Sample records for hippuric acid

  1. Hippuric Acid Levels in Paint Workers at Steel Furniture Manufacturers in Thailand

    PubMed Central

    Decharat, Somsiri

    2014-01-01

    Background The aims of this study were to determine hippuric acid levels in urine samples, airborne toluene levels, acute and chronic neurological symptoms, and to describe any correlation between urinary hippuric acid and airborne toluene. Methods The hippuric acid concentration in the urine of 87 paint workers exposed to toluene at work (exposed group), and 87 nonexposed people (control group) was studied. Study participants were selected from similar factories in the same region. Urine samples were collected at the end of a shift and analyzed for hippuric acid by high performance liquid chromatography. Air samples for the estimation of toluene exposure were collected with diffusive personal samplers and the toluene quantified using gas–liquid chromatography. The two groups were also interviewed and observed about their work practices and health. Results The median of the 87 airborne toluene levels was 55 ppm (range, 12–198 ppm). The median urinary hippuric acid level was 800 mg/g creatinine (range, 90–2547 mg/g creatinine). A statistically significant positive correlation was found between airborne toluene exposure and urine hippuric acid levels (r = 0.548, p < 0.01). Workers with acute symptoms had significantly higher hippuric acid levels than those who did not (p < 0.05). It was concluded that there was a significant correlation between toluene exposure, hippuric acid levels, and health (p < 0.001). Conclusion There appears to be a significant correlation between workers exposure to toluene at work, their urine hippuric acid levels, and resulting symptoms of poor health. Improvements in working conditions and occupational health education are required at these workplaces. There was good correlation between urinary hippuric acid and airborne toluene levels. PMID:25516817

  2. Significance of urinary hippuric acid determination as an index of toluene exposure

    PubMed Central

    Ikeda, Masayuki; Ohtsuji, Hatsue

    1969-01-01

    Ikeda, Masayuki, and Ohtsuji, Hatsue (1969).Brit. J. industr. Med.,26, 244-246. Significance of urinary hippuric acid determination as an index of toluene exposure. Urine samples from 118 male workers in photogravure printing factories were analysed for hippuric acid. The urinary levels of hippuric acid were proportional to the environmental concentrations of toluene, although within wide variations. The urinary concentration of hippuric acid corresponding to 200 p.p.m. of toluene was 3·5 g./litre (specific gravity 1·016) or 4·3 g./g. creatinine. PMID:5794951

  3. [Renal excretion of total porphyrins and hippuric acid in rats].

    PubMed

    Gartzke, J; Burck, D

    1986-09-01

    The amounts of total porphyrins, hippuric acid and creatinine, excreted in urine by adult male Wistar rats, exhibited normal distributions for hippuric acid and creatinine, but a bimodal distribution for total porphyrins. This typical distribution of total porphyrins was still observed when creatinine was used as reference parameter. In biochemical and toxicological experiments in rats, the tested parameters should be therefore be investigated for homogeneity.

  4. Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients.

    PubMed

    Atya, Hanaa B; Ali, Sahar A; Hegazy, Mohamed I; El Sharkawi, Fathia Z

    2018-04-01

    Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.

  5. Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines

    PubMed Central

    Ali, Samer Hasan Hussein Al; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Zainal, Zulkarnain; Hakim, Muhammad Nazrul

    2011-01-01

    Background A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers. Methods The hippuric acid nanohybrid (HAN) was prepared by direct reaction of an aqueous suspension of zinc oxide with a solution of hippuric acid via a one-step method. Results The basal spacing of the nanohybrid was 21.3 Å, indicating that the hippurate anion was successfully intercalated into the interlayer space of ZLH, and arranged in a monolayer fashion with the carboxylate group pointing toward the ZLH inorganic interlayers. A Fourier transform infrared study confirmed the formation of the nanohybrid, while thermogravimetry and differential thermogravimetry analyses showed that the thermal stability of the nanohybrid was markedly enhanced. The loading of hippurate in the nanohybrid was estimated to be about 38.7% (w/w), and the release of hippurate from the nanohybrid was of a controlled manner, and therefore the resulting material was suitable for use as a controlled-release formulation. HAN has synergistic properties with tamoxifen toward a HepG2 cell line, with an IC50 value of 0.35 compared with hippurate. In the antiproliferative assay, the ratio of viable cells account for cells treated by the combination tamoxifen with HAN to untreated cells was sharply reduced from 66% to 13% after 24 and 72 hours, respectively. Conclusion The release of hippuric acid anions from HAN occurred in a controlled manner, and the resulting material is suitable for a controlled-release formulation. PMID:22163163

  6. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    PubMed

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Probiotics Blunt the Anti-Hypertensive Effect of Blueberry Feeding in Hypertensive Rats without Altering Hippuric Acid Production.

    PubMed

    Blanton, Cynthia; He, Zhengcheng; Gottschall-Pass, Katherine T; Sweeney, Marva I

    2015-01-01

    Previously we showed that feeding polyphenol-rich wild blueberries to hypertensive rats lowered systolic blood pressure. Since probiotic bacteria produce bioactive metabolites from berry polyphenols that enhance the health benefits of berry consumption, we hypothesized that adding probiotics to a blueberry-enriched diet would augment the anti-hypertensive effects of blueberry consumption. Groups (n = 8) of male spontaneously hypertensive rats were fed one of four AIN '93G-based diets for 8 weeks: Control (CON); 3% freeze-dried wild blueberry (BB); 1% probiotic bacteria (PRO); or 3% BB + 1% PRO (BB+PRO). Blood pressure was measured at weeks 0, 2, 4, 6, and 8 by the tail-cuff method, and urine was collected at weeks 4 and 8 to determine markers of oxidative stress (F2-isoprostanes), nitric oxide synthesis (nitrites), and polyphenol metabolism (hippuric acid). Data were analyzed using mixed models ANOVA with repeated measures. Diet had a significant main effect on diastolic blood pressure (p = 0.046), with significantly lower measurements in the BB- vs. CON-fed rats (p = 0.035). Systolic blood pressure showed a similar but less pronounced response to diet (p = 0.220), again with the largest difference between the BB and CON groups. Absolute increase in blood pressure between weeks 0 and 8 tended to be smaller in the BB and PRO vs. CON and BB+PRO groups (systolic increase, p = 0.074; diastolic increase, p = 0.185). Diet had a significant main effect on hippuric acid excretion (p<0.0001), with 2- and ~1.5-fold higher levels at weeks 4 and 8, respectively, in the BB and BB+PRO vs. PRO and CON groups. Diet did not have a significant main effect on F2-isoprostane (p = 0.159) or nitrite excretion (p = 0.670). Our findings show that adding probiotics to a blueberry-enriched diet does not enhance and actually may impair the anti-hypertensive effect of blueberry consumption. However, probiotic bacteria are not interfering with blueberry polyphenol metabolism into hippuric acid.

  8. Probiotics Blunt the Anti-Hypertensive Effect of Blueberry Feeding in Hypertensive Rats without Altering Hippuric Acid Production

    PubMed Central

    2015-01-01

    Previously we showed that feeding polyphenol-rich wild blueberries to hypertensive rats lowered systolic blood pressure. Since probiotic bacteria produce bioactive metabolites from berry polyphenols that enhance the health benefits of berry consumption, we hypothesized that adding probiotics to a blueberry-enriched diet would augment the anti-hypertensive effects of blueberry consumption. Groups (n = 8) of male spontaneously hypertensive rats were fed one of four AIN ‘93G-based diets for 8 weeks: Control (CON); 3% freeze-dried wild blueberry (BB); 1% probiotic bacteria (PRO); or 3% BB + 1% PRO (BB+PRO). Blood pressure was measured at weeks 0, 2, 4, 6, and 8 by the tail-cuff method, and urine was collected at weeks 4 and 8 to determine markers of oxidative stress (F2-isoprostanes), nitric oxide synthesis (nitrites), and polyphenol metabolism (hippuric acid). Data were analyzed using mixed models ANOVA with repeated measures. Diet had a significant main effect on diastolic blood pressure (p = 0.046), with significantly lower measurements in the BB- vs. CON-fed rats (p = 0.035). Systolic blood pressure showed a similar but less pronounced response to diet (p = 0.220), again with the largest difference between the BB and CON groups. Absolute increase in blood pressure between weeks 0 and 8 tended to be smaller in the BB and PRO vs. CON and BB+PRO groups (systolic increase, p = 0.074; diastolic increase, p = 0.185). Diet had a significant main effect on hippuric acid excretion (p<0.0001), with 2- and ~1.5-fold higher levels at weeks 4 and 8, respectively, in the BB and BB+PRO vs. PRO and CON groups. Diet did not have a significant main effect on F2-isoprostane (p = 0.159) or nitrite excretion (p = 0.670). Our findings show that adding probiotics to a blueberry-enriched diet does not enhance and actually may impair the anti-hypertensive effect of blueberry consumption. However, probiotic bacteria are not interfering with blueberry polyphenol metabolism into hippuric

  9. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid

    PubMed Central

    Bahrami, Abdulrahman; Ghamari, Farhad; Yamini, Yadollah; Ghorbani Shahna, Farshid; Moghimbeigi, Abbas

    2017-01-01

    This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v) tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD) (%) values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME) based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens. PMID:28208685

  10. Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films

    PubMed Central

    Choi, Young-Bong; Kim, Nam-Hyuk; Kim, Seung-Hoi; Tae, Gun-Sik; Kim, Hyug-Han

    2014-01-01

    By directly coordinating hippuric acid (HA) to the ferrate (Fe) as an electron transfer mediator, we synthesized a Fe-HA complex, which shows a good electrochemical signal and thus enables the electrochemical immunoanalysis for HA. We electrodeposited organic films containing imidazole groups on the electrode surface and then bonded Ni ion (positive charge) to induce immobilization of Fe-HA (negative charge) through the electrostatic interaction. The heterogeneous competitive immunoassay system relies on the interaction between immobilized Fe-HA antigen conjugate and free HA antigen to its antibody (anti-HA). The electric signal becomes weaker due to the hindered electron transfer reaction when a large-sized HA antibody is bound onto the Fe-HA. However, in the presence of HA, the electric signal increases because free HA competitively reacts with the HA antibody prior to actual reaction and thus prevents the HA antibody from interacting with Fe-HA at the electrode surface. This competition reaction enabled an electrochemical quantitative analysis of HA concentration with a detection limit of 0.5 μg mL−1, and thus allowed us to develop a simple and rapid electrochemical immunosensor. PMID:25313491

  11. Evaluation of hippuric acid content in goat milk as a marker of feeding regimen.

    PubMed

    Carpio, A; Bonilla-Valverde, D; Arce, C; Rodríguez-Estévez, V; Sánchez-Rodríguez, M; Arce, L; Valcárcel, M

    2013-09-01

    Organic producers, traders, and consumers must address 2 issues related to milk: authentication of the production system and nutritional differentiation. The presence of hippuric acid (HA) in goat milk samples has been proposed as a possible marker to differentiate the feeding regimen of goats. The objective of this work is to check the hypothesis that HA could be a marker for the type of feeding regimen of goats by studying the influence of production system (conventional or organic) and feeding regimen (with or without grazing fodder). With this purpose, commercial cow and goat milk samples (n=27) and raw goat milk samples (n=185; collected from different breeds, localizations, and dates) were analyzed. Samples were grouped according to breed, feeding regimen, production system, and origin to compare HA content by ANOVA and honestly significant difference Tukey test at a confidence level of ≥95%. Hippuric acid content was obtained by analyzing milk samples with capillary electrophoresis. This method was validated by analyzing part of the samples with HPLC as a reference technique. Sixty-nine raw goat milk samples (of the total 158 samples analyzed in this work) were quantified by capillary electrophoresis. In these samples, the lowest average content for HA was 7±3 mg/L. This value corresponds to a group of conventional raw milk samples from goats fed with compound feed. The highest value of this group was 28±10 mg/L, corresponding to goats fed compound feed plus grass. Conversely, for organic raw goat milk samples, the highest concentration was 67±14 mg/L, which corresponds to goats fed grass. By contrast, the lowest value of this organic group was 26±10 mg/L, which belongs to goats fed organic compounds. Notice that the highest HA average content was found in samples from grazing animals corresponding to the organic group. This result suggests that HA is a good marker to determine the type of goats feeding regimen; a high content of HA represents a diet

  12. Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid

    NASA Astrophysics Data System (ADS)

    Jin, Weiwei; Huang, Pengcheng; Chen, Yueji; Wu, Fangying; Wan, Yiqun

    2015-09-01

    A facile and effective technique for monitoring Cr3+ concentration based on 4-amino hippuric acid (PAH) decorated Au nanoparticles (PAH-AuNPs) is introduced. The modified AuNPs were easily aggregated in the presence of Cr3+, resulting in the color change from red to violet or blue, which is in response to the surface plasmon absorption of dispersed or aggregated nanoparticles. Under the optimized conditions, a good linear relationship (correlation coefficient r = 0.998) was obtained between the ratio of the absorbance at 635 nm to that at 520 nm ( A 635 nm/ A 520 nm), and the concentration of Cr3+ was over the range of 5.0-120 µM with detection limit of 1.17 µM. This method exhibited excellent selectivity for Cr3+ over other tested heavy metal ions. Furthermore, there was no significant difference for the parameters of calibration equation between the presence and absence of ethylenediamine tetraacetic acid (EDTA), which suggests that the method can be applied in various real samples owing to the strong masking ability of EDTA. The assay was used to detect the concentrations of Cr3+ in liquid milk, milk power, and lake water samples with recoveries ranging from 93.5 to 114 %, indicating that the method could be used for extensive practical application.

  13. The fate of benzoic acid in various species

    PubMed Central

    Bridges, J. W.; French, M. R.; Smith, R. L.; Williams, R. T.

    1970-01-01

    1. The urinary excretion of orally administered [14C]benzoic acid in man and 20 other species of animal was examined. 2. At a dose of 50mg/kg, benzoic acid was excreted by the rodents (rat, mouse, guinea pig, golden hamster, steppe lemming and gerbil), the rabbit, the cat and the capuchin monkey almost entirely as hippuric acid (95–100% of 24h excretion). 3. In man at a dose of 1mg/kg and the rhesus monkey at 20mg/kg benzoic acid was excreted entirely as hippuric acid. 4. At 50mg/kg benzoic acid was excreted as hippuric acid to the extent of about 80% of the 24h excretion in the squirrel monkey, pig, dog, ferret, hedgehog and pigeon, the other 20% being found as benzoyl glucuronide and benzoic acid, the latter possibly arising by decomposition of the former. 5. On increasing the dose of benzoic acid to 200mg/kg in the ferret, the proportion of benzoyl glucuronide excreted increased and that of hippuric acid decreased. This did not occur in the rabbit, which excreted 200mg/kg almost entirely as hippuric acid. It appears that the hedgehog and ferret are like the dog in respect to their metabolism of benzoic acid. 6. The Indian fruit bat produced only traces of hippuric acid and possibly has a defect in the glycine conjugation of benzoic acid. The main metabolite in this animal (dose 50mg/kg) was benzoyl glucuronide. 7. The chicken, side-necked turtle and gecko converted benzoic acid mainly into ornithuric acid, but all three species also excreted smaller amounts of hippuric acid. PMID:4990586

  14. Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution.

    PubMed

    Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Maldonado, Iván N

    2017-11-02

    This study aimed to determine t,t-muconic acid (t,t-MA; exposure biomarker for benzene) and hippuric acid (HA; exposure biomarker for toluene) concentrations in the urine of women living in Mexico. In a cross-sectional study, apparently healthy women (n = 104) were voluntarily recruited from localities with a high risk of air pollution; t,t-MA and HA in urine were quantified using a high-performance liquid chromatography (HPLC) technique. Mean urinary levels of t,t-MA ranged from 680 to 1,310 μg/g creatinine. Mean values of HA ranged from 0.38 to 0.87 g/g creatinine. In conclusion, compared to data recently reported in literature, we found high urinary levels of t,t-MA and HA in assessed women participating in this study. We therefore deem the implementation of a strategy aimed at the reduction of exposure as a necessary measure for the evaluated communities.

  15. Association between hippuric acid and left ventricular hypertrophy in maintenance hemodialysis patients.

    PubMed

    Yu, Teng-Hung; Tang, Wei-Hua; Lu, Yung-Chuan; Wang, Chao-Ping; Hung, Wei-Chin; Wu, Cheng-Ching; Tsai, I-Ting; Chung, Fu-Mei; Houng, Jer-Yiing; Lan, Wen-Chun; Lee, Yau-Jiunn

    2018-05-22

    Left ventricular hypertrophy (LVH) is one of the most common cardiac abnormalities in patients with end-stage renal disease. Hippuric acid (HA), a harmful uremic toxin, is known to be elevated in patients with uremia, and serum HA levels are associated with neurological symptoms, metabolic acidosis, and accelerated renal damage associated with chronic kidney disease. However, the pathophysiological role of HA in patients with uremia remains unclear. We investigated the association between serum HA levels and echocardiographic measurements in patients undergoing hemodialysis (HD) treatment. Eighty consecutive patients treated at a single HD center (44 males, 36 females; mean age 66 y, mean HD duration 6 y) were included in this study. Comprehensive echocardiography was performed after HD. Blood samples were obtained before HD. Pearson's correlation analysis revealed that serum HA levels were positively correlated with diastolic blood pressure, serum creatinine, left ventricular mass index, end diastolic interventricular septal thickness, left ventricular end-diastolic diameter, left ventricular end systolic diameter, end systolic left ventricular posterior wall thickness, and left atrium diameter, and negatively correlated with age. Furthermore, the HD patients with LVH had higher median serum HA levels than those without LVH (34.2 vs. 18.1 μg/ml, p = 0.003). Multiple logistic regression analysis revealed that HA was independently associated with LVH even after adjusting for known biomarkers. Moreover, the receiver operator characteristics curve of HA showed that a HA level of >26.9 μg/ml was associated with LVH. HA was significantly associated with LVH. HA could be a novel biomarker of left ventricular overload, which is closely associated with an increased risk of death in HD patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  17. Effects of dietary benzoic acid and sodium-benzoate on performance, nitrogen and mineral balance and hippuric acid excretion of piglets.

    PubMed

    Gräber, Tobias; Kluge, Holger; Hirche, Frank; Broz, Jirí; Stangl, Gabriele I

    2012-06-01

    The objective of this study was to compare the effects of sodium-benzoate (NaB) with those of benzoic acid (BAc) on growth performance of piglets as well as nutrient digestibility, nitrogen and mineral balance, urinary pH, and the urinary excretion of BAc and hippuric acid (HAc). The study was conducted with 120 weaning piglets (6.5 kg body weight), divided in four groups (15 replicates of two piglets each), which received (1) a basal diet (Control), or the basal diet supplemented with (2) 4 g NaB per kg (Group 4NaB), (3) 3.5 g BAc per kg (Group 3.5BAc) or (4) 5 g BAc per kg (Group 5BAc). Performance data were monitored over a 42-day period. Urine and faeces were collected from day 28-33 in metabolic cages with five piglets per treatment. Piglets of Groups 3.5BAc and 5BAc had similarly a considerably improved average daily gain and feed intake (p < 0.05). Performance of Group 4NaB was not significantly different from the other groups. Compared to the Control, the nitrogen retention was only improved in Group 5BAc (p < 0.05); the other groups showed intermediate values. In the supplemented groups, most of the BAc was excreted as HAc in urine, but only Groups 3.5BAc and 5BAc had reduced urinary pH (p < 0.05). Daily intake and faecal and urinary excretion of P and Ca were not affected by the treatment. The molar excess of Na in Group 4NaB was reflected by higher renal excretion of Na compared to the other groups (p < 0.05).

  18. Systemic exposure to benzoic acid and hippuric acid following topical application of clindamycin 1%/benzoyl peroxide 3% fixed-dose combination gel in Japanese patients with acne vulgaris.

    PubMed

    Ino, Hiroko; Takahashi, Naoki; Saenz, Alessandra Alio; Wakamatsu, Akira; Hashimoto, Hirofumi; Nakahara, Norie; Hasegawa, Setsuo

    2015-01-01

    Clindamycin 1%/benzoyl peroxide 3% fixed-dose combination gel (CLDM/BPO3%) is a topical product for the treatment of acne vulgaris. In this study, plasma and urine concentrations of benzoic acid (BA) and hippuric acid (HA) were analyzed to estimate the pharmacokinetics (PK) of BPO after application of CLDM/BPO3% twice-daily for 7 days in Japanese patients with acne vulgaris. Seven-day repeated application of CLDM/BPO3% appears to be safe in this patient population. Concentrations of plasma and urine BA were below the limit of quantification before and after repeated application in most of the 12 adult male patients. Mean difference in Cmax and AUC0-last for plasma HA indicated increased exposures after repeated application, but with wide 90% confidence intervals. Mean Ae0-12 for urine HA was similar before and after repeated application. Repeated application of CLDM/BPO3% is thus unlikely to result in accumulation of BA and HA. The study suggests negligible systemic exposure to BPO metabolites from CLDM/BPO3% after 7-day repeated application in male patients with acne vulgaris. © 2014, The American College of Clinical Pharmacology.

  19. Urine Methyl Hippuric Acid Levels in Acute Pesticide Poisoning: Estimation of Ingested Xylene Volume and Association with Clinical Outcome Parameters.

    PubMed

    Choi, Chi Young; Cho, NamJun; Park, Su Yeon; Park, Samel; Gil, Hyo Wook; Hong, Sae Yong

    2017-12-01

    To determine the relationship between the oral ingestion volume of xylene and methyl hippuric acid (MHA) in urine, we measured MHA in 11 patients whose ingested xylene volume was identified. The best-fit equation between urine MHA and ingested amount of xylene was as follows: y (ingested amount of xylene, mL/kg) = -0.052x² + 0.756x (x = MHA in urine in g/g creatinine). From this equation, we estimated the ingested xylene volume in 194 patients who had ingested pesticide of which the formulation was not available. Our results demonstrated that oxadiazole, dinitroaniline, chloroacetamide, organophosphate, and pyrethroid were xylene-containing pesticide classes, while the paraquat, glyphosate, glufosinate, synthetic auxin, fungicide, neonicotinoid, and carbamate classes were xylene-free pesticides. Sub-group univariate analysis showed a significant association between MHA levels in urine and ventilator necessity in the pyrethroid group. However, this association was not observed in the organophosphate group. Our results suggest that MHA in urine is a surrogate marker for xylene ingestion, and high urine MHA levels may be a risk factor for poor clinical outcome with some pesticide poisoning. © 2017 The Korean Academy of Medical Sciences.

  20. Quantitative analysis of urinary glycine conjugates by high performance liquid chromatography: excretion of hippuric acid and methylhippuric acids in the urine of subjects exposed to vapours of toluene and xylenes.

    PubMed

    Ogata, M; Taguchi, T

    1986-01-01

    A new method for the direct determination of hippuric acid (HA) and o-, m- and p-methylhippuric acids (MHAs) in the urine, metabolites of toluene and o-, m- and p-xylenes by high performance liquid chromatography (HPLC) is described. A stainless-steel column packed with silica gel having dinitrophenyl residue and a mixed solution of methanol/water/acetic acid (80/20/0.2) containing tetra-n-butylammonium bromide (0.2% w/v) as mobile phase was used. Concentrations of HA and MHAs were estimated from their peak height at a wave length of 225 nm. Urine can be analyzed directly without solvent extraction or pretreatment to obtain complete separation of HA and o-, m- and p-MHAs. Urine samples from male workers exposed to toluene or xylenes were analyzed for HA or MHAs. The urinary levels of HA and MHAs increased by exposure to toluene and xylenes in proportion to the environmental concentrations of the solvents, although there is a considerable variation in metabolite concentrations. The slope of regression line between toluene and HA and that between m-xylene and m-MHA were similar. The urinary concentrations of HA and MHAs corresponding to 100 ppm (TLV) of toluene was 2.35 g/g creatinine and that of m-MHA corresponding to 100 ppm (TLV) of m-xylene was 2.05 g/g creatinine. The warning levels of the urinary metabolite concentrations of a group of workers and that of an individual worker corresponding to TLV of organic solvent concentration is discussed.

  1. Simultaneous LC-MS/MS determination of phenylbutyrate, phenylacetate benzoate and their corresponding metabolites phenylacetylglutamine and hippurate in blood and urine.

    PubMed

    Laryea, Maurice D; Herebian, Diran; Meissner, Thomas; Mayatepek, Ertan

    2010-12-01

    Inborn errors of urea metabolism result in hyperammonemia. Treatment of urea cycle disorders can effectively lower plasma ammonium levels and results in survival in the majority of patients. Available medications for treating urea cycle disorders include sodium benzoate (BA), sodium phenylacetate (PAA), and sodium phenylbutyrate (PBA) and are given to provide alternate routes for disposition of waste nitrogen excretion. In this study, we develop and validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of benzoic acid, phenylacetic acid, phenylbutyric acid, phenylacetylglutamine, and hippuric acid in plasma and urine from children with inborn errors of urea synthesis. Plasma extracts and diluted urine samples were injected on a reverse-phase column and identified and quantified by selected reaction monitoring (SRM) in negative ion mode. Deuterated analogues served as internal standards. Analysis time was 7 min. Assay precision, accuracy, and linearity and sample stability were determined using enriched samples. Quantification limits of the method were 100 ng/ml (0.3-0.8 μmol/L) for all analytes, and recoveries were >90%. Inter- and intraday relative standard deviations were <10%. Our newly developed LC-MS/MS represents a robust, sensitive, and rapid method that allows simultaneous determination of the five compounds in plasma and urine.

  2. Rapid and improved gas-liquid chromatography technique for detection of hippurate hydrolysis by Campylobacter jejuni and Campylobacter coli.

    PubMed Central

    Bär, W; Fricke, G

    1987-01-01

    A gas-liquid chromatographic method which requires no chloroform extraction of the split products has been investigated for the detection of hippurate hydrolysis by Campylobacter spp. This technique gave better reproducibility than other tests also used in this study and allows the routine use of the gas-liquid chromatographic method for identification of Campylobacter isolates. PMID:3654950

  3. Biomarkers of Exposure to Toxic Substances: Volume 4: Metabonomics Biomarkers to Liver and Organ Damage

    DTIC Science & Technology

    2009-05-01

    examined the urinary metabolite profiles from rats following a single exposure to the kidney toxicants D- serine, puromycin, hippuric acid and...15. SUBJECT TERMS Amphotericin B, bioinformatics, cell cycle regulation, clinical, clustering analysis, D-serine, glomerular injury, hippuric acid ...puromycin, hippuric acid and amphotericin B at various doses, and as a function of time post-dose. In toxicology, such dose-time metabonomics studies are

  4. Thin layer chromatography of p-aminophenol in urine after mixed exposure to aniline and toluene.

    PubMed Central

    Bieniek, G; Karmańska, K; Wilczok, T

    1984-01-01

    A simple method of evaluating p-aminophenol in the urine of people exposed simultaneously to aniline and toluene relies on separating p-aminophenol from hippuric acid and other physiological components of the urine by thin layer chromatography. The adsorbents and developing system have been thus fixed to make possible the separation of p-aminophenol from hippuric acid, urea, and creatinine and their quantitative determination. This method also makes possible the determination of p-aminophenol in urine in the presence of hippuric acid. Hippuric acid is a physiological component of urine and also the metabolite of toluene, so the determination of p-aminophenol is possible also after simultaneous exposure to both compounds: aniline and toluene. At the same time the concentrations of urea and creatinine as additional factors may be determined. The limit of detection of the method is: 5 micrograms/ml for p-aminophenol, 9 micrograms/ml for hippuric acid, 8 micrograms/ml for urea, and 6 micrograms/ml for creatinine. PMID:6722055

  5. Biomarkers of Exposure to Toxic Substances. Volume 1. Global Experimental Design: Biomarker Discovery for Early Prediction of Organ-Selective Toxicity

    DTIC Science & Technology

    2009-05-30

    in the polyphenols chlorogenic acid , quinic acid and caffeic acid ). It appears in variable concentrations in urine and at much lower concentrations...liver, kidney, toxicity, gene, expression, nephrotoxin, D-serine, hippuric acid , Puromycin, Amphotericin B 16. SECURITY CLASSIFICATION OF: 17...6 1.4.4. Hippuric Acid

  6. Metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Melnick, G.; Dempsey, D. T.

    1991-01-01

    Eight N-15-labeled nonessential amino acids plus (N-15)H4Cl were administered over a 10-h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted.

  7. Measurements of the levels of organic solvent vapours by personal air samplers and the levels of urinary metabolites of workers. Part 2. Toluene vapour in a shipbuilding yard (author's transl).

    PubMed

    Kira, S

    1977-05-01

    Personal air samplers were applied to shipyard's painters putting on gas masks during the spraying work, and the levels of toluene vapour surrounding the workers were measured. On the other hand, levels of urinary hippuric acid (metabolites of toluene) of the workers were measured, and the levels of toluene vapour inhaled were calculated from the levels of urinary hippuric acid. Then the actual removing-efficiencies of toluene vapours by the use of gas masks were estimated from these two levels (i.e., toluene vapours exposed and inhaled). The values of removing-efficiencies were found to be 65.9-98.1%. The concentrations of hippuric and methylhippuric acids in the urine of workers exposed to toluene and xylene for 3 hours, collected just after the exposure, are valuable indices of these organic solvent vapours inhaled. A minute amount of urinary methylhippuric acid can be determined by means of gas chromatography.

  8. [Evaluation of various biochemical parameters in the urine and blood of painters in the carpentry business].

    PubMed

    Sołtys, M; Jakubowska, W; Lenart, E; Nagadowska, H; Lisiecka, M; Ziemer, I; Koćmierkska-Grodzka, D

    1986-01-01

    The work has been aimed at investigating the effects of organic solvent-toluene-upon the painters of the Building Joinery Factory. Studies carried out during 1978-1980 showed an increased level of toluene metabolite (hippuric acid) in painters' urine, as compared to the environmental control group. The highest level of hippuric acid in painters' urine was found in the first period (first six months) of their job. This was not related to an increase in toluene vapours at the workplace. In painters' blood some irregular and rather small modifications of enzymatic activity were exhibited.

  9. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  10. Consumption of Hibiscus sabdariffa L. aqueous extract and its impact on systemic antioxidant potential in healthy subjects.

    PubMed

    Frank, Thomas; Netzel, Gabriele; Kammerer, Dietmar R; Carle, Reinhold; Kler, Adolf; Kriesl, Erwin; Bitsch, Irmgard; Bitsch, Roland; Netzel, Michael

    2012-08-15

    To evaluate health benefits attributed to Hibiscus sabdariffa L. a randomized, open-label, two-way crossover study was undertaken to compare the impact of an aqueous H. sabdariffa L. extract (HSE) on the systemic antioxidant potential (AOP; assayed by ferric reducing antioxidant power (FRAP)) with a reference treatment (water) in eight healthy volunteers. The biokinetic variables were the areas under the curve (AUC) of plasma FRAP, ascorbic acid and urate that are above the pre-dose concentration, and the amounts excreted into urine within 24 h (Ae(0-24) ) of antioxidants as assayed by FRAP, ascorbic acid, uric acid, malondialdehyde (biomarker for oxidative stress), and hippuric acid (metabolite and potential biomarker for total polyphenol intake). HSE caused significantly higher plasma AUC of FRAP, an increase in Ae(0-24) of FRAP, ascorbic acid and hippuric acid, whereas malondialdehyde excretion was reduced. Furthermore, the main hibiscus anthocyanins as well as one glucuronide conjugate could be quantified in the volunteers' urine (0.02% of the administered dose). The aqueous HSE investigated in this study enhanced the systemic AOP and reduced the oxidative stress in humans. Furthermore, the increased urinary hippuric acid excretion after HSE consumption indicates a high biotransformation of the ingested HSE polyphenols, most likely caused by the colonic microbiota. Copyright © 2012 Society of Chemical Industry.

  11. Waste nitrogen excretion via amino acid acylation: benzoate and phenylacetate in lysinuric protein intolerance.

    PubMed

    Simell, O; Sipilä, I; Rajantie, J; Valle, D L; Brusilow, S W

    1986-11-01

    Benzoate and phenylacetate improve prognosis in inherited urea cycle enzyme deficiencies by increasing waste nitrogen excretion as amino acid acylation products. We studied metabolic changes caused by these substances and their pharmacokinetics in a biochemically different urea cycle disorder, lysinuric protein intolerance (LPI), under strictly standardized induction of hyperammonemia. Five patients with LPI received an intravenous infusion of 6.6 mmol/kg L-alanine alone and separately with 2.0 mmol/kg of benzoate or phenylacetate in 90 min. Blood for ammonia, serum urea and creatinine, plasma benzoate, hippurate, phenylacetate, phenylacetylglutamine, and amino acids was obtained at 0, 120, 180, and 270 min. Urine was collected in four consecutive 6-h periods. Alanine caused hyperammonemia: maximum increase 107, 28-411 microM (geometric mean, 95% confidence interval); ammonia increments were nearly identical after alanine + benzoate (60, 17-213 microM) and alanine + phenylacetate (79, 13-467 microM) (NS). Mean plasma benzoate was 6.0 mM when extrapolated to the end of alanine + benzoate infusions; phenylacetate was 4.9 mM at the end of alanine + phenylacetate. Transient toxicity (dizziness, nausea, vomiting) occurred in four patients at the end of combined infusions, and we suggest upper therapeutic plasma concentrations of 4.5 mM for benzoate and 3.5 mM for phenylacetate. Benzoate and phenylacetate then decreased following first-order kinetics with t1/2S of 273 and 254 min, respectively. Maximal plasma hippurate (0.24, 0.14-0.40 mM) was lower than maximal phenylacetylglutamine (0.48, 0.22-1.06 mM, p = 0.008).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Effect of dietary glycine and benzoate level on benzoate metabolism in mink (Mustela vision), blue fox (Alopex lagopus), and raccoon dog (Nyctereutes procyonoides).

    PubMed

    Pölönen, I J; Partanen, K H; Jalava, T K; Toivonen, V F

    2000-04-01

    Three 2 x 4 factorial experiments were carried out from August to September with 30 juvenile male mink, 24 raccoon dogs, and 24 blue foxes to investigate the effect of dietary glycine supply (low or high) on the efficiency of these species to excrete hippuric acid with incremental benzoate intake (0, 1, 2, or 4 mmol/kg BW). For mink, two additional treatments with 1 or 2 mmol/kg BW of ethyl benzoate were included. A basal low-glycine diet was formulated to meet the minimum protein requirements of fur animals (30% of ME). This diet was supplemented with 0 or 3 g/kg of glycine, or with 0, 1.0, 2.07, or 4.15 g/kg of sodium benzoate for mink and blue foxes, and with 0 or 4.5 g/kg of glycine and 0, 1.58, 3.17, or 6.34 g/kg of sodium benzoate for raccoon dogs, respectively. Two additional diets with .76 or 1.53 g/kg of ethyl benzoate were made for mink. Fecal and urinary benzoic and hippuric acid excretion were measured for 3 d. The 24-h recovery of [14C]benzoic acid injected intraperitoneally was measured from urine, the liver, and the kidneys. All animals appeared healthy and no clinical signs of benzoate overdose were observed. Dietary benzoate level did not affect ADFI or ADG in any species. Glycine supplementation lowered ADFI in mink. The majority of ingested benzoates were absorbed from the gut (over 95%), except in blue foxes, which excreted 6 to 15% of ingested benzoates in feces with incremental increases in benzoate intake. Urinary free benzoic acid excretion accounted for 10% of the ingested benzoates in blue foxes but less than 5% in mink and raccoon dogs. When benzoate intake was 1 mmol/kg BW, mink, blue foxes, and raccoon dogs excreted 71, 77, and 34% of ingested benzoates as hippuric acid in urine, respectively. With higher benzoate intakes, urinary hippuric acid excretion decreased quadratically with mink to 20%, and linearly with blue foxes and raccoon dogs to 45 and 16%, respectively. The hippuric acid pathway appears to be the principal route of

  13. [Evaluation of exposure of auto painters to organic solvents in the city of Bogota].

    PubMed

    Palma, Marien; Briceño, Leonardo; Idrovo, Álvaro J; Varona, Marcela

    2015-08-01

    Painters of automobiles are exposed to pure and mixed solvents that have been associated with neurological effects and carcinogenic mutations. To characterize the health and work conditions of individuals who are occupationally exposed to organic solvents used in sheet metal and auto body shops in Bogota. Descriptive, cross-sectional study that characterizes the health and work conditions of individuals exposed to organic solvents in sheet metal and auto body shops in Bogota. A group exposed to the solvents was compared to an unexposed group. Air concentrations of benzene, toluene and xylene (BTX) were determined, individual questionnaires were administered and phenylmercapturic, hippuric and ortho- and para-methylhippuric acids were measured in urine. The results of the measurements and the questionnaires were correlated to determine the exposure panorama. For the three BTX metabolites, statistically significant differences (p<0.001) were found between the population exposed to the solvents and the unexposed population. For the exposed population, positive correlations were found between toluene in air and hippuric acid in urine (rho=0.82) and between xylene in air and o-methylhippuric acid in urine (rho=0.76). Hippuric acid values exceeded permissible levels in 11 workers and p-methylhippuric acid exceeded permissible levels in 8 workers. None of the phenylmercapturic values exceeded the limit. Auto painters are exposed to high levels of organic solvents at the workplace and do not have adequate industrial health and safety conditions to perform their jobs.

  14. Urinary metabolite levels and symptoms in Filipino workers using organic solvents.

    PubMed

    Cucueco, M T; Espinosa, N C; Villanueva, M B; Castro, F T; Sison, S Y; Ortega, V S; Hisanaga, N

    1993-01-01

    To compare symptoms with urinary metabolite levels, 900 workers from 7 organic solvent-using industries were studied. Urinary metabolites were determined using a high performance liquid chromatograph. Urinary hippuric acid concentrations exceeding the reference value (2.5 g/g creatinine) were found in 78 (8.7%) workers. However, only 3 (0.3%) and 1 (0.1%) of the participants exceeded the reference value for mandelic (0.8 g/g creatinine) and total methylhippuric acid (1.5 g/g creatinine), respectively. The sum of the values of the ratio of measured urinary metabolite concentration to the corresponding ACGIH's biological exposure indices (BEI) [(HA/BEI of HA + MHA/BEI of MHA + MA/BEI of MA)] exceeded 1.0 in 166 (18.4%) workers. Majority of them were from the footwear manufacturing industry (63/129 or 49.2%). Questionnaire interviews were also administered to determine the prevalence of symptoms while at work (acute symptoms) or within the past 6 months (chronic symptoms). Urinary metabolite levels of individual and mixed solvents were compared with the symptoms of all workers. Analysis using Spearman's rank correlation showed in workers whose urinary hippuric acid exceeded 3.75 g/g creatine (1.5 x BEI), significant correlation between their hippuric acid levels and subjective complaints. Workers whose sum of the values of the ratio of measured urinary metabolite concentration to corresponding BEI exceeded 1.5 were selected and comparing this level with their symptoms, significant correlation was also noted in some complaints.

  15. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  16. [Male hormonal profile in workers exposed to toluene in an industrial packaging plant].

    PubMed

    Miranda-Figueroa, Genezareth; Paz-Román, María del Pilar; Aguilar-Madrid, Guadalupe; Juárez-Pérez, Cuauhtémoc Arturo; Basurto-Acevedo, Lourdes; Haro-García, Luis

    2013-01-01

    to identify changes in the male hormonal profile (MHP), consisting of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone, in workers exposed to toluene. cross-sectional study that included 42 workers, formed in two groups: with high and low exposure to toluene (HET and LET, respectively); the hippuric acid in urine, and the serum concentration in FSH, LH, and testosterone were measured. hippuric acid in subjects with LET was 2.53 ± 1.20 g/g creatinine, and with HET: 6.31 ± 3.83 g/g creatinine (p = 0.02). Seric FSH concentration was 5.12 ± 0.77 and 3.55 ± 0.3 mU/mL (p = 0.02) in LET and HET, respectively; LH: 2.66 ± 0.45 and 2.77 ± 0.21 (p = 0.81), and testosterone 3.91 ± 0.34 and 4.86 ± 0.23 ng/mL (p = 0.04). By regression analysis, the correlation coefficient of FSH with hippuric acid was r = -0.33 (p = 0.031), with coefficient of determination of 11 %; the LH correlation coefficient was r = -0.037 (p = 0.88) and 0.05 %, respectively; and the one for testosterone was r = 0.61 (p = 0.0001) and 34 %. in HET group, FSH and LH serum levels diminished; testosterone shows an opposite response, perhaps explained by a different sensitivity of the male gonads exposed to toluene.

  17. Neuropsychological Symptoms among Workers Exposed to Toluene and Xylene in Two Paint Manufacturing Factories in Eastern Thailand

    PubMed Central

    Thetkathuek, Anamai; Jaidee, Wanlop; Saowakhontha, Sastri; Ekburanawat, Wiwat

    2015-01-01

    The study analyzed the exposure factors that may lead to neuropsychological symptoms among 92 workers who were exposed to xylene and toluene and 100 workers who were not exposed to the solvents. The airborne concentration of xylene and toluene was evaluated with personal passive badges. The levels of methyl hippuric acid and hippuric acid in urine were assessed, and interviews were performed to observe the neuropsychological symptoms that may result from exposure to the solvents. The result showed that the average concentration for the exposed group of xylene in the paint company working environment was 2.7 (SD = 2.4) ppm and the average concentration of toluene was 9.5 (SD = 10.4) ppm. The average level of methyl hippuric acid in urine was 78 (SD = 74.7) mg/g creatinine. Factors that affected the neuropsychological symptoms included the following. (1) The impact of age: the risk (adjusted odds ratio) for getting psychosomatic symptoms in persons over 40 and exposed to xylene was 9.5 and the aOR of those exposed to toluene was 8.3. (2) The impact of not providing personal protective equipment was found to be sleep disturbance; it was found that the aOR of those exposed to xylene was 3.9, and the aOR of those exposed to toluene was 4.4. In summary, periodic examination of workers by occupational physician is needed for detection of early neuropsychological effects, especially psychosomatic symptoms, and sleep disturbances. PMID:26290757

  18. Cohort study on respiratory and neurological disorders among workers in a bone glue factory in Egypt.

    PubMed

    Al-Batanony, M A; Abdel-Rasoul, G M; Abu-Salem, M A; Al-Ahmar, I A; Al-Badry, A S

    2012-04-01

    Glues are strong, liquid adhesive derived from animal tissues. It has been shown that glue sniffing is associated with demyelinating polyneuropathy. The low molecular weight agents which cause occupational lung disease have generally included the isocyanates exposure to which could result in asthma among workers. Toluene is also used widely in glue and adhesive industry and households where toluene exposure and abuse can occur. To study some respiratory and neurological disorders that may arise in workers in a bone glue factory in Queisna industrial zone, Menoufyia governorate, Egypt. In a historical cohort study, the exposed participants (n = 50) were recruited from workers in a bone glue factory in Queisna industrial zone, Menoufyia governorate. The unexposed group was selected from workers' relatives who had never worked in glue industry. All participants completed a pre-designed questionnaire on personal and occupational histories. Pulmonary function tests as well as electromyography (EMG) were performed for all participants. Urinary hippuric acid was also measure in all participants. The prevalence of cough, asthmatic attacks and paresthesia were significantly higher among exposed than unexposed participants. Abnormal spirometric measurements (particularly towards obstruction), abnormal EMG and positive urinary hippuric acid were significantly more prevalent among exposed than unexposed group. Spirometry and EMG should be included in the periodic medical examination for exposed workers for early detection of respiratory and neurological disorders. Urinary hippuric acid could be a useful indicator of the nerve conduction abnormalities and should be measured periodically for these workers.

  19. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans.

    PubMed

    Urpi-Sarda, Mireia; Llorach, Rafael; Khan, Nasiruddin; Monagas, Maria; Rotches-Ribalta, Maria; Lamuela-Raventos, Rosa; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2010-04-28

    Health effects of cocoa flavonols depend on their bioavailability, which is strongly influenced by the food matrix and the degree of flavanol polymerization. The effect of milk on the bioavailability of cocoa flavanoids considering phase II metabolites of epicatechin has been the subject of considerable debate. This work studies the effect of milk at the colonic microbial metabolism level of the nonabsorbed flavanol fraction that reaches the colon and is metabolized by the colonic microbiota into various phenolic acids. Twenty-one human volunteers followed a diet low in polyphenols for at least 48 h before taking, in a random order, 40 g of cocoa powder dissolved either in 250 mL of whole milk or in 250 mL of water. Urine samples were collected before the intake and during three different periods (0-6, 6-12, and 12-24 h). Phenolic acids were analyzed by LC-MS/MS after solid-phase extraction. Of the 15 metabolites assessed, the excretion of 9 phenolic acids was affected by the intake of milk. The urinary concentration of 3,4-dihydroxyphenylacetic, protocatechuic, 4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, caffeic, and ferulic acids diminished after the intake of cocoa with milk, whereas urinary concentrations of vanillic and phenylacetic acids increased. In conclusion, milk partially affects the formation of microbial phenolic acids derived from the colonic degradation of procyanidins and other compounds present in cocoa powder.

  20. Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Abgaryan, Narine; Vicinanza, Roberto; de Oliveira, Daniela Moura; Zhang, Yanjun; Lee, Ru-Po; Carpenter, Catherine L.; Aronson, William J.; Heber, David

    2013-01-01

    Scope Tea polyphenols are metabolized by the colonic microflora yielding phenolic metabolites, which may contribute to the health benefits of tea. We determined the serum and urine concentrations of phenolic acids, hippuric acid and polyhydroxyphenyl-γ-valerolactones during green tea (GT) and black tea (BT) administration. The effects of (−)-epigallocatechin gallate (EGCG) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA) alone and in combination on bioavailability, intracellular metabolism, and antiproliferative activity was determined in HCT-116 colon cancer cells. Methods and Results The concentration of phenolic metabolites was quantified by HPLC with electrochemical detection and MS. Urine concentrations of 4-hydroxyphenylacetic acid (4-HPAA), 3-hydroxyphenylacetic acid (3-HPAA) and polyhydroxy-γ-valerolactones were increased significantly in men drinking GT compared to control. Urine concentration of 3-O-methylgallic acid (3OMGA) was significantly increased in men drinking BT compared to control. Serum 3,4-DHPAA was significantly increased after consumption of GT and BT and 4-HPAA after GT consumption. In vitro treatment of HCT-116 colon cancer cells with 3,4-DHPAA and EGCG exhibited an additive antiproliferative effect, while methylation of 3,4-DHPAA was significantly decreased. 3OMGA exhibited the strongest antiproliferative activity among the phenolic acids. Conclusions The consumption of both, GT and BT, was associated with a significant increase in urinary and serum phenolic acids. PMID:23319439

  1. Diet effects on urine composition of cattle and N2O emissions.

    PubMed

    Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A

    2013-06-01

    Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of

  2. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    PubMed

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P < 0.05) the concentration of urea. Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P < 0.05) the concentrations of propionate and butyrate in the feces. Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P < 0.05) in the large intestine of antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  3. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    PubMed

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans

    PubMed Central

    Lennerz, Belinda; Vafai, Scott B.; Delaney, Nigel F.; Clish, Clary B.; Deik, Amy A.; Pierce, Kerry A.; Ludwig, David S.; Mootha, Vamsi K.

    2014-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure. PMID:25497115

  5. Occupational exposure of petroleum depot workers to BTEX compounds.

    PubMed

    Rezazadeh Azari, M; Naghavi Konjin, Z; Zayeri, F; Salehpour, S; Seyedi, M D

    2012-01-01

    Benzene, toluene, ethylbenzene and xylene (BTEX) are the most important toxic volatile compounds in the air and could be easily absorbed through the respiratory tract. In recent years, the risk of exposure to BTEX compounds, especially benzene as a carcinogen, has been considered in petroleum depot stations. To assess the occupational exposure of petroleum depot workers in Iran to BTEX compounds. After completing a questionnaire and assessing occupational exposure to BTEX compounds, 78 (46 exposed and 32 non-exposed) depot workers were randomly selected to participate in this study. Air sampling and analysis of BTEX was conducted according to the NIOSH method No. 1501. Analysis of urinary hippuric acid, as an indicator of toluene exposure, was carried out according to NIOSH method No. 8300. Personal monitoring of the high exposure group to BTEX compounds was repeated to verify the results obtained in the first phase of the monitoring. Among the 9 operating groups studied, occupational exposure to benzene and toluene was higher in quality control and gasoline loading operators-the median exposure ranged from 0.16 to 1.63 ppm for benzene and 0.2 to 2.72 ppm for toluene. Median exposure of other group members to BTEX compounds was below the detection limit of analytical method (0.07, 0.06, 0.05, and 0.05 ppm, respectively). The level of toluene exposure measured showed correlation with neither post-shift urinary hippuric acid (Spearman's rho = 0.128, p = 0.982) nor with the difference between post- and pre-shift urinary hippuric acid (Spearman's rho = 0.089, p = 0.847) in depot operational workers. Gasoline loading operators are exposed to a relatively high level of benzene.

  6. Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction.

    PubMed

    Naidoo, V; Swan, G E

    2009-04-01

    Diclofenac (DF), a non-steroidal anti-inflammatory drug (NSAID), is largely regarded as one of the most devastating environmental toxicant in recent times, after accidental exposure via their food-chain lead to massive mortalities in three vulture species on the Asian subcontinent. Although the use of diclofenac was recently banned on the Indian subcontinent, following the favourable safety profile of meloxicam, its mechanism of toxicity remains unknown. In an attempt to establish this mechanism, we test three hypotheses using models established from either the domestic chicken (Gallus domesticus) or the African White-backed vulture (Gyps africanus). We demonstrate that both DF and meloxicam are toxic to renal tubular epithelial (RTE) cells following 12 h of exposure, due to an increase in production of reactive oxygen species (ROS), which could be temporarily ameliorated by pre-incubation with uric acid (UA). When cultures were incubated with either drug for only 2 h, meloxicam showed no toxicity in contrast to diclofenac. In both cases no increase in ROS production was evident. In addition, diclofenac decreased the transport of uric acid, by interfering with the p-amino-hippuric acid (PAH) channel. We conclude that vulture susceptibility to diclofenac results from a combination of an increased ROS, interference with UA transport and the duration of exposure.

  7. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.

    PubMed

    Zheng, Liufeng; Zuo, Fangrui; Zhao, Shengjun; He, Pingli; Wei, Hongkui; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2017-04-01

    Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.

  8. Alterations of urinary metabolite profile in model diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stec, Donald F.; Wang, Suwan; Stothers, Cody

    2015-01-09

    Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelialmore » nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can

  9. Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism.

    PubMed

    Wang, Shu-Ping; Liao, Chiou-Shyi

    2004-10-08

    The abnormal organic acids in urine are closely related with physiological metabolism. To determinate the low-molecular-mass metabolites in human biological fluids, although there were some previous reports by both of capillary electrophoresis and ion-exchange high-performance liquid chromatography, but it was rarely found by reverse phase of liquid chromatography using ion pair reagent. The objective of this study was aimed to suggest and compare two methods, an additional chromatographic method-ion-pair chromatography (IPC) and a sharp capillary zone electrophoresis (CZE), to determinate organic acids, acting as the abnormal metabolic markers, namely uric acid, orotic acid, pyruvic acid, alpha-ketoglutaric acid, fumaric acid, and hippuric acid. The proposed method of IPC possessed both the extreme stability for column and the good results of reproducibility, linearity and detection limit. The optimum mobile phase was 22% methanol and 10 mM tetra-n-butyl ammonium hydrogen sulfate (pH 4) by gradient elution. As well as the optimum condition of CZE was 5% acetonitrile and 0.5 mM CTAB in phosphate buffer. From the results, CZE showed better recovery and sharp lucid electropherogram. Finally, the two proposed analytical methods were applied to assay human urine with direct and spiked analysis. CZE showed good potency to overcome the sample-to sample variation with standard deviation less than 10%. By comparison results of urinary spiked analysis between IPC and CZE by statistical paired t-test, the results were evaluated no significant difference under P < 0.05. The quantitative linearity of both methods was fitted in application of clinical biological analysis even with 50-fold dilution.

  10. Recurrent high anion gap metabolic acidosis secondary to 5-oxoproline (pyroglutamic acid).

    PubMed

    Tailor, Prayus; Raman, Tuhina; Garganta, Cheryl L; Njalsson, Runa; Carlsson, Katarina; Ristoff, Ellinor; Carey, Hugh B

    2005-07-01

    High anion gap metabolic acidosis in adults is a severe metabolic disorder for which the primary organic acid usually is apparent by clinical history and standard laboratory testing. We report a case of recurrent high anion gap metabolic acidosis in a 48-year-old man who initially presented with anorexia and malaise. Physical examination was unrevealing. Arterial pH was 6.98, P co 2 was 5 mm Hg, and chemistry tests showed a bicarbonate level of 3 mEq/L (3 mmol/L), anion gap of 32 mEq/L (32 mmol/L), and a negative toxicology screen result, except for an acetaminophen (paracetamol) level of 7.5 mug/mL. Metabolic acidosis resolved with administration of intravenous fluids. Subsequently, he experienced 5 more episodes of high anion gap metabolic acidosis during an 8-month span. Methanol, ethylene glycol, acetone, ethanol, d -lactate, and hippuric acid screens were negative. Lactate levels were modestly elevated, and acetaminophen levels were elevated for 5 of 6 admissions. These episodes defied explanation until 3 urinary organic acid screens, obtained on separate admissions, showed striking elevations of 5-oxoproline levels. Inborn errors of metabolism in the gamma-glutamyl cycle causing recurrent 5-oxoprolinuria and high anion gap metabolic acidosis are rare, but well described in children. Recently, there have been several reports of apparent acquired 5-oxoprolinuria and high anion gap metabolic acidosis in adults in association with acetaminophen use. Acetaminophen may, in susceptible individuals, disrupt regulation of the gamma-glutamyl cycle and result in excessive 5-oxoproline production. Suspicion for 5-oxoproline-associated high anion gap metabolic acidosis should be entertained when the cause of high anion gap metabolic acidosis remains poorly defined, the anion gap cannot be explained reasonably by measured organic acids, and there is concomitant acetaminophen use.

  11. Determination of Natural and Depleted Uranium in Urine at the ppt Level: An Interlaboratory Analytical Exercise

    DTIC Science & Technology

    2002-10-01

    but de cet exercice analytique 6tait d𔄀valuer toutes les techniques analytiques disponibles ayant la capacit6 de mesurer les rapports isotopiques...B Formulation. Step Component Amount added 1 2% v/v nitric acid 500 mL 2 Calcium chloride (CaCl2.2H 20) 12.6 g 3 2% v/v nitric acid Dilute to 1000 mL...chloride (KCI) 3.43 Sodium chloride (NaCl) 2.32 Creatinine (C4H7N30) 1.10 Ammonium chloride (NH 4Cl) 1.06 Hippuric acid (C9H9N03) 0.63 Calcium chloride

  12. Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations

    PubMed Central

    Mutsaers, Henricus A. M.; van den Heuvel, Lambertus P.; Ringens, Lauke H. J.; Dankers, Anita C. A.; Russel, Frans G. M.; Wetzels, Jack F. M.; Hoenderop, Joost G.; Masereeuw, Rosalinde

    2011-01-01

    During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [3H]-methotrexate ([3H]-MTX) uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively) and BCRP-mediated [3H]-estrone sulfate ([3H]-E1S) uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively), whereas indole-3-acetic acid and phenylacetic acid reduce [3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC50 value: 7 mM, respectively). In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations. PMID:21483698

  13. Metabonomics study of the effects of pretreatment with glycyrrhetinic acid on mesaconitine-induced toxicity in rats.

    PubMed

    Sun, Bo; Zhang, Ming; Zhang, Qi; Ma, Kunpeng; Li, Haijing; Li, Famei; Dong, Fangting; Yan, Xianzhong

    2014-07-03

    Aconitum carmichaelii Debx. (Fuzi), a commonly use traditional Chinese medicine (TCM), has often been used in combination with Rhizoma Glycyrrhizae (Gancao) to reduce its toxicity due to diester diterpenoid alkaloids aconitine, mesaconitine, and hypaconitine. However, the mechanism of detoxication is still unclear. Glycyrrhetinic acid (GA) is the metabolite of glycyrrhizinic acid (GL), the major component of Gancao. In present study, the effect of GA on the changes of metabolic profiles induced by mesaconitine was investigated using NMR-based metabolomic approaches. Fifteen male Wistar rats were divided into a control group, a group administered mesaconitine alone, and a group administered mesaconitine with one pretreatment with GA. Their urine samples were used for NMR spectroscopic metabolic profiling. Statistical analyses such as orthogonal projections to latent structures-discriminant analysis (OPLS-DA), t-test, hierarchical cluster, and pathway analysis were used to detect the effects of pretreatment with GA on mesaconitine-induced toxicity. The OPLS-DA score plots showed the metabolic profiles of GA-pretreated rats apparently approach to those of normal rats compared to mesaconitine-induced rats. From the t-test and boxplot results, the concentrations of leucine/isoleucine, lactate, acetate, succinate, trimethylamine (TMA), dimethylglycine (DMG), 2-oxo-glutarate, creatinine/creatine, glycine, hippurate, tyrosine and benzoate were significantly changed in metabolic profiles of mesaconitine-induced rats. The disturbed metabolic pathways include amino acid biosynthesis and metabolism. GA-pretreatment can mitigate the metabolic changes caused by mesaconitine-treatment on rats, indicating that prophylaxis with GA could reduce the toxicity of mesaconitine at the metabolic level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of Histidine Supplementation on Global Serum and Urine 1H NMR-based Metabolomics and Serum Amino Acid Profiles in Obese Women from a Randomized Controlled Study.

    PubMed

    Du, Shanshan; Sun, Shuhong; Liu, Liyan; Zhang, Qiao; Guo, Fuchuan; Li, Chunlong; Feng, Rennan; Sun, Changhao

    2017-06-02

    The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1 H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1 H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/β-glucose were exhibited after histidine supplement. In urine 1 H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.

  15. Work-exposure to PM10 and aromatic volatile organic compounds, excretion of urinary biomarkers and effect on the pulmonary function and heme-metabolism: A study of petrol pump workers and traffic police personnel in Kolkata City, India.

    PubMed

    Mukherjee, Ashit K; Chattopadhyay, Bhaskar P; Roy, Sanjit K; Das, Surojit; Mazumdar, Dipanjali; Roy, Moumita; Chakraborty, Rajarshi; Yadav, Anupa

    2016-01-28

    This study focused work-exposure to particulate matter ≤ 10 µm (PM 10 ), volatile organic compounds (VOCs) and biological monitoring of major VOCs (BTEX) to observe the significant effects of traffic related pollutants on respiratory and hematological systems of workers engaged in two occupational settings, petrol pumps and traffic areas of Kolkata metropolitan city, India. PM 10 was assessed by personal sampling and particle size distribution by 8-stage Cascade Impactor. VOCs were analysed by gas chromatography-flame ionization detector (GC-FID) and five urinary metabolites, trans trans- mercapturic acid (tt-MA), S-phenyl mercapturic acid (SPMA), hippuric acid (HA), mandelic acid (MA) and methyl hippuric acid (MHA) of VOCs, benzene, toluene, ethyl benzene and xylenes (BTEX) by reverse phase high performance liquid chromatography (HPLC). Pulmonary functions test (PFT) was measured Spirometrically. ∂-aminoleavulinic acid (ALA) and porphobilinogen (PBG) in lymphocytes were measured spectrophometrically following column chromatographic separation. High exposure to PM 10 , having 50% of particles, ≤ 5.0 µm in both the occupational settings. Exposure to toluene was highest in petrol pumps whereas benzene was highest (104.6 ± 99.0 μg m -3 ) for traffic police personnel. Workplace Benzene is found many fold higher than the National ambient standard. Air-benzene is correlated significantly with pre- and post-shift tt-MA (p < 0.001) and SPMA (p < 0.001) of exposed workers. Blood cell counts indicated benzene induced hematotoxicity. ALA and PBG accumulation in lymphocytes indicated alteration in heme-metabolism, especially among traffic police. Significant reduction of force exploratory volume in one second (FEV 1 ) and forced vital capacity (FVC) of fuel fillers are observed with increased tt-MA and SPMA. Study revealed PFT impairments 11.11% (6.66% restrictive and 2.22% obstructive and combined restrictive and obstructive type, each) among petrol pumps and 8

  16. Improvement of aqueous solubility and rectal absorption of 6-mercaptopurine by addition of sodium benzoate.

    PubMed

    Takeichi, Y; Kimura, T

    1994-10-01

    The solubility of 6-mercaptopurine (6-MP) in water increased as the concentration of sodium benzoate or sodium hippurate in the solution increased. The solubility of 6-MP in 20% (w/v) sodium benzoate or sodium hippurate solution was about 6-fold larger than that of 6-MP alone. The stability constant of the soluble complex of 6-MP with sodium benzoate was estimated to be 2-8 M-1 from (1) phase-solubility study and (2) analysis of chemical shifts observed in 1H-NMR. Partition of 6-MP from the saturated solution to n-octanol was also greatly increased by the addition of sodium benzoate or sodium hippurate, the degree being less in the latter. Administration of 6-MP with 20% (w/v) sodium benzoate to rat rectum resulted in enhanced absorption and the area under the plasma concentration-time curve was comparable to that obtained by intravenous administration (bioavailability = 100%), while the bioavailability after intrarectal administration of 6-MP with 20% (w/v) sodium hippurate was only 9%. The reason for the difference was discussed.

  17. UHPLC-Q-Orbitrap-HRMS-based global metabolomics reveal metabolome modifications in plasma of young women after cranberry juice consumption.

    PubMed

    Liu, Haiyan; Garrett, Timothy J; Su, Zhihua; Khoo, Christina; Gu, Liwei

    2017-07-01

    Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Do cranberries help prevent urinary tract infections?

    PubMed

    Hutchinson, Janet

    Cranberries are widely used in the treatment and prevention of urinary tract infections (UTIs) and for those at risk of such infections. With the growing resistance to antibiotics, cranberries can be viewed as a useful non-pharmaceutical remedy (Lavender, 2000). The initial studies that looked at the effects of cranberries on urine showed that the excretion of hippuric acid from the berries helped the urine to remain acidic, which could explain why they could be used to treat and prevent infection (Harkin, 2000). Recent studies argue that cranberries prevent Escherichia coli (E. coli) from adhering to uroepithelial cells in the bladder (Howell and Foxman, 2002). Cranberries contain a group of compounds, called proanthocyanidins, which are condensed tannins (Gray, 2002; Lowe and Fagelman, 2001; Kuzminski, 1996). These are thought to be the key factors in inhibiting E. coli adherence.

  19. Isolation of Corynebacterium tuscaniae sp. nov. from Blood Cultures of a Patient with Endocarditis

    PubMed Central

    Riegel, Philippe; Creti, Roberta; Mattei, Romano; Nieri, Alfredo; von Hunolstein, Christina

    2006-01-01

    A strain of an unknown coryneform bacterium was repeatedly isolated in pure culture from the blood of a patient affected by endocarditis. Comparative 16S rRNA gene sequence analysis revealed that this isolate represented a new subline within the genus Corynebacterium. This new taxon can be identified by the presence of corynomycolic acids and its enzymatic activities and fermentation of sugars. Acid production from glucose and maltose, pyrazinamidase and alkaline phoshatase activities, and hippurate hydrolysis were the most characteristic phenotypic features of the bacterium. On the basis of both phenotypic and phylogenetic evidence, it is proposed that this isolate be classified as a novel species, Corynebacterium tuscaniae sp. nov. The type strain, ISS-5309, has been deposited in the American Type Culture Collection (ATCC BAA-1141) and in the Culture Collection of the University of Göteborg (CCUG 51321). PMID:16455875

  20. Visual functions of workers exposed to organic solvents in petrochemical industries

    PubMed Central

    Indhushree, R.; Monica, R.; Coral, K.; Angayarkanni, Narayanasamy; Punitham, R.; Subburathinam, B. M.; Krishnakumar, R.; Santanam, P. P.

    2016-01-01

    Aim: The purpose of this study was to evaluate the visual functions of workers exposed to organic solvents in petrochemical industries. Materials and Methods: Thirty workers from the petroleum refinery and 30 age-matched controls (mean age) were recruited. Visual functions and occupational exposure levels were assessed among both the groups. Visual acuity, contrast sensitivity, color vision, and visual fields were evaluated at the workplace. The biological samples, namely blood and urine, were collected at the workplace and transported to the laboratory for analysis. The urinary excretion of hippuric and methylhippuric acid as well as creatinine was measured by high performance liquid chromatography. Results: The mean age of the workers and controls were 39.7 ± 7.6 years and 38.6 ± 8.1, years respectively. The mean years of experience of the workers were 15.6 ± 6.8 years. Visual acuity was >0.01 LogMAR among both the control and case groups. The contrast sensitivity was reduced at 12cpd among workers. Comparison between groups was done using independent sample t-test. The mean difference in color confusion index was 0.11 ± 0.05 (P = 0.037*). The mean difference in visual fields was −0.31 ± 0.36 dB (P = 0.933). The mean difference in urinary hippuric acid level (urinary metabolite of toluene) between the groups was 0.19 ± 0.96 g/g creatinine (P = 0.049FNx01). The mean difference in the excretion of methylhippuric acid (urinary metabolite of xylene) was 0.06 ± 0.04g/g creatinine (P = 0.154). We also found that exposure was a significant risk factor for color vision defect with an odds ratio of 4.43 (95% CI: 1.36–14.4); P = 0.013. Conclusion: The study results showed that contrast sensitivity and color vision were affected among workers in petrochemical industry. PMID:28446838

  1. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    PubMed Central

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  2. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    PubMed

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  3. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling

    PubMed Central

    Pallister, T; Jackson, M A; Martin, T C; Glastonbury, C A; Jennings, A; Beaumont, M; Mohney, R P; Small, K S; MacGregor, A; Steves, C J; Cassidy, A; Spector, T D; Menni, C; Valdes, A M

    2017-01-01

    Background/Objectives: Higher visceral fat mass (VFM) is associated with an increased risk for developing cardio-metabolic diseases. The mechanisms by which an unhealthy diet pattern may influence visceral fat (VF) development has yet to be examined through cutting-edge multi-omic methods. Therefore, our objective was to examine the dietary influences on VFM and identify gut microbiome and metabolite profiles that link food intakes to VFM. Subjects/Methods: In 2218 twins with VFM, food intake and metabolomics data available we identified food intakes most strongly associated with VFM in 50% of the sample, then constructed and tested the ‘VFM diet score’ in the remainder of the sample. Using linear regression (adjusted for covariates, including body mass index and total fat mass), we investigated associations between the VFM diet score, the blood metabolomics profile and the fecal microbiome (n=889), and confirmed these associations with VFM. We replicated top findings in monozygotic (MZ) twins discordant (⩾1 s.d. apart) for VFM, matched for age, sex and the baseline genetic sequence. Results: Four metabolites were associated with the VFM diet score and VFM: hippurate, alpha-hydroxyisovalerate, bilirubin (Z,Z) and butyrylcarnitine. We replicated associations between VFM and the diet score (beta (s.e.): 0.281 (0.091); P=0.002), butyrylcarnitine (0.199 (0.087); P=0.023) and hippurate (−0.297 (0.095); P=0.002) in VFM-discordant MZ twins. We identified a single species, Eubacterium dolichum to be associated with the VFM diet score (0.042 (0.011), P=8.47 × 10−5), VFM (0.057 (0.019), P=2.73 × 10−3) and hippurate (−0.075 (0.032), P=0.021). Moreover, higher blood hippurate was associated with elevated adipose tissue expression neuroglobin, with roles in cellular oxygen homeostasis (0.016 (0.004), P=9.82x10−6). Conclusions: We linked a dietary VFM score and VFM to E. dolichum and four metabolites in the blood. In particular, the relationship between

  4. Untangling the relationship between diet and visceral fat mass through blood metabolomics and gut microbiome profiling.

    PubMed

    Pallister, T; Jackson, M A; Martin, T C; Glastonbury, C A; Jennings, A; Beaumont, M; Mohney, R P; Small, K S; MacGregor, A; Steves, C J; Cassidy, A; Spector, T D; Menni, C; Valdes, A M

    2017-07-01

    Higher visceral fat mass (VFM) is associated with an increased risk for developing cardio-metabolic diseases. The mechanisms by which an unhealthy diet pattern may influence visceral fat (VF) development has yet to be examined through cutting-edge multi-omic methods. Therefore, our objective was to examine the dietary influences on VFM and identify gut microbiome and metabolite profiles that link food intakes to VFM. In 2218 twins with VFM, food intake and metabolomics data available we identified food intakes most strongly associated with VFM in 50% of the sample, then constructed and tested the 'VFM diet score' in the remainder of the sample. Using linear regression (adjusted for covariates, including body mass index and total fat mass), we investigated associations between the VFM diet score, the blood metabolomics profile and the fecal microbiome (n=889), and confirmed these associations with VFM. We replicated top findings in monozygotic (MZ) twins discordant (⩾1 s.d. apart) for VFM, matched for age, sex and the baseline genetic sequence. Four metabolites were associated with the VFM diet score and VFM: hippurate, alpha-hydroxyisovalerate, bilirubin (Z,Z) and butyrylcarnitine. We replicated associations between VFM and the diet score (beta (s.e.): 0.281 (0.091); P=0.002), butyrylcarnitine (0.199 (0.087); P=0.023) and hippurate (-0.297 (0.095); P=0.002) in VFM-discordant MZ twins. We identified a single species, Eubacterium dolichum to be associated with the VFM diet score (0.042 (0.011), P=8.47 × 10 -5 ), VFM (0.057 (0.019), P=2.73 × 10 -3 ) and hippurate (-0.075 (0.032), P=0.021). Moreover, higher blood hippurate was associated with elevated adipose tissue expression neuroglobin, with roles in cellular oxygen homeostasis (0.016 (0.004), P=9.82x10 -6 ). We linked a dietary VFM score and VFM to E. dolichum and four metabolites in the blood. In particular, the relationship between hippurate, a metabolite derived from microbial metabolism of dietary

  5. Comparative analysis of Campylobacter isolates from wild birds and chickens using MALDI-TOF MS, biochemical testing, and DNA sequencing.

    PubMed

    Lawton, Samantha J; Weis, Allison M; Byrne, Barbara A; Fritz, Heather; Taff, Conor C; Townsend, Andrea K; Weimer, Bart C; Mete, Aslı; Wheeler, Sarah; Boyce, Walter M

    2018-05-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared to conventional biochemical testing methods and nucleic acid analyses (16S rDNA sequencing, hippurate hydrolysis gene testing, whole genome sequencing [WGS]) for species identification of Campylobacter isolates obtained from chickens ( Gallus gallus domesticus, n = 8), American crows ( Corvus brachyrhynchos, n = 17), a mallard duck ( Anas platyrhynchos, n = 1), and a western scrub-jay ( Aphelocoma californica, n = 1). The test results for all 27 isolates were in 100% agreement between MALDI-TOF MS, the combined results of 16S rDNA sequencing, and the hippurate hydrolysis gene PCR ( p = 0.0027, kappa = 1). Likewise, the identifications derived from WGS from a subset of 14 isolates were in 100% agreement with the MALDI-TOF MS identification. In contrast, biochemical testing misclassified 5 isolates of C. jejuni as C. coli, and 16S rDNA sequencing alone was not able to differentiate between C. coli and C. jejuni for 11 sequences ( p = 0.1573, kappa = 0.0857) when compared to MALDI-TOF MS and WGS. No agreement was observed between MALDI-TOF MS dendrograms and the phylogenetic relationships revealed by rDNA sequencing or WGS. Our results confirm that MALDI-TOF MS is a fast and reliable method for identifying Campylobacter isolates to the species level from wild birds and chickens, but not for elucidating phylogenetic relationships among Campylobacter isolates.

  6. Ammonia Nitrogen Added to Diets Deficient in Dispensable Amino Acid Nitrogen Is Poorly Utilized for Urea Production in Growing Pigs.

    PubMed

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm

    2017-12-01

    Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs. Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen. Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW 0.60 ), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver. Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased ( P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased ( P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase ( P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake. Conclusion: Dietary ammonia nitrogen is poorly utilized for urea

  7. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R.

    1995-12-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less

  8. Metabonomics approach to determine metabolic differences between green tea and black tea consumption.

    PubMed

    Van Dorsten, Ferdi A; Daykin, Clare A; Mulder, Theo P J; Van Duynhoven, John P M

    2006-09-06

    The purpose of this study was to compare the effects of black and green tea consumption on human metabolism. Seventeen healthy male volunteers consumed black tea, green tea, or caffeine in a randomized crossover study. Twenty-four-hour urine and blood plasma samples were analyzed by NMR-based metabonomics, that is, high-resolution 1H NMR metabolic profiling combined with multivariate statistics. Green and black tea consumption resulted in similar increases in urinary excretion of hippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate, both of which are end products of tea flavonoid degradation by colonic bacteria. Several unidentified aromatic metabolites were detected in urine specifically after green tea intake. Interestingly, green and black tea intake also had a different impact on endogenous metabolites in urine and plasma. Green tea intake caused a stronger increase in urinary excretion of several citric acid cycle intermediates, which suggests an effect of green tea flavanols on human oxidative energy metabolism and/or biosynthetic pathways.

  9. Ammonia-Nitrogen Added to Low-Crude-Protein Diets Deficient in Dispensable Amino Acid-Nitrogen Increases the Net Release of Alanine, Citrulline, and Glutamate Post-Splanchnic Organ Metabolism in Growing Pigs.

    PubMed

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis F M

    2018-06-07

    Dietary ammonia is rapidly absorbed but poorly used for urea synthesis in pigs fed low-crude-protein (low-CP) diets deficient in dispensable amino acid (DAA)-nitrogen. We explored the effect of dietary ammonia on net amino acid (AA) balances in portal-drained viscera (PDV) and livers of pigs fed a diet deficient in DAA-nitrogen. Eight barrows with an initial body weight (BW) of 26.5 ± 1.4 kg (mean + SD) were surgically fitted with 4 catheters each (portal, hepatic, and mesenteric veins and carotid artery). The pigs were restricted-fed (2.8 × 191 kcal/kg BW0.60) for 7 d, and every 8 h a diet deficient in DAA-nitrogen supplemented with increasing amounts of ammonia-nitrogen (CP = 7.76%, 9.27%, and 10.77% for the control and low- and high-ammonia diets, respectively). The treatment sequence was based on a 3 × 3 Latin-square design with 3 consecutive periods. On the last day of each period, blood flows in portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Consecutive blood samples were taken for AA concentration in blood plasma, and AA balances were calculated for PDV and the liver. Cumulative release of citrulline (Cit) and proline (Pro) increased with ammonia supplementation in PDV but decreased for glutamine (Gln) and glycine (Gly) (Gln: -19.32 ± 3.56, -32.50 ± 3.73, and -42.11 ± 3.55 mmol/meal for the control and low- and high-ammonia groups, respectively; P ≤ 0.05). Cumulative release of alanine (Ala), glutamic acid (Glu), and Gln increased with ammonia supplementation across the liver (P ≤ 0.05). When combined, PDV+liver, the cumulative release of Ala, Cit, and Glu increased with ammonia-nitrogen supplementation (P ≤ 0.05). Dietary ammonia could be used as a nitrogen supplement to increase the synthesis of Ala, Cit, and Glu across splanchnic organs in pigs fed a diet deficient in DAA-nitrogen.

  10. The role of sodium in the salty taste of permeate.

    PubMed

    Frankowski, K M; Miracle, R E; Drake, M A

    2014-09-01

    Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Dose-response characteristics of Clematis triterpenoid saponins and clematichinenoside AR in rheumatoid arthritis rats by liquid chromatography/mass spectrometry-based serum and urine metabolomics.

    PubMed

    Li, Rui; Guo, Lin-Xiu; Li, Yi; Chang, Wen-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-03-20

    Clematidis Radix et Rhizoma is a traditional Chinese medicine widely used for treating arthritic disease. Clematis triterpenoid saponins (TS) and clematichinenoside AR (C-AR) have been considered to be responsible for its antiarthritic effects. However, the underling mechanism is still unclear because of their low bioavailability. To address of this issue, metabolomics tools were performed to determine metabolic variations associated with rheumatoid arthritis (RA) and responses to Clematis TS, C-AR and positive drug (Triptolide, TP) treatments. This metabolomics investigation of RA was conducted in collagen-induced arthritis (CIA) rats. Liquid chromatography/mass spectrometry and multivariate statistical tools were used to identify the alteration of serum and urine metabolites associated with RA and responses to drug treatment. As a result, 45 potential metabolites associated with RA were identified. After treatment, a total of 24 biomarkers were regulated to normal like levels. Among these, PC(18:0/20:4), 9,11-octadecadienoic acid, arachidonic acid, 1-methyladenosine, valine, hippuric acid and pantothenic acid etc, were reversed in Clematis TS and C-AR groups. Tetrahydrocortisol was regulated to normal levels in Clematis TS and TP groups, while 3,7,12-trihydroxycholan-24-oic acid was regulated in C-AR and TP groups. Biomarkers like citric acid, p-cresol glucuronide, creatinine, cortolone were reversed in TP group. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations.

    PubMed

    Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje

    2011-11-01

    Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Toluene inducing acute respiratory failure in a spray paint sniffer.

    PubMed

    Peralta, Diego P; Chang, Aymara Y

    2012-01-01

    Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyskes, G.G.; Oei, H.Y.; Puylaert, C.B.

    Radioisotope renography was performed in 21 patients with hypertension and unilateral renal artery stenosis with and without premedication with 25 mg of captopril, and the results were compared with the effect of percutaneous transluminal angioplasty on the blood pressure, assessed 6 weeks after angioplasty. Angioplasty caused a considerable decrease in blood pressure in 15 of the 21 patients. In 12 of these 15 patients, captopril induced changes in the time-activity curves of the affected kidney only, suggesting deterioration of the excretory function of that kidney, while the function of the contralateral kidney remained normal. After angioplasty the asymmetry in themore » time-activity curves diminished despite identical pretreatment with captopril. Such captopril-induced unilateral impairment of the renal function was not seen in the six patients with unilateral renal artery stenosis whose blood pressure did not change after percutaneous transluminal angioplasty or in 13 patients with hypertension and normal renal arteries. The functional impairment of the affected kidneys was characterized by a decrease of /sup 99m/Tc-diethylenetriamine pentaacetic acid uptake and a delay of /sup 131/I-hippurate excretion, while the /sup 131/I-hippurate uptake remained unaffected. These data are in agreement with a reduced glomerular filtration rate and diuresis during preservation of the renal blood flow, changes that can be expected after converting enzyme inhibition in a kidney with low perfusion and an active, renin-mediated autoregulation of the glomerular filtration rate. These data suggest that functional captopril-induced unilateral changes, shown by split renal function studies with noninvasive gamma camera scintigraphy, can be used as a diagnostic test for renovascular hypertension caused by unilateral renal artery stenosis.« less

  15. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study.

    PubMed

    Aschoff, Julian K; Riedl, Ken M; Cooperstone, Jessica L; Högel, Josef; Bosy-Westphal, Anja; Schwartz, Steven J; Carle, Reinhold; Schweiggert, Ralf M

    2016-12-01

    Orange juice contains flavanones including hesperidin and narirutin, albeit at lower concentrations as compared to orange fruit. Therefore, we compared bioavailability and colonic catabolism of flavanones from orange juice to a 2.4-fold higher dose from fresh oranges. Following a randomized two-way cross-over design, 12 healthy subjects consumed a test meal comprising either fresh oranges or pasteurized orange juice, delivering 1774 and 751 μmol of total Citrus flavanones, respectively. Deglucuronidated and desulfated hesperetin, naringenin, and the flavanone catabolites 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 4-hydroxyhippuric acid, and hippuric acid were quantitated in 24-h urine by UHPLC-MS/MS. Differences in urinary hesperetin excretion were found to be nonsignificant (p = 0.5209) both after consumption of orange fruit (21.6 ± 8.0 μmol) and juice (18.3 ± 7.2 μmol). By analogy, postprandial flavanone catabolite excretions were highly similar between treatments. Excretion of 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid was inversely related to that of hesperetin, illustrating the catabolite/precursor relationship. Despite 2.4-fold higher doses, excretion of flavanones from ingested fresh orange fruit did not differ from that following orange juice consumption, possibly due to a saturation of absorption or their entrapment in the fiber-rich matrix of the fruit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Papain hydrolysis of X-phenyl-N-methanesulfonyl glycinates: a quantitative structure-activity relationship and molecular graphics analysis.

    PubMed

    Carotti, A; Smith, R N; Wong, S; Hansch, C; Blaney, J M; Langridge, R

    1984-02-15

    The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.

  17. Toluene inducing acute respiratory failure in a spray paint sniffer

    PubMed Central

    Peralta, Diego P.; Chang, Aymara Y.

    2012-01-01

    Summary Background: Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. Case Report: I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Conclusions: Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure. PMID:23569498

  18. Expanding Biosensing Abilities through Computer-Aided Design of Metabolic Pathways.

    PubMed

    Libis, Vincent; Delépine, Baudoin; Faulon, Jean-Loup

    2016-10-21

    Detection of chemical signals is critical for cells in nature as well as in synthetic biology, where they serve as inputs for designer circuits. Important progress has been made in the design of signal processing circuits triggering complex biological behaviors, but the range of small molecules recognized by sensors as inputs is limited. The ability to detect new molecules will increase the number of synthetic biology applications, but direct engineering of tailor-made sensors takes time. Here we describe a way to immediately expand the range of biologically detectable molecules by systematically designing metabolic pathways that transform nondetectable molecules into molecules for which sensors already exist. We leveraged computer-aided design to predict such sensing-enabling metabolic pathways, and we built several new whole-cell biosensors for molecules such as cocaine, parathion, hippuric acid, and nitroglycerin.

  19. Postprandial portal fluxes of essential amino acids, volatile fatty acids, and urea-nitrogen in growing pigs fed a high-fiber diet supplemented with a multi-enzyme cocktail.

    PubMed

    Agyekum, A K; Kiarie, E; Walsh, M C; Nyachoti, C M

    2016-09-01

    The present study investigated the effects of adding a multi-enzyme cocktail (MC) to a high-fiber diet on net portal-drained viscera (PDV) fluxes of essential AA (EAA), volatile fatty acids (VFA), and blood urea-N (BUN) in growing pigs. Five female pigs (22.8 ± 1.6 kg BW), with catheters in the portal vein, ileal vein, and carotid artery, were fed 3 isocaloric-nitrogenous diets at 4% of their BW once daily at 0900 h for 7 d in a replicated 3 × 3 Latin square design. The diets contained corn and soybean meal with 0% (control) or 30% distillers' dried grains with solubles (DDGS; HF) produced from a 1:1 mixture of wheat and corn. The third diet was supplemented with MC in addition to the 30% DDGS (HF + MC). The MC supplied (analyzed values) 5,397 U of xylanase, 162 U of β-glucanase, and 2,000 U of protease and guaranteed minimum activities of 1,000 U of α-amylase and 25 U of pectinase per kg of diet. On d 7, para-amino hippuric acid was infused into the ileal vein (to measure flow rate), and blood was sampled from the portal vein and carotid artery for 7 h after feeding to assay EAA, urea-N, and VFA. Portal absorption of nutrients was derived by multiplying the porto-arterial plasma concentration differences by portal vein blood flow. Diet had no effect on postprandial portal vein plasma flow rate and net BUN flux, but portal BUN tended to be lower ( = 0.070) and arterial BUN was lower ( 0.05) over the 7 h in pigs fed control. Postprandial portal Arg, Ile, Leu, Trp, and Val or net fluxes were lower ( 0.05) in HF-fed pigs from 30 to 240 min than control-fed pigs and MC supplementation tended (0.05 ≤ ≤ 0.10) to or improved ( 0.05) portal appearances of those AA, but not their fluxes. Control-fed pigs had higher ( 0.05) net portal fluxes of most EAA and pigs fed HF + MC had higher ( 0.05) Lys, and similar Met and Phe net portal fluxes were compared with control-fed pigs. Portal VFA was not affected by diet. However, total portal VFA flux was lower ( 0.05) in the

  20. Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE.

    PubMed

    Zhao, Ying-Yong; Lei, Ping; Chen, Dan-Qian; Feng, Ya-Long; Bai, Xu

    2013-01-01

    Poria cocos epidermis is one of ancient traditional Chinese medicines (TCMs), which is usually used for the treatment of chronic kidney disease (CKD) for thousands of years in China. A metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight high-sensitivity mass spectrometry (UPLC Q-TOF/HSMS) and a mass spectrometry(Elevated Energy) (MS(E)) data collection technique was developed to obtained a systematic view of the development and progression of CKD and biochemistry mechanism of therapeutic effects of P. cocos epidermis (Fu-Ling-Pi, FLP). By partial least squares-discriminate analysis, 19 metabolites were identified as potential biomarkers of CKD. Among the 19 biomarkers, 10 biomarkers including eicosapentaenoic acid, docosahexaenoic acid, lysoPC(20:4), lysoPC(18:2), lysoPC(15:0), lysoPE(20:0/0:0), indoxyl sulfate, hippuric acid, p-cresol sulfate and allantoin were reversed to the control level in FLP-treated groups. The study indicates that FLP treatment can ameliorate CKD by intervening in some dominating metabolic pathways, such as fatty acid metabolism, phospholipid metabolism, purine metabolism and tryptophan metabolism. This work was for the first time to investigate the FLP therapeutic effect based on metabonomics technology, which is a potentially powerful tool to study the TCMs. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers.

    PubMed

    Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E

    2010-04-01

    Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

  2. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis.

    PubMed

    Wu, Fang; Zheng, Hua; Yang, Zheng-Teng; Cheng, Bang; Wu, Jin-Xia; Liu, Xu-Wen; Tang, Chao-Ling; Lu, Shi-Yin; Chen, Zhao-Ni; Song, Fang-Ming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Liang, Yong-Hong; Song, Hui; Su, Zhi-Heng

    2017-06-05

    Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl 4 )-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance ( 1 H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl 4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl 4 -induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl 4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl 4 -induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the

  3. Legionella sainthelensi: a new species of Legionella isolated from water near Mt. St. Helens.

    PubMed Central

    Campbell, J; Bibb, W F; Lambert, M A; Eng, S; Steigerwalt, A G; Allard, J; Moss, C W; Brenner, D J

    1984-01-01

    Six strains of a new species, Legionella sainthelensi, were isolated from freshwater in areas affected by the volcanic eruptions of Mt. St. Helens in the state of Washington. Strains of L. sainthelensi are culturally and biochemically similar to other legionellae. They grow on buffered charcoal yeast agar but not on media that lack cysteine. They are gram-negative, nonsporeforming, motile rods that are positive in reactions for catalase, oxidase, gelatin liquefaction, and beta-lactamase. They are negative in reactions for urease, hydrolysis of hippurate, reduction of nitrates, fermentation of glucose, and blue-white autofluorescence. Their cell wall fatty acid composition is qualitatively similar to those of other legionellae, with 50 to 62% branched-chain fatty acids. They contain the isobranched-chain 14- and 16-carbon acids and anteisobranched-chain 15- and 17-carbon acids and relatively large amounts of straight-chain 16-carbon acid. All strains of L. sainthelensi contain approximately equal amounts of ubiquinones Q9, Q10, Q11, and Q12, a pattern similar to those of Legionella bozemanii, Legionella dumoffi, and Legionella longbeachae. Serological cross-reactions were observed between L. sainthelensi, both serogroups of L. longbeachae, and Legionella oakridgensis. Three strains of L. sainthelensi were greater than 90% related by DNA hybridization. The type strain of L. sainthelensi, Mt. St. Helens 4, was 36% related to the type strain of L. longbeachae and 3 to 14% related to the other nine described Legionella species. PMID:6712210

  4. Complete genome sequence of the hippuricase-positive Campylobacter avium type strain LMG 24591

    USDA-ARS?s Scientific Manuscript database

    Campylobacter avium is a hippurate-positive, thermotolerant campylobacter that has been isolated from poultry. Here we present the genome sequences of two C. avium strains isolated from broiler chickens: strains LMG 24591T (complete genome) and LMG 24592 (draft genome). The C. avium type strain geno...

  5. Identification of an ACE-Inhibitory Peptide from Walnut Protein and Its Evaluation of the Inhibitory Mechanism.

    PubMed

    Wang, Cong; Tu, Maolin; Wu, Di; Chen, Hui; Chen, Cheng; Wang, Zhenyu; Jiang, Lianzhou

    2018-04-11

    In the present study, a novel angiotensin I-converting enzyme inhibitory (ACE inhibitory) peptide, EPNGLLLPQY, derived from walnut seed storage protein, fragment residues 80-89, was identified by ultra-high performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) from walnut protein hydrolysate. The IC 50 value of the peptide was 233.178 μM, which was determined by the high performance liquid chromatography method by measuring the amount of hippuric acid (HA) generated from the ACE decomposition substrate (hippuryl-l-histidyl-l-leucine (HHL) to assess the ACE activity. Enzyme inhibitory kinetics of the peptide against ACE were also conducted, by which the inhibitory mechanism of ACE-inhibitory peptide was confirmed. Moreover, molecular docking was simulated by Discovery Studio 2017 R2 software to provide the potential mechanisms underlying the ACE-inhibitory activity of EPNGLLLPQY.

  6. Effect of cisplatin on organic ion transport in membrane vesicles from rat kidney cortex.

    PubMed

    Williams, P D; Hottendorf, G H

    1985-01-01

    Purified renal membrane vesicles were utilized to gain indirect information regarding the renal handling of cisplatin. The effects of cisplatin on prototypical organic anion (p-amino-hippurate, PAH) and cation (N1-methylnicotinamide; tetraethylammonium, TEA) transport in brush border and basolateral membrane vesicles prepared from rat kidney cortex were observed. While cisplatin inhibited organic cation transport (N1-methylnicotinamide; TEA) in brush border and basolateral membranes, no interaction with the organic anion (p-amino-hippurate) system was observed. Kinetic analyses revealed that cisplatin is a competitive inhibitor of TEA transport in brush border membranes with a ki of 0.12 mM. While the relationship between organic cation transport inhibition and cisplatin nephrotoxicity is unknown, it may suggest that the cisplatin complex itself is transported into the kidney by the organic cation system. The reported effect of the organic anion, probenecid, on the renal handling of cisplatin is discussed in light of these results.

  7. Serum Metabonomics of Articular Cartilage Destruction Induced by T-2 Toxin in Wistar Rats.

    PubMed

    Zhu, Lei; Zhao, Zhi Jun; Ren, Xiao Bin; Li, Qiang; Ding, Hua; Sun, Zhou; Kao, Qing Jun; Wang, Li Hua

    2018-01-01

    The molecular pathogenesis of T-2 toxin-induced cartilage destruction has not been fully unraveled yet. The aim of this study was to detect changes in serum metabolites in a rat anomaly model with articular cartilage destruction. Thirty healthy male Wistar rats were fed a diet containing T-2 toxin (300 ng/kg chow) for 3 months. Histopathological changes in femorotibial cartilage were characterized in terms of chondrocyte degeneration/necrosis and superficial cartilage defect, and the endogenous metabolite profile of serum was determined by UPLC/Q-TOF MS. Treated rats showed extensive areas of chondrocyte necrosis and superficial cartilage defect in the articular cartilage. In addition, 8 metabolites were found to change significantly in these rats compared to the control group, including lysoPE (18:0/0:0), lysoPC(14:0), lysoPC[18:4 (6Z,9Z,12Z,15Z)], lysoPC[(16:1(9Z)], lysoPC(16:0), L-valine, hippuric acid, and asparaginyl-glycine. These 8 metabolites associated with cartilage injury are mainly involved in phospholipid and amino acid metabolic pathways. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Molecular mechanisms involved in the protective effect of the chloroform extract of Selaginella lepidophylla (Hook. et Grev.) Spring in a lithiasic rat model.

    PubMed

    Mirian, Estévez-Carmona María; Juanita, Narvaéz-Morales; Christophe, Barbier Olivier; Estela, Meléndez-Camargo María

    2013-06-01

    Urolithiasis is a multifaceted process, progressing from urine supersaturation to the formation of mature renal calculi. Calcium oxalate, the main component of kidney stones, has toxicological effects on renal epithelial cells. Some medicinal plants have shown pharmacological effects against renal lithiasis, such as Selaginella lepidophylla (Hook. et Grev) Spring, a plant empirically used in Mexico for its diuretic and antilithiasic activity. The plant was identified and ground, and a chloroform extract (CE) was obtained. Urolithiasis was induced in Wistar female rats by administration of ethylene glycol and ammonium chloride for 21 days. Urolithiasis rats were treated with the CE (50 mg/kg) for 21 days. Osmolality, creatinine, sodium and potassium concentrations were measured in blood and urine. Glomerular filtration rate (GFR), and electrolytic and water balances were calculated. Urinary oxalic acid concentration was measured. Apoptosis, lipoperoxidation, ROS and p-amino hippuric acid were determined in cortical tissue. Urolithiasis rats showed a decrease of urinary flow, GFR, electrolytic balance, renal tubular secretion and ATP concentration and increase of urinary oxalic acid, lipoperoxidation, oxidative stress and apoptosis in cortical tissue. After treatment with the CE, urinary flow rate, GFR and renal tubular secretion levels were recovered; on the other hand, serum creatinine and urinary oxalic acid decreased on day 21. CE of Selaginella lepidophylla prevented the damage caused by lithiasic process by improving the active secretion in the proximal tubules, counteracting the ROS and lipoperoxidation effects by oxalate and decreased the OAT3 expression on kidney.

  9. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  10. Pea Fiber and Wheat Bran Fiber Show Distinct Metabolic Profiles in Rats as Investigated by a 1H NMR-Based Metabolomic Approach

    PubMed Central

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729

  11. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection.

    PubMed

    Makrlíková, Anna; Opekar, František; Tůma, Petr

    2015-08-01

    A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices.

    PubMed

    Zhang, Limin; Ye, Yangfang; An, Yanpeng; Tian, Yuan; Wang, Yulan; Tang, Huiru

    2011-02-04

    Exposure to aflatoxins causes liver fibrosis and hepatocellular carcinoma posing a significant health risk for human populations and livestock. To understand the mammalian systems responses to aflatoxin-B1 (AFB1) exposure, we analyzed the AFB1-induced metabonomic changes in multiple biological matrices (plasma, urine, and liver) of rats using (1)H NMR spectroscopy together with clinical biochemistry and histopathologic assessments. We found that AFB1 exposure caused significant elevation of glucose, amino acids, and choline metabolites (choline, phosphocholine, and glycerophosphocholine) in plasma but reduction of plasma lipids. AFB1 also induced elevation of liver lipids, amino acids (tyrosine, histidine, phenylalanine, leucine, isoleucine, and valine), choline, and nucleic acid metabolites (inosine, adenosine, and uridine) together with reduction of hepatic glycogen and glucose. AFB1 further caused decreases in urinary TCA cycle intermediates (2-oxoglutarate and citrate) and elevation of gut microbiota cometabolites (phenylacetylglycine and hippurate). These indicated that AFB1 exposure caused hepatic steatosis accompanied with widespread metabolic changes including lipid and cell membrane metabolisms, protein biosynthesis, glycolysis, TCA cycle, and gut microbiota functions. This implied that AFB1 exposure probably caused oxidative-stress-mediated impairments of mitochondria functions. These findings provide an overview of biochemical consequences of AFB1 exposure and comprehensive insights into the metabolic aspects of AFB1-induced hepatotoxicity in rats.

  13. Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats.

    PubMed

    Rivera-Vélez, Sol-Maiam; Villarino, Nicolas F

    2018-02-01

    Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis. Samples were centrifuged at 1000 × g for 8 mins, and the supernatant was analyzed by gas chromatography/time-of-flight mass spectrometery. The urine metabolome was characterized using an untargeted metabolomics approach. Results Three hundred and eighteen metabolites were detected in the urine of the eight cats. These molecules are key components of at least 100 metabolic pathways. Feline urine appears to be dominated by carbohydrates, carbohydrate conjugates, organic acid and derivatives, and amino acids and analogs. The five most abundant molecules were phenaceturic acid, hippuric acid, pseudouridine phosphate and 3-(4-hydroxyphenyl) propionic acid. Conclusions and relevance This study is the first to characterize the feline urine metabolome. The results of this study revealed the presence of multiple low-molecular-weight substances that were not known to be present in feline urine. As expected, the origin of the metabolites detected in urine was diverse, including endogenous compounds and molecules biosynthesized by microbes. Also, the diet seemed to have had a relevant role on the urine metabolome. Further exploration of the urine metabolic phenotype will open a window for discovering unknown, or poorly understood, metabolic pathways. In turn, this will advance our understanding of feline biology and lead to new insights in feline physiology, nutrition and medicine.

  14. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS).

    PubMed

    Dong, Xinwen; Zhang, Yunbo; Dong, Jin; Zhao, Yue; Guo, Jipeng; Wang, Zhanju; Liu, Mingqi; Na, Xiaolin; Wang, Cheng

    2017-07-01

    Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.

  15. Integrative Metabolic Signatures for Hepatic Radiation Injury

    PubMed Central

    Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan

    2015-01-01

    Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990

  16. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  17. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry.

    PubMed

    Li, Longxue; Wang, Maoqing; Chen, Shuhong; Zhao, Wei; Zhao, Yue; Wang, Xu; Zhang, Yang

    2016-03-01

    The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor. Copyright © 2015. Published by Elsevier Inc.

  18. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    PubMed

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  19. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  20. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  1. Metabonomic study of the fruits of Alpinia oxyphylla as an effective treatment for chronic renal injury in rats.

    PubMed

    Li, Yong-Hui; Tan, Yin-Feng; Cai, Hong-Die; Zhang, Jun-Qing

    2016-05-30

    Alpinia oxyphylla (Zingiberaceae) is a well-known medicinal plant. Its fruit ("Yi-Zhi-Ren" in Chinese) is used as an anti-diuretic and traditionally used for the treatment of enuresis and reduce urination. Chronic kidney disease (CKD) is a disease with the characteristic of the slowly loss of kidney function and has a prevalence of up to 7-10% in adults. Recent advances in its etiology and pathogenesis are providing more speculative hypotheses focused on integral systems. Using a UPLC-QTOF-MS/MS-based metabolomic platform, we explored the changes of metabolic profiling in plasma/urine simultaneously between chronic kidney disease (CKD) induced from adenine excess and the protective effects of A. oxyphylla extract (AOE). The total twenty-one metabolites (twelve in urine and nine in plasma), up-regulated or down-regulated, were identified and contributed to CKD progress. Among these biomarkers, agmatine, CAMP, 7-methylguanine, hippuric acid, indoxyl sulfate, asparagines, kynurenic acid and p-cresol sulfate were restored back to the control-like level after the treatment of AOE (p<0.05 or 0.01), These findings may be promising to yield a valuable insight into the pathophysiology of CKD and serve as characteristics to explain the mechanisms of AOE. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Concentrations of Environmental Chemicals in Urine and Blood Samples of Children from San Luis Potosí, Mexico.

    PubMed

    Perez-Maldonado, Ivan N; Ochoa-Martinez, Angeles C; Orta-Garcia, Sandra T; Ruiz-Vera, Tania; Varela-Silva, Jose A

    2017-08-01

    Human biomonitoring (HBM) is an appreciated tool used to evaluate human exposure to environmental, occupational or lifestyle chemicals. Therefore, the aim of this study was to evaluate the exposure levels for environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico (SLP). This study identifies environmental chemicals of concern such as: arsenic (45.0 ± 15.0 µg/g creatinine), lead (5.40 ± 2.80 µg/dL), t,t-muconic acid (266 ± 220 µg/g creatinine), 1-hydroxypyrene (0.25 ± 0.15 µmol/mol creatinine), PBDEs (28.0 ± 15.0 ng/g lipid), and PCBs (33.0 ± 16.0 ng/g lipid). On the other hand, low mercury (1.25 ± 1.00 µg/L), hippuric acid (0.38 ± 0.15 µg/g creatinine) and total DDT (130 ± 35 ng/g lipid) exposure levels were found. This preliminary study showed the tool's utility, as the general findings revealed chemicals of concern. Moreover, this screening exhibited the need for HBM in the general population of SLP.

  3. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  4. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  5. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  6. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  7. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  8. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  9. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  10. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats.

    PubMed

    Swann, Jonathan R; Tuohy, Kieran M; Lindfors, Peter; Brown, Duncan T; Gibson, Glenn R; Wilson, Ian D; Sidaway, James; Nicholson, Jeremy K; Holmes, Elaine

    2011-08-05

    The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 10(10.7) cells/g feces; antibiotic-treated, 10(8.4)). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (10(9.1) cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.

  11. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  12. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  13. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  14. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  15. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  16. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  17. Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.

    PubMed Central

    Haslewood, E S; Haslewood, G A

    1976-01-01

    1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488

  18. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  19. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  20. Blanching improves anthocyanin absorption from highbush blueberry ( Vaccinium corymbosum L.) purée in healthy human volunteers: a pilot study.

    PubMed

    Del Bo', Cristian; Riso, Patrizia; Brambilla, Ada; Gardana, Claudio; Rizzolo, Anna; Simonetti, Paolo; Bertolo, Gianni; Klimis-Zacas, Dorothy; Porrini, Marisa

    2012-09-12

    Blueberries ( Vaccinium corymbosum L.) are rich sources of phenolics and anthocyanins (ACNs). We investigated the absorption of ACNs after consumption of one portion (300 g) of minimally processed blueberry purée (P) obtained from blanched (BL) or unblanched (NB) berries. A repeated-measures, crossover design study was conducted on healthy human volunteers. Blood was drawn between baseline and 24 h after BL-P or NB-P consumption, while urine were collected from the day before the experiment up to 48 h. Total plasma ACN content was not significantly different, while phenolics content was higher in BL-P with respect to NB-P. The maximum ACN absorption in plasma was observed after 1.5 h from the intake of the purées and was significantly higher (p ≤ 0.05) after the intake of BL-P. Both products increased the excretion of hippuric acid in urine. In conclusion, blanching had no significant effect on total ACN content and enhanced their absorption from minimally processed purées.

  1. A case study on co-exposure to a mixture of organic solvents in a Tunisian adhesive-producing company.

    PubMed

    Gargouri, Imed; Khadhraoui, Moncef; Nisse, Catherine; Leroyer, Ariane; Masmoudi, Mohamed L; Frimat, Paul; Marzin, Daniel; Elleuch, Boubaker; Zmirou-Navier, Denis

    2011-11-14

    to assess environmental and biological monitoring of exposure to organic solvents in a glue-manufacturing company in Sfax, Tunisia. Exposure of volunteer workers, in the solvented glue-work-stations, in the control laboratory and in the storage rooms of the finished products, was assessed through indoor-air and urine measurements. Informed consent of the workers was obtained. The exposure indexes were found with high values in the solvented workshop as well as in the control laboratory and were respectively, 8.40 and 3.12. These indexes were also correlated with hexane and toluene indoor air concentrations. As to urine, the obtained results for the 2,5-hexandione and hippuric acid, metabolites of hexane and toluene, respectively, were in accord with the indoor-air measurements, with an average of 0.46 mg/l and 1240 mg/g of creatinine. This study assessed for the first time biological exposure to organic solvents used in Tunisian adhesive industries. Although values are likely to underestimate true exposure levels, some figures exceed European and American occupational exposure guidelines.

  2. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  3. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.

    1993-10-01

    The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.

  4. Aspartic acid

    MedlinePlus

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  5. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  6. 5-(Tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acid-like alkyloxyarylcarboxylic acids.

    PubMed

    Parker, R A; Kariya, T; Grisar, J M; Petrow, V

    1977-06-01

    5-(Tetradecyloxy)-2-furancarboxylic acid (91, RMI 14514) was found to lower blood lipids and to inhibit fatty acid synthesis with minimal effects on liver weight and liver fat content. This fatty acid-like compound represents a new class of hypolipidemic agent; it is effective in rats and monkeys. The compound resulted from discovery of hypolipidemic activity in certain beta-keto esters, postulation and confirmation of the corresponding benzoic acids as active metabolites, and systematic exploration of the structure--activity relationships.

  7. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  8. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    PubMed Central

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  9. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  10. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  12. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  13. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    PubMed

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  14. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  15. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  16. [Comparison of Coptidis Rhizoma processed with different ginger juice based on metabolomics].

    PubMed

    Zhong, Ling-Yun; Su, Dan; Zhu, Jing; Deng, Yu-Fen

    2016-07-01

    To investigate the effects of two different ginger juices on the medicinal properties of Coptidis Rhizoma(CR) by using UPLC-MS-TOF. The rats were fed with decoction of raw CR (RCR), CR processed with ginger juice from fresh ginger(CRGJFG), CR processed with ginger juice from Zinger (CRGJZ), ginger juice from fresh ginger (GJFG) and ginger juice from Zinger (GJZ), and then their urine was collected at different time points for metabolomics analysis. PeakviewTM 1.7 software was applied to analyze the total ion current under positive ion mode; MarkerviewTM 2.0 software was applied for principal component analysis (PCA). The possible biomarkers were screened and their content changes were described according to the searching results in Scifinder and Chemspider databases and related literature reports. The results showed that CR processed with different ginger juice would produce different effects on energy metabolism. Nine possible biomarkers relating to medicinal properties were found as sarcosine, hippuric acid, creatinine, kynurenine, tyrosine, L-tryptophan, nicotinic acid, arachidonic acid and L-proline. L-tryptophan, kynurenine and nicotinic acid were involved in the metabolism of tryptophan; sarcosine, creatinine, L-proline and tyrosine were involved in arginine and proline metabolism; the content of arachidonic acid in urine, precursor of leukotrienes B4, from high to low were CRGJZ, CRGJFG and RCR. The contents of all biomarkers in GJZ group were higher than those in GJFG group, indicating the cold nature of CR was gradually decreased in the following order: RCR, CRGJZ and CRGJFG, and resulting in different anti-inflammatory effects of samples. The results were in consistent with the conclusion that GJFG had hot nature and GJZ had warm nature. The study provided the scientific basis for proper use of different ginger juice as processing assistants. Copyright© by the Chinese Pharmaceutical Association.

  17. Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis

    PubMed Central

    Deltombe, Olivier; Van Biesen, Wim; Glorieux, Griet; Massy, Ziad; Dhondt, Annemieke; Eloot, Sunny

    2015-01-01

    As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inlet and outlet line during dialysis (HD patients). Total (CT) and free concentrations were determined of p-cresylglucuronide (pCG), hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS) and p-cresylsulfate (pCS), and their percentage protein binding (%PB) was calculated. In CKD patients, %PB/CT resulted in a positive correlation (all p < 0.001) with renal function for all five uremic toxins. In HD patients, %PB was increased after 120 min of dialysis for HA and at the dialysis end for the stronger (IAA) and the highly-bound (IS and pCS) solutes. During one passage through the dialyzer at 120 min, %PB was increased for HA (borderline), IAA, IS and pCS. These findings explain why protein-bound solutes are difficult to remove by dialysis: a combination of the fact that (i) only the free fraction can pass the filter and (ii) the equilibrium, as it was pre-dialysis, cannot be restored during the dialysis session, as it is continuously disturbed. PMID:26426048

  18. Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study

    PubMed Central

    Tao, Xia; Thijssen, Stephan; Kotanko, Peter; Ho, Chih-Hu; Henrie, Michael; Stroup, Eric; Handelman, Garry

    2016-01-01

    Protein-bound uraemic toxins (PBUTs) cause various deleterious effects in end-stage kidney disease patients, because their removal by conventional haemodialysis (HD) is severely limited by their low free fraction in plasma. Here we provide an experimental validation of the concept that the HD dialytic removal of PBUTs can be significantly increased by extracorporeal infusion of PBUT binding competitors. The binding properties of indoxyl sulfate (IS), indole-3-acetic acid (IAA) and hippuric acid (HIPA) and their binding competitors, ibuprofen (IBU), furosemide (FUR) and tryptophan (TRP) were studied in uraemic plasma. The effect of binding competitor infusion on fractional removal of PBUT was then quantified in an ex vivo single-pass HD model using uraemic human whole blood. The infusion of a combination of IBU and FUR increased the fractional removal of IS from 6.4 ± 0.1 to 18.3 ± 0.4%. IAA removal rose from 16.8 ± 0.3 to 34.5 ± 0.7%. TRP infusion increased the removal of IS and IAA to 10.5 ± 0.1% and 27.1 ± 0.3%, respectively. Moderate effects were observed on HIPA removal. Pre-dialyzer infusion of PBUT binding competitors into the blood stream can increase the HD removal of PBUTs. This approach can potentially be applied in current HD settings. PMID:27001248

  19. Studies on the disturbance of glucuronide formation in infectious hepatitis

    PubMed Central

    Vest, M. F.; Fritz, E.

    1961-01-01

    The ability of the liver to form glucuronides was measured in 10 patients with infectious hepatitis. One test was done at the onset and another about four weeks later after the clinical symptoms had disappeared. N-acetyl-p-aminophenol (N.A.P.A.) or acetanilide was administered in doses ranging from 10 to 20 mg. per kg. body weight, either orally or by intravenous injection. N.A.P.A. is conjugated by the liver at the hydroxyl group and excreted in the urine as sulphuric and glucuronic acid conjugates. Total conjugated p-aminophenol, free N.A.P.A., and N.A.P.A. glucuronide were estimated in the urine of our patients. In the blood the disappearance of N.A.P.A. (free form) and the formation of N.A.P.A. glucuronide were traced. During the acute phase of hepatitis the excretion of total conjugated p-aminophenol and of N.A.P.A. glucuronide in the urine is lower than after recovery from the disease. Likewise free N.A.P.A. disappears more slowly from the circulation and the peak concentration of N.A.P.A. glucuronide in the serum remains lower at the onset of hepatitis than after clinical cure. These results indicate that glucuronide formation during the acute stage of infectious hepatitis is depressed, as are other transformation mechanisms, i.e., of hippuric acid. PMID:13925655

  20. Uremic toxins enhance statin-induced cytotoxicity in differentiated human rhabdomyosarcoma cells.

    PubMed

    Uchiyama, Hitoshi; Tsujimoto, Masayuki; Shinmoto, Tadakazu; Ogino, Hitomi; Oda, Tomoko; Yoshida, Takuya; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Tachiki, Hidehisa; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2014-09-03

    The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF). Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins-hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate-on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated). In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated). However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated). These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  1. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  2. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  3. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  4. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows.

    PubMed

    Larsen, M; Kristensen, N B

    2009-07-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the day of calving to 29 DIM. Cows were sampled prepartum and at 4, 15, and 29 DIM. Postpartum dry matter intake increased at a lower rate with infusion compared with the control. Arterial concentrations of all essential AA (EAA) were lower with infusion compared with the control. Net portal fluxes of His, Ile, Leu, Lys, Met, Phe, Thr, Val, Ala, Pro, Ser, and Tyr were lower with infusion compared with the control and the net portal fluxes of these AA showed positive correlations with dry matter intake, whereas the net portal fluxes of Asp, Glu, and Gln were unaffected by treatment. Net hepatic fluxes of EAA were not affected by treatment but increased as lactation progressed with both treatments. On a net basis, all EAA were removed by the liver prepartum and at 4 DIM, whereas Met, Phe, and Thr were the only EAA being removed at 29 DIM. Except for Ala, AA removed by the liver might be used primarily for noncatabolic processes, as exemplified by the 16% of hepatic Gly uptake accounted for as urinary hippurate. The measured hepatic uptake of glucogenic precursors (glucogenic AA, volatile fatty acids, lactate, and glycerol) accounted for 50 to 90% of the hepatic release of glucose. The hepatic urea output accounted for more than 100% of the hepatic ureagenic precursor uptake, indicating that the glucogenic precursors unaccounted for are nonnitrogen-containing compounds. In conclusion, an increased exogenous glucose supply to the small intestine did not seem to affect the amount of

  5. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  6. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Plasma metabonomics study on toxicity biomarker in rats treated with Euphorbia fischeriana based on LC-MS.

    PubMed

    Wang, Yingfeng; Man, Hongxue; Gao, Jian; Liu, Xinfeng; Ren, Xiaolei; Chen, Jianxin; Zhang, Jiayu; Gao, Kuo; Li, Zhongfeng; Zhao, Baosheng

    2016-09-01

    Lang-du (LD) has been traditionally used to treat human diseases in China. Plasma metabolic profiling was applied in this study based on LC-MS to elucidate the toxicity in rats induced by injected ethanol extract of LD. LD injection was given by intraperitoneal injection at doses of 0.1, 0.05, 0.025 and 0 g kg(-1) body weight per day to rats. The blood biochemical levels of alanine aminotransferase, direct bilirubin, creatinine, serum β2-microglobulin and low-density lipoprotein increased in LD-injected rats, and the levels of total protein and albumin decreased in these groups. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including principal component analysis, partial least squares discriminant analysis and orthogonal projection to latent structures discriminate analysis (OPLS-DA). The metabolic characters in rats injected with LD were perturbed in a dose-dependent manner. By OPLS-DA, 18 metabolites were served as the potential toxicity biomarkers. Moreover, LD treatment resulted in an increase in the p-cresol, p-cresol sulfate, lysophosphatidylethanolamine (LPE) (18:0), LPE (16:0), lysophosphatidylcholine (16:0) and 12-HETE concentrations, and a decrease in hippuric acid, cholic acid and N-acetyl-l-phenylalanine. These results suggested that chronic exposure to LD could cause a disturbance in lipids metabolism and amino acids metabolism, etc. Therefore, an analysis of the metabolic profiles can contribute to a better understanding of the adverse effects of LD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  9. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  10. Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet.

    PubMed

    Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun

    2018-02-21

    Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.

  11. First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study.

    PubMed

    Austdal, Marie; Tangerås, Line H; Skråstad, Ragnhild B; Salvesen, Kjell; Austgulen, Rigmor; Iversen, Ann-Charlotte; Bathen, Tone F

    2015-09-08

    Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension). Preeclampsia developed in 26 (4.3%) and gestational hypertension in 21 (3.5%) women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia.

  12. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  13. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  14. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  15. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  16. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  17. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    PubMed

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  19. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats

  20. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    PubMed

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  1. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  2. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  3. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  4. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely used...

  5. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  6. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  7. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  8. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  9. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    PubMed

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  10. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    NASA Astrophysics Data System (ADS)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  11. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  12. Reduction of volatile acidity of acidic wines by immobilized Saccharomyces cerevisiae cells.

    PubMed

    Vilela, A; Schuller, D; Mendes-Faia, A; Côrte-Real, M

    2013-06-01

    Excessive volatile acidity in wines is a major problem and is still prevalent because available solutions are nevertheless unsatisfactory, namely, blending the filter-sterilized acidic wine with other wines of lower volatile acidity or using reverse osmosis. We have previously explored the use of an empirical biological deacidification procedure to lower the acetic acid content of wines. This winemaker's enological practice, which consists in refermentation associated with acetic acid consumption by yeasts, is performed by mixing the acidic wine with freshly crushed grapes, musts, or marc from a finished wine fermentation. We have shown that the commercial strain Saccharomyces cerevisiae S26 is able to decrease the volatile acidity of acidic wines with a volatile acidity higher than 1.44 g L(-1) acetic acid, with no detrimental impact on wine aroma. In this study, we aimed to optimize the immobilization of S26 cells in alginate beads for the bioreduction of volatile acidity of acidic wines. We found that S26 cells immobilized in double-layer alginate-chitosan beads could reduce the volatile acidity of an acidic wine (1.1 g L(-1) acetic acid, 12.5 % (v/v) ethanol, pH 3.12) by 28 and 62 % within 72 and 168 h, respectively, associated with a slight decrease in ethanol concentration (0.7 %). Similar volatile acidity removal efficiencies were obtained in medium with high glucose concentration (20 % w/v), indicating that this process may also be useful in the deacidification of grape musts. We, therefore, show that immobilized S. cerevisiae S26 cells in double-layer beads are an efficient alternative to improve the quality of wines with excessive volatile acidity.

  13. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  14. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  15. Short communication: Eicosatrienoic acid and docosatrienoic acid do not promote vaccenic acid accumulation in mixed ruminal cultures.

    PubMed

    AbuGhazaleh, A A; Holmes, L D; Jacobson, B N; Kalscheur, K F

    2006-11-01

    Previous research found that docosahexaenoic acid (C22:6n-3) was a component of fish oil that promotes trans-C18:1 accumulation in ruminal cultures when incubated with linoleic acid. The objective of this study was to determine if eicosatrienoic acid (C20:3n-3) and docosatrienoic acid (C22:3n-3), n-3 fatty acids in fish oil, promote accumulation of trans-C18:1, vaccenic acid (VA) in particular, using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of C20:3n-3 (ETA), control plus 5 mg of C22:3n-3 (DTA), control plus 15 mg of linoleic acid (LA), control plus 5 mg of C20:3n-3 and 15 mg of linoleic acid (ETALA), and control plus 5 mg of C22:3n-3 and 15 mg of linoleic acid (DTALA). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the concentrations of trans-C18:1 (0.87, 0.88, and 0.99 mg/culture), and VA (0.52, 0.56, and 0.62 mg/culture) were similar for the control, ETA, and DTA cultures, respectively. The concentrations of trans-C18:1 (5.51, 5.41, and 5.36 mg/culture), and VA (4.78, 4.62, and 4.59 mg/culture) were also similar between LA, ETALA, and DTALA cultures, respectively. These data suggest that C20:3n-3 and C22:3n-3 are not the active components in fish oil that promote VA accumulation when incubated with linoleic acid.

  16. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  17. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  18. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  19. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  20. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schick, P.K.; Webster, P.

    1987-05-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with (/sup 14/C)-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of (/sup 14/C)-20:4 into total MK phospholipids, 16% andmore » 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of (/sup 14/C)-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of (/sup 14/C)-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA.« less

  2. Nicotinic Acid Metabolism, V. A Cobamide Coenzyme-Dependent Conversion of α-Methyleneglutaric Acid to Dimethylmaleic Acid

    PubMed Central

    Kung, H. F.; Cederbaum, S.; Tsai, L.; Stadtman, T. C.

    1970-01-01

    A new B12-coenzyme-dependent isomerization, catalyzed by extracts of a nicotinate-fermenting clostridium, results in the conversion of α-methyleneglutaric acid to dimethylmaleic acid. These two acids are intermediates in the multistep anaerobic process wherein nicotinate is converted, ultimately, to one mole each of propionate, acetate, carbon dioxide, and ammonia. Dimethylmaleic acid reacts in its anhydride form with 2,4-dinitrophenylhydrazine to form N-2′,4′-dinitrophenyl-anilino-3,4-dimethylmaleimide. The characteristic reddish color exhibited by the latter derivative in alkaline solution serves as a convenient quantitative assay for dimethylmaleic acid. Comparison of the 2,4-dinitrophenylhydrazine derivatives of the product of the enzymic reaction and of synthetic dimethylmaleic anhydride showed them to be identical in every respect. PMID:5266166

  3. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  4. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra

    1998-10-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  5. Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Pizzarello, Sandra

    1998-01-01

    Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.

  6. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  7. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers.

    PubMed

    van Doorn, Martijn; Vogels, Jack; Tas, Albert; van Hoogdalem, Ewoud Jan; Burggraaf, Jacobus; Cohen, Adam; van der Greef, Jan

    2007-05-01

    ) spectroscopy was used to profile blood plasma and urine samples of 16 T2DM patients and 16 HVs receiving RSG 4 mg or placebo twice daily for 6 weeks. Multivariate analyses were employed to identify treatment- and disease-related effects on global endogenous metabolite profiles. RSG treatment led to a rapid relative reduction in urinary hippurate and aromatic amino acids as well as an increase in plasma branched chain amino acids and alanine, glutamine and glutamate in the T2DM group. No RSG treatment effects were noted in the HV group. Exploratory baseline analyses showed that urine and plasma metabolites discriminated between genders and disease state. T2DM patients showed a relative increase in urinary concentrations of several amino acids, citrate, phospho(enol)pyruvate and hippurate. Putative T2DM-related changes in plasma were largely attributable to increased plasma lipids. The results of this study indicate that NMR-based metabolomics of urine and blood plasma samples can yield a broad array of early responding biomarkers for the effects of RSG in T2DM patients, as well as nonglucose biomarkers that may reflect the T2DM state.

  8. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  9. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts. (a...

  11. Nitrous Acid as an Oxidant in Acidic Media

    DTIC Science & Technology

    1979-09-25

    nitroso oxidations were run in sulfuric acid. The Hammett acidity function is used as the abscissa because it conveniently represents the acidity region...oxidation. 13 Consistent with the general mechanism, equations (1)-(3), and in contrast to nitration, phenol nitrosation displays a primary kinetic...oxidized 1(III) + Alc - 104O + C-O (4) with the only route now removing HNO being NO+ + H - H + + 2N0 (5) Apparently while alcohol remains, equation (5

  12. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  13. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  14. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  15. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  16. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.

  17. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  18. "JCE" Classroom Activity #109: My Acid Can Beat Up Your Acid!

    ERIC Educational Resources Information Center

    Putti, Alice

    2011-01-01

    In this guided-inquiry activity, students investigate the ionization of strong and weak acids. Bead models are used to study acid ionization on a particulate level. Students analyze seven strong and weak acid models and make generalizations about the relationship between acid strength and dissociation. (Contains 1 table and 2 figures.)

  19. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  20. Complexity in Acid-Base Titrations: Multimer Formation Between Phosphoric Acids and Imines.

    PubMed

    Malm, Christian; Kim, Heejae; Wagner, Manfred; Hunger, Johannes

    2017-08-10

    Solutions of Brønsted acids with bases in aprotic solvents are not only common model systems to study the fundamentals of proton transfer pathways but are also highly relevant to Brønsted acid catalysis. Despite their importance the light nature of the proton makes characterization of acid-base aggregates challenging. Here, we track such acid-base interactions over a broad range of relative compositions between diphenyl phosphoric acid and the base quinaldine in dichloromethane, by using a combination of dielectric relaxation and NMR spectroscopy. In contrast to what one would expect for an acid-base titration, we find strong deviations from quantitative proton transfer from the acid to the base. Even for an excess of the base, multimers consisting of one base and at least two acid molecules are formed, in addition to the occurrence of proton transfer from the acid to the base and simultaneous formation of ion pairs. For equimolar mixtures such multimers constitute about one third of all intermolecular aggregates. Quantitative analysis of our results shows that the acid-base association constant is only around six times larger than that for the acid binding to an acid-base dimer, that is, to an already protonated base. Our findings have implications for the interpretation of previous studies of reactive intermediates in organocatalysis and provide a rationale for previously observed nonlinear effects in phosphoric acid catalysis. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.

    PubMed

    Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J

    2009-02-01

    Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.

  2. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  3. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: Effect of sex and arsenic exposure

    PubMed Central

    Huang, Madelyn C.; Douillet, Christelle; Su, Mingming; Zhou, Kejun; Wu, Tao; Chen, Wenlian; Galanko, Joseph A.; Drobná, Zuzana; Saunders, R. Jesse; Martin, Elizabeth; Fry, Rebecca C.; Jia, Wei; Stýblo, Miroslav

    2016-01-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex-specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation. PMID:26883664

  4. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].

    PubMed

    Zhou, Jing; Ma, Hong-yue; Fan, Xin-sheng; Xiao, Wei; Wang, Tuan-jie

    2012-10-01

    To investigate the mechanism of binding of human serum albumin (HSA) with potential sensitinogen, including chlorogenic acid and two isochlorogenic acids (3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid). By using the docking algorithm of computer-aided molecular design and the Molegro Virtual Docker, the crystal structures of HSA with warfarin and diazepam (Protein Data Bank ID: 2BXD and 2BXF) were selected as molecular docking receptors of HSA sites I and II. According to docking scores, key residues and H-bond, the molecular docking mode was selected and confirmed. The molecular docking of chlorogenic acid and two isochlorogenic acids on sites I and II was compared based on the above design. The results from molecular docking indicated that chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid could bind to HSA site I by high affinity scores of -112.3, -155.3 and -153.1, respectively. They could bind to site II on HSA by high affinity scores of -101.7, -138.5 and -133.4, respectively. In site I, two isochlorogenic acids interacted with the key apolar side-chains of Leu238 and Ala291 by higher affinity scores than chlorogenic acid. Furthermore, the H-bonds of isochlorogenic acids with polar residues inside the pocket and at the entrance of the pocket were different from chlorogenic acid. Moreover, the second coffee acyl of isochlorogenic acid occupied the right-hand apolar compartment in the pocket of HSA site I. In site I, the second coffee acyl of isochlorogenic acid formed the H-bonds with polar side-chains, which contributed isochlorogenic acid to binding with site II of HSA. The isochlorogenic acids with two coffee acyls have higher binding abilities with HSA than chlorogenic acid with one coffee acyl, suggesting that isochlorogenic acids binding with HSA may be sensitinogen.

  5. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006)

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong

    2010-10-01

    Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the

  6. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE PAGES

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira; ...

    2017-03-28

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  7. Contribution of acidic components to the total acid number (TAN) of bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia K-E.; Liu, Jiaojun; Yiacoumi, Sotira

    Bio-oil or pyrolysis oil — a product of thermochemical decomposition of biomass under oxygen-limited conditions — holds great potential to be a substitute for nonrenewable fossil fuels. But, its high acidity, which is primarily due to the degradation of hemicelluloses, limits its applications. For the evaluation of bio-oil production and treatment, it is essential to accurately measure the acidity of bio-oil. The total acid number (TAN), which is defined as the amount of potassium hydroxide needed to titrate one gram of a sample and has been established as an ASTM method to measure the acidity of petroleum products, has beenmore » employed to investigate the acidity of bio-oil. The TAN values of different concentrations of bio-oil components such as standard solutions of acetic acid, propionic acid, vanillic acid, hydroxybenzoic acid, syringic acid, hydroxymethylfurfural, and phenol were analyzed according to the ASTM D664 standard method. Our method showed the same linear relationship between the TAN values and the molar concentrations of acetic, propionic, and hydroxybenzoic acids. A different linear relationship was found for vanillic acid, due to the presence of multiple functional groups that can contribute to the TAN value. Furthermore, the influence of the titration solvent on the TAN values has been determined by comparing the TAN values and titration curves obtained from the standard method with results from the TAN analysis in aqueous environment and with equilibrium modeling results. Aqueous bio-oil samples with a known amount of acetic acid added were also analyzed. The additional acetic acid in bio-oil samples caused a proportional increase in the TAN values. These results of this research indicate that the TAN value of a sample with acids acting as monoprotic acids in the titration solvent can be converted to the molar concentration of total acids. For a sample containing acids that act as diprotic and polyprotic acids, however, its TAN value

  8. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  9. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    PubMed Central

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  10. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Hydroxamic acids as weak base indicators: protonation in strong acid media.

    PubMed

    García, B; Ibeas, S; Hoyuelos, F J; Leal, J M; Secco, F; Venturini, M

    2001-11-30

    The protonation equilibria of N-phenylbenzohydroxamic, benzohydroxamic, salicylhydroxamic, and N-p-tolylcinnamohydroxamic acids have been studied at 25 degrees C in concentrated sulfuric, hydrochloric, and perchloric acid media; the UV-vis spectral measurements were analyzed using the Hammett equation and the Bunnett-Olsen and excess acidity methods. The medium effects observed in the UV spectral curves were corrected with the Cox-Yates and vector analysis methods. The H(A) acidity function based on benzamides provided the best results. The range of variation of the solvation coefficient m is similar to that of amides, this indicating similar solvation requirements for amides and hydroxamic acids. For the same substrate, the observed variations of pK(BH)(+) with the mineral acid used was justified by formation of solvent-separated ion pairs; for the same mineral acid, the observed changes in pK(BH)(+) can be explained by the solvation of BH(+). The change of the pK(BH)(+) values was in reasonably good agreement with the sequence of the catalytic efficiency of the mineral acids used, HCl > H(2)SO(4) > HClO(4).

  12. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  13. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12

    PubMed Central

    Pfeuffer, Maria; Jaudszus, Anke

    2016-01-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  15. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women.

    PubMed

    Garg, Ramandeep; Brennan, Lorraine; Price, Ruth K; Wallace, Julie M W; Strain, J J; Gibney, Mike J; Shewry, Peter R; Ward, Jane L; Garg, Lalit; Welch, Robert W

    2016-02-17

    Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions.

  16. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  17. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios

    2013-10-01

    In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives.

    PubMed

    Vollmer, Maren; Schröter, David; Esders, Selma; Neugart, Susanne; Farquharson, Freda M; Duncan, Sylvia H; Schreiner, Monika; Louis, Petra; Maul, Ronald; Rohn, Sascha

    2017-10-01

    The almost forgotten crop amaranth has gained renewed interest in recent years due to its immense nutritive potential. Health beneficial effects of certain plants are often attributed to secondary plant metabolites such as phenolic compounds. As these compounds undergo significant metabolism after consumption and are in most cases not absorbed very well, it is important to gain knowledge about absorption, biotransformation, and further metabolism in the human body. Whilst being hardly found in other edible plants, caffeoylisocitric acid represents the most abundant low molecular weight phenolic compound in many leafy amaranth species. Given that this may be a potentially bioactive compound, gastrointestinal microbial degradation of this substance was investigated in the present study by performing in vitro fermentation tests using three different fecal samples as inocula. The (phenolic) metabolites were analyzed using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Furthermore, quantitative polymerase chain reaction (qPCR) analyses were carried out to study the influence on the microbiome and its composition. The in vitro fermentations led to different metabolite profiles depending on the specific donor. For example, the metabolite 3-(4-hydroxyphenyl)propionic acid was observed in one fermentation as the main metabolite, whereas 3-(3-hydroxyphenyl)propionic acid was identified in the other fermentations as important. A significant change in selected microorganisms of the gut microbiota however was not detected. In conclusion, caffeoylisocitric acid from amaranth, which is a source of several esterified phenolic acids in addition to chlorogenic acid, can be metabolized by the human gut microbiota, but the metabolites produced vary between individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  1. Nucleic Acid Immunity.

    PubMed

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  2. Uric acid - urine

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  3. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  4. Bile acids: regulation of apoptosis by ursodeoxycholic acid

    PubMed Central

    Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.

    2009-01-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220

  5. Bile acids: regulation of apoptosis by ursodeoxycholic acid.

    PubMed

    Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P

    2009-09-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.

  6. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  7. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources ofmore » EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.« less

  8. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  9. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  10. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  11. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez, Miguel Ángel; Vinaixa, Maria; Chiva-Blanch, Gemma; Estruch, Ramon; Correig, Xavier; Andrés-Lacueva, Cristina

    2012-08-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100mL/day, alcohol control). After each period, 24-h urine samples were collected and analyzed by (1) H-NMR. According to the results of a one-way ANOVA, significant markers were grouped in four categories: alcohol-related markers (ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food metabolome: tartrate (RWA and RWD), ethanol, and mannitol (RWA); and second, biomarkers that relates to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in a nutritional intervention with red wine. The results show the capacity of this approach to obtain a comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate wine intake. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Grand Rounds: Could Occupational Exposure to n-Hexane and Other Solvents Precipitate Visual Failure in Leber Hereditary Optic Neuropathy?

    PubMed Central

    Carelli, Valerio; Franceschini, Flavia; Venturi, Silvia; Barboni, Piero; Savini, Giacomo; Barbieri, Giuseppe; Pirro, Ettore; La Morgia, Chiara; Valentino, Maria L.; Zanardi, Francesca; Violante, Francesco S.; Mattioli, Stefano

    2007-01-01

    Context Leber hereditary optic neuropathy (LHON) is a maternally inherited loss of central vision related to pathogenic mutations in the mitochondrial genome, which are a necessary but not sufficient condition to develop the disease. Investigation of precipitating environmental/occupational (and additional genetic) factors could be relevant for prevention. Case presentation After a 6-month period of occupational exposure to n-hexane and other organic solvents, a 27-year-old man (a moderate smoker) developed an optic neuropathy. The patient had a full ophthalmologic and neurologic investigation, including standardized cycloergometer test for serum lactic acid levels and a skeletal muscle biopsy. His exposure history was also detailed, and he underwent genetic testing for LHON mitochondrial DNA mutations. The patient suffered a sequential optic neuropathy with the hallmarks of LHON and tested positive for the homoplasmic 11778G → A/ND4 mutation. Routine laboratory monitoring revealed increased concentrations of urinary 2.5 hexandione (n-hexane metabolite) and hippuric acid (toluene metabolite) in the period immediately preceding the visual loss. Discussion In a subject carrying an LHON mutation, the strict temporal sequence of prolonged appreciable occupational exposure followed by sudden onset of visual loss must raise a suspicion of causality (with a possible further interaction with tobacco smoke). Relevance In this article, we add to the candidate occupational/environmental triggers of LHON and highlight the need for appropriate case–control (and laboratory) studies to validate the causal effect of mixed toxic exposures. PMID:17366829

  13. Whole-grain and refined wheat flours show distinct metabolic profiles in rats as assessed by a 1H NMR-based metabonomic approach.

    PubMed

    Fardet, Anthony; Canlet, Cécile; Gottardi, Gaëlle; Lyan, Bernard; Llorach, Rafaël; Rémésy, Christian; Mazur, André; Paris, Alain; Scalbert, Augustin

    2007-04-01

    The protection against diabetes and cardiovascular disease provided by whole-grain cereal consumption has been attributed to the fiber and micronutrients present in the bran. But exactly how this occurs remains unclear due to both diversity of bran constituents and the complexity of the metabolic responses to each of these constituents. We investigated the metabolic responses of 2 groups of rats (n = 10/group) fed 2 diets, for 2 wk each, in a crossover design. One diet contained 60 g/100 g whole-grain wheat flour (WGF) and the other contained 60 g/100 g refined wheat flour (RF). Markers of oxidative stress [urinary isoprostanes and malondialdehydes (MDA), plasma ferric-reducing ability of plasma, MDA, and vitamins E and C] and lipid status (liver and plasma triglycerides and cholesterol) were measured. Urine samples collected during the feeding periods and plasma and liver samples collected at the end of experiment were analyzed by (1)H NMR spectroscopy. Metabonomic analyses showed that each group reached a new metabolic balance within 48 h of changing the diet. Urinary excretion of some tricarboxylic acid cycle intermediates, aromatic amino acids, and hippurate was significantly greater in rats fed the WGF diet. Although the diets did not affect conventional lipid and oxidative stress markers, there were decreases in some liver lipids and increases in liver reduced glutathione and betaine as shown by metabonomic analyses. These suggest that the WGF diet improved the redox and lipid status.

  14. Dynamic metabolic response of mice to acute mequindox exposure.

    PubMed

    Zhao, Xiu-Ju; Huang, Chongyang; Lei, Hehua; Nie, Xiu; Tang, Huiru; Wang, Yulan

    2011-11-04

    Mequindox is used as a veterinary antibiotic drug. As part of systematic investigations into mequindox as a veterinary medicine and its subsequent applications in food safety, we conducted the investigation to assess the metabolic response of mice to mequindox using metabonomics, which combines NMR metabolic profiles of biofluids or tissues and pattern recognition data analysis. In this study, we delivered a single dose of mequindox to mice with dosage levels of 15, 75, and 350 mg/kg body weight and collected urine samples over a 7 day period, as well as plasma and liver tissues at 7 days postdose. Principal components analysis (PCA) and orthogonal projection to latent structure discriminant analysis (O-PLS-DA) were performed on (1)H NMR spectra of biofluids and liver, showing that low dose levels of mequindox exposure had no adverse effects, consistent with histological observations of the liver. High and moderate levels of mequindox exposure caused suppression of glycolysis and stimulation of fatty acid oxidation accompanied with increased levels of oxidative stress. Our metabonomic analyses also showed disruption of amino acid metabolism, consistent with liver damage observed from histopathological examinations. Furthermore, mequindox perturbed gut microbial activity manifested in the altered excretion of urinary trimethylamine (TMA), trimethylamine-N-oxide (TMAO), hippurate, phenylacetylglycine (PAG), and phenylacetate. The putative gut microbial function may also contribute to the assembly and secretion of very-low-density lipoproteins from the liver to the plasma. Our work provides important insights on the metabolic responses of mequindox.

  15. Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.

    PubMed

    Berg, Ulla B; Németh, Antal

    2018-04-01

    On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.

  16. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  17. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids

    NASA Technical Reports Server (NTRS)

    Kawamura, Kimitaka; Kaplan, I. R.

    1987-01-01

    Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.

  18. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  19. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  1. Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1

    PubMed Central

    Terzaghi, William B.

    1989-01-01

    This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997

  2. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  3. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  4. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait

    PubMed Central

    Xia, En-Qin; Wang, Bo-Wei; Xu, Xiang-Rong; Zhu, Li; Song, Yang; Li, Hua-Bin

    2011-01-01

    Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials. PMID:21954361

  5. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.

    PubMed

    Clifford, Michael N; Jaganath, Indu B; Ludwig, Iziar A; Crozier, Alan

    2017-12-13

    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.

  6. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  7. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  8. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  9. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  10. Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures.

    PubMed

    Bressanello, Davide; Liberto, Erica; Collino, Massimo; Chiazza, Fausto; Mastrocola, Raffaella; Reichenbach, Stephen E; Bicchi, Carlo; Cordero, Chiara

    2018-04-01

    This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.

  11. The pharmacokinetics of anthocyanins and their metabolites in humans.

    PubMed

    de Ferrars, R M; Czank, C; Zhang, Q; Botting, N P; Kroon, P A; Cassidy, A; Kay, C D

    2014-07-01

    Anthocyanins are phytochemicals with reported vasoactive bioactivity. However, given their instability at neutral pH, they are presumed to undergo significant degradation and subsequent biotransformation. The aim of the present study was to establish the pharmacokinetics of the metabolites of cyanidin-3-glucoside (C3G), a widely consumed dietary phytochemical with potential cardioprotective properties. A 500 mg oral bolus dose of 6,8,10,3',5'-(13)C5-C3G was fed to eight healthy male participants, followed by a 48 h collection (0, 0.5, 1, 2, 4, 6, 24, 48 h) of blood, urine and faecal samples. Samples were analysed by HPLC-ESI-MS/MS with elimination kinetics established using non-compartmental pharmacokinetic modelling. Seventeen (13)C-labelled compounds were identified in the serum, including (13)C5-C3G, its degradation products, protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), 13 metabolites of PCA and 1 metabolite derived from PGA. The maximal concentrations of the phenolic metabolites (Cmax ) ranged from 10 to 2000 nM, between 2 and 30 h (tmax) post-consumption, with half-lives of elimination observed between 0.5 and 96 h. The major phenolic metabolites identified were hippuric acid and ferulic acid, which peaked in the serum at approximately 16 and 8 h respectively. Anthocyanins are metabolized to a structurally diverse range of metabolites that exhibit dynamic kinetic profiles. Understanding the elimination kinetics of these metabolites is key to the design of future studies examining their utility in dietary interventions or as therapeutics for disease risk reduction. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  12. Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via1H NMR-based metabolomics approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Mohd Dom, Nur Sumirah; Machap, Chandradevan; Hamid, Muhajir; Ismail, Amin; Khatib, Alfi; Abas, Faridah

    2017-12-01

    Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown. This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract. By using a combination of 1 H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified. The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified. I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  14. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  15. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  17. Valproic Acid

    MedlinePlus

    ... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... acid. Talk to your doctor about birth control methods that will work for you. If you become ...

  18. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  19. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    PubMed

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  1. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  2. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  3. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  4. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  5. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  6. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This ... before the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  8. Fatty Acids of Myxococcus xanthus

    PubMed Central

    Ware, Judith C.; Dworkin, Martin

    1973-01-01

    Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria. PMID:4197903

  9. Secular trend of serum docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid concentrations among Japanese-a 4- and 13-year descriptive epidemiologic study.

    PubMed

    Otsuka, Rei; Kato, Yuki; Imai, Tomoko; Ando, Fujiko; Shimokata, Hiroshi

    2015-03-01

    Cross-sectional studies have shown age-related increases in blood docosahexaenoic and eicosapentaenoic acid and decreases in arachidonic acid. We describe serum docosahexaenoic, eicosapentaenoic, and arachidonic acid concentrations over 13 years (1997-2012) across four study waves and serum fatty acid composition over 4 years (2006-2012) between two study waves according to age groups by sex in the same subjects. We included 443 men and 435 women aged 40-79 years at baseline. Serum arachidonic acid concentrations increased in all sex and age groups over 13 years, and eicosapentaenoic or docosahexaenoic acid concentrations increased in males and females who were younger and middle-aged at baseline. Only serum arachidonic acid composition increased over 4 years in men and women who were 40-69 years at baseline, even after adjustment for arachidonic acid intake. These findings suggest a secular increase trend in serum arachidonic acid levels over 13 years among randomly selected community-dwelling middle-aged and elderly Japanese. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    PubMed

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  11. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  12. Citric acid urine test

    MedlinePlus

    Urine - citric acid test; Renal tubular acidosis - citric acid test; Kidney stones - citric acid test; Urolithiasis - citric acid test ... No special preparation is necessary for this test. But the results ... test is usually done while you are on a normal diet. Ask your ...

  13. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  14. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  16. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  17. Selective heterogeneous acid catalyzed esterification of N-terminal sulfyhdryl fatty acids

    USDA-ARS?s Scientific Manuscript database

    Our interest in thiol fatty acids lies in their antioxidative, free radical scavenging, and metal ion scavenging capabilities as applied to cosmeceutical and skin care formulations. The retail market is filled with products containing the disulfide-containing free fatty acid, lipoic acid. These pr...

  18. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  19. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  20. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  1. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    PubMed

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  2. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  3. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  4. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  5. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  6. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  7. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  8. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    PubMed Central

    Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295

  9. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  10. Experiment Comparison between Engineering Acid Dew Point and Thermodynamic Acid Dew Point

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Deng, Jianhua

    2018-06-01

    in order to realize the accurate prediction of acid dew point, a set of measurement system of acid dew point for the flue gas flue gas in the tail of the boiler was designed and built, And measured at the outlet of an air preheater of a power plant of 1 000 MW, The results show that: Under the same conditions, with the test temperature decreases, Nu of heat transfer tubes, fouling and corrosion of pipe wall and corrosion pieces gradually deepened. Then, the measured acid dew point is compared with the acid dew point obtained by using the existing empirical formula under the same coal type. The dew point of engineering acid is usually about 40 ° lower than the dew point of thermodynamic acid because of the coupling effect of fouling on the acid liquid, which can better reflect the actual operation of flue gas in engineering and has certain theoretical guidance for the design and operation of deep waste heat utilization system significance.

  11. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  12. Animal model of acid-reflux esophagitis: pathogenic roles of acid/pepsin, prostaglandins, and amino acids.

    PubMed

    Takeuchi, Koji; Nagahama, Kenji

    2014-01-01

    Esophagitis was induced in rats within 3 h by ligating both the pylorus and transitional region between the forestomach and glandular portion under ether anesthesia. This esophageal injury was prevented by the administration of acid suppressants and antipepsin drug and aggravated by exogenous pepsin. Damage was also aggravated by pretreatment with indomethacin and the selective COX-1 but not COX-2 inhibitor, whereas PGE2 showed a biphasic effect depending on the dose; a protection at low doses, and an aggravation at high doses, with both being mediated by EP1 receptors. Various amino acids also affected this esophagitis in different ways; L-alanine and L-glutamine had a deleterious effect, while L-arginine and glycine were highly protective, both due to yet unidentified mechanisms. It is assumed that acid/pepsin plays a major pathogenic role in this model of esophagitis; PGs derived from COX-1 are involved in mucosal defense of the esophagus; and some amino acids are protective against esophagitis. These findings also suggest a novel therapeutic approach in the treatment of esophagitis, in addition to acid suppressant therapy. The model introduced may be useful to test the protective effects of drugs on esophagitis and investigate the mucosal defense mechanism in the esophagus.

  13. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    USGS Publications Warehouse

    Bradley, Michael W.; Worland, Scott C.

    2015-01-01

    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  14. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis

    PubMed Central

    Eijkelkamp, Bart A.; Begg, Stephanie L.; Pederick, Victoria G.; Trapetti, Claudia; Gregory, Melissa K.; Whittall, Jonathan J.; Paton, James C.; McDevitt, Christopher A.

    2018-01-01

    Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections. PMID:29867785

  15. Pretreatment of corn stover by solid acid for d-lactic acid fermentation.

    PubMed

    Wang, Xiqing; Wang, Gang; Yu, Xiaoxiao; Chen, Huan; Sun, Yang; Chen, Guang

    2017-09-01

    Solid acid is a new acid that is safe and green, which has been widely used in the fields of acid pickling. In this study, we adopted solid acid to pretreat corn stover and used the pretreated corn stover in the fermentation of d-lactic acid. Finally, we obtained optimal conditions for the pretreatment of corn stover by solid acid: digestion temperature of 120°C, digestion time of 80min, and solid acid concentration of 1.5%. Then adding cellulase of 30FPU/g, the conversion rate of glucose reached 71.06% after enzymatic hydrolysis for 72h. In addition, the changes of corn stover structure after pretreatment were further represented by using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, we used the pretreated corn stover as fermentation substrate and Lactobacillus. delbrueckii sp. bulgaricus as the starting strain to produce d-lactic acid. The yield reached 18g/L, with the optical purity being 99%e.e. This research has provided a new way to comprehensively utilizae corn stover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Urinary and plasma organic acids and amino acids in chronic fatigue syndrome.

    PubMed

    Jones, Mark G; Cooper, Elizabeth; Amjad, Saira; Goodwin, C Stewart; Barron, Jeffrey L; Chalmers, Ronald A

    2005-11-01

    Previous work by others have suggested the occurrence of one or more chemical or metabolic 'markers' for ME/CFS including specific amino acids and organic acids and a number of unidentified compounds (CFSUM1, CFSUM2). We have shown elsewhere that CFSUM1 is partially derivatised pyroglutamic acid and CFSUM2 partially derivatised serine and have suggested and demonstrated that the analytical methods used were unsuitable to identify or to accurately quantify urinary metabolites. We have now made a detailed analysis of plasma and urinary amino acids and of urinary organic acids from patients with ME/CFS and from three control groups. Fasting blood plasma and timed urine samples were obtained from 31 patients with CFS, 31 age and sex-matched healthy controls, 15 patients with depression and 22 patients with rheumatoid arthritis. Plasma and urinary amino acids and urinary organic acids were determined using established and validated methods and data compared by statistical analysis. None of the previously reported abnormalities in urinary amino acids or of organic acids could be confirmed. Results however provide some evidence in patients with ME/CFS for underlying inflammatory disease and for reduced intramuscular collagen with a lowered threshold for muscle micro-injury. These factors in combination may provide a basis for the fatigue and muscle pain that are the major symptoms in these patients.

  17. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Lawson, Marcus A; Chiu, Gabriel S; Blevins, Neil A; Kwakwa, Kristin A; Freund, Gregory G

    2014-09-01

    Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. UNSATURATED AMINO ACIDS V.

    PubMed Central

    Shapira, Jacob; Dittmer, Karl

    1961-01-01

    Shapira, Jacob (Department of Chemistry, Florida State University, Tallahassee) and Karl Dittmer. Unsaturated amino acids. V. Microbiological properties of some halogenated olefinic amino acids. J. Bacteriol. 82:640–647. 1961.—It has been shown previously that several amino acid analogues containing unsaturated linkages were inhibitors of the growth of Escherichia coli and Saccharomyces cerevisiae. This paper reports the results obtained when a series of unsaturated halogen-containing amino acids was examined. The cis isomer of ω-chloroallylglycine showed the greatest toxicity yet found in this series of unsaturated amino acids toward E. coli, whereas the trans-isomer was usually far less toxic. The major effect of cis-ω-chloroallylglycine in E. coli appeared to be to extend the lag phase before the normal rate of growth began. A wide variety of amino acids was capable of partially or completely preventing the toxicity of low levels of these compounds. At higher levels, relatively few amino acids (primarily valine, leucine, and glutamic acid) were effective. In E. coli, cis-ω-chloroallylglycine showed an unusual [Formula: see text] relationship with both glutamic acid and valine over a wide range in concentration. PMID:13911278

  19. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  20. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on human skin fibroblasts.

    PubMed

    Brown, E R; Subbaiah, P V

    1994-12-01

    To better understand the mode of action of omega 3 fatty acids in cell membranes, human foreskin fibroblasts were grown in serum-free medium supplemented with 50 microM oleic acid linoleic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), and the effects on membrane composition, fluorescence polarization and enzyme activities were followed. The cells were enriched with EPA and DHA up to 7 and 13% of total lipids, respectively, of which > 95% was associated with phospholipids. In addition, the concentration of 22:5n-3 increased with both EPA and DHA to 7.5, and 2.1% of the total fatty acids, respectively. When compared to controls (oleic acid), cells treated with DHA showed a decrease in cholesterol, phospholipids, arachidonic acid (AA) and free cholesterol/phospholipid ratio (P < 0.05). In the presence of EPA, only decreases in AA and cholesterol were significant (P < 0.05). Membrane fluidity, assessed by fluorescence anisotropy, was increased 16% in cells enriched with DHA (P < 0.05), but showed no change with EPA or linoleic acid. There was an increase in membrane-associated 5'-nucleotidase (+27%) and adenylate cyclase (+19%) activities (P < 0.05), in DHA-enriched, but not in EPA-enriched cells, when compared with oleate controls. The studies show that incorporation of DHA, but not EPA, into cell membranes of fibroblasts alters membrane biophysical characteristics and function. We suggest that these two major n-3 fatty acids of fish oils have differential effects on cell membranes, and this may be related to the known differences in their physiological effects.

  1. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  2. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  3. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  4. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  5. Sulfuric Acid on Europa

    NASA Image and Video Library

    1999-09-30

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. http://photojournal.jpl.nasa.gov/catalog/PIA02500

  6. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  7. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  8. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  10. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  11. Racemic resolution of some DL-amino acids using Aspergillus fumigatus L-amino acid oxidase.

    PubMed

    Singh, Susmita; Gogoi, Binod K; Bezbaruah, Rajib L

    2011-07-01

    The ability of Aspergillus fumigatus L-amino acid oxidase (L-aao) to cause the resolution of racemic mixtures of DL-amino acids was investigated with DL-alanine, DL-phenylalanine, DL-tyrosine, and DL-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three DL-amino acids resulting in the production of optically pure D-alanine (100% resolution), D-phenylalanine (80.2%), and D-tyrosine (84.1%), respectively. The optically pure D-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus L: -amino acid oxidase for racemic resolution of DL-amino acids.

  12. Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.

    PubMed

    Steele, R D

    1986-06-01

    A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.

  13. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  14. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  15. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography.

    PubMed

    Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping

    2012-12-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used in this study. Under the experimental conditions, the UV peaks of salicylic acid and 2,3-dihydroxybenzoic acid were well separated from the peaks of humic acid in the chromatogram. Concentrations of the two small organic acids could be accurately determined from their peak areas. The concentration of humic acid in the mixture could then be derived from mass balance calculations. The measured results agreed well with the nominal concentrations. The detection limits are 0.05 mg/L and 0.01 mg/L for salicylic acid and 2,3-dihydroxybenzoic acid, respectively. Applicability of the method to natural samples was tested using groundwater, glacier, and river water samples (both original and spiked with salicylic acid and 2,3-dihydroxybenzoic acid) with a total organic carbon concentration ranging from 2.1 to 179.5 mg C/L. The results obtained are promising, especially for groundwater samples and river water samples with a total organic carbon concentration below 9 mg C/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  17. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid

    NASA Astrophysics Data System (ADS)

    Dereven'kov, I. A.; Thi, Thu Thuy Bui; Salnikov, D. S.; Makarov, S. V.

    2016-03-01

    The kinetics of the reaction between one-electron-reduced cobalamin (cobalamin(II), Cb(II)) and the two-electron-oxidized form of vitamin C (dehydroascorbic acid, DHA) with amino acids in an acidic medium is studied by conventional UV-Vis spectroscopy. It is shown that the oxidation of Cbl(II) by dehydroascorbic acid proceeds only in the presence of sulfur-containing amino acids (cysteine, acetylcysteine). A proposed reaction mechanism includes the step of amino acid coordination on the Co(II)-center through the sulfur atom, along with that of the interaction between this complex and DHA molecules, which results in the formation of ascorbyl radical and the corresponding Co(III) thiolate complex.

  18. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  19. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  20. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  1. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  2. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  3. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  4. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  7. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  8. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  9. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  10. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  11. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  12. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  14. Sleep disorders and the prevalence of asymptomatic nocturnal acid and non-acid reflux.

    PubMed

    Herdman, Christine; Marzio, Dina Halegoua-De; Shah, Paurush; Denuna-Rivera, Susie; Doghramji, Karl; Cohen, Sidney; Dimarino, Anthony J

    2013-01-01

    Nocturnal acid reflux is associated with symptomatic and asymptomatic sleep arousals, leading to fragmented sleep. The frequency and influence of acid reflux in patients with various forms of insomnia has not been reported. The aim of this study was to quantify nocturnal acid and nonacid reflux in patients with primary sleep disorders as previously diagnosed by polysomnography. THIRTY ONE SUBJECTS WERE STUDIED: (A) 9 subjects with a polysomnographically diagnosed sleep disorder (1 with restless legs syndrome, 4 with narcolepsy, 4 with periodic limb movement disorder); (B) 12 subjects with primary insomnia (PI) and unrevealing polysomnography; and (C) 10 controls without disturbed sleep. All subjects underwent a physical examination and 24 h transnasal pH and impedance monitoring to detect acid and non-acid reflux. The 21 subjects with fragmented sleep due to a primary sleep disorder had significantly more recumbent acid exposure (>1.2% of time) as compared with control subjects (33% versus 0%). When fragmented sleep subjects were divided into two groups, 17% of PI subjects and 55% of subjects with a diagnosed sleep disorder had significant recumbent acid exposure (P=0.009). Likewise, the median recumbent nonacid events were increased in the sleep disordered group (P=0.011). This study indicates that patients with primary sleep disorders have prominent nocturnal acid reflux without symptoms of daytime acid reflux. Acid reflux is most prominent in patients with polysomnographic findings of disturbed sleep as compared to patients with PI; while non acid reflux is increased minimally in these patients.

  15. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    PubMed

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  16. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-Ascorbic Acid

    PubMed Central

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-01-01

    Background Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L- ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. Results 5,6-O-Isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. Conclusion An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance. PMID:17147830

  17. An efficient synthesis of tetramic acid derivatives with extended conjugation from L-ascorbic acid.

    PubMed

    Singh, Biswajit K; Bisht, Surendra S; Tripathi, Rama P

    2006-12-06

    Tetramic acids with polyenyl substituents are an important class of compounds in medicinal chemistry. Both solid and solution phase syntheses of such molecules have been reported recently. Thiolactomycin, a clinical candidate for treatment of tuberculosis has led to further explorations in this class. We have recently developed an efficient synthesis of tetramic acids derivatives from L-ascorbic acid. In continuation of this work, we have synthesised dienyl tetramic acid derivatives. 5,6-O-isopropylidene-ascorbic acid on reaction with DBU led to the formation of tetronolactonyl allyl alcohol, which on oxidation with pyridinium chlorochromate gave the respective tetranolactonyl allylic aldehydes. Wittig olefination followed by reaction of the resulting tetranolactonyl dienyl esters with different amines resulted in the respective 5-hydroxy lactams. Subsequent dehydration of the hydroxy lactams with p-toluene sulphonic acid afforded the dienyl tetramic acid derivatives. All reactions were performed at ambient temperature and the yields are good. An efficient and practical method for the synthesis of dienyl tetramic acid derivatives from inexpensive and easily accessible ascorbic acid has been developed. The compounds bear structural similarities to the tetramic acid based polyenic antibiotics and thus this method offers a new and short route for the synthesis of tetramic acid derivatives of biological significance.

  18. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  19. Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.

    PubMed

    Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto

    2018-05-01

    Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.

  20. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  1. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  2. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  3. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  4. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    PubMed

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  6. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  7. Safety of folic acid

    PubMed Central

    Field, Martha S.

    2017-01-01

    Abstract There is a large body of literature demonstrating the efficacy of maternal folic acid intake in preventing birth defects, as well as investigations into potential adverse consequences of consuming folic acid above the upper intake level (UL). Recently, two authoritative bodies convened expert panels to assess risks from high intakes of folic acid: the U.S. National Toxicology Program and the UK Scientific Advisory Committee on Nutrition. Overall, the totality of the evidence examined by these panels, as well as studies published since the release of their reports, have not established risks for adverse consequences resulting from existing mandatory folic acid fortification programs that have been implemented in many countries. Current folic acid fortification programs have been shown to support public health in populations, and the exposure levels are informed by and adherent to the precautionary principle. Additional research is needed to assess the health effects of folic acid supplement use when the current upper limit for folic acid is exceeded. PMID:29155442

  8. Uric acid nephrolithiasis: An update.

    PubMed

    Cicerello, Elisa

    2018-04-01

    Uric acid nephrolithiasis appears to increase in prevalence. While a relationship between uric acid stones and low urinary pH has been for long known, additional association with various metabolic conditions and pathophysiological basis has recently been elucidated. Some conditions such as diabetes and metabolic syndrome disease, excessive dietary intake, and increased endogenous uric acid production and/or defect in ammoniagenesis are associated with low urinary pH. In addition, the phenomenon of global warming could result in an increase in areas with greater climate risk for uric acid stone formation. There are three therapeutic steps to be taken for management of uric acid stones: identification of urinary pH profiles, assessment of urinary volume status, and identification of disorders leading to excessive uric acid production. However, the most important factor for uric acid stone formation is acid urinary pH, which is a prerequisite for uric acid precipitation. This article reviews recent insights into the pathophysiology of uric acid stones and their management.

  9. Prebiotic synthesis of carboxylic acids, amino acids and nucleic acid bases from formamide under photochemical conditions⋆

    NASA Astrophysics Data System (ADS)

    Botta, Lorenzo; Mattia Bizzarri, Bruno; Piccinino, Davide; Fornaro, Teresa; Robert Brucato, John; Saladino, Raffaele

    2017-07-01

    The photochemical transformation of formamide in the presence of a mixture of TiO2 and ZnO metal oxides as catalysts afforded a large panel of molecules of biological relevance, including carboxylic acids, amino acids and nucleic acid bases. The reaction was less effective when performed in the presence of only one mineral, highlighting the role of synergic effects between the photoactive catalysts. Taken together, these results suggest that the synthesis of chemical precursors for both the genetic and the metabolic apparatuses might have occurred in a simple environment, consisting of formamide, photoactive metal oxides and UV-radiation.

  10. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less

  11. Method for isolating nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids formore » a wide variety of applications including, sequencing or species population analysis.« less

  12. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  13. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  14. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  15. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  16. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  18. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Cooper, G. W.; Pizzarello, S.

    1995-01-01

    Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.

  19. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  1. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  2. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  4. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... and the A.D.A.M. Editorial team. Amino Acid Metabolism Disorders Read more B Vitamins Read more ...

  5. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  6. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  7. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  8. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  9. An Unambiguous Nomenclature for the Acyl-quinic Acids Commonly Known as Chlorogenic Acids.

    PubMed

    Abrankó, László; Clifford, Michael N

    2017-05-10

    The history of the acyl-quinic acids is briefly reviewed, the merits and limitations of the various nomenclature systems applicable are critically compared, and their limitations are highlighted, in particular their inability to provide an unambiguous description of all quinic acid enantiomers and diastereoisomers and associated acyl-quinic acids. Recommendations are made for a nomenclature system that in combination with IUPAC numbering achieves this objective. A comprehensive set of structures for the quinic acid enantiomers and diastereoisomers is presented. The Supporting Information provides an explanation of trivial names and a decision tree to determine which quinic acid isomer a structure represents.

  10. Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats.

    PubMed

    Ide, Takashi; Azechi, Ayana; Kitade, Sayaka; Kunimatsu, Yoko; Suzuki, Natsuko; Nakajima, Chihiro

    2013-04-01

    Dietary sesamin (1:1 mixture of sesamin and episesamin) decreases fatty acid synthesis but increases fatty acid oxidation in rat liver. Dietary α-lipoic acid lowers hepatic fatty acid synthesis. These changes can account for the serum lipid-lowering effect of sesamin and α-lipoic acid. It is expected that the combination of these compounds in the diet potentially ameliorates lipid metabolism more than the individual compounds. We therefore studied the combined effect of sesamin and α-lipoic acid on lipid metabolism in rats. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2 g/kg sesamin and containing 0 or 2.5 g/kg α-lipoic acid for 22 days. Sesamin and α-lipoic acid decreased serum lipid concentrations and the combination of these compounds further decreased the parameters in an additive fashion. These compounds reduced the hepatic concentration of triacylglycerol, the lignan being less effective in decreasing this value. The combination failed to cause a stronger decrease in hepatic triacylglycerol concentration. The combination of sesamin and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Sesamin strongly increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid antagonized the stimulating effect of sesamin of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes and carnitine concentration in the liver. This may account for the failure to observe strong reductions in hepatic triacylglycerol concentration in rats given a diet containing both sesamin and α-lipoic acid.

  11. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  12. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  13. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  14. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  15. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  16. Toxicology of Perfluorodecanoic Acid

    DTIC Science & Technology

    1990-11-01

    Perfluorodecanoic Acid ( PFOA ) and Thyroid Status. A. Statement of Problem: 1. Toxic doses of PFDA result in reduction of feed intake, body weight, serum...hypophagia and body weight loss). ii. Perfluoroaecanoic Acid ( PFOA ) and Lipid Metabolism in the Rat. A. Statement of Problem: 1. PFDA in a dose... perfluorinated acids are not available commercially. B. Objectives: 1. To synthesize perfluoro -n-decanoic acid ( PFDA ) with 14C-labeling in the C-I position. 2. To

  17. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  18. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  19. Biotransformation of linoleic acid and bile acids by Eubacterium lentum.

    PubMed Central

    Eyssen, H; Verhulst, A

    1984-01-01

    Eubacterium lentum is a gram-positive, nonsporeforming, nonmotile, asaccharolytic anaerobe. In the present investigations, 3 E. lentum strains (group E) isolated from rat feces were compared with 30 E. lentum strains (groups A, B, C, and D) previously studied by Macdonald et al. (I. A. Macdonald, J. F. Jellet, D. E. Mahony, and L. V. Holdeman, Appl. Environ. Microbiol. 37:992-1000, 1979). All strains alkalized (pH 8 to 8.5) arginine-containing (2 to 15 mg/ml) culture media, and growth of the majority of the strains was stimulated by arginine. All strains converted linoleic acid into transvaccenic acid by shifting the 12,13-cis double bond of linoleic acid into an 11,12-trans(?) double bond followed by biohydrogenation of the 9,10-cis double bond. Hence, biohydrogenation of linoleic acid is a new general characteristic of E. lentum. The 33 strains were also studied for bile acid deconjugase and hydroxysteroid dehydrogenase (HSDH) activities. The 6 strains in group D were steroid inactive; the 27 strains in groups A, B, C, and E were steroid active. The steroid-active group contained bile acid deconjugase-producing strains (groups C and E, plus strain 116 in group A) and nondeconjugating strains. All nondeconjugating strains of groups A and B developed 7 alpha- and 12 alpha-HSDH activities and contained 3 alpha-HSDH-positive strains and 3 alpha-HSDH-negative strains. Deconjugating strains varied in HSDH activities. PMID:6582800

  20. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... measure and monitor the person's vital signs, including temperature, pulse, breathing rate, and blood pressure. Tests that ...

  1. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... for testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  2. Use of topical tranexamic acid or aminocaproic acid to prevent bleeding after major surgical procedures.

    PubMed

    Ipema, Heather J; Tanzi, Maria G

    2012-01-01

    To evaluate the literature describing topical use of tranexamic acid or aminocaproic acid for prevention of postoperative bleeding after major surgical procedures. Literature was retrieved through MEDLINE (1946-September 2011) and International Pharmaceutical Abstracts (1970-September 2011) using the terms tranexamic acid, aminocaproic acid, antifibrinolytic, topical, and surgical. In addition, reference citations from publications identified were reviewed. All identified articles in English were evaluated. Clinical trials, case reports, and meta-analyses describing topical use of tranexamic acid or aminocaproic acid to prevent postoperative bleeding were included. A total of 16 publications in the setting of major surgical procedures were included; the majority of data were for tranexamic acid. For cardiac surgery, 4 trials used solutions containing tranexamic acid (1-2.5 g in 100-250 mL of 0.9% NaCl), and 1 trial assessed a solution containing aminocaproic acid (24 g in 250 mL of 0.9% NaCl). These solutions were poured into the chest cavity before sternotomy closure. For orthopedic procedures, all of the data were for topical irrigation solutions containing tranexamic acid (500 mg-3 g in 50-100 mL of 0.9% NaCl) or for intraarticular injections of tranexamic acid (250 mg to 2 g in 20-50 mL of 0.9% sodium chloride, with or without carbazochrome sodium sulfate). Overall, use of topical tranexamic acid or aminocaproic acid reduced postoperative blood loss; however, few studies reported a significant reduction in the number of packed red blood cell transfusions or units given, intensive care unit stay, or length of hospitalization. Topical application of tranexamic acid and aminocaproic acid to decrease postsurgical bleeding after major surgical procedures is a promising strategy. Further data are needed regarding the safety of this hemostatic approach.

  3. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    PubMed

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P < .001). The pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  5. Comparative Evaluation of Efficacy and Tolerability of Glycolic Acid, Salicylic Mandelic Acid, and Phytic Acid Combination Peels in Melasma.

    PubMed

    Sarkar, Rashmi; Garg, Vijay; Bansal, Shivani; Sethi, Sumit; Gupta, Chitra

    2016-03-01

    Melasma is acquired symmetric hypermelanosis characterized by light-to-deep brown pigmentation over cheeks, forehead, upper lip, and nose. Treatment of this condition is difficult and associated with high recurrence rates. Chemical peels have become a popular modality in the treatment of melasma. To compare the therapeutic efficacy and tolerability of glycolic acid (35%) versus salicylic-mandelic (SM) acid (20% salicylic/10% mandelic acid) versus phytic combination peels in Indian patients with melasma. Ninety patients diagnosed with melasma were randomly assigned into 3 groups of 30 patients each. Group A received glycolic acid (GA-35%) peel, Group B received SM acid, and Group C received phytic combination peels. Each group was primed with 4% hydroquinone and 0.05% tretinoin cream for 4 weeks before treatment. Chemical peeling was done after every 14 days in all groups until 12 weeks. Clinical evaluation using melasma area and severity index (MASI) score and photography was recorded at every visit and follow-up was done until 20 weeks. There was a decrease in MASI score in all 3 groups but it was statistically significantly lower in Group A than Group C (p = .00), and it was also statistically significantly lower in Group B than Group C (p = .00) but there was no statistically significant difference between Groups A and B (p = .876). Objective response to treatment evaluated by reduction in MASI scoring after 12 weeks was 62.36% reduction in GA group, 60.98% reduction in SM group, and 44.71% in phytic acid group. It is concluded that GA (35%) and SM acid peels are both equally efficacious and a safe treatment modality for melasma in Indian skin, and are more effective than phytic acid peels. Salicylic-mandelic peels are better tolerated and more suitable for Indian skin.

  6. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  7. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  8. Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption.

    PubMed

    Bajor, Antal; Kilander, Anders; Fae, Anita; Gälman, Cecilia; Jonsson, Olof; Ohman, Lena; Rudling, Mats; Sjövall, Henrik; Stotzer, Per-Ove; Ung, Kjell-Arne

    2006-04-01

    Bile acid malabsorption as reflected by an abnormal Se-labelled homocholic acid-taurine (SeHCAT) test is associated with diarrhoea, but the mechanisms and cause-and-effect relations are unclear. Primarily, to determine whether there is a reduced active bile acid uptake in the terminal ileum in patients with bile acid malabsorption. Secondarily, to study the linkage between bile acid malabsorption and hepatic bile acid synthesis. Ileal biopsies were taken from patients with diarrhoea and from controls with normal bowel habits. Maximal active bile acid uptake was assessed in ileal biopsies using a previously validated technique based on uptake of C-labelled taurocholate. To monitor the hepatic synthesis, 7alpha-hydroxy-4-cholesten-3-one, a bile acid precursor, was assayed in blood. The SeHCAT-retention test was used to diagnose bile acid malabsorption. The taurocholate uptake in specimens from diarrhoea patients was higher compared with the controls [median, 7.7 (n=53) vs 6.1 micromol/g per min (n=17)] (P<0.01) but no difference was seen between those with bile acid malabsorption (n=18) versus diarrhoea with a normal SeHCAT test (n=23). The SeHCAT values and 7alpha-hydroxy-4-cholesten-3-one were inversely correlated. The data do not support bile acid malabsorption being due to a reduced active bile acid uptake capacity in the terminal ileum.

  9. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  10. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    USDA-ARS?s Scientific Manuscript database

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  11. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  12. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  13. Acid Rather than Non-Acid Reflux Burden is a Predictor of Tooth Erosion

    PubMed Central

    Ganesh, Meenakshi; Hertzberg, Anne; Nurko, Samuel; Needleman, Howard; Rosen, Rachel

    2015-01-01

    Objectives The relationship between tooth erosion (TE) and gastroesophageal reflux (GER) in children has not been clearly established and there are no studies to determine the relationship with refluxate height, non-acid reflux and erosions. The aim of this study was to determine the relationship between TE and acid and non-acid GER measured using combined pH and multichannel intraluminal impedance (pH-MII). Methods We conducted a prospective cohort study of children presenting for pH-MII testing. Once consented, patients completed questionnaires about their reflux symptoms and diet, and then underwent pH-MII catheter placement and a dental examination. The Keels-Coffield erosion index was used to score extent and severity of TE. Reflux parameters of patients with and without TE were compared using Student's t test. Results Twenty-seven patients participated in the study, all of whom were on acid suppression at the time of pH-MII testing. Ten out of 27 patients (37%) had TE. There were significant positive correlations between acid reflux episodes (r=0.44, p=0.02), the % time that acid reflux was present in the distal esophagus (r=0.44, p=0.02), and reflux index (r=0.54, p=0.004) with number of TE in a given patient. The % time that acid reflux was present in the proximal esophagus was positively correlated with the number of teeth erosions per patient with borderline significance (r=0.38, p=0.05). Conclusions There was a positive correlation between acid reflux parameters and TE. Acid, rather than non-acid reflux, seems to have a significant role in the pathogenesis of TE. PMID:26230904

  14. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  15. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    PubMed

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  18. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  19. Growth of Azotobacter chroococcum in chemically defined media containing p-hydroxybenzoic acid and protocatechuic acid.

    PubMed

    Juarez, B; Martinez-Toledo, M V; Gonzalez-Lopez, J

    2005-06-01

    Growth and utilization of different phenolic acids present in olive mill wastewater (OMW) by Azotobacter chroococcum were studied in chemically defined media. Growth and utilization of phenolic acids were only detected when the microorganism was cultured on p-hydroxybenzoic acid at concentration from 0.01% to 0.5% (w/v) and protocatechuic acid at concentration from 0.01% to 0.3% (w/v) as sole carbon sources suggesting that only these phenolic compounds could be utilized as a carbon source by A. chroococcum. Moreover when culture media were added with a mixture of 0.3% of protocatechuic acid and 0.3% p-hydroxybenzoic acid, the microorganism degradated in first place protocatechuic acid and once the culture medium was depleted of this compound, the degradation of p-hydroxybenzoic acid commenced very fast.

  20. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  1. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  2. Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-09-01

    Hydrothermal acid treatment, was adopted to extract eicosapentaenoic acid (EPA) from wet biomass of Nannochloropsis salina. It was found that sulfuric acid-based treatment increased EPA yield from 11.8 to 58.1 mg/g cell in a way that was nearly proportional to its concentration. Nitric acid exhibited the same pattern at low concentrations, but unlike sulfuric acid its effectiveness unexpectedly dropped from 0.5% to 2.0%. The optimal and minimal conditions for hydrothermal acid pretreatment were determined using a statistical approach; its maximum EPA yield (predicted: 43.69 mg/g cell; experimental: 43.93 mg/g cell) was established at a condition of 1.27% of sulfuric acid, 113.34 °C of temperature, and 36.71 min of reaction time. Our work demonstrated that the acid-catalyzed cell disruption, accompanied by heat, can be one potentially promising option for ω-3 fatty acids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Role of bile acids and bile acid binding agents in patients with collagenous colitis.

    PubMed

    Ung, K A; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-02-01

    In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the (75)Se-homocholic acid taurine ((75)SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the (75)SeHCAT test. Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The (75)SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with (75)SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal (75)SeHCAT tests. Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.

  4. Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.

    PubMed

    Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun

    2018-04-30

    More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.

  5. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran.

    PubMed

    Levin, Eran; McCue, Marshall D; Davidowitz, Goggy

    2017-02-08

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13 C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals. © 2017 The Author(s).

  6. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran

    PubMed Central

    McCue, Marshall D.; Davidowitz, Goggy

    2017-01-01

    The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients—amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals. PMID:28148746

  7. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  8. Role of bile acids and bile acid binding agents in patients with collagenous colitis

    PubMed Central

    Ung, K; Gillberg, R; Kilander, A; Abrahamsson, H

    2000-01-01

    BACKGROUND—In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis.
AIMS—To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis.
METHODS—Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the 75Se-homocholic acid taurine (75SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the 75SeHCAT test.
RESULTS—Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The 75SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with 75SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal 75SeHCAT tests.
CONCLUSION—Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.


Keywords: bile acid malabsorption; collagenous colitis; diarrhoea; cholestyramine; colestipol PMID:10644309

  9. Crystallization of uric acid

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Vaidyan, V. K.; Kanakavel, M.; Ramasamy, P.

    1993-09-01

    Crystals of uric acid have been grown in tetra methoxy silane and silica gel medium. Small winged, transparent, platy crystals of uric acid of about 0.5x0.5x0.1 mm were grown and were found to be hydrated uric acid.

  10. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii.

    PubMed

    Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng

    2018-07-01

    The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  12. Individual bile acids have differential effects on bile acid signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  13. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption.

    PubMed

    Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J

    2017-07-01

    Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.

  14. Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen.

    PubMed

    Koppová, I; Lukás, F; Kopecný, J

    2006-01-01

    Microorganisms with high activity of linoleic acid delta12-cis,delta11-trans-isomerase were isolated from the digestive tract of ruminants and characterized. The isolate with the highest isomerase activity was identified as Pseudobutyrivibrio ruminis. The susceptibility of this strain to 3 fatty acids added to the grow medium was determined. A significant inhibition of bacterial growth (during a 3-d period) by linoleic acid (0.1 %) and oleic acid (5 ppm) was observed; no inhibition was found in the presence of stearic acid.

  15. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    PubMed Central

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  16. The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.

    PubMed

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2006-01-01

    Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.

  17. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  19. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  20. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  1. Zoledronic Acid Injection

    MedlinePlus

    ... acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and ... Zoledronic acid (Reclast) is also used to treat osteoporosis in men, and to prevent or treat osteoporosis ...

  2. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  3. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  4. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  5. Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts.

    PubMed

    Sano, Katsura; Gotoh, Mari; Dodo, Kyoko; Tajima, Noriaki; Shimizu, Yoshibumi; Murakami-Murofushi, Kimiko

    2018-01-01

    Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1-3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.

  6. Modulation of Protein Metabolism to Mitigate Nitrous Oxide (N2O) Emission from Excreta of Livestock.

    PubMed

    Zhao, Guangyong

    2017-01-01

    Dietary protein is the main source of the body needed protein for animals. A great number of domestic animals including cattle, sheep, goats, pigs and chicken and other species are raised in the world to supply meat, milk and eggs that contain high quality of protein for human consumption. Domestic animals consume a great amount of feeds and water and excrete a large amount of faeces and urine. The conversion rate of dietary nitrogen (N, mainly dietary protein) to product N in livestock is low and the amount of N excretion is high and the nitrogenous compounds in excreta can be used as materials for nitrous oxide (N2O) formation in the processes of nitrification and denitrification in storage of excreta. Hence livestock farms and grazing pastures are important sources of N2O. N2O is a potent greenhouse gas and the key factor that damages the ozonosphere of the earth. Therefore, it is urgent to reveal the dietary protein metabolism processes and the regulation mechanism, which will help to reduce N2O emission. The nutritional options to reduce N excretion from livestock and consequently N2O emission include feeding low N rations and supplementing essential amino acid (AA) such as lysine and methionine to balance the AA profile of rations for pigs and ruminants. Other options include regulating partition of N excretion from urine to faeces and urinary nitrogenous constituents by decreasing urea N and increasing hippuric acid in ruminants. Supplementing tannic acid in the ration of ruminants has the potential to decrease the ratio of urinary N/faecal N and regulate the urinary nitrogenous components of ruminants and possibly reduce N2O emission in storage of excreta. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration.

    PubMed

    Cornelis, Tom; Eloot, Sunny; Vanholder, Raymond; Glorieux, Griet; van der Sande, Frank M; Scheijen, Jean L; Leunissen, Karel M; Kooman, Jeroen P; Schalkwijk, Casper G

    2015-08-01

    Protein-bound uraemic toxins (PBUT), dicarbonyl stress and advanced glycation end products (AGEs) associate with cardiovascular disease in dialysis. Intensive haemodialysis (HD) may have significant clinical benefits. The aim of this study was to evaluate the acute effects of conventional and extended HD and haemodiafiltration (HDF) on reduction ratio (RR) and total solute removal (TSR) of PBUT, dicarbonyl stress compounds and AGEs. Thirteen stable conventional HD patients randomly completed a single study of 4-h HD (HD4), 4-h HDF (HDF4), 8-h HD (HD8) and 8-h HDF (HDF8) with a 2-week interval between the study sessions. RR and TSR of PBUT [indoxyl sulphate (IS), p-cresyl sulphate (PCS), p-cresyl glucuronide, 3-carboxyl-4-methyl-5-propyl-2-furanpropionic acid (CMPF), indole-3-acetic acid (IAA) and hippuric acid] of free and protein-bound AGEs [N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine, pentosidine], as well as of dicarbonyl compounds [glyoxal, methylglyoxal, 3-deoxyglucosone], were determined. Compared with HD4, HDF4 resulted in increased RR of total and/or free fractions of IAA and IS as well as increased RR of free CML and CEL. HD8 and HDF8 showed a further increase in TSR and RR of PBUT (except CMPF), as well as of dicarbonyl stress and free AGEs compared with HD4 and HDF4. Compared with HD8, HDF8 only significantly increased RR of total and free IAA and free PCS, as well as RR of free CEL. Dialysis time extension (HD8 and HDF8) optimized TSR and RR of PBUT, dicarbonyl stress and AGEs, whereas HDF8 was superior to HD8 for only a few compounds. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  9. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    PubMed

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  10. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. PMID:23737849

  11. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  12. Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.

    PubMed

    Siegfried, C M; Doisy, E A; Elliott, W H

    1975-01-24

    The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.

  13. Fatty acid synthesis in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1967-01-01

    1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mμmoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C17-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO42− or Mg2+, was growth-limiting there was a small accumulation of C17-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH4+ or PO43− was growth-limiting and there were adequate supplies of glycerol, Mg2+ and SO42−, there was a marked accumulation of C17-cyclopropane acid and C19-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C17-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg2+ and SO42− stimulated cyclopropane acid formation in resting cells. PMID:5340364

  14. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    PubMed Central

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  15. Detection of naphthenic acids in fish exposed to commercial naphthenic acids and oil sands process-affected water.

    PubMed

    Young, R F; Orr, E A; Goss, G G; Fedorak, P M

    2007-06-01

    Naphthenic acids are a complex mixture of carboxylic acids that occur naturally in petroleum. During the extraction of bitumen from the oil sands in northeastern Alberta, Canada, naphthenic acids are released into the aqueous phase and these acids become the most toxic components in the process-affected water. Although previous studies have exposed fish to naphthenic acids or oil sands process-affected waters, there has been no analytical method to specifically detect naphthenic acids in fish. Here, we describe a qualitative method to specifically detect these acids. In 96-h static renewal tests, rainbow trout (Oncorhynchus mykiss) fingerlings were exposed to three different treatments: (1) fed pellets that contained commercial naphthenic acids (1.5mg g(-1) of food), (2) kept in tap water that contained commercial naphthenic acids (3mg l(-1)) and (3) kept in an oil sands process-affected water that contained 15mg naphthenic acids l(-1). Five-gram samples of fish were homogenized and extracted, then the mixture of free fatty acids and naphthenic acids was isolated from the extract using strong anion exchange chromatography. The mixture was derivatized and analyzed by gas chromatography-mass spectrometry. Reconstructed ion chromatograms (m/z=267) selectively detected naphthenic acids. These acids were present in each fish that was exposed to naphthenic acids, but absent in fish that were not exposed to naphthenic acids. The minimum detectable concentration was about 1microg naphthenic acids g(-1) of fish.

  16. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  17. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Lai; Liao Peiqiu; Wu Huifeng

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time-more » and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.« less

  18. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain.

    PubMed

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-05-21

    Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.

  19. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  20. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did. Published by Elsevier Ltd.

  1. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  2. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to

  3. Effect of Hydrochloric Acid Concentration on the Conversion of Sugarcane Bagasse to Levulinic Acid

    NASA Astrophysics Data System (ADS)

    Anggorowati, Heni; Jamilatun, Siti; Cahyono, Rochim B.; Budiman, Arief

    2018-01-01

    Levulinic acid is a new green platform chemical used to the synthesis of a variety of materials for numerous applications such as fuel additives, polymers and resins. It can be produced using renewable resources such as biomass like sugarcane bagasse which are cheap and widely available as waste in Indonesia. In this study, sugarcane bagasse was hydrolyzed using hydrochloric acid with a solid liquid ratio 1:10. The effects of hydrochloric acid concentration at temperature of 180 °C and reaction time of 30 min were studied. The presence of levulinic acid in product of hydrolysis was measured with gas chromatography (GC). It was found that the highest concentration of levulinic acid was obtained at 1 M hydrochloric acid in 25.56 yield%.

  4. [Effects of low molecular weight organic acids on speciation of exogenous Cu in an acid soil].

    PubMed

    Huang, Guo-Yong; Fu, Qing-Ling; Zhu, Jun; Wan, Tian-Ying; Hu, Hong-Qing

    2014-08-01

    In order to ascertain the effect of LMWOA (citric acid, tartaric acid, oxalic acid) on Cu-contaminated soils and to investigate the change of Cu species, a red soil derived from quartz sandstone deposit was added by Cu (copper) in the form of CuSO4 x 5H2O so as to simulate soil Cu pollution, keeping the additional Cu concentrations were 0, 100, 200, 400 mg x kg(-1) respectively. After 9 months, different LMWOA was also added into the simulated soil, keeping the additional LMWOAs in soil were 0, 5, 10, 20 mmol x kg(-1) respectively. After 2 weeks incubation, the modified sequential extraction method on BCR (European Communities Bureau of Reference) was used to evaluate the effects of these LMWOAs on the changes of copper forms in soil. The result showed that the percentage of weak acid dissolved Cu, the most effective form in the soil increased with three organic acids increase in quantity in the simulated polluted soil. And there was a good activation effect on Cu in the soil when organic acid added. Activation effects on Cu increased with concentration of citric acid increasing, but it showed a rise trend before they are basically remained unchanged in the case of tartaric acid and oxalic acid added in the soil. On the contrary, the state of the reduction of copper which was regarded as a complement for effective state decreased with the increased concentration of organic acid in the soil, especially with citric acid. When 20 mmol x kg(-1) oxalic acid and citric acid were added into the soil, the activation effect was the best; whereas for tartaric, the concentration was 10 mmol x kg(-1). In general, the effect on the changes of Cu forms in the soil is citric acid > tartaric acid > oxalic acid.

  5. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  6. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  7. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. 6-methyl-8-hexadecenoic acid: A novel fatty acid from the marine spongeDesmapsama anchorata.

    PubMed

    Carballeira, N M; Maldonado, M E

    1988-07-01

    The novel fatty acid 7-methyl-8-hexadecenoic (1) was identified in the marine spongeDesmapsama anchorata. Other interesting fatty acids identified were 14-methyl-8-hexadecenoic (2), better known through its methyl ester as one of the components of the sex attractant of the female dermestid beetle, and the saturated fatty acid 3-methylheptadecanoic (3), known to possess larvicidal activity. The main phospholipid fatty acids encountered inD. anchorata were palmitic (16∶0), behenic (22∶0) and 5,9-hexacosadienoic acid (26∶2), which together accounted for 50% of the total phospholipid fatty acid mixture.

  9. Developing Potential Energy Curves of Acidic and Basic Amino Acids Using Quantum Computational Techniques

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.

    2017-04-01

    Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).

  10. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  11. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women

    PubMed Central

    Garg, Ramandeep; Brennan, Lorraine; Price, Ruth K.; Wallace, Julie M. W.; Strain, J. J.; Gibney, Mike J.; Shewry, Peter R.; Ward, Jane L.; Garg, Lalit; Welch, Robert W.

    2016-01-01

    Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions. PMID:26901221

  12. Mediterranean Diet Score: Associations with Metabolic Products of the Intestinal Microbiome, Carotid Plaque Burden, and Renal Function.

    PubMed

    Pignanelli, Michael; Just, Caroline; Bogiatzi, Chrysi; Dinculescu, Vincent; Gloor, Gregory B; Allen-Vercoe, Emma; Reid, Gregor; Urquhart, Bradley L; Ruetz, Kelsey N; Velenosi, Thomas J; Spence, J David

    2018-06-16

    Metabolic products of the intestinal microbiome such as trimethylamine N-oxide (TMAO) that accumulate in renal failure (gut-derived uremic toxins, GDUTs) affect atherosclerosis and increase cardiovascular risk. We hypothesized that patients on a Mediterranean diet and those consuming lower amounts of dietary precursors would have lower levels of GDUTs. Patients attending vascular prevention clinics completed a Harvard Food Frequency Questionnaire (FFQ) and had plasma levels of TMAO, p-cresylsulfate, hippuric acid, indoxyl sulfate, p-cresyl glucuronide, phenyl acetyl glutamine, and phenyl sulfate measured by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Carotid plaque burden was measured by ultrasound; CKD-Epi equations were used to estimate the glomerular filtration rate. In total, 276 patients completed the study. Even moderate renal function significantly increased plasma GDUTs, which were significantly associated with higher carotid plaque burden. There was no significant difference in plasma levels of any GDUT associated with a Mediterranean diet score or with intake of dietary precursors. In omnivorous patients with vascular disease, the intake of dietary precursors of intestinal metabolites or adherence to a Mediterranean diet did not change plasma GDUT. Approaches other than diet, such as probiotics and repopulation of the intestinal microbiome, may be required to mitigate the adverse effects of GDUTs.

  13. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a 1H NMR Metabolomics Approach

    PubMed Central

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a 1H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment. PMID:26798649

  14. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach.

    PubMed

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Khatib, Alfi; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.

  15. Impact in Plasma Metabolome as Effect of Lifestyle Intervention for Weight-Loss Reveals Metabolic Benefits in Metabolically Healthy Obese Women.

    PubMed

    Almanza-Aguilera, Enrique; Brunius, Carl; Bernal-Lopez, M Rosa; Garcia-Aloy, Mar; Madrid-Gambin, Francisco; Tinahones, Francisco J; Gómez-Huelgas, Ricardo; Landberg, Rikard; Andres-Lacueva, Cristina

    2018-06-28

    Little is known regarding metabolic benefits of weight loss (WL) on the metabolically healthy obese (MHO) patients. We aimed to examine the impact of a lifestyle weight loss (LWL) treatment on the plasma metabolomic profile in MHO individuals. Plasma samples from 57 MHO women allocated to an intensive LWL treatment group (TG, hypocaloric Mediterranean diet and regular physical activity, n = 30) or to a control group (CG, general recommendations of a healthy diet and physical activity, n = 27) were analyzed using an untargeted 1 H NMR metabolomics approach at baseline, after 3 months (intervention), and 12 months (follow-up). The impact of the LWL intervention on plasma metabolome was statistically significant at 3 months but not at follow-up and included higher levels of formate and phosphocreatine and lower levels of LDL/VLDL (signals) and trimethylamine in the TG. These metabolites were also correlated with WL. Higher myo-inositol, methylguanidine, and 3-hydroxybutyrate, and lower proline, were also found in the TG; higher levels of hippurate and asparagine, and lower levels of 2-hydroxybutyrate and creatine, were associated with WL. The current findings suggest that an intensive LWL treatment, and the consequent WL, leads to an improved plasma metabolic profile in MHO women through its impact on energy, amino acid, lipoprotein, and microbial metabolism.

  16. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  17. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  18. Orange juice (poly)phenols are highly bioavailable in humans.

    PubMed

    Pereira-Caro, Gema; Borges, Gina; van der Hooft, Justin; Clifford, Michael N; Del Rio, Daniele; Lean, Michael E J; Roberts, Susan A; Kellerhals, Michele B; Crozier, Alan

    2014-11-01

    We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota. Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers. Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 μmol (poly)phenols of which 537 μmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 μmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ∼ 100% of

  19. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  20. New insights into bile acid malabsorption.

    PubMed

    Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F

    2011-10-01

    Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.

  1. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  2. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  3. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  4. Structures of chloralide, ?-lactic acid chloralide, malic acid chloralide and citric acid chloralide

    NASA Astrophysics Data System (ADS)

    Koh, L. L.; Huang, H. H.; Chia, L. H. L.; Liang, E. P.

    1995-06-01

    The crystal and molecular structures of chloralide ( 1), D-lactic acid chloralide ( 2), malic acid chloralide ( 3) and citric acid chloralide ( 4) have been determined by X-ray diffraction methods. Compound 1 crystallizes in the monoclinic space group, {P2 1}/{c}, a = 6.201(2), b = 17.11(2), c = 10.357(6) Å, β = 95.21(4)°, Z = 4; compound 2 in the monoclinic space group P2 1, a = 7.600(4), b = 5.902(4), c = 9.743(6) Å, β = 99.20(5), Z = 2; compound 3 in the monoclinic space group {P2 1}/{c}, a = 16.500(6), b = 5.819(3), c = 10.120(4) Å, β = 91.41(3), Z = 4; compound 4 in the monoclinic space group {P2 1}/{c}, a = 12.041(3), b = 6.1190(10), c = 17.259(4) Å, β = 101.85(2), Z = 4. The five-membered ring systems of all the compounds are slightly twisted out-of-plane, that of compound 4 being the most puckered. The CCl 3 group is trans to the second CCl 3 group in 1, to the CH 3 group in 2 and to the CH 2COOH group in 3. The two CH 2COOH groups in 4 are disposed axially with respect to the ring. Dipole moment and Kerr constant data for D-lactic acid chloralide suggest a structure in solution which is consistent with the X-ray results. The IR spectra of 2, 3 and 4 are discussed in relation to the structures of these compounds.

  5. Synthesis and characterization of 3-ketohexadecanoic acid-1-14-C, DL-3-hydroxyhexadecanoic acid-1-14-C, and trans-2-hexadecenoic acid-1-14-C.

    PubMed

    Jones, J A; Blecher, M

    1966-05-01

    The chemical synthesis and characterization of three intermediates in the Beta oxidation of palmitic acid-1-(14)C by rat liver mitochondria, namely, 3-ketohexadecanoic acid-1-(14)C, DL-3-hydroxyhexadecanoic acid-1-(14)C, and trans-2-hexadecenoic acid-1-(14)C, are described.

  6. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  7. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  8. Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.

    PubMed

    Taha, Mohamed; Khan, Imran; Coutinho, João A P

    2016-04-01

    With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  10. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  11. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    PubMed Central

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  12. Anharmonicity in Amino Acids

    NASA Astrophysics Data System (ADS)

    Martinho, Herculano; Lima, Thamires; Ishikawa, Mariana

    2012-02-01

    Two special dynamical transitions of universal character have been recently observed in macromolecules (lysozyme, myoglobin, bacteriorhodopsin, DNA, and RNA) at T^*˜100 - 150 K and TD˜180 - 220 K. The underlying mechanisms governing these transitions have been subject of debate. In the present work it is reported a survey on the temperature dependence of structural, vibrational and thermodynamical properties of a nearly anhydrous amino acid (orthorhombic polymorph of the amino acids L-cysteine and L-proline at a hydration level of 3.5%). The temperature dependence of X-Ray diffraction, Raman spectroscopy, and specific heat were considered. The data were analyzed considering amino acid-amino acid, amino acid-water, and water-water phonon-phonon interactions, and molecular rotors activation. Our results indicated that the two referred temperatures define the triggering of very simple and specific events that govern all the interactions of the biomolecule: activation of CH2 rigid rotors (Tacid and water dimer vibrational modes (T^*TD).

  13. Amino Acid Analyses of Acid Hydrolysates in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Perry, Randall S.; Staley, James T.; Dworkin, Jason P.; Engel, Mike

    2001-01-01

    There has long been a debate as to whether rock varnish deposits are microbially mediated or are deposited by inorganic processes. Varnished rocks are found throughout the world primarily in arid and semi-arid regions. The varnish coats are typically up to 200 microns thick and are composed of clays and alternating layers enriched in manganese and iron oxides. The individual layers range in thickness from 1 micron to greater than 10 microns and may continue laterally for more than a 100 microns. Overlapping botryoidal structures are visible in thin section and scanning electron micrographs. The coatings also include small amounts of organic mater and detrital grains. Amino-acid hydrolysates offer a means of assessing the organic composition of rock varnish collected from the Sonoran Desert, near Phoenix, AZ. Chromatographic analyses of hydrolysates from powdered samples of rock varnish suggest that the interior of rock varnish is relatively enriched in amino acids and specifically in d-alanine and glutamic acid. Peptidoglycan (murein) is the main structural component of gram-positive bacterial cell walls. The d-enantiomer of alanine and glutamic acid are specific to peptidoglycan and are consequently an indicator for the presence of bacteria. D-alanine is also found in teichoic acid which is only found in gram-positive bacteria. Several researchers have cultured bacteria from the surface of rock varnish and most have been gram-positive, suggesting that gram-positive bacteria are intimately associated with varnish coatings and may play a role in the formation of varnish coatings.

  14. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It is...

  15. Acid Lipase Disease

    MedlinePlus

    ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ...

  16. CINNAMIC ACID HYDROXYLASE IN SPINACH,

    DTIC Science & Technology

    An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating

  17. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  19. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  20. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    PubMed

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, p<0.01) and postprandial acid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, p<0.05) in all patients without affecting the total number of reflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  1. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  2. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  3. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  4. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    USDA-ARS?s Scientific Manuscript database

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  6. Treatment of menorrhagia during menstruation: randomised controlled trial of ethamsylate, mefenamic acid, and tranexamic acid.

    PubMed Central

    Bonnar, J.; Sheppard, B. L.

    1996-01-01

    OBJECTIVE: To compare the efficacy and acceptability of ethamsylate, mefenamic acid, and tranexamic acid for treating menorrhagia. DESIGN: Randomised controlled trial. SETTING: A university department of obstetrics and gynaecology. SUBJECTS: 76 women with dysfunctional uterine bleeding. INTERVENTIONS: Treatment for five days from day 1 of menses during three consecutive menstrual periods. 27 patients were randomised to take ethamsylate 500 mg six hourly, 23 patients to take mefenamic acid 500 mg eight hourly, and 26 patients to take tranexamic acid 1 g six hourly. MAIN OUTCOMES MEASURES: Menstrual loss measured by the alkaline haematin method in three control menstrual periods and three menstrual periods during treatment; duration of bleeding; patient's estimation of blood loss; sanitary towel usage; the occurrence of dysmenorrhoea; and unwanted events. RESULTS: Ethamsylate did not reduce mean menstrual blood loss whereas mefenamic acid reduced blood loss by 20% (mean blood loss 186 ml before treatment, 148 ml during treatment) and tranexamic acid reduced blood loss by 54% (mean blood loss 164 ml before treatment, 75 ml during treatment). Sanitary towel usage was significantly reduced in patients treated with mefenamic acid and tranexamic acid. CONCLUSIONS: Tranexamic acid given during menstruation is a safe and highly effective treatment for excessive bleeding. Patients with dysfunctional uterine bleeding should be offered medical treatment with tranexamic acid before a decision is made about surgery. PMID:8806245

  7. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  8. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  9. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  10. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  11. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.

    PubMed

    Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W

    2009-11-01

    Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.

  12. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  14. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  15. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  16. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    PubMed

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  17. Protecting‐Group‐Free Amidation of Amino Acids using Lewis Acid Catalysts

    PubMed Central

    Sabatini, Marco T.; Karaluka, Valerija; Lanigan, Rachel M.; Boulton, Lee T.; Badland, Matthew

    2018-01-01

    Abstract Amidation of unprotected amino acids has been investigated using a variety of ‘classical“ coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions. PMID:29505683

  18. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  19. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  20. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    PubMed

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.