions per patient (±SD) was 1.9 ± 1.2, with mean (±SD) cumulative length of stay (cLOS) of 17.1 (±17.9) days. During follow-up, 25% of limbs required a vascular reintervention, and 45% developed recurrent wounds. There was no difference in the rate of readmission, vascular reintervention, or wound recurrence by initial WIfI stage (P > .05). At the end of the study period, 23 (26%) were alive and nonambulatory; in 20%, functional status was missing. On both univariate and multivariate analysis, end-stage renal disease and prior functional status predicted ability to ambulate independently (P < .05). WIfI stage was associated with major amputation (P = .01) and cLOS (P = .002) but not with time to wound healing. Direct hospital (inpatient) cost per limb saved was significantly higher in stage 4 patients (P < .05 for all time periods). WIfI stage was associated with cumulative in

  19. Cerebral ischemia and neuroregeneration

    PubMed Central

    Lee, Reggie H. C.; Lee, Michelle H. H.; Wu, Celeste Y. C.; Couto e Silva, Alexandre; Possoit, Harlee E.; Hsieh, Tsung-Han; Minagar, Alireza; Lin, Hung Wen

    2018-01-01

    Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. PMID:29623912

  20. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia.

    PubMed

    Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio

    2015-01-01

    Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.

  1. [The use of vascular prothesis Gore Viabahn in the managment of the lower limbs ischemia].

    PubMed

    Pupka, Artur; Szyber, Przemysław Piotr; Skóra, Jan; Pawłowski, Stanisław

    2011-01-01

    The chronic lower limbs ischaemia is caused mainly by arteriosclerosis. After insufficient conservative treatment only the surgical intervention can salvage the limb. The revascularisation surgery can be performed by open surgery with implantation of the prosthetic bypass or by endovascular angioplasty with stent. This second method seems to be the best alternative for the patients with several concomitant systemic diseases. Nevertheless it is limited by presence of the long-distance arteriosclerotic lesions. The resolve of that problem is use of new generation of long endovascular covered stents. They can be succesfuly used in aorto-femoral and femoro-popliteal segment. Their efficiacy is simmilar to traditional prosthetic grafts.

  2. Hepatic ischemia

    MedlinePlus

    ... artery to the liver (hepatic artery) after a liver transplant Swelling of blood vessels leading to reduced blood ... the illness causing hepatic ischemia can be treated. Death from liver failure due to hepatic ischemia is ...

  3. Endovascular Recanalization of Chronically Occluded Native Arteries After Failed Bypass Surgery in Patients with Critical Ischemia.

    PubMed

    Yin, Minyi; Wang, Wei; Huang, Xintian; Hong, Biao; Liu, Xiaobing; Li, Weimin; Lu, Xinwu; Lu, Min; Jiang, Mier

    2015-12-01

    The study aimed to evaluate the feasibility, safety, and outcome of endovascular recanalization of native chronic total occlusions (CTO) in patients with critical limb ischemia (CLI) and lower extremities bypass graft failure. A retrospective review of CLI patients with failed lower limb grafts (>30 days after surgery) that underwent recanalization of native CTO was conducted in two institutions from January 2010 to June 2014. Twenty-eight patients (28 limbs) were included in the study, and all had limited surgical revascularization options. Demographics, procedural data, technical success, complications, vessel patency, limb salvage rates, and survival rates were analyzed. The mean follow-up period was 12.8 months. The technical success rate was 92.9% (26/28 limbs). The combined ipsilateral antegrade-retrograde approach was performed in nine limbs (32.1%). Major periprocedural (<30 days) complications included two myocardial infarctions (7.1%) and two stent thromboses (7.1%), resulting in one amputation. The ankle brachial index before discharge was significantly improved after recanalization (0.78 ± 0.08 vs. 0.31 ± 0.10, p < 0.01). The primary, assisted primary, and secondary patency rates at 12 months were 52.2, 65.8, and 82.2%, respectively. The limb salvage rate and amputation-free survival rate at 12 months were 91.6 and 87.0%, respectively. Endovascular recanalization of native CTO in patients with graft failure-related CLI is a feasible, safe, and effective procedure, with reasonable technical success, vessel patency, and limb salvage rates. The technique should be attempted before amputation in patients with limited surgical revascularization options.

  4. Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.

    PubMed

    Gross, Joshua B; Kerney, Ryan; Hanken, James; Tabin, Clifford J

    2011-01-01

    The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules

  5. Conditional effect of selenium on the mammalian hind gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) status is linked to cancer risk in humans and other mammals. Because Se is used by certain microbial species which contain selenoproteins, and because hind gut microfloral composition is linked to cancer development, we proposed that supranutritional Se could reduce tumorigenisis by af...

  6. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    NASA Astrophysics Data System (ADS)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  7. Isolated limb perfusion electrochemotherapy for the treatment of an advanced squamous cell carcinoma of the hoof in a mare.

    PubMed

    Spugnini, Enrico Pierluigi; Bolaffio, Carlo; Scacco, Licia; Baldi, Alfonso

    2017-01-01

    A twenty-year-old female saddle horse was referred for evaluation of a seven month, non-healing erosive lesion of the right hind hoof with proliferation and bleeding of the underlying soft tissues. This lesion had been twice surgically treated as a canker but rapidly recurred. Histological examination of the second excision revealed a well-differentiated squamous cell carcinoma. At presentation, the horse was mildly depressed, lame and partially non-weight-bearing on the right hind leg, which exhibited a 10 x 10 cm erosive and proliferative lesion remodeling the hoof. After completing staging procedures, the lesion was approached with surgery and intraoperative electrochemotherapy (ECT) administration of bleomycin in isolated limb perfusion. A second session of surgery and ECT was performed one month later, followed by three additional monthly sessions of ECT. During periodic recheck, the mare showed continuous improvement. One year after presentation, the mare was in complete remission and her gait markedly improved. ECT was well-tolerated and resulted in improved local control of a tumor in a challenging anatomical district.

  8. Platelet-to-Lymphocyte Ratio: A Novel Marker for Critical Limb Ischemia in Peripheral Arterial Occlusive Disease Patients

    PubMed Central

    Gary, Thomas; Pichler, Martin; Belaj, Klara; Hafner, Franz; Gerger, Armin; Froehlich, Harald; Eller, Philipp; Rief, Peter; Hackl, Gerald; Pilger, Ernst; Brodmann, Marianne

    2013-01-01

    Background Platelet-to-Lymphocyte Ratio (PLR) is an easily applicable blood test. An elevated PLR has been associated with poor prognosis in patients with different oncologic disorder. As platelets play a key role in atherosclerosis and atherothrombosis, we investigated PLR and its association with critical limb ischemia (CLI) and other vascular endpoints in peripheral arterial occlusive disease (PAOD) patients. Methods and Findings We evaluated 2121 PAOD patients treated at our institution from 2005 to 2010. PLR was calculated and the cohort was categorized into tertiles according to the PLR. An optimal cut-off value for the continuous PLR was calculated by applying a receiver operating curve analysis to discriminate between CLI and non-CLI. In our cohort occurrence of CLI significantly increased with an increase in PLR. As an optimal cut-off value, a PLR of 150 was identified. Two groups were categorized, one containing 1228 patients (PLR≤150) and a second group with 893 patients (PLR>150). CLI was more frequent in PLR>150 patients (410(45.9%)) compared to PLR≤150 patients (270(22.0%)) (p<0.001), as was prior myocardial infarction (51(5.7%) vs. 42(3.5%), p = 0.02). Regarding inflammatory parameters, C-reactive protein (median 7.0 mg/l (3.0–24.25) vs. median 5.0 mg/l (2.0–10.0)) and fibrinogen (median 457 mg/dl (359.0–583.0) vs. 372 mg/dl (317.25–455.75)) also significantly differed in the two patient groups (both p<0.001). Finally, a PLR>150 was associated with an OR of 1.9 (95%CI 1.7–2.1) for CLI even after adjustment for other well-established vascular risk factors. Conclusions An increased PLR is significantly associated with patients at high risk for CLI and other cardiovascular endpoints. The PLR is a broadly available and cheap marker, which could be used to highlight patients at high risk for vascular endpoints. PMID:23844064

  9. Effects of Partial Vibration on Morphological Changes in Bone and Surrounding Muscle of Rats Under Microgravity Condition: Comparative Study by Gender

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyung; Seo, Dong-Hyun; Cho, Seungkwan; Kim, Seo-Hyun; Eom, Sinae; Kim, Han Sung

    2015-09-01

    Musculoskeletal disorders during and after spaceflight are considered as a serious health issue. In space, weight-bearing exercise recognized as the main countermeasure to bone loss, since many anti-resorptive medications have not yet been approved for spaceflight or have been unsuccessful in their limited application. We need to investigate a complementary or alternative way to prevent bone loss and muscle atrophy resulting from microgravity condition. Partial vibration was chosen because it is one of the most feasible ways to adopt safely and effectively. Moreover, although the influence of hind-limb suspension has been studied in both male and female rodents, only rarely are both genders evaluated in the same study. Thus, to further extend our knowledge, the present study performed comparative analysis between genders. A total of 36 12-week-old male and female Sprague-Dawley rats were used and were randomly assigned to control (CON), hind-limb suspension without vibration stimulus (HS), and hind-limb suspension with vibration stimulus (HV) groups. Hind-limb suspension has led to increasing the rate of bone loss and muscle atrophy regardless of gender. The rates of bone loss in male group obviously increased than that of female group. All structural parameters were showed significant difference between HS and HV ( p < 0.05) in male group whereas there are no significant differences in female group. In female, the muscle volume with treatment of partial vibration stimulus significantly increased which compared with that of hind-limb suspension ( p < 0.05) whereas there are no significant differences in male group. Thus partial vibration could prevent bone loss of tibia in males and muscle atrophy in females induced by hind-limb suspension. In other words, partial vibration has positive effects on damaged musculoskeletal tissues that differ based on gender.

  10. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI).

    PubMed

    Sultan, Sherif; Tawfick, Wael; Hynes, Niamh

    2013-04-01

    We aim to compare cool excimer laser-assisted angioplasty (CELA) versus tibial balloon angioplasty (TBA) in patients with critical limb ischemia (CLI) with tibial artery occlusive disease. The primary end point is sustained clinical improvement (SCI) and amputation-free survival (AFS). The secondary end points are binary restenosis, target extremity revascularization (TER), and cost-effectiveness. From June 2005 to October 2010, 1506 patients were referred with peripheral vascular disease and 572 with CLI. A total of 80 patients underwent 89 endovascular revascularizations (EVRs) for tibial occlusions, 47 using TBA and 42 using CELA. All patients were Rutherford category 4 to 6. Three-year SCI was enhanced with CELA (81%) compared to TBA (63.8%; P = .013). Three-year AFS significantly improved with CELA (95.2%) versus TBA (89.4%; P = .0165). Three-year freedom from TER was significantly improved with CELA (92.9%) versus 78.7% TBA (P = .026). Three-year freedom from MACE was comparable in both the groups (P = .455). Patients with CELA had significantly improved quality time without symptoms of disease or toxicity of treatment (Q-TWiST) at 3 years (10.5 months; P = .048) with incremental cost of €2073.19 per quality-adjusted life year gained. Tibial EVR provides exceptional outcome in CLI. The CELA has superior SCI, AFS, and freedom from TER, with improved Q-TWiST and cost-effectiveness.

  11. Differential diagnosis of critical digital ischemia in systemic sclerosis: Report of five cases and review of the literature.

    PubMed

    Sharp, Charlotte A; Akram, Qasim; Hughes, Michael; Muir, Lindsay; Herrick, Ariane L

    2016-10-01

    Critical digital ischemia is a rare, but serious complication of systemic sclerosis (SSc) and is not always due solely to the non-inflammatory angiopathy that characterizes the SSc disease process. Our objective was to illustrate the range of presentations and causes of critical digital ischemia in patients with SSc in order to highlight how optimal management is dependent upon establishing the correct diagnosis. Five cases exemplifying differential diagnoses were identified and their case notes reviewed in order to extract clinically relevant data and images. A review of the literature was performed in PubMed in English. Causes of critical digital ischemia included typical micro-angiopathic changes and proximal (large vessel) disease. One case highlighted the difficulty of ascertaining whether an inflammatory cause is also present in SSc/SLE overlap syndrome. Two cases demonstrated embolic causes (thromboembolism due to atrial fibrillation and septic emboli). Critical digital ischemia in patients with SSc requires thorough investigation in order to avoid missing additional potentially modifiable causes including large vessel disease, inflammation, embolism, infection, and paraneoplastic syndromes. A firm evidence base for current medical and surgical interventions is lacking, highlighting the need for further research into the optimum management of this rare, but painful, debilitating, and limb-threatening complication of SSc. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    NASA Astrophysics Data System (ADS)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  13. Prior failed ipsilateral percutaneous endovascular intervention in patients with critical limb ischemia predicts poor outcome after lower extremity bypass

    PubMed Central

    Nolan, Brian W.; De Martino, Randall R.; Stone, David H.; Schanzer, Andres; Goodney, Philip P.; Walsh, Daniel W.; Cronenwett, Jack L.

    2017-01-01

    Background Although open surgical bypass remains the standard revascularization strategy for patients with critical limb ischemia (CLI), many centers now perform peripheral endovascular intervention (PVI) as the first-line treatment for these patients. We sought to determine the effect of a prior ipsilateral PVI (iPVI) on the outcome of subsequent lower extremity bypass (LEB) in patients with CLI. Methods A retrospective cohort analysis of all patients undergoing infrainguinal LEB between 2003 and 2009 within hospitals comprising the Vascular Study Group of New England (VSGNE) was performed. Primary study endpoints were major amputation and graft occlusion at 1 year postoperatively. Secondary outcomes included in-hospital major adverse events (MAE), 1-year mortality, and composite 1-year major adverse limb events (MALE). Event rates were determined using life table analyses and comparisons were performed using the log-rank test. Multivariate predictors were determined using a Cox proportional hazards model with multilevel hierarchical adjustment. Results Of 1880 LEBs performed, 32% (n = 603) had a prior infrainguinal revascularization procedure (iPVI, 7%; ipsilateral bypass, 15%; contralateral PVI, 3%; contralateral bypass, 17%). Patients with prior iPVI, compared with those without a prior iPVI, were more likely to be women (32 vs 41%; P = .04), less likely to have tissue loss (52% vs 63%; P = .02), more likely to require arm vein conduit (16% vs 5%; P = .001), and more likely to be on statin (71% vs 54%; P = .01) and beta blocker therapy (92% vs 81%; P = .01) at the time of their bypass procedure. Other demographic factors were similar between these groups. Prior PVI or bypass did not alter 30-day MAE and 1-year mortality after the index bypass. In contrast, 1-year major amputation and 1-year graft occlusion rates were significantly higher in patients who had prior iPVI than those without (31% vs 20%; P = .046 and 28% vs 18%; P = .009), similar to patients who

  14. The influence of patients' nutritional status on the prevalence, course and treatment outcomes of lower limb ischemia: an overview of current evidence.

    PubMed

    Spychalska-Zwolińska, Marta; Zwoliński, Tomasz; Anaszewicz, Marzena; Budzyński, Jacek

    2018-04-01

    The association of lower limb ischemia (LLI) with disturbances in nutritional status, in respect to over- or undernutrition, is still uncertain. The aim of this study was to present the current state of knowledge on this issue. Systematic review of papers published between 2006 and 2018. The literature shows inconclusive evidence regarding the impact of nutritional status on the risk, course, prognosis and outcomes of conservative and invasive treatment of LLI. The majority of publications available demonstrate greater LLI prevalence in overweight and obese patients, a worse prognosis both in malnourished and severely obese patients, poorer outcomes of invasive treatment in underweight patients, and better results for endovascular and surgical treatment in patients with overweight and class I obesity, although without such a relationship for conservative therapy. Possible explanations linking nutritional status and LLI seem to be: the endocrine, paracrine, and autocrine activity of adipose tissue, a decrease in physical activity, and the effect of diet-dependent comorbidities, e.g. diabetes mellitus, hypertension and dyslipidemia. There is a growing body of evidence concerning an association between LLI and patients' nutritional status. A so-called "obesity paradox" or "BMI paradox" seems to exist among patients with LLI and mainly concerns outcomes of endovascular and surgical treatment. However, further studies are needed to evaluate the clinical importance of body composition, the distribution and endocrine activity of adipose tissue, and the effect of weight reduction and/or nutritional support in the LLI patient group.

  15. Proteomic analysis of blastema formation in regenerating axolotl limbs

    PubMed Central

    2009-01-01

    Background Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. Results We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. Conclusion Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and

  16. Unique action mechanisms of tramadol in global cerebral ischemia-induced mechanical allodynia.

    PubMed

    Matsuura, Wataru; Kageyama, Erika; Harada, Shinichi; Tokuyama, Shogo

    2016-06-15

    Central poststroke pain is associated with specific somatosensory abnormalities, such as neuropathic pain syndrome. Although central poststroke pain is a serious condition, details pertaining to underlying mechanisms are not well established, making current standard treatments only partially effective. Here, we assessed the effects of tramadol, an analgesic drug mediated by opioid receptors, using a mouse model of global cerebral ischemia. Ischemia was induced by bilateral carotid artery occlusion (30 min) in male ddY mice. Development of hind-paw mechanical allodynia was measured 3 days after bilateral carotid artery occlusion using the von Frey test. Mechanical allodynia was significantly and dose dependently suppressed by intraperitoneal tramadol (10 or 20 mg/kg). These effects, which peaked at 10 min and continued for at least 60 min, were inhibited by naloxone (nonselective opioid receptor antagonist, 1 mg/kg, intraperitoneal). Tramadol antinociception was significantly negated by β-funaltrexamine (selective μ-opioid receptor antagonist, 20 mg/kg, intraperitoneal), but not naltrindole (selective δ-opioid receptor antagonist, 5 mg/kg, intraperitoneal) or nor-binaltorphimine (selective κ-opioid receptor antagonist, 10 mg/kg, intraperitoneal) after 5 min, by β-funaltrexamine and nor-binaltorphimine but not naltrindole after 10 min, and by all selective opioid receptor antagonists at 15 and 30 min after tramadol treatment. These results suggested that antinociception induced by tramadol through various opioid receptors was time dependent. Furthermore, it is possible that the opioid receptors involved in tramadol-induced antinociception change over time with the metabolism of this drug.

  17. Elevated cardiac troponin T contributes to prediction of worse in-hospital outcomes after endovascular therapy for acute limb ischemia.

    PubMed

    Linnemann, Birgit; Sutter, Thilo; Sixt, Sebastian; Rastan, Aljoscha; Schwarzwaelder, Uwe; Noory, Elias; Buergelin, Karlheinz; Beschorner, Ulrich; Zeller, Thomas

    2012-03-01

    The present study evaluated whether elevated cardiac troponin T (cTnT) was predictive of an increased risk for death or amputation in patients with acute lower limb ischemia (ALI). ALI is one of the most frequent causes of amputation, with mortality rates for ALI ranging from 15% to 20%. This study included 254 consecutive ALI patients (155 men, 99 women; mean age, 71.6 ± 13.2 years) presenting with Rutherford categories I, IIA, or IIB according to the classification for ALI. ALI was caused by thromboembolism (29.5%), local arterial thrombosis (53.1%), or bypass graft occlusion (16.9%). Restoration of arterial blood flow was obtained by an endovascular approach, with a primary success rate of 98.4%. Rates were low for in-hospital mortality (3.9%) and amputation (5.1%). Patients who died or required amputation more frequently presented with elevated cTnT ≥0.01 ng/mL (52.2% vs 25.5%, P = .01) and impaired renal function (chronic kidney disease stage 3-5; 60.9% vs 38.1%; P = .04). After controlling for age, sex, C-reactive protein, renal function, presence or absence of coronary artery disease, and traditional vascular risk factors, as well as the interval between symptom onset and revascularization, the relationship between cTnT and a worse in-hospital outcome remained significant (hazard ratio, 3.4; 95% confidence interval, 1.3-8.5; P = .010). ALI patients frequently have elevated cTnT, which is associated with increased in-hospital mortality and amputation. Even small cTnT elevations predict a markedly increased risk of worse in-hospital outcome; however, the overall mortality and amputation rate in our study was low. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  18. Impact of lesion location on procedural and acute angiographic outcomes in patients with critical limb ischemia treated for peripheral artery disease with orbital atherectomy: A CONFIRM registries subanalysis.

    PubMed

    Lee, Michael S; Mustapha, Jihad; Beasley, Robert; Chopra, Paramjit; Das, Tony; Adams, George L

    2016-02-15

    This analysis compares the procedural and acute angiographic outcomes in patients with critical limb ischemia (CLI) treated with orbital atherectomy in above-the-knee (ATK)/popliteal (POP) lesions versus below-the-knee (BTK) lesions. Lesion location affects the procedural outcomes and the opportunity for limb salvage in patients with CLI suffering from peripheral artery disease (PAD). The CONFIRM registry series was analyzed and includes 1109 real-world patients (1544 lesions) suffering from CLI treated with orbital atherectomy. The rates of dissection, perforation, slow flow, vessel closure, spasm, embolism, and thrombus formation were compared between CLI patients with ATK/POP lesions and BTK lesions. Patients with ATK/POP lesions had a higher final residual stenosis (10 vs. 9%; P = 0.004) and use of more adjunctive therapies (e.g. balloons and stents; 1.3 vs. 1.1%; P < 0.001) compared to patients with BTK lesions. Patients with BTK had higher incidence of perforation (1.5 vs. 0.2%; P = 0.005), slow flow (7.7 vs. 5.0%; P = 0.03) and spasm (10.3 vs. 4.2%; P < 0.001) but lower incidence of embolism (0.4 vs. 5.1%; P < 0.001). Plaque modification with orbital atherectomy was successful in CLI patients regardless of lesion location. BTK lesions were associated with increased rates of perforation, slow flow and spasm which may be explained by more challenging procedural characteristics in these patients such as smaller vessel size and tortuosity. The higher incidence of emboli in ATK/POP lesions is most likely attributed to the higher prevalence of severe calcium observed in this cohort. © 2015 Wiley Periodicals, Inc.

  19. Fasciotomy worsens the amount of myonecrosis in a porcine model of crotaline envenomation.

    PubMed

    Tanen, David A; Danish, David C; Grice, Guerard A; Riffenburgh, Robert H; Clark, Richard F

    2004-08-01

    We evaluate the efficacy of fasciotomy or crotaline snake antivenom in reducing myonecrosis. We used a randomized, blinded, controlled acute animal preparation. Twenty anesthetized swine were injected intramuscularly in the anterior tibiales muscle of both hind limbs with 6 mg/kg of Crotalus atrox venom (total of 12 mg/kg of venom per animal). Immediately after venom injection, the right hind limb underwent fasciotomy. Muscle biopsies were obtained from the fasciotomized hind limb at 0, 4, and 8 hours and from the other hind limb at the conclusion of the study (8 hours). In addition, animals received either 8 vials of reconstituted Crotalidae polyvalent immune Fab (ovine) (CroFab; FabAV) or an equal volume of normal saline solution intravenously 1 hour after venom injection. A pathologist blinded to the study determined the percentage of myonecrotic cells in each biopsy. Statistical analysis was performed using repeated measures analysis of variance for compartment pressure. Rank-order methods were used for comparison of myonecrosis between groups. Biopsies from hind limbs undergoing fasciotomy revealed a progressive increase in the amount of myonecrosis over time (myonecrosis median at 0, 4, or 8 hours [or death]: 0%, 14%, or 14.5%, respectively; P<.001). Comparison of the amount of myonecrosis of biopsies at death or 8 hours revealed that limbs that underwent fasciotomy had significantly more myonecrosis than those that did not (myonecrosis median: 14.5% versus 2.5%, P=.048). No difference was detected in the amount of myonecrosis when FabAV was compared with normal saline solution on final biopsies from either fasciotomy or nonfasciotomy hind limb (myonecrosis median: 10.0% versus 10.0%, P=.64). Fasciotomy significantly worsens the amount of myonecrosis in a porcine model of intramuscular crotaline venom injection. No change in the amount of myonecrosis was detected with the use of FabAV treatment at the dosages used in this animal model.

  20. Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation.

    PubMed

    Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine

    2017-06-01

    Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.

  1. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  2. Pediatric Traumatic Limb Amputation: The Principles of Management and Optimal Residual Limb Lengths

    PubMed Central

    Khan, Muhammad Adil Abbas; Javed, Ammar Asrar; Rao, Dominic Jordan; Corner, J Antony; Rosenfield, Peter

    2016-01-01

    Pediatric traumatic limb amputations are rare and their acute and long term management can be challenging in this subgroup of patients. The lengthy and costly hospital stays, and resulting physical and psychological implications leads to significant morbidity. We present a summary of treatment principles and the evidence base supporting the management options for this entity. The initial management focuses on resuscitating and stabilization of the patients, administration of appropriate and adequate analgesics, and broad spectrum antibiotics. The patient should ideally be managed by an orthopedic or a plastic surgeon and when an amputation is warranted, the surgical team should aim to conserve as much of the viable physis as possible aimed at allowing bone development in a growing child. A subsequent wound inspection should be performed to assess for signs of ischemia or non-viability of tissue. Depending on the child’s age, approximations of the ideal residual limb length can be calculated using our guidelines, allowing an ideal stump length at skeletal maturity for a well-fitting and appropriate prosthesis. Myodesis and myoplasties can be performed according to the nature of the amputation. Removable rigid dressings are safe and cost effective offering better protection of the stump. Complications such as necrosis and exostosis, on subsequent examination, warrant further revisions. Other complications such as neuromas can be prevented by proximal division of the nerves. Successful rehabilitation can be accomplished with a multidisciplinary approach, involving physiotherapist, play therapist and a child psychiatrist, in addition to the surgeon and primary care providers. PMID:27308235

  3. Pediatric Traumatic Limb Amputation: The Principles of Management and Optimal Residual Limb Lengths.

    PubMed

    Khan, Muhammad Adil Abbas; Javed, Ammar Asrar; Rao, Dominic Jordan; Corner, J Antony; Rosenfield, Peter

    2016-01-01

    Pediatric traumatic limb amputations are rare and their acute and long term management can be challenging in this subgroup of patients. The lengthy and costly hospital stays, and resulting physical and psychological implications leads to significant morbidity. We present a summary of treatment principles and the evidence base supporting the management options for this entity. The initial management focuses on resuscitating and stabilization of the patients, administration of appropriate and adequate analgesics, and broad spectrum antibiotics. The patient should ideally be managed by an orthopedic or a plastic surgeon and when an amputation is warranted, the surgical team should aim to conserve as much of the viable physis as possible aimed at allowing bone development in a growing child. A subsequent wound inspection should be performed to assess for signs of ischemia or non-viability of tissue. Depending on the child's age, approximations of the ideal residual limb length can be calculated using our guidelines, allowing an ideal stump length at skeletal maturity for a well-fitting and appropriate prosthesis. Myodesis and myoplasties can be performed according to the nature of the amputation. Removable rigid dressings are safe and cost effective offering better protection of the stump. Complications such as necrosis and exostosis, on subsequent examination, warrant further revisions. Other complications such as neuromas can be prevented by proximal division of the nerves. Successful rehabilitation can be accomplished with a multidisciplinary approach, involving physiotherapist, play therapist and a child psychiatrist, in addition to the surgeon and primary care providers.

  4. Home-care treatment of swimmer syndrome in a miniature schnauzer dog.

    PubMed

    Kim, Sun-A; Na, Ki-Jeong; Cho, Jong-Ki; Shin, Nam-Shik

    2013-09-01

    A 50-day-old, female miniature schnauzer dog was presented for astasia, dorsoventral flattening of the thorax, hypoplasia of hind-limb muscles, stiffness of hind-limb joints, paddling leg motion, and panting. The dog was diagnosed with swimmers syndrome. The dog recovered completely following 40 days of home-care treatment that involved environmental and nutritional management along with intensive physiotherapy.

  5. Home-care treatment of swimmer syndrome in a miniature schnauzer dog

    PubMed Central

    Kim, Sun-A; Na, Ki-Jeong; Cho, Jong-Ki; Shin, Nam-Shik

    2013-01-01

    A 50-day-old, female miniature schnauzer dog was presented for astasia, dorsoventral flattening of the thorax, hypoplasia of hind-limb muscles, stiffness of hind-limb joints, paddling leg motion, and panting. The dog was diagnosed with swimmers syndrome. The dog recovered completely following 40 days of home-care treatment that involved environmental and nutritional management along with intensive physiotherapy. PMID:24155492

  6. AMS INSIGHT--absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis.

    PubMed

    Bosiers, Marc; Peeters, Patrick; D'Archambeau, Olivier; Hendriks, Jeroen; Pilger, Ernst; Düber, Christoph; Zeller, Thomas; Gussmann, Andreas; Lohle, Paul N M; Minar, Erich; Scheinert, Dierk; Hausegger, Klaus; Schulte, Karl-Ludwig; Verbist, Jürgen; Deloose, Koen; Lammer, J

    2009-05-01

    Endoluminal treatment of infrapopliteal artery lesions is a matter of controversy. Bioabsorbable stents are discussed as a means to combine mechanical prevention of vessel recoil with the advantages of long-term perspectives. The possibility of not having a permanent metallic implant could permit the occurrence of positive remodeling with lumen enlargement to compensate for the development of new lesions. The present study was designed to investigate the safety of absorbable metal stents (AMSs) in the infrapopliteal arteries based on 1- and 6-month clinical follow-up and efficacy based on 6-month angiographic patency. One hundred seventeen patients with 149 lesions with chronic limb ischemia (CLI) were randomized to implantation of an AMS (60 patients, 74 lesions) or stand-alone percutaneous transluminal angioplasty (PTA; 57 patients, 75 lesions). Seven PTA-group patients "crossed over" to AMS stenting. The study population consisted of patients with symptomatic CLI (Rutherford categories 4 and 5) and de novo stenotic (>50%) or occlusive atherosclerotic disease of the infrapopliteal arteries who presented with a reference diameter of between 3.0 and 3.5 mm and a lesion length of <15 mm. The primary safety endpoint was defined as absence of major amputation and/or death within 30 days after index intervention and the primary efficacy endpoint was the 6-month angiographic patency rate as confirmed by core-lab quantitative vessel analysis. The 30-day complication rate was 5.3% (3/57) and 5.0% (3/60) in patients randomized for PTA alone and PTA followed by AMS implantation, respectively. On an intention-to-treat basis, the 6-month angiographic patency rate for lesions treated with AMS (31.8%) was significantly lower (p = 0.013) than the rate for those treated with PTA (58.0%). Although the present study indicates that the AMS technology can be safely applied, it did not demonstrate efficacy in long-term patency over standard PTA in the infrapopliteal vessels.

  7. Below-the-ankle Angioplasty and Stenting for Limb Salvage: Anatomical Considerations and Long-term Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr; Diamantopoulos, Athanasios; Spiliopoulos, Stavros

    2013-08-01

    PurposeTo report the long-term angiographic and clinical results in a series of below-the-ankle (BTA) angioplasty procedures and to present some biomechanical issues related to the unique anatomical geometry of the ankle.MethodsWe performed a retrospective analysis of BTA angioplasty procedures. Clinical end points included technical success, patient mortality, salvage of the treated foot, and repeat target lesion revascularization. Imaging end points included primary patency, binary restenosis of the target lesion at the 50 % threshold, and stent integrity (stent fracture, deformation, or collapse). Univariate subgroup analysis was performed.ResultsIn total, 40 limbs in 37 patients (age 73.5 {+-} 8.2 years) with criticalmore » limb ischemia were included and 42 inframalleolar lesions (4.2 {+-} 1.4 cm) were analyzed. Technical success was achieved in 95.2 % (40 of 42). Provisional stent placement was performed in 45.2 % (19 of 42). Two patients died, and two major amputations occurred up to 3 years. At 1 year, overall primary vessel patency was 50.4 {+-} 9.1 %, lesion binary restenosis rate was 64.1 {+-} 8.3 %, and repeat intervention-free survival was 93.6 {+-} 4.3 % according to life table analysis of all treated lesions. Pairwise subgroup analysis showed that BTA self-expanding stents were associated with significantly higher restenosis and poorer primary patency compared to plain balloon angioplasty or sirolimus-eluting balloon-expandable stents. Significant deformation and/or fracture of balloon-expandable stents placed BTA were identified in five of 11. Dynamic imaging showed that the dorsalis pedis artery is kinked during foot dorsiflexion, whereas the distal posterior tibial artery is kinked during plantar flexion of the foot.ConclusionBTA angioplasty for critical limb ischemia treatment is safe and feasible with satisfactory long-term results. BTA stent placement must be reserved for bailout indications.« less

  8. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.

    PubMed

    Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L

    2017-06-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb

  9. Validation of NIRS in measuring tissue hemoglobin concentration and oxygen saturation on ex vivo and isolated limb models

    NASA Astrophysics Data System (ADS)

    Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo

    2003-07-01

    Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer

  10. Estrogen-dependent efficacy of limb ischemic preconditioning in female rats.

    PubMed

    Pócs, Levente; Janovszky, Ágnes; Garab, Dénes; Terhes, Gabriella; Ocsovszki, Imre; Kaszaki, József; Boros, Mihály; Piffkó, József; Szabó, Andrea

    2018-01-01

    Our aim was to examine the effects of ischemic preconditioning (IPC) on the local periosteal and systemic inflammatory consequences of hindlimb ischemia-reperfusion (IR) in Sprague-Dawley rats with chronic estrogen deficiency (13 weeks after ovariectomy, OVX) in the presence and absence of chronic 17beta-estradiol supplementation (E2, 20 µg kg -1 , 5 days/week for 5 weeks); sham-operated (non-OVX) animals served as controls. As assessed by intravital fluorescence microscopy, rolling and the firm adhesion of polymorphonuclear neutrophil leukocytes (PMNs) gave similar results in the Sham + IR and OVX + IR groups in the tibial periosteal microcirculation during the 3-h reperfusion period after a 60-min tourniquet ischemia. Postischemic increases in periosteal PMN adhesion and PMN-derived adhesion molecule CD11b expressions, however, were significantly reduced by IPC (two cycles of 10'/10') in Sham animals, but not in OVX animals; neither plasma free radical levels (as measured by chemiluminescence), nor TNF-alpha release was affected by IPC. E2 supplementation in OVX animals restored the IPC-related microcirculatory integrity and PMN-derived CD11b levels, and TNF-alpha and free radical levels were reduced by IPC only with E2. An enhanced estrogen receptor beta expression could also be demonstrated after E2 in the periosteum. Overall, the beneficial periosteal microcirculatory effects of limb IPC are lost in chronic estrogen deficiency, but they can be restored by E2 supplementation. This suggests that the presence of endogenous estrogen is a necessary facilitating factor of the anti-inflammatory protection provided by limb IPC in females. The IPC-independent effects of E2 on inflammatory reactions should also be taken into account in this model. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:97-105, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  12. Endovascular treatment of popliteal artery segments P1 and P2 in patients with critical limb ischemia: initial experience using a helical nitinol stent with increased radial force.

    PubMed

    Goltz, Jan P; Ritter, Christian O; Kellersmann, Richard; Klein, Detlef; Hahn, Dietbert; Kickuth, Ralph

    2012-06-01

    To evaluate efficacy, safety, and midterm patency of a helical, self-expanding nitinol stent after failed percutaneous transluminal angioplasty (PTA) of popliteal artery segments P1 and P2 in patients with chronic critical limb ischemia (CLI) or lifestyle-limiting claudication. Between February 2009 and March 2011, 40 patients (23 men; mean age 77±10 years) classified as Rutherford category 3 (n = 10) or 4/5 (n = 30) underwent PTA of the proximal and mid popliteal artery followed by implantation of a SUPERA stent for elastic recoil, residual stenosis, or flow-limiting dissection. All patients had an elevated operative risk. Before and after the procedure and during the 12-month follow-up, a clinical investigation, ankle-brachial-index (ABI) measurement, and color-coded duplex sonography and/or digital subtraction angiography were performed. Primary endpoints were limb salvage and anatomical patency at 12 months. Stent implantation was successful in all patients. The major complication rate was 7.5% (an access-site pseudoaneurysm, 2 retroperitoneal hematomas, and 1 death from retroperitoneal bleeding). Mean follow-up was 15.9 months (range 0.5-27.9). The mean baseline ABI of 0.37 significantly increased to 0.91 at 12 months (p<0.01). Three (7.5%) patients underwent bypass surgery owing to lack of clinical improvement (<0.10 improvement in ABI). Primary and secondary patency rates at 12 months in the 34 patients eligible for follow-up were 68.4% and 79.8%, respectively. The major amputation rate was 5% at 1 year. Five (12.5%) in-stent stenoses and 1 of 2 (5.0%) in-stent occlusions were successfully recanalized (the second occlusion was asymptomatic). Implantation of this helical stent into segments of the popliteal artery at the knee joint in CLI patients is a safe and clinically effective bailout method with acceptable intermediate patency.

  13. Ranking of physiotherapeutic evaluation methods as outcome measures of stifle functionality in dogs.

    PubMed

    Hyytiäinen, Heli K; Mölsä, Sari H; Junnila, Jouni T; Laitinen-Vapaavuori, Outi M; Hielm-Björkman, Anna K

    2013-04-08

    Various physiotherapeutic evaluation methods are used to assess the functionality of dogs with stifle problems. Neither validity nor sensitivity of these methods has been investigated. This study aimed to determine the most valid and sensitive physiotherapeutic evaluation methods for assessing functional capacity in hind limbs of dogs with stifle problems and to serve as a basis for developing an indexed test for these dogs. A group of 43 dogs with unilateral surgically treated cranial cruciate ligament deficiency and osteoarthritic findings was used to test different physiotherapeutic evaluation methods. Twenty-one healthy dogs served as the control group and were used to determine normal variation in static weight bearing and range of motion.The protocol consisted of 14 different evaluation methods: visual evaluation of lameness, visual evaluation of diagonal movement, visual evaluation of functional active range of motion and difference in thrust of hind limbs via functional tests (sit-to-move and lie-to-move), movement in stairs, evaluation of hind limb muscle atrophy, manual evaluation of hind limb static weight bearing, quantitative measurement of static weight bearing of hind limbs with bathroom scales, and passive range of motion of hind limb stifle (flexion and extension) and tarsal (flexion and extension) joints using a universal goniometer. The results were compared with those from an orthopaedic examination, force plate analysis, radiographic evaluation, and a conclusive assessment. Congruity of the methods was assessed with a combination of three statistical approaches (Fisher's exact test and two differently calculated proportions of agreeing observations), and the components were ranked from best to worst. Sensitivities of all of the physiotherapeutic evaluation methods against each standard were calculated. Evaluation of asymmetry in a sitting and lying position, assessment of muscle atrophy, manual and measured static weight bearing, and

  14. Ranking of physiotherapeutic evaluation methods as outcome measures of stifle functionality in dogs

    PubMed Central

    2013-01-01

    Background Various physiotherapeutic evaluation methods are used to assess the functionality of dogs with stifle problems. Neither validity nor sensitivity of these methods has been investigated. This study aimed to determine the most valid and sensitive physiotherapeutic evaluation methods for assessing functional capacity in hind limbs of dogs with stifle problems and to serve as a basis for developing an indexed test for these dogs. A group of 43 dogs with unilateral surgically treated cranial cruciate ligament deficiency and osteoarthritic findings was used to test different physiotherapeutic evaluation methods. Twenty-one healthy dogs served as the control group and were used to determine normal variation in static weight bearing and range of motion. The protocol consisted of 14 different evaluation methods: visual evaluation of lameness, visual evaluation of diagonal movement, visual evaluation of functional active range of motion and difference in thrust of hind limbs via functional tests (sit-to-move and lie-to-move), movement in stairs, evaluation of hind limb muscle atrophy, manual evaluation of hind limb static weight bearing, quantitative measurement of static weight bearing of hind limbs with bathroom scales, and passive range of motion of hind limb stifle (flexion and extension) and tarsal (flexion and extension) joints using a universal goniometer. The results were compared with those from an orthopaedic examination, force plate analysis, radiographic evaluation, and a conclusive assessment. Congruity of the methods was assessed with a combination of three statistical approaches (Fisher’s exact test and two differently calculated proportions of agreeing observations), and the components were ranked from best to worst. Sensitivities of all of the physiotherapeutic evaluation methods against each standard were calculated. Results Evaluation of asymmetry in a sitting and lying position, assessment of muscle atrophy, manual and measured static weight

  15. [Experience with the Hind Foot Relaxation Boot].

    PubMed

    Zwipp, Hans; Borrmann, Michael; Walter, Eberhard

    2017-06-01

    The goal of this paper is to report our experience with hindfoot fractures using our specially developed boot, with a follow-up of 557 cases. This boot works like the well-known Allgöwer-Röck ortheses (ARO), but is a hybrid between a boot and an orthesis. It allows full weightbearing without using crutches and completely protects an acutely operated hind foot fracture, hind foot arthrodesis or a hind foot fracture which is suitable for conservative treatment. In its first generation, this boot was custom made and used in 408 cases, from March 1999 to February 2011. This study was performed exclusively at the Department of Traumatology and Reconstructive Surgery in the University Centre of Orthopaedics and Traumatology, since 2013 at the Carl Gustav Carus University Hospital of the Technical University of Dresden (since 2013). The new improved second generation of this boot has been used in 149 patients between March 2011 and February 2016. This model is lighter and safer, due to an aluminium U-profile which is produced in one piece and interposed and fixed with 4 screws into the sole of the boot. The ground reaction forces are transported to the tibial head by this U-profile, to which the dorsal acryl shell for the calf of the Röck system is fixed with 2 screws on both sides, including the free ventral patellar shell. This is closed individually by two quick fastener buckles. This modular system of the second generation boot is now available for all patients in Dresden. These new boots have replaced the use of a wheel-chair for 3 months and are especially useful in bilateral calcaneus fractures - which occur in about 18% of all cases. In these new boots, the whole sole of the boot is in contact with the ground, rather than a surface of 9 × 3 cm as in the Allgöwer-Röck ortheses. As a result, these boots are considered to be superior to the ARO because standing and walking without crutches is much more easier - even for elderly patients. In contrast to

  16. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  17. Prenatal Development of Interlimb Motor Learning in the Rat Fetus

    PubMed Central

    Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.

    2010-01-01

    The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121

  18. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    PubMed

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  19. Silent ischemia: silent after all?

    PubMed

    D'Antono, Bianca; Dupuis, Gilles; Arsenault, André; Burelle, Denis

    2008-04-01

    To examine the association of nonpain symptoms in men and women with exercise-related silent ischemia, as well as the independence of these findings from other clinical factors. A prospective study of 482 women and 425 men (mean age 58 years) undergoing exercise stress testing with myocardial perfusion imaging. Analyses were performed on 60 women and 155 men with no angina but medical perfusion imaging evidence of ischemia during exercise. The presence of various non-pain-related symptoms. Ischemia is indicated by myocardial perfusion defects on exercise stress testing with single photon emission computed tomography. Women reported more nonangina symptoms than men (P<0.05). They experienced fatigue, hot flushes, tense muscles, shortness of breath and headaches more frequently (P<0.05). Symptoms relating to muscle tension and diaphoresis were associated with ischemia after controlling for pertinent clinical covariates. However, the direction of association differed according to sex and history of coronary artery disease events or procedures. Sensitivity of the detection models showed modest improvements with the addition of these symptoms. While patients who experience silent ischemia experience a number of nonpain symptoms, those symptoms may not be sufficiently specific to ischemia, nor sensitive in detecting ischemia, to be of particular help to physicians in the absence of other clinical information.

  20. Wireless remote monitoring of myocardial ischemia using reconstructed 12-lead ECGs.

    PubMed

    Vukcevic, Vladan; Panescu, Dorin; Bojovic, Bosko; George, Samuel; Gussak, Ihor; Giga, Vojislav; Stankovic, Ivana

    2010-01-01

    CardioBip (CB) is a hand-held patient-activated device for recording and wireless transmission of reconstructed 12-lead ECG (12CB) based on patient specific matrices. It has 5 contact points: 3 precordial and 2 on the device top serving as limb leads when touched by index fingers. To determine whether CB could be used to monitor coronary disease (CAD) patients, we compared 12CB to simultaneous 12-lead ECGs (12L) in patients with CAD, pre-and post-exercise treadmill testing (ETT). The study goals were to assess: (1) whether 12CB can accurately reconstruct and wirelessly transmit 12-lead ECGs in CAD patients during ETT recovery; (2) whether 12CB can be used to evaluate ST segment changes in patients with exercise-induced ischemia.

  1. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    PubMed

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  2. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease.

    PubMed

    Hiatt, William R; Armstrong, Ehrin J; Larson, Christopher J; Brass, Eric P

    2015-04-24

    Patients with peripheral artery disease have a marked reduction in exercise performance and daily ambulatory activity irrespective of their limb symptoms of classic or atypical claudication. This review will evaluate the multiple pathophysiologic mechanisms underlying the exercise impairment in peripheral artery disease based on an evaluation of the current literature and research performed by the authors. Peripheral artery disease results in atherosclerotic obstructions in the major conduit arteries supplying the lower extremities. This arterial disease process impairs the supply of oxygen and metabolic substrates needed to match the metabolic demand generated by active skeletal muscle during walking exercise. However, the hemodynamic impairment associated with the occlusive disease process does not fully account for the reduced exercise impairment, indicating that additional pathophysiologic mechanisms contribute to the limb manifestations. These mechanisms include a cascade of pathophysiological responses during exercise-induced ischemia and reperfusion at rest that are associated with endothelial dysfunction, oxidant stress, inflammation, and muscle metabolic abnormalities that provide opportunities for targeted therapeutic interventions to address the complex pathophysiology of the exercise impairment in peripheral artery disease. © 2015 American Heart Association, Inc.

  3. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion.

    PubMed

    Abd-Elsameea, A A; Moustaf, A A; Mohamed, A M

    2014-08-01

    Oxidative stress plays a major role in the pathogenesis of ischemic and reperfusion injury to many organs, including the brain. Chronic metformin treatment is associated with a lower risk of stroke in clinical populations. The aim of the present study was to investigate the effect of metformin on the oxidative stress induced in experimental model of incomplete global cerebral ischemia and ischemia/reperfusion in adult male Wistar rats. Metformin was administered to rats orally by gavage 500 mg/kg once daily for one week before induction of cerebral ischemia (rats were subjected to 30 min of ischemia before decapitation) and ischemia/reperfusion (rats were subjected to 30 min of ischemia then 60 minutes of reperfusion before decapitation). The selected parameters for oxidative stress were the activities of the antioxidant enzymes: glutathione peroxidase (GSHPx), superoxide dismutase (SOD), and catalase as well as malondialdehyde (MDA) levels. Metformin reduced the elevated activites of GSHPx, SOD and catalase as well as MDA levels in cerebrum of rats exposed to ischemia and ischemia/reperfusion injures. Metformin improved the oxidative stress induced by ischemia and ischemia/reperfusion injuries. This may be a mechanism that explains the cerebroprotective effect of the drug.

  5. Mitochondrial DNA pattern of the fine shrimp Metapenaeus elegans (De Man, 1907) in the lagoon of Segara Anakan, Central Java, using Hind III

    NASA Astrophysics Data System (ADS)

    Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia

    2017-05-01

    Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.

  6. Recent Progress of Bypass Surgery to the Dialysis-Dependent Patients with Critical Limb Ischemia

    PubMed Central

    Azuma, Nobuyoshi; Kikuchi, Shinsuke; Okuda, Hiroko; Miyake, Keisuke; Koya, Atsuhiro

    2017-01-01

    According to expansion of dialysis-dependent population, more than half of patients with critical ischemic limbs are dialysis-dependent in Japan. Although patients with end-staged renal disease are well-known as poor life prognosis, well-managed dialysis patients in Japan can survive much longer compared to dialysis patients in the United States and Europe. Therefore, some dialysis patients can enjoy the long-term benefits of bypass surgery. To decide the indication of bypass surgery, patient’s general condition, nutrition status, and vein availability are more important rather than arterial disease anatomy. Ultrasound guided nerve block anesthesia blocking both sciatic and femoral nerve is contributing greatly to quick postoperative recovery of high risk patients. Preoperative ultrasound examination also contribute to not only vein mapping but also find out the graftable segment of artery. The selection of distal target should be decided based on the degree of arterial disease (luminal surface as well as wall calcification), and arterial run-off. Several tips regarding anastomosis to heavily calcified artery have been established including how to create bloodless operative field without arterial clamps. Adequate wound management after bypass surgery is also important. Detection of deep infection such as osteomyelitis and the adequate treatment may avoid major amputation of salvageable limbs. In the era of endovascular treatment, the evidences guiding how to select dialysis patients suitable for bypass surgery are awaiting. (This is a translation of Jpn J Vasc Surg 2017; 26: 33–39.) PMID:29147171

  7. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane.

    PubMed

    Ha, N S; Jin, T L; Goo, N S; Park, H C

    2011-12-01

    Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.

  8. Evaluation of the response of rat skeletal muscle to a model of weightlessness

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Glasberg, M.; Manton, J.; Silver, P.; Sutko, J.

    1982-01-01

    Suspension of rats in a head-down tilt position such that their hind limbs are non-load bearing has been proposed as a model for weightlessness. Changes observed in metabolism, bone formation (Morey et al., 1979), and muscle catabolism (Mussachia et al., 1980) support the validity of the model. To further document this model, the effects of suspension on the mechanical, biochemical and histochemical characteristics of two hind limb skeletal muscles, the gastrocnemius and the soleus, are investigated.

  9. Costs of Real-Life Endovascular Treatment of Critical Limb Ischemia: Report from Poland-A European Union Country with a Low-Budget Health Care System.

    PubMed

    Krzanowski, Marek; Drelicharz, Lukasz; Belowski, Andrzej; Partyka, Lukasz; Sumek-Brandys, Barbara; Ramakrishnan, Piravin Kumar; Nizankowski, Rafal

    2016-02-01

    To analyze the costs of inhospital, percutaneous treatment of patients with critical limb ischemia (CLI) carried out in Poland, a European Union country with a low-budget national health system. A retrospective analysis of prospectively collected data on all patients admitted to a tertiary care hospital for endovascular treatment of CLI over 1 year. A single, large volume, tertiary angiology center located in Southern Poland. CLI patients due to aortoiliac, femoropopliteal, or infrapopliteal arterial stenoses or occlusions with indications for first-line endovascular therapy or similar patients who refused open surgical procedure despite having primary indications for vascular surgery. Direct stenting using bare-metal stents was the primary mode of treatment for lesions located within the aortoiliac and femoropopliteal arterial segments. Plain old balloon angioplasty (POBA) was the second most commonly used technique. For below-the-knee arteries, POBA was the mainstay of treatment, which was occasionally supported by drug-eluting stent angioplasty. Directional atherectomy, scoring balloon angioplasty, or local fibrinolysis was used infrequently. Drug-eluting balloon percutaneous transluminal angioplasty was not used. The main outcome measures were the mean reimbursement of costs provided by the Polish National Health Fund (NHF) for inhospital treatment of patients for whom endovascular procedures were performed as initial treatment for CLI and the inhospital costs of endovascular treatment calculated by the caregiver in the 2 years since the first procedure. The average total number of days spent in hospital, amputation-free survival (AFS), overall survival (OS), and limb salvage rate (LSR) according to a life-table method were also calculated for the 2 years. In the first year, there were 496 endovascular and 15 surgical hospitalizations for revascularization procedures to treat 340 limbs in 327 patients, with a further 53 revascularization procedures in the

  10. Controversies in cardiovascular care: silent myocardial ischemia

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1987-01-01

    The objective evidence of silent myocardial ischemia--ischemia in the absence of classical chest pain--includes ST-segment shifts (usually depression), momentary left ventricular failure, and perfusion defects on scintigraphic studies. Assessment of angina patients with 24-hour ambulatory monitoring may uncover episodes of silent ischemia, the existence of which may give important information regarding prognosis and may help structure a more effective therapeutic regimen. The emerging recognition of silent ischemia as a significant clinical entity may eventually result in an expansion of current therapy--not only to ameliorate chest pain, but to minimize or eliminate ischemia in the absence of chest pain.

  11. Pharmacokinetics of buprenorphine after single-dose subcutaneous administration in red-eared sliders (Trachemys scripta elegans).

    PubMed

    Kummrow, Maya S; Tseng, Florina; Hesse, Leah; Court, Michael

    2008-12-01

    Buprenorphine, a mu opioid receptor agonist, is expected to be a suitable analgesic drug for use in reptiles. However, to date, dosage recommendations have been based on anecdotal observations. The aim of this study was to provide baseline pharmacokinetic data in red-eared sliders (Trachemys scripta elegans) targeting a plasma level of 1 ng/ml reported effective for analgesia in humans. Serial blood samples were taken after subcutaneous injection of buprenorphine, and plasma buprenorphine levels were measured by radioimmunoassay. Pharmacokinetic parameters of a lower dose (0.02 mg/kg) injected into the forelimb were compared with a higher dose (0.05 mg/kg) given in the same forelimb as well as a lower dose (0.02 mg/kg) given in the hind limb of the same animals with 2 wk between studies. After administration of 0.05 mg/kg in the front limb, 85% of animals maintained the minimum effective plasma level for 24 hr, while only 43% of animals maintained this level after 0.02 mg/kg. After hind limb injection at 0.02 mg/kg, maximum plasma concentrations and areas under the buprenorphine concentration-time curve were less than 20% and 70%, respectively, of values after forelimb injection, consistent with substantial first pass extraction by the liver. Furthermore, a secondary rise in the buprenorphine level was found after having only a hind limb injection, probably from enterohepatic recirculation of glucuronidated drug. In conclusion, buprenorphine dosages of at least 0.075 mg/kg s.i.d. should be appropriate for evaluation of analgesia efficacy, and front limb administration may be preferable to hind limb administration for optimal drug exposure.

  12. Use of ethylene-vinyl alcohol copolymer as a liquid embolic agent to treat a peripheral arteriovenous malformation in a dog

    PubMed Central

    Culp, William T. N.; Glaiberman, Craig B.; Pollard, Rachel E.; Wisner, Erik R.

    2015-01-01

    Case Description An 11-year-old castrated male Tibetan Mastiff was evaluated because of a visibly enlarged blood vessel and progressively worsening swelling of the right hind limb. Clinical Findings On physical examination, the right hind limb was markedly larger than the left hind limb and the dog was minimally weight bearing on the affected limb. A bruit was auscultated over the affected region. Ultrasonography of the tarsal region of the right hind limb revealed an artery with turbulent flow that communicated with venous drainage. A CT scan confirmed the presence of an arteriovenous malformation (AVM). Treatment and Outcome Embolization of the AVM with a liquid embolic agent (ethylene-vinyl alcohol copolymer dissolved in dimethyl sulfoxide) was elected. An arteriogram was performed prior to treatment and delineated the vessels that were targeted for embolization. The embolic agent was infused into the AVM, and a postinjection arteriogram confirmed complete occlusion of the AVM nidus and normal arterial flow to the paw with subsequent normal venous drainage. The circumference of the abnormal paw was 51 cm before the procedure and 22.9 cm at 4 weeks after the procedure. Additionally, the gait of the dog dramatically improved. No complications associated with the procedure developed. Clinical Relevance Peripheral AVMs in dogs are uncommon, and described treatment options are limited and generally associated with serious morbidity. A liquid embolic agent, ethylene-vinyl alcohol copolymer dissolved in dimethyl sulfoxide, was successfully administered in this case, and no morbidity was observed secondary to the procedure. Clinical success was characterized by substantial improvement in limb swelling and marked improvement in the gait of the dog. PMID:24984133

  13. Predictive ability of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system after first-time lower extremity revascularizations.

    PubMed

    Darling, Jeremy D; McCallum, John C; Soden, Peter A; Guzman, Raul J; Wyers, Mark C; Hamdan, Allen D; Verhagen, Hence J; Schermerhorn, Marc L

    2017-03-01

    The Society for Vascular Surgery (SVS) Wound, Ischemia and foot Infection (WIfI) classification system was proposed to predict 1-year amputation risk and potential benefit from revascularization. Our goal was to evaluate the predictive ability of this scale in a real-world selection of patients undergoing a first-time lower extremity revascularization for chronic limb-threatening ischemia (CLTI). From 2005 to 2014, 1336 limbs underwent a first-time lower extremity revascularization for CLTI, of which 992 had sufficient data to classify all three WIfI components (wound, ischemia, and foot infection). Limbs were stratified into the SVS WIfI clinical stages (from 1 to 4) for 1-year amputation risk estimation, a novel WIfI composite score from 0 to 9 (that weighs all WIfI variables equally), and a novel WIfI mean score from 0 to 3 (that can incorporate limbs missing any of the three WIfI components). Outcomes included major amputation; revascularization, major amputation, or stenosis (>3.5× step-up by duplex; RAS) events; and death. Predictors were identified using Cox regression models and Kaplan-Meier survival estimates. Of the 1336 first-time procedures performed, 992 limbs were classified in all three WIfI components (524 endovascular and 468 bypass; 26% rest pain and 74% tissue loss). Cox regression demonstrated that a one-unit increase in the WIfI clinical stage increases the risk of major amputation (hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.7-3.2) and RAS events in all limbs (HR, 1.2; 95% CI, 1.1-1.3). Separate models of the entire cohort, a bypass-only cohort, and an endovascular-only cohort showed that a one-unit increase in the WIfI mean score is associated with an increase in the risk of major amputation (all three cohorts: HR, 5.3 [95% CI, 3.6-6.8], 4.1 [2.4-6.9], and 6.6 [3.8-11.6], respectively) and RAS events (all three cohorts: HR, 1.7 [95% CI, 1.4-2.0], 1.9 [1.4-2.6], and 1.4 [1.1-1.9], respectively). The novel WIfI composite and WIf

  14. Suspected disseminated histiocytic sarcoma in a 3-year-old Perro de Presa Canario dog

    PubMed Central

    Denstedt, Emily

    2014-01-01

    A 3-year-old intact male Perro de Presa Canario dog was presented with acutely inflamed and edematous right hind limb, scrotum, prepuce, and an enlarged left carpus. Two weeks later the dog returned with weight loss, draining tracts in the right hind limb, dermal nodules, a palpable abdominal mass, and uveitis in the left eye. The dog succumbed to his illness 2 days later and a widely disseminated round cell tumor compatible with histiocytic sarcoma was diagnosed following postmortem examination. PMID:24489399

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madaric, Juraj, E-mail: jurmad@hotmail.com; Klepanec, Andrej; Mistrik, Martin

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  16. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide.

    PubMed

    George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya

    2016-08-01

    This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.

  17. Load redistribution in walking and trotting Beagles with induced forelimb lameness.

    PubMed

    Abdelhadi, Jalal; Wefstaedt, Patrick; Galindo-Zamora, Vladimir; Anders, Alexandra; Nolte, Ingo; Schilling, Nadja

    2013-01-01

    To evaluate the load redistribution mechanisms in walking and trotting dogs with induced forelimb lameness. 7 healthy adult Beagles. Dogs walked and trotted on an instrumented treadmill to determine control values for peak and mean vertical force as well as vertical impulse for all 4 limbs. A small sphere was attached to the ventral pad of the right forelimb paw to induce a reversible lameness, and recordings were repeated for both gaits. Additionally, footfall patterns were assessed to test for changes in temporal gait variables. During walking and trotting, peak and mean vertical force as well as vertical impulse were decreased in the ipsilateral forelimb, increased in the contralateral hind limb, and remained unchanged in the ipsilateral hind limb after lameness was induced. All 3 variables were increased in the contralateral forelimb during trotting, whereas only mean vertical force and vertical impulse were increased during walking. Stance phase duration increased in the contralateral forelimb and hind limb during walking but not during trotting. Analysis of the results suggested that compensatory load redistribution mechanisms in dogs depend on the gait. All 4 limbs should be evaluated in basic research and clinical studies to determine the effects of lameness on the entire body. Further studies are necessary to elucidate specific mechanisms for unloading of the affected limb and to determine the long-term effects of load changes in animals with chronic lameness.

  18. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury.

    PubMed

    Imahashi, Kenichi; Schneider, Michael D; Steenbergen, Charles; Murphy, Elizabeth

    2004-10-01

    The antiapoptotic protein Bcl-2 is targeted to the mitochondria, but it is uncertain whether Bcl-2 affects only myocyte survival after ischemia, or whether it also affects metabolic functions of mitochondria during ischemia. Hearts from mice overexpressing human Bcl-2 and from their wild-type littermates (WT) were subjected to 24 minutes of global ischemia followed by reperfusion. During ischemia, the decrease in pH(i) and the initial rate of decline in ATP were significantly reduced in Bcl-2 hearts compared with WT hearts (P<0.05). The reduced acidification during ischemia was dependent on the activity of mitochondrial F1F0-ATPase. In the presence of oligomycin (Oligo), an F1F0-ATPase inhibitor, the decrease in pH(i) was attenuated in WT hearts, but in Bcl-2 hearts, Oligo had no additional effect on pH(i) during ischemia. Likewise, addition of Oligo to WT hearts slowed the rate of decline in ATP during ischemia to a level similar to that observed in Bcl-2 hearts, but addition of Oligo had no significant effect on the rate of decline in ATP in Bcl-2 hearts during ischemia. These data are consistent with Bcl-2-mediated inhibition of consumption of glycolytic ATP. Furthermore, mitochondria from Bcl-2 hearts have a reduced rate of consumption of ATP on uncoupler addition. This could be accomplished by limiting ATP entry into the mitochondria through the voltage-dependent anion channel, and/or the adenine nucleotide transporter, or by direct inhibition of the F1F0-ATPase. Immunoprecipitation showed greater interaction between Bcl-2 and voltage-dependent anion channel during ischemia. These data indicate that Bcl-2 modulation of metabolism contributes to cardioprotection.

  19. Improvement of small intestinal microcirculation by postconditioning after lower limb ischemia.

    PubMed

    Turóczi, Zsolt; Fülöp, András; Czigány, Zoltán; Varga, Gabriella; Rosero, Oliver; Tökés, Tünde; Kaszaki, József; Lotz, Gábor; Harsányi, László; Szijártó, Attila

    2015-03-01

    Major lower limb vascular surgeries may result in severe, remote injury of the gastrointestinal system, which has high mortality rates. Postconditioning is a technique with potential capability of reducing remote gastrointestinal complications. Our aim was to assess the remote macro- and micro-hemodynamic changes of the small intestine following an infrarenal aortic occlusion and to evaluate the effects of postconditioning on these alterations. Rats underwent 3h of infrarenal aortic occlusion followed by 4h of reperfusion. In one group, postconditioning was applied. Blood pressure, superior mesenteric artery flow and mucosal microcirculation of the duodenum, jejunum and ileum were assessed. Samples were taken from each intestinal segment for histological examinations. Superior mesenteric artery flow, as well as microcirculation of the duodenum, jejunum and ileum showed significant impairment in the IR group, while histological damage was significantly worsened. Postconditioning was able to limit flow reduction in all three small bowel segments and in the superior mesenteric artery, and was able to significantly reduce histological damage. Strong negative correlation was found between microcirculatory values and histological damage. Microcirculatory impairment might be responsible for remote intestinal injury following infrarenal aortic occlusion. Postconditioning was able to reduce this remote intestinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Therapeutic potential of ixmyelocel-T, an expanded autologous multicellular therapy for treatment of ischemic cardiovascular diseases.

    PubMed

    Ledford, Kelly J; Murphy, Nikki; Zeigler, Frank; Bartel, Ronnda L; Tubo, Ross

    2015-03-13

    Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate. Ixmyelocel-T contains expanded populations of mesenchymal stromal cells (MSCs) and M2-like macrophages, as well as many of the CD45+ cells found in the bone marrow. It is hypothesized that this expanded multi-cellular therapy would induce angiogenesis and endothelial repair. A rat model of hind limb ischemia was used to determine the effects of ixmyelocel-T on blood flow recovery. To further determine the effects on endothelial cells, ixmyelocel-T was co-cultured with human umbilical vein endothelial cells (HUVEC) in non-contacting Transwell® inserts. Co-culture of HUVECs with ixmyelocel-T resulted secretion of a variety of pro-angiogenic factors. HUVECs stimulated by ixmyelocel-T exhibited enhanced migration, proliferation, and branch formation. Ixmyelocel-T co-culture also resulted in increased endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. In tumor necrosis factor alpha (TNFα)-stimulated HUVECs, ixmyelocel-T co-culture decreased apoptosis and reactive oxygen species generation, increased super oxide dismutase activity, and decreased nuclear factor kappa B (NFκB) activation. Treatment with ixmyelocel-T in a rat model of hind limb ischemia resulted in significantly increased blood flow perfusion and capillary density, gene expression and plasma levels of the anti-inflammatory cytokine interleukin (IL)-10, plasma nitrates, plasma platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF) expression, and significantly decreased plasma thiobarbituric acid reactive substances (TBARS). This work demonstrates

  1. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  2. Micro-lightguide spectrophotometry (O2C®) as a predictor of intermediate outcome in patients with critical limb ischemia after percutaneous transluminal angioplasty (PTA).

    PubMed

    Weber, K; Gebauer, K; Lüders, F; Meyborg, M; Malyar, N; Goerge, T; Reinecke, H

    2014-12-01

    Micro-lightguide spectrophotometry (O2C®) provides easily and rapidly measurable parameters of tissue microcirculation. The aim of this study was to assess whether micro-lightguide spectrophotometer (O2C®) based parameters of the tissue microcirculation can serve as predictors of ulcer healing. Furthermore, we tried to identify cut off values to forecast patient outcome and check other diagnostic meanings of individual O2C-parameters. Forty individuals, all suffering from critical limb ischemia and arterial or arteriovenous ulcers were retrospectively investigated concerning O2C®- and ankle/toe brachial index-measurements before and up to two times after percutaneous transluminal angioplasty (PTA). At a median follow-up of 7 (range 3 to 14) months after PTA the current peripheral arterial disease (PAD) status, ulcer healing, adverse cardiovascular events including death and endovascular or surgical treatments were noted. We found in patients with healing wounds a significant increase in oxygen saturation (SO2, median 26.35±26.94%) compared to non-healers (-4.27±25.24%, P=0.006) as well as regarding blood flow (median 41.12±51.23AU vs. -9.46±24.01 AU, P=0.005). Additionally, the parameter rHb separated reliably between arterial and arteriovenous ulcers (P=0.024). In Cox regression models, increases after revascularisation of more than 6 % in SO2 (HRR=6.08, 95%CI 1.56-23.65, P=0.009) and flow decreases of less than 12 AU (HRR 4.95, 95%CI 1.42-17.31, P=0.012) were significantly associated with amputation-free survival. The O2C®-parameters SO2 and flow provide prognostic information for ulcer healing as well as for amputation-free survival, and rHB adds information about a possible arterial or arteriovenous genesis of an ulcer.

  3. Suspected panosteitis in a camel.

    PubMed

    Levine, David G; Smith, Jennifer J; Richardson, Dean W; Brown, Valerie; Beech, Jill; Habecker, Perry; Adam, Emma

    2007-08-01

    A 6-month-old male Bactrian camel was examined because of a 3-week history of lameness of the left hind limb. Lameness was initially detected in the left hind limb but resolved and was detected in the right hind limb during treatment. Lameness increased during periods of rapid growth. Radiography revealed multiple small opacities of the medullary cavity of several long bones throughout treatment. Core bone biopsies of lesions in the tibiae revealed lamellar bone with areas of loose connective tissue, osteoblasts in the medullary cavity, and periosteal new bone formation, all which were consistent with panosteitis. Palliative treatment was attempted with epidural and transdermal administration of analgesics. Flunixin meglumine was administered PO, which coincided with an abrupt increase in serum creatinine concentration. Performance of multiple diagnostic bone biopsies led to remission of clinical signs of pain. Panosteitis should be a differential diagnosis for shifting limb lameness in young camels. Bone biopsies can be useful for diagnosis of panosteitis and possible relief of pain associated with the disease. Bactrian camels may be susceptible to the renal toxicity of flunixin meglumine, especially when dehydrated.

  4. Limb remote ischemic post-conditioning mitigates brain recovery in a mouse model of ischemic stroke by regulating reactive astrocytic plasticity.

    PubMed

    Cheng, Xue; Zhao, Haiping; Yan, Feng; Tao, Zhen; Wang, Rongliang; Han, Ziping; Li, Guangwen; Luo, Yumin; Ji, Xunming

    2018-05-01

    Maladaptive alterations of astrocytic plasticity may cause brain edema in the acute stage of stroke and glial scar formation in the recovery stage. The present study was designed to investigate the potential regulation of limb remote ischemic post-conditioning (RIPC) on astrocytic plasticity in experimental cerebral ischemia-reperfusion injury. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) for 1 h in C57BL/6 mice, who were treated with RIPC immediately after reperfusion. The results showed that RIPC decreased hemispheric swelling, infarct volume and brain atrophy, and increased neurological function recovery and survival rates of ischemic mice at 3 and 14 d after cerebral ischemia-reperfusion, respectively. Moreover, the proportion of astrocyte subtypes was adjusted by RIPC treatment, demonstrated by decreased expression of the fibrous type (glial fibrillary acidic protein, GFAP) and increased expression of the protoplasmic type (glutamine synthetase, GS) in the ipsilateral side of the mouse brain at 14 d after cerebral ischemia-reperfusion. RIPC treatment adjusted the proportion of GFAP subtypes by downregulating the protein level of GFAPα, as well as upregulating the GFAPδ/GFAPα ratio in the ipsilateral side at 3 and 14 d after reperfusion. Notably, RIPC inhibited the phosphorylation of signal transducer and activators of transcriptions 3 (p-STAT3) in the ipsilateral side at 3 and 14 d after cerebral ischemia-reperfusion. Taken together, the results show that RIPC treatment could regulate reactive astrocytic plasticity and inhibition of STAT3 phosphorylation to promote neurological function recovery following ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.

    PubMed

    Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C

    2016-01-01

    To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Use of a Temporary Shunt as a Salvage Technique for Distal Extremity Amputations Requiring Repair by Vessel Grafting during Critical Ischemia

    PubMed Central

    Dadaci, Mehmet; Altuntas, Zeynep

    2016-01-01

    Background Although the use of temporary shunts in proximal extremity amputations has been reported, no study has described the use of temporary shunts in distal extremity amputations that require vein grafting. Moreover, the total volume of blood loss when temporary shunts are used has not been reported. The aim of this study was to investigate the applicability of a temporary shunt for distal extremity amputations requiring repair by vessel grafting with an ischemia time of >6 hours. This study also aimed to determine the total volume of blood loss when temporary shunts were used. Methods Patients who underwent distal major extremity replantation and/or revascularization with a vessel graft and who experienced ischemia for 6–8 hours between 2013 and 2014 were included in the study. A 6-Fr suction catheter was cut to 5 cm in length after the infusion of heparin, and secured with a 5-0 silk suture between the distal and the proximal ends of the artery. While bleeding continued, the bones were shortened and fixed. After the complete restoration of circulation, the arterial shunt created using the catheter was also repaired with a vein graft. Results Six patients were included in this study. The mean duration of ischemia was 7.25 hours. The mean duration of suction catheter use during limb revascularization was 7 minutes. The mean transfusion volume was 7.5 units. No losses of the extremity were observed. Conclusions This procedure should be considered in distal extremity amputations requiring repair by vessel grafting during critical ischemia. PMID:27896186

  7. The protective effect of fasudil pretreatment combined with ischemia postconditioning on myocardial ischemia/reperfusion injury in rats.

    PubMed

    Li, W-N; Wu, N; Shu, W-Q; Guan, Y-E; Jia, D-L

    2014-01-01

    Ischemic postconditioning (IPO) and pharmacological pretreatment may reduce myocardial necrosis and apoptosis during ischemia/reperfusion. This study aimed to determine the protective effect of fasudil pretreatment combined with IPO on myocardial ischemia/reperfusion injury in rats and explore the possible mechanisms. The SD rats were induced by intraperitoneal injection of fasudil hydrochloride (1 or 10 mg/kg) 60 min before the initiation of ischemia, while the control rats were given the same volume of saline. The hearts were hung on the Langendorff perfusion apparatus and underwent 30 min global ischemia and 120 min reperfusion. The IPO protocol was induced by six cycles of 10 sec ischemia and 10 sec reperfusion at the onset of reperfusion. The hemodynamic changes were measured, myocardial infarct size was determined by triphenyltetrazolium chloride (TTC) staining, cardiomyocyte apoptosis was detected by TUNEL staining, lactate dehydrogenase (LDH) was analyzed from coronary effluents, phosphorylation of Akt and eNOS, as well as expression of Bcl-2 and Bax were measured by western blotting analysis. The high-dose fasudil (10 mg/kg) pretreatment group and IPO group significantly improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the control group (p < 0.05). In addition, the high-dose fasudil pretreatment combined with IPO group could further improved post-ischemia cardiac function, reduced myocardial infarct size, attenuated cardiomyocyte apoptosis, decreased the release of LDH, increased expression of phospho-Akt, phospho-eNOS and Bcl-2, and reduced expression of Bax compared with the single treatment groups (p < 0.05). The combination of high-dose fasudil pretreatment and IPO had a synergistic protective effect on myocardial ischemia/reperfusion injury, which was

  8. [Kinetics of heifers and cows walking on an instrumented treadmill].

    PubMed

    Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T

    2015-01-01

    Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.

  9. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    PubMed

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  10. Intestinal Ischemia

    MedlinePlus

    ... and hormone medications, such as estrogen Cocaine or methamphetamine use Vigorous exercise, such as long-distance running ... anti-phospholipid syndrome. Illegal drug use. Cocaine and methamphetamine use have been linked to intestinal ischemia. Complications ...

  11. Calcium Balance in Mature Rats Exposed to a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1996-01-01

    Negative calcium balances are seen in humans during spaceflight and bed rest, an analog of space flight. Due to the infrequency and costliness of space flight and the difficulties, cost, and restraints in using invasive procedures in bed rest studies, several ground based animal models of space flight have been employed. The most useful and well developed of these models is hind limb unloading in the rat. In this model the hind limbs are non-weight bearing (unloaded) but still mobile; there is a cephalad fluid shift similar to that seen in astronauts in flight; the animals are able to feed, groom and locomote using their front limbs; the procedure is reversible; and, importantly, the model has been validated by comparison to space flight. Several laboratories have studied calcium balance using rats in hind limb unweighting. Roer and Dillaman used young male rats to study calcium balance in this model for 25 days. They found no differences in dietary calcium intake, percent calcium absorption, urinary and fecal excretion, hence indicating no differences in calcium balance between control and unloaded rats. In another study, employing 120 day old females, rats' hind limbs were unloaded for 28 days. While negative calcium balances were observed during a 25 day recovery period no balance measurements were possible during unweighting since the researchers did not employ appropriate metabolic cages. In a recent study from this laboratory, using 200 g rats in the space flight model for two weeks, we found depressed intestinal calcium absorption and increased fecal calcium excretion (indicating less positive calcium balances) and lower circulating 1,25-dihydroxyvitamin D. The above studies indicate that there remains a dearth of information on calcium balance during the hind limb unloading rat space flight model, especially in mature rats, whose use is a better model for planned manned space flight than juvenile or growing animals. With the aid of a newly designed

  12. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  14. Bowel obstruction complicated by ischemia: analysis of CT findings.

    PubMed

    Cox, Veronica L; Tahvildari, Ali M; Johnson, Benjamin; Wei, Wei; Jeffrey, R Brooke

    2018-06-01

    To analyze CT signs of bowel ischemia in patients with surgical bowel obstruction, and thereby improve CT diagnosis in this common clinical scenario. Surgical and histopathological findings were used as the reference standard. We retrospectively analyzed CT findings in patients brought to surgery for bowel obstruction over 13 years. Etiology of obstruction (adhesion, hernia, etc.) was recorded. Specific CT features of acute mesenteric ischemia (AMI) were analyzed, including bowel wall thickening, mucosal hypoenhancement, and others. 173 cases were eligible for analysis. 21% of cases were positive for bowel ischemia. Volvulus, internal hernia, and closed-loop obstructions showed ischemia rates of 60%, 43%, and 43%; ischemia rate in obstruction from simple adhesion was 21%. Patients with bowel obstruction related to malignancy were never ischemic. Sensitivities and specificities for CT features predicting ischemia were calculated, with wall thickening, hypoenhancement, and pneumatosis showing high specificity for ischemia (86%-100%). Wall thickening, hypoenhancement, and pneumatosis are highly specific CT signs of ischemia in the setting of obstruction. None of the evaluated CT signs were found to be highly sensitive. Overall frequency of ischemia in surgical bowel obstruction is 21%, and 2-3 times that for complex obstructions (volvulus, closed loop, etc.). Obstructions related to malignancy virtually never become ischemic.

  15. Effects of exercise preconditioning on intestinal ischemia-reperfusion injury.

    PubMed

    Gokbel, H; Oz, M; Okudan, N; Belviranli, M; Esen, H

    2014-01-01

    To investigate the effects of exercise preconditioning on oxidative injury in the intestinal tissue of rats. Sixty male Wistar rats were randomly divided into six groups as sham (n = 10), ischemia-reperfusion (n = 10), exercise (n = 10), exercise plus ischemia-reperfusion (n = 10), ischemic preconditioning (n = 10), and ischemic preconditioning plus ischemia-reperfusion groups (n = 10). Tissue levels of malondialdehyde and activities of myeloperoxidase and superoxide dismutase, and serum levels of tumor necrosis factor-alpha and interleukin-6 were measured. Intestinal tissue histopathology was also evaluated by light microscopy. Tumor necrosis factor-alpha concentrations significantly decreased in the exercise group compared to the sham group (p < 0.05). Myeloperoxidase activity significantly increased and superoxide dismutase activity significantly decreased in ischemia-reperfusion group compared to the sham group (p < 0.05). Superoxide dismutase activity in the ischemic preconditioning and ischemic preconditioning plus ischemia-reperfusion groups were significantly higher compared to the ischemia-reperfusion and exercise groups (p < 0.05). Histopathologically, intestinal injury significantly attenuated in the exercise plus ischemia-reperfusion group compared to the ischemia-reperfusion group. The results of the present study indicate that exercise training seems to have a protective role against intestinal ischemia-reperfusion injury (Tab. 3, Fig. 1, Ref. 35).

  16. Subanalysis of the CONFIRM Registries: Acute Procedural Outcomes in Claudicant and Critical Limb Ischemia Patients With Varying Levels of Calcification Treated for Peripheral Arterial Disease With Orbital Atherectomy.

    PubMed

    Adams, George L; Das, Tony; Lee, Michael S; Beasley, Robert; Mustapha, Jihad

    2015-11-01

    Patients with peripheral arterial disease (PAD) can be classified into groups based upon the severity of the disease using the Rutherford classification system. This analysis compares the procedural outcomes of PAD patients treated with orbital atherectomy stratified by Rutherford class (1-3 = intermittent claudication; 4-6 = critical limb ischemia [CLI]), and acute angiographic outcomes of these patients stratified by degree of lesion calcification. The CONFIRM registry series was analyzed and included 1697 patients with intermittent claudication (Rutherford class 1-3) and 1320 patients with CLI (Rutherford class 4-6) treated with orbital atherectomy. The composite rate of dissection, perforation, slow-flow, vessel closure, spasm, embolism, and thrombus formation was compared between claudicants and CLI patients with varying degrees of lesion calcification. Patients with CLI were older and had a higher prevalence of diabetes, coronary artery disease, and renal disease (P<.001). Claudicants with moderately/severely calcified lesions had a lower rate of dissection (both non-flow limiting and flow-limiting) than claudicants with mildly/minimally calcified lesions. CLI patients with mildly/minimally calcified lesions had higher rates of embolism and thrombus than CLI patients with moderately/severely calcified lesions. Plaque modification with orbital atherectomy resulted in similar low procedural complication rates in the CLI group compared with the claudicant group. These results suggest that orbital atherectomy is safe and effective for treating calcified lesions in high-risk patients with varying severity of PAD symptoms.

  17. Limb deficiency and prosthetic management. 2. Aging with limb loss.

    PubMed

    Flood, Katherine M; Huang, Mark E; Roberts, Toni L; Pasquina, Paul F; Nelson, Virginia S; Bryant, Phillip R

    2006-03-01

    This self-directed learning module highlights the issues faced by people aging with limb loss. It is part of the study guide on limb deficiency and vascular rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article specifically focuses on the impact that limb loss has on health and physical function throughout the life span. Case examples are used to illustrate what effect limb loss in childhood or young adulthood has on the incidence and management of new impairments or disease processes commonly associated with aging. To discuss the impact of early-life limb loss on the incidence and management of physiologic and functional changes associated with aging.

  18. Radiotracer Imaging Allows for Noninvasive Detection and Quantification of Abnormalities in Angiosome Foot Perfusion in Diabetic Patients With Critical Limb Ischemia and Nonhealing Wounds

    PubMed Central

    Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.

    2018-01-01

    Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted

  19. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    PubMed

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  20. A review of supernumerary and absent limbs and digits of the upper limb.

    PubMed

    Klaassen, Zachary; Choi, Monica; Musselman, Ruth; Eapen, Deborah; Tubbs, R Shane; Loukas, Marios

    2012-03-01

    For years people have been enamored by anomalies of the human limbs, particularly supernumerary and absent limbs and digits. Historically, there are a number of examples of such anomalies, including royal families of ancient Chaldea, tribes from Arabia, and examples from across nineteenth century Europe. The development of the upper limbs in a growing embryo is still being elucidated with the recent advent of homeobox genes, but researchers agree that upper limbs develop between stages 12-23 through a complex embryological process. Maternal thalidomide intake during limb development is known to cause limb reduction and subsequent amelia or phocomelia. Additionally, a number of clinical reports have illustrated different limb anomaly cases, with each situation unique in phenotype and developmental abnormality. Supernumerary and absent limbs and digits are not unique to humans, and a number of animal cases have also been reported. This review of the literature illustrates the historical, anatomical, and clinical aspects of supernumerary and absent limbs and digits for the upper limb.

  1. [Acute mesenteric ischemia: do biomarkers contribute to diagnosis?].

    PubMed

    Rosero, Olivér; Harsányi, László; Szijártó, Attila

    2014-10-12

    Acute mesenteric ischemia is an emergency condition that requires immediate therapy. Despite advances in the fields of surgery and intensive therapy, the mortality of this condition remains high. This is due to the broad variability of clinical presentations and non-specific laboratory findings, which delay the diagnosis allowing the ischemia to progress and further worsening the patients' chances of survival. Thus, there is a significant need for reliable and enhanced serological markers of intestinal ischemia. The authors review the traditionally used and novel experimental serological markers for early diagnosis of mesenteric ischemia.

  2. The Comprehensive Risk Assessment for Bypass (CRAB) facilitates efficient perioperative risk assessment for patients with critical limb ischemia.

    PubMed

    Meltzer, Andrew J; Graham, Ashley; Connolly, Peter H; Meltzer, Ellen C; Karwowski, John K; Bush, Harry L; Schneider, Darren B

    2013-05-01

    Specific perioperative risk assessment models have been developed for bariatric, pancreatic, and colorectal surgery. A similar instrument, specific for patients with critical limb ischemia (CLI), could improve patient-centered clinical decision making. We describe a novel tool to predict 30-day major morbidity and mortality (M&M) after bypass surgery for CLI. Data for 4985 individuals from the 2007 to 2009 National Surgical Quality Improvement Program were used to develop and internally validate the model. Outcome measures included mortality, major morbidity, and a composite end point (M&M). M&M included mortality and the most severe postoperative morbidities that were highly associated with death (eg, sepsis and major cardiopulmonary complications). More than 30 preoperative factors were tested for association with 30-day mortality, major morbidity, and M&M. Significant predictors in multivariate models were assigned integer values (points), which were added to calculate a patient's Comprehensive Risk Assessment For Bypass (CRAB) score. Performance was assessed (C-index) across all outcome measures and compared with other general tools (American Society of Anesthesiologists class, Surgical Risk Scale) and existing CLI-specific survival prediction models (Finnvasc score, Edifoligide for the Prevention of Infrainguinal Vein Graft Failure [PREVENT III] score) on a distinct validation sample (n = 1620). In the derivation data set (n = 3275), the 30-day mortality rate was 2.9%. The rate of any major morbidity was 19.1%. The composite end point M&M occurred in 10.1%. Significant predictors of M&M by multivariate analysis included age >75 years, prior amputation or revascularization, tissue loss, dialysis dependence, severe cardiac disease, emergency operation, and functional dependence. Applied to a distinct validation sample of 1620 patients, higher CRAB scores were significantly associated with higher rates of mortality, all major morbidities, and M&M (P < .0001

  3. Usefulness of the low profile "True 8" intra-aortic balloon pumping catheter for preventing limb lschemia.

    PubMed

    Kuki, S; Taniguchi, K; Masai, T; Yoshida, K; Yamamoto, K; Matsuda, H

    2001-01-01

    The most important limitation in the use of an intra-aortic balloon pumping (IABP) is the risk of vascular complications. Recently, an IABP catheter with an 8.0 French shaft and low profile that may decrease the risk of vascular morbidity has been developed. We evaluated the in vitro balloon performance and the prevention of limb ischemia in clinical use. An 8.0 French IABP catheter was compared with a standard 9.5 French catheter. Inflation time (IT), deflation time (DT), and changes in volume (V) generated by the balloon were measured during the pumping cycle in an experimental model. The inflation velocity (V/IT) and deflation velocity (V/DT) were calculated as parameters of balloon performance. At 120 bpm the V/IT and V/DT were 0.34 ml/msec and 0.28 ml/msec with the 8.0 French, and 0.33 ml/msec and 0.24 ml/msec with the 9.5 French catheter. Twelve patients with coronary artery disease, ranging in age from 41 to 87 years (mean, 66 years), who underwent IABP support, were divided into group 1 (8.0 French, n = 4) and group 2 (9.5 French, n = 8). Ankle-arm pressure index (API), lactate extraction ratio (LER) in the limb with IABP insertion, and cardiac index (CI) were measured at 1, 12, and 24 hours postoperatively. There were no major vascular complications and no counterpulsation related morbidity. There was no significant difference between the two groups with regard to age, duration of IABP support, and incidence of peripheral vascular disease and diabetes. The percentage of women patients was significantly higher in group 1 (100% vs. 25%), whereas body surface area was significantly smaller (1.45 +/- 0.14 vs. 1.68 +/- 0.12 m2). The API in group 1 were slightly higher than those in group 2 throughout the observed period (not significant). The LER and Cl showed no significant differences between the two groups. These results suggest that the 8.0 French IABP catheter with a low profile has an acceptable in vitro performance, and its clinical application may be

  4. Clinical Features and Outcomes of Gastric Ischemia.

    PubMed

    Sharma, Ayush; Mukewar, Saurabh; Chari, Suresh T; Wong Kee Song, Louis M

    2017-12-01

    Gastric ischemia is a rare condition associated with poor prognosis. Our study aim was to highlight the clinical features and outcomes of patients with gastric ischemia. A retrospective review of patients diagnosed with isolated gastric ischemia at our institution from January 1, 2000, to May 5, 2016, was performed. Demographic, clinical, endoscopic, radiologic, and outcome variables were abstracted for analysis. Seventeen patients (65% men) with mean age of 69.3 ± 11.3 years and body mass index of 28.8 ± 11.1 were identified. The etiologies for gastric ischemia included local vascular causes (n = 8), systemic hypoperfusion (n = 4), and mechanical obstruction (n = 5). The most common presenting symptoms were abdominal pain (65%), gastrointestinal bleeding (47%), and altered mental status (23%). The typical endoscopic appearance was mucosal congestion and erythema with or without ulceration. Gastric pneumatosis and portal venous air were more commonly seen on CT imaging. Radiologic and/or surgical intervention was needed in 9 patients, while the remaining 8 patients were managed conservatively with acid suppression, antibiotics, and nasogastric tube decompression. The median duration of hospital stay was 15 days (range 1-36 days). There were no cases of rebleeding and the mortality rate as a direct result of gastric ischemia was 24% within 6 months of diagnosis. Although uncommon, gastric ischemia is associated with significant mortality. Endoscopy and CT imaging play an important role in its diagnosis. The management of gastric ischemia is dictated by its severity and associated comorbidities.

  5. Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study

    PubMed Central

    2012-01-01

    Background Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size. Method Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 × 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically. Results A comparison of the gelatin blocks and hind limbs showed significant differences (p < 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path. Conclusion Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles. PMID:22490236

  6. Development of a clinical spasticity scale for evaluation of dogs with chronic thoracolumbar spinal cord injury.

    PubMed

    Lewis, Melissa J; Olby, Natasha J

    2017-07-01

    OBJECTIVE To develop a spasticity scale for dogs with chronic deficits following severe spinal cord injury (SCI) for use in clinical assessment and outcome measurement in clinical trials. ANIMALS 20 chronically paralyzed dogs with a persistent lack of hind limb pain perception caused by an acute SCI at least 3 months previously. PROCEDURES Spasticity was assessed in both hind limbs via tests of muscle tone, clonus, and flexor and extensor spasms adapted from human scales. Measurement of patellar clonus duration and flexor spasm duration and degree was feasible. These components were used to create a canine spasticity scale (CSS; overall score range, 0 to 18). Temporal variation for individual dogs and interrater reliability were evaluated. Gait was quantified with published gait scales, and CSS scores were compared with gait scores and clinical variables. Owners were questioned regarding spasticity observed at home. RESULTS 20 dogs were enrolled: 18 with no apparent hind limb pain perception and 2 with blunted responses; 5 were ambulatory. Testing was well tolerated, and scores were repeatable between raters. Median overall CSS score was 7 (range, 3 to 11), and flexor spasms were the most prominent finding. Overall CSS score was not associated with age, SCI duration, lesion location, or owner-reported spasticity. Overall CSS score and flexor spasm duration were associated with gait scores. CONCLUSIONS AND CLINICAL RELEVANCE The CSS could be used to quantify hind limb spasticity in dogs with chronic thoracolumbar SCI and might be a useful outcome measure. Flexor spasms may represent an integral part of stepping in dogs with severe SCI.

  7. Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis

    PubMed Central

    Santos, Carolina Gonçalves; Hartfelder, Klaus

    2015-01-01

    Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways. PMID:26500430

  8. Reverse Saphenous Conduit Flap in 19 Dogs and 1 Cat.

    PubMed

    Cavalcanti, Jacqueline V J; Barry, Sabrina L; Lanz, Otto I; Barnes, Katherine; Coutin, Julia V

    2018-05-14

    The purpose of this retrospective study was to report the outcomes of 19 dogs and 1 cat undergoing reverse saphenous conduit flap between 1999 and 2016. Reverse saphenous conduit flap was used to treat traumatic wounds and wounds resulting from tumor excision in the hind limb; the majority of cases had medial shearing injuries. All animals had complete flap survival. In five animals (20%), minor donor site dehiscence occurred, which did not require surgery. Other postoperative complications included signs of severe venous congestion in one dog. Reverse saphenous conduit flap is a useful technique to repair skin defects of the distal hind limb.

  9. [Fundamental biological model for trials of wound ballistics].

    PubMed

    Krajsa, J; Hirt, M

    2006-10-01

    The aim of our experiment was the testing of effects of common ammunition on usable and slightly accessible biological tissue thereby to create fundamental simple biological model for trials of wounded ballistic. Like objective tissue was elected biological material - pork and beef hind-limbs, pork head, pork bodily cavity. It was discovered that objective tissue is able to react to singles types of shots in all spectrum results namely simple smooth penetration wound as well as splintery fracture in dependence on kind of using ammunition. Pork hind-limb was evaluated like the most suitable biological material for given object.

  10. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    PubMed

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  11. Global Cerebral Ischemia: Synaptic and Cognitive Dysfunction

    PubMed Central

    Neumann, Jake T.; Cohan, Charles H.; Dave, Kunjan R.; Wright, Clinton B.; Perez-Pinzon, Miguel A.

    2018-01-01

    Cardiopulmonary arrest is one of the leading causes of death and disability, primarily occurring in the aged population. Numerous global cerebral ischemia animal models induce neuronal damage similar to cardiac arrest. These global cerebral ischemia models range from vessel occlusion to total cessation of cardiac function, both of which have allowed for the investigation of this multifaceted disease and detection of numerous agents that are neuroprotective. Synapses endure a variety of alterations after global cerebral ischemia from the resulting excitotoxicity and have been a major target for neuroprotection; however, neuroprotective agents have proven unsuccessful in clinical trials, as neurological outcomes have not displayed significant improvements in patients. A majority of these neuroprotective agents have specific neuronal targets, where the success of future neuroprotective agents may depend on non-specific targets and numerous cognitive improvements. This review focuses on the different models of global cerebral ischemia, neuronal synaptic alterations, synaptic neuroprotection and behavioral tests that can be used to determine deficits in cognitive function after global cerebral ischemia. PMID:23170794

  12. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  13. Neuromotor development in relation to birth weight in rabbits.

    PubMed

    Harel, S; Shapira, Y; Hartzler, J; Teng, E L; Quiligan, E; Van Der Meulen, J P

    1978-01-01

    The development of neuromotor patterns in relation to birth weight was studied in the rabbit, a perinatal brain developer. In order to induce intrauterine growth retardation and to increase the number of low birth weight rabbits, experimental ischemia to half the fetuses in each doe was achieved by total ligation of approximately 30% of spiral vessels to the placenta, during the last trimester of gestation. Following natural delivery, the rabbit pups were periodically observed for the appearance of eye-opening and righting reflex, and for the cessations of falling, circling and dragging of hind limbs. An index of neuromotor development was assigned to each rabbit by summing up the age (in days) of appearance of each of the neuromotor milestones. An association was found between low birth weight and delayed neuromotor development at 2 weeks of age. The most significant correlation was found between low birth weight and delayed disappearance of falling. The latter may represent incoordination as an expression of cerebellar dysfunction.

  14. Retinal angiogenesis suppression through small molecule activation of p53

    PubMed Central

    Chavala, Sai H.; Kim, Younghee; Tudisco, Laura; Cicatiello, Valeria; Milde, Till; Kerur, Nagaraj; Claros, Nidia; Yanni, Susan; Guaiquil, Victor H.; Hauswirth, William W.; Penn, John S.; Rafii, Shahin; De Falco, Sandro; Lee, Thomas C.; Ambati, Jayakrishna

    2013-01-01

    Neovascular age-related macular degeneration is a leading cause of irreversible vision loss in the Western world. Cytokine-targeted therapies (such as anti-vascular endothelial growth factor) are effective in treating pathologic ocular angiogenesis, but have not led to a durable effect and often require indefinite treatment. Here, we show that Nutlin-3, a small molecule antagonist of the E3 ubiquitin protein ligase MDM2, inhibited angiogenesis in several model systems. We found that a functional p53 pathway was essential for Nutlin-3–mediated retinal antiangiogenesis and disruption of the p53 transcriptional network abolished the antiangiogenic activity of Nutlin-3. Nutlin-3 did not inhibit established, mature blood vessels in the adult mouse retina, suggesting that only proliferating retinal vessels are sensitive to Nutlin-3. Furthermore, Nutlin-3 inhibited angiogenesis in nonretinal models such as the hind limb ischemia model. Our work demonstrates that Nutlin-3 functions through an antiproliferative pathway with conceivable advantages over existing cytokine-targeted antiangiogenesis therapies. PMID:24018558

  15. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.

    PubMed

    Kobulnik, Jeremy; Kuliszewski, Michael A; Stewart, Duncan J; Lindner, Jonathan R; Leong-Poi, Howard

    2009-10-27

    This study was designed to compare the efficacy of angiogenic gene delivery by ultrasound-mediated (UM) destruction of intravenous carrier microbubbles to direct intramuscular (IM) injections. Current trials of gene therapy for angiogenesis remain limited by suboptimal, invasive delivery techniques. Hind-limb ischemia was produced by iliac artery ligation in 99 rats. In 32 rats, UM delivery of green fluorescent protein (GFP)/vascular endothelial growth factor-165 (VEGF(165)) plasmid deoxyribonucleic acid was performed. Thirty-five animals received IM injections of VEGF(165)/GFP plasmid. Remaining rats received no treatment. Before delivery (day 14 after ligation) and at days 17, 21, and 28 and week 8 after ligation, microvascular blood volume and microvascular blood flow to the proximal hind limbs were assessed by contrast-enhanced ultrasound (n = 8 per group). Total transfection was assessed by reverse transcriptase-polymerase chain reaction, and localization of transfection was determined by immunohistochemistry. By day 28, both IM and UM delivery of VEGF(165) produced significant increases in microvascular blood volume and microvascular blood flow. Whereas increases in microvascular blood volume were similar between treatment groups, microvascular blood flow was greater (p < 0.005) in UM-treated animals as compared with IM-treated animals, persisting to week 8. The VEGF(165)/GFP messenger ribonucleic acid expression was greater (p < 0.05) for IM-treated animals. A strong GFP signal was detected for both groups and was localized to focal perivascular regions and myocytes around injection sites for IM and to the vascular endothelium of arterioles/capillaries in a wider distribution for UM delivery. Despite lower transfection levels, UM delivery of VEGF(165) is as effective as IM injections. The UM delivery results in directed vascular transfection over a wider distribution, which may account for the more efficient angiogenesis.

  16. Delayed Post-ischemic Conditioning Significantly Improves the Outcome after Retinal Ischemia

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Shaikh, Afzhal R.; Alexander, Michael; Tupper, Kelsey Y.; Marcet, Marcus M.; Bernaudin, Myriam; Roth, Steven

    2011-01-01

    In previous studies, it was shown that post-conditioning, a transient period of brief ischemia following prolonged severe ischemia in the retina, could provide significant improvement in post-ischemic recovery, attenuation of cell loss, and decreased apoptosis. These studies showed that post-conditioning effectively prevented damage after retinal ischemia when it was instituted early (within one hour) in the post-ischemic period. While post-ischemic conditioning holds high promise of clinical translation, patients often present late after the onset of retinal ischemia and therefore immediate application of this anti-ischemic maneuver is generally not feasible. In this study, we examined the hypothesis that application of a post-conditioning stimulus at 24 h or greater following the end of prolonged ischemia would decrease the extent of ischemic injury. Ischemia was induced in rat retina in vivo. Recovery after ischemia followed by 5 minutes of post-conditioning brief ischemia 24 or 48 h after prolonged ischemia was assessed functionally (electroretinography) and histologically at 7 days after ischemia and post-conditioning or sham post-conditioning. We found that the brief ischemic stimulus applied 24, but not 48 h after prolonged ischemia significantly improved functional recovery and decreased histological damage induced by prolonged ischemia. We conclude that within a defined time window, delayed post-ischemic conditioning ameliorated post-ischemic injury in rats. Compared to earlier studies, the present work demonstrates for the first time the novel ability of a significantly delayed ischemic stimulus to provide robust neuroprotection in the retina following ischemia. PMID:21501608

  17. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection.

    PubMed

    Brager, Allison J; Yang, Tao; Ehlen, J Christopher; Simon, Roger P; Meller, Robert; Paul, Ketema N

    2016-11-01

    Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities ( Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome. © 2016 Associated Professional Sleep Societies, LLC.

  19. Kinetic and temporospatial parameters in male and female cats walking over a pressure sensing walkway.

    PubMed

    Verdugo, Mirela R; Rahal, Sheila C; Agostinho, Felipe S; Govoni, Verônica M; Mamprim, Maria J; Monteiro, Frederico O B

    2013-06-27

    Several factors may influence kinetic data measurements, including body conformation and body mass. In addition, gender differences in gait pattern have been observed in healthy humans. Therefore, the aim of this study was to compare the kinetic and temporospatial parameters in clinically healthy male and female cats using a pressure-sensitive walkway. Eighteen crossbreed adult cats were divided into two groups: G1 had ten male cats (nine neutered) aged from 1 to 4 years and body mass 3.1-6.8 kg; G2 had eight spayed female cats, aged from 1 to 6 years and body mass 3.3-4.75 kg. The data from the first five valid trials were collected for each cat. A trial was considered valid if the cat maintained a velocity between 0.54-0.74 m/s and acceleration from -0.20 to 0.20 m/s2. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentage body weight distribution among the four limbs were determined. In addition, the lengths of each forelimb and each hind limb were measured using a tape with the animal standing. No significant differences were observed in each group in either the forelimbs or the hind limbs or between the left and right sides for any of the variables. For both groups, the PVF (%BW), the VI, and the percentage body weight distribution were higher at the forelimbs than the hind limbs. The stride length was larger for males; however, the other kinetic and temporospatial variables did not show any statistically significant differences between the groups. The lengths of the forelimbs and hind limbs were larger in the male cats. There was a significant moderate positive correlation between the stride length and the length of the limbs. In conclusion, the only difference observed between male and female cats was the stride length, and this was due to the greater body size of male cats. This difference did not affect other temporospatial or kinetics variables.

  20. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  1. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy").

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Ketcham, Richard A; Kappelman, John

    2016-01-01

    While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in

  2. Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy")

    PubMed Central

    Ruff, Christopher B.; Burgess, M. Loring; Ketcham, Richard A.; Kappelman, John

    2016-01-01

    While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288–1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288–1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288–1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant

  3. Critical Limb Ischemia (CLI)

    MedlinePlus

    ... re human: Search ©2017 Vascular Cures is a tax-exempt, nonprofit organization tax ID#: 94-2825216 as described in the Section ... 3) of the Internal Revenue Code. Donations are tax deductible. 274 Redwood Shores Parkway, #717, Redwood City, ...

  4. An attempt to detect lameness in galloping horses by use of body-mounted inertial sensors.

    PubMed

    Lopes, Marco A F; Dearo, Antonio C O; Lee, Allen; Reed, Shannon K; Kramer, Joanne; Pai, P Frank; Yonezawa, Yoshiharu; Maki, Hiromitchi; Morgan, Terry L; Wilson, David A; Keegan, Kevin G

    2016-10-01

    OBJECTIVE To evaluate head, pelvic, and limb movement to detect lameness in galloping horses. ANIMALS 12 Thoroughbreds. PROCEDURES Movement data were collected with inertial sensors mounted on the head, pelvis, and limbs of horses trotting and galloping in a straight line before and after induction of forelimb and hind limb lameness by use of sole pressure. Successful induction of lameness was determined by measurement of asymmetric vertical head and pelvic movement during trotting. Differences in gallop strides before and after induction of lameness were evaluated with paired-sample statistical analysis and neural network training and testing. Variables included maximum, minimum, range, and time indices of vertical head and pelvic acceleration, head rotation in the sagittal plane, pelvic rotation in the frontal plane, limb contact intervals, stride durations, and limb lead preference. Difference between median standardized gallop strides for each limb lead before and after induction of lameness was calculated as the sum of squared differences at each time index and assessed with a 2-way ANOVA. RESULTS Head and pelvic acceleration and rotation, limb timing, stride duration measurements, and limb lead preference during galloping were not significantly different before and after induction of lameness in the forelimb or hind limb. Differences between limb leads before induction of lameness were similar to or greater than differences within limb leads before and after lameness induction. CONCLUSIONS AND CLINICAL RELEVANCE Galloping horses maintained asymmetry of head, pelvic, and limb motion between limb leads that was unrelated to lameness.

  5. Non-occlusive Mesenteric Ischemia in Patients with Methamphetamine Use.

    PubMed

    Anderson, Jamie E; Brown, Ian E; Olson, Kristin A; Iverson, Katherine; Cocanour, Christine S; Galante, Joseph M

    2018-02-17

    Data suggest that methamphetamine may increase the risk of non-occlusive mesenteric ischemia (NOMI). We describe patterns of presentation and outcomes of patients with methamphetamine use who present with NOMI to a single institution. This is an observational study of patients from January 2015 to September 2017 with methamphetamine use who presented with NOMI at an academic medical center in Northern California. We summarize patient co-morbidities, clinical presentation, operative findings, pathologic findings, hospital course, and survival. Ten patients with methamphetamine use and severe NOMI were identified. One patient was readmitted with a perforated duodenal ulcer, for a total of 11 encounters. Most presented with acute (n=3) or acute-on-chronic (n=4) abdominal pain. Distribution of ischemia ranged from perforated duodenal ulcer (n=3), ischemia of the distal ileum (n=1), ischemia of entire small bowel (n=2), and patchy necrosis of entire small bowel and colon (n=5). Six patients died, three within one week of admission and three between 3-8 months. Methamphetamine use may be associated with significant microvascular compromise, increasing the risk of mesenteric ischemia. Providers in areas with high prevalence of methamphetamine use should have a high index of suspicion for intestinal ischemia in this patient population. Patients with methamphetamine use admitted for trauma or other pathology may be at particular risk of ischemia and septic shock, especially in the setting of dehydration. Use of vasoconstrictors in this patient population may also exacerbate intestinal ischemia. Level 5; Case series.

  6. Standardized Approach to Quantitatively Measure Residual Limb Skin Health in Individuals with Lower Limb Amputation.

    PubMed

    Rink, Cameron L; Wernke, Matthew M; Powell, Heather M; Tornero, Mark; Gnyawali, Surya C; Schroeder, Ryan M; Kim, Jayne Y; Denune, Jeffrey A; Albury, Alexander W; Gordillo, Gayle M; Colvin, James M; Sen, Chandan K

    2017-07-01

    Objective: (1) Develop a standardized approach to quantitatively measure residual limb skin health. (2) Report reference residual limb skin health values in people with transtibial and transfemoral amputation. Approach: Residual limb health outcomes in individuals with transtibial ( n  = 5) and transfemoral ( n  = 5) amputation were compared to able-limb controls ( n  = 4) using noninvasive imaging (hyperspectral imaging and laser speckle flowmetry) and probe-based approaches (laser doppler flowmetry, transcutaneous oxygen, transepidermal water loss, surface electrical capacitance). Results: A standardized methodology that employs noninvasive imaging and probe-based approaches to measure residual limb skin health are described. Compared to able-limb controls, individuals with transtibial and transfemoral amputation have significantly lower transcutaneous oxygen tension, higher transepidermal water loss, and higher surface electrical capacitance in the residual limb. Innovation: Residual limb health as a critical component of prosthesis rehabilitation for individuals with lower limb amputation is understudied in part due to a lack of clinical measures. Here, we present a standardized approach to measure residual limb health in people with transtibial and transfemoral amputation. Conclusion: Technology advances in noninvasive imaging and probe-based measures are leveraged to develop a standardized approach to quantitatively measure residual limb health in individuals with lower limb loss. Compared to able-limb controls, resting residual limb physiology in people that have had transfemoral or transtibial amputation is characterized by lower transcutaneous oxygen tension and poorer skin barrier function.

  7. Effect of limited ischemia time on the amount and function of mitochondria within human skeletal muscle cells.

    PubMed

    Jawhar, A; Ponelies, N; Schild, L

    2016-12-01

    The clinical success of total knee arthroplasty (TKA) depends substantially on the quadriceps muscle function. A frequently applied thigh tourniquet during TKA may induce ischemia related injuries to quadriceps muscle cells. Animal limb muscles subjected to 2-5 h ischemia revealed dysfunctional mitochondria, which in turn compromised the cellular bioenergetics and increased the level of reactive oxygen species. The hypothesis of the present study was that tourniquet application during TKA for 60 min (min) affects the amount and function of mitochondria within musculus vastus medialis cells. In a randomized clinical trial, 10 patients enrolled to undergo primary TKA. The patients were randomly assigned to the tourniquet (n = 5) or non-tourniquet group (n = 5) after obtaining a written informed consent. For each of the groups, the first muscle biopsy was harvested immediately after performing the surgical approach and the second biopsy exactly 60 min later. All biopsies (5 × 5 × 5 mm) 125 mm 3 were harvested from musculus vastus medialis and snap-frozen in liquid nitrogen. The biochemical analysis of the prepared muscle tissues included the measurement of activities of mitochondrial respiratory chain enzyme complexes I-III and citrate synthase. Tourniquet-induced 60 min ischemia time did not significantly change the activities of the mitochondrial respiratory chain enzymes complexes I-III of the skeletal muscle cells. The citrate synthase activities found to be not significantly different between both groups. The use of tourniquet during TKA within a limited time period of 60 min remained without substantial effects on the amount and function of mitochondria within human skeletal muscle cells.

  8. Acute testicular ischemia caused by incarcerated inguinal hernia.

    PubMed

    Orth, Robert C; Towbin, Alexander J

    2012-02-01

    Acute testicular ischemia caused by an incarcerated inguinal hernia usually affects infants. There are few reports of diagnosis using US, and the effect of long-standing reducible hernias on testicular growth in infants and children is unknown. The objectives of this study were to determine the incidence of testicular ischemia secondary to an incarcerated inguinal hernia at scrotal sonography and to determine the effect on testicular size at diagnosis. A hospital database was used to locate scrotal sonography examinations documenting an inguinal hernia, and images were reviewed for signs of testicular ischemia. Testicular volumes were compared using the Wilcoxon signed rank test. A total of 147 patients were identified with an inguinal hernia (age 1 day to 23 years, average 6 years). Ten patients (6.8%) had associated testicular ischemia (age 3 weeks to 6 months, average 9 weeks) and showed a statistically significant increase in ipsilateral testicular size compared to the contralateral testicle (P = 0.012). Patients without testicular ischemia did not show a significant difference in testicular size, regardless of patient age. An incarcerated inguinal hernia should be considered as a cause of acute testicular ischemia in infants younger than 6 months of age.

  9. A Program for Solving the Brain Ischemia Problem

    PubMed Central

    DeGracia, Donald J.

    2013-01-01

    Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411

  10. A new management for limb graft occlusion after endovascular aneurysm repair adding a vollmar ring stripper: the unclogging technique.

    PubMed

    Ronsivalle, Salvatore; Faresin, Francesca; Franz, Francesca; Pedon, Luigi; Rettore, Carlo; Zonta, Loretta; Olivieri, Armando

    2013-11-01

    Lower extremity ischemia for limb thrombosis is a well-known adverse event after endovascular abdominal aortic aneurysm repair (EVAR), ranging from 2.6-7.4%. We report our experience in the management of graft limb occlusion that occurred in patients who underwent EVAR in our institution. In cases in which balloon catheter thrombectomy is not useful or is risky, it is important to take into consideration the use of a Vollmar ring stripper (Aesculap, San Jose, CA) to avoid dislodging or disrupting the sealing zones. This technique has taken from thromboendarterectomy the principle of detaching plaque from adventitia and transformed it in a less traumatic way for dissecting thromboses from endografts. Between September 1999 and December 2011, 608 patients underwent EVAR in our institution. In cases of severe claudication or critical ischemia, we tried to remove the thrombus using mild Fogarty balloon traction; in cases of progressive and old stratification, we added the Vollmar ring stripper. After recanalization, if there was a stenosis, an angioplasty was performed and in most patients an adequately size Cheatham platinum stent was positioned. If the endovascular approach failed, bypass procedures were considered. In 608 patients over a mean follow-up time of 72 months, there were 23 cases of limb thrombosis. Fifteen of the 23 limb occlusions were identified within 6 months after aneurysm repair. The mean time to occlusion was 8.2 ± 4.3 months (range: 20 days-25 months). Presenting symptoms were mild to moderate claudication (Rutherford classification I) in 3 patients (13%), medium severe claudication (Rutherford classification IIA) in 18 patients (78.3%), and paresthesia and rest pain (Rutherford classification IIB) in 2 patients (8.7%; 1 of those patients had a loss of motor function). Four (17.4%) were stable during follow-up, and in 1 of these cases we tried thrombolysis without thrombosis resolution. In 13 (56.5%) cases, we performed balloon catheter

  11. Design and validation of a computer-aided learning program to enhance students' ability to recognize lameness in the horse.

    PubMed

    Barstow, Amy; Pfau, Thilo; Bolt, David M; Smith, Roger K; Weller, Renate

    2014-01-01

    The ability to recognize lameness in the horse is an important skill for veterinary graduates; however, opportunities to develop this skill at the undergraduate level are limited. Computer-aided learning programs (CALs) have been successful in supplementing practical skills teaching. The aim of this study was to design and validate a CAL for the teaching of equine lameness recognition (CAL1). A control CAL was designed to simulate learning by experience (CAL2). Student volunteers were randomly assigned to either CAL and tested to establish their current ability to recognize lameness. Retesting occurred both immediately following exposure and 1 week later. At each test point, the number of correct responses for forelimb and hind limb cases was determined. Student confidence was assessed before and after CAL exposure, with previous opportunities to recognize lameness taken into account. Immediately following exposure, the number of correct responses was significantly higher for CAL1 than for CAL2, both overall and for forelimb cases but not for hind limb cases. After 1 week, the CAL1 group performed significantly better overall compared to the CAL2 group, with no significant difference between forelimb and hind limb cases. Student confidence and ability to recognize lameness were significantly improved following exposure to CAL1. When considered as one category, students in years 4 and 5 performed significantly better than year 3 students. Gender did not significantly affect performance. CAL1 could be used to supplement current lameness recognition opportunities. CAL1 is, however, limited in its ability to improve lameness recognition, especially in relation to hind limb lameness where it was unable to attain a significant difference from CAL2.

  12. Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice.

    PubMed

    Davey, Rachel A; Clarke, Michele V; Russell, Patricia K; Rana, Kesha; Seto, Jane; Roeszler, Kelly N; How, Jackie M Y; Chia, Ling Yeong; North, Kathryn; Zajac, Jeffrey D

    2017-10-01

    Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice. Copyright © 2017 Endocrine Society.

  13. Venous Shunt Versus Venous Ligation for Vascular Damage Control: The Immunohistochemical Evidence.

    PubMed

    Góes Junior, Adenauer Marinho de Oliveira; Abib, Simone de Campos Vieira; Alves, Maria Teresa de Seixas; Ferreira, Paulo Sérgio Venerando da Silva; Andrade, Mariseth Carvalho de

    2017-05-01

    To evaluate the expression of immunohistochemical markers of tissue ischemia (iNOS, eNOS, and HSP70) in a vascular damage control experimental model to determine if a venous temporary vascular shunt insertion leads to a better limb perfusion when compared with the ligature of the injured vein. Experimental study in male Sus Scrofa weighting 40 Kg. Animals were distributed into 5 groups: group 1 animals were submitted to right external iliac artery (EIA) shunting and right external iliac vein (EIV) ligation; group 2 animals were submitted to right EIA shunting and right EIV shunting; group 3 animals were submitted to right EIV ligation; group 4 animals were submitted to right EIV shunting; group 5 animals were not submitted to vascular shunting or venous ligation. Transonic Systems flowmeters were used to measure vascular flow on right and left external iliac vessels, and i-STAT (Abbot) portable blood analyzer was used for EIVs blood biochemical analysis. An initial baseline register of invasive arterial pressure, iliac vessels flow, and venous blood analysis was performed. Arterial pressure and iliac vessels flow were taken immediately after right iliac vessels shunting or ligation. Then, hemorrhagic shock was induced by continuous 20 mL/min blood withdraw from the external right jugular vein whereas arterial blood pressure and iliac vessels flow registers were taken every 10 min, and blood samples from EIVs were obtained every 30 min until the vascular flow through right EIA (or through the shunt inserted into the right EIV for group 4 animals) became inexistent or until the animal's death. After the end of the experiments, bilateral hind limb's biopsies were obtained for immunohistochemical analysis. Using image editing and analysis software, the expression of iNOS, eNOS, and HSP70 (3 well-known ischemic associated immunohistochemical markers) was assessed. The mean expression of each marker in the right hind limb was compared between groups. For statistical

  14. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

    PubMed

    Si, Jingwen; Wang, Ning; Wang, Huan; Xie, Juan; Yang, Jian; Yi, Hui; Shi, Zixuan; Ma, Jing; Wang, Wen; Yang, Lifang; Yu, Shiqiang; Li, Junchang

    2014-01-01

    In this study, we evaluated the effect of astragaloside IV (Ast IV) post-ischemia treatment on myocardial ischemia-reperfusion (IR) injury (IRI). We also examined whether hypoxia inducible factor-1α (HIF-1α) and its downstream gene-inducible nitric oxide (NO) synthase (iNOS) play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2). The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI). Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH) release in the coronary flow (CF) were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.

  15. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.

    PubMed

    Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena

    2015-11-13

    In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  17. Protective effects of osthole on intestinal ischemia-reperfusion injury in mice.

    PubMed

    Zhang, Zhen; Pan, Chen; Wang, Hong-zhi; Li, Yong-xiang

    2014-06-01

    The purpose of this study was to evaluate the effect of intravenous injection of osthole on intestinal ischemia-reperfusion injury and parameters of oxidative stress. In 45 Kunming male mice, treatment included sham surgery (15 mice); intestinal ischemia-reperfusion injury (clamping of the superior mesenteric artery, 2 h; clamp release, 1 h; 15 mice); or osthole treatment before and after ischemia-reperfusion injury (15 mice). Evaluation included histopathology, determination of intestinal wet/dry weight ratio, and measurement of levels of diamine oxidase, superoxide dismutase, malondialdehyde, interleukin 1β, tumor necrosis factor α, and interleukin 2. Intestinal barrier permeability was evaluated with Evans blue test. The mean wet-to-dry weight ratio, Evans blue content, and Chiu score were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than the ischemia-reperfusion group. The mean serum diamine oxidase, malondialdehyde, interleukin 1β, and tumor necrosis factor α levels were significantly greater in the ischemia-reperfusion than in the sham group and lower in the osthole-treated than in the ischemia-reperfusion group. The mean superoxide dismutase activity and interleukin 2 levels were lower in the ischemia-reperfusion than in the sham group and greater in the osthole-treated than in the ischemia-reperfusion group. Treatment with osthole may protect against oxidative stress and tissue damage from intestinal ischemia-reperfusion injury.

  18. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice

    PubMed Central

    Durand, Marjorie; Collombet, Jean-Marc; Frasca, Sophie; Begot, Laurent; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2014-01-01

    We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency. PMID:24944208

  19. Assessment of Renal Ischemia By Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J T; Demos, S; Michalopoulou, A

    2004-01-07

    Introduction: No reliable method currently exists for quantifying the degree of warm ischemia in kidney grafts prior to transplantation. We describe a method for evaluating pretransplant warm ischemia time using optical spectroscopic methods. Methods: Lewis rat kidney vascular pedicles were clamped unilaterally in vivo for 0, 5, 10, 20, 30, 60, 90 or 120 minutes; 8 animals were studied at each time point. Injured and contra-lateral control kidneys were then flushed with Euro-Collins solution, resected and placed on ice. 335 nm excitation autofluorescence as well as cross polarized light scattering images were taken of each injured and control kidney usingmore » filters of various wavelengths. The intensity ratio of the injured to normal kidneys was compared to ischemia time. Results: Autofluorescence intensity ratios through a 450 nm filter and light scattering intensity ratios through an 800 nm filter both decreased significantly with increasing ischemia time (p < 0.0001 for each method, one-way ANOVA). All adjacent and non-adjacent time points between 0 and 90 minutes were distinguishable using one of these two modalities by Fisher's PLSD. Conclusions: Optical spectroscopic methods can accurately quantify warm ischemia time in kidneys that have been subsequently hypothermically preserved. Further studies are needed to correlate results with physiological damage and posttransplant performance.« less

  20. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia-reperfusion injury.

    PubMed

    Wang, Dai-Jun; Tian, Hua

    2014-12-01

    To date, there are no effective treatments for extremity ischemia-reperfusion (IR) injury. The objective of the present study was to explore the protective effect of Mailuoning on IR injury by investigating the plasma levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF2α) and the activity of superoxide dismutase (SOD) in rabbits. The experimental models of posterior limb IR injury were established in thirty rabbits that were divided into three groups: the sham, IR, and IR + Mailuoning groups. At the end of ischemia, Mailuoning was injected intravenously into the rabbits in the IR + Mailuoning group, and normal saline solution was administered to the rabbits in the sham and IR groups. Venous blood samples were collected to measure the levels of 8-iso-PGF2α and the activity of SOD in the plasma at the following time points: at the onset of ischemia, the end of ischemia, and 2, 4, 8, 12, and 24 h after reperfusion. The skeletal muscles were harvested to examine the ultrastructure. The levels of 8-iso-PGF2α increased significantly and SOD activity decreased in the IR group at every time point after reperfusion (P <0.01 or P <0.05). In contrast, the levels of 8-iso-PGF2α and SOD activity were not significantly different after reperfusion in the IR + Mailuoning group (P >0.05) but were significantly different compared with the IR group (P <0.01). Using electron microscopy, the skeletal muscle injury was shown to be milder in the IR+ Mailuoning group after reperfusion compared with the IR group. The Mailuoning is capable of decreasing the excessive production of 8-iso-PGF2α and protecting SOD activity, thereby exhibiting a protective effect on extremity IR injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effects of varying inter-limb spacing to limb length ratio in metachronal swimming

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind

    2016-11-01

    Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.

  2. Dose Range-Finding Developmental Toxicity (Segment II) Study of WR242511 in Rabbits

    DTIC Science & Technology

    1994-07-26

    NA = Not applicable R = Right NK = Neck PT = Protruded tongue CP = Cleft palate N = No visible L = Left HL = Hind limb SB = Spina bifida CL = Cleft ... lip abnormalities M = Male FL = Fore limb SUBQ = Subcutaneous HT = Hematoma A = Alive F = Female DI = Digit P = Petechial EX = Exophthalmos D

  3. Assessment of Myocardial Ischemia with Cardiovascular Magnetic Resonance

    PubMed Central

    Heydari, Bobak; Jerosch-Herold, Michael; Kwong, Raymond Y.

    2014-01-01

    Assessment of myocardial ischemia in symptomatic patients remains a common and challenging clinical situation faced by physicians. Risk stratification by presence of ischemia provides important utility for both prognostic assessment and management. Unfortunately, current noninvasive modalities possess numerous limitations and have limited prognostic capacity. More recently, ischemia assessment by cardiovascular magnetic resonance (CMR) has been shown to be a safe, available, and potentially cost-effective alternative with both high diagnostic and prognostic accuracy. Cardiovascular magnetic resonance has numerous advantages over other noninvasive methods, including high temporal and spatial resolution, relatively few contraindications, and absence of ionizing radiation. Furthermore, studies assessing the clinical utility and cost effectiveness of CMR in the short-term setting for patients without evidence of an acute myocardial infarction have also demonstrated favorable results. This review will cover techniques of ischemia assessment with CMR by both stress-induced wall motion abnormalities as well as myocardial perfusion imaging. The diagnostic and prognostic performance studies will also be reviewed, and the use of CMR for ischemia assessment will be compared with other commonly used noninvasive modalities. PMID:22014487

  4. Platelets, diabetes and myocardial ischemia/reperfusion injury.

    PubMed

    Russo, Isabella; Penna, Claudia; Musso, Tiziana; Popara, Jasmin; Alloatti, Giuseppe; Cavalot, Franco; Pagliaro, Pasquale

    2017-05-31

    Mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly complex, multifactorial and highly interconnected. A complex and entangled interaction is also emerging between platelet function, antiplatelet drugs, coronary diseases and ischemia/reperfusion injury, especially in diabetic conditions. Here we briefly summarize features of antiplatelet therapy in type 2 diabetes (T2DM). We also treat the influence of T2DM on ischemia/reperfusion injury and how anti-platelet therapies affect post-ischemic myocardial damage through pleiotropic properties not related to their anti-aggregating effects. miRNA-based signature associated with T2DM and its cardiovascular disease complications are also briefly considered. Influence of anti-platelet therapies and different effects of healthy and diabetic platelets on ischemia/reperfusion injury need to be further clarified in order to enhance patient benefits from antiplatelet therapy and revascularization. Here we provide insight on the difficulty to reduce the cardiovascular risk in diabetic patients and report novel information on the cardioprotective role of widely used anti-aggregant drugs.

  5. Parecoxib reduces renal injury in an ischemia/reperfusion model in rats.

    PubMed

    Calistro Neto, José Pedro; Torres, Rômulo da Costa; Gonçalves, Giovanna Maria; Silva, Leopoldo Muniz da; Domingues, Maria Aparecida Custódio; Módolo, Norma Sueli Pinheiro; Barros, Guilherme Antonio Moreira de

    2015-04-01

    To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. Parecoxib resulted in renal protection in this experimental model.

  6. Acute mesenteric ischemia after heart surgery.

    PubMed

    Goleanu, V; Alecu, L; Lazar, O

    2014-01-01

    Acute mesenteric ischemia (AMI) is a rare but very severe complication of heart surgery, due especially to the delay in setting the correct diagnosis and choosing the appropriate treatment. There are 4 types, but the most frequent is nonocclusive mesenteric ischemia (NOMI). The main mechanism is represented by great decrease or maldistribution of the splenic blood flow, with negative impact on the integrity of the intestinal mucosa, bacterial translocation and multiorganic failure. We present a retrospective study conducted on patients who underwent open heart surgery with cardiopulmonary bypass with non-pulsatile flow. 4 cases of angiographically confirmed NOMI (non-occlusive mesenteric ischemia) were identified. When, based on clinical examination and laboratory findings, acute mesenteric ischemia was suspicioned, superior mesenteric artery angiography was performed via the femoral artery. The main risk factors were represented by: age over 70 years old, left ventricle ejection fraction (LVEF) 35%,aortic clamping time 100 min., chronic kidney failure,counter-pulsation balloon implant, inotropic medication use,like levosimendan, use of blood components 1 unit of erythrocyte mass. Clinical signs were nonspecific. All patients presented hypoventilation, arterial hypotension, oliguria and,from a biological standpoint, metabolic acidosis and leucocytosis. Superior mesenteric artery angiography was the investigation method of choice. Treatment approach was initially medical, followed by resection of the intestine.Mortality was 100%. Acute mesenteric ischemia is a rare but very severe complication in cardiac surgery. It is primordial that the main risk factors be known, and in case of diagnosis suspicion, that it be set as early as possible, along with immediate initiation of an appropriate course of treatment. Celsius.

  7. Acute mesenteric ischemia: a vascular emergency.

    PubMed

    Klar, Ernst; Rahmanian, Parwis B; Bücker, Arno; Hauenstein, Karlheinz; Jauch, Karl-Walter; Luther, Bernd

    2012-04-01

    Acute mesenteric ischemia is still fatal in 50% to 70% of cases. This consensus paper was written with the participation of physicians from all of the involved specialties for the purpose of improving outcomes. Mesenteric ischemia must be recognized as a vascular emergency requiring rapid and efficient clinical evaluation and treatment. We reviewed pertinent literature that was retrieved by a PubMed search on the terms "mesenteric ischemia" AND "arterial" OR "venous" OR "clinical presentation" OR "diagnosis" OR "therapy" OR "surgery" OR " interventional radiology." Our review also took account of the existing guidelines of the American College of Cardiology/American Heart Association. Intensive discussions among the participating physicians, representing all of the specialties involved in the management of mesenteric ischemia, led to the creation of this interdisciplinary paper. Biphasic contrast-enhanced computerized tomography is the diagnostic tool of choice for the detection of arterial or venous occlusion. If non-occlusive mesenteric ischemia is suspected, angiography should be performed, with the option of intraarterial pharmacotherapy to induce local vasodilation. Endovascular techniques have become increasingly important in the treatment of arterial occlusion. Embolic central mesenteric artery occlusion requires surgical treatment; surgery is also needed in case of peritonitis. Portal-vein thrombosis can be treated by local thrombolysis through a transhepatically placed catheter. This should be done within 3 to 4 weeks of the event to prevent later complications of portal hypertension. Rapid diagnosis (within 4 to 6 hours of symptom onset) and interdisciplinary cooperation in the provision of treatment are required if the poor outcome of this condition is to be improved.

  8. Exploring Spinal Cord Protection by Remote Ischemic Preconditioning: An Experimental Study.

    PubMed

    Herajärvi, Johanna; Anttila, Tuomas; Sarja, Henna; Mustonen, Caius; Haapanen, Henri; Mäkelä, Tuomas; Yannopoulos, Fredrik; Starck, Tuomo; Kallio, Mika; Tuominen, Hannu; Puistola, Ulla; Karihtala, Peeter; Kiviluoma, Kai; Anttila, Vesa; Juvonen, Tatu

    2017-03-01

    Paraplegia is one of the most severe complications occurring after the repair of thoracic and thoracoabdominal aortic aneurysms. Remote ischemic preconditioning (RIPC) has been shown to mitigate neurologic damage, and this study assessed its efficacy in preventing spinal cord ischemia. The study randomized 16 female pigs into an RIPC group (n = 8) and a control group (n = 8). The RIPC group underwent four cycles of 5-minute ischemia-reperfusion episodes by intermittent occlusion of the left iliac artery. All animals underwent systematic closure of the left subclavian artery and segmental arteries of the descending thoracic aorta to the level of diaphragm. Motor-evoked potential monitoring was performed in both hind limbs. Continuous electrocardiogram and hemodynamics were monitored, and pulmonary artery blood samples were collected. A neurologic assessment was performed 6 hours after the procedure. The thoracic and lumbar portions of the spinal cord were collected for histologic and immunohistochemical analysis. The bilateral motor-evoked potential amplitude responses were higher in the RIPC group (p < 0.05) than in the control group; the difference was detected already before spinal cord ischemia. Paraplegia occurred in 1 control animal. Immunohistochemical total scores of antioxidant response regulator nuclear factor erythroid 2-related factor 2 were better in the RIPC group (11.0; range, 8.5 to 14.0) than in the control group (5.2; range, 1.0 to 9.0; p = 0.023). RIPC induces electrophysiologic changes in the central nervous system that may confer spinal cord protection extending the resistance to ischemia. The significantly higher nuclear factor erythroid 2-related factor 2 scores suggest better neuronal cell protection against oxidative stress in the RIPC group. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice

    PubMed Central

    He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A.; Han, Jihong; Gao, Xuimei; Zhu, Yan

    2016-01-01

    Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways. PMID

  10. Coordinated Activation of VEGF/VEGFR-2 and PPARδ Pathways by a Multi-Component Chinese Medicine DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice.

    PubMed

    He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A; Han, Jihong; Gao, Xuimei; Zhu, Yan

    2016-01-01

    Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.

  11. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    PubMed

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  12. Mental stress-induced ischemia in patients with coronary artery disease: echocardiographic characteristics and relation to exercise-induced ischemia.

    PubMed

    Stepanovic, Jelena; Ostojic, Miodrag; Beleslin, Branko; Vukovic, Olivera; Djordjevic-Dikic, Ana; Dikic, Ana Djordjevic; Giga, Vojislav; Nedeljkovic, Ivana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Dobric, Milan; Petrasinovic, Zorica; Marinkovic, Jelena; Lecic-Tosevski, Dusica

    2012-09-01

    The aims of this study were to investigate the incidence and parameters associated with myocardial ischemia during mental stress (MS) as measured by echocardiography and to evaluate the relation between MS-induced and exercise-induced myocardial ischemia. Study participants were 79 patients (63 men; mean [M] [standard deviation {SD}] age = 52 [8] years) with angiographically confirmed coronary artery disease and previous positive exercise test result. The MS protocol consisted of mental arithmetic and anger recall task. The patients performed a treadmill exercise test 15 to 20 minutes after the MS task. Data of post-MS exercise were compared with previous exercise stress test results. The frequency of echocardiographic abnormalities was 35% in response to the mental arithmetic task, compared with 61% with anger recall and 96% with exercise (p < .001, exercise versus MS). Electrocardiogram abnormalities and chest pain were substantially less common during MS than were echocardiographic abnormalities. Independent predictors of MS-induced myocardial ischemia were: wall motion score index at rest (p = .02), peak systolic blood pressure (p = .005), and increase in rate-pressure product (p = .004) during MS. The duration of exercise stress test was significantly shorter (p < .001) when MS preceded the exercise and in the case of earlier exercise (M [SD] = 4.4 [1.9] versus 6.7 [2.2] minutes for patients positive on MS and 5.7 [1.9] versus 8.0 [2.3] minutes for patients negative on MS). Echocardiography can be successfully used to document myocardial ischemia induced by MS. MS-induced ischemia was associated with an increase in hemodynamic parameters during MS and worse function of the left ventricle. MS may shorten the duration of subsequent exercise stress testing and can potentiate exercise-induced ischemia in susceptible patients with coronary artery disease.

  13. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    PubMed

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  14. Primary Self-EXPANDing Nitinol Stenting vs Balloon Angioplasty With Optional Bailout Stenting for the Treatment of Infrapopliteal Artery Disease in Patients With Severe Intermittent Claudication or Critical Limb Ischemia (EXPAND Study).

    PubMed

    Schulte, Karl-Ludwig; Pilger, Ernst; Schellong, Sebastian; Tan, Kong Ten; Baumann, Frederic; Langhoff, Ralf; Torsello, Giovanni; Zeller, Thomas; Amendt, Klaus; Brodmann, Marianne

    2015-10-01

    To compare primary placement of a self-expanding nitinol stent to percutaneous transluminal angioplasty (PTA) with bailout stenting in infrapopliteal arteries of patients with severe intermittent claudication or critical limb ischemia (CLI). In the EXPAND trial (ClinicalTrials.gov; identifier NCT00906022), 92 patients (mean age 72.9±9.5 years; 62 men) undergoing treatment for infrapopliteal stenosis in 11 European centers were randomized 1:1 to either self-expanding nitinol stenting with the Astron Pulsar/Pulsar-18 nitinol stent or PTA with bailout stenting. The primary endpoint was sustainable clinical improvement after 12 months, defined as a ≥1-category increase for Rutherford category 3 patients or a ≥2-category increase for CLI patients (Rutherford categories 4/5) compared with baseline. Furthermore, target lesion revascularization (TLR), mortality, and amputation were assessed after 12 months. Sustained clinical improvement at 1 year was observed in 74.3% of the patients treated with primary stenting and in 68.6% of the patients treated with PTA and bailout stenting (p>0.05). Kaplan-Meier estimates of freedom from TLR (76.6% and 77.6%), mortality (7.4% vs 2.1%), and amputation [8.9% (major 6.7%) vs 13.2% (major 8.7%)] at 1 year were not significantly different. Primary self-expanding nitinol stenting did not show statistically different clinical outcomes compared to angioplasty with bailout stenting for infrapopliteal lesions. © The Author(s) 2015.

  15. Stall dimensions and the prevalence of lameness, injury, and cleanliness on 317 tie-stall dairy farms in Ontario

    PubMed Central

    2005-01-01

    Abstract The study objectives were to provide a province-wide description of stall dimensions and the aspects of cattle welfare linked to stall design in the tie-stall industry. Data on stall design; stall dimensions; and the prevalence of lameness, injury, and hind limb and udder cleanliness in lactating dairy cattle were collected from a sample of 317 tie-stall farms across Ontario. The majority of the study farms (90%) had stalls with dimensions (length, width, tie-chain length, and tie rail height) that were less than the current recommendations. This may explain, in part, the prevalence of lameness measured as the prevalence of back arch (3.2%) and severe hind claw rotation (23%), hock lesions (44%), neck lesions (3.8%), broken tails (3%), dirty hind limbs (23%), and dirty udders (4.6%). Veterinarians and producers may use this information to compare farms with the industry averages and target areas in need of improvement. PMID:16454382

  16. [Digital ischemia in two patients treated with gemcitabine].

    PubMed

    Viguier, J-B; Solanilla, A; Boulon, C; Constans, J; Conri, C

    2010-06-01

    A 73-year-old man with an urothelial carcinoma treated with gemcitabine and carboplatinium and an 84-year-old man with a mesothelioma treated with gemcitabine alone developed digital ischemia. In the first patient, the ischemia involved all fingers except the thumbs during the second cycle of treatment. The ischemia developed during the first cycle in the second patient and involved the right major and ring fingers. In the literature, gemcitabine vascular toxicity is probably potentialized by platinium salts. Several nosological entities occur simultaneously. The most widely described involve isolated digital ischemia for doses to the order of 3000mg, and a hemolytic and uremic thrombotic microangiopathy for gemcitabine doses above 10,000mg. The vascular toxicity of platinium salts is not dose-dependent. In these two patients, the clinical course was favorable with interruption of the chemotherapy, treatment by iloprost and aspirin.

  17. Antagonists to TRPV1, ASICs and P2X have a potential role to prevent the triggering of regional bone metabolic disorder and pain-like behavior in tail-suspended mice.

    PubMed

    Hanaka, Megumi; Iba, Kousuke; Dohke, Takayuki; Kanaya, Kumiko; Okazaki, Shunichiro; Yamashita, Toshihiko

    2018-05-01

    Our recent studies demonstrated that regional bone loss in the unloaded hind limbs of tail-suspended mice triggered pain-like behaviors due to the acidic environment in the bone induced by osteoclast activation. The aims of the present study were to examine whether TRPV1, ASIC and P2X (known as nociceptors) are expressed in bone, and whether the antagonists to those receptors affect the expression of osteoblast and osteoclast regulators, and prevent the triggering of not only pain-like behaviors but also high bone turnover conditions in tail-suspension model mice. The hind limb-unloaded mice were subjected to tail suspension with the hind limbs elevated for 14days. The effects of the TRPV1, ASIC3, P2X2/3 antagonists on pain-like behaviors as assessed by the von Frey test, paw flick test and spontaneous pain scale; the expressions of TRPV1, ASICs, and P2X2 in the bone; and the effects of those antagonists on osteoblast and osteoclast regulators were examined. In addition, we evaluated the preventive effect of continuous treatment with a TRPV1 antagonist on the trigger for pain-like behavior and bone loss in tail-suspended mice. Pain-like behaviors were significantly improved by the treatment with TRPV1, ASIC, P2X antagonists; TRPV1, ASICs and P2X were expressed in the bone tissues; and the antagonists to these receptors down-regulated the expression of osteoblast and osteoclast regulators in tail-suspended mice. In addition, continuous treatment with a TRPV1 antagonist during tail-suspension prevented the induction of pain-like behaviors and regional bone loss in the unloaded hind limbs. We, therefore, believe that those receptor antagonists have a potential role in preventing the triggering of skeletal pain with associated regional bone metabolic disorder. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Predictive Modeling of Cardiac Ischemia

    NASA Technical Reports Server (NTRS)

    Anderson, Gary T.

    1996-01-01

    The goal of the Contextual Alarms Management System (CALMS) project is to develop sophisticated models to predict the onset of clinical cardiac ischemia before it occurs. The system will continuously monitor cardiac patients and set off an alarm when they appear about to suffer an ischemic episode. The models take as inputs information from patient history and combine it with continuously updated information extracted from blood pressure, oxygen saturation and ECG lines. Expert system, statistical, neural network and rough set methodologies are then used to forecast the onset of clinical ischemia before it transpires, thus allowing early intervention aimed at preventing morbid complications from occurring. The models will differ from previous attempts by including combinations of continuous and discrete inputs. A commercial medical instrumentation and software company has invested funds in the project with a goal of commercialization of the technology. The end product will be a system that analyzes physiologic parameters and produces an alarm when myocardial ischemia is present. If proven feasible, a CALMS-based system will be added to existing heart monitoring hardware.

  19. Zinc translocation accelerates infarction after mild transient focal ischemia.

    PubMed

    Lee, J-M; Zipfel, G J; Park, K H; He, Y Y; Hsu, C Y; Choi, D W

    2002-01-01

    Excess release of chelatable zinc (Zn(2+)) from central synaptic vesicles may contribute to the pathogenesis of selective neuronal cell death following transient forebrain ischemia, but a role in neurodegeneration after focal ischemia has not been defined. Adult male Long-Evans rats subjected to middle cerebral artery occlusion (MCAO) for 30 min followed by reperfusion developed delayed cerebral infarction reaching completion 3 days after the insult. One day after the insult, many degenerating cerebral neurons exhibited increased intracellular Zn(2+), and some labeled with the antibody against activated caspase-3. I.c.v. administration of the Zn(2+) chelator, EDTA saturated with equimolar Ca(2+) (CaEDTA), 15 min prior to ischemia attenuated subsequent Zn(2+) translocation into cortical neurons, and reduced infarct volume measured 3 days after ischemia. Although the protective effect of CaEDTA at this endpoint was substantial (about 70% infarct reduction), it was lost when insult severity was increased (from 30 to 60 min MCAO), or when infarct volume was measured at a much later time point (14 days instead of 3 days after ischemia). These data suggest that toxic Zn(2+) translocation, from presynaptic terminals to post-synaptic cell bodies, may accelerate the development of cerebral infarction following mild transient focal ischemia.

  20. Myocardial ischemia induced by nebulized fenoterol for severe childhood asthma.

    PubMed

    Zanoni, L Z; Palhares, D B; Consolo, L C T

    2005-10-01

    We examined for myocardial ischemia induced by continuous inhalation of fenoterol in children with severe acute asthma. Thirty children with severe acute asthma were evaluated for signs of myocardial ischemia when treated with 0.5 mg kg dose (maximum 15 mg) of inhaled fenoterol for one hour. The heart rate was measured before and after inhalation. Cardiac enzymes (creatine kinase, creatine kinase MB fraction and troponin levels) were measured at admission and 12 hours later. An EKG was recorded before inhalation was started and immediately after its completion to detect the presence of any evidence of myocardial ischemia. All patients developed significant increase in heart rate. Six patients showed EKG changes compatible with myocardial ischemia, despite normal enzyme levels. Patients with severe acute asthma show tachycardia and may show EKG changes of myocardial ischemia.

  1. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models

    PubMed Central

    Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa

    2016-01-01

    The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422

  2. DORSAL LAMINECTOMY TO RELIEVE SPINAL CORD COMPRESSION IN A CAPTIVE SYRIAN BEAR (URSUS ARCTOS SYRIACUS).

    PubMed

    Büeler, Ariela Rosenzweig; Merbl, Yael; Kushnir, Yishai; Chai, Orit; Aizenberg, Itzhak; Horowitz, Igal; Matalon, Einat; Tam, Doron; Shamir, Merav H

    2016-12-01

    A 19-yr-old captive male Syrian bear ( Ursus arctos syriacus) presented with a right hind limb lameness that progressed to nonambulatory paraparesis over the course of 2 wk. When night enclosure confinement and a short course of glucocorticoids and antibiotics did not lead to improvement, radiographs were performed, followed by cerebrospinal fluid analysis and myelography, revealing a dynamic spinal cord compression at the level of T2-T3. Dorsal laminectomy of both T2 and T3 was performed to allow decompression. The bear recovered uneventfully with first sign of neurological improvement apparent at 10 days postoperatively. Following 6 mo of rehabilitation the bear was walking and using his hind limbs normally.

  3. Association between aortic valve calcification and myocardial ischemia, especially in asymptomatic patients.

    PubMed

    Yamazato, Ryo; Yamamoto, Hideya; Tadehara, Futoshi; Teragawa, Hiroki; Kurisu, Satoshi; Dohi, Yoshihiro; Ishibashi, Ken; Kunita, Eiji; Utsunomiya, Hiroto; Oka, Toshiharu; Kihara, Yasuki

    2012-08-01

    Aortic valve calcification (AVC) is recognized as a manifestation of systemic arteriosclerosis. However, it is unclear whether AVC is associated with myocardial ischemia. Stress myocardial perfusion SPECT (MPS) is widely used for the diagnosis of myocardial ischemia. However, routine MPS is not recommended, particularly in asymptomatic patients. Accordingly, we investigated the hypothesis that the presence of AVC is strongly associated with inducible myocardial ischemia, even among asymptomatic patients. We investigated 669 consecutive patients who underwent both adenosine stress (201)Tl MPS and echocardiography. We evaluated the extent and severity of myocardial ischemia by the summed difference score (SDS). We defined the presence of myocardial ischemia as SDS ≥ 3 and moderate to severe ischemia as SDS ≥ 8. We classified the severity of AVC according to the number of affected aortic leaflets. We also compared the mean SDS and the prevalence of SDS ≥ 3 and SDS ≥ 8 among patients stratified by the severity of AVC. The presence of AVC was significantly associated with myocardial ischemia (odds ratio [OR], 1.56; 95% confidence interval [CI], 1.10-2.23; P = 0.013) and moderate to severe ischemia (OR, 2.16; 95% CI, 1.26-3.80; P = 0.0061). In 311 asymptomatic patients, AVC was strongly associated with moderate to severe ischemia (OR, 4.31; 95% CI, 1.67-12.8; P = 0.0043). However, the SDS value and the prevalence of SDS ≥ 3 and SDS ≥ 8 did not increase with increasing number of affected aortic leaflets. The presence of AVC may be associated with the presence of myocardial ischemia, particularly in asymptomatic patients. However, we found no association between the extent of AVC and inducible myocardial ischemia. The presence of AVC may be a useful anatomic marker to help identify patients at high risk of myocardial ischemia, particularly asymptomatic patients.

  4. Superficial femoral artery TASC D Registry: twelve-month effectiveness analysis of the Pulsar-18 SE nitinol stent in patients with critical limb ischemia.

    PubMed

    Lichtenberg, M; Stahlhoff, W; Boese, D

    2013-08-01

    Single center observational study analyzing the primary patency rate and freedom from target lesions revascularization rate of the Pulsar-18 nitinol stent after recanalization of long superficial femoral artery (SFA) occlusions (TASC D) in 22 patients with critical limb ischemia (CLI). Between 1/2011 and 7/2011, 22 consecutive patients (9 male, 13 female) with chronic total occlusions (CTO) of the femoro-popliteal arteries presenting with CLI (17 patients with Rutherford 4 score, and 5 patients with Rutherford 5 score) were enrolled and successfully recanalized using the Pulsar-18 self-expanding (SE) nitinol stent (BIOTRONIK AG, Buelach, Switzerland). Primary patency at 12 months was defined as no binary restenosis (>50%) on Duplex ultrasound (PSVR<2.5) and respectively no target lesion revascularization performed within 12 months. The average lesion length of the treated femoro-popliteal segment was 315 mm. Performing spot stenting average stent length in all patients was 245 mm (minimal 215 mm, maximal 315 mm). Technical success, with establishing an antegrade straight line flow to the foot through a reopened SFA, was achieved in all 22 patients. Subintimal and intraluminal recanalization techniques were used. Two patients with Rutherford 5 score had a minor amputation shortly after the recanalization procedure. All other patients had a complete wound healing of their lesions during a 6 month follow-up. After 12 month follow-up the primary patency rate of the Pulsar-18 SE nitinol stent was 77% with a per protocol restenosis in 5 of 22 patients. Seventeen patients showed a walking capacity on treadmill test >300 meters (Rutherford II). Two patients with a documented restenosis were Rutherford, these patients were treated conservatively. Three patients with restenosis and a Rutherford III score were scheduled for an endovascular target lesion revascularization leading to a freedom from target lesion revascularization rate of 86%. Endovascular intervention of long

  5. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  6. Comparison of orbital atherectomy plus balloon angioplasty vs. balloon angioplasty alone in patients with critical limb ischemia: results of the CALCIUM 360 randomized pilot trial.

    PubMed

    Shammas, Nicolas W; Lam, Russell; Mustapha, Jihad; Ellichman, Jonathan; Aggarwala, Gaurav; Rivera, Ernesto; Niazi, Khusrow; Balar, Nilesh

    2012-08-01

    To evaluate the role of orbital atherectomy in calcified infrapopliteal arteries in patients with critical limb ischemia compared to balloon angioplasty (BA) alone. A randomized multicenter study was undertaken to evaluate short and 1-year outcomes in 50 patients (32 men; mean age 71 years, range 40-90) with confirmed calcified lesions using 1∶1 randomization to the Diamondback 360° Orbital Atherectomy System followed by BA vs. BA alone. All patients had severe (≥50% stenosis) peripheral artery disease (Rutherford classification 4-6) in the popliteal, tibial, and/or peroneal arteries. The primary endpoint was defined as restoration of a normal lumen (residual stenosis ≤30%) with no bailout stenting or dissection types C through F. Scheduled follow-up visits were conducted according to a common protocol at 1, 6, and 12 months. Procedural success was 93.1% (27/29 lesions) for atherectomy + BA patients and 82.4% (28/34 lesions) for BA alone (p = 0.27). Bailout stenting was needed in 2 (6.9%) of the 29 atherectomy + BA lesions and in 5 (14.3%) of the 35 BA-treated lesions (p = 0.44). At 1 year, there were no amputations in either group related to the index procedure. Estimates for freedom from target vessel revascularization and all-cause mortality were 93.3% and 100% in the atherectomy + BA group vs. 80.0% (p = 0.14) and 68.4% (p = 0.01) in the BA group, respectively. Proportional hazard models evaluating survival time vs. status of residual stenosis determined a hazard ratio for major adverse events of 5.6 for patients with an acute post-procedure residual stenosis >30% (p = 0.01). Debulking with orbital atherectomy appeared to increase the chance of reaching a desirable angioplasty result, with less acute need for bailout stenting and a higher procedure success. A negative association between procedure success and risk of serious adverse outcomes should encourage larger confirmatory studies.

  7. Heritabilities of Directional Asymmetry in the Fore- and Hindlimbs of Rabbit Fetuses

    PubMed Central

    Breno, Matteo; Bots, Jessica; Van Dongen, Stefan

    2013-01-01

    Directional asymmetry (DA), where at the population level symmetry differs from zero, has been reported in a wide range of traits and taxa, even for traits in which symmetry is expected to be the target of selection such as limbs or wings. In invertebrates, DA has been suggested to be non-adaptive. In vertebrates, there has been a wealth of research linking morphological asymmetry to behavioural lateralisation. On the other hand, the prenatal expression of DA and evidences for quantitative genetic variation for asymmetry may suggest it is not solely induced by differences in mechanic loading between sides. We estimate quantitative genetic variation of fetal limb asymmetry in a large dataset of rabbits. Our results showed a low but highly significant level of DA that is partially under genetic control for all traits, with forelimbs displaying higher levels of asymmetry. Genetic correlations were positive within limbs, but negative across bones of fore and hind limbs. Environmental correlations were positive for all, but smaller across fore and hind limbs. We discuss our results in light of the existence and maintenance of DA in locomotory traits. PMID:24130770

  8. A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome.

    PubMed

    Tékus, Valéria; Hajna, Zsófia; Borbély, Éva; Markovics, Adrienn; Bagoly, Teréz; Szolcsányi, János; Thompson, Victoria; Kemény, Ágnes; Helyes, Zsuzsanna; Goebel, Andreas

    2014-02-01

    The aetiology of complex regional pain syndrome (CRPS), a highly painful, usually post-traumatic condition affecting the limbs, is unknown, but recent results have suggested an autoimmune contribution. To confirm a role for pathogenic autoantibodies, we established a passive-transfer trauma model. Prior to undergoing incision of hind limb plantar skin and muscle, mice were injected either with serum IgG obtained from chronic CRPS patients or matched healthy volunteers, or with saline. Unilateral hind limb plantar skin and muscle incision was performed to induce typical, mild tissue injury. Mechanical hyperalgesia, paw swelling, heat and cold sensitivity, weight-bearing ability, locomotor activity, motor coordination, paw temperature, and body weight were investigated for 8days. After sacrifice, proinflammatory sensory neuropeptides and cytokines were measured in paw tissues. CRPS patient IgG treatment significantly increased hind limb mechanical hyperalgesia and oedema in the incised paw compared with IgG from healthy subjects or saline. Plantar incision induced a remarkable elevation of substance P immunoreactivity on day 8, which was significantly increased by CRPS-IgG. In this IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS patients induced clinical and laboratory features resembling the human disease. These results support the hypothesis that autoantibodies may contribute to the pathophysiology of CRPS, and that autoantibody-removing therapies may be effective treatments for long-standing CRPS. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Suspension restraint - Induced hypokinesia and antiorthostasis as a simulation of weightlessness

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1982-01-01

    Muscle, renal, fluid and electrolyte responses were measured in suspended rats; the hind limbs are non-load bearing and the front limbs can be used for feeding and grooming. Hind limb hypokinesia reverses after removal from the suspension harness. This suspension system is adjustable for a head-down tilt to produce antiorthostatic responses which are also reversible. Responses to hypokinesia or antiorthostatic hypokinesia for up to 14 days were measured, e.g., muscle atrophy: soleus greater than gastrocnemius equals plantaris greater than extensor digitorum longus, kaliuresis, and increased excretion of urea, NH3, and 3 methylhistidine. Muscle protein loss, a response to a reduction in RNA, is also reversible. A head-down tilt for 7-14 days results in diuresis and natriuresis. These changes are reversed within 24 hours after removal from the restraint harness. Physiological effects of suspension restraint can be used to simulate and predict responses to microgravity exposure.

  10. Severe pain as a possible cause of dropped head syndrome that was attenuated after amputation of an ischemic lower limb.

    PubMed

    Maki, Satoshi; Koda, Masao; Furuya, Takeo; Takahashi, Kazuhisa; Yamazaki, Masashi

    2016-03-02

    Dropped head syndrome (DHS) is defined as weakness of the neck extensor muscles causing a correctable chin-on-the-chest deformity. Here we report the case of a patient with severe pain from lower leg ischemia showing DHS whose symptoms were attenuated by pain relief after amputation of the severely ischemic lower leg. To our knowledge this is the first report indicating that severe pain can cause DHS. A 64-year-old Asian woman was referred to our department with a 1-month history of DHS. She also suffered from severe right foot pain because of limb ischemia. She began to complain of DHS as her gangrenous foot pain worsened. She had neck pain and difficulty with forward gaze. We found no clinical or laboratory findings of neuromuscular disorder or isolated neck extensor myopathy. We amputated her leg below the knee because of progressive foot gangrene. Her severe foot pain resolved after the surgery and her DHS was attenuated. Severe pain can cause DHS. If a patient with DHS has severe pain in another part of the body, we recommend considering aggressive pain relief as a treatment option.

  11. Hyperinnervation improves Xenopus laevis limb regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study

    NASA Astrophysics Data System (ADS)

    Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui

    2017-09-01

    Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.

  13. The benefit of limb cloud imaging for tropospheric infrared limb sounding

    NASA Astrophysics Data System (ADS)

    Adams, S.; Spang, R.; Preusse, P.; Heinemann, G.

    2009-03-01

    Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will measure clouds with very high spatial resolution. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise ratio and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.

  14. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  15. Mobile-bearing medial unicompartmental knee arthroplasty restores limb alignment comparable to that of the unaffected contralateral limb

    PubMed Central

    Mullaji, Arun B; Shah, Siddharth; Shetty, Gautam M

    2017-01-01

    Background and purpose — Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. We investigated whether restoration of natural soft tissue tension would result in a lower limb alignment similar to that of the contralateral unaffected lower limb after mobile-bearing medial UKA. Patients and methods — In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA), and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with that of the unaffected (clinically and radiologically) contralateral lower limb in 123 patients. Results — Postoperatively, HKA angle was restored to within ±3° of the contralateral lower limb in 87% of the patients and the WBA passed within ±1 Kennedy and White’s tibial zone of the unaffected contralateral lower limb in 95% of the patients. The mean KJLO in the operated limbs was not significantly different from that in the unaffected lower limbs (p = 0.07) and the KJLO in the operated limb was restored to within ±3° of that in the contralateral lower limb in 96% of the patients. Interpretation — Lower limb alignment and knee joint line obliquity after mobile-bearing medial UKA were comparable to that of the unaffected contralateral limb in most patients. Comparison with the contralateral unaffected lower limb is a reliable method for evaluation and validation of limb mechanical alignment after mobile-bearing medial UKA. PMID:27794622

  16. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  17. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.

  18. Ischemia-Reperfusion Injury and Volatile Anesthetics

    PubMed Central

    Erturk, Engin

    2014-01-01

    Ischemia-reperfusion injury (IRI) is induced as a result of reentry of the blood and oxygen to ischemic tissue. Antioxidant and some other drugs have protective effect on IRI. In many surgeries and clinical conditions IRI is counteract inevitable. Some anesthetic agents may have a protective role in this procedure. It is known that inhalational anesthetics possess protective effects against IRI. In this review the mechanism of preventive effects of volatile anesthetics and different ischemia-reperfusion models are discussed. PMID:24524079

  19. Effect of taurine on ischemia-reperfusion injury.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi

    2014-01-01

    Taurine is an abundant β-amino acid that regulates several events that dramatically influence the development of ischemia-reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia-reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia-reperfusion mediated cell death. Taurine also prevents excessive generation of reactive oxygen species by the respiratory chain, an event that also limits the activation of the MPT. Because taurine is an osmoregulator, changes in taurine concentration trigger "osmotic preconditioning," a process that activates an Akt-dependent cytoprotective signaling pathway that inhibits MPT pore formation. These effects of taurine have clinical implications, as experimental evidence reveals potential promise of taurine therapy in preventing cardiac damage during bypass surgery, heart transplantation and myocardial infarction. Moreover, severe loss of taurine from the heart during an ischemia-reperfusion insult may increase the risk of ventricular remodeling and development of heart failure.

  20. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.