Sample records for histamine-2 receptor antagonists

  1. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  2. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  3. Shifting physician prescribing to a preferred histamine-2-receptor antagonist. Effects of a multifactorial intervention in a mixed-model health maintenance organization.

    PubMed

    Brufsky, J W; Ross-Degnan, D; Calabrese, D; Gao, X; Soumerai, S B

    1998-03-01

    This study was undertaken to determine whether a program of education, therapeutic reevaluation of eligible patients, and performance feedback could shift prescribing to cimetidine from other histamine-2 receptor antagonists, which commonly are used in the management of ulcers and reflux, and reduce costs without increasing rates of ulcer-related hospital admissions. This study used an interrupted monthly time series with comparison series in a large mixed-model health maintenance organization. Physicians employed in health centers (staff model) and physicians in independent medical groups contracting to provide health maintenance organization services (group model) participated. The comparative percentage prescribed of specific histamine-2 receptor antagonists (market share), total histamine-2 receptor antagonist prescribing, cost per histamine-2 receptor antagonist prescription, and the rate of hospitalization for gastrointestinal illness were assessed. In the staff model, therapeutic reevaluation resulted in a sudden increase in market share of the preferred histamine-2 receptor antagonist cimetidine (+53.8%) and a sudden decrease in ranitidine (-44.7%) and famotidine (-4.8%); subsequently, cimetidine market share grew by 1.1% per month. In the group model, therapeutic reevaluation resulted in increased cimetidine market share (+9.7%) and decreased prescribing of other histamine-2 receptor antagonists (ranitidine -11.6%; famotidine -1.2%). Performance feedback did not result in further changes in prescribing in either setting. Use of omeprazole, an expensive alternative, essentially was unchanged by the interventions, as were overall histamine-2 receptor antagonist prescribing and hospital admissions for gastrointestinal illnesses. This intervention, which cost approximately $60,000 to implement, resulted in estimated annual savings in histamine-2 receptor antagonist expenditures of $1.06 million. Annual savings in histamine-2 receptor antagonist expenditures

  4. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    PubMed

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  5. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  6. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  7. Histamine H2 receptor - Involvement in gastric ulceration

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos-Danellis, J.; Brown, T. H.

    1976-01-01

    The involvement of the H1 and H2 receptors for histamine in the pathogenesis of gastric ulcers was investigated in rats. Metiamide, an H2 receptor antagonist, reliably reduced ulceration produced by stress alone or by a combination of stress and aspirin. In contrast, pyrilamine, which blocks only the H1 receptor, was without effect under these same conditions. The results support the hypothesis that histamine mediates both stress and stress plus aspirin induced ulceration by a mechanism involving the H2 receptor.

  8. Proton pump inhibitors versus histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis.

    PubMed

    Alhazzani, Waleed; Alenezi, Farhan; Jaeschke, Roman Z; Moayyedi, Paul; Cook, Deborah J

    2013-03-01

    Critically ill patients may develop bleeding caused by stress ulceration. Acid suppression is commonly prescribed for patients at risk of stress ulcer bleeding. Whether proton pump inhibitors are more effective than histamine 2 receptor antagonists is unclear. To determine the efficacy and safety of proton pump inhibitors vs. histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in the ICU. We searched Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ACPJC, CINHAL, online trials registries (clinicaltrials.gov, ISRCTN Register, WHO ICTRP), conference proceedings databases, and reference lists of relevant articles. Randomized controlled parallel group trials comparing proton pump inhibitors to histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in critically ill patients, published before March 2012. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data. The primary outcomes were clinically important upper gastrointestinal bleeding and overt upper gastrointestinal bleeding; secondary outcomes were nosocomial pneumonia, ICU mortality, ICU length of stay, and Clostridium difficile infection. Trial authors were contacted for additional or clarifying information. Fourteen trials enrolling a total of 1,720 patients were included. Proton pump inhibitors were more effective than histamine 2 receptor antagonists at reducing clinically important upper gastrointestinal bleeding (relative risk 0.36; 95% confidence interval 0.19-0.68; p = 0.002; I = 0%) and overt upper gastrointestinal bleeding (relative risk 0.35; 95% confidence interval 0.21-0.59; p < 0.0001; I = 15%). There were no differences between proton pump inhibitors and histamine 2 receptor antagonists in the risk of nosocomial pneumonia (relative risk 1.06; 95% confidence interval 0.73-1.52; p = 0.76; I = 0%), ICU mortality (relative risk 1.01; 95% confidence interval 0.83-1.24; p = 0.91; I = 0

  9. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  10. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  11. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.

    PubMed

    Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.

  12. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

    PubMed

    Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho

    2009-11-01

    Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.

  13. In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium.

    PubMed

    Grosicki, Marek; Wójcik, Tomasz; Chlopicki, Stefan; Kieć-Kononowicz, Katarzyna

    2016-04-15

    It is a well-known fact that histamine is involved in eosinophil-dependent inflammatory responses including cellular chemotaxis and migration. Nevertheless, the relative role of histamine receptors in the mechanisms of eosinophils adhesion to endothelial cells is not known. Therefore the aim of presented study was to examine the effect of selective histamine receptors ligands on eosinophils adhesion to endothelium. For that purpose the highly purified human eosinophils have been isolated from the peripheral blood. The viability and functional integrity of isolated eosinophils have been validated in several tests. Histamine as well as 4-methylhistamine (selective H4 agonist) in concentration-dependent manner significantly increased number of eosinophils that adhere to endothelium. Among the selective histamine receptors antagonist or H1 inverse agonist only JNJ7777120 (histamine H4 antagonist) and thioperamide (dual histamine H3/H4 antagonist) had direct effect on eosinophils adhesion to endothelial cells. Antagonists of H1 (diphenhydramine, mepyramine) H2 (ranitidine and famotidine) and H3 (pitolisant) histamine receptors were ineffective. To the best of our knowledge, this is the first study to demonstrate that histamine receptor H4 plays a dominant role in histamine-induced eosinophils adhesion to endothelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  15. JB-9322, a new selective histamine H2-receptor antagonist with potent gastric mucosal protective properties.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; Román, L S

    1995-05-01

    1. JB-9322 is a selective histamine H2-receptor antagonist with gastric antisecretory activity and mucosal protective properties. 2. The affinity of JB-9322 for the guinea-pig atria histamine H2-receptor was approximately 2 times greater than that of ranitidine. 3. In vivo, the ID50 value for the inhibition of gastric acid secretion in pylorus-ligated rats was 5.28 mg kg-1 intraperitoneally. JB-9322 also dose-dependently inhibited gastric juice volume and pepsin secretion. In gastric lumen-perfused rats, intravenous injection of JB-9322 dose-dependently reduced histamine-, pentagastrin- and carbachol-stimulated gastric acid secretion. 4. JB-9322 showed antiulcer activity against aspirin and indomethacin-induced gastric lesions and was more potent than ranitidine. 5. JB-9322 effectively inhibited macroscopic gastric haemorrhagic lesions induced by ethanol. Intraperitoneal injection was effective in preventing the lesions as well as oral treatment. The oral ID50 value for these lesions was 1.33 mg kg-1. By contrast, ranitidine (50 mg kg-1) failed to reduce these lesions. In addition, the protective effect of JB-9322 was independent of prostaglandin synthesis. 6. These results indicate that JB-9322 is a new antiulcer drug that exerts a potent cytoprotective effect in addition to its gastric antisecretory activity.

  16. Comparison of the tumor inhibiting effects of three histamine H2-receptor antagonists.

    PubMed

    Tutton, P J; Barkla, D H

    1983-01-01

    Three histamine H2-receptor antagonists, Cimetidine, Metiamide and Ranitidine, were tested for their inhibitory effect on two experimental bowel cancer models. In the first model mitotic rates were measured in dimethylhydrazine-induced tumors of rat colon and in the second model volumetric changes in human large bowel cancer xenografts were assessed. In tumors of rat colon all three drugs were able to suppress mitotic activity, but the effects of Metiamide and Ranitidine were more prolonged than that of Cimetidine in each of two lines of human bowel cancer that were used. Metiamide and Ranitidine were also more effective growth inhibitors than was Cimetidine.

  17. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  18. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    PubMed

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  19. Histamine response and local cooling in the human skin: involvement of H1- and H2-receptors.

    PubMed

    Grossmann, M; Jamieson, M J; Kirch, W

    1999-08-01

    Histamine may contribute locally to cutaneous blood flow control under normal and pathologic conditions. The objective of this study was to observe the influence of skin temperature on histamine vasodilation, and the roles of H1-and H2-receptors using novel noninvasive methods. Eleven healthy subjects received, double-blind, single doses of the H1-receptor antagonist cetirizine (10 mg), cetirizine (10 mg) plus the H2-receptor antagonist cimetidine (400 mg), or placebo on separate occasions. Histamine was dosed cumulatively by iontophoresis to the forearm skin at 34 degrees C and 14 degrees C. Laser-Doppler flux (LDF) was measured at the same sites using customised probeholder/iontophoretic chambers with Peltier cooling elements. Finger mean arterial pressure (MAP) was measured and cutaneous vascular conductance calculated as LDF/MAP. Histamine vasodilation was reduced in cold skin. Cetirizine shifted the histamine dose-response at both temperatures: statistically significantly at 14 degrees C only. Combined H1- and H2-receptor antagonism shifted the response significantly at both temperatures. H1- and H2-receptors mediate histamine-induced skin vasodilation. The sensitivity of these receptors, particularly the H1- receptor, is attenuated at low skin temperature. Whether the reduced effect in cold skin represents specific receptor or postreceptor desensitization, or nonspecific attenuation of cutaneous vasodilation remains to be elucidated.

  20. Histamine H{sub 3} receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki

    Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less

  1. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  2. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  3. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    PubMed

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton

  4. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  5. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  6. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia.

    PubMed

    Meskanen, Katarina; Ekelund, Heidi; Laitinen, Jarmo; Neuvonen, Pertti J; Haukka, Jari; Panula, Pertti; Ekelund, Jesper

    2013-08-01

    Histamine has important functions as regulator of several other key neurotransmitters. Patients with schizophrenia have lower histamine H1 receptor levels. Since a case report in 1990 of an effect of the H2 antagonist famotidine on negative symptoms in schizophrenia, some open-label trials have been performed, but no randomized controlled trial. Recently, it was shown that clozapine is a full inverse agonist at the H2 receptor. We performed a researcher-initiated, academically financed, double-blind, placebo-controlled, parallel-group, randomized trial with the histamine H2 antagonist famotidine in treatment-resistant schizophrenia. Thirty subjects with schizophrenia were randomized to have either famotidine (100 mg twice daily, n = 16) or placebo (n = 14) orally, added to their normal treatment regimen for 4 weeks. They were followed up weekly with the Scale for the Assessment of Negative Symptoms (SANS), the PANSS (Positive and Negative Syndrome Scale), and Clinical Global Impression (CGI) Scale. In the famotidine group, the SANS score was reduced by 5.3 (SD, 13.1) points, whereas in the placebo group the SANS score was virtually unchanged (mean change, +0.2 [SD, 9.5]). The difference did not reach statistical significance (P = 0.134) in Mann-Whitney U analysis. However, the PANSS Total score and the General subscore as well as the CGI showed significantly (P < 0.05) greater change in the famotidine group than in the placebo group. No significant adverse effects were observed. This is the first placebo-controlled, randomized clinical trial showing a beneficial effect of histamine H2 antagonism in schizophrenia. H2 receptor antagonism may provide a new alternative for the treatment of schizophrenia.

  7. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    PubMed Central

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  8. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H 3 receptors (H 3 Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H 3 Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the ( S )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide ( 1 ). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R -enantiomer, namely, ( R )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide ( 2 ) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S -enantiomer ( 1 ), the results show that animals pretreated intraperitoneally (ip) with the R -enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier ( R )-enantiomer ( 3 ), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its ( S )-enantiomer ( 4 ) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the ( R )-enantiomer ( 3 ) in MES model were significantly greater than those of the standard H 3 R inverse agonist/antagonist pitolisant, comparable with

  9. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    PubMed

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  10. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  11. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  12. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  13. Identification of histamine receptors and reduction of squalene levels by an antihistamine in sebocytes.

    PubMed

    Pelle, Edward; McCarthy, James; Seltmann, Holger; Huang, Xi; Mammone, Thomas; Zouboulis, Christos C; Maes, Daniel

    2008-05-01

    Overproduction of sebum, especially during adolescence, is causally related to acne and inflammation. As a way to reduce sebum and its interference with the process of follicular keratinization in the pilosebaceous unit leading to inflammatory acne lesions, antihistamines were investigated for their effect on sebocytes, the major cell of the sebaceous gland responsible for producing sebum. Reverse transcriptase-PCR analysis and immunofluorescence of an immortalized sebocyte cell line (SZ95) revealed the presence of histamine-1 receptor (H-1 receptor), and thus indicated that histamines and, conversely, antihistamines could potentially modulate sebocyte function directly. When sebocytes were incubated with an H-1 receptor antagonist, diphenhydramine (DPH), at non-cytotoxic doses, a significant decrease in squalene levels, a biomarker for sebum, was observed. As determined by high-performance liquid chromatography, untreated sebocytes contained 6.27 (+/-0.73) nmol squalene per 10(6) cells, whereas for DPH-treated cells, the levels were 2.37 (+/-0.24) and 2.03 (+/-0.97) nmol squalene per 10(6) cells at 50 and 100 microM, respectively. These data were further substantiated by the identification of histamine receptors in human sebaceous glands. In conclusion, our data show the presence of histamine receptors on sebocytes, demonstrate how an antagonist to these receptors modulated cellular function, and may indicate a new paradigm for acne therapy involving an H-1 receptor-mediated pathway.

  14. Antibronchospastic activity of MEN10,627, a novel tachykinin NK2 receptor antagonist, in guinea-pig airways.

    PubMed

    Perretti, F; Ballati, L; Manzini, S; Maggi, C A; Evangelista, S

    1995-01-24

    The antibronchospastic activity against acetylcholine, antigen, histamine plus platelet-activating factor (PAF) or the selective tachykinin neurokinin (NK)1 and NK2 receptor agonists of the novel tachykinin NK2 receptor antagonist, MEN10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2 beta-5 beta)), was studied in anesthetized guinea-pigs. MEN10,627 (30-100 nmol/kg i.v.) reduced in a dose-dependent manner the bronchospasm induced by the tachykinin NK2 receptor agonist [beta Ala8]neurokinin A-(4-10) and the effect of the highest dose lasted up to 5 h from its administration. Conversely, airway constriction induced by the NK1 receptor agonist [Sar9]substance P sulfone or acetylcholine was unaffected by MEN10,627 up to a dose of 3 mumol/kg i.v. In animals sensitized with ovalbumin and pretreated with the endopeptidase inhibitor phosphoramidon, the aerosolized antigen produced a bronchospasm which was inhibited by MEN10,627 (30-100 nmol/kg i.v.) but not by the tachykinin NK1 receptor antagonist, (+/-)-CP96,345 ([2R,3R-cis- and [2S,3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)-methyl]-1- azabicyclo[2.2.2]octan-3-amine]) (3 mumol/kg i.v.). Both MEN10,627 (30-100 nmol/kg i.v.) and (+/-)-CP96,345 (30-300 nmol/kg i.v.) reduced the PAF-induced hyperresponsiveness to histamine, without affecting the hypotension induced by PAF or the bronchospasm induced by histamine in guinea-pigs not exposed to PAF, showing the involvement of both tachykinin NK1 and NK2 receptors in this model. In summary, MEN10,627 behaves as a potent, selective and long-lasting tachykinin NK2 receptor antagonist in vivo. Further, tachykinin NK2 receptors could be activated during allergic responses and in the development of airway hyperresponsiveness.

  15. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    PubMed

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  16. Use of histamine H2 receptor antagonists and outcomes in patients with heart failure: a nationwide population-based cohort study.

    PubMed

    Adelborg, Kasper; Sundbøll, Jens; Schmidt, Morten; Bøtker, Hans Erik; Weiss, Noel S; Pedersen, Lars; Sørensen, Henrik Toft

    2018-01-01

    Histamine H 2 receptor activation promotes cardiac fibrosis and apoptosis in mice. However, the potential effectiveness of histamine H 2 receptor antagonists (H2RAs) in humans with heart failure is largely unknown. We examined the association between H2RA initiation and all-cause mortality among patients with heart failure. Using Danish medical registries, we conducted a nationwide population-based active-comparator cohort study of new users of H2RAs and proton pump inhibitors (PPIs) after first-time hospitalization for heart failure during the period 1995-2014. Hazard ratios (HRs) for all-cause mortality and hospitalization due to worsening of heart failure, adjusting for age, sex, and time between heart failure diagnosis and initiation of PPI or H2RA therapy, index year, comorbidity, cardiac surgery, comedications, and socioeconomic status were computed based on Cox regression analysis. Our analysis included 42,902 PPI initiators (median age 78 years, 46% female) and 3,296 H2RA initiators (median age 76 years, 48% female). Mortality risk was lower among H2RA initiators than PPI initiators after 1 year (26% vs 31%) and 5 years (60% vs 66%). In multivariable analyses, the 1-year HR was 0.80 (95% CI, 0.74-0.86) and the 5-year HR was 0.85 (95% CI, 0.80-0.89). These findings were consistent after propensity score matching and for ischemic and nonischemic heart failure, as for sex and age groups. The rate of hospitalization due to worsening of heart failure was lower among H2RA initiators than PPI initiators. In patients with heart failure, H2RA initiation was associated with 15%-20% lower mortality than PPI initiation.

  17. Behavioral characterization of mice lacking histamine H(3) receptors.

    PubMed

    Toyota, Hiroshi; Dugovic, Christine; Koehl, Muriel; Laposky, Aaron D; Weber, China; Ngo, Karen; Wu, Ying; Lee, Doo Hyun; Yanai, Kazuhiko; Sakurai, Eiko; Watanabe, Takehiko; Liu, Changlu; Chen, Jingcai; Barbier, Ann J; Turek, Fred W; Fung-Leung, Wai-Ping; Lovenberg, Timothy W

    2002-08-01

    Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.

  18. Topical Histamine Stimulates Repigmentation of Nonsegmental Vitiligo by a Receptor-Dependent Mechanism.

    PubMed

    Liu, Jun; Xu, Yan; Lin, Tzu-Kai; Lv, Chengzhi; Elias, Peter M; Man, Mao-Qiang

    2017-01-01

    Though vitiligo is a common depigmentary disorder, it still represents a substantial therapeutic challenge. Therapeutic options are limited in part due to its uncertain etiology. Because recent studies suggest that histamine stimulates melanogenesis in vitro, we determined here whether topical histamine stimulates repigmentation in patients with stable, nonsegmental vitiligo. A total of 23 otherwise normal volunteers with vitiligo, including 14 males and 9 females aged 6-59 years (mean age 29.2 ± 2.8), were enrolled in this study. 1% histamine in distilled water was applied to the lesions twice daily for 5 weeks, while comparable lesions, treated with distilled water alone, served as the controls. The melanin index was measured on the uninvolved and lesional skin sites before and after 5 weeks of treatments using the melanin/erythema probe connected to a Courage-Khazaka MPA5 (Cologne, Germany). Changes in epidermal permeability barrier were also assessed at the same time point. To determine whether histamine-induced repigmentation is receptor-dependent, both ears of C57BL/6J mice were treated topically with 5% cimetidine, a histamine type 2 receptor (H2r) antagonist, twice daily for 10 days. One hour after each cimetidine application, the right ear was treated topically with 10% histamine, while vehicle alone was applied to the left ear. Changes in melanin index were measured 24 h after the last application of histamine and vehicle as described in the human study. In patients with vitiligo treated with vehicle alone for 5 weeks, the melanin index remained unchanged, while topical histamine treatment increased the melanin index by 38% (p < 0.001 vs. both vehicle and pretreatment), which was paralleled by a >60% reduction in lesion surface area. Moreover, topical histamine accelerated permeability barrier recovery. No adverse events were observed following histamine applications. In mice, topical histamine significantly increased the melanin index, while topical co

  19. [Effects of IGN-2098, a new histamine H2-receptor antagonist, on gastric secretion and gastric and duodenal lesions induced in rats. Comparison with roxatidine].

    PubMed

    Okabe, S; Narita, M; Nakaji, S; Takinami, Y; Kawano, O; Misaki, N

    1992-03-01

    A new compound, IGN-2098 [5,6-dimethyl-2-[4-<3-(1-piperidinomethyl) phenoxy>cis-butenylamino]-4-(1H)-pyrimidone.2HCl], was found to be a potential histamine H2-receptor antagonist in the guinea pig atrium. IGN-2098, given p.o., significantly and persistently (for more than 12 hr) inhibited the basal gastric secretion in pylorus-ligated rats. The agent also significantly inhibited the basal gastric secretion when given by the s.c.-, i.d.- or i.p.-route. Stimulated gastric secretion in fistula rats in response to histamine, carbachol or pentagastrin was also significantly inhibited with IGN-2098 given s.c. Pretreatment with IGN-2098 (p.o.) significantly protected the gastric mucosa against pylorus ligation-, water-immersion stress-, histamine-, indomethacin-, HCl.aspirin-, and HCl.ethanol-induced gastric lesions. In addition, the agent significantly protected the duodenal mucosa against mepirizole-induced ulcers. Based upon the ED50 values, the antisecretory effects on histamine, carbachol or pentagastrin-stimulated acid secretion were 6.0, 37.0 or 80 times more potent than roxatidine, respectively. As to the anti-lesion effects on HCl.aspirin-induced gastric lesions or mepirizole-induced duodenal ulcers, IGN-2098 was 8.1 or 14.8 times more potent than roxatidine, respectively. These results suggest that IGN-2098 will be a useful drug for the treatment of gastric and duodenal lesions in man.

  20. Proton Pump Inhibitor and Histamine-2 Receptor Antagonist Use and Iron Deficiency.

    PubMed

    Lam, Jameson R; Schneider, Jennifer L; Quesenberry, Charles P; Corley, Douglas A

    2017-03-01

    Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) suppress gastric acid production, which can inhibit iron absorption. However, few data exist regarding whether these medications increase the risk of clinical iron deficiency. A community-based case-control study evaluated the association between acid-suppressing medication use and the subsequent risk of iron deficiency. It contrasted 77,046 patients with new iron deficiency diagnoses (January 1999-December 2013), with 389,314 controls. Medication exposures, outcomes, and potential confounders used electronic databases. We excluded patients with pre-existing risk factors for iron deficiency. Associations were estimated using conditional logistic regression. Among cases, 2343 (3.0%) received a prior ≥2-year supply of PPIs and 1063 (1.4%) received H2RAs (without PPI use). Among controls, 3354 (0.9%) received a prior ≥2-year supply of PPIs and 2247 (0.6%) H2RAs. Both ≥2 years of PPIs (adjusted odds ratio, 2.49; 95% confidence interval, 2.35-2.64) and ≥2 years of H2RAs (odds ratio, 1.58; 95% CI, 1.46-1.71) were associated with an increased subsequent risk for iron deficiency. Among PPI users, the associations were stronger for higher daily doses (>1.5 vs <0.75 PPI pills/d; P value interaction = .004) and decreased after medication discontinuation (P-trend < .001). Some of the strongest associations were among persons taking >1.5 pills per day for at least 10 years (odds ratio, 4.27; 95% CI, 2.53-7.21). No similar strong associations were found for other commonly used prescription medications. Among patients without known risk factors for iron deficiency, gastric acid inhibitor use for ≥2 years was associated with an increased subsequent risk of iron deficiency. The risk increased with increasing potency of acid inhibition and decreased after medication discontinuation. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Effects of antidepressant drugs on histamine-H/sub 1/ receptors in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.; Oegren, S.O.

    1984-02-06

    The histamine-H/sub 1/ receptor blocking properties of a number of structurally different antidepressant drugs have been evaluated using a /sup 3/H-mepyramine binding assay and a guinea-pig ileum preparation. The tricyclic antidepressants all inhibited the histamine-H/sub 1/ receptor. Some newer antidepressant drugs, such as zimeldine and nomifensine were devoid of activity while others, such as iprindole and mianserin were very potent. It is concluded that antagonistic effects on the histamine-H/sub 1/ receptor is not associated with the therapeutic efficacy in depression, but may contribute to the sedative effects of the antidepressant drugs.

  2. Models for H₃ receptor antagonist activity of sulfonylurea derivatives.

    PubMed

    Khatri, Naveen; Madan, A K

    2014-03-01

    The histamine H₃ receptor has been perceived as an auspicious target for the treatment of various central and peripheral nervous system diseases. In present study, a wide variety of 60 2D and 3D molecular descriptors (MDs) were successfully utilized for the development of models for the prediction of antagonist activity of sulfonylurea derivatives for histamine H₃ receptors. Models were developed through decision tree (DT), random forest (RF) and moving average analysis (MAA). Dragon software version 6.0.28 was employed for calculation of values of diverse MDs of each analogue involved in the data set. The DT classified and correctly predicted the input data with an impressive non-error rate of 94% in the training set and 82.5% during cross validation. RF correctly classified the analogues into active and inactive with a non-error rate of 79.3%. The MAA based models predicted the antagonist histamine H₃ receptor activity with non-error rate up to 90%. Active ranges of the proposed MAA based models not only exhibited high potency but also showed improved safety as indicated by relatively high values of selectivity index. The statistical significance of the models was assessed through sensitivity, specificity, non-error rate, Matthew's correlation coefficient and intercorrelation analysis. Proposed models offer vast potential for providing lead structures for development of potent but safe H₃ receptor antagonist sulfonylurea derivatives. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Histamine-induced vasodilatation in the human forearm vasculature

    PubMed Central

    Sandilands, Euan A; Crowe, Jane; Cuthbert, Hayley; Jenkins, Paul J; Johnston, Neil R; Eddleston, Michael; Bateman, D Nicholas; Webb, David J

    2013-01-01

    Aim To investigate the mechanism of action of intra-arterial histamine in the human forearm vasculature. Methods Three studies were conducted to assess changes in forearm blood flow (FBF) using venous occlusion plethysmography in response to intra-brachial histamine. First, the dose–response was investigated by assessing FBF throughout a dose-escalating histamine infusion. Next, histamine was infused at a constant dose to assess acute tolerance. Finally, a four way, double-blind, randomized, placebo-controlled crossover study was conducted to assess FBF response to histamine in the presence of H1- and H2-receptor antagonists. Flare and itch were assessed in all studies. Results Histamine caused a dose-dependent increase in FBF, greatest with the highest dose (30 nmol min−1) infused [mean (SEM) infused arm vs. control: 26.8 (5.3) vs. 2.6 ml min−1 100 ml−1; P < 0.0001]. Dose-dependent flare and itch were demonstrated. Acute tolerance was not observed, with an increased FBF persisting throughout the infusion period. H2-receptor antagonism significantly reduced FBF (mean (95% CI) difference from placebo at 30 nmol min−1 histamine: −11.9 ml min−1 100 ml−1 (−4.0, −19.8), P < 0.0001) and flare (mean (95% CI) difference from placebo: −403.7 cm2 (−231.4, 576.0), P < 0.0001). No reduction in FBF or flare was observed in response to the H1-receptor antagonist. Itch was unaffected by the treatments. Histamine did not stimulate vascular release of tissue plasminogen activator or von Willebrand factor. Conclusion Histamine causes dose-dependent vasodilatation, flare and itch in the human forearm. H2-receptors are important in this process. Our results support further exploration of combined H1- and H2-receptor antagonist therapy in acute allergic syndromes. PMID:23488545

  4. Effects of histamine and 5-hydroxytryptamine on the growth rate of xenografted human bronchogenic carcinomas.

    PubMed

    Sheehan, P F; Baker, T; Tutton, P J; Barkla, D H

    1996-01-01

    1. The influence of histamine and 5-hydroxytryptamine (5-HT) antagonists and agonists on the volume doubling times (Td) of human bronchogenic carcinomas propagated as s.c. xenografts in immunosuppressed mice was examined. 2. The H2-receptor antagonists, cimetidine and ranitidine, increased Td. 3. Treatment with the H2-receptor agonist, 4-methyl histamine, had no effect on Td. 4. Co-administration of 4-methyl histamine and cimetidine abolished the effects of cimetidine. 5. The 5-HT2-receptor antagonists, cinanserin and ketanserin, both increased Td. 6. Treatment with the 5-HT1/2-receptor agonist quipazine (0.1 mg/kg, reflecting 5-HT2 agonist activity) decreased Td, while a higher dose (10.0 mg/kg) had no effect. 7. The 5-HT1/2-receptor antagonist, methiothepin, decreased Td. 8. The 5-HT uptake inhibitor, fluoxetine, increased Td in one tumour line but not in another, while the 5-HT releaser/depletor, fenfluramine, increased Td. 9. Histamine may stimulate tumour growth through the histamine H2-receptor, while the dominant effect of 5-HT is 5-HT1-receptor inhibition. 10. Tumour growth in some bronchogenic carcinomas may involve 5-HT uptake mechanisms.

  5. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  6. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at

  7. Histamine type 2 receptor antagonists as adjuvant treatment for resected colorectal cancer.

    PubMed

    Deva, Sanjeev; Jameson, Michael

    2012-08-15

    Anecdotal reports of tumour regression with histamine type 2 receptor antagonists (H(2)RAs) have lead to a series of trials with this class of drug as adjuvant therapy to try and improve outcomes in patients with resected colorectal cancers. There was a plausible scientific rationale suggesting merit in this strategy. This included improved immune surveillance (by way of increasing tumour infiltrating lymphocytes), inhibiting the direct proliferative effect of histamine as a growth factor for colorectal cancer and, in the case of cimetidine, inhibiting endothelial expression of E-selectin (a cell adhesion molecule thought to be critical for metastatic spread). To determine if H(2)RAs improve overall survival when used as pre- and/or postoperative therapy in colorectal cancer patients who have had surgical resection with curative intent. We also stratified the results to see if there was an improvement in overall survival in terms of the specific H(2)RA used. Randomised controlled trials were identified using a sensitive search strategy in the following databases: MEDLINE (1964 to present), the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library 2009), EMBASE (1980 to present) and Cancerlit (1983 to present). Criteria for study selection included: patients with colorectal cancer surgically resected with curative intent; H(2)RAs used i) at any dose, ii) for any length of time, iii) with any other treatment modality and iv) in the pre-, peri- or post-operative period. The results were stratified for the H(2)RA used. The literature search retrieved 142 articles. There were six studies included in the final analysis, published from 1995 to 2007, including a total of 1229 patients. All patients were analysed by intention to treat according to their initial allocation. Log hazard ratios and standard errors of treatment effects (on overall survival) were calculated using the Cochrane statistical package RevMan Version 5. Hazard ratios and standard

  8. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    PubMed

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  9. Regional Differential Effects of the Novel Histamine H3 Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats

    PubMed Central

    Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della

    2010-01-01

    After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3 receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components. PMID:19815811

  10. Using multiple pharmacoeconomic methods to conduct a cost-effectiveness analysis of histamine H2-receptor antagonists.

    PubMed

    McCoy, S; Blayney-Chandramouli, J; Mutnick, A

    1998-12-15

    A formulary decision at a health care institution was studied by using two pharmacoeconomic methods. A pharmacoeconomic study was undertaken to assess the impact of a 1995 formulary decision to designate cimetidine as the primary histamine H2-receptor antagonist (H2RA) and to restrict the use of famotidine. Consecutive patients receiving either i.v. cimetidine or famotidine for stress ulcer prophylaxis were reviewed during a two-month period in 1997, and information on demographics, dosage and duration of H2RA therapy, admission date, laboratory test values, and adverse drug reactions was collected. Data for 62 patients (43 cimetidine recipients and 19 famotidine recipients) were evaluated. Therapy was categorized as successful or failed, and the data were then evaluated by decision analysis to evaluate the cost-effectiveness of the agents and by multiattribute utility theory (MAUT) to incorporate a humanistic evaluation of the treatments, namely, the number of doses administered and the number of times dosages were changed. The decision tree revealed that the average cost of receiving cimetidine was $82.01 and the average cost of famotidine therapy was $92.45. The MAUT analysis showed that cimetidine was the preferred agent as long as cost was valued at greater than 60% of the decision-making process and efficacy remained equal between the two agents. Two pharmacoeconomic methods lent support to a formulary decision at a health care institution.

  11. Influence of histamine and serotonin antagonists on the growth of xenografted human colorectal tumors.

    PubMed

    Barkla, D H; Tutton, P J

    1981-12-01

    Four lines of human colorectal cancer were established and serially propagated as subcutaneous xenographs in immunosuppressed inbred CBA/Lac mice. Established xenografts were then used to investigate the influence of a serotonin antagonist (BW 501c) and a histamine H2 receptor antagonists (Cimetidine) on xenograft growth. The growth of each of the four tumor lines was significantly inhibited by BW 501c throughout the treatment, whereas the growth of only two tumor lines was significantly inhibited by Cimetidine treatment. The response of individual tumor lines was not predictable on the basis of either tumor histopathology or the natural growth rate of the untreated xenograft. A number of alternative, but not mutually exclusive, hypotheses are suggested to explain the results. One hypothesis proposes that colorectal tumors are composed of subpopulations of tumor cells that are variously dependent on or independent of amine hormones. Another hypothesis is that tumor cells exhibit temporal changes in hormone sensitivity to amine hormones during treatment. Finally, it is suggested that serotonin and/or histamine H2 antagonists may be useful in preventing the repopulation of colorectal carcinomas following antineoplastic therapy with the use of conventional drugs.

  12. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

    PubMed Central

    Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong

    2014-01-01

    The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390

  13. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  14. Chemokine receptor antagonists: part 2.

    PubMed

    Pease, James E; Horuk, Richard

    2009-02-01

    The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.

  15. Altered mental status in older adults with histamine2-receptor antagonists: a population-based study.

    PubMed

    Tawadrous, Davy; Dixon, Stephanie; Shariff, Salimah Z; Fleet, Jamie; Gandhi, Sonja; Jain, Arsh K; Weir, Matthew A; Gomes, Tara; Garg, Amit X

    2014-10-01

    Standard doses of histamine2-receptor antagonists (H2RAs) may induce altered mental status in older adults, especially in those with chronic kidney disease (CKD). Population-based cohort study of older adults who started a new H2RA between 2002 and 2011 was conducted. Ninety percent received the current standard H2RA dose in routine care. There was no significant difference in 27 baseline patient characteristics. The primary outcome was hospitalization with an urgent head computed tomography (CT) scan (proxy for altered mental status), and the secondary outcome was all-cause mortality also within 30days of a new H2RA prescription. Standard vs. low H2RA dose was associated with a higher risk of hospitalization with an urgent head CT scan (0.98% vs. 0.74%, absolute risk difference 0.24% [95% CI 0.11% to 0.36%], relative risk 1.33 [95% CI 1.12 to 1.58]). This risk was not modified by the presence of CKD (interaction P value=0.71). Standard vs. low H2RA dose was associated with a higher risk of mortality (1.07% vs.0.74%; absolute risk difference 0.34% [95% CI 0.20% to 0.46%], relative risk 1.46 [95% CI 1.23 to 1.73]). Compared to a lower dose, initiation of the current standard dose of H2RA in older adults is associated with a small absolute increase in the 30-day risk of altered mental status (using neuroimaging as a proxy), even in the absence of CKD. This risk may be avoided by initiating older adults on low doses of H2RAs for gastroesophogeal reflux disease, and increasing dosing as necessary for symptom control. Copyright © 2014 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  16. Histamine H2-receptor antagonists have no clinically significant effect on the steady-state pharmacokinetics of voriconazole

    PubMed Central

    Purkins, Lynn; Wood, Nolan; Kleinermans, Diane; Nichols, Don

    2003-01-01

    Aims Voriconazole, a new triazole antifungal agent, is metabolized mainly by cytochrome P450s CYP2C19 and CYP2C9, and also by CYP3A4. The aim of this open-label, placebo-controlled, randomized, three-way crossover study was to determine the effects of cimetidine and ranitidine on the steady-state pharmacokinetics of voriconazole. Methods Twelve healthy male subjects received oral voriconazole 200 mg twice daily plus cimetidine 400 mg twice daily, voriconazole 200 mg twice daily plus ranitidine 150 mg twice daily, and voriconazole 200 mg twice daily plus placebo twice daily. Treatment periods were separated by at least 7 days. Results When cimetidine was administered with voriconazole, the maximum plasma voriconazole concentration (Cmax) and the area under the plasma concentration–time curve of voriconazole (AUCτ) was increased by 18.3% [90% confidence interval (CI) 6.0, 32.0] and 22.5% (90% CI 13.3, 32.5), respectively. Concomitant ranitidine had no significant effect on voriconazole Cmax or AUCτ. Time of Cmax (tmax) elimination half-life (t1/2) or terminal phase rate constant (kel) for voriconazole were similar in all three treatment groups. Most adverse events were mild and transitory; two subjects were withdrawn due to adverse events. Conclusions Coadministration of the histamine H2-receptor antagonists cimetidine or ranitidine does not affect the steady-state pharmacokinetics of voriconazole in a clinically relevant manner. PMID:14616414

  17. Histamine paw edema of mice was increased and became H[sub 2]-antagonist sensitive by co-injection of nitric oxide forming agents, but serotonin paw edema was decreased

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyanagui, Yoshihiko; Sato, Sachio

    1993-01-01

    Nitric oxide (NO) surprisingly caused the opposite effect on histamine and serotonin edema. The local injection of acidified nitrite (0.3-30 [mu]g/paw which correspond 10 [mu]g-1mg/kg) increased histamine edema of mice up to 45[plus minus]4% and suppressed serotonin edema to 90[plus minus]3%. Other NO-generators (nitroprusside sodium and hydroxylamine) showed similar effects. These results were in accordance with previous data on endogenous NO. Methylene blue (MB, 30ng/paw which corresponds to 1 [mu]g/kg) suppressed histamine edema (62[plus minus]3%) and increased serotonin edema (43[plus minus]3%) in normal mice, being reversed by acidified nitrite. This suggests the involvement of guanosine 3[prime], 5[prime]-cyclic monophosphate (cGMP) formationmore » for the action of NO. Histamine edema became sensitive to H[sub 2]-antagonist, cimetidine, by co-injection of 30 [mu]g/paw (which corresponds to 1mg/kg) acidified nitrite (ED[sub 50] = 30 [mu]g/kg versus [much gt] 1mg/kg). NO seemed to modify the histamine receptor(s) or tautomeric form of histamine. NO, O[sup [minus

  18. PUNISHING AND CARDIOVASCULAR EFFECTS OF INTRAVENOUS HISTAMINE IN RATS: PHARMACOLOGICAL SELECTIVITY

    PubMed Central

    Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2014-01-01

    Although drugs may serve as reinforcers or punishers of operant behavior, the punishing function has received much less experimental attention than the reinforcing function. A sensitive method for studying drug-induced punishment is to assess choice for a punished response over an unpunished response. In these experiments, rats chose between pressing one lever and receiving a sucrose pellet or pressing another lever and receiving a sucrose pellet plus an intravenous injection of histamine. When sucrose was delivered equally frequently for either the punished or the unpunished response, rats selected the unpunished lever consistently, but decreases in the punished response did not differ as a function of intravenous histamine dose (0.1–1 mg/kg/inj). Changing the procedure so that sucrose was delivered on the unpunished lever with p = .5 increased the rats’ responding on the punished lever with saline injections. In addition, the same range of histamine doses produced a much larger range of responses on the punished lever that was dose dependent. Using these procedures to assess the receptors mediating histamine’s effects, the histamine H1-receptor antagonists, pyrilamine and ketotifen, antagonized the punishing effect of histamine, but the histamine H2-receptor antagonist ranitidine did not. However, ranitidine pretreatments reduced histamine-induced heart-rate increases to a greater extent than did the histamine H1-receptor antagonists when administered at the same doses examined under conditions of histamine punishment. Overall, the present findings extend the general hypothesis that activation of histamine H1-receptors mediates the punishing effects of histamine. They also introduce methods for rapidly assessing pharmacological mechanisms underlying drug-induced punishment. PMID:23982898

  19. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine.

    PubMed

    Yao, Lihang; Ramirez, Andres D; Roecker, Anthony J; Fox, Steven V; Uslaner, Jason M; Smith, Sean M; Hodgson, Robert; Coleman, Paul J; Renger, John J; Winrow, Christopher J; Gotter, Anthony L

    2017-07-01

    Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABA A receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABA A modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABA A modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep. © 2017 International Society for Neurochemistry.

  20. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors

    PubMed Central

    Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.

    2015-01-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  1. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    PubMed

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  2. Comparison of the effects of histamine and tolazoline on adenylate cyclase activity from guinea pig heart.

    PubMed

    Weinryb, I; Michel, I M

    1975-01-01

    Both histamine and tolazoline (2-benzyl-2-imidazoline) stimulated particulate fractions of adenylate cyclase from guinea pig myocardium. Tolazoline was one-tenth as potent, and about two-thirds as active at maximally effective levels, as was histamine. Enhancement of cyclase activity by tolazoline was additive with that by isoproterenol, and the histamine and tolazoline concentration-response curves were parallel, suggesting that tolazoline acted at the same site as histamine. At maximally effective concentrations, tolazoline did not affect ATPase or cyclic AMP phosphodiesterase activities associated with the cyclase preparations. The H1-receptor antagonist mepyramine, and the H2 antagonist, burimamide, blocked stimulation of cyclase by tolazoline at one-tenth the molarity of agonist. Both antagonists were less effective vs. histamine stimulation of heart cyclase in particulate fractions or whole homogenates, with mepyramine being generally more potent. It is suggested that the molecular basis of the stimulatory effect of tolazoline on cardiac tissue may be histaminergic stimulation of adenylate cyclase. Furthermore, the lack of potency of burimamide as a histamine antagonist and its lack of specificity compared to mepyramine, at the subcellular level, indicate that histamine-responsive adenylate cyclase from heart may not be a satisfactory molecular model for the H2 receptor pharmacology of histamine in cardiac tissue.

  3. Histamine, carbachol, and serotonin induce hyperresponsiveness to ATP in guinea pig tracheas: involvement of COX-2 pathway.

    PubMed

    Montaño, Luis M; Carbajal, Verónica; Vargas, Mario H; García-Hernández, Luz M; Díaz-Hernández, Verónica; Checa, Marco; Barajas-López, Carlos

    2013-08-01

    Extracellular ATP promotes an indirect contraction of airway smooth muscle via the secondary release of thromboxane A2 (TXA2) from airway epithelium. Our aim was to evaluate if common contractile agonists modify this response to ATP. Tracheas from sensitized guinea pigs were used to evaluate ATP-induced contractions before and after a transient contraction produced by histamine, carbachol, or serotonin. Epithelial mRNA for COX-1 and COX-2 was measured by RT-PCR and their expression assessed by immunohistochemistry. Compared with the initial response, ATP-induced contraction was potentiated by pretreatment with histamine, carbachol, or serotonin. Either suramin (antagonist of P2X and P2Y receptors) plus RB2 (antagonist of P2Y receptors) or indomethacin (inhibitor of COX-1 and COX-2) annulled the ATP-induced contraction, suggesting that it was mediated by P2Y receptor stimulation and TXA2 production. When COX-2 was inhibited by SC-58125 or thromboxane receptors were antagonized by SQ-29548, just the potentiation was abolished, leaving the basal response intact. Airway epithelial cells showed increased COX-2 mRNA after stimulation with histamine or carbachol, but not serotonin, while COX-1 mRNA was unaffected. Immunochemistry corroborated this upregulation of COX-2. In conclusion, we showed for the first time that histamine and carbachol cause hyperresponsiveness to ATP by upregulating COX-2 in airway epithelium, which likely increases TXA2 production. Serotonin-mediated hyperresponsiveness seems to be independent of COX-2 upregulation, but nonetheless is TXA2 dependent. Because acetylcholine, histamine, and serotonin can be present during asthmatic exacerbations, their potential interactions with ATP might be relevant in its pathophysiology.

  4. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  5. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. In vivo pharmacological characterisation of bilastine, a potent and selective histamine H1 receptor antagonist.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustín; Orjales, Aurelio

    2006-01-01

    We set out to establish the in vivo histamine H(1) receptor antagonistic (antihistaminic) and antiallergic properties of bilastine. In vivo antihistaminic activity experiments consisted of measurement of: inhibition of increase in capillary permeability and reduction in microvascular extravasation and bronchospasm in rats and guinea pigs induced by histamine and other inflammatory mediators; and protection against lethality induced by histamine and other inflammatory mediators in rats. In vivo antiallergic activity experiments consisted of measurement of passive and active cutaneous anaphylactic reactions as well as type III and type IV allergic reactions in sensitised rodents. In the in vivo antihistaminic activity experiments, bilastine was shown to have a positive effect, similar to that of cetirizine and more potent than that of fexofenadine. The results of the in vivo antiallergic activity experiments showed that the properties of bilastine in this setting are similar to those observed for cetirizine and superior to fexofenadine in the model of passive cutaneous anaphylactic reaction. When active cutaneous anaphylactic reaction experiments were conducted, bilastine showed significant activity, less potent than that observed with cetirizine but superior to that of fexofenadine. Evaluation of the type III allergic reaction showed that of the antihistamines only bilastine was able to inhibit oedema in sensitised mice, although its effect in this respect was much less potent than that observed with dexamethasone. In terms of the type IV allergic reaction, neither bilastine, cetirizine nor fexofenadine significantly modified the effect caused by oxazolone. The results of our in vivo preclinical studies corroborate those obtained from previously conducted in vitro experiments of bilastine, and provide evidence that bilastine possesses antihistaminic as well as antiallergic properties, with similar potency to cetirizine and superior potency to fexofenadine.

  7. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors

    PubMed Central

    Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi

    1996-01-01

    From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588

  8. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  9. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  10. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  11. Docking-based Screening of Ficus religiosa Phytochemicals as Inhibitors of Human Histamine H2 Receptor.

    PubMed

    Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh

    2017-10-01

    Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid

  12. Sigma1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice

    PubMed Central

    Kitanaka, J.; Kitanaka, N.; Tatsuta, T.; Hall, F.S.; Uhl, G.R.; Tanaka, K.; Nishiyama, N.; Morita, Y.; Takemura, M.

    2011-01-01

    Objective The effects of sigma receptor antagonists on methamphetamine (METH)-induced stereotypy have not been examined. We examined the effects of sigma antagonists on METH-induced stereotypy in mice. Results The administration of METH (10 mg/kg) to male ddY mice induced stereotyped behavior consisting of biting (90.1%), sniffing (4.2%), head bobbing (4.1%), and circling (1.7%) during an observation period of 1 h. Pretreatment of the mice with BMY 14802 (α-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol; 1, 5, and 10 mg/kg), a non-specific sigma receptor antagonist, significantly increased METH-induced sniffing (19.2, 30.5, and 43.8% of total stereotypical behavior) but decreased biting (76.6, 66.9, and 49.3% of total stereotypical behavior) in a dose-dependent manner. This response was completely abolished by (+)-SKF 10,047 ([2S-(2α,6α,11R)]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol; 4 and 10 mg/kg), a putative sigma1 receptor agonist, and partially by PB 28 (1-cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalen-1-yl)-n-propyl]piperazine; 1 and 10 mg/kg), a putative sigma2 receptor agonist. The BMY 14802 action on METH-induced stereotypy was mimicked by BD 1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine; 10 mg/kg), a putative sigma1 receptor antagonist, but not by SM-21 ((±)-tropanyl 2-(4-chlorophenoxy)butanoate; 1 mg/kg), a putative sigma2 receptor antagonist. The BD 1047 effect on METH-induced stereotypy was also abolished completely by (+)-SKF 10,047 and partially by PB 28. The overall frequency of METH-induced stereotypical behavior was unchanged with these sigma receptor ligands, despite the alteration in particular behavioral patterns. The BMY 14802 action on METH-induced stereotypy was unaffected by pretreatment with centrally acting histamine H1 receptor antagonists (pyrilamine or ketotifen, 10 mg/kg), suggesting that these effects are independent of histamine H1

  13. Desipramine Inhibits Histamine H1 Receptor-Induced Ca2+ Signaling in Rat Hypothalamic Cells

    PubMed Central

    Lee, Kwang Min; Cho, Sukhee; Seo, Jinsoo; Hur, Eun-Mi; Park, Chul-Seung; Baik, Ja-Hyun; Choi, Se-Young

    2012-01-01

    The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants. PMID:22563449

  14. Protective effect of lafutidine, a histamine H2 receptor antagonist, against loxoprofen-induced small intestinal lesions in rats.

    PubMed

    Amagase, Kikuko; Ochi, Akimu; Sugihara, Tetsuya; Kato, Shinichi; Takeuchi, Koji

    2010-05-01

    We examined the effect of lafutidine, a histamine H(2) receptor antagonist with a mucosal protective action mediated by capsaicin-sensitive sensory neurons (CSN), on intestinal lesions produced by loxoprofen administration in rats. Animals were given loxoprofen (10-100 mg/kg p.o.) and killed 24 h later. Lafutidine (10 and 30 mg/kg), cimetidine (100 mg/kg) or famotidine (30 mg/kg) was given twice p.o. at 0.5 h before and 6 h after loxoprofen. Omeprazole (100 mg/kg) was given p.o. once 0.5 h before. Ampicillin (800 mg/kg) was given p.o. twice at 24 h and 0.5 h before loxoprofen, while 16,16-dimethyl prostaglandin E(2) (dmPGE(2); 0.01 mg/kg) was given i.v. twice at 5 min before and 6 h after. Loxoprofen dose-dependently produced hemorrhagic lesions in the small intestine, accompanied by invasion of enterobacteria and increased inducible nitric oxide synthase (iNOS) expression as well as myeloperoxidase activity in the mucosa. The ulcerogenic response to loxoprofen (60 mg/kg) was significantly prevented by lafutidine (30 mg/kg), similar to dmPGE(2) and ampicillin, and the effect of lafutidine was totally attenuated by ablation of CSN. Neither cimetidine, famotidine nor omeprazole had a significant effect against these lesions. Lafutidine alone increased mucus secretion and reverted the decreased mucus response to loxoprofen, resulting in suppression of bacterial invasion and iNOS expression. In addition, loxoprofen downregulated Muc2 expression, and this response was totally reversed by lafutidine mediated by CSN. Lafutidine protects the small intestine against loxoprofen-induced lesions, essentially mediated by the CSN, and this effect may be functionally associated with increased Muc2 expression/mucus secretion, an important factor in the suppression of bacterial invasion.

  15. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  16. Proton pump inhibitor and histamine-2 receptor antagonist use and risk of liver cancer in two population-based studies.

    PubMed

    Tran, K T; McMenamin, Ú C; Hicks, B; Murchie, P; Thrift, A P; Coleman, H G; Iversen, L; Johnston, B T; Lee, A J; Cardwell, C R

    2018-05-09

    Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) are commonly used. PPIs have been shown to promote liver cancer in rats; however, only one study has examined the association in humans. To investigate PPIs and H2RAs and risk of primary liver cancer in two large independent study populations. We conducted a nested case-control study within the Primary Care Clinical Informatics Unit (PCCIU) database in which up to five controls were matched to cases with primary liver cancer, recorded by General Practitioners. Odds ratios (ORs) and 95% confidence intervals (95% CIs) for associations with prescribed PPIs and H2RAs were calculated using conditional logistic regression. We also conducted a prospective cohort study within the UK Biobank using self-reported medication use and cancer-registry recorded primary liver cancer. Hazard ratios (HRs) and 95% CIs were calculated using Cox regression. In the PCCIU case-control analysis, 434 liver cancer cases were matched to 2103 controls. In the UK Biobank cohort, 182 of 475 768 participants developed liver cancer. In both, ever use of PPIs was associated with increased liver cancer risk (adjusted OR 1.80, 95% CI 1.34, 2.41 and adjusted HR 1.99, 95% CI 1.34, 2.94 respectively). There was little evidence of association with H2RA use (adjusted OR 1.21, 95% CI 0.84, 1.76 and adjusted HR 1.70, 95% CI 0.82, 3.53 respectively). We found some evidence that PPI use was associated with liver cancer. Whether this association is causal or reflects residual confounding or reverse causation requires additional research. © 2018 John Wiley & Sons Ltd.

  17. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  18. Characteristics of children and adolescents first prescribed proton pump inhibitors or histamine-2-receptor antagonists: an observational cohort study.

    PubMed

    Ruigómez, Ana; Kool-Houweling, Leanne M A; García Rodríguez, Luis A; Penning-van Beest, Fernie J A; Herings, Ron M C

    2017-12-01

    To describe the characteristics of pediatric patients prescribed proton pump inhibitors (PPIs) vs those of pediatric patients prescribed histamine-2-receptor antagonists (H 2 RAs). Observational studies were conducted using The Health Improvement Network (THIN) and the PHARMO Database Network. Patients aged 0-18 years who were first prescribed a PPI or H 2 RA between October 1, 2009 and September 30, 2012 (THIN) or between September 1, 2008 and August 31, 2011 (PHARMO) were included. Patient characteristics were identified and compared between the PPI and H 2 RA cohorts using odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age and sex. The mean age (years) was higher in the PPI than in the H 2 RA cohorts (THIN 12.3 [n = 8204] vs 5.4 [n = 7937], PHARMO 11.0 [n = 15 362] vs 7.1 [n = 6168]). Previous respiratory disease was more common in the PPI than in the H 2 RA cohort in THIN (OR = 1.19, 95% CI = 1.08-1.30), as were asthma and respiratory medication use in PHARMO (OR = 1.27, 95% CI = 1.12-1.45 and OR = 1.23, 95% CI = 1.10-1.38, respectively) and oral corticosteroid use in both databases (OR = 1.45, 95% CI = 1.10-1.92 [THIN]; OR = 2.80, 95% CI = 2.11-3.71 [PHARMO]). Non-steroidal anti-inflammatory drugs, antibiotics, and oral contraceptives were also more common in PPI than in H 2 RA cohorts in both databases. Pediatric patients receiving PPIs and those receiving H 2 RAs may represent different patient populations. PPIs may be more commonly prescribed than H 2 RAs among patients with respiratory diseases.

  19. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus

    PubMed Central

    Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-01-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077

  20. Effects of Bidens pilosa L. var. radiata SCHERFF treated with enzyme on histamine-induced contraction of guinea pig ileum and on histamine release from mast cells.

    PubMed

    Matsumoto, Takayuki; Horiuchi, Masako; Kamata, Katsuo; Seyama, Yoshiyuki

    2009-06-01

    The medical mechanism against type I allergies is to block the release or production of chemical mediators from mast cells or to block the H(1)-receptor signaling. We previously reported that the anti-allergic action of the dry powder from Bidens pilosa L. var. radiata SCHERFF treated with the enzyme cellulosine (eMMBP) was dependent on the inhibition of histamine release from mast cells. Here, we investigate that the effect of fractions in eMMBP on the histamine-induced contraction in guinea pig ileum and on the release of histamine in rat peritoneal mast cells. The histamine-induced contraction in guinea pig ileum is dose-dependently inhibited by ketotifen, an antagonist of H(1)-receptor. Fractions contained caffeic acid, caffeoylquinic acid and fractions contained flavonoids such as hyperin and isoquercitrin in eMMBP inhibit histamine release from mast cells, but only flavonoids such as hyperin, isoquercitrin and rutin suppress the histamine-induced contraction in guinea pig ileum. Moreover, the histamine-induced contraction was not affected by caffeic acid, however, such contraction was significantly inhibited by rutin. These results suggest that the primary antagonists of H(1)- receptor are different from the components in eMMBP that inhibit histamine release, and that these components participate in the anti-allergic activity of eMMBP.

  1. Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B

    PubMed Central

    Hagenow, S.; Stasiak, A.; Ramsay, R. R.; Stark, H.

    2017-01-01

    Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. PMID:28084411

  2. Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands.

    PubMed

    Lee-Dutra, Alice; Arienti, Kristen L; Buzard, Daniel J; Hack, Michael D; Khatuya, Haripada; Desai, Pragnya J; Nguyen, Steven; Thurmond, Robin L; Karlsson, Lars; Edwards, James P; Breitenbucher, J Guy

    2006-12-01

    A series of 2-arylbenzimidazoles was synthesized and found to bind with high affinity to the human histamine H(4) receptor. Structure-activity relationships were investigated through library preparation and evaluation as well as traditional medicinal chemistry approaches, leading to the discovery of compounds with single-digit nanomolar affinity for the H(4) receptor.

  3. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  4. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease.

    PubMed

    Rodríguez-Ruiz, Mar; Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Mallol, Josefa; Cortés, Antonio; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Franco, Rafael

    2017-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D 1 , histamine H 3 , and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H 3 receptor agonists, via negative cross-talk, and H 3 receptor antagonists, via cross-antagonism, decreased D 1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D 1 receptor-mediated excitotoxic cell death. Both D 1 and H 3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D 1 -H 3 receptor heteromer function. Likely due to heteromerization, H 3 receptors act as allosteric regulator for D 1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D 1 or H 3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D 1 -H 3 -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H 3 receptor antagonists reduced NMDA or D 1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H 3 receptor antagonists reverted the toxicity induced by ß 1-42 -amyloid peptide. Thus, histamine H 3 receptors in D 1 -H 3 -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.

  5. Central endogenous histamine modulates sympathetic outflow through H3 receptors in the conscious rabbit

    PubMed Central

    Charles, Julian; Angus, James A; Wright, Christine E

    2003-01-01

    This study examined the role of histamine H3 receptors in vagal and sympathetic autonomic reflexes in the conscious rabbit, and in rabbit and guinea-pig isolated right atria. The baroreceptor-heart rate reflex (baroreflex), Bezold-Jarisch-like and nasopharyngeal reflexes were assessed after these treatments (i.v.; with H1 and H2 receptor block): (i) vehicle (saline; n=11); (ii) H3 receptor agonist, (R)-α-methylhistamine (R-α-MH) 100 μg kg−1+100 μg kg−1 h−1 (n=9); (iii) H3 receptor antagonist, thioperamide 1 mg kg−1+1 mg kg−1 h−1 (n=11); (iv) R-α-MH and thioperamide (n=6); and (v) H2 and H3 antagonist, burimamide 6.3 mg kg−1+6.3 mg kg−1 h−1 (n=4). R-α-MH caused a thioperamide-sensitive fall in mean arterial pressure (MAP) of 8±1 mmHg and tachycardia of 18±2 bpm (P<0.0005). Burimamide was without effect, however thioperamide elicited an increase in MAP of 4±1 mmHg (P<0.01), but no change in heart rate (HR). R-α-MH caused a 44% decrease in the average gain of the baroreflex (P=0.0001); this effect was antagonised by thioperamide. Thioperamide caused a parallel rightward shift in the barocurve with an increase in MAP of 5 mmHg (P<0.05). Burimamide had no effect on the baroreflex. The vagally mediated bradycardia elicited by the Bezold-Jarisch and nasopharyngeal reflexes was unaffected by H3 receptor ligand administration. R-α-MH (⩽10 μM) caused a thioperamide-sensitive depression of both sympathetic and vagal responses in guinea-pig atria, but had no effect in rabbit atria. As H3 receptor activation caused a significant decrease in baroreflex gain without affecting HR range, the former is unlikely to be simply due to peripheral sympatholysis (supported by the lack of effect in isolated atria). Central H3 receptors may have a tonic role in the baroreflex as thioperamide caused a rightward resetting of the barocurve. In contrast, the peripherally acting H3 antagonist burimamide was without effect. These findings suggest a role for central

  6. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notcovich, Cintia; Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires; Diez, Federico

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changesmore » in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.« less

  7. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats.

    PubMed

    Solís, Karina H; Méndez, Laura I; García-López, Guadalupe; Díaz, Néstor F; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H 1 receptor (H 1 R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H 1 R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H 1 R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H 1 R expression by qRT-PCR and Western blot and, finally, we tested H 1 R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H 1 R have an important role in the increased neurogenesis within the dorsal telencephalon of

  8. Human eosinophils - potential pharmacological model applied in human histamine H4 receptor research.

    PubMed

    Grosicki, Marek; Kieć-Kononowicz, Katarzyna

    2015-01-01

    Histamine and histamine receptors are well known for their immunomodulatory role in inflammation. In this review we describe the role of histamine and histamine H4 receptor on human eosinophils. In the first part of article we provide short summary of histamine and histamine receptors role in physiology and histamine related therapeutics used in clinics. We briefly describe the human histamine receptor H4 and its ligands, as well as human eosinophils. In the second part of the review we provide detailed description of known histamine effects on eosinophils including: intracellular calcium concentration flux, actin polymerization, cellular shape change, upregulation of adhesion proteins and cellular chemotaxis. We provide proofs that these effects are mainly connected with the activation of histamine H4 receptor. When examining experimental data we discuss the controversial results and limitations of the studies performed on isolated eosinophils. In conclusion we believe that studies on histamine H4 receptor on human eosinophils can provide interesting new biomarkers that can be used in clinical studies of histamine receptors, that in future might result in the development of new strategies in the treatment of chronic inflammatory conditions like asthma or allergy, in which eosinophils are involved.

  9. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  10. Structure-based discovery and binding site analysis of histamine receptor ligands.

    PubMed

    Kiss, Róbert; Keserű, György M

    2016-12-01

    The application of structure-based drug discovery in histamine receptor projects was previously hampered by the lack of experimental structures. The publication of the first X-ray structure of the histamine H1 receptor has been followed by several successful virtual screens and binding site analysis studies of H1-antihistamines. This structure together with several other recently solved aminergic G-protein coupled receptors (GPCRs) enabled the development of more realistic homology models for H2, H3 and H4 receptors. Areas covered: In this paper, the authors review the development of histamine receptor models and their application in drug discovery. Expert opinion: In the authors' opinion, the application of atomistic histamine receptor models has played a significant role in understanding key ligand-receptor interactions as well as in the discovery of novel chemical starting points. The recently solved H1 receptor structure is a major milestone in structure-based drug discovery; however, our analysis also demonstrates that for building H3 and H4 receptor homology models, other GPCRs may be more suitable as templates. For these receptors, the authors envisage that the development of higher quality homology models will significantly contribute to the discovery and optimization of novel H3 and H4 ligands.

  11. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  12. Effect of the novel histamine H2-antagonist 5,6-dimethyl-2-[4-[3-(1- piperidinomethyl)phenoxy]-(z)-2-butenylamino]-4(1H)-pyrimidine dihydrochloride on histamine-induced gastric acid secretion in Heidenhain pouch dogs.

    PubMed

    Uchida, M; Ohba, S; Ikarashi, Y; Misaki, N; Kawano, O

    1993-08-01

    Effects of IGN-2098 (5,6-dimethyl-2-[4-[3-(1-piperidinomethyl)phenoxy]- (z)-2-butenylamino]-4(1H)-pyrimidone dihydrochloride, CAS 126869-04-3) a novel histamine H2-antagonist, on histamine-induced gastric acid secretion were investigated in Heidenhain pouch dogs in comparison with those of famotidine, roxatidine acetate HCl and cimetidine. Orally administered IGN-2098 (0.03-1.0 mg/kg), famotidine (0.01-0.3 mg/kg), roxatidine acetate HCl (0.1-1.0 mg/kg) and cimetidine (0.3-3.0 mg/kg) showed dose-dependent inhibition on histamine-induced gastric acid secretion, and ED50 values of IGN-2098, famotidine, roxatidine acetate HCl and cimetidine were 0.077, 0.024, 0.200 and 0.585 mg/kg, respectively. IGN-2098 was effective even at 6 h after administration and ED50 value was 0.315 mg/kg. IGN-2098 was effective also by intravenous route. The inhibitory effect of IGN-2098 on histamine-induced gastric secretion was not affected by the repeated administration of IGN-2098 (1 mg/kg b.i.d. for 14 days). These results show that IGN-2098 is a potent and long acting antisecretory agent and is a useful antisecretory drug for the treatment of peptic ulcer disease.

  13. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats.

    PubMed

    Chaumette, T; Chapuy, E; Berrocoso, E; Llorca-Torralba, M; Bravo, L; Mico, J A; Chalus, M; Eschalier, A; Ardid, D; Marchand, F; Sors, A

    2018-01-01

    Histamine H3 receptors are mainly expressed on CNS neurons, particularly along the nociceptive pathways. The potential involvement of these receptors in pain processing has been suggested using H3 receptor inverse agonists. The antinociceptive effect of S 38093, a novel inverse agonist of H3 receptors, has been evaluated in several neuropathic pain models in rat and compared with those of gabapentin and pregabalin. While S 38093 did not change vocalization thresholds to paw pressure in healthy rats, it exhibited a significant antihyperalgesic effect in the Streptozocin-induced diabetic (STZ) neuropathy model after acute and chronic administration and, in the chronic constriction injury (CCI) model only after chronic administration, submitted to the paw-pressure test. Acute S 38093 administration at all doses tested displayed a significant cold antiallodynic effect in a model of acute or repeated administration of oxaliplatin-induced neuropathy submitted to cold tail immersion, cold allodynia being the main side effect of oxaliplatin in patients. The effect of S 38093 increased following chronic administration (i.e. twice a day during 5 days) in the CCI and STZ models except in the oxaliplatin models where its effect was already maximal from the first administration The kinetics and size of effect of S 38093 were similar to gabapentin and/or pregabalin. Finally, the antinociceptive effect of S 38093 could be partially mediated by α2 adrenoreceptors desensitization in the locus coeruleus. These results highlight the interest of S 38093 to relieve neuropathic pain and warrant clinical trials especially in chemotherapeutic agent-induced neuropathic pain. S 38093, a new H3 antagonist/inverse agonist, displays antiallodynic and antihyperalgesic effect in neuropathic pain, especially in oxaliplatin-induced neuropathy after chronic administration. This effect of S 38093 in neuropathic pain could be partly mediated by α2 receptors desensitization in the locus coeruleus

  14. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    PubMed

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  15. Different modulation by histamine of IL-4 and interferon-gamma (IFN-γ) release according to the phenotype of human Th0, Th1 and Th2 clones

    PubMed Central

    LAGIER, B; LEBEL, B; BOUSQUET, J; PÈNE, J

    1997-01-01

    Histamine, an important inflammatory mediator in allergic diseases and asthma, has been reported to have modulator effects on T cells, suggesting that the bronchial microenvironment may regulate the function of resident T cells. We examined the effect of histamine on the release of the Th2-associated cytokines IL-4 and IL-5 and the Th1-associated cytokine IFN-γ by 30 CD4+ T cell clones from peripheral blood or bronchial biopsy of one atopic subject. Based on the IL-4/IFN-γ ratio, the clones were ascribed to the Th2 (ratio >1), Th0 (ratio ⩾ 0.1 and ⩽1) or Th1 (ratio <0.1) phenotype. Histamine inhibited IFN-γ production by Th1-like cells (P<0.02, Kruskall–Wallis), especially from bronchial biopsy, but had no effect on IL-4 release. Regarding Th0 clones, histamine inhibited IL-4 production (P<0.02) in a dose-dependent manner and slightly inhibited IFN-γ production, but had no effect on Th2-like cells. Histamine had a heterogeneous and insignificant effect on IL-5 production. The H2-receptor antagonist ranitidine completely reversed the inhibition of IL-4 and IFN-γ production, whereas the agonist dimaprit mimicked this effect. In contrast, H1- and H3-receptor agonists and antagonists had no significant effect. These data demonstrate that histamine has different effects on IL-4 and IFN-γ release by T helper cells according to their phenotype via H2-receptors. This study extends the immunomodulatory effects of histamine which may contribute to the perpetuation of airway inflammation in asthma. PMID:9182905

  16. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    PubMed

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  17. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    PubMed Central

    Solís, Karina H.; Méndez, Laura I.; García-López, Guadalupe; Díaz, Néstor F.; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from

  18. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective.

    PubMed

    Mahmood, Danish

    2016-10-01

    Histamine H 3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H 3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D 2 , D 3 and serotonin 5-HT 1A receptors, antagonism at D 2 , 5-HT 2A, 5-HT 2B and 5-HT 7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H 3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H 3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H 3 receptors as a target of antiobesity

  19. CEP-26401 (irdabisant), a potent and selective histamine H₃ receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities.

    PubMed

    Raddatz, Rita; Hudkins, Robert L; Mathiasen, Joanne R; Gruner, John A; Flood, Dorothy G; Aimone, Lisa D; Le, Siyuan; Schaffhauser, Hervé; Duzic, Emir; Gasior, Maciej; Bozyczko-Coyne, Donna; Marino, Michael J; Ator, Mark A; Bacon, Edward R; Mallamo, John P; Williams, Michael

    2012-01-01

    CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H₃ receptor (H₃R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H₃R was demonstrated in radioligand binding displacement assays in rat brain membranes (K(i) = 2.7 ± 0.3 nM) and recombinant rat and human H₃R-expressing systems (K(i) = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [³⁵S]guanosine 5'-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H₃R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC₅₀ = 0.1 ± 0.003 mg/kg), and antagonism of the H₃R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED₅₀ = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H₃R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.

  20. Protective effect of histamine microinjected into cerebellar fastigial nucleus on stress gastric mucosal damage in rats.

    PubMed

    Qiao, Xiao; Yang, Jun; Fei, Su-Juan; Zhu, Jin-Zhou; Zhu, Sheng-Ping; Liu, Zhang-Bo; Li, Ting-Ting; Zhang, Jian-Fu

    2015-12-10

    In the study, we investigated the effect of histamine microinjected into cerebellar fastigial nucleus (FN) on stress gastric mucosal damage (SGMD), and its mechanisms in rats. The model of SGMD was established by restraining and water (21±1°C)-immersion for 3h. The gastric mucosal damage index (GMDI) indicated the severity of gastric mucosal damage. Histamine or receptor antagonist was microinjected into the FN. The decussation of superior cerebellar peduncle (DSCP) and the lateral hypothalamic area (LHA) were destroyed, respectively. The pathological changes of gastric mucosa were evaluated using biological signal acquisition system, Laser-Doppler flowmeter, and western blotting. We found that the microinjection of histamine (0.05, 0.5, and 5μg) into FN significantly attenuated the SGMD, in a dose-dependent manner, whereas, the microinjection of histamine H2 receptor antagonist, ranitidine, and glutamic acid decarboxylase antagonist, 3-mercaptopropionic acid (3-MPA) exacerbated the SGMD. The protective effect of histamine on SGMD was abolished by electrical lesion of DSCP or chemical ablation of LHA. The microinjection of histamine decreased the discharge frequency of the greater splanchnic nerve, and the gastric mucosal blood flow was increased. In addition, the cellular proliferation was enhanced, but the cellular apoptosis was reduced in the gastric mucosa. Also the pro-apoptosis protein, Bax, and caspase-3 were down-regulated, and the anti-apoptosis protein, Bcl-2 was up-regulated following microinjection of histamine. In conclusion, the FN participated in the regulation of SGMD after histamine microinjected into FN, and cerebellar-hypothalamic circuits (include: DSCP, LHA) contribute to the process, which may provide a new therapeutic strategy for SGMD. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  2. Effects of proton pump inhibitors and histamine-2 receptor antagonists on response to fidaxomicin or vancomycin in patients with Clostridium difficile-associated diarrhoea

    PubMed Central

    Weiss, Karl; Louie, Thomas; Miller, Mark A; Mullane, Kathleen; Crook, Derrick W; Gorbach, Sherwood L

    2015-01-01

    Objective It has been established that use of proton pump inhibitors (PPIs) is associated with an increased risk of acquiring Clostridium difficile-associated diarrhoea (CDAD). However, it is not known whether the use of PPIs or histamine-2 receptor antagonists (H2RAs) concurrently with CDAD-targeted antibiotic treatment affects clinical response or recurrence rates. Design In two phase 3 trials, patients with toxin-positive CDAD were randomised to receive fidaxomicin 200 mg twice daily or vancomycin 125 mg four times daily for 10 days. Only inpatients with CDAD (due to complete medication record availability) were included in this post hoc analysis: 701 patients, of whom 446 (64%) used PPIs or H2RAs during study drug treatment or follow-up. Baseline factors that were statistically significant in univariate analyses were analysed in multivariate analyses of effects on clinical response and recurrence. Results Multivariate analysis showed that leukocytosis, elevated creatinine and hypoalbuminemia, but not PPI or H2RA use, were significant factors associated with poor clinical responses. Treatment group was the single significant predictor of recurrence; the probability of recurrence after fidaxomicin therapy was half that following vancomycin therapy. Conclusions Acid-suppressing drugs, used by nearly two-thirds of inpatients with CDAD, did not worsen clinical response or recurrence when used concurrently with fidaxomicin or vancomycin. Therefore, development of CDAD does not require discontinuation of anti-acid treatment in patients who have an indication for continuing PPI or H2RA therapy, such as gastro-oesophageal reflux disease and risk of gastrointestinal bleed. PMID:26462279

  3. Major advances in the development of histamine H4 receptor ligands.

    PubMed

    Smits, Rogier A; Leurs, Rob; de Esch, Iwan J P

    2009-08-01

    The search for new and potent histamine H4 receptor ligands is leading to a steadily increasing number of scientific publications and patent applications. Several interesting and structurally diverse compounds have been found, but fierce IP competition for a preferred 2-aminopyrimidine scaffold is becoming apparent. Recent investigations into the role of the histamine H(4)R in (patho)physiology and the use of H4R ligands in in vivo disease models reveal enormous potential in the field of inflammation and allergy, among others. The development of ligands that display activity at two or more histamine receptor (HR) subtypes is another clinical opportunity that is currently being explored. Taken together, the histamine H4R field is gearing up for clinical studies and has the potential to deliver another generation of blockbuster drugs.

  4. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease

  5. Orexin OX2 Receptor Antagonists as Sleep Aids.

    PubMed

    Jacobson, Laura H; Chen, Sui; Mir, Sanjida; Hoyer, Daniel

    The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX 1 and OX 2 receptors (OX 2 Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX 2 R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX 2 R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX 2 R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX 2 R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation

  6. Blonanserin, an antipsychotic and dopamine D₂/D₃receptor antagonist, and ameliorated alcohol dependence.

    PubMed

    Takaki, Manabu; Ujike, Hiroshi

    2013-01-01

    Blonanserin (BNS) is used for treatment of both positive and negative symptoms of schizophrenia in Japan and Korea. Because BNS has weak α1 receptor blocking activities and is almost devoid of histamine H1 and muscarinic M1 antagonist activity, BNS is better tolerated than other atypical antipsychotics. A high degree of D₃ receptor blockage is reported to be predictive of drug abuse and alcoholism, and BNS has strong D₃ receptor antagonism. Thus, BNS may be useful in the treatment of alcoholism. We present a case in which BNS ameliorated alcohol dependence.

  7. Involvement of the histamine H{sub 4} receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM)more » and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic

  8. Cost-Effectiveness of Histamine2 Receptor Antagonists Versus Proton Pump Inhibitors for Stress Ulcer Prophylaxis in Critically Ill Patients.

    PubMed

    Hammond, Drayton A; Kathe, Niranjan; Shah, Anuj; Martin, Bradley C

    2017-01-01

    To determine the cost-effectiveness of stress ulcer prophylaxis with histamine 2 receptor antagonists (H2RAs) versus proton pump inhibitors (PPIs) in critically ill and mechanically ventilated adults. A decision analytic model estimating the costs and effectiveness of stress ulcer prophylaxis (with H2RAs and PPIs) from a health care institutional perspective. Adult mixed intensive care unit (ICU) population who received an H2RA or PPI for up to 9 days. Effectiveness measures were mortality during the ICU stay and complication rate. Costs (2015 U.S. dollars) were combined to include medication regimens and untoward events associated with stress ulcer prophylaxis (pneumonia, Clostridium difficile infection, and stress-related mucosal bleeding). Costs and probabilities for complications and mortality from complications came from randomized controlled trials and observational studies. A base case scenario was developed with pooled data from an observational study and meta-analysis of randomized controlled trials. Scenarios based on observational and meta-analysis data alone were evaluated. Outcomes were expected and incremental costs, mortalities, and complication rates. Univariate sensitivity analyses were conducted to determine the influence of inputs on cost, mortality, and complication rates. Monte Carlo simulations evaluated second-order uncertainty. In the base case scenario, the costs, complication rates, and mortality rates were $9039, 17.6%, and 2.50%, respectively, for H2RAs and $11,249, 22.0%, and 3.34%, respectively, for PPIs, indicating that H2RAs dominated PPIs. The observational study-based model provided similar results; however, in the meta-analysis-based model, H2RAs had a cost of $8364 and mortality rate of 3.2% compared with $7676 and 2.0%, respectively, for PPIs. At a willingness-to-pay threshold of $100,000/death averted, H2RA therapy was superior or preferred 70.3% in the base case and 97.0% in the observational study-based scenario. PPI therapy

  9. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after

  10. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor

  11. Effect of FRG-8813, a new-type histamine H(2)-receptor antagonist, on the recurrence of gastric ulcer after healing by drug treatment in rats.

    PubMed

    Ajioka, H; Miyake, H; Matsuura, N

    2000-08-01

    We investigated the recurrence of ulcers in rats after treatment with FRG-8813, (+/-)-2-(furfurylsulfinyl)-N-[4- [4-(piperidinomethyl)-2-pyridyl] oxy-(Z)-2-butenyl] acetamide, a novel histamine H(2)-receptor antagonist. Chronic gastric ulcers were induced by serosa-searing with a hot metal bar, and the ulcer healing and recurrence after treatment with FRG-8813 or famotidine were evaluated by endoscopy for 160 days. At the dose of 30 mg/kg p. o., once daily, the treatment with FRG-8813 or famotidine for 60 days, which was stopped earlier if the ulcer had healed, accelerated the ulcer healing significantly. A subsequent follow-up study on the healed rats showed that the cumulative recurrence rate of rats healed by FRG-8813 was lower than that of naturally healed rats or rats healed by famotidine. In many cases of rats healed by FRG-8813, the regenerated mucosa was normal in contrast with the control of famotidine-healed animals. The mucosal regeneration index of the gastric ulcer after 10 days' administration of FRG-8813 was significantly higher than that obtained with famotidine. After cessation of the treatment with famotidine for 7 days, rebound hyperacidity was induced; but such rebound did not occur with FRG-8813. Considering the low recurrence rate of ulcers after FRG-8813 treatment, we suggest that FRG-8813 treatment may provide additional benefits in peptic ulcer therapy. Copyright 2000 S. Karger AG, Basel

  12. The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor

    PubMed Central

    Bosma, Reggie; Witt, Gesa; Vaas, Lea A. I.; Josimovic, Ivana; Gribbon, Philip; Vischer, Henry F.; Gul, Sheraz; Leurs, Rob

    2017-01-01

    The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules. PMID:29033838

  13. Chewing rescues stress-suppressed hippocampal long-term potentiation via activation of histamine H1 receptor.

    PubMed

    Ono, Yumie; Kataoka, Tsuyoshi; Miyake, Shinjiro; Sasaguri, Kenichi; Sato, Sadao; Onozuka, Minoru

    2009-08-01

    We have previously found in rats that chewing, an active behavioral strategy to cope with a stressful situation, rescues long-term potentiation (LTP) in the hippocampus through activating stress-suppressed N-methyl-D-aspartate (NMDA) receptor function. To further examine the mechanisms underlying this ameliorative effect of chewing, we studied the involvement of the histaminergic system, which has been shown to be activated by mastication, in the LTP of hippocampal slices of rats that were allowed to chew a wooden stick during exposure to immobilization stress. Chewing failed to rescue stress-suppressed LTP in the rats treated with histamine H1 receptor (H1R) antagonist pyrilamine (5 mg/kg, i.p.) before exposure to stress, although administration of pyrilamine did not affect LTP in naive rats and in stressed rats that did not chew. However, when pyrilamine was administrated immediately after exposure to stress, chewing rescued LTP whose magnitude was statistically comparable to that in the rats that chewed without drug treatment. These results suggest that chewing-induced histamine release in the hippocampus and the subsequent H1 receptor activation may be essential to rescue stress-suppressed synaptic plasticity.

  14. Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans.

    PubMed

    Romero, Steven A; Ely, Matthew R; Sieck, Dylan C; Luttrell, Meredith J; Buck, Tahisha M; Kono, Jordan M; Branscum, Adam J; Halliwill, John R

    2015-04-01

    What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study

  15. Stimulatory effects of histamine on migration of nasal fibroblasts.

    PubMed

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  16. Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Tomata, Yoshihide; Kunitomo, Jun; Hirozane, Mariko; Marui, Shogo

    2011-11-01

    To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Modulation of genioglossus muscle activity across sleep-wake states by histamine at the hypoglossal motor pool.

    PubMed

    Bastedo, Timothy; Chan, Erin; Park, Eileen; Liu, Hattie; Horner, Richard L

    2009-10-01

    Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.

  18. Histamine up-regulates fibroblast growth factor receptor 1 and increases FOXP2 neurons in cultured neural precursors by histamine type 1 receptor activation: conceivable role of histamine in neurogenesis during cortical development in vivo.

    PubMed

    Molina-Hernández, Anayansi; Rodríguez-Martínez, Griselda; Escobedo-Ávila, Itzel; Velasco, Iván

    2013-03-07

    During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H(1)R) activation. Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H(1)R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H(1)R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H(1)R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H(1)R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection. These results show that HA, by activating H(1)R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation of FGFR1

  19. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human

  20. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  1. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians

    PubMed Central

    Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo

    2017-01-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  2. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    PubMed

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  3. Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants

    PubMed Central

    Wifling, D; Löffel, K; Nordemann, U; Strasser, A; Bernhardt, G; Dove, S; Seifert, R; Buschauer, A

    2015-01-01

    Background and Purpose Some histamine H4 receptor ligands act as inverse agonists at the human H4 receptor (hH4R), a receptor with exceptionally high constitutive activity, but as neutral antagonists or partial agonists at the constitutively inactive mouse H4 receptor (mH4R) and rat H4 receptor (rH4R). To study molecular determinants of constitutive activity, H4 receptor reciprocal mutants were constructed: single mutants: hH4R-F169V, mH4R-V171F, hH4R-S179A, hH4R-S179M; double mutants: hH4R-F169V+S179A, hH4R-F169V+S179M and mH4R-V171F+M181S. Experimental Approach Site-directed mutagenesis with pVL1392 plasmids containing hH4 or mH4 receptors were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and Gβ1γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays ([3H]-histamine), and in functional [35S]-GTPγS assays with inverse, partial and full agonists of the hH4 receptor. Key Results Constitutive activity decreased from the hH4 receptor via the hH4R-F169V mutant to the hH4R-F169V+S179A and hH4R-F169V+S179M double mutants. F169 alone or in concert with S179 plays a major role in stabilizing a ligand-free active state of the hH4 receptor. Partial inverse hH4 receptor agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species orthologues with lower or no constitutive activity. Some partial and full hH4 receptor agonists showed decreased maximal effects and potencies at hH4R-F169V and double mutants. However, the mutation of S179 in the hH4 receptor to M as in mH4 receptor or A as in rH4 receptor did not significantly reduce constitutive activity. Conclusions and Implications F169 and S179 are key amino acids for the high constitutive activity of hH4 receptors and may also be of relevance for other constitutively active GPCRs. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update published in volume 170 issue 1. To view the other articles in this issue visit

  4. Mechanism of H₂ histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus.

    PubMed

    Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-08-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. C-terminal substance P fragments elicit histamine release from a murine mast cell line.

    PubMed

    Krumins, S A; Broomfield, C A

    1993-01-01

    Incubation of mouse mast cells with C-terminal substance P fragments in the micromolar range caused a release of histamine. Maximum release was observed with the tetrapeptide SP(8-11), followed by the tripeptide SP(9-11). SP(6-11) and SP(5-11) were nearly equipotent, while SP(4-11) caused only a slight histamine release. The substance P parent molecule and the N-terminal substance P fragments SP(1-4), SP(1-6) and SP(1-7) evoked no release of histamine. In confirmation of our previous findings, incubation with neurokinin A caused a release comparable to that of SP(8-11). Whereas neurokinin A-induced release was partially preventable by pretreating the cells with the NK2 receptor-selective antagonist cyclo(Gln-Trp-Phe-(R)Gly[ANC-2]Leu-Met), SP(8-11)-induced release was completely abolished by such treatment. The results provide the first evidence for the involvement of NK2 tachykinin receptors in the release of histamine by C-terminal substance P fragments.

  6. Evidence of NK1 and NK2 Tachykinin Receptors and their Involvement in Histamine Release in a Murine Mast Cell Line

    DTIC Science & Technology

    1992-01-01

    either human p ~ulmo(nary,. Delectaible in the absence of estrmcclular CaCI’. i’Potent 4.23ug/105 cells, or rat peritoneal mast cells. bousbesin...ABSTRACT (Maximum 200 words) Abstract-Binding of )kH substance P (SP) and histamine release were examined using a cloned mouse mast cell line SP binding...the cells with the NK2 antagonist peptide A reduced NKA-induced histamine release ID.Arg’,D.Phe’,D-Trp 0 3 .Leu t )nsu b s tance P , a putative SP

  7. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients.

    PubMed

    Poyurovsky, Michael; Pashinian, Artashes; Levi, Aya; Weizman, Ronit; Weizman, Abraham

    2005-03-01

    Histamine antagonism has been implicated in antipsychotic drug-induced weight gain. Betahistine, a histamine enhancer with H1 agonistic/H3 antagonistic properties (48 mg t.i.d.), was coadministered with olanzapine (10 mg/day) in three first-episode schizophrenia patients for 6 weeks. Body weight was measured at baseline and weekly thereafter. Clinical rating scales were completed at baseline and at week 6. All participants gained weight (mean weight gain 3.1+/-0.9 kg) and a similar pattern of weight gain was observed: an increase during the first 2 weeks and no additional weight gain (two patients) or minor weight loss (one patient) from weeks 3 to 6. None gained 7% of baseline weight, which is the cut-off for clinically significant weight gain. Betahistine was safe and well tolerated and did not interfere with the antipsychotic effect of olanzapine. Our findings justify a placebo-controlled evaluation of the putative weight-attenuating effect of betahistine in olanzapine-induced weight gain.

  8. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    PubMed

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    PubMed

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Histamine H1-receptor antagonists against Leishmania (L.) infantum: an in vitro and in vivo evaluation using phosphatidylserine-liposomes.

    PubMed

    Pinto, Erika G; da Costa-Silva, Thais A; Tempone, Andre Gustavo

    2014-09-01

    Considering the limited and toxic therapeutic arsenal available for visceral leishmaniasis (VL), the drug repositioning approach could represent a promising tool to the introduction of alternative therapies. Histamine H1-receptor antagonists are drugs belonging to different therapeutic classes, including antiallergics and anxyolitics. In this work, we described for the first time the activity of H1-antagonists against L. (L.) infantum and their potential effectiveness in an experimental hamster model. The evaluation against promastigotes demonstrated that chlorpheniramine, cinnarizine, hydroxyzine, ketotifen, loratadine, quetiapine and risperidone exerted a leishmanicidal effect against promastigotes, with IC50 values in the range of 13-84μM. The antihistaminic drug cinnarizine demonstrated effectiveness against the intracellular amastigotes, with an IC50 value of 21μM. The mammalian cytotoxicity was investigated in NCTC cells, resulting in IC50 values in the range of 57-229μM. Cinnarizine was in vivo studied as a free formulation and entrapped into phosphatidylserine-liposomes. The free drug was administered for eight consecutive days at 50mg/kg by intraperitoneal route (i.p.) and at 100mg/kg by oral route to L. infantum-infected hamsters, but showed lack of effectiveness in both regimens, as detected by real time PCR. The liposomal formulation was administered by i.p. route at 3mg/kg for eight days and reduced the parasite burden to 54% in liver when compared to untreated group; no improvement was observed in the spleen of infected hamsters. Cinnarizine is the first antihistaminic drug with antileishmanial activity and could be used as scaffold for drug design studies for VL. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Histamine Antagonists for Treatment of Peripheral Vertigo: A Meta-Analysis.

    PubMed

    Amini, Afshin; Heidari, Kamran; Kariman, Hamid; Taghizadeh, Mehrdad; Hatamabadi, Hamidreza; Shahrami, Ali; Derakhshanfar, Hojat; Asadollahi, Shadi

    2015-08-01

    Vertigo, the hallucination of movement of oneself or one's surroundings, can have substantial adverse effects on the quality of life of affected patients. It is essential to decrease the frequency, severity, and duration of vertigo attacks using effective medications with minimal debilitating adverse effects. We performed a meta-analysis of available clinical trials to evaluate the efficacy of histamine antagonists in the treatment of vertigo compared to the rate of resolution in untreated control groups. A systematic search of articles in any language from January 1970 to March 2015 was performed through the following databases: the Cochrane Central Register of Controlled Trials, Medical Literature Analysis and Retrieval System Online, the Excerpta Medica Database, Cumulative Index to Nursing and Allied Health Literature, Latin American and Caribbean Health Sciences Literature, Allied and Complementary Medicine Database, Web of Science, ClinicalTrials.gov, and Google. Randomized controlled trials comparing each kind of antihistamine to untreated control participants in the treatment of vertigo (blinded/unblinded) were screened for inclusion. Three reviewers separately performed data extraction from the included trials using a standard data abstraction form. Three other researchers read the final list of all articles retained. Discrepancies were settled by mutual consensus between the authors. Random effects models were applied to estimate the pooled odds ratio (OR) and 95% confidence interval (CI) using the Review Manager software. The evaluation of publication bias was performed by Egger's test and Begg's funnel plot. We identified 13 eligible citations. The pooled OR was 5.370, 95% CI (3.263-8.839), and I2=56.0%, with no obvious evidence of publication bias. Our results provide clarification of the effectiveness of several categories of histamine antagonists compared with placebos in controlling peripheral vertigo.

  12. No Increase in Risk of Acute Myocardial Infarction in Privately Insured Adults Prescribed Proton Pump Inhibitors vs Histamine-2 Receptor Antagonists (2002-2014).

    PubMed

    Landi, Suzanne N; Sandler, Robert S; Pate, Virginia; Lund, Jennifer L

    2018-03-01

    Proton pump inhibitors (PPIs) are commonly used medications. Recent studies reported an increased risk of acute myocardial infarction (MI) in PPI users vs non-users. We evaluated MI risk associated with PPIs compared with histamine-2 receptor antagonists (H2RAs) in privately insured adults in the United States. Using administrative claims from commercial and Medicare Supplemental plans (2001-2014), we compared risk of MI in patients who started a new prescription for PPIs vs H2RAs. Enrollees were followed from their first prescription until MI, medication discontinuation, plan disenrollment, or December 31, 2014. MI was defined using hospital diagnosis codes. Risk differences (RD), risk ratios, and 95% confidence intervals (CIs) were estimated using Kaplan-Meier methods at 3, 12, and 36 months after treatment initiation. Standardized morbidity ratio weights were used to control measured confounding. Analyses were stratified by plan type (commercial vs Medicare Supplemental). We identified more than 5 million new users of prescription PPIs and H2RAs. Median follow-up time was 60 days for patients with commercial insurance and 96 days in patients with Medicare Supplemental insurance. The 12-month weighted risk of MI was low overall (approximately 2 cases per 1000 among patients in commercial plans; 8 per 1000 among patients in Medicare Supplemental plans). In the RD analysis, we found no significant differences in MI risk between patients who started PPIs vs H2RAs for the first 12 months, either in the commercial population (weighted RD per 1000, -0.08; 95% CI, -0.51 to 0.36) or the Medicare Supplemental population (weighted RD per 1000, -0.45; 95% CI, -1.53 to 0.58). In an analysis of administrative claims from commercial and Medicare Supplemental plans, we found no evidence that prescription PPIs increase risk of MI compared with prescription H2RAs. Physicians and patients should not avoid starting a PPI because of concerns related to MI risk. Copyright © 2018

  13. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    PubMed

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  14. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  15. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons

    PubMed Central

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.

    2010-01-01

    The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473

  16. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    PubMed

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.

  17. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  18. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    PubMed

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hydrogen sulfide donors alleviate itch secondary to the activation of type-2 protease activated receptors (PAR-2) in mice.

    PubMed

    Coavoy-Sánchez, S A; Rodrigues, L; Teixeira, S A; Soares, A G; Torregrossa, R; Wood, M E; Whiteman, M; Costa, S K P; Muscará, M N

    2016-11-01

    Hydrogen sulfide (H 2 S) has been highlighted as an endogenous signaling molecule and we have previously found that it can inhibit histamine-mediated itching. Pruritus is the most common symptom of cutaneous diseases and anti-histamines are the usual treatment; however, anti-histamine-resistant pruritus is common in some clinical settings. In this way, the involvement of mediators other than histamine in the context of pruritus requires new therapeutic targets. Considering that the activation of proteinase-activated receptor 2 (PAR-2) is involved in pruritus both in rodents and humans, in this study we investigated the effect of H 2 S donors on the acute scratching behavior mediated by PAR-2 activation in mice, as well as some of the possible pharmacological mechanisms involved. The intradermal injection of the PAR-2 peptide agonist SLIGRL-NH 2 (8-80nmol) caused a dose-dependent scratching that was unaffected by intraperitoneal pre-treatment with the histamine H1 antagonist pyrilamine (30mg/kg). Co-injection of SLIGRL-NH 2 (40nmol) with either the slow-release H 2 S donor GYY4137 (1 and 3nmol) or the spontaneous donor NaHS (1 and 0.3nmol) significantly reduced pruritus. Co-treatment with the K ATP channel blocker glibenclamide (200nmol) or the nitric oxide (NO) donor sodium nitroprusside (10nmol) abolished the antipruritic effects of NaHS; however, the specific soluble guanylyl cyclase inhibitor ODQ (30μg) had no significant effects. The transient receptor potential ankyrin type 1 (TRPA1) antagonist HC-030031 (20μg) significantly reduced SLIGRL-NH 2 -induced pruritus; however pruritus induced by the TRPA1 agonist AITC (1000nmol) was unaffected by NaHS. Based on these data, we conclude that pruritus secondary to PAR-2 activation can be reduced by H 2 S, which acts through K ATP channel opening and involves NO in a cyclic guanosine monophosphate (cGMP)-independent manner. Furthermore, TRPA1 receptors mediate the pruritus induced by activation of PAR-2, but H 2 S

  20. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA22 receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective

  1. Indication of acid suppression therapy and predictors for the prophylactic use of protonpump inhibitors vs. histamine-2 receptor antagonists in a Malaysian tertiary hospital

    PubMed Central

    Oh, Ai L.; Tan, Andrew G.; Phan, Hui S.; Lee, Basil C.; Jumaat, Nafisah; Chew, Soo P.; Wong, Siok H.; Ting, Shee H.; Subramaniam, Theebaa

    2015-01-01

    Background: Proton-pump inhibitors (PPI) and histamine-2 receptor antagonists (H2RA) are common acid suppressants used in gastrointestinal disorders. The trend of usage in Malaysia has changed from predominantly H2RA to PPI from 2007 to 2008, 3.46 versus 2.87 and 2.99 versus 3.24 DDD (Defined Daily Dose)/1000 population/day respectively. This raises concerns as PPI overutilization amounts to higher cost expenditure and are associated with various untoward consequences such as Clostridium difficile-associated diarrhea, pneumonia, and osteoporosis. Objectives: To evaluate the indication of acid suppression therapy (AST) and to look for predictors associated with the prophylactic use of PPI as compared to H2RA. Methods: Data collection was conducted via a standardized surveillance form over a 2-month period in the general medical wards of Sarawak General Hospital. All patients who received at least one dose of PPI or H2RA in any dosage form were included in the study. Appropriateness of prophylaxis was determined using current available guidelines. Selected risk factors were analysed using simple logistic regression to look for predictors associated with the choice of PPI in prophylactic AST. Results: Out of 212 cases in the present cohort, about three quarters (75.5%, n=160) of acid suppressants were given as prophylaxis. Over half of these did not have appropriate indications for prophylactic AST (58.1%, n=93). Among all cases given prophylactic AST, 75.0% (n=120) of them were given PPI. Renal insufficiency was identified as the only predictor associated with the use of prophylactic PPI in preference to H2RA (OR=2.86, 95%CI 1.21:6.72, p=0.011). Conclusion: Inappropriate prophylactic AST is a major concern and may even be underestimated due to the lack of appropriate guidelines. More data is required to guide the selection between PPI and H2RA, specifically the more cost-effective use of H2RA in patients with lower gastrointestinal risk or in whom PPI has no clear

  2. TRPA1, substance P, histamine and 5-hydroxytryptamine interact in an interdependent way to induce nociception.

    PubMed

    Fischer, Luana; Lavoranti, Maria Isabel; de Oliveira Borges, Mariana; Miksza, Alana Farias; Sardi, Natalia Fantin; Martynhak, Bruno Jacson; Tambeli, Claudia H; Parada, Carlos Amílcar

    2017-04-01

    Although TRPA1, SP, histamine and 5-hydroxytryptamine (5-HT) have recognized contribution to nociceptive mechanisms, little is known about how they interact with each other to mediate inflammatory pain in vivo. In this study we evaluated whether TRPA1, SP, histamine and 5-HT interact, in an interdependent way, to induce nociception in vivo. The subcutaneous injection of the TRPA1 agonist allyl isothiocyanate (AITC) into the rat's hind paw induced a dose-dependent and short lasting behavioral nociceptive response that was blocked by the co-administration of the TRPA1 antagonist, HC030031, or by the pretreatment with antisense ODN against TRPA1. AITC-induced nociception was significantly decreased by the co-administration of selective antagonists for the NK1 receptor for substance P, the H1 receptor for histamine and the 5-HT 1A or 3 receptors for 5-HT. Histamine- or 5-HT-induced nociception was decreased by the pretreatment with antisense ODN against TRPA1. These findings suggest that AITC-induced nociception depends on substance P, histamine and 5-HT, while histamine- or 5-HT-induced nociception depends on TRPA1. Most important, AITC interact in a synergistic way with histamine, 5-HT or substance P, since their combination at non-nociceptive doses induced a nociceptive response much higher than that expected by the sum of the effect of each one alone. This synergistic effect is dependent on the H1, 5-HT 1A or 3 receptors. Together, these findings suggest a self-sustainable cycle around TRPA1, no matter where the cycle is initiated each step is achieved and even subeffective activation of more than one step results in a synergistic activation of the overall cycle.

  3. Potential negative effects of anti-histamines on male reproductive function.

    PubMed

    Mondillo, Carolina; Varela, María Luisa; Abiuso, Adriana María Belén; Vázquez, Ramiro

    2018-05-01

    Histamine (HA) is a pleiotropic biogenic amine synthesized exclusively by histidine decarboxylase (HDC) in most mammalian tissues. The literature on the role of HA within the male gonad has expanded over the last years, attracting attention to potential unexpected side-effects of anti-histamines on testicular function. In this regard, HA receptors (HRH1, HRH2 and HRH4) have been described in Leydig cells of different species, including human. Via these receptors, HA has been reported to trigger positive or negative interactions with the LH/hCG signaling pathway depending upon its concentration, thereby contributing to the local control of testicular androgen levels. It should then be considered that anti-histamines may affect testicular homeostasis by increasing or decreasing steroid production. Additionally, HRH1 and HRH2 receptors are present in peritubular and germ cells, and HRH2 antagonists have been found to negatively affect peritubular cells and reduce sperm viability. The potential negative impact of anti-histamines on male reproduction becomes even more dramatic if we consider that HA has also been associated with human sexual behavior and penile erection. What is more, although testicular mast cells are the major source of locally produced HA, recent studies have described HDC expression in macrophages, Leydig cells and germ cells, revealing the existence of multiple sources of HA within the testis. Undoubtedly, the more we learn about the testicular histaminergic system, the more opportunities there will be for rational design of drugs aimed at treating HA-related pathologies, with minimum or nule negative impact on fertility. © 2018 Society for Reproduction and Fertility.

  4. Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.

    PubMed

    Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Gatfield, John; Treiber, Alexander; Roch, Catherine; Jenck, Francois; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Boss, Christoph

    2015-05-01

    Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prostanoid receptor antagonists: development strategies and therapeutic applications

    PubMed Central

    Jones, RL; Giembycz, MA; Woodward, DF

    2009-01-01

    Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and 1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 …) based mainly on the pharmacological actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and have emerged from high-throughput screening of compound libraries, made possible by the development of (functional) assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2 (acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin) antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart, COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major development strategies and current and potential clinical usage. PMID:19624532

  6. Effect of antioxidants on histamine receptor activation and sustained post-exercise vasodilatation in humans

    PubMed Central

    Romero, Steven A.; Ely, Matthew R.; Sieck, Dylan C.; Luttrell, Meredith J.; Buck, Tahisha M.; Kono, Jordan M.; Branscum, Adam J.; Halliwill, John R.

    2015-01-01

    An acute bout of aerobic exercise elicits a sustained post-exercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signaling pathway that leads to post-exercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 hr unilateral dynamic knee extension at 60% of peak power in three conditions: 1) control; 2) intravenous ascorbate infusion; and, 3) ascorbate infusion plus oral H1/H2 histamine receptor blockade. Femoral artery blood flow (Doppler ultrasound) was measured before exercise and for 2 hr post-exercise. Femoral vascular conductance was calculated as flow/pressure. Post-exercise vascular conductance was greater for control condition (3.4 ± 0.1 ml min−1 mmHg−1) compared with ascorbate (2.7 ± 0.1 ml min−1 mmHg−1, P < 0.05) and ascorbate plus H1/H2 blockade (2.8 ± 0.1 ml min−1 mmHg−1, P < 0.05), which did not differ from one another (P = 0.9). Because ascorbate may catalyze the degradation of histamine in vivo, we conducted a follow-up study where subjects performed exercise in two conditions: 1) control and 2) intravenous N-acetylcysteine infusion. Post-exercise vascular conductance was similar for control (4.0 ± 0.1 ml min−1 mmHg−1) and N-acetylcysteine conditions (4.0 ± 0.1 ml min−1 mmHg−1; P = 0.8). Thus, the results in study 1 were due to the degradation of histamine in skeletal muscle by ascorbate, since the histaminergic vasodilatation was unaffected by N-acetylcysteine. Taken together, exercise-induced oxidative stress does not appear to contribute to sustained post-exercise vasodilatation. PMID:25664905

  7. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch.

    PubMed

    Akiyama, T; Carstens, M Iodi; Carstens, E

    2010-11-01

    Chronic itch is a symptom of many skin conditions and systemic disease, and it has been hypothesized that the chronic itch may result from sensitization of itch-signaling pathways. We induced experimental chronic dry skin on the rostral back of mice, and observed a significant increase in spontaneous hindlimb scratches directed to the dry skin. Spontaneous scratching was significantly attenuated by a PAR-2 antibody and 5-HT2A receptor antagonist, indicating activation of these receptors by endogenous mediators released under dry skin conditions. We also observed a significant increase in the number of scratch bouts evoked by acute intradermal injections of a protease-activated receptor (PAR)-2 agonist and serotonin (5-HT), but not histamine. We additionally investigated if pruritogen-evoked activity of dorsal root ganglion (DRG) neurons is enhanced in this model. DRG cells from dry skin mice exhibited significantly larger responses to the PAR-2 agonist and 5-HT, but not histamine. Spontaneous scratching may reflect ongoing itch, and enhanced pruritogen-evoked scratching may represent hyperknesis (enhanced itch), both potentially due to sensitization of itch-signaling neurons. The correspondence between enhanced behavioral scratching and DRG cell responses suggest that peripheral pruriceptors that respond to proteases and 5-HT, but not histamine, may be sensitized in dry skin itch. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  9. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  10. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  11. Can human allergy drug fexofenadine, an antagonist of histamine (H1) receptor, be used to treat dog and cat? Homology modeling, docking and molecular dynamic Simulation of three H1 receptors in complex with fexofenadine.

    PubMed

    Sader, Safaa; Cai, Jun; Muller, Anna C G; Wu, Chun

    2017-08-01

    Fexofenadine, a potent antagonist to human histamine 1 (H 1 ) receptor, is a non-sedative third generation antihistamine that is widely used to treat various human allergic conditions such as allergic rhinitis, conjunctivitis and atopic dermatitis. Encouragingly, it's been successfully used to treat canine atopic dermatitis, this supports the notion that it might have a great potential for treating other canine allergic conditions and other mammal pets such as dog. Regrettably, while there is a myriad of studies conducted on the interactions of antihistamines with human H 1 receptor, the similar studies on non-human pet H 1 are considerably scarce. The published studies using the first and second generation antihistamines drugs have shown that the antihistamine response is varied and unpredictable. Thus, to probe its efficacy on pet, the homology models of dog and cat H 1 receptors were built based on the crystal structure of human H 1 receptor bound to antagonist doxepin (PDB 3RZE) and fexofenadine was subsequently docked to human, dog and cat H 1 receptors. The docked complexes are then subjected to 1000ns molecular dynamics (MD) simulations with explicit membrane. Our calculated MM/GBSA binding energies indicated that fexofenadine binds comparably to the three receptors; and our MD data also showed the binding poses, structural and dynamic features among three receptors are very similar. Therefore, our data supported the application of fexofenadine to the H 1 related allergic conditions of dog and cat. Nonetheless, subtle systemic differences among human, dog and cat H 1 receptors were also identified. Clearly, there is still a space to develop a more selective, potent and safe antihistamine alternatives such as Fexofenadine for dog or cat based on these differences. Our computation approach might provide a fast and economic way to predict if human antihistamine drugs can also be safely and efficaciously administered to animals. Copyright © 2017 Elsevier Inc

  12. Histamine, histamine intoxication and intolerance.

    PubMed

    Kovacova-Hanuskova, E; Buday, T; Gavliakova, S; Plevkova, J

    2015-01-01

    Excessive accumulation of histamine in the body leads to miscellaneous symptoms mediated by its bond to corresponding receptors (H1-H4). Increased concentration of histamine in blood can occur in healthy individuals after ingestion of foods with high contents of histamine, leading to histamine intoxication. In individuals with histamine intolerance (HIT) ingestion of food with normal contents of histamine causes histamine-mediated symptoms. HIT is a pathological process, in which the enzymatic activity of histamine-degrading enzymes is decreased or inhibited and they are insufficient to inactivate histamine from food and to prevent its passage to blood-stream. Diagnosis of HIT is difficult. Multi-faced, non-specific clinical symptoms provoked by certain kinds of foods, beverages and drugs are often attributed to different diseases, such as allergy and food intolerance, mastocytosis, psychosomatic diseases, anorexia nervosa or adverse drug reactions. Correct diagnosis of HIT followed by therapy based on histamine-free diet and supplementation of diamine oxidase can improve patient's quality of life. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.

  13. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  14. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers

    PubMed Central

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-01-01

    Aim The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Methods Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. Results ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Conclusions Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. PMID:23016924

  15. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  16. The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice.

    PubMed

    Carlsson, M L; Martin, P; Nilsson, M; Sorensen, S M; Carlsson, A; Waters, S; Waters, N

    1999-01-01

    The purpose of the present study was to compare the effectiveness of the selective 5-HT2A antagonist M100907 in different psychosis models. The classical neuroleptic haloperidol was used as reference compound. Two hyperdopaminergia and two hypoglutamatergia mouse models were used. Hyperdopaminergia was produced by the DA releaser d-amphetamine or the DA uptake inhibitor GBR 12909. Hypoglutamatergia was produced by the un-competitive NMDA receptor antagonist MK-801 or the competitive NMDA receptor antagonist D-CPPene. M100907 was found to counteract the locomotor stimulant effects of the NMDA receptor antagonists MK-801 and D-CPPene, but spontaneous locomotion, d-amphetamine- and GBR-12909-induced hyperactivity were not significantly affected. Haloperidol, on the other hand, antagonized both NMDA antagonist- and DA agonist-induced hyperactivity, as well as spontaneous locomotion in the highest dose used. Based on the present and previous results we draw the conclusion that 5-HT2A receptor antagonists are particularly effective against behavioural anomalies resulting from hypoglutamatergia of various origins. The clinical implications of our results and conclusions would be that a 5-HT2A receptor antagonist, due to i a the low side effect liability, could be the preferable treatment strategy in various disorders associated with hypoglutamatergia; such conditions might include schizophrenia, childhood autism and dementia disorders.

  17. Classic histamine H1 receptor antagonists: a critical review of their metabolic and pharmacokinetic fate from a bird's eye view.

    PubMed

    Sharma, A; Hamelin, B A

    2003-04-01

    The so-called "classic" histamine H(1) receptor antagonists are highly lipophilic compounds associated with significant biotransformation and tissue distribution. They are categorized according to their chemical structure into ethanolamines, alkylamines, ethylenediamines, piperazines, phenothiazines and piperidines, all of which have characteristic metabolic fates. The former four categories undergo primarily cytochrome P450-mediated oxidative N-desalkylations and deamination whereas the aromatic rings of the latter two undergo P450-mediated oxidative hydroxylation and/or epoxide formation. The common tertiary amino group is susceptible to oxidative metabolism by flavin containing monooxygenases forming N-oxides, and the alicyclic tertiary amines produce small amounts (up to 7%) of N-glucuronides in humans. Species, sex and racial differences in the metabolism and pharmacokinetics of antihistamines are known. Specific P450-isozymes implicated in the metabolism were identified in a few cases, such as CYP2D6 that contributes to the metabolism of promethazine, diphenhydramine and chlorpheniramine. Low circulating plasma concentrations of antihistamines are in part explained by significant first-pass effect and tissue distribution. Antihistaminic effects last up to 6 hours though some compounds exhibit a longer duration of action due to circulating active metabolites. Importantly, diphenhydramine inhibited CYP2D6 leading to a clinically significant drug-drug interaction with metoprolol. Other classic antihistamines were shown to be potent in vitro inhibitors of CYP2D6 and CYP3A4. The prescription-free access to most classic antihistamines can easily lead to their co-administration with other drugs metabolized by the same enzyme system thereby leading to drug accumulation and adverse effects. In depth knowledge of the metabolic pathways of classic antihistamines and the enzymes involved is crucial to prevent the high incidence of drug interactions in humans, which are

  18. The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H₃ receptor antagonist in patients with mild to moderate Alzheimer's disease: a preliminary investigation.

    PubMed

    Nathan, Pradeep J; Boardley, Rebecca; Scott, Nicola; Berges, Alienor; Maruff, Paul; Sivananthan, Tharani; Upton, Neil; Lowy, Martin T; Nestor, Peter J; Lai, Robert

    2013-03-01

    The histamine H3 receptor plays a critical role in the negative neuromodulation of neurotransmitters involved in cognitive function. H3 receptor antagonists/inverse agonists have been shown to exert pro-cognitive effects in pre-clinical models. GSK239512 is a potent and selective H₃ receptor antagonist developed for the treatment of cognitive dysfunction in neurodegenerative disorders. In this study we examined the safety, tolerability, pharmacokinetics and pro-cognitive effects of GSK239512 (oral) in patients with mild to moderate Alzheimer's disease using ascending dose titration regimens. The study was conducted in two parts. Part A was a single-blind, placebo run-in, flexible dose titration over 9 days in two cohorts, each consisting of two patients. Part B was a double-blind, randomised, placebo controlled, parallel group, which investigated 3 flexible dose titration regimens over 4 weeks in 3 cohorts, each consisting of eight patients. Overall, the 5/10/20/40 μg and 10/20/40/80 μg regimens were well-tolerated. The regimen of 20/40/80/150 μg showed the poorest tolerability likely due to the higher starting dose. There were no clinically significant abnormalities in haematology, clinical chemistry, urinalysis parameters and cardiovascular parameters. GSK239512 had positive effects on tasks of attention and memory with effect sizes between 0.56 and 1.37. GSK239512 displayed asatisfactory level of tolerability in patients with Alzheimer's disease with evidence for positive effects on attention and memory. The findings suggest that a titration regimen with a starting dose of 5-10 μg and a maximum dose of 80 μg is likely to be a well-tolerated and potentially efficacious regimen for future clinical trials in patients with Alzheimer's disease. These findings await replication in a larger study.

  19. Several down, a few to go: histamine H3 receptor ligands making the final push towards the market?

    PubMed

    Kuhne, Sebastiaan; Wijtmans, Maikel; Lim, Herman D; Leurs, Rob; de Esch, Iwan J P

    2011-12-01

    The histamine H(3) receptor (H(3)R) plays a pivotal role in a plethora of therapeutic areas. Blocking the H(3)R with antagonists/inverse agonists has been postulated to be of broad therapeutic use. Indeed, H(3)R antagonists/inverse agonists have been extensively evaluated in the clinic. Here, we address new developments, insights obtained and challenges encountered in the clinical evaluations. For recent H(3)R clinical candidates, the status and results of the corresponding clinical trial(s) will be discussed along with preclinical data. In all, it becomes evident that clinical evaluation of H(3)R antagonists/inverse agonists is characterized by mixed results. On one hand, Pitolisant has successfully passed several Phase II trials and seems to be the most advanced compound in the clinic now, being in Phase III. On the other hand, some compounds (e.g., PF-03654647 and MK-0249) failed at Phase II clinical level for several indications. A challenging feature in H(3)R research is the multifaceted role of the receptor at a molecular/biochemical level, which can complicate targeting by small molecules at several (pre)clinical levels. Accordingly, H(3)R antagonists/inverse agonists require further testing to pinpoint the determinants for clinical efficacy and to aid in the final push towards the market.

  20. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  1. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  2. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT2A/C antagonist ritanserin and the selective 5-HT2A antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT2A receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. PMID:20361986

  3. The protective effect of H2-receptor activation against the duration of myocardial hypoxia/reoxygenation-induced ventricular fibrillation in sensitized guinea-pig hearts.

    PubMed

    Imajo, Naoki; Matsui, Saori; Yasui, Yumiko; Matsui, Nobuaki; Fukuishi, Nobuyuki; Akagi, Masaaki

    2005-12-01

    Patients with high serum immunoglobulin E levels were reported to be protected against sudden death during acute myocardial infarction. The protection mechanism might be attributed to the facilitation of histamine release from sensitized mast cells; however, this remains to be clarified. In this study, we examined the influence of sensitization on ventricular fibrillation (VF) induced by myocardial hypoxia/reoxygenation (H/R). Guinea pigs were actively sensitized by subcutaneous injection of ovalbumin in Bordetella pertussis vaccine. Hearts isolated from non-sensitized and sensitized guinea pigs were subjected to 30-min hypoxia / 30-min reoxygenation using a Langendorff apparatus. The amount of histamine released in the sensitized guinea-pig hearts was elevated, and the duration of VF was found to be reduced. The treatment with a histamine H2-receptor antagonist inhibited the reduction of VF duration. Treatment of the non-sensitized hearts with the histamine H2-receptor agonist resulted in the decrease of VF duration to the same level as that in the sensitized hearts. In conclusion, these results suggest that the risk of sudden death during myocardial H/R may be attenuated in the sensitized hearts and that histamine H2-receptor activation due to the released histamine may be involved in the protective effect.

  4. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers.

    PubMed

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-05-01

    The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  5. Histamine H2-receptors on guinea-pig ileum myenteric plexus neurons mediate the release of contractile agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, L.A.; Ebersole, B.J.

    1982-04-01

    Dimaprit, a highly selective H2-agonist, caused a multiphasic contraction of guinea-pig ileal segments and ileal myenteric plexus-longitudinal muscle preparations. The initial phase was characterized by a twitch which reached a maximum in 15 to 30 sec and was followed by a partial relaxation. The later phase was variable and consisted of a series of twitch responses or of a slowly developing contracture which sometimes was accompanied by oscillatory changes in tension. dose-response curves were generated for the initial response; for isolated ileal segments the EC50 was 5.1 +/- 1.8 micrometers (mean +/- S.D., N . 7) and the Hill coefficientmore » was 1.1 +/- 0.2 and for longitudinal muscle strips the EC50 was 5.8 +/- 1.2 micrometer and the Hill coefficient was 1.2 +/- 0.1 (N . 7). Both the initial and secondary components of the contractile responses to dimaprit were prevented by 0.2 micron tetrodotoxin or 10 microns mefenamic acid and by the production of tachphylaxis to either substance P or serotonin. Scopolamine, 0.001 to 0.1 micron, insurmountably antagonized only the initial component of the response. Mepyramine (1.0 micrometer), hexamethonium (100 microns), bromolysergic acid (0.25 microns) and p-(imidazol-1-yl)phenyl (10 microns) were without effect on the response to dimaprit. The histamine H2-receptor antagonist, tiotidine, produced parallel dextral shifts in the dose-response curve for dimaprit. The apparent pA2 value for tiotidine was 7.65. The results suggest that dimaprit acts on H2-receptors located on myenteric plexus neurons to cause the release of contractile substances. The mediators of the contractile response are tentatively identified as acetylcholine, substance P, serotonin and a product(s) of the arachadonic acid cascade.« less

  6. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  7. Dosage effects of histamine-2 receptor antagonist on the primary prophylaxis of non-steroidal anti-inflammatory drug (NSAID)-associated peptic ulcers: a retrospective cohort study.

    PubMed

    He, Ying; Chan, Esther W; Man, Kenneth K C; Lau, Wallis C Y; Leung, Wai K; Ho, Lai M; Wong, Ian C K

    2014-09-01

    A histamine-2 receptor antagonist (H2RA) is one of the common gastroprotective co-therapies used with non-steroidal anti-inflammatory drugs (NSAIDs) for the prevention or treatment of peptic ulcers (PUs). To date, no study has directly compared the prophylactic effectiveness between high-dose and low-dose H2RA. Our objective was to compare the effectiveness of high-dose versus low-dose H2RAs in the primary prophylaxis of PUs among short-term NSAID users. A retrospective cohort study was conducted using the Clinical Data Analysis and Reporting System (CDARS) in Hong Kong. Patients aged 18 years or above who received a single prescription of oral NSAID with oral H2RA were identified within the study period (1 January 2009-31 December 2012). Patients with a history of or risk factors for PU in the corresponding 2 years prior to the index date (of the first NSAID prescription) were excluded. Log binomial regression analysis was used to calculate the relative risk of PU among NSAID users with high-dose H2RA versus low-dose H2RA exposure. Among the NSAID cohort (n = 102,042), 77,509 (76 %) were on low-dose H2RA and 24,533 (24 %) were on high-dose H2RA. Of the total 69 PU cases identified during the drug exposure period, 64 (0.08 %) received low-dose-H2RA and five (0.02 %) received high-dose H2RA. The overall absolute risk of PUs for NSAID users whilst on H2RA was approximately 1 per 1,479 patients. The adjusted relative risk for NSAID users receiving high-dose H2RA versus low-dose H2RA was 0.32 (95 % confidence interval [CI] 0.13-0.79). Patients aged ≥65 years, receiving a longer duration of treatment, or with concomitant use of antiplatelet agents were found to be at higher risk of PU. High-dose H2RA showed greater effectiveness than low-dose H2RA in the primary prophylaxis of NSAID-associated PUs in short-term new users.

  8. Involvement of histaminergic and noradrenergic receptors in the oxytocin-induced food intake in neonatal meat-type chicks.

    PubMed

    Mirnaghizadeh, Seyed Vahid; Zendehdel, Morteza; Babapour, Vahab

    2017-03-01

    Oxytocin neurons have a physiological role in food intake and energy balance. Several studies have shown that central histaminergic and adrenergic systems synapse on oxytocin neurons but there is no information for their interaction on food intake regulation in birds. The purpose of this study was to examine the effects of intracerebroventricular (ICV) injection of α-fluoromethylhistidine (α-FMH, histidine decarboxylase inhibitor), chlorpheniramine (histamine H1 receptors antagonist), famotidine (histamine H2 receptors antagonist), thioperamide (histamine H3 receptors antagonist), prazosin (α1 receptor antagonist), yohimbine (α2 receptor antagonist), metoprolol (β1 adrenergic receptor antagonist), ICI 118,551 (β2 adrenergic receptor antagonist) and SR59230R (β3 adrenergic receptor antagonist) on oxytocin-induced hypophagia in 3-h food-deprived (FD 3 ) neonatal broiler chicken. In Experiment 1, 3 h-fasted chicks were given an ICV injection of saline, α-FMH (250 nmol), oxytocin (10 μg) and co-injection of α-FMH + oxytocin. Experiments 2-9 were similar to experiment 1 except birds were injected with chlorpheniramine (300 nmol), famotidine (82 nmol), thioperamide (300 nmol), prazosin (10 nmol), yohimbine (13 nmol), metoprolol (24 nmol), ICI 118,551(5 nmol) and SR59230R (20 nmol) instead of α-FMH, respectively. After injection cumulative food intake was measured until 120 min post injection. According to the results, ICV injection of oxytocin significantly decreased food intake in broiler chickens (P < 0.001). ICV injection of α-FMH significantly attenuated hypophagic effect of oxytocin (P < 0.001). Also, co-injection of chlorpheniramine plus oxytocin significantly decreased the effect of oxytocin on food intake (P < 0.001). Co-administration of thioperamide and oxytocin significantly amplified hypophagic effect of oxytocin in chickens (P < 0.001). In addition, ICI 118,551 attenuated hypophagic effect of oxytocin (P < 0.001); while

  9. Regulation of the Cardiovascular System by Histamine.

    PubMed

    Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki

    2017-01-01

    Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.

  10. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle.

    PubMed

    de Vries, B; Roffel, A F; Zaagsma, J; Meurs, H

    2001-11-23

    In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.

  11. Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection.

    PubMed

    Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna

    2017-01-01

    The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via n

  12. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cheng-Wei; Lin, Tzu-Yu

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{submore » 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  13. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    PubMed

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  14. Distinct functional characteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Yamada, M; Yamada, M; Lombet, A; Forgez, P; Rostène, W

    1998-01-01

    Neurotensin has been shown to produce pharmacological effects both in brain and periphery. Several of these effects are mediated by a high-affinity neurotensin NT1 receptor. On the other hand, a low-affinity levocabastine-sensitive neurotensin NT2 receptor was molecularly cloned from rodent brain recently. In this study, in contrast to NT1 receptor, levocabastine (a histamine H1 receptor antagonist) and SR48692 (an antagonist for NT1 receptor) strongly stimulated intracellular Ca2+ mobilization in transfected Chinese hamster ovary cells expressing rat NT2 receptor, thus acting as potent NT2 receptor. Furthermore, despite of their affinities for NT2 receptor, the Ca2+ responses to potent NT1 agonists, neurotensin or JMV449 ([Lys8-(CH2NH)-Lys9]Pro-Tyr-Ile-Leu, a peptidase resistant analogue of neurotensin) were much smaller than that observed with SR48692. These findings suggest that NT1 and NT2 receptors present distinct functional characteristics and that SR48692 may act as a potent agonist for NT2 receptor.

  15. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  16. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  17. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    PubMed

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Histamine H4 receptor in oral lichen planus.

    PubMed

    Salem, A; Al-Samadi, A; Stegajev, V; Stark, H; Häyrinen-Immonen, R; Ainola, M; Hietanen, J; Konttinen, Y T

    2015-04-01

    Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.

    PubMed

    Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil

    2008-11-15

    Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.

  20. Refined docking as a valuable tool for lead optimization: application to histamine H3 receptor antagonists.

    PubMed

    Levoin, Nicolas; Calmels, Thierry; Poupardin-Olivier, Olivia; Labeeuw, Olivier; Danvy, Denis; Robert, Philippe; Berrebi-Bertrand, Isabelle; Ganellin, C Robin; Schunack, Walter; Stark, Holger; Capet, Marc

    2008-10-01

    Drug-discovery projects frequently employ structure-based information through protein modeling and ligand docking, and there is a plethora of reports relating successful use of them in virtual screening. Hit/lead optimization, which represents the next step and the longest for the medicinal chemist, is very rarely considered. This is not surprising because lead optimization is a much more complex task. Here, a homology model of the histamine H(3) receptor was built and tested for its ability to discriminate ligands above a defined threshold of affinity. In addition, drug safety is also evaluated during lead optimization, and "antitargets" are studied. So, we have used the same benchmarking procedure with the HERG channel and CYP2D6 enzyme, for which a minimal affinity is strongly desired. For targets and antitargets, we report here an accuracy as high as at least 70%, for ligands being classified above or below the chosen threshold. Such a good result is beyond what could have been predicted, especially, since our test conditions were particularly stringent. First, we measured the accuracy by means of AUC of ROC plots, i. e. considering both false positive and false negatives. Second, we used as datasets extensive chemical libraries (nearly a thousand ligands for H(3)). All molecules considered were true H(3) receptor ligands with moderate to high affinity (from microM to nM range). Third, the database is issued from concrete SAR (Bioprojet H(3) BF2.649 library) and is not simply constituted by few active ligands buried in a chemical catalogue.

  1. Prostaglandin E2 Inhibits Histamine-Evoked Ca2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A

    PubMed Central

    Taylor, Emily J. A.; Pantazaka, Evangelia; Shelley, Kathryn L.

    2017-01-01

    In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals. PMID:28877931

  2. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  3. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, heremore » we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.« less

  4. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  5. Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists

    PubMed Central

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.

    2016-01-01

    Summary CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human Class A G protein-coupled receptors (GPCRs). CCR2 is expressed on monocytes, immature dendritic cells and T cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL21. CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see ClinicalTrials.gov) in search of therapies that target the CCR2:chemokine axis. To aid drug discovery efforts5, we solved a structure of CCR2 in a ternary complex with an orthosteric (BMS-6816) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in Class A GPCRs to date; this site spatially overlaps the G protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive GPCR structures solved to date. Like other protein:protein interactions, receptor:chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome drug design obstacles. PMID:27926736

  6. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Specific cerebral heat shock proteins and histamine receptor cross-talking mechanisms promote distinct lead-dependent neurotoxic responses in teleosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, Giuseppina; Alo, Raffaella; Crudo, Michele

    Recent interests are beginning to be directed towards toxic neurobiological dysfunctions caused by lead (Pb) in aquatic vertebrates. In the present work, treatment with a maximum acceptable toxic concentration of this heavy metal was responsible for highly significant (p < 0.01) abnormal motor behaviors such as hyperactive movements in the teleost Thalassoma pavo and the same treatment accounted for significantly (p < 0.05) enhanced hyperventilating states. On the other hand, greater abnormal motor behaviors were detected in the presence of the histamine (HA) receptor subtype 2 (H{sub 2}R) antagonist cimetidine (Cim), as shown by the very robust (p < 0.001)more » increases of the two behavioral states. Interestingly, elevated expression levels of stress-related factors, i.e. heat shock protein70/90 (HSP90/70) orthologs were reported for the first time in hypothalamic and mesencephalic areas of Pb-treated teleosts. In particular, an up-regulation of HSP70 was readily detected when this heavy metal was given concomitantly with Cim, while the histamine subtype 3 antagonist (H{sub 3}R) thioperamide (Thio), instead, blocked Pb-dependent up-regulatory trends of both chaperones in mostly hypothalamic areas. Moreover, intense neuronal damages of the above brain regions coincided with altered expressions of HSP70 and HSP90 when treated only with Cim. Overall these first results show that distinct H{sub n}R are able to exert a net neuroprotective role arising from their interaction with chaperones in fish exposed to Pb-dependent stressful conditions making this a potentially key interaction especially for T. pavo, aquatic species which plays an important ecological role towards the survival of other commercially vital fishes.« less

  8. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  9. New H1/H3 antagonists for treating allergic rhinitis: WO2010094643.

    PubMed

    Norman, Peter

    2011-03-01

    This application claims dual receptor specificity antihistamines, active as H(1) and H(3) antagonists, which additionally have a long duration of action that renders them suitable for once daily administration via inhalation for the treatment of allergic rhinitis. The compounds lack CNS penetration and have a high affinity for both histamine receptors.

  10. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5more » in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted« less

  11. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    PubMed

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  12. Pharmacologic properties of KT2-962 (6-isopropyl-3-[4-(p- chlorobenzenesulfonylamino)-butyl]-azulene-1-sulfonic acid sodium salt); a new TXA2/prostaglandin endoperoxide receptor antagonist.

    PubMed

    Kosakai, K; Wakabayashi, S; Sato, T; Mochizuki, S; Tomiyama, A; Zhou, Q; Satake, N; Shibata, S

    1993-03-01

    Pharmacologic properties of KT2-962 (6-isopropyl-3-[4-(p-chlorobenzenesulfonylamino)butyl]-azulene+ ++-1-sulfonic acid sodium salt, KT) were studied in isolated rat aorta, rat tail artery, rabbit aorta, rabbit renal artery, and pig coronary artery. KT competitively inhibited the contractions induced by thromboxane A2 (TXA2) mimetic, U46619 (pA2 values 9.95, 8.85, 7.87, 8.49, and 9.12, respectively). KT also inhibited the contraction of rabbit aorta induced by prostaglandin2 alpha (PGF2 alpha, pA2 value 7.85) and the contraction of guinea pig ileum induced by LTD4 (pA2 value 5.48) but did not alter the contractions induced by norepinephrine (NE), Ca2+, serotonin, and histamine. KT did not alter the contractions of guinea pig ileum, which did not contract with U46619, induced by PGE2 and PGF2 alpha. KT inhibited the aggregations of rabbit platelets induced by U46619, arachidonic acid, and collagen (IC50 values 7.9, 140, and 16 microM, respectively) but not those induced by ADP. It also inhibited the specific binding of TXA2/PGH2 receptor antagonist, [3H]SQ29,548, to rabbit gel-filtered platelets with an IC50 value of 1.5 x 10(-8) M. In in vivo experiments with mice, oral administration of KT protected the U46619-induced sudden death with the minimum effective dose of 0.3 mg/kg and provided such protection for > 8 h at 1.0 mg/kg. These results indicate that KT is a new nonprostanoid type TXA2/PGH2 receptor antagonist that is orally effective and long acting.

  13. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  14. The Extracellular Loop 2 (ECL2) of the Human Histamine H4 Receptor Substantially Contributes to Ligand Binding and Constitutive Activity

    PubMed Central

    Wifling, David; Bernhardt, Günther; Dove, Stefan; Buschauer, Armin

    2015-01-01

    In contrast to the corresponding mouse and rat orthologs, the human histamine H4 receptor (hH4R) shows extraordinarily high constitutive activity. In the extracellular loop (ECL), replacement of F169 by V as in the mouse H4R significantly reduced constitutive activity. Stabilization of the inactive state was even more pronounced for a double mutant, in which, in addition to F169V, S179 in the ligand binding site was replaced by M. To study the role of the FF motif in ECL2, we generated the hH4R-F168A mutant. The receptor was co-expressed in Sf9 insect cells with the G-protein subunits Gαi2 and Gβ1γ2, and the membranes were studied in [3H]histamine binding and functional [35S]GTPγS assays. The potency of various ligands at the hH4R-F168A mutant decreased compared to the wild-type hH4R, for example by 30- and more than 100-fold in case of the H4R agonist UR-PI376 and histamine, respectively. The high constitutive activity of the hH4R was completely lost in the hH4R-F168A mutant, as reflected by neutral antagonism of thioperamide, a full inverse agonist at the wild-type hH4R. By analogy, JNJ7777120 was a partial inverse agonist at the hH4R, but a partial agonist at the hH4R-F168A mutant, again demonstrating the decrease in constitutive activity due to F168A mutation. Thus, F168 was proven to play a key role not only in ligand binding and potency, but also in the high constitutive activity of the hH4R. PMID:25629160

  15. Tachykinin-mediated respiratory effects in conscious guinea pigs: modulation by NK1 and NK2 receptor antagonists.

    PubMed

    Kudlacz, E M; Logan, D E; Shatzer, S A; Farrell, A M; Baugh, L E

    1993-09-07

    Tachykinins, in particular neurokinin A and substance P, produce a number of airway effects which may contribute to respiratory diseases such as asthma. We examined the ability of aerosolized substance P, neurokinin A or capsaicin to produce respiratory alterations in conscious guinea pigs using modified whole body plethysmography. Substance P-mediated dyspnea and significant respiratory events were inhibited by the NK1 receptor antagonist, CP-96,345. Neurokinin A-mediated respiratory effects were ablated by the NK2 receptor antagonists: MEN 10207, MDL 29,913 and SR 48,968, the latter being the most potent. The peptide-based antagonist, MEN 10207, produced respiratory effects itself suggesting partial agonist activity. The cyclic hexapeptide, MDL 29,913, relaxed airway smooth muscle via mechanisms other than tachykinin antagonism. NK2 but not NK1 receptor antagonists were able to delay the onset of capsaicin-induced dyspnea, although alone they did not usually (in approximately 10% of the animals) eliminate the response. However, when NK2 receptor antagonists were combined with CP-96,345, the incidence of dyspnea induced by capsaicin decreased significantly (40%) suggesting that both tachykinins contribute to dyspnea in this system.

  16. Kinin B1 receptor antagonists containing alpha-methyl-L-phenylalanine: in vitro and in vivo antagonistic activities.

    PubMed

    Gobeil, F; Charland, S; Filteau, C; Perron, S I; Neugebauer, W; Regoli, D

    1999-03-01

    -To protect from metabolism and to improve potency of the AcLys-[D-betaNal7,Ile8]desArg9-bradykinin (BK) (R 715), we prepared and tested 3 analogues containing alpha-methyl-L-Phe ([alphaMe]Phe) in position 5: these are the AcLys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 892), Lys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 913), and AcLys-Lys-[(alphaMe)Phe5,D-betaNal7, Ile8]desArg9BK (R 914). The new compounds were tested against the contractile effect induced by desArg9BK on 2 B1 receptor bioassays, the human umbilical vein, and the rabbit aorta. Their antagonistic activities were compared with those of the early prototypes (Lys-[Leu8]desArg9BK and [Leu8]desArg9BK) and with other recently described peptide antagonists. The 3 (alphaMe)Phe analogues showed high antagonistic potencies (pA2) at both the human (8.8, 7.7, and 8. 7, respectively) and rabbit (8.6, 7.8, and 8.6, respectively) B1 receptors. No antagonistic effects (pA2<5) were observed on the B2 receptors that mediate the contractile effects of BK on the human umbilical vein, the rabbit jugular vein, and the guinea pig ileum. Moreover, these new B1 antagonists were found to be resistant to in vitro degradation by purified angiotensin-converting enzyme from rabbit lung. The Nalpha-acetylated forms, R 892 and R 914, were resistant to aminopeptidases from human plasma. In vivo antagonistic potencies (ID50) of B1 receptor antagonists were evaluated in anesthetized lipopolysaccharide-treated (for B1 receptor) and nontreated (for B2 receptor) rabbits against the hypotensive effects of exogenous desArg9BK and BK. R 892 efficiently inhibited (ID50 2.8 nmol/kg IV) hypotension induced by desArg9BK without affecting that evoked by BK (ID50 >600 nmol/kg IV). Conversely, the peptide antagonists Lys-Lys-[Hyp3,Igl5,D-Igl7,Oic8]desArg9BK (B 9858) and DArg-[Hyp3,Thi5,D-Tic7,Oic8] desArg9BK (S 0765) showed dual B1/B2 receptor antagonism in vitro and in vivo. It is concluded that R 892 and congeners provide selective

  17. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  18. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  19. Neurokinin A-LI release after antigen challenge in guinea-pig bronchial tubes: influence of histamine and bradykinin

    PubMed Central

    Lindström, Eva G; Andersson, Rolf G G

    1997-01-01

    Our aim was to determine if antigen challenge stimulates sensory nerves and provokes the release of tachykinins. The involvement of histamine and bradykinin was studied by using specific receptor antagonists. Capsaicin-induced responses were also examined. Experiments were performed in vitro on tracheal and bronchial preparations from ovalbumin-sensitized guinea-pigs. Characterization of ovalbumin-induced contraction, with regard to histamine and bradykinin, was carried out on airway ring preparations in the presence of phosphoramidon. The histamine H1 receptor antagonist pyrilamine reduced allergen-induced bronchial contractions by about 30%, whereas the bradykinin B2 receptor antagonist icatibant (Hoe 140) did not significantly affect the response. Combined treatment with pyrilamine (1 μM) and icatibant (0.1 μM) reduced the contractions by about 80%, indicating a synergistic inhibitory action. Tracheal preparations were not significantly affected by treatments, neither were capsaicin-induced contractions. To study the outflow of tachykinins, we used a perfused bronchial-tube preparation, allowing simultaneous measurement of smooth muscle tension and mediator release. Neurokinin A-like immunoreactivity (NKA-LI) and substance P-like immunoreactivity (SP-LI) were determined by radioimmunoassay. The results of the perfusion study showed an increased outflow of NKA-LI into the perfusate in response to ovalbumin (127% of basal) challenge. SP-LI determined in some of the samples showed a much lower amount (40 to 70 times lower) of SP-LI than NKA-LI. Treatment with icatibant and pyrilamine, separately and in combination, significantly reduced the ovalbumin-induced NKA-LI outflow by 38%, 26% and 22%, respectively. Capsaicin-induced outflow (124% of basal) was not significantly affected by treatments (icatibant 121%, pyrilamine 107% and combined treatment 111% of basal). However, when pyrilamine was present the increased outflow was not statistically significant. In

  20. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    PubMed

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Shiozaki, Shizuo; Ohta, Teruko; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2014-07-01

    Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.

  2. Preliminary study of histamine H4 receptor expressed on human CD4+ T cells and its immunomodulatory potency in the IL-17 pathway of psoriasis.

    PubMed

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Kim, Bo Mi; Kim, Kyoung Woon; Kim, Hae Rim; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-10-01

    Previous studies have shown the expression of histamine H 4 receptor (H4R) on CD4 + T cells, especially human CD4 + T h 2-polarized T cells. This study aimed to investigate the role of H4R on these effector T cells in psoriasis. We enrolled three patients each with active psoriasis, inactive psoriasis, scalp seborrheic dermatitis, and three normal controls, and compared the basal expression of H4R mRNA in their peripheral blood CD4 + T cells. Then, we identified H4R expression in dermal CD4 + T cells. Furthermore, we investigated H4R expression after stimulating separated peripheral blood CD4 + T cells with several inflammatory cytokines. The results showed higher H4R expression in the active psoriasis group compared to the inactive psoriasis group. It was interesting that interleukin (IL)-23, which is a representative cytokine contributing to T h 17 cell differentiation, stimulated H4R expression significantly. After adding a selective H4R antagonist (JNJ-7777120) while the CD4 + T cells were polarized into T h 17 cells, we observed a tendency toward suppressed IL-17 secretion. Histamine stimulation influences the IL-17 pathway in psoriasis via the fourth histamine receptor subtype, H4R, on CD4 + T cells. The immunomodulatory roles of H4R suggest its potency as a new therapeutic target for obstinate psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  3. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  4. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle preparations

    PubMed Central

    Jones, RL; Woodward, DF; Wang, JW; Clark, RL

    2011-01-01

    BACKGROUND AND PURPOSE The highly lipophilic acyl-sulphonamides L-798106 and L-826266 showed surprisingly slow antagonism of the prostanoid EP3 receptor system in guinea-pig aorta. Roles of affinity and lipophilicity in the onset kinetics of these and other prostanoid ligands were investigated. EXPERIMENTAL APPROACH Antagonist selectivity was assessed using a panel of human recombinant prostanoid receptor-fluorimetric imaging plate reader assays. Potencies/affinities and onset half-times of agonists and antagonists were obtained on guinea-pig-isolated aorta and vas deferens. n-Octanol-water partition coefficients were predicted. KEY RESULTS L-798106, L-826266 and the less lipophilic congener (DG)-3ap appear to behave as selective, competitive-reversible EP3 antagonists. For ligands of low to moderate lipophilicity, potency increments for EP3 and TP (thromboxane-like) agonism on guinea-pig aorta (above pEC50 of 8.0) were associated with progressively longer onset half-times; similar trends were found for TP and histamine H1 antagonism above a pA2 limit of 8.0. In contrast, L-798106 (EP3), L-826266 (EP3, TP) and the lipophilic H1 antagonists astemizole and terfenadine exhibited very slow onset rates despite their moderate affinities; (DG)-3ap (EP3) had a faster onset. Agonism and antagonism on the vas deferens EP3 system were overall much faster, although trends were similar. CONCLUSIONS AND IMPLICATIONS High affinity and high liphophilicity may contribute to the slow onsets of prostanoid ligands in some isolated smooth muscle preparations. Both relationships are explicable by tissue disposition under the limited diffusion model. EP3 antagonists used as research tools should have moderate lipophilicity. The influence of lipophilicity on the potential clinical use of EP3 antagonists is discussed. PMID:20973775

  5. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  6. Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 receptor (H3R) modulators as possible anti-obesity agents.

    PubMed

    Ghoshal, Anirban; Kumar, Ajeet; Yugandhar, Doddapaneni; Sona, Chandan; Kuriakose, Sunu; Nagesh, Kommu; Rashid, Mamunur; Singh, Sandeep K; Wahajuddin, Muhammad; Yadav, Prem N; Srivastava, Ajay K

    2018-05-25

    Four series of structurally related β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) were synthesized by utilizing post-Ugi modifications in one-pot, and their activity towards human histamine-3 receptor (H3R) was evaluated. Out of 94 compounds, screened against histamine-3 receptor (H3R), 21 compounds showed high H3R selective agonist property with EC 50 values ranging from 187 nM to 0.1 nM, whereas none of the compound was found to have the affinity towards other receptors of histamine family such as histamine H1, H2, and H4 receptor. All active compounds have no assay interference activity as determined by in-silico analysis and receptor independent luciferase assay and cell cytotoxicity assay. Given the important role of H3R in hypophagia, we also evaluated the in vivo effect of the representative compound 6k on the cumulative food intake in diet induce obese C57BL6/J mice. Interestingly, we observed that single dose administration (20 mg/kg, intraperitoneal injection) of 6k significantly suppressed cumulative food intake, while no significant effect was observed at 10 mg/kg. These results suggest that β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) could be useful for the development of anti-obesity candidate drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Attenuation of Persistent Experimental Pancreatitis Pain by a Bradykinin B2 Receptor Antagonist

    PubMed Central

    Chen, Qingmin; Vera-Portocarrero, Louis P.; Ossipov, Michael H.; Vardanyan, Marina; Lai, Josephine; Porreca, Frank

    2017-01-01

    Objective The role of bradykinin (BK) receptors in activating and sensitizing peripheral nociceptors is well known. Recently, we showed that spinal dynorphin was pronociceptive through direct or indirect BK receptor activation. Here, we explored the potential role of BK receptors in pain associated with persistent pancreatitis in rats. Methods Experimental pancreatitis and abdominal hypersensitivity were induced by intravenous administrations of dibutyltin dichloride (DBTC). [des-Arg9-Leu8]BK (B1 antagonist) and HOE 140 (B2 antagonist) were given by intraperitoneal or intrathecal injection. Dynorphin antiserum was given intrathecally. Reverse transcription–polymerase chain reaction was used to detect spinal mRNA for BK receptors. Results Dibutyltin dichloride–induced pancreatitis upregulated B1 and B2 mRNA in the thoracic dorsal root ganglion and B2, but not B1, in the pancreas. No changes in spinal B1 or B2 mRNA were observed. Intraperitoneal or intrathecal administration of HOE 140 dose dependently abolished DBTC-induced abdominal hypersensitivity, whereas [des-Arg9-Leu8]BK was without effect by either route of administration. Antiserum to dynorphin (intrathecal) abolished DBTC-induced hypersensitivity. Conclusions These results suggest that blockade of peripheral or spinal BK B2 receptors may be an effective approach for diminishing pain associated with pancreatitis. Moreover, it is suggested that spinal dynorphin may maintain pancreatitis pain through direct or indirect activation of BK B2 receptors in the spinal cord. PMID:20531238

  8. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    PubMed

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The histamine H₃ receptor as a therapeutic drug target for metabolic disorders: status, challenges and opportunities.

    PubMed

    Plancher, Jean-Marc

    2011-01-01

    Since the histamine-3 receptor (H₃R) was cloned in 1999, huge efforts have been made by most of the key players in the pharmaceutical industry as well as in smaller biotech companies to increase the knowledge on this peculiar receptor, with the ultimate goal of bringing new drugs to the market. This review gives a survey on the most valuable chemical tools discovered so far and the significant pharmacological experiments on metabolic disease models published to date. Pharmacology of H₃R antagonists turns out to be very complex due to various functional activities, species selectivity, presence of H₃R isoforms and the poorly understood dichotomy in efficacy between CNS and metabolic disease models. Adding an extra layer of complexity, researchers have to cope with some recurrent safety concerns, some of them being tightly linked to the nature of the H₃R pharmacophore. Therefore this review also strives to summarize the major hurdles and some of the contradictions seen in the H₃R field, together with a brief overview of the clinical trials currently running.

  10. Kinin receptor classification.

    PubMed

    Regoli, D; Jukic, D; Tousignant, C; Rhaleb, N E

    1992-01-01

    Apparent affinities of kinin agonists and antagonists were determined in terms of pD2 and pA2 respectively, on three isolated smooth muscles: rabbit jugular vein (Rb.J.V.), rabbit aorta (Rb.A.) and guinea pig ileum (G.P.I.). Both kinin agonists and antagonists were evaluated for their ability to induce the release of histamine from rat mastocytes. Our results indicate that the kininase I metabolites (desArg9-BK and desArg10-KD) were inactive on Rb.J.V. and G.P.I. (B2 preparations) and were full agonists on Rb.A. (B1) while [Tyr(Me)8]-BK and [Hyp3,Tyr(Me)8]-BK were inactive on Rb.A. and maintain a high affinity on Rb.J.V. and G.P.I. In addition, [Hyp3]-BK was a potent agonist on Rb.J.V. (pD2 = 8.88) and was of a moderate affinity on G.P.I. (pD2 = 7.27). On the other hand, the affinity of [Aib7]-BK was identical to that of BK on G.P.I. (pD2 = 7.90) but drastically reduced in Rb.J.V. (pD2 = 6.28). Conctractile effects of kinins in the Rb.J.V. and G.P.I. were reduced or eliminated by B2 receptor antagonists but at different concentration levels (e.g. DArg[Hyp3,DPhe7,Leu8]-BK showed pA2 values of 8.86 on Rb.J.V., but only 6.77 on G.P.I. DArg[Hyp3,Gly6,Leu8]BK showed high affinity on Rb.J.V. (pA2 = 7.60) but was a full agonist on G.P.I. Conversely, DArg[Tyr3,DPhe7,Leu8,BK] showed high agonistic activity on Rb.J.V. (pD2 = 8.30, alpha E = 1.0) and showed a pA2 value of 6.80 on G.P.I. All compounds (agonists and antagonists) were quite potent on histamine release induced in rat mastocytes. [Arg1(Tos),Hyp3,Thi5,DTic7,Oic8]-BK and DArg[Hyp3,Thi5,DTic7,Oic8]-BK showed almost similar pA2 values on both Rb.J.V. and G.P.I., but were inactive on Rb.A. (B1). These results suggest that kinins act on at least four functional sites: B1 (Rb.A.), B2A (Rb.J.V.), B2B (G.P.I.) and BH. However, there is no clear evidence of a kinin receptor on rat mast cells and the release of histamine may simply be a non-receptor phenomenon. Our data also show that B2A and B2B receptor subtypes might

  11. Tryptase potentiates enteric nerve activation by histamine and serotonin: Relevance for the effects of mucosal biopsy supernatants from irritable bowel syndrome patients.

    PubMed

    Ostertag, D; Annahazi, A; Krueger, D; Michel, K; Demir, I E; Ceyhan, G O; Zeller, F; Schemann, M

    2017-09-01

    We previously showed that mucosal biopsy supernatants from irritable bowel syndrome patients activated neurons despite low concentrations of tryptase, histamine, and serotonin which individually would not cause spike discharge. We studied the potentiating responses between these mediators on excitability of enteric neurons. Calcium-imaging was performed using the calcium-sensitive dye Fluo-4 AM in human submucous plexus preparations from 45 individuals. Histamine, serotonin, and tryptase were applied alone and in combinations to evaluate nerve activation which was assessed by analyzing increase in intracellular Ca 2+ ([Ca 2+ ] i ), the proportion of responding neurons and the product of both defined as Ca-neuroindex (NI). Protease activated receptor (PAR) 2 activating peptide, PAR2 antagonist and the serine protease-inhibitor FUT-175 were used to particularly investigate the role of proteases. Histamine or serotonin (1 μmol/L each) evoked only few small responses (median NI [25%/75%]: 0 [0/148]; 85 [0/705] respectively). Their combined application evoked statistically similar responses (216 [21/651]). Addition of the PAR2 activator tryptase induced a significantly higher Ca-NI (1401 [867/4075]) compared to individual application of tryptase or to coapplied histamine and serotonin. This synergistic potentiation was neither mimicked by PAR2 activating peptide nor reversed by the PAR2 antagonist GB83, but abolished by FUT-175. We observed synergistic potentiation between histamine, serotonin, and tryptase in enteric neurons, which is mediated by proteolytic activity rather than PAR2 activation. This explained neuronal activation by a cocktail of these mediators despite their low concentrations and despite a relatively small PAR2-mediated response in human submucous neurons. © 2017 John Wiley & Sons Ltd.

  12. Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925.

    PubMed

    Rafehi, Muhammad; Burbiel, Joachim C; Attah, Isaac Y; Abdelrahman, Aliaa; Müller, Christa E

    2017-03-01

    The G q protein-coupled, ATP- and UTP-activated P2Y 2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y 2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y 2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.

  13. Antagonism of bromocriptine-induced cage climbing behaviour in mice by the selective D-2 dopamine receptor antagonists, metoclopramide and molindone.

    PubMed

    Balsara, J J; Nandal, N V; Gada, V P; Bapat, T R; Chandorkar, A G

    1986-01-01

    Bromocriptine (5-30 mg/kg, ip), 2 hr after administration, induced cage climbing behaviour in mice. Pretreatment with haloperidol, an antagonist of both D-1 and D-2 dopamine receptors, metoclopramide and molindone, the selective D-2 dopamine receptor antagonists, effectively antagonised bromocriptine-induced climbing behaviour. The results indicate that bromocriptine most probably induces climbing behaviour in mice by stimulating the postsynaptic striatal D-2 dopamine receptors.

  14. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    PubMed Central

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-01-01

    Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375

  15. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    PubMed Central

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  16. Serotonin 2C receptor antagonist improves fear discrimination and subsequent safety signal recall

    PubMed Central

    Foilb, Allison R.; Christianson, John P.

    2015-01-01

    The capacity to discriminate between safety and danger is fundamental for survival, but is disrupted in individuals with posttraumatic stress disorder (PTSD). Acute stressors cause a release of serotonin (5-HT) in the forebrain, which is one mechanism for enhanced fear and anxiety; these effects are mediated by the 5-HT2C receptor. Using a fear discrimination paradigm where a danger signal conditioned stimulus (CS+) coterminates with a mild footshock and a safety signal (CS-) indicates the absence of shock, we demonstrate that danger/safety discrimination and fear inhibition develops over the course of 4 daily conditioning sessions. Systemic administration of the 5-HT2C receptor antagonist SB 242084 (0.25 or 1.0 mg/kg) prior to conditioning reduced behavioral freezing during conditioning, improved learning and subsequent inhibition of fear by the safety signal. Discrimination was apparent in the first recall test, and discrimination during training was evident after 3 days of conditioning versus 5 days in the vehicle treated controls. These results suggest a novel therapeutic use for 5-HT2C receptor antagonists to improve learning under stressful circumstances. Potential anatomical loci for 5-HT2C receptor modulation of fear discrimination learning and cognitive performance enhancement are discussed. PMID:26344640

  17. X-ray structures define human P2X(3) receptor gating cycle and antagonist action.

    PubMed

    Mansoor, Steven E; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-06

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X 3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  18. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  19. Novel therapy in Parkinson's disease: adenosine A(2A) receptor antagonists.

    PubMed

    Szabó, Nikoletta; Kincses, Zsigmond Tamás; Vécsei, László

    2011-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder. To date, most of the currently available therapies in PD target the dopaminergic system and none of these therapeutic approaches have been proven to modify the course of the disease. To various extents, these drugs can also cause motor and non-motor complications. A novel target, the adenosine A(2A) receptor (AA2AR), was recently identified, blockade of which may alleviate Parkinsonian symptoms, reduce motor fluctuations and potentially afford neuroprotection. This review is based on a PubMed search covering the relationship of the adenosine receptors and PD. The role of the AA2AR is reviewed and the results of preclinical investigations of antagonists are assessed. A synopsis of current drug development is provided, with a special focus on the pharmacokinetics and relevant clinical trials. The localization of the AA2AR in the central nervous system, the ultra structural localization and the molecular mechanism of its action reveal the potential importance of the AA2AR in movement disorders. The theoretical background and experimental data indicate that AA2AR antagonists may have a potential therapeutic effect in Parkinson's disease. More importantly, the putative neuroprotective effect needs further investigation.

  20. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  1. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions.

    PubMed

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul; Melikyan, Gregory B

    2015-09-01

    HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF

  2. Changes in gene expression induced by histamine, fexofenadine and osthole: Expression of histamine H1 receptor, COX-2, NF-κB, CCR1, chemokine CCL5/RANTES and interleukin-1β in PBMC allergic and non-allergic patients.

    PubMed

    Kordulewska, Natalia Karolina; Kostyra, Elżbieta; Cieślińska, Anna; Matysiewicz, Michał; Fiedorowicz, Ewa; Sienkiewicz-Szłapka, Edyta

    2017-03-01

    Fexofenadine (FXF) is a third-generation antihistamine drug and osthole is assumed as a natural antihistamine alternative. This paper compares results of histamine, FXF and osthole impact on HRH-1, COX-2, NF-κB-p50, CCR1 mRNA expression. We also measured mRNA expression of IL-1β and CCL5/RANTES in incubated peripheral blood mononuclear cells (PBMC) to compared how histamine, FXF and osthole had influence on expression level and interacts on product secretion. The purpose was to investigate expression pattern in asthma PBMC. The cultures were treated 72h with FXF and osthole. We measured mRNA expression of histamine HRH-1, COX-2, NF-κB-p50, CCR1, IL-1β and CCL5/RANTES with Real-Time PCR (RT-PCR). The present study suggest that osthole may be a potential inhibitor of histamine H 1 receptor activity. We also demonstrated that cells cultured with histamine increase COX-2 mRNA expression and osthole reduce it. Allergy remains one of the most common chronic diseases in Europe and it is rapidly approaching epidemic proportions; with current predictions estimating that the number of allergy-afflicted will equal the healthy population by 2020. It is therefore paramount to find new pharmaceuticals which successfully combat allergic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Selective inhibition of histamine-evoked Ca2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells.

    PubMed

    Dale, Philippa; Head, Victoria; Dowling, Mark R; Taylor, Colin W

    2018-05-01

    Intracellular Ca 2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca 2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca 2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [ 3 H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca 2+ and cAMP signaling pathways. Histamine stimulated Ca 2+ release through inositol 1,4,5-trisphosphate (IP 3 ) receptors in hBASMCs. β 2 -adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca 2+ signals. Responses to other Ca 2+ -mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E 2 (PGE 2 ), through EP 2 and EP 4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca 2+ signals. There was no consistent relationship between the inhibition of Ca 2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP 2 and EP 4 receptors, through cAMP and PKA, selectively inhibit Ca 2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H 1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Substance P-induced inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor antagonists and the role of endogenous mediators.

    PubMed Central

    Walsh, D T; Weg, V B; Williams, T J; Nourshargh, S

    1995-01-01

    1. The sensory neuropeptide substance P (SP), when released from sensory nerves, has been implicated in the development of neurogenic inflammation. In the present study, using an in vivo model system, we have characterized and investigated the mechanisms underlying SP-induced leukocyte accumulation and oedema formation in the guinea-pig. 2. Intradermally injected SP (i.d., 10(-13) - 10(-9) mol per site), induced a dose- and time-dependent accumulation of 111In-neutrophils, 111In-eosinophils and oedema formation as measured by the local accumulation of i.v. injected 125I-albumin. The leukocyte accumulation evoked by SP was significant at 10(-10) and 10(-9) mol per site, whereas oedema formation was significant at the lowest dose tested (10(-13) mol per site). 3. The NK1 receptor antagonists, CP-96,345 (1 mg kg-1, i.v.) and RP-67,580 (10 micrograms per site, i.d.), significantly attenuated the oedema formation induced by the lower doses of SP. Oedema formation and leukocyte accumulation induced by 10(-9) mol per site SP were unaffected by either antagonist. 4. SP-elicited responses were not significantly affected by the platelet activating factor (PAF) receptor antagonist, UK-74,505 (2.5 mg kg-1, i.v.) or the H1 histamine receptor antagonist, chlorpheniramine (10(-8) mol per site, i.d.). However, the 111In-eosinophil accumulation, but not the 111In-neutrophil accumulation or oedema formation, induced by SP was significantly inhibited by the specific 5-lipoxygenase (5-LO) inhibitor, ZM-230,487 (10(-8) mol per site, i.d.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7541689

  5. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  6. Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Kunitomo, Jun; Tomata, Yoshihide; Nishiyama, Keiji; Nakashima, Masato; Hirozane, Mariko; Yoshikubo, Shin-Ichi; Hirai, Keisuke; Marui, Shogo

    2011-11-01

    During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  8. Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist

    PubMed Central

    Walpole, C S J; Brown, M C S; James, I F; Campbell, E A; McIntyre, P; Docherty, R; Ko, S; Hedley, L; Ewan, S; Buchheit, K-H; Urban, L A

    1998-01-01

    The in vitro and in vivo pharmacology of SDZ NKT 343 (2-nitrophenyl-carbamoyl-(S)-prolyl-(S)-3-(2-naphthyl)alanyl-N-benzyl-N-methylamide), a novel tachykinin NK1 receptor antagonist was investigated.SDZ NKT 343 inhibited [3H]-substance P binding to the human NK1 receptor in transfected Cos-7 cell membranes (IC50=0.62±0.11 nM). In comparison, in the same assay Ki values for FK888, CP 99,994, SR 140,333 and RPR 100,893 were 2.13±0.04 nM, 0.96±0.20 nM, 0.15±0.06 nM and 1.77±0.41 nM, respectively. SDZ NKT 343 showed a markedly lower affinity at rat NK1 receptors in whole forebrain membranes (IC50=451±139 nM).SDZ NKT 343 caused an increase in EC50 as well as reduction in the number of binding sites (Bmax) determined for [3H]-substance P, suggesting a non-competitive interaction at the human NK1 receptor. SDZ NKT 343 also caused a reduction in the maximum elevation of [Ca2+]i evoked by substance P (SP) in human U373MG cells and depressed the maximum [Sar9]SP sulphone-induced contraction of the guinea-pig isolated ileum. The antagonism of SP effects on U373MG cells by SDZ NKT 343 was reversible.SDZ NKT 343 showed weak affinity to human NK2 and NK3 receptors in transfected Cos-7 cells (Ki of 0.52±0.04 μM and 3.4±1.2 μM, respectively). SDZ NKT 343 was inactive in a broad array of binding assays including the bradykinin B2 receptor the histamine H1 receptor, opiate receptors and adrenoceptors. SDZ NKT 343 only weakly inhibited the voltage-activated Ca2+ and Na+currents in guinea-pig dorsal root ganglion neurones. The enantiomer of SDZ NKT 343, (R,R)-SDZ NKT 343 was about 1000 times less active at human NK1 receptors expressed in Cos-7 cell membranes.Contractions of the guinea-pig ileum by [Sar9]SP sulphone were inhibited by SDZ NKT 343 in a concentration-dependent manner, with an IC50=1.60±0.94 nM, while the enantiomer (R,R)-SDZ NKT 343 was 100 times less active (IC50=162±26 nM). In comparison, in the same assay IC50 values for other NK1

  9. Discovery of a Novel Series of CRTH2 (DP2) Receptor Antagonists Devoid of Carboxylic Acids

    PubMed Central

    2011-01-01

    Antagonism of the CRTH2 receptor represents a very attractive target for a variety of allergic diseases. Most CRTH2 antagonists known to date possess a carboxylic acid moiety, which is essential for binding. However, potential acid metabolites O-acyl glucuronides might be linked to idiosynchratic toxicity in humans. In this communication, we describe a new series of compounds that lack the carboxylic acid moiety. Compounds with high affinity (Ki < 10 nM) for the receptor have been identified. Subsequent optimization succeeded in reducing the high metabolic clearance of the first compounds in human and rat liver microsomes. At the same time, inhibition of the CYP isoforms was optimized, giving rise to stable compounds with an acceptable CYP inhibition profile (IC50 CYP2C9 and 2C19 > 1 μM). Taken together, these data show that compounds devoid of carboxylic acid groups could represent an interesting alternative to current CRTH2 antagonists in development. PMID:24900284

  10. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Valette, G; Garcia, G; Pascal, M; Maffrand, J P; Le Fur, G

    2002-01-01

    The involvement of vasopressin (AVP) in several pathological states has been reported recently and the selective blockade of the different AVP receptors could offer new clinical perspectives. During the past few years, various selective, orally active AVP V1a (OPC-21268, SR49059 (Relcovaptan)), V2 (OPC-31260, OPC-41061 (Tolvaptan), VPA-985 (Lixivaptan), SR121463, VP-343, FR-161282) and mixed V1a/V2 (YM-087 (Conivaptan), JTV-605, CL-385004) receptor antagonists have been intensively studied in various animal models and have reached, Phase IIb clinical trials for some of them. For many years now, our laboratory has focused on the identification of nonpeptide vasopressin antagonists with suitable oral bioavailability. Using random screening on small molecule libraries, followed by rational SAR and modelization, we identified a chemical series of 1-phenylsulfonylindolines which first yielded SR49059, a V1a receptor antagonist prototype. This compound displayed high affinity for animal and human V1a receptors and antagonized various V1a AVP-induced effects in vitro and in vivo (intracellular [Ca2+] increase, platelet aggregation, vascular smooth muscle cell proliferation, hypertension and coronary vasospasm). We and others have used this compound to study the role of AVP in various animal models. Recent findings from clinical trials show a potential interest for SR49059 in the treatment of dysmenorrhea and in Raynaud's disease. Structural modifications and simplifications performed in the SR49059 chemical series yielded highly specific V2 receptor antagonists (N-arylsulfonyl-oxindoles), amongst them SR121463 which possesses powerful oral aquaretic properties in various animal species and in man. SR121463 is well-tolerated and dose-dependently increases urine output and decreases urine osmolality. It induces free water-excretion without affecting electrolyte balance in contrast to classical diuretics (e.g. furosemide and hydrochlorothiazide). Notably, in cirrhotic rats

  11. Regulation of the stimulant actions of neurokinin a and human hemokinin-1 on the human uterus: a comparison with histamine.

    PubMed

    Pennefather, Jocelyn N; Patak, Eva; Ziccone, Sebastian; Lilley, Alison; Pinto, Francisco M; Page, Nigel M; Story, Margot E; Grover, Sonia; Candenas, M Luz

    2006-09-01

    Regulation of the contractile effects of tachykinins and histamine on the human uterus was investigated with biopsy sections of the outer myometrial layer. The effects of neurokinin A (NKA) and human hemokinin-1 (hHK-1) in tissues from pregnant but not from nonpregnant women were enhanced by the inhibition of neprilysin. The effects of NKA and eledoisin were blocked by the NK2 receptor antagonist SR 48968 but not by the NK1 receptor antagonist SR 140333 in tissues from both groups of women. Human HK-1 acted as a partial agonist blocked by SR 48968 and, to a lesser extent, by SR 140333; endokinin D was inactive. In tissues from pregnant women, responses to high potassium-containing Krebs solution were 2-3-fold higher than those from nonpregnant women. Mepyramine-sensitive maximal responses to histamine were similarly enhanced. The absolute maximum responses to NKA and its stable NK2 receptor-selective analogue, [Lys5MeLeu9Nle10]NKA(4-10), were increased in pregnancy, but their efficacies relative to potassium responses were decreased. Tachykinin potencies were lower in tissues from pregnant women than in those from nonpregnant women. These data 1) show for the first time that hHK-1 is a uterine stimulant in the human, 2) confirm that the NK2 receptor is predominant in mediating tachykinin actions on the human myometrium, and 3) indicate that mammalian tachykinin effects are tightly regulated during pregnancy in a manner that would negate an inappropriate uterotonic effect. The potencies of these peptides in tissues from nonpregnant women undergoing hysterectomy are consistent with their possible role in menstrual and menopausal disorders.

  12. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  13. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  14. 6-[N,S-dimethyl-N'-cyanothioureidomethyl]-6,11-dihydro-5H- dibenz[b,e]azepine hydrochloride (Fran 12): a histamine and 5-hydroxytryptamine antagonist with pressor properties.

    PubMed

    Law, S C; Guyett, F J; King, R G; Boura, A L; Jackson, W R; Hodgson, W C

    1992-01-01

    We have synthesized and examined some of the pharmacological properties of 6-[N,S-dimethyl-N'-cyanoisothioureidomethyl]-6,11-dihydro-5H- dibenz(b,e)azepine hydrochloride (Fran 12), a derivative of 6-methylaminomethyl-6,11-dihydro-5H- dibenz[b,e,]azepine. In the guinea-pig isolated ileum, Fran 12 (10(-7)-10(-5) M) caused parallel rightward shifts of the concentration-response curves to histamine. A Schild plot gave a pA2 of 7.48, with a slope not significantly different from -1.0. In the rat stomach fundus strip and in endothelium-denuded aortic rings, Fran 12 inhibited contractile responses to 5-hydroxytryptamine in a non-competitive manner. In both chloralose-anaesthetized and pithed rats, it inhibited pressor responses to 5-hydroxytryptamine. It had no effect on depressor responses to 5-hydroxytryptamine in anaesthetized rats. In pithed rats, Fran 12 (0.25-2 mg/kg, i.v.) produced dose-dependent increases in blood pressure. These were not inhibited by i.v. phentolamine, prazosin, yohimbine, propranolol, methysergide, pentolinium or atropine but were inhibited by verapamil. These results indicate that Fran 12 is a histamine and 5-hydroxytryptamine antagonist which also exerts pressor effects via a peripheral action. The pressor action does not appear to be mediated via effects on alpha 1- or alpha 2-adrenoceptors, muscarinic or nicotinic cholinoceptors or 5-hydroxytryptamine receptors, although calcium channel activation may play a role.

  15. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  17. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  18. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  19. Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects.

    PubMed

    Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N

    2017-01-18

    Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.

  20. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  1. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  2. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  3. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  4. Responses of equine trachealis and lung parenchyma to methacholine, histamine, serotonin, prostanoids, and leukotrienes in vitro.

    PubMed

    Doucet, M Y; Jones, T R; Ford-Hutchinson, A W

    1990-03-01

    The responses of equine trachealis and lung parenchymal strips to a range of contractile agonists were studied. Equine trachealis responded to methacholine greater than histamine greater than serotonin as shown by the maximal responses but failed to respond to either leukotrienes (LT), prostaglandin F2 alpha, or U-44069. Equine parenchymal strips showed considerable tonal activity and responded to LTD4 congruent to LTC4 greater than U-44069 = LTE4 greater than methacholine congruent to histamine congruent to serotonin greater than prostaglandin F2 alpha as determined through pD2 values. Neither the concentration response curve to LTD4 nor the intrinsic tonal activity of the preparations was modified by pretreatment with either atropine or indomethacin, although the maximal response to LTD4 was reversed by addition of the LTD4 receptor antagonist, MK-571. Thus arachidonic acid metabolites, including LTs, must be considered potential mediators of equine small airway disease, a potential model of human bronchial asthma.

  5. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  6. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    PubMed

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  7. Antagonist profile of ibodutant at the tachykinin NK2 receptor in guinea pig isolated bronchi.

    PubMed

    Santicioli, Paolo; Meini, Stefania; Giuliani, Sandro; Lecci, Alessandro; Maggi, Carlo Alberto

    2013-10-24

    In this study we have characterized the pharmacological profile of the non-peptide tachykinin NK 2 receptor antagonist ibodutant (MEN15596) in guinea pig isolated main bronchi contractility. The antagonist potency of ibodutant was evaluated using the selective NK 2 receptor agonist [βAla 8 ]NKA(4-10)-mediated contractions of guinea pig isolated main bronchi. In this assay ibodutant (30, 100 and 300nM) induced a concentration-dependent rightward shift of the [βAla 8 ]NKA(4-10) concentration-response curves without affecting the maximal contractile effect. The analysis of the results yielded a Schild-plot linear regression with a slope not different from unity (0.95, 95% c.l. 0.65-1.25), thus indicating a surmountable behaviour. The calculated apparent antagonist potency as pK B value was 8.31±0.05. Ibodutant (0.3-100nM), produced a concentration-dependent inhibition of the nonadrenergic-noncholinergic (NANC) contractile response induced by electrical field stimulation (EFS) of intrinsic airway nerves in guinea pig isolated main bronchi. At the highest concentration tested (100nM) ibodutant almost abolished the EFS-induced bronchoconstriction (95±4% inhibition), the calculated IC 50 value was 2.98nM (95% c.l. 1.73-5.16nM). In bronchi from ovalbumin (OVA) sensitized guinea pigs ibodutant (100nM) did not affect the maximal contractile response to OVA, but completely prevented the slowing in the fading of the motor response induced by phosphoramidon pretreatment linked to the endogenous neurokinin A release. Altogether, the present study demonstrate that ibodutant is a potent NK 2 receptor antagonist in guinea pig airways. © 2013 Published by Elsevier B.V.

  8. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABAA-ρ1 Receptors

    PubMed Central

    Xie, An; Yan, Jun; Yue, Lan; Feng, Feng; Mir, Fozia; Abdel-Halim, Heba; Chebib, Mary; Le Breton, Guy C.; Standaert, Robert F.; Qian, Haohua

    2011-01-01

    2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABAA-ρ1 (also known as ρ1 GABAC) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABAA-ρ1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABAA-ρ1 antagonist. With 10 μM GABA, 2-AEMP's IC50 (18 μM) differed by less than 2.5-fold from that of TPMPA (7 μM), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. However, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC50 values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 μM GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABAA-ρ1 receptor. PMID:21810922

  9. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  10. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists.

    PubMed

    Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel

    2008-05-15

    A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.

  11. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects

    PubMed Central

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato

    2015-01-01

    Backgound: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Methods: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC-/-) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. Results: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC-/- mice, as administration of 8-bromoadenosine 3’, 5’-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Conclusions: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. PMID:25899065

  12. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells

  13. Comparative Analysis of Virtual Screening Approaches in the Search for Novel EphA2 Receptor Antagonists.

    PubMed

    Callegari, Donatella; Pala, Daniele; Scalvini, Laura; Tognolini, Massimiliano; Incerti, Matteo; Rivara, Silvia; Mor, Marco; Lodola, Alessio

    2015-09-17

    The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of both ligand-based and structure-based approaches to retrieve known EphA2 antagonists from libraries of decoys with similar molecular properties. While ligand-based VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based approaches outperformed the structure-based ones, suggesting ligand-based methods using the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for novel EphA2 antagonists.

  14. Inhibition of antibody synthesis by histamine in concanavalin A-treated mice: the possible role of glucocorticosteroids.

    PubMed

    Badger, A M; Griswold, D E; DiMartino, M J; Poste, G

    1982-09-01

    Administration of histamine (50 mg/kg) to BALB/C mice injected with concanavalin A (Con A) (100 micrograms, i.v.) 24 hr previously, results in a marked decrease in antibody synthesis to sheep red blood cells (SRBC) injected 2 hr later. This phenomenon occurs with nonimmunosuppressive doses of Con A and is strain-specific. It does not take place in the response to the T-independent antigen polyvinylpyrrolidone (PVP) or if histamine is administered after the antigen. Adoptive transfer of normal syngeneic cells at the same time as antigen does not reverse this effect. Excess suppressor cell generation was excluded by co-cultivation of treated spleen cells with normal cells in vitro and by determining their antibody response to SRBC 5 days later. 2-Methylhistamine, a histamine type 1 (H1) receptor agonist, mimicks the effect of histamine whereas dimaprit, a histamine type 2 (H2) receptor agonist, does not. Because histamine interaction with H1 receptors causes the release of adrenocorticotropic hormone (ACTH), we examined the effects of ACTH and corticosterone in this system and found that both could mimick the effect of histamine. These results suggest that the interaction of histamine with H1 receptors causes the release of glucocorticosteroids that may interfere with either Con A-activated T helper cell function or macrophage processing of T-dependent antigen.

  15. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  16. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  17. Histamine H1-receptor-mediated modulation of the delayed rectifier K+ current in guinea-pig atrial cells: opposite effects on IKs and IKr

    PubMed Central

    Matsumoto, Yasunori; Ogura, Takehiko; Uemura, Hiroko; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1999-01-01

    Histamine receptor-mediated modulation of the rapid and slow components of the delayed rectifier K+ current (IK) was investigated in enzymatically-dissociated atrial cells of guinea-pigs using the whole cell configuration of the patch clamp technique.Histamine at a concentration of 10 μM enhanced IK recorded during strong depolarization to potentials ranging from +20 to +40 mV and inhibited IK recorded during mild depolarization to potentials ranging from −20 to −10 mV. The increase of IK was more prominent with longer depolarizing pulses, whereas the inhibition of IK was more marked with shorter depolarizing pulses, suggesting that histamine enhances IKs (the slow component of IK) and inhibits IKr (the rapid component of IK).The histamine-induced enhancement of IKs and inhibition of IKr were abolished by 3 μM chlorpheniramine but not by 10 μM cimetidine, suggesting that these opposite effects of histamine on IKr and IKs are mediated by H1-receptors.In the presence of 5 μM E-4031, an IKr blocker, histamine hardly affected IK during mild depolarization although it enhanced IK during strong depolarization in a concentration-dependent manner. Histamine increased IKs with EC50 value of 0.7 μM. In the presence of 300 μM indapamide, an IKs blocker, histamine hardly affected IKs but inhibited IKr in a concentration-dependent manner. Histamine decreased IKr with IC50 value of 0.3 μM.Pretreatment with 100 nM calphostin C or 30 nM staurosporine, protein kinase C inhibitors, abolished the histamine-induced enhancement of IKs, but failed to affect the histamine-induced inhibition of IKr.We conclude that in guinea-pig atrial cells H1-receptor stimulation enhances IKs and inhibits IKr through different intracellular mechanisms. PMID:10602335

  18. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.

    PubMed

    Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R

    2011-07-01

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.

  19. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. ANTISECRETORY TREATMENT FOR PEDIATRIC GASTROESOPHAGEAL REFLUX DISEASE - A SYSTEMATIC REVIEW.

    PubMed

    Mattos, Ângelo Zambam de; Marchese, Gabriela Meirelles; Fonseca, Bárbara Brum; Kupski, Carlos; Machado, Marta Brenner

    2017-12-01

    Proton pump inhibitors and histamine H2 receptor antagonists are two of the most commonly prescribed drug classes for pediatric gastroesophageal reflux disease, but their efficacy is controversial. Many patients are treated with these drugs for atypical manifestations attributed to gastroesophageal reflux, even that causal relation is not proven. To evaluate the use of proton pump inhibitors and histamine H2 receptor antagonists in pediatric gastroesophageal reflux disease through a systematic review. A systematic review was performed, using MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases. The search was limited to studies published in English, Portuguese or Spanish. There was no limitation regarding date of publication. Studies were considered eligible if they were randomized-controlled trials, evaluating proton pump inhibitors and/or histamine H2 receptor antagonists for the treatment of pediatric gastroesophageal reflux disease. Studies published only as abstracts, studies evaluating only non-clinical outcomes and studies exclusively comparing different doses of the same drug were excluded. Data extraction was performed by independent investigators. The study protocol was registered at PROSPERO platform (CRD42016040156). After analyzing 735 retrieved references, 23 studies (1598 randomized patients) were included in the systematic review. Eight studies demonstrated that both proton pump inhibitors and histamine H2 receptor antagonists were effective against typical manifestations of gastroesophageal reflux disease, and that there was no evidence of benefit in combining the latter to the former or in routinely prescribing long-term maintenance treatments. Three studies evaluated the effect of treatments on children with asthma, and neither proton pump inhibitors nor histamine H2 receptor antagonists proved to be significantly better than placebo. One study compared different combinations of omeprazole, bethanechol and placebo for the

  1. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  2. The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaakola, Veli-Pekka; Griffith, Mark T.; Hanson, Michael A.

    2009-01-15

    The adenosine class of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A{sub 2A} adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extendedmore » conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.« less

  3. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  4. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-08

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  5. Contributions of Histamine, Prostanoids, and Neurokinins to Edema Elicited by Edema Toxin from Bacillus anthracis▿

    PubMed Central

    Tessier, Jeffrey; Green, Candace; Padgett, Diana; Zhao, Wei; Schwartz, Lawrence; Hughes, Molly; Hewlett, Erik

    2007-01-01

    Bacillus anthracis edema toxin (ET), composed of protective antigen and an adenylate cyclase edema factor (EF), elicits edema in host tissues, but the target cells and events leading from EF-mediated cyclic-AMP production to edema are unknown. We evaluated the direct effect of ET on several cell types in vitro and tested the possibility that mediators of vascular leakage, such as histamine, contribute to edema in rabbits given intradermal ET. ET increased the transendothelial electrical resistance of endothelial monolayers, a response that is mechanistically inconsistent with the in vivo vascular leakage induced by ET. Screening of several drugs by intradermal treatment prior to toxin injection demonstrated reduced ET-induced vascular leakage with a cyclo-oxygenase inhibitor (indomethacin), agents that interfere with histamine (pyrilamine or cromolyn), or a neurokinin antagonist (spantide). Systemic administration of indomethacin or celecoxib (cyclo-oxygenase inhibitors), pyrilamine, aprepitant (a neurokinin 1 receptor antagonist), or indomethacin with pyrilamine significantly reduced vascular leakage associated with ET. Although the effects of pyrilamine, cromolyn, or aprepitant on ET-induced vascular leakage suggest a possible role for mast cells (MC) and sensory neurons in ET-induced edema, ET did not elicit degranulation of human skin MC or substance P release from NT2N cells in vitro. Our results indicate that ET, acting indirectly or directly on a target yet to be identified, stimulates the production/release of multiple inflammatory mediators, specifically neurokinins, prostanoids, and histamine. These mediators, individually and through complex interactions, increase vascular permeability, and interventions directed at these mediators may benefit hosts infected with B. anthracis. PMID:17261611

  6. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  7. Adenosine receptor subtypes in the airways responses to 5'-adenosine monophosphate inhalation of sensitized guinea-pigs.

    PubMed

    Smith, N; Broadley, K J

    2008-09-01

    Endogenous adenosine levels are raised in the lungs during asthma attacks. 5'-adenosine monophosphate (5'-AMP) inhalation in asthmatics causes bronchoconstriction and in sensitized guinea-pigs induces early (EAR) and late asthmatic responses (LAR), airway hyper-reactivity (AHR) and inflammatory cell recruitment to the lungs. The aim of this study was to investigate the roles of A(1), A(2A), A(2B) and A(3) adenosine receptors in these responses to inhaled 5'-AMP in sensitized guinea-pigs. Comparisons were made with the effect of dexamethasone treatment on 5'-AMP-induced responses. Functional airways responses to inhaled 5'-AMP (3 and 300 mM) of actively sensitized, conscious guinea-pigs were determined by whole-body plethysmography following administration of selective adenosine receptor antagonists or their vehicles. AHR to inhaled histamine (1 mM) and inflammatory cell influx in bronchoalveolar lavage fluid were determined. 5'-AMP at 3 mM caused an immediate bronchoconstriction (EAR), whereas 300 mM caused bronchodilatation. Both responses were followed at 6 h by a LAR, together with inflammatory cell influx and AHR to histamine. The A(2A) receptor antagonist, ZM241385, further enhanced cell influx after 5'-AMP inhalation (3 and 300 mM), and blocked the immediate bronchodilator response to 300 mM 5'-AMP, exposing an EAR. The A(2B) receptor antagonist, MRS1706 (in the presence of ZM241385), inhibited the LAR, AHR and cell influx, following inhalation of 5'-AMP (300 mM). The A(3) receptor antagonist, MRS1220, inhibited 5'-AMP-induced inflammatory cell influx. The A(1) receptor antagonist, DPCPX (in the presence of ZM241385), inhibited the EAR following 5'-AMP inhalation (300 mM). Dexamethasone inhibited the LAR, AHR and cell influx following inhalation of 5'-AMP (300 mM). All four adenosine receptor subtypes play various roles in the airways responses to inhaled 5'-AMP in sensitized guinea-pigs.

  8. [Effect of the association of inhibitors of the H 1 and H 2 histamine receptors in the mechanism of rupture of the gastric barrier in the dog in vivo].

    PubMed

    Ceriani, T; Moggio, R; Gnes, F; Ventura, U

    1980-09-30

    Two specific inhibitors of histamine receptors, H1 mepiramine (Mp) and H2 cimetidine (Cm), were used in combination to define the role of histamine in the mechanisms of gastric barrier rupture in the dog "in vivo". A gastrolesive substance butyric acid (Ac.B. 75 mM) in hydrocloric acid solution (HCl 75 mM) was perfused through Heidenhain pouches in the presence or absence of Mp (10 mg/Kg i.m.) and Cm (1 mg/Kg/h i.v.). The results obtained showed: 1) Ac.B. caused a remarkable increase in H+ and Na+ fluxes, enhanced K+ secretion and decreased transparietal potential difference (D.P.). 2) Histamine inhibitors in combination uneffected changes of the ionic fluxes and D.P. produced by Ac.B. 3) Reversal to normal of both ionic fluxes and D.P. was not accelerated by the combination of Mp and Cm. The conclusion was reached that in the initial phase of gastric barrier rupture damage of gastric mucosa occurs by mechanisms non histamine-dependent.

  9. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  10. Cyproheptadine Enhances the I K of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated Intracellular Signal Pathway

    PubMed Central

    He, Yan-Lin; Zhang, Chun-Lei; Gao, Xiao-Fei; Yao, Jin-Jing; Hu, Chang-Long; Mei, Yan-Ai

    2012-01-01

    Cyproheptadine (CPH) is a histamine- and serotonin-receptor antagonist, and its effects are observed recently in the modulation of multiple intracellular signals. In this study, we used cortical neurons and HEK-293 cells transfected with Kv2.1 α-subunit to address whether CPH modify neural voltage-gated K+ channels by a mechanism independent of its serotonergic and histaminergic properties. Our results demonstrate that intracellularly delivered CPH increased the I K by reducing the activity of protein kinas A (PKA). Inhibition of Gi eliminated the CPH-induced effect on both the I K and PKA. Blocking of 5-HT-, M-, D2-, H1- or H2- type GPCR receptors with relevant antagonists did not eliminate the CPH-induced effect on the I K. Antagonists of the sigma-1 receptor, however, blocked the effect of CPH. Moreover, the inhibition of sigma-1 by siRNA knockdown significantly reduced the CPH-induced effect on the I K. On the contrary, sigma-1 receptor agonist mimicked the effects of CPH on the induction of I K. A ligand-receptor binding assay indicated that CPH bound to the sigma-1 receptor. Similar effect of CPH were obtained from HEK-293 cells transfected with the α-subunit of Kv2.1. In overall, we reveal for the first time that CPH enhances the I K by modulating activity of PKA, and that the associated activation of the sigma-1 receptor/Gi-protein pathway might be involved. Our findings illustrate an uncharacterized effect of CPH on neuron excitability through the I K, which is independent of histamine H1 and serotonin receptors. PMID:22844454

  11. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors

    DOE PAGES

    Xie, A.; Yan, J.; Yue, L.; ...

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists

  12. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  13. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Excitation of mouse superficial dorsal horn neurons by histamine and/or PAR-2 agonist: potential role in itch.

    PubMed

    Akiyama, Tasuku; Carstens, Mirela Iodi; Carstens, E

    2009-10-01

    Recent studies have suggested the existence of separate transduction mechanisms and sensory pathways for histamine and nonhistaminergic types of itch. We studied whether histamine and an agonist of the protease-activated receptor (PAR)-2, associated with nonhistaminergic itch, excite murine dorsal horn neurons. Single units were recorded in superficial lumbar dorsal horn of adult ICR mice anesthetized with pentobarbital. Unit activity was searched using a small intradermal hindpaw injection of histamine or the PAR-2 agonist SLIGRL-NH2. Isolated units were subsequently challenged with intradermal histamine followed by SLIGRL-NH2 (each 50 microg/1 microl) or reverse order, followed by mechanical, thermal, and algogenic stimuli. Forty-three units were classified as wide dynamic range (62%), nociceptive specific (22%), or mechano insensitive (16%). Twenty units gave prolonged (mean, 10 min) discharges to intradermal injection of histamine; 76% responded to subsequent SLIGRL-NH2, often more briefly. Units additionally responded to noxious heat (63%), cooling (43%), topical mustard oil (53%), and intradermal capsaicin (67%). Twenty-two other units gave prolonged (mean, 5 min) responses to initial intradermal injection of SLIGRL-NH2; 85% responded to subsequent intradermal histamine. They also responded to noxious heat (75%), mustard oil (93%), capsaicin (63%), and one to cooling. Most superficial dorsal horn neurons were excited by both histamine and the PAR-2 agonist, suggesting overlapping pathways for histamine- and non-histamine-mediated itch. Because the large majority of pruritogen-responsive neurons also responded to noxious stimuli, itch may be signaled at least partly by a population code.

  15. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  16. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  17. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  18. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  19. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    PubMed

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  20. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  1. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists.

    PubMed

    Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar

    2018-02-26

    Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.

  2. The use of H2 antagonists in treating and preventing NSAID-induced mucosal damage.

    PubMed

    Tuskey, Anne; Peura, David

    2013-01-01

    Pain affects the quality of life for millions of individuals and is a major reason for healthcare utilization. As populations age, medical personnel will need to manage more and more patients suffering from pain associated with degenerative and inflammatory musculoskeletal disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) are an effective treatment for both acute and chronic musculoskeletal pain; however, their use is associated with potentially significant gastrointestinal (GI) toxicity. Guidelines suggest various strategies to prevent problems in those at risk for NSAID-associated GI complications. In this article, we review the data supporting one such strategy - the use of histamine type-2 receptor antagonists (H2RAs) - for the prevention of GI adverse events in NSAID users. Older studies suggest that high-dose H2RAs are effective in preventing upper GI ulcers and dyspepsia. This suggestion was recently confirmed during clinical trials with a new ibuprofen/famotidine combination that reduced the risk of ulcers by 50% compared with ibuprofen alone.

  3. The use of H2 antagonists in treating and preventing NSAID-induced mucosal damage

    PubMed Central

    2013-01-01

    Pain affects the quality of life for millions of individuals and is a major reason for healthcare utilization. As populations age, medical personnel will need to manage more and more patients suffering from pain associated with degenerative and inflammatory musculoskeletal disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) are an effective treatment for both acute and chronic musculoskeletal pain; however, their use is associated with potentially significant gastrointestinal (GI) toxicity. Guidelines suggest various strategies to prevent problems in those at risk for NSAID-associated GI complications. In this article, we review the data supporting one such strategy - the use of histamine type-2 receptor antagonists (H2RAs) - for the prevention of GI adverse events in NSAID users. Older studies suggest that high-dose H2RAs are effective in preventing upper GI ulcers and dyspepsia. This suggestion was recently confirmed during clinical trials with a new ibuprofen/famotidine combination that reduced the risk of ulcers by 50% compared with ibuprofen alone. PMID:24267478

  4. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  5. The effect of histamine on changes in mental energy and fatigue after a single bout of exercise.

    PubMed

    Loy, Bryan D; O'Connor, Patrick J

    2016-01-01

    The purpose of this research was to determine if histamine, acting on brain H1 receptors, influences changes in feelings of energy and fatigue or cognitive test performance after acute exercise. Women (n=20) with low vigor and high fatigue were administered the H1 antagonist drug doxepin hydrocholoride (6 mg) in tomato juice and tomato juice alone (placebo) in a randomized, double-blinded, cross-over experiment before performing 30 min of light intensity cycling exercise and completing energy, fatigue, sleepiness, and motivation scales, and cognitive tasks. After exercise, mental fatigue increased for the doxepin condition (p=0.014) but not placebo (p=0.700), while mental energy decreased for both PLA and DOX (p<0.001) and cognitive task performance was unaffected. It is inferred that histamine binding to H1 receptors in the brain has a role in exercise-induced reductions in mental fatigue, but not increases in energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus.

    PubMed

    Valentine, Nyoli; Van de Laar, Floris A; van Driel, Mieke L

    2012-11-14

    Cardiovascular disease (CVD) is the most prevalent complication of type 2 diabetes with an estimated 65% of people with type 2 diabetes dying from a cause related to atherosclerosis. Adenosine-diphosphate (ADP) receptor antagonists like clopidogrel, ticlopidine, prasugrel and ticagrelor impair platelet aggregation and fibrinogen-mediated platelet cross-linking and may be effective in preventing CVD. To assess the effects of adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (issue 2, 2011), MEDLINE (until April 2011) and EMBASE (until May 2011). We also performed a manual search, checking references of original articles and pertinent reviews to identify additional studies. Randomised controlled trials comparing an ADP receptor antagonist with another antiplatelet agent or placebo for a minimum of 12 months in patients with diabetes. In particular, we looked for trials assessing clinical cardiovascular outcomes. Two review authors extracted data for studies which fulfilled the inclusion criteria, using standard data extraction templates. We sought additional unpublished information and data from the principal investigators of all included studies. Eight studies with a total of 21,379 patients with diabetes were included. Three included studies investigated ticlopidine compared to aspirin or placebo. Five included studies investigated clopidogrel compared to aspirin or a combination of aspirin and dipyridamole, or compared clopidogrel in combination with aspirin to aspirin alone. All trials included patients with previous CVD except the CHARISMA trial which included patients with multiple risk factors for coronary artery disease. Overall the risk of bias of the trials was low. The mean duration of follow-up ranged from 365 days to 913 days.Data for diabetes patients on all-cause mortality, vascular

  7. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  8. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  10. The kinetics of competitive antagonists on guinea-pig ileum.

    PubMed Central

    Roberts, F; Stephenson, R P

    1976-01-01

    1 The kinetics of action of some competitive muscarinic and histamine antagonists were examined on guinea-pig isolated ileum and their behaviour compared with the predictions of the interaction-limited model described by Paton (1961). 2 The kinetics of antagonism were not consistent with the predictions of this model: (1) The apparent dissociation rate constant calculated from the decrease in occupancy on washout was not independent of the concentration of antagonist. (2) The dissociation rate constant of a 'slow' antagonist calculated from the change in occupancy when a 'fast' antagonist was superimposed varied with the concentration of fast antagonist. (3) If the concentration of slow antagonist was increased when the fast antagonist was superimposed so that the equilibrium occupancy of the 'slow' was the same as before, a transitional phase was observed. 3 The kinetics of antagonism were observed in longitudinal muscle strips and intact pieces of ileum, bathed in Tyrode or Krebs solution, and with isometric and isotonic recording. No evidence was found that the discrepancies between the interaction-limited model and the observed kinetics could be accounted for by the experimental method used. 4 It is therefore concluded that either access is rate-limiting in these circumstances or, if interaction is rate-limiting, some alternative interaction-limited model is required to describe the kinetics of antagonism. In either case it would seem unwise at this time to calculate antagonist-receptor rate constants from the observed kinetics of antagonism. PMID:974378

  11. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat.

    PubMed

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  12. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  13. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  14. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  15. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. ST 1535: a preferential A2A adenosine receptor antagonist.

    PubMed

    Stasi, Maria Antonietta; Borsini, Franco; Varani, Katia; Vincenzi, Fabrizio; Di Cesare, Maria Assunta; Minetti, Patrizia; Ghirardi, Orlando; Carminati, Paolo

    2006-10-01

    Antagonism of the A2A adenosine function has proved beneficial in the treatment of Parkinson's disease, in that it increases L-dopa therapeutical effects without concomitant worsening of its side-effects. In this paper we describe a preferential A2A adenosine antagonist, ST 1535, with long-lasting pharmacodynamic effects. It competitively antagonizes the effects of the A2A adenosine agonist NECA on cAMP in cells cloned with the human A2A adenosine receptor (IC50=353+/-30 nM), and the effects of the A1 adenosine agonist CHA on cAMP in cells cloned with the human A1 adenosine receptor (IC50=510+/-38 nM). ST 1535, at oral doses of 5 and 10 mg/kg, antagonizes catalepsy induced by intracerebroventricular administration of the A2A adenosine agonist CGS 21680 (10 microg/5 microl) in mice. At oral doses ranging between 5 and 20 mg/kg, ST 1535 induces hypermotility and antagonizes haloperidol-induced catalepsy in mice up to 7 h. Oral ST 1535, at 1.25 and 2.5 mg/kg, potentiates L-dopa effects in reducing haloperidol-induced catalepsy. ST 1535 represents a potential new compound, with long-lasting activity, for the treatment of Parkinson's disease.

  17. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    PubMed Central

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  18. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis.

    PubMed

    Makabe-Kobayashi, Yoko; Hori, Yoshio; Adachi, Tetsuya; Ishigaki-Suzuki, Satsuki; Kikuchi, Yoshihiro; Kagaya, Yutaka; Shirato, Kunio; Nagy, András; Ujike, Azusa; Takai, Toshiyuki; Watanabe, Takehiko; Ohtsu, Hiroshi

    2002-08-01

    The systemic anaphylaxis reaction comprises various symptoms, including hypotension, changes in respiration pattern, and hypothermia. To elucidate the role of histamine in each of these symptoms, we induced the passive systemic anaphylaxis reaction in histidine decarboxylase gene knockout (HDC [-/-]) mice, which lack histamine. HDC(-/-) mice were generated by knocking out the HDC gene, which codes for the unique histamine-synthesizing enzyme. Twenty-four hours after the injection of IgE, HDC(+/+) and HDC(-/-) mice were injected with allergen and body temperature, blood pressure, and respiratory function were monitored in each mouse. Blood pressure dropped in both the HDC(-/-) mice and the HDC(+/+) mice. In contrast, respiratory frequency dropped and the expiratory respiration time was elongated only in the HDC(+/+) mice. Body temperature was decreased in the HDC(+/+) mice and was practically unchanged in the HDC(-/-) mice. Histamine receptor antagonists blocked the body temperature drop in the HDC(+/+) mice. Intravenous histamine induced similar patterns of body temperature decrease in the HDC(+/+) mice and the HDC(-/-) mice. Mast cell-deficient W/W (v) mice did not show the decrease in body temperature; this suggests that the histamine that contributed to the decrease in body temperature was derived from mast cells. According to the results of this investigation, in the passive systemic anaphylaxis reaction, respiratory frequency, expiratory time, and body temperature are shown to be controlled by the activity of histamine, but its contribution to blood pressure is negligible.

  19. V2 Vasopressin Receptor (V2R) Mutations in Partial Nephrogenic Diabetes Insipidus Highlight Protean Agonism of V2R Antagonists*

    PubMed Central

    Takahashi, Kazuhiro; Makita, Noriko; Manaka, Katsunori; Hisano, Masataka; Akioka, Yuko; Miura, Kenichiro; Takubo, Noriyuki; Iida, Atsuko; Ueda, Norishi; Hashimoto, Makiko; Fujita, Toshiro; Igarashi, Takashi; Sekine, Takashi; Iiri, Taroh

    2012-01-01

    Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI. PMID:22144672

  20. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy.

    PubMed

    Bot, Ilze; Ortiz Zacarías, Natalia V; de Witte, Wilhelmus E A; de Vries, Henk; van Santbrink, Peter J; van der Velden, Daniël; Kröner, Mara J; van der Berg, Dirk-Jan; Stamos, Dean; de Lange, Elizabeth C M; Kuiper, Johan; IJzerman, Adriaan P; Heitman, Laura H

    2017-03-03

    CC Chemokine Receptor 2 (CCR2) and its endogenous ligand CCL2 are involved in a number of diseases, including atherosclerosis. Several CCR2 antagonists have been developed as potential therapeutic agents, however their in vivo clinical efficacy was limited. In this report, we aimed to determine whether 15a, an antagonist with a long residence time on the human CCR2, is effective in inhibiting the development of atherosclerosis in a mouse disease model. First, radioligand binding assays were performed to determine affinity and binding kinetics of 15a on murine CCR2. To assess the in vivo efficacy, western-type diet fed apoE -/- mice were treated daily with 15a or vehicle as control. Treatment with 15a reduced the amount of circulating CCR2 + monocytes and the size of the atherosclerotic plaques in both the carotid artery and the aortic root. We then showed that the long pharmacokinetic half-life of 15a combined with the high drug concentrations ensured prolonged CCR2 occupancy. These data render 15a a promising compound for drug development and confirms high receptor occupancy as a key parameter when targeting chemokine receptors.

  1. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics.

    PubMed

    Kaczor, Agnieszka A; Jörg, Manuela; Capuano, Ben

    2016-09-01

    In order to apply structure-based drug design techniques to G protein-coupled receptor complexes, it is essential to model their 3D structure and to identify regions that are suitable for selective drug binding. For this purpose, we have developed and tested a multi-component protocol to model the inactive conformation of the dopamine D2 receptor dimer, suitable for interaction with homobivalent antagonists. Our approach was based on protein-protein docking, applying the Rosetta software to obtain populations of dimers as present in membranes with all the main possible interfaces. Consensus scoring based on the values and frequencies of best interfaces regarding four scoring parameters, Rosetta interface score, interface area, free energy of binding and energy of hydrogen bond interactions indicated that the best scored dimer model possesses a TM4-TM5-TM7-TM1 interface, which is in agreement with experimental data. This model was used to study interactions of the previously published dopamine D2 receptor homobivalent antagonists based on clozapine,1,4-disubstituted aromatic piperidines/piperazines and arylamidoalkyl substituted phenylpiperazine pharmacophores. It was found that the homobivalent antagonists stabilize the receptor-inactive conformation by maintaining the ionic lock interaction, and change the dimer interface by disrupting a set of hydrogen bonds and maintaining water- and ligand-mediated hydrogen bonds in the extracellular and intracellular part of the interface. Graphical Abstract Structure of the final model of the dopamine D2 receptor homodimer, indicating the distancebetween Tyr37 and Tyr 5.42 in the apo form (left) and in the complex with the ligand (right).

  2. Analysis of hydrophobic interactions of antagonists with the beta2-adrenergic receptor.

    PubMed

    Novoseletsky, V N; Pyrkov, T V; Efremov, R G

    2010-01-01

    The adrenergic receptors mediate a wide variety of physiological responses, including vasodilatation and vasoconstriction, heart rate modulation, and others. Beta-adrenergic antagonists ('beta-blockers') thus constitute a widely used class of drugs in cardiovascular medicine as well as in management of anxiety, migraine, and glaucoma. The importance of the hydrophobic effect has been evidenced for a wide range of beta-blocker properties. To better understand the role of the hydrophobic effect in recognition of beta-blockers by their receptor, we carried out a molecular docking study combined with an original approach to estimate receptor-ligand hydrophobic interactions. The proposed method is based on automatic detection of molecular fragments in ligands and the analysis of their interactions with receptors separately. A series of beta-blockers, based on phenylethanolamines and phenoxypropanolamines, were docked to the beta2-adrenoceptor binding site in the crystal structure. Hydrophobic complementarity between the ligand and the receptor was calculated using the PLATINUM web-server (http://model.nmr.ru/platinum). Based on the analysis of the hydrophobic match for molecular fragments of beta-blockers, we have developed a new scoring function which efficiently predicts dissociation constant (pKd) with strong correlations (r(2) approximately 0.8) with experimental data.

  3. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  4. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2.

    PubMed

    Vollmann, Karl; Qurishi, Ramatullah; Hockemeyer, Jörg; Müller, Christa E

    2008-02-12

    The compound L-valine-3-{8-[(E)-2-[3-methoxyphenyl)ethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4) was synthesized as an amino acid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to be stable in artificial gastric acid, but readily cleaved by pig liver esterase.

  5. Low-dose or standard-dose proton pump inhibitors for maintenance therapy of gastro-oesophageal reflux disease: a cost-effectiveness analysis.

    PubMed

    You, J H S; Lee, A C M; Wong, S C Y; Chan, F K L

    2003-03-15

    Studies on the use of low-dose proton pump inhibitor for the maintenance therapy of gastro-oesophageal reflux disease have shown that it might be comparable with standard-dose proton pump inhibitor treatment and superior to standard-dose histamine-2 receptor antagonist therapy. To compare the impact of standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor treatment for the maintenance therapy of gastro-oesophageal reflux disease on symptom control and health care resource utilization from the perspective of a public health organization in Hong Kong. A Markov model was designed to simulate, over 12 months, the economic and clinical outcomes of gastro-oesophageal reflux disease patients treated with standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor. The transition probabilities were derived from the literature. Resource utilization was retrieved from a group of gastro-oesophageal reflux disease patients in Hong Kong. Sensitivity analysis was conducted to examine the robustness of the model. The standard-dose proton pump inhibitor strategy was associated with the highest numbers of symptom-free patient-years (0.954 years) and quality-adjusted life-years gained (0.999 years), followed by low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist. The direct medical cost per patient in the standard-dose proton pump inhibitor group (904 US dollars) was lower than those of the low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist groups. The standard-dose proton pump inhibitor strategy appears to be the most effective and least costly for the maintenance management of patients with gastro-oesophageal reflux disease in Hong Kong.

  6. Quinoxalin-2-carboxamides: synthesis and pharmacological evaluation as serotonin type-3 (5-HT3) receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Yadav, Shushil Kumar

    2011-10-01

    A series of quinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT(3) receptor antagonists and synthesized by condensing the carboxylic group of quinoxalin-2-carboxylic acid with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 1-hydroxybenzotriazole. The structures of the synthesized compounds were confirmed by physical and spectroscopic data. The carboxamides were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle-myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methy-5-HT. All the synthesized compounds showed 5-HT(3) receptor antagonism, (4-benzylpiperazin-1-yl)(quinoxalin-2-yl)methanone was the most potent compound among this series.

  7. What is heartburn worth? A cost-utility analysis of management strategies.

    PubMed

    Heudebert, G R; Centor, R M; Klapow, J C; Marks, R; Johnson, L; Wilcox, C M

    2000-03-01

    To determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2 receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life.

  8. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus.

    PubMed

    Kerr, K P

    2000-11-01

    1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.

  9. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  10. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    PubMed Central

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. PMID:24534492

  11. Combining the α1-Adrenergic Receptor Antagonist, Prazosin, with the β-Adrenergic Receptor Antagonist, Propranolol, Reduces Alcohol Drinking More Effectively Than Either Drug Alone

    PubMed Central

    Rasmussen, Dennis D; Beckwith, Lauren E; Kincaid, Carrie L; Froehlich, Janice C

    2014-01-01

    Background Evidence suggests that activation of the noradrenergic system may contribute to alcohol drinking in animals and humans. Our previous studies demonstrated that blocking α1-adrenergic receptors with the antagonist, prazosin, decreased alcohol drinking in rats under various conditions. Since noradrenergic activation is also regulated by β-adrenergic receptors, we now examine the effects of the β-adrenergic receptor antagonist, propranolol, alone or in combination with prazosin, on alcohol drinking in rats selectively bred for high voluntary alcohol intake and alcohol preference (P line). Methods Two studies were conducted with male P rats. In study one, rats were allowed to become alcohol-dependent during 14 weeks of ad libitum access to food, water and 20% alcohol and the effect of propranolol (5–15 mg/kg, IP) and prazosin (1–2 mg/kg, IP) on alcohol intake during withdrawal were assessed. In study two, the effect of propranolol (5 mg/kg, IP) and prazosin (2 mg/kg, IP) on alcohol intake following prolonged imposed abstinence was assessed. Results Alcohol drinking following propranolol treatment was variable, but the combination of propranolol + prazosin consistently suppressed alcohol drinking during both alcohol withdrawal and following prolonged imposed abstinence, and the combination of these two drugs was more effective than was treatment with either drug alone. Conclusions Treatment with prazosin + propranolol, or a combination of other centrally active α1- and β-adrenergic receptor antagonists, may assist in preventing alcohol relapse in some individuals. PMID:24891220

  12. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol.

    PubMed

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S

    2009-01-01

    We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.

  13. Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro.

    PubMed

    Parada-Turska, Jolanta; Rzeski, Wojciech; Majdan, Maria; Kandefer-Szerszeń, Martyna; Turski, Waldemar A

    2006-03-27

    One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts. It is not known whether the massive synovial hyperplasia characteristic of rheumatoid arthritis is due to the proliferation of synovial fibroblasts or to defective apoptosis. It has been found that glutamate receptor antagonists inhibit proliferation of different human tumour cells and the anticancer potential of glutamate receptor antagonists was suggested. Here, we investigated the effect of glutamate receptor antagonists and selected antirheumatic drugs on proliferation of synoviocytes in vitro. Experiments were conducted on rabbit synoviocytes cell line HIG-82 obtained from American Type Culture Collection (Menassas, VA, USA). Cell proliferation was assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 value (the concentration of drug necessary to induce 50% inhibition) together with confidence limits was calculated. Glutamate receptor antagonists, 1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one (CFM-2), riluzole, memantine, 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466), dizocilpine, ketamine and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.014, 0.017, 0.065, 0.102, 0.15, 0.435 and 1.16, respectively. Antirheumatic drugs, celecoxib, diclofenac, nimesulide, sulfasalazine, naproxen and methotrexate, inhibited proliferation of synoviocytes with the following IC50 values (in mM): 0.0043, 0.034, 0.044, 0.096, 0.385 and 1.123, respectively. Thus, the antiproliferative potential of glutamate receptor antagonists is comparable to that of antirheumatic drugs.

  14. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  15. Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP2 Receptor Antagonist for Treatment of Asthma

    PubMed Central

    2017-01-01

    Further optimization of an initial DP2 receptor antagonist clinical candidate NVP-QAV680 led to the discovery of a follow-up molecule 2-(2-methyl-1-(4-(methylsulfonyl)-2-(trifluoromethyl)benzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)acetic acid (compound 11, NVP-QAW039, fevipiprant), which exhibits improved potency on human eosinophils and Th2 cells, together with a longer receptor residence time, and is currently in clinical trials for severe asthma. PMID:28523115

  16. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  17. Identification of functional bitter taste receptors and their antagonist in chickens.

    PubMed

    Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji

    2017-01-22

    Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Critical roles of TRPV2 channels, histamine H1 and adenosine A1 receptors in the initiation of acupoint signals for acupuncture analgesia.

    PubMed

    Huang, Meng; Wang, Xuezhi; Xing, Beibei; Yang, Hongwei; Sa, Zheyan; Zhang, Di; Yao, Wei; Yin, Na; Xia, Ying; Ding, Guanghong

    2018-04-25

    Acupuncture is one of the most promising modalities in complimentary medicine. However, the underlying mechanisms are not well understood yet. We found that in TRPV2 knockout male mice, acupuncture-induced analgesia was suppressed with a decreased activation of mast cells in the acupoints stimulated. The mast cell stabilizer sodium cromolyn could suppress the release of adenosine in the acupoints on male rats. A direct injection of adenosine A1 receptor agonist or histamine H1 receptor agonist increased β-endorphin in the cerebral-spinal fluid in the acute adjuvant arthritis male rats and thus replicated the analgesic effect of acupuncture. These observations suggest that the mast cell is the central structure of acupoints and is activated by acupuncture through TRPV2 channels. The mast cell transduces the mechanical stimuli to acupuncture signal by activating either H1 or A1 receptors, therefore triggering the acupuncture effect in the subject. These findings might open new frontiers for acupuncture research.

  19. Effect of mutation of Phe 2436.44 of the histamine H2 receptor on cimetidine and ranitidine mechanism of action.

    PubMed

    Granja-Galeano, Gina; Zappia, Carlos Daniel; Fabián, Lucas; Davio, Carlos; Shayo, Carina; Fernández, Natalia; Monczor, Federico

    2017-12-15

    Despite the pivotal role GPCRs play in cellular signaling, it is only in the recent years that structural biology has begun to elucidate how GPCRs function and to provide a platform for structure-based drug design. It is postulated that GPCR activation involves the movement of transmembrane helices. The finding that many residues, which have been shown to be critical for receptor activation and are highly conserved among different GPCRs, are clustered in particular positions of transmembrane helices suggests that activation of GPCRs may involve common molecular mechanisms. In particular, phenylalanine 6.44, located in the upper half of TMVI, is highly conserved among almost all GPCRs. We generated Phe 243 6.44 Ala/Ser mutants of histamine H 2 receptor and found that while the substitutions do not affect receptor expression or ligand signaling, are able to specifically alter cimetidine and ranitidine mechanisms of action from simply inactivating the receptor to produce a ligand-induced G-protein sequestering conformation, that interferes with the signaling of β2-adrenoceptor. Taking advantage of the cubic ternary complex model, and mathematically modeling our results, we hypothesize that this alteration in ligand mechanism of action is consequence of a change in ligand-induced conformational rearrangement of receptor and its effect on G-protein coupling. Our results show that receptor point mutations can not only alter receptor behavior, as shown for activating/inactivating mutations, but also can have more subtle effects changing ligand mechanism of action. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. SCH 206272: a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist.

    PubMed

    Anthes, John C; Chapman, Richard W; Richard, Christian; Eckel, Stephen; Corboz, Michel; Hey, John A; Fernandez, Xiomara; Greenfeder, Scott; McLeod, Robbie; Sehring, Susan; Rizzo, Charles; Crawley, Yvette; Shih, Neng-Yang; Piwinski, John; Reichard, Greg; Ting, Pauline; Carruthers, Nick; Cuss, Francis M; Billah, Motasim; Kreutner, William; Egan, Robert W

    2002-08-23

    Experiments were performed to characterize the pharmacology of SCH 206272 [(R,R)-1'[5-[(3,5-dichlorobenzoyl)methylamino]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl]-N-methyl-2-oxo-[1,4'bipiperidine]-3-acetamide] as a potent and selective antagonist of tachykinin (NK) NK(1), NK(2), and NK(3) receptors. SCH 206272 inhibited binding at human tachykinin NK(1), NK(2), and NK(3) receptors (K(i) = 1.3, 0.4, and 0.3 nM, respectively) and antagonized [Ca(2+)](i) mobilization in Chinese hamster ovary (CHO) cells expressing the cloned human tachykinin NK(1), NK(2), or NK(3) receptors. SCH 206272 inhibited relaxation of the human pulmonary artery (pK(b) = 7.7 +/- 0.3) induced by the tachykinin NK(1) receptor agonist, [Met-O-Me] substance P and contraction of the human bronchus (pK(b = 8.2 +/- 0.3) induced by the tachykinin NK(2) receptor agonist, neurokinin A. In isolated guinea pig tissues, SCH 206272 inhibited substance P-induced enhancement of electrical field stimulated contractions of the vas deferens, (pK(b = 7.6 +/- 0.2), NKA-induced contraction of the bronchus (pK(b) = 7.7 +/- 0.2), and senktide-induced contraction of the ileum. In vivo, oral SCH 206272 (0.1-10 mg/kg, p.o.) inhibited substance P-induced airway microvascular leakage and neurokinin A-induced bronchospasm in the guinea pig. In a canine in vivo model, SCH 206272 (0.1-3 mg/kg, p.o.) inhibited NK(1) and NK(2) activities induced by exogenous substance P and neurokinin A. Furthermore, in guinea pig models involving endogenously released tachykinins, SCH 206272 inhibited hyperventilation-induced bronchospasm, capsaicin-induced cough, and airway microvascular leakage induced by nebulized hypertonic saline. These data demonstrate that SCH 206272 is a potent, orally active tachykinin NK(1), NK(2), and NK(3) receptor antagonist. This compound may have beneficial effects in diseases thought to be mediated by tachykinins, such as cough, asthma, and chronic obstructive pulmonary disease. Copyright 2002 Elsevier

  1. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    PubMed

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  2. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  4. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs.

    PubMed

    Lipani, Luca; Odadzic, Dalibor; Weizel, Lilia; Schwed, Johannes-Stephan; Sadek, Bassem; Stark, Holger

    2014-10-30

    The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. (11)C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists.

    PubMed

    Van Laere, Koenraad J; Sanabria-Bohórquez, Sandra M; Mozley, David P; Burns, Donald H; Hamill, Terence G; Van Hecken, Anne; De Lepeleire, Inge; Koole, Michel; Bormans, Guy; de Hoon, Jan; Depré, Marleen; Cerchio, Kristine; Plalcza, John; Han, Lingling; Renger, John; Hargreaves, Richard J; Iannone, Robert

    2014-01-01

    The histamine 3 (H3) receptor is a presynaptic autoreceptor in the central nervous system that regulates the synthesis and release of histamine and modulates the release of other major neurotransmitters. H3 receptor inverse agonists (IAs) may be efficacious in the treatment of various central nervous system disorders, including excessive daytime sleepiness, attention deficit hyperactivity disorder, Alzheimer disease, ethanol addiction, and obesity. Using PET and a novel high-affinity and selective radioligand (11)C-MK-8278, we studied the tracer biodistribution, quantification, and brain H3 receptor occupancy (RO) of MK-0249 and MK-3134, 2 potential IA drugs targeting cerebral H3 receptors, in 6 healthy male subjects (age, 19-40 y). The relationship among H3 IA dose, time on target, and peripheral pharmacokinetics was further investigated in 15 healthy male volunteers (age, 18-40 y) with up to 3 PET scans and 3 subjects per dose level. The mean effective dose for (11)C-MK-8278 was 5.4 ± 1.1 μSv/MBq. Human brain kinetics showed rapid high uptake and fast washout. Binding potential values can be assessed using the pons as a reference region, with a test-retest repeatability of 7%. Drug RO data showed low interindividual variability per dose (mean RO SD, 2.1%), and a targeted 90% RO can be reached for both IAs at clinically feasible doses. (11)C-MK-8278 is a useful novel PET radioligand for determination of human cerebral H3 receptor binding and allows highly reproducible in vivo brain occupancy of H3-targeting drugs, hereby enabling the evaluation of novel compounds in early development to select doses and schedules.

  6. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  7. Effects of H2-receptor antagonists and anticholinoceptor drugs on gastric and salivary secretion induced by bethanechol in the anaesthetized dog.

    PubMed Central

    Daly, M. J.; Humphray, J. M.; Stables, R.

    1982-01-01

    1 The H2-receptor antagonists, ranitidine and cimetidine, have been compared with atropine and pirenzepine for their effects on gastric acid output, and on salivary secretion from the left parotid gland in the anaesthetized dog. Gastric and salivary secretions were elicited by intravenous infusion of bethanechol. 2 Atropine (0.3-1 microgram/kg) or pirenzepine (3-10 micrograms/kg) reduced both gastric and salivary secretions, pirenzepine showing little evidence of any selectivity for gastric secretion. 3 The H2-receptor antagonists, ranitidine (30-1000 micrograms/kg) and cimetidine (100-3000 micrograms/kg), selectively inhibited gastric secretion and even at relatively high dose levels did not alter salivary volume. PMID:6125223

  8. Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings

    PubMed Central

    Francis, Taylor; Graf, Allyson; Hodges, Kyle; Kennedy, Lindsey; Hargrove, Laura; Price, Mattie; Kearney, Kate

    2013-01-01

    The pancreas is a dynamic organ that performs a multitude of functions within the body. Diseases that target the pancreas, like pancreatitis and pancreatic cancer, are devastating and often fatal to the suffering patient. Histamine and histamine receptors (H1-H4HRs) have been found to play a critical role in biliary diseases. Accordingly, the biliary tract and the pancreas share similarities with regards to morphological, phenotypical and functional features and disease progression, studies related the role of H1-H4HRs in pancreatic diseases are important. In this review, we have highlighted the role that histamine, histidine decarboxylase (HDC), histamine receptors and mast cells (the main source of histamine in the body) play during both pancreatitis and pancreatic cancer. The objective of the review is to demonstrate that histamine and histamine signaling may be a potential therapeutic avenue towards treatment strategies for pancreatic diseases. PMID:24570946

  9. What Is Heartburn Worth?

    PubMed Central

    Heudebert, Gustavo R; Centor, Robert M; Klapow, Joshua C; Marks, Robert; Johnson, Lawrence; Wilcox, C Mel

    2000-01-01

    OBJECTIVE T o determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. METHODS We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. MAIN RESULTS Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. CONCLUSIONS Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life. PMID:10718898

  10. σ Receptor antagonist attenuation of methamphetamine-induced neurotoxicity is correlated to body temperature modulation.

    PubMed

    Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R

    2013-01-01

    Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.

  11. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Inhibition of neurotensin-stimulated mast cell secretion and carboxypeptidase A activity by the peptide inhibitor of carboxypeptidase A and neurotensin-receptor antagonist SR 48692.

    PubMed

    Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E

    1998-06-01

    Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.

  13. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    PubMed

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  14. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    PubMed

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  15. Communication between mast cells and rat submucosal neurons.

    PubMed

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  16. Effects of methyl p-hydroxybenzoate (methyl paraben) on Ca2+ concentration and histamine release in rat peritoneal mast cells

    PubMed Central

    Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi

    2003-01-01

    Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943

  17. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    PubMed

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists.

    PubMed

    Vilums, Maris; Zweemer, Annelien J M; Yu, Zhiyi; de Vries, Henk; Hillger, Julia M; Wapenaar, Hannah; Bollen, Ilse A E; Barmare, Farhana; Gross, Raymond; Clemens, Jeremy; Krenitsky, Paul; Brussee, Johannes; Stamos, Dean; Saunders, John; Heitman, Laura H; Ijzerman, Adriaan P

    2013-10-10

    Preclinical models of inflammatory diseases (e.g., neuropathic pain, rheumatoid arthritis, and multiple sclerosis) have pointed to a critical role of the chemokine receptor 2 (CCR2) and chemokine ligand 2 (CCL2). However, one of the biggest problems of high-affinity inhibitors of CCR2 is their lack of efficacy in clinical trials. We report a new approach for the design of high-affinity and long-residence-time CCR2 antagonists. We developed a new competition association assay for CCR2, which allows us to investigate the relation of the structure of the ligand and its receptor residence time [i.e., structure-kinetic relationship (SKR)] next to a traditional structure-affinity relationship (SAR). By applying combined knowledge of SAR and SKR, we were able to re-evaluate the hit-to-lead process of cyclopentylamines as CCR2 antagonists. Affinity-based optimization yielded compound 1 with good binding (Ki = 6.8 nM) but very short residence time (2.4 min). However, when the optimization was also based on residence time, the hit-to-lead process yielded compound 22a, a new high-affinity CCR2 antagonist (3.6 nM), with a residence time of 135 min.

  19. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  20. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  1. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  2. Discovery and structure-activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor.

    PubMed

    Abdi, Muna H; Beswick, Paul J; Billinton, Andy; Chambers, Laura J; Charlton, Andrew; Collins, Sue D; Collis, Katharine L; Dean, David K; Fonfria, Elena; Gleave, Robert J; Lejeune, Clarisse L; Livermore, David G; Medhurst, Stephen J; Michel, Anton D; Moses, Andrew P; Page, Lee; Patel, Sadhana; Roman, Shilina A; Senger, Stefan; Slingsby, Brian; Steadman, Jon G A; Stevens, Alexander J; Walter, Daryl S

    2010-09-01

    A computational lead-hopping exercise identified compound 4 as a structurally distinct P2X(7) receptor antagonist. Structure-activity relationships (SAR) of a series of pyroglutamic acid amide analogues of 4 were investigated and compound 31 was identified as a potent P2X(7) antagonist with excellent in vivo activity in animal models of pain, and a profile suitable for progression to clinical studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A review of granisetron, 5-hydroxytryptamine3 receptor antagonists, and other antiemetics.

    PubMed

    Hsu, Eric S

    2010-01-01

    Nausea and vomiting are 2 of the most upsetting adverse reactions of chemotherapy. Current guidelines propose 5-hydroxytryptamine3 (5-HT3) receptor antagonists as a pharmacologic intervention for acute and delayed nausea and vomiting [chemotherapy-induced nausea and vomiting (CINV)] associated with moderately and highly emetogenic chemotherapy. Meanwhile, both postoperative nausea and vomiting (PONV) and postdischarge nausea and vomiting are challenging situations after surgeries and procedures. Prophylactic and therapeutic combinations of antiemetics are recommended in patients at high risk of suffering from PONV and postdischarge nausea and vomiting. Granisetron (Kytril) is a selective 5-HT3 receptor antagonist that does not induce or inhibit the hepatic cytochrome P-450 system in vitro. There are also 4 other antagonists of 5-HT3 receptor (dolasetron, ondansetron, palonosetron, and tropisetron) being metabolized via the CYP2D6 and are subject to potential genetic polymorphism. The launch of a new class of antiemetics, the substance P/neurokinin1 receptor antagonists, was attributed to the scientific update on the central generator responsible for emesis and role of substance P. There has been mounting interest in exploring integrative medicine, either acupuncture or acustimulation of P6 (Nei-Kuwan), to complement the western medicine for prevention and management of nausea and vomiting. The potential application of cannabinoids, either alone or in combination with other agents of different mechanism, could contribute further to improve outcome in CINV. Implementation of future treatment guidelines for more effective management of CINV and PONV could certainly improve the efficacy and outcome of cancer and postoperative care.

  5. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  6. Synthesis and biological evaluation of 3-(2-aminoethyl) uracil derivatives as gonadotropin-releasing hormone (GnRH) receptor antagonists.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Lee, Soo-Min; Kim, Eun Jeong; Kim, Jae Sun; Ann, Jihyae; Lee, Jiyoun; Lee, Jeewoo

    2018-02-10

    We investigated a series of uracil analogues by introducing various substituents on the phenyl ring of the N-3 aminoethyl side chain and evaluated their antagonistic activity against human gonadotropin-releasing hormone (GnRH) receptors. Analogues with substituents at the ortho or meta position demonstrated potent in vitro antagonistic activity. Specifically, the introduction of a 2-OMe group enhanced nuclear factor of activated T-cells (NFAT) inhibition up to 6-fold compared to the unsubstituted analogue. We identified compound 12c as a highly potent GnRH antagonist with moderate CYP inhibition. Compound 12c showed potent and prolonged LH suppression after a single dose was orally administered in castrated monkeys compared to a known antagonist, Elagolix. We believe that our SAR study offers useful insights to design GnRH antagonists as a potential treatment option for endometriosis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. The H(2)-receptor antagonist ranitidine interferes with clopidogrel-mediated P2Y(12) inhibition in platelets.

    PubMed

    Schäfer, Andreas; Flierl, Ulrike; Pförtsch, Stephanie; Seydelmann, Nora; Micka, Jan; Bauersachs, Johann

    2010-10-01

    Use of proton-pump inhibitors (PPIs) is common in patients on dual antiplatelet therapy (DAT). Recent warnings about potential interactions of PPIs with clopidogrel metabolism leading to impaired DAT efficacy has prompted the recommendation of substituting PPIs with H(2)-receptor antagonists such as ranitidine. We investigated whether ranitidine interacts with P2Y(12) inhibition on the platelet level. Blood was collected from 15 patients with stable coronary artery disease, who had undergone elective coronary intervention. Clopidogrel responsiveness was assessed 24h after the administration of a 600mg loading dose using the P2Y(12) specific platelet-reactivity-index (PRI) and light-transmittance aggregometry in the presence and absence of a pharmacologically relevant concentration of the H(2)-receptor antagonist ranitidine (400ng/ml). Adding ranitidine enhanced P2Y(12)-mediated platelet reactivity to ADP assessed by the PRI (mean PRI+/-SEM: before ranitidine 28+/-5%; after ranitidine 37+/-5%, p=0.0025). Similarly, prostaglandin E1 (PGE(1))-mediated inhibition of ADP-induced aggregation was abrogated in the presence of ranitidine (Agg(max)+/-SEM: before PGE(1) 41+/-2%; after PGE(1) 29+/-2%, p<0.01 vs. before PGE(1); after PGE(1)+ranitidine 42+/-2%, p<0.01 vs. after PGE(1)). Exposition of platelets with ranitidine significantly enhanced their responsiveness to ADP and contributed to impaired P2Y(12) inhibition suggesting that ranitidine interacts with clopidogrel efficacy through adenylyl cyclase inhibition on the platelet level. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades.

    PubMed

    Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin

    2015-11-15

    Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats.

    PubMed

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-11-01

    Rimonabant (Acomplia, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPgammaS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPgammaS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist.

  10. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  11. [Analgesic effects of ionotropic glutamate receptor antagonists MK-801 and NBQX on collagen-induced arthritis rats].

    PubMed

    Zhu, H; Zhu, R; Deng, Z D; Feng, Y C; Shen, H L

    2016-12-18

    The ionotropic glutamate receptorantagonists include two types: MK-801, antagonist of N-methyl-D-asparticacid (NMDA) receptor, and NBQX, antagonist of non-NMDA receptor.The above-mentioned ionotropic antagonists can block the glutamate and its corresponding receptor binding to produce analgesic effect. The objective of this research was to study two antagonists in analgesic effect on rat behavior,as well as to investigate the down-regulation and up-regulation of cyclooxygenase-2 (COX-2) and Janus-activated kinase (Jak3) in collagen-induced arthritis (CIA) rat serum and tissue fluid after the application of these antagonists, that is, the effect on molecular biology. This study used the ionotropic glutamate receptors as the target and established CIA rat model. Vivo studies were used to observe changes in behavior and molecular biology of the CIA rat.Behavioral assessment includedmechanical allodynia and joint swelling in the CIA rat,where themechanical allodynia was measured using the paw-withdrawal threshold (PWT) with VonFrey filaments according to the "Up-Down" method,and the drainage volume was used to assess joint swelling. Then the blood samples taken from the heart of the rat and the tissue homogenate were collected to detect the down-regulation and up-regulation of COX-2 and Jak3 in the serum and tissue fluid after the antagonists wereused. Using MK-801, NBQX alone or using the combination of these two antagonists,these three methods all could alleviate pain(P<0.01).The analgesic effect lasted more than 24 h.Both antagonists reached the peak of analgesia at the end of 4 hours post-injection. NBQX had stronger analgesic effect than MK-801 (P<0.05).Whether alone or combined use of these two antagonists,could not change the CIA rats' swelling of the joint (P>0.05). MK-801 could decrease the expression of COX-2 (P<0.01).At the same time, NBQX did not have this effect (P>0.05). Using MK-801, NBQX alone or combination of these two antagonists could not affect the

  12. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the

  13. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    PubMed

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  14. The rabbit iris sphincter contains NK1 and NK3 but not NK2 receptors: a study with selective agonists and antagonists.

    PubMed

    Wang, Z Y; Håkanson, R

    1993-04-08

    Tachykinin analogues, claimed to be selective NK1, NK2 and NK3 receptor agonists, contracted the isolated rabbit iris sphincter muscle in a concentration-dependent manner. The contractions were not modified by the enkephalinase inhibitor thiorphan and the angiotensin-converting enzyme inhibitor captopril (10(-5) M of each). The pD2 values for (Sar9,Met(O2)11)SP (NK1 receptor agonist), (Nle10)NKA(4-10) (NK2 receptor agonist) and (MePhe7)NKB (NK3 receptor agonist) were 8.3, 6.1 and 8.2, respectively. (Sar9,Met(O2)11)SP was the most efficacious of the three agonists. The results are compatible with the presence of NK1 and NK3 receptors. The low pD2 value for the NK2 agonist may reflect a lack of NK2 receptors and interaction of the NK2 agonist with NK1 receptors. The contraction caused by the NK1 receptor agonist was inhibited competitively by the highly selective NK1 receptor antagonist (+/-) CP-96,345; the pA2 value was 5.5. Also the contraction caused by the NK2 receptor agonist was inhibited competitively by (+/-) CP-96,345 with a pA2 value of 5.7, supporting the view that the two agonists (Sar9,Met(O2)11)SP and (Nle10)NKA(4-10) interact with the same receptor. The selective NK2 receptor antagonist actinomycin D did not affect the contraction caused by the NK2 receptor agonist. We conclude that the rabbit iris sphincter muscle contains NK1 and probably NK3 receptors. We obtained no evidence for the presence of NK2 receptors.

  15. Role of muscarinic receptor antagonists in urgency and nocturia.

    PubMed

    Michel, Martin C; de la Rosette, Jean J M C H

    2005-09-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms of incontinence and frequency. In recent studies, selected muscarinic antagonists, including darifenacin, solifenacin, tolterodine and trospium, significantly reduced the number of urgency episodes per day relative to placebo. While some data raise the possibility that certain of these agents may be more effective than others in this regard, this variability in their effect on urgency needs to be confirmed in future studies. Moreover, it remains to be determined whether counting the number of urgency episodes or assessing the subjective intensity of the sensation of urgency more adequately reflects patient needs and therapeutic efficacy. For nocturia, muscarinic receptor antagonists have only inconsistently shown statistically greater effects than placebo. This inconsistency may relate to the multifactorial nature of nocturia, which even in patients with OAB can have many causes, not all of which may respond/be sensitive to muscarinic receptor antagonism.

  16. The discovery of tropane-derived CCR5 receptor antagonists.

    PubMed

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  17. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists.

    PubMed

    Szabó, György; Kiss, Róbert; Páyer-Lengyel, Dóra; Vukics, Krisztina; Szikra, Judit; Baki, Andrea; Molnár, László; Fischer, János; Keseru, György M

    2009-07-01

    Hit-to-lead optimization of a novel series of N-alkyl-N-[2-oxo-2-(4-aryl-4H-pyrrolo[1,2-a]quinoxaline-5-yl)-ethyl]-carboxylic acid amides, derived from a high throughput screening (HTS) hit, are described. Subsequent optimization led to identification of in vitro potent cannabinoid 1 receptor (CB1R) antagonists representing a new class of compounds in this area.

  18. Conserved Binding Mode of Human [beta subscript 2] Adrenergic Receptor Inverse Agonists and Antagonist Revealed by X-ray Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wacker, Daniel; Fenalti, Gustavo; Brown, Monica A.

    2010-11-15

    G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the {beta}{sub 2} adrenergic receptor ({beta}{sub 2}AR) is one of the most extensively studied. Previously, the X-ray crystal structure of {beta}{sub 2}AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered {beta}{sub 2}AR construct in complex with two inverse agonists: ICI 118,551 (2.8 {angstrom}),more » a recently described compound (2.8 {angstrom}) (Kolb et al, 2009), and the antagonist alprenolol (3.1 {angstrom}). The structures show the same overall fold observed for the previous {beta}{sub 2}AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with {beta}{sub 2}AR. Furthermore, receptor ligand cross-docking experiments revealed that a single {beta}{sub 2}AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.« less

  19. Interaction of prostanoid EP3 and TP receptors in guinea-pig isolated aorta: contractile self-synergism of 11-deoxy-16,16-dimethyl PGE2

    PubMed Central

    Jones, RL; Woodward, DF

    2011-01-01

    BACKGROUND AND PURPOSE Surprisingly high contractile activity was reported for 11-deoxy-16,16-dimethyl prostaglandin E2 (DX-DM PGE2) on pig cerebral artery when used as a selective EP3 receptor agonist. This study investigated the selectivity profile of DX-DM PGE2, focusing on the interaction between its EP3 and TP (thromboxane A2-like) agonist activities. EXPERIMENTAL APPROACH Contraction of guinea-pig trachea (EP1 system) and aorta (EP3 and TP systems) was measured in conventional organ baths. KEY RESULTS Strong contraction of guinea-pig aorta to sulprostone and 17-phenyl PGE2 (EP3 agonists) was only seen under priming with a second contractile agent such as phenylephrine, histamine or U-46619 (TP agonist). In contrast, DX-DM PGE2 induced strong contraction, which on the basis of treatment with (DG)-3ap (EP3 antagonist) and/or BMS-180291 (TP antagonist) was attributed to self-synergism arising from co-activation of EP3 and TP receptors. EP3/TP self-synergism also accounted for contraction induced by PGF2α and its analogues (+)-cloprostenol and latanoprost-FA. DX-DM PGE2 also showed significant EP1 agonism on guinea-pig trachea as defined by the EP1 antagonists SC-51322, (ONO)-5-methyl-1 and AH-6809, although AH-6809 exhibited poor specificity at concentrations ≥3 µM. CONCLUSIONS AND IMPLICATIONS EP3/TP self-synergism, as seen with PGE/PGF analogues in this study, may confound EP3 agonist potency comparisons and the characterization of prostanoid receptor systems. The competitive profile of a TP antagonist may be distorted by variation in the silent/overt contraction profile of the EP3 system in different studies. The relevance of self-synergism to in vivo actions of natural prostanoid receptor agonists is discussed. PMID:20955363

  20. Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical Candidate for the Treatment of Insomnia.

    PubMed

    Bonaventure, Pascal; Shelton, Jonathan; Yun, Sujin; Nepomuceno, Diane; Sutton, Steven; Aluisio, Leah; Fraser, Ian; Lord, Brian; Shoblock, James; Welty, Natalie; Chaplan, Sandra R; Aguilar, Zuleima; Halter, Robin; Ndifor, Anthony; Koudriakova, Tatiana; Rizzolio, Michele; Letavic, Michael; Carruthers, Nicholas I; Lovenberg, Timothy; Dugovic, Christine

    2015-09-01

    Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 2. Synthesis and structure-activity relationships of alpha,alpha-cycloalkylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Caciagli, Valerio; Catrambone, Fernando; D'Andrea, Piero; Felicetti, Patrizia; Gensini, Martina; Marastoni, Elena; Nannicini, Rossano; Paris, Marielle; Terracciano, Rosa; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2007-02-08

    Recently we reported on the design and synthesis of a novel class of selective nonpeptide bradykinin (BK) B2 receptor antagonists (J. Med. Chem. 2006, 3602-3613). This work led to the discovery of MEN 15442, an antagonist with subnanomolar affinity for the human B2 receptor (hB2R), which also displayed significant and prolonged activity in vivo (for up to 210 min) against BK-induced bronchoconstriction in the guinea-pig at a dose of 300 nmol/kg (it), while demonstrating only a slight effect on BK-induced hypotension. Here we describe the further optimization of this series of compounds aimed at maximizing the effect on bronchoconstriction and minimizing the effect on hypotension, with a view to developing topically delivered drugs for airway diseases. The work led to the discovery of MEN 16132, a compound which, after intratracheal or aerosol administration, inhibited, in a dose-dependent manner, BK-induced bronchoconstricton in the airways, while showing minimal systemic activity. This compound was selected as a preclinical candidate for the topical treatment of airway diseases involving kinin B2 receptor stimulation.

  2. Bone Mineral Density Changes Among Women Initiating Proton Pump Inhibitors or H2 Receptor Antagonists: A SWAN Cohort Study

    PubMed Central

    Solomon, Daniel H; Diem, Susan J; Ruppert, Kristine; Juan Lian, Yin; Liu, Chih-Chin; Wohlfart, Alyssa; Greendale, Gail A; Finkelstein, Joel S

    2015-01-01

    Proton pump inhibitors (PPIs) have been associated with diminished bone mineral density (BMD) and an increased risk of fracture; however, prior studies have not yielded consistent results, and many have suboptimal ascertainment of both PPI use and BMD. We used data from the Study of Women’s Health Across the Nation (SWAN), a multicenter, multi-ethnic, community-based longitudinal cohort study of women across the menopause transition to examine the association between annualized BMD changes and new use of PPIs. We compared changes in BMD in new PPI users with changes in BMD in new users of histamine 2 receptor antagonists (H2RAs) and with changes in BMD in subjects who did not use either class of medications. Mixed linear regression models included recognized risk factors for osteoporosis, including demographics, menopausal transition stage, body mass index (BMI), lifestyle factors, as well as comorbidities and concomitant medications. To provide further evidence for the validity of our analytic approach, we also examined the effects of hormone-replacement therapy (HT), a class of medications that should reduce bone loss, on changes in BMD as an internal positive control group. We identified 207 new users of PPIs, 185 new users of H2RAs, and 1,676 non-users. Study subjects had a mean age of 50 years and were followed for a median of 9.9 years. Adjusted models found no difference in the annualized BMD change at the lumbar spine, femoral neck, or total hip in PPI users compared with H2RA users or non-users. These results were robust to sensitivity analyses. BMD increased as expected in HT users, supporting the validity of our study design. These longitudinal analyses plus similar prior studies argue against an association between PPI use and BMD loss. PMID:25156141

  3. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats

    PubMed Central

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-01-01

    Background and purpose: Rimonabant (AcompliaTM, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. Experimental approach: A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPγS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. Key results: In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPγS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. Conclusions and implications: PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist. PMID:17592509

  4. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    PubMed

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  5. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    PubMed

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  6. Effects of YM471, a nonpeptide AVP V1A and V2 receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells

    PubMed Central

    Tsukada, Junko; Tahara, Atsuo; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Taniguchi, Nobuaki; Tanaka, Akihiro

    2001-01-01

    YM471, (Z)-4′-{4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl}-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V1A, V1B and V2) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [3H]-AVP binding to V1A and V2 receptors with Ki values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V1B and oxytocin receptors with Ki values of 16.4 μM and 31.6 nM, respectively. In CHO cells expressing V1A receptors, YM471 potently inhibited AVP-induced intracellular Ca2+ concentration ([Ca2+]i) increase, exhibiting an IC50 value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca2+]i increase (IC50=193 nM), and did not affect AVP-induced [Ca2+]i increase in CHO cells expressing V1B receptors. Furthermore, in CHO cells expressing V2 receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC50 value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V1A and V2 receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP. PMID:11429400

  7. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  8. Pneumonia prevention in intubated patients given sucralfate versus proton-pump inhibitors and/or histamine II receptor blockers.

    PubMed

    Grindlinger, Gene A; Cairo, Sarah B; Duperre, Carole B

    2016-12-01

    Ventilator-associated pneumonia (VAP) is a common cause of infectious morbidity and mortality in the intensive care unit (ICU). The type of stress-ulcer prophylaxis (SUP) given to ventilated patients may, in part, be responsible. We observed an increase in VAP as ventilator bundle compliance increased and a decrease in VAP when bundle compliance decreased. We reasoned that SUP which raises gastric pH such as proton-pump inhibitors (PPIs) and histamine II (H2) receptor antagonists as opposed to SUP which does not raise pH such as sucralfate (S) may be responsible and also may alter the causative bacteria. This is a single-center retrospective cohort analysis of all intubated, adult surgical patients admitted to the surgical ICU between January and June during the 3-y period 2012-2014. Demographics, APACHE II, Injury Severity Score, VAP occurrence, culprit bacteria, ventilator days, and ICU days were recorded based on the type of SUP given. There were 45 instances of VAP in the 504 study patients, 33 in the PPI/H2 group, and 12 in the S group (P < 0.01). VAP per 1000 ventilator days were 10.2 for PPI/H2 and 3.7 for S (P < 0.01). Culprit bacteria were mostly Pseudomonas, gram-negative bacilli, and methicillin-resistant Staphylococcus aureus in PPI/H2 patients (n = 29) compared with oropharyngeal flora in S patients (n = 6; P < 0.001). There was a substantial difference in VAP occurrence and in the culprit bacteria between S and PPI/H2 treated patients due perhaps to gastric alkalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    PubMed Central

    López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2018-01-01

    Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression. PMID:29910727

  10. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  11. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    PubMed

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats

    PubMed Central

    Santos, Danielle R; Calixto, João B; Souza, Glória E P

    2003-01-01

    This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B1 and B2 receptors, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and selectins in this response. LPS (5 ng to 10 μg cavity−1) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity−1 (saline: 0.46±0.1; LPS: 43±3.70 × 106 cells cavity−1 at 6 h). Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73±0.16 × 106 cells cavity−1). A more robust response to BK (3.2±0.25 × 106 cells cavity−1) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1β or TNF-α (15 pmol: 23±2.2 × 106 and 75 pmol: 29.5±2 × 106 cells cavity−1, respectively). Nevertheless, the B1 agonist des-Arg9-BK (600 nmol) failed to induce neutrophil migration. HOE-140 (1 and 2 mg kg−1), a B2 receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1β or TNF-α. des-Arg9-[Leu8]-BK, B1 receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg−1), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity−1), and the nonspecific selectin inhibitor fucoidin (10 mg kg−1). TNF-α levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5–1 h and gradually declining thereafter up to 6 h. IL-1β levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1β and TNF-α levels in pouch fluid triggered by both stimuli. These

  13. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior.

    PubMed

    Ferris, Craig F; Lu, Shi-Fang; Messenger, Tara; Guillon, Christophe D; Heindel, Ned; Miller, Marvin; Koppel, Gary; Robert Bruns, F; Simon, Neal G

    2006-02-01

    Arginine vasopressin functions as a neurochemical signal in the brain to affect social behavior. There is an expanding literature from animal and human studies showing that vasopressin, through the vasopressin 1A receptor (V1A), can stimulate aggressive behavior. Using a novel monocylic beta lactam platform, a series of orally active vasopressin V1a antagonists was developed with high affinity for the human receptor. SRX251 was chosen from this series of V1a antagonists to screen for effects on serenic activity in a resident-intruder model of offensive aggression. Resident, male Syrian golden hamsters were given oral doses of SRX251 or intraperitoneal Manning compound, a selective V1a receptor antagonist with reduced brain penetrance, at doses of 0.2 microg, 20 microg, 2 mg/kg or vehicle. When tested 90-120 min later, SRX251, but not Manning compound, caused a significant dose-dependent reduction in offensive aggression toward intruders as measured by latency to bite and number of bites. The reduction in aggression persisted for over 6 h and was no longer present 12 h post treatment. SRX251 did not alter the amount of time the resident investigated the intruder, olfactory communication, general motor activity, or sexual motivation. These data corroborate previous studies showing a role for vasopressin neurotransmission in aggression and suggest that V1a receptor antagonists may be used to treat interpersonal violence co-occurring with such illness as ADHD, autism, bipolar disorder, and substance abuse.

  14. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme.

    PubMed

    Geneste, Hervé; Amberg, Wilhelm; Backfisch, Gisela; Beyerbach, Armin; Braje, Wilfried M; Delzer, Jürgen; Haupt, Andreas; Hutchins, Charles W; King, Linda L; Sauer, Daryl R; Unger, Liliane; Wernet, Wolfgang

    2006-04-01

    In our efforts to further pursue one of the most selective dopamine D(3)-receptor antagonists reported to date, we now describe the synthesis and SAR of novel and highly selective dopamine D(3) antagonists based on a 1H-pyridin-2-one or on a urea scaffold. The most potent compounds exhibited K(i) values toward the D(3) receptor in the nano- to subnanomolar range and high selectivity versus the related D(2) dopamine receptor. Thus, 1H-pyridin-2-one 7b displays oral bioavailability (F=37%) as well as brain penetration (brain plasma ratio 3.7) in rat. Within the urea series, an excellent D(3) versus D(2) selectivity (>100-fold) could be achieved by removal of one NH group (compound 6), although bioavailability (rat) was suboptimal (F<10%). These data significantly enhance our understanding of the D(3) pharmacophore and are expected to lead to novel approaches for the treatment of schizophrenia.

  15. Somatostatin sst2 receptor-mediated inhibition of parietal cell function in rat isolated gastric mucosa.

    PubMed Central

    Wyatt, M. A.; Jarvie, E.; Feniuk, W.; Humphrey, P. P.

    1996-01-01

    1. The aim of this study was to determine the location and functional characteristics of the somatostatin (SRIF) receptor type(s) which mediate inhibition of acid secretion in rat isolated gastric mucosa. 2. Gastrin (1 nM-1 microM), dimaprit (10 microM-300 microM) and isobutyl methylxanthine (IBMX, 1 microM-100 microM) all caused concentration-dependent increases in acid output. Responses to gastrin were almost completely inhibited by ranitidine (10 microM) at a concentration which abolished the secretory response to dimaprit. In contrast, responses to IBMX were not changed by ranitidine suggesting that IBMX acts directly on the parietal cell and not indirectly by releasing histamine from enterochromaffin-like (ECL) cells. 3. SRIF-14 (1 nM-1 microM) had no effect on basal acid output, but inhibited acid output produced by gastrin, dimaprit and IBMX in a concentration-dependent manner with respective EC50 values of 46, 54 and 167 nM. The peptidase inhibitors, amastatin (10 microM) and phosphoramidon (1 microM), had no effect on SRIF-induced inhibition of dimaprit stimulated gastric acid secretion. 4. The inhibitory effect of a range of SRIF analogues on gastrin-, dimaprit- and IBMX-induced acid secretion was also studied. Irrespective of the secretagogue used to increase acid output, the rank order of potencies was similar (BIM-23027 = seglitide = octreotide > SRIF-14 = SRIF-28 > L-362,855). The linear peptide BIM-23056 was devoid of agonist or antagonist activity in concentrations up to 1 microM. 5. The sst2 receptor selective peptides, BIM-23027, seglitide and octreotide were the most potent inhibitors of gastrin-, dimaprit- and IBMX-induced acid secretion suggesting that SRIF receptors resembling the recombinant sst2 receptors are involved. Furthermore, since dimaprit and IBMX stimulate gastric acid secretion independently of histamine release, sst2 receptor-mediated inhibition must occur at the level of the parietal cell itself. PMID:8922739

  16. Somatostatin sst2 receptor-mediated inhibition of parietal cell function in rat isolated gastric mucosa.

    PubMed

    Wyatt, M A; Jarvie, E; Feniuk, W; Humphrey, P P

    1996-11-01

    1. The aim of this study was to determine the location and functional characteristics of the somatostatin (SRIF) receptor type(s) which mediate inhibition of acid secretion in rat isolated gastric mucosa. 2. Gastrin (1 nM-1 microM), dimaprit (10 microM-300 microM) and isobutyl methylxanthine (IBMX, 1 microM-100 microM) all caused concentration-dependent increases in acid output. Responses to gastrin were almost completely inhibited by ranitidine (10 microM) at a concentration which abolished the secretory response to dimaprit. In contrast, responses to IBMX were not changed by ranitidine suggesting that IBMX acts directly on the parietal cell and not indirectly by releasing histamine from enterochromaffin-like (ECL) cells. 3. SRIF-14 (1 nM-1 microM) had no effect on basal acid output, but inhibited acid output produced by gastrin, dimaprit and IBMX in a concentration-dependent manner with respective EC50 values of 46, 54 and 167 nM. The peptidase inhibitors, amastatin (10 microM) and phosphoramidon (1 microM), had no effect on SRIF-induced inhibition of dimaprit stimulated gastric acid secretion. 4. The inhibitory effect of a range of SRIF analogues on gastrin-, dimaprit- and IBMX-induced acid secretion was also studied. Irrespective of the secretagogue used to increase acid output, the rank order of potencies was similar (BIM-23027 = seglitide = octreotide > SRIF-14 = SRIF-28 > L-362,855). The linear peptide BIM-23056 was devoid of agonist or antagonist activity in concentrations up to 1 microM. 5. The sst2 receptor selective peptides, BIM-23027, seglitide and octreotide were the most potent inhibitors of gastrin-, dimaprit- and IBMX-induced acid secretion suggesting that SRIF receptors resembling the recombinant sst2 receptors are involved. Furthermore, since dimaprit and IBMX stimulate gastric acid secretion independently of histamine release, sst2 receptor-mediated inhibition must occur at the level of the parietal cell itself.

  17. Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands

    PubMed Central

    Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto

    2014-01-01

    Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552

  18. Blockers for excitatory effects of achatin-I, a tetrapeptide having a D-phenylalanine residue, on a snail neurone.

    PubMed

    Santos, D E; Liu, G J; Takeuchi, H

    1995-01-16

    Some histamine H1 receptor antagonists suppressed the inward current (Iin) of an Achatina identifiable neurone type, PON (periodically oscillating neurone), caused by an Achatina endogenous tetrapeptide having a D-phenylalanine residue, achatin-I (Gly-D-Phe-Ala-Asp), under voltage clamp. Achatin-I was applied locally to the neurone by brief pneumatic pressure ejection and antagonists were administered by perfusion. The dose-response curves of the effective histamine H1 antagonists indicated their potency order to suppress the Iin as follows: chlorcyclizine, promethazine, triprolidine and homochlorcyclizine > trimeprazine and clemastine > diphenylpyraline. The potent drugs were mostly piperazine and phenothiazine types. The effects of chlorcyclizine, promethazine and triprolidine on the dose (the duration of the pressure ejection)-response curve of achatin-I indicated that these drugs affected the Iin caused by achatin-I in a non-competitive manner. The antagonists for the receptors of the small-molecule neurotransmitters other than histamine H1, such as histamine H2, acetylcholine, gamma-aminobutyric acid (GABA), L-glutamic acid, dopamine, alpha- and beta-adrenalin and 5-hydroxytryptamine, had no effect on the Iin caused by achatin-I.

  19. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  20. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  1. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    PubMed

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  2. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  3. Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders

    PubMed Central

    Rapanelli, M; Frick, L; Pogorelov, V; Ohtsu, H; Bito, H; Pittenger, C

    2017-01-01

    Tic disorders affect ~5% of the population and are frequently comorbid with obsessive-compulsive disorder, autism, and attention deficit disorder. Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising pathophysiologically grounded model. How alterations in the histamine system lead to tics and other neuropsychiatric pathology, however, remains unclear. We found elevated expression of the histamine H3 receptor in the striatum of Hdc knockout mice. The H3 receptor has significant basal activity even in the absence of ligand and thus may modulate striatal function in this knockout model. We probed H3R function using specific agonists. The H3 agonists R-aminomethylhistamine (RAMH) and immepip produced behavioral stereotypies in KO mice, but not in controls. H3 agonist treatment elevated intra-striatal dopamine in KO mice, but not in controls. This was associated with elevations in phosphorylation of rpS6, a sensitive marker of neural activity, in the dorsal striatum. We used a novel chemogenetic strategy to demonstrate that this dorsal striatal activity is necessary and sufficient for the development of stereotypy: when RAMH-activated cells in the dorsal striatum were chemogenetically activated (in the absence of RAMH), stereotypy was recapitulated in KO animals, and when they were silenced the ability of RAMH to produce stereotypy was blocked. These results identify the H3 receptor in the dorsal striatum as a contributor to repetitive behavioral pathology. PMID:28117842

  4. Neuroprotective effect of lurasidone via antagonist activities on histamine in a rat model of cranial nerve involvement.

    PubMed

    He, Baoming; Yu, Liang; Li, Suping; Xu, Fei; Yang, Lili; Ma, Shuai; Guo, Yi

    2018-04-01

    Cranial nerve involvement frequently involves neuron damage and often leads to psychiatric disorder caused by multiple inducements. Lurasidone is a novel antipsychotic agent approved for the treatment of cranial nerve involvement and a number of mental health conditions in several countries. In the present study, the neuroprotective effect of lurasidone by antagonist activities on histamine was investigated in a rat model of cranial nerve involvement. The antagonist activities of lurasidone on serotonin 5‑HT7, serotonin 5‑HT2A, serotonin 5‑HT1A and serotonin 5‑HT6 were analyzed, and the preclinical therapeutic effects of lurasidone were examined in a rat model of cranial nerve involvement. The safety, maximum tolerated dose (MTD) and preliminary antitumor activity of lurasidone were also assessed in the cranial nerve involvement model. The therapeutic dose of lurasidone was 0.32 mg once daily, administered continuously in 14‑day cycles. The results of the present study found that the preclinical prescriptions induced positive behavioral responses following treatment with lurasidone. The MTD was identified as a once daily administration of 0.32 mg lurasidone. Long‑term treatment with lurasidone for cranial nerve involvement was shown to improve the therapeutic effects and reduce anxiety in the experimental rats. In addition, treatment with lurasidone did not affect body weight. The expression of the language competence protein, Forkhead‑BOX P2, was increased, and the levels of neuroprotective SxIP motif and microtubule end‑binding protein were increased in the hippocampal cells of rats with cranial nerve involvement treated with lurasidone. Lurasidone therapy reinforced memory capability and decreased anxiety. Taken together, lurasidone treatment appeared to protect against language disturbances associated with negative and cognitive impairment in the rat model of cranial nerve involvement, providing a basis for its use in the clinical treatment of

  5. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  6. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are

  7. The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy.

    PubMed

    Sato, Atsuhisa

    2015-06-01

    Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain 'long-term' antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy. However, many studies have shown promise of better renoprotective effects if mineralocorticoid receptor antagonists are appropriately used.

  8. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.

    PubMed

    Rinaldi-Carmona, M; Barth, F; Millan, J; Derocq, J M; Casellas, P; Congy, C; Oustric, D; Sarran, M; Bouaboula, M; Calandra, B; Portier, M; Shire, D; Brelière, J C; Le Fur, G L

    1998-02-01

    Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.

  9. The Novel μ-Opioid Receptor Antagonist, [N-Allyl-Dmt1]Endomorphin-2, Attenuates the Enhancement of GABAergic Neurotransmission by Ethanol

    PubMed Central

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.

    2009-01-01

    Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291

  10. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  11. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  12. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  13. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    PubMed

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  14. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice.

    PubMed

    Smith, Jill P; Cooper, Timothy K; McGovern, Christopher O; Gilius, Evan L; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A; Gutkind, J Silvio; Matters, Gail L

    2014-10-01

    Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.

  15. CHOLECYSTOKININ RECEPTOR ANTAGONIST HALTS PROGRESSION OF PANCREATIC CANCER PRECURSOR LESIONS AND FIBROSIS IN MICE

    PubMed Central

    Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.

    2014-01-01

    Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882

  16. Change in pharmacological effect of endothelin receptor antagonists in rats with pulmonary hypertension: Role of ETB-receptor expression levels

    PubMed Central

    Sauvageau, Stéphanie; Thorin, Eric; Villeneuve, Louis; Dupuis, Jocelyn

    2013-01-01

    Background and purpose The endothelin (ET) system is activated in pulmonary arterial hypertension (PAH). The therapeutic value of pharmacological blockade of ET receptors has been demonstrated in various animal models and led to the current approval and continued development of these drugs for the therapy of human PAH. However, we currently incompletely comprehend what local modifications of this system occur as a consequence of PAH, particularly in small resistance arteries, and how this could affect the pharmacological response to ET receptor antagonists with various selectivities for the receptor subtypes. Therefore, the purposes of this study were to evaluate potential modifications of the pharmacology of the ET system in rat pulmonary resistance arteries from monocrotaline (MCT)-induced pulmonary arterial hypertension. Experimental approach ET-1 levels were quantified by ELISA. PreproET-1, ETA and ETB receptor mRNA expressions were quantified in pulmonary resistance arteries using Q-PCR, while protein expression was evaluated by Western blots. Reactivity to ET-1 of isolated pulmonary resistance arteries was measured in the presence of ETA (A-147627), ETB (A-192621) and dual ETA/B (bosentan) receptor antagonists. Key results In rats with PAH, plasma ET-1 increased (p < 0.001) while pulmonary levels were reduced (p < 0.05). In PAH arteries, preproET-1 (p < 0.05) and ETB receptor (p < 0.001) gene expressions were reduced, as were ETB receptor protein levels (p < 0.05). ET-1 induced similar vasoconstrictions in both groups. In arteries from sham animals, neither bosentan nor the ETA or the ETB receptor antagonists modified the response. In arteries from PAH rats, however, bosentan and the ETA receptor antagonist potently reduced the maximal contraction, while bosentan also reduced sensitivity (p < 0.01). Conclusions and implications The effectiveness of both selective ETA and dual ETA/B receptor antagonists is markedly increased in PAH. Down-regulation of

  17. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    PubMed Central

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  18. NMDA receptor antagonists extend the sensitive period for imprinting.

    PubMed

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  19. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  20. Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo

    2016-10-13

    We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.

  1. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    PubMed

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  2. Lead Optimization Studies of Cinnamic Amide EP2 Antagonists

    PubMed Central

    2015-01-01

    Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role. PMID:24773616

  3. Reduction of nicotine self-administration by chronic nicotine infusion with H1 histamine blockade in female rats.

    PubMed

    Levin, Edward D; Hall, Brandon J; Chattopadhyay, Autri; Slade, Susan; Wells, Corinne; Rezvani, Amir H; Rose, Jed E

    2016-08-01

    Chronic nicotine infusion via transdermal patches has been widely shown to assist with smoking cessation. In particular, transdermal nicotine treatment prior to quitting smoking helps reduce ad libitum smoking and aids cessation Rose et al. (Nicotine Tob Res 11:1067-75, 2009). However, despite this success, the majority of smokers who use transdermal nicotine fail to permanently quit smoking. Additional treatments are needed. Tobacco addiction does not just depend on nicotinic receptor systems; a variety of neural systems are involved, including dopamine, norepinepherine, serotonin, and histamine. Given the involvement of a variety of neural systems in the circuits of addiction, combination therapy may offer improved efficacy for successful smoking cessation beyond single treatments alone. We have found that pyrilamine, an H1 histamine antagonist, significantly decreases nicotine self-administration in rats. The current study was conducted to confirm the effect of chronic nicotine infusion on ongoing nicotine self-administration and resumed access after enforced abstinence and to determine the interaction of chronic nicotine with an H1 antagonist treatment. Chronic nicotine infusion via osmotic minipump (2.5 and 5 mg/kg/day for 28 days) significantly reduced nicotine self-administration in a dose-dependent manner. Chronic nicotine infusion also reduced the resumption of nicotine self-administration after enforced abstinence. Chronic pyrilamine infusion (25 mg/kg/day for 14 days) also significantly reduced nicotine self-administration. The combination of chronic nicotine and pyrilamine reduced nicotine self-administration to a greater extent than treatment with either drug alone.

  4. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.

    PubMed

    Barnes, Brian J; Howard, Patricia A

    2005-01-01

    To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.

  5. Interleukin 1 Receptor Antagonist Deficiency Presenting as Infantile Pustulosis Mimicking Infantile Pustular Psoriasis

    PubMed Central

    Minkis, Kira; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Magro, Cynthia; Scott, Rachelle; Davis, Jessica G.; Sardana, Niti; Herzog, Ronit

    2012-01-01

    Background Deficiency of interleukin 1 receptor antagonist (DIRA) is a recently described autoinflammatory syndrome of skin and bone caused by recessive mutations in the gene encoding the interleukin 1 receptor antagonist. Few studies have been published about this debilitating condition. Early identification is critical for targeted lifesaving intervention. Observations A male infant, born to nonconsanguineous Puerto Rican parents, was referred for management of a pustular eruption diagnosed as pustular psoriasis. At 2 months of age, the infant developed a pustular eruption. After extensive evaluation, he was confirmed to be homozygous for a 175-kb genomic deletion on chromosome 2 that includes the IL1RN gene, commonly found in Puerto Ricans. Therapy with anakinra was initiated, with rapid clearance of skin lesions and resolution of systemic inflammation. Conclusions Recent identification of DIRA as a disease entity, compounded by the limited number of reported cases, makes early identification difficult. It is critical to consider this entity in the differential diagnosis of infantile pustulosis. Targeted therapy with the recombinant human interleukin 1 receptor antagonist anakinra can be lifesaving if initiated early. A high carrier frequency of the 175-kb DIRA-associated genomic deletion in the Puerto Rican population strongly supports testing infants presenting with unexplained pustulosis in patients from this geographic region. PMID:22431714

  6. N-Substituted cis-4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists

    PubMed Central

    Carroll, F. Ivy; Chaudhari, Sachin; Thomas, James B.; Mascarella, S. Wayne; Gigstad, Kenneth M.; Deschamps, Jeffrey; Navarro, Hernán A.

    2008-01-01

    N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a–g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctahydroisoquinolines 6a–g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has the lower potential energy relative to the axial conformation. Evaluation of compounds 6a–g in the [35S]GTP-γ-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a Ke of 0.27 nM at the κ opioid receptor with 154- and 46-fold selectively relative to the μ and δ receptors, respectively, possessed the best combination of κ potency and selectivity. PMID:16366600

  7. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Visualization of the activation of the histamine H3 receptor (H3R) using novel fluorescence resonance energy transfer biosensors and their potential application to the study of H3R pharmacology.

    PubMed

    Liu, Ying; Zeng, Hong; Pediani, John D; Ward, Richard J; Chen, Lu-Yao; Wu, Nan; Ma, Li; Tang, Mei; Yang, Yang; An, Su; Guo, Xiao-Xi; Hao, Qian; Xu, Tian-Rui

    2018-06-01

    Activation of the histamine-3 receptor (H3R) is involved in memory processes and cognitive action, while blocking H3R activation can slow the progression of neurological disorders, such as Alzheimer's disease, schizophrenia and narcolepsy. To date, however, no direct way to examine the activation of H3R has been utilized. Here, we describe a novel biosensor that can visualize the activation of H3R through an intramolecular fluorescence resonance energy transfer (FRET) signal. To achieve this, we constructed an intramolecular H3R FRET sensor with cyan fluorescent protein (CFP) attached at the C terminus and yellow fluorescent protein (YFP) inserted into the third intracellular loop. The sensor was found to internalize normally on agonist treatment. We measured FRET signals between the donor CFP and the acceptor YFP in living cells in real time, the results of which indicated that H3R agonist treatment (imetit or histamine) increases the FRET signal in a time- and concentration-dependent manner with Kon and Koff values consistent with published data and which maybe correlated with decreasing cAMP levels and the promotion of ERK1/2 phosphorylation. The FRET signal was inhibited by H3R antagonists, and the introduction of mutations at F419A, F423A, L426A and L427A, once again, the promotion of ERK1/2 phosphorylation, was diminished. Thus, we have built a H3R biosensor which can visualize the activation of receptor through real-time structure changes and which can obtain pharmacological kinetic data at the same time. The FRET signals may allow the sensor to become a useful tool for screening compounds and optimizing useful ligands. © 2018 Federation of European Biochemical Societies.

  9. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.

    PubMed

    Savi, Pierre; Herbert, Jean-Marc

    2005-04-01

    Ticlopidine and clopidogrel belong to the same chemical family of thienopyridine adenosine diphosphate (ADP)-receptor antagonists. They have shown their efficacy as platelet antiaggregant and antithrombotic agents in many animal models, both ex vivo and in vivo. Although ticlopidine was discovered more than 30 years ago, it was only recently that the mechanism of action of ADP-receptor antagonists was characterized in detail. Ticlopidine and clopidogrel both behave in vivo as specific antagonists of P2Y (12), one of the ADP receptors on platelets. Metabolic steps that involve cytochrome P450-dependent pathways are required to generate the active metabolite responsible for this in vivo activity. The active moiety is a reactive thiol derivative that targets P2Y (12) on platelets. The interaction is irreversible, accounting for the observation that platelets are definitely antiaggregated, even if no active metabolite is detectable in plasma. The interaction is specific for P2Y (12); other purinoceptors such as P2Y (1) and P2Y (13) are spared. This results in inhibition of the binding of the P2Y (12) agonist 2-methylthio-ADP and the ADP-induced downregulation of adenylyl cyclase. Platelet aggregation is affected not only when triggered by ADP but also by aggregation inducers when used at concentrations requiring released ADP as an amplifier. The efficacy and safety of clopidogrel has been established in several large, randomized, controlled trials. The clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE) trial demonstrated the superiority of clopidogrel over acetylsalicylic acid (ASA) in patients at risk of ischemic events, including ischemic stroke, myocardial infarction (MI), and peripheral arterial disease. The clopidogrel in unstable angina to prevent recurrent ischemic events (CURE) trial showed a sustained, incremental benefit when clopidogrel was added to standard therapy (including ASA) in patients with unstable angina and non-Q-wave MI

  10. The effect of compound 48/80 on contractions induced by toluene diisocyanate in isolated guinea-pig bronchus.

    PubMed

    Mapp, C E; Boniotti, A; Papi, A; Chitano, P; Coser, E; Di Stefano, A; Saetta, M; Ciaccia, A; Fabbri, L M

    1993-06-01

    We have investigated the ability of compound 48/80 and of histamine H1 and H2 receptor antagonists to inhibit toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. Compound 48/80 (100 micrograms/ml) significantly inhibited toluene diisocyanate-induced contractions. By contrast, the two histamine H1 and H2 receptor antagonists, chlorpheniramine (10 microM) and cimetidine, (10 microM) did not affect toluene diisocyanate-induced contractions, but significantly inhibited contractions induced by exogenously applied histamine (100 microM) and by 48/80. We investigated which mechanisms 48/80 used to inhibit toluene diisocyanate-induced contractions, paying particular attention to the possible involvement of capsaicin-sensitive primary afferents. In vitro capsaicin desensitization (10 microM for 30 min followed by washing) significantly reduced compound 48/80-induced contractions. A capsaicin-resistant component of contraction was also evident. Ruthenium red (3 microM), an inorganic dye which acts as a selective functional antagonist of capsaicin, did not affect 48/80-induced contraction. MEN 10,207 (Tyr5,D-Trp6,8,9,Arg10)-neurokinin A (4-10) (3 microM) a selective antagonist of NK2-tachykinin receptors significantly reduced 48/80-induced contractions. These results show that compound 48/80 inhibits toluene diisocyanate-induced contractions in isolated guinea-pig bronchi. It is likely that two mechanisms are involved in the inhibition: (1) the release of mediators other than histamine by mast cells, (2) an effect of 48/80 on sensory nerves.

  11. MOLECULAR PROBES FOR MUSCARINIC RECEPTORS: FUNCTIONALIZED CONGENERS OF SELECTIVE MUSCARINIC ANTAGONISTS

    PubMed Central

    Jacobson, Kenneth A.; Fischer, Bilha; van Rhee, A. Michiel

    2012-01-01

    Summary The muscarinic agonist oxotremorine and the tricyclic muscarinic antagonists pirenzepine and telenzepine have been derivatized using a functionalized congener approach for the purpose of synthesizing high affinity ligand probes that are suitable for conjugation with prosthetic groups, for receptor cross-linking, fluorescent and radioactive detection, etc. A novel fluorescent conjugate of TAC (telenzepine amine congener), an n-decylamino derivative of the ml-selective antagonist, with the fluorescent trisulfonated pyrene dye Cascade Blue may be useful for assaying the receptor as an alternative to radiotracers. In a rat m3 receptor mutant containing a single amino acid substitution in the sixth transmembrane domain (Asn507 to Ala) the parent telenzepine lost 636-fold in affinity, while TAC lost only 27-fold. Thus, the decylamino group of TAC stabilizes the bound state and thus enhances potency by acting as a distal anchor in the receptor binding site. We have built a computer-assisted molecular model of the transmembrane regions of muscarinic receptors based on homology with the G-protein coupled receptor rhodopsin, for which a low resolution structure is known. We have coordinated the antagonist pharmacophore (tricyclic and piperazine moieties) with residues of the third and seventh helices of the rat m3 receptor. Although the decylamino chain of TAC is likely to be highly flexible and may adopt many conformations, we located one possible site for a salt bridge formation with the positively charged −NH3+ group, i.e. Asp113 in helix II. PMID:10188781

  12. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells.

    PubMed

    Hodges, Robin R; Li, Dayu; Shatos, Marie A; Serhan, Charles N; Dartt, Darlene A

    2016-11-08

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A 4 (LXA 4 ), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA 4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca 2+ ] ([Ca 2+ ] i ) and on histamine-stimulated responses. LXA 4 increased mucin secretion and [Ca 2+ ] i , and activated ERK1/2 in human goblet cells. Addition of LXA 4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA 4 responses. LXA 4 inhibited histamine-stimulated increases in mucin secretion, [Ca 2+ ] i , and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA 4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases.

  13. Lipoxin A4 Counter-regulates Histamine-stimulated Glycoconjugate Secretion in Conjunctival Goblet Cells

    PubMed Central

    Hodges, Robin R.; Li, Dayu; Shatos, Marie A.; Serhan, Charles N.; Dartt, Darlene A.

    2016-01-01

    Conjunctival goblet cells synthesize and secrete mucins which play an important role in protecting the ocular surface. Pro-resolution mediators, such as lipoxin A4 (LXA4), are produced during inflammation returning the tissue to homeostasis and are also produced in non-inflamed tissues. The purpose of this study was to determine the actions of LXA4 on cultured human conjunctival goblet cell mucin secretion and increase in intracellular [Ca2+] ([Ca2+]i) and on histamine-stimulated responses. LXA4 increased mucin secretion and [Ca2+]i, and activated ERK1/2 in human goblet cells. Addition of LXA4 before resolvin D1 (RvD1) decreased RvD1 responses though RvD1 did not block LXA4 responses. LXA4 inhibited histamine-stimulated increases in mucin secretion, [Ca2+]i, and ERK1/2 activation through activation of β-adrenergic receptor kinase 1. We conclude that conjunctival goblet cells respond to LXA4 through the ALX/FPR2 receptor to maintain homeostasis of the ocular surface and regulate histamine responses and could provide a new therapeutic approach for allergic conjunctivitis and dry eye diseases. PMID:27824117

  14. Histamine Poisoning from Ingestion of Fish or Scombroid Syndrome

    PubMed Central

    Tortorella, Vincenzo; Masciari, Peppino; Pezzi, Mario; Mola, Assunta; Tiburzi, Simona Paola; Zinzi, Maria Concetta; Scozzafava, Annamaria; Verre, Mario

    2014-01-01

    The scombroid poisoning is due to the ingestion of poorly preserved fish (especially tuna, sardines, and mackerel) out of the cold chain. Under the influence of the proliferation of gram negative bacteria that occurs for heating, the histidine content in the muscle of the fish is converted into histamine, by the action of the enzyme histidine decarboxylase. If the histamine is ingested in large quantities, it causes an anaphylactoid reaction with a variety of symptoms from moderate to severe to life-threating. We will describe two cases that came under our observation after consuming a meal of bluefin tuna. The diagnosis of scombroid syndrome was made on the basis of the anamnestic data and the clinical one. The rapid resolution of the signs and symptoms after treatment with histamines H1-H2 receptor blockers confirmed the suspected diagnosis. PMID:25544905

  15. Histamine poisoning from ingestion of fish or scombroid syndrome.

    PubMed

    Tortorella, Vincenzo; Masciari, Peppino; Pezzi, Mario; Mola, Assunta; Tiburzi, Simona Paola; Zinzi, Maria Concetta; Scozzafava, Annamaria; Verre, Mario

    2014-01-01

    The scombroid poisoning is due to the ingestion of poorly preserved fish (especially tuna, sardines, and mackerel) out of the cold chain. Under the influence of the proliferation of gram negative bacteria that occurs for heating, the histidine content in the muscle of the fish is converted into histamine, by the action of the enzyme histidine decarboxylase. If the histamine is ingested in large quantities, it causes an anaphylactoid reaction with a variety of symptoms from moderate to severe to life-threating. We will describe two cases that came under our observation after consuming a meal of bluefin tuna. The diagnosis of scombroid syndrome was made on the basis of the anamnestic data and the clinical one. The rapid resolution of the signs and symptoms after treatment with histamines H1-H2 receptor blockers confirmed the suspected diagnosis.

  16. The effects of substance P on histamine and 5-hydroxytryptamine release in the rat

    PubMed Central

    Fewtrell, C. M. S.; Foreman, J. C.; Jordan, C. C.; Oehme, P.; Renner, H.; Stewart, J. M.

    1982-01-01

    1. Substance P (SP) induces histamine release from isolated rat peritoneal mast cells at concentrations of 0·1-10 μM. 2. Inhibitors of glycolysis and oxidative phosphorylation prevent the release of histamine induced by SP. 3. Cells heated to 47 °C for 20 min release histamine when treated with an agent causing cell lysis but fail to release in response to SP. 4. SP does not release histamine by interacting with cell-bound IgE. 5. Histamine release by SP is rapid, with more than 90% of the response occurring within 1 min of the addition of the peptide to mast cells at 37 °C. 6. Substance P, unlike antigen—antibody or compound 48/80, does not show enhanced release of histamine when calcium (0·1-1 mM) is present in the extracellular medium but calcium increases the response to SP when the ion is added after the peptide. Extracellular calcium (0·1-1 mM), magnesium (1-10 mM) and cobalt (0·01-0·1 mM) all inhibit SP-induced histamine release when added before the peptide. Pre-treatment of the cells with EDTA (10 mM) and washing in calcium-free medium inhibits the histamine release induced by SP. 7. Histamine release induced by SP was optimum at an extracellular pH of 7·2. 8. A number of peptides structurally related to SP were examined for histamine-releasing activity. At the concentrations tested, the N-terminal dipeptides Lys-Pro and Arg-Pro, tuftsin, physalaemin, eledoisin, SP3-11, SP4-11 and [p-Glu6, p-amino Phe7]-SP6-11 were all found to be inactive. The relative activities of the other peptides were: [Formula: see text] 9. Rat basophilic leukaemia cells (RBL-2H3) fail to respond to SP at concentrations which activate rat mast cells. Release of 5-hydroxytryptamine by immunological activation of RBL cells is not changed by the presence of SP. 10. The mechanism of action of SP on mast cells and the nature of the SP receptor on mast cells is discussed in relation to SP receptors in other cell types. PMID:6184468

  17. Adenosine A(2A) receptor antagonists are broad facilitators of antinicotinic neuromuscular blockade monitored either with 2 Hz train-of-four or 50 Hz tetanic stimuli.

    PubMed

    Pereira, Monalisa W; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2012-10-01

    1. The 2 Hz train-of-four ratio (TOF(ratio)) is used to monitor the degree of patient curarization. Using a rat phrenic nerve-hemidiaphragm preparation, we showed that antinicotinic agents, such as hexamethonium, d-tubocurarine and pancuronium, but not cisatracurium, decreased contractions produced by physiological nerve activity patterns (50 Hz) more efficiently than those caused by 2 Hz trains. Uncertainty about the usefulness of the TOF(ratio) to control safe recovery from curarization prompted us to investigate the muscarinic and adenosine neuromodulation of tetanic (50 Hz) fade induced by antinicotinic agents at concentrations that cause a 25% reduction in the TOF(ratio) (TOF(fade)). 2. Tetanic fade caused by d-tubocurarine (1.1 μmol/L), pancuronium (3 μmol/L) and hexamethonium (5.47 mmol/L) was attenuated by blocking presynaptic inhibitory muscarinic M(2) and adenosine A(1) receptors with methoctramine (1 μmol/L) and 1,3-dipropyl-8-cyclopentylxanthine (2.5 nmol/L), respectively. These compounds enhanced rather than decreased tetanic fade induced by cisatracurium (2.2 μmol/L), but they consistently attenuated cisatracurium-induced TOF(fade). The effect of the M(1) receptor antagonist pirenzepine (10 nmol/L) on fade produced by antinicotinic agents at 50 Hz was opposite to that observed with TOF stimulation. Blockade of adenosine A(2A) receptors with ZM 241385 (10 nmol/L) attenuated TOF(fade) caused by all antinicotinic drugs tested, with the exception of the 'pure' presynaptic nicotinic antagonist hexamethonium. ZM 241385 was the only compound tested in this series that facilitated recovery from tetanic fade produced by cisatracurium. 3. The data suggest that distinct antinicotinic relaxants interfere with fine-tuning neuromuscular adaptations to motor nerve stimulation patterns via activation of presynaptic muscarinic and adenosine receptors. These results support the use of A(2A) receptor antagonists together with atropine to facilitate recovery from

  18. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Chihara, T; Kondo, K; Onogawa, T; Nakamura, S; Mori, T; Tominaga, M; Yabuuchi, Y

    1991-04-26

    An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.

  19. Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea)

    PubMed Central

    2012-01-01

    Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We conclude that HA is a modulator

  20. Discovery of dual orexin receptor antagonists with rat sleep efficacy enabled by expansion of the acetonitrile-assisted/diphosgene-mediated 2,4-dichloropyrimidine synthesis.

    PubMed

    Roecker, Anthony J; Mercer, Swati P; Harrell, C Meacham; Garson, Susan L; Fox, Steven V; Gotter, Anthony L; Prueksaritanont, Thomayant; Cabalu, Tamara D; Cui, Donghui; Lemaire, Wei; Winrow, Christopher J; Renger, John J; Coleman, Paul J

    2014-05-01

    Recent clinical studies have demonstrated that dual orexin receptor antagonists (OX1R and OX2R antagonists or DORAs) represent a novel treatment option for insomnia patients. Previously we have disclosed several compounds in the diazepane amide DORA series with excellent potency and both preclinical and clinical sleep efficacy. Additional SAR studies in this series were enabled by the expansion of the acetonitrile-assisted, diphosgene-mediated 2,4-dichloropyrimidine synthesis to novel substrates providing an array of Western heterocycles. These heterocycles were utilized to synthesize analogs in short order with high levels of potency on orexin 1 and orexin 2 receptors as well as in vivo sleep efficacy in the rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  2. Indometh acin-antihistamine combination for gastric ulceration control

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos, J. (Inventor)

    1980-01-01

    An anti-inflammatory and analgesic composition containing indomethacin and an H2 histamine receptor antagonist in an amount sufficient to reduce gastric distress caused by the indomethacin was developed. Usable antagonists are metiamide and cimetidine.

  3. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells

    PubMed Central

    2012-01-01

    Introduction The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Methods Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. Results MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Conclusions Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at

  4. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    PubMed

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  5. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    PubMed

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  6. Spatial changes in acid secretion from isolated stomach tissue using a pH-histamine sensing microarray.

    PubMed

    Bitziou, Eleni; O'Hare, Danny; Patel, Bhavik Anil

    2010-03-01

    The acid secretion mechanism can be studied by measuring a series of metabolic markers and neurotransmitters from in vitro isolated tissue. A microelectrode array was used to monitor proton concentration and histamine levels from isolated guinea pig stomach tissue. The device was partially modified using iridium oxide to form a series of pH sensors, whereas unmodified gold microelectrodes were used to measure the level of histamine in the gut. Real-time measurements in the presence of the H2-receptor antagonist ranitidine produced significant decreases in the overall Delta pH response, as expected. Also, a significant variation in the Delta pH response in between pH sensors was observed in the presence of pharmacological treatment due to structural features of the tissue. No significant differences in Delta i(H) were detected in the presence of ranitidine as expected. More significantly, clear variations in Delta pH responses between animals in control conditions and those in the presence of ranitidine was observed highlighting possible variation in parietal cell density and/or variations in tissue activity. These results identify great possibilities in applying these multi-sensing devices as a long-term stable personalised diagnostic tool for pharmacological screening and disease status.

  7. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    PubMed

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  8. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.

    PubMed

    Rivera, Alicia

    2007-09-01

    Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.

  9. Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target.

    PubMed

    Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A

    2018-06-01

    The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.

  10. Different Hypothalamic Nicotinic α7 Receptor Expression and Response to Low Nicotine Dose in Alcohol-Preferring and Alcohol-Avoiding Rats.

    PubMed

    Nuutinen, Saara; Panula, Pertti; Salminen, Outi

    2016-02-01

    The aim of this study was to examine possible differences in nicotinic acetylcholine receptors and responses in rats with genetic preference or avoidance for alcohol. This was done by using 2 rat lines with high alcohol preference (Alko Alcohol [AA]) or alcohol avoidance (Alko Non-Alcohol [ANA]). Locomotor activity was measured following nicotine and histamine H3 receptor (H3R) antagonist treatment. In situ hybridization and receptor ligand binding experiments were used in drug-naïve animals to examine the expression of different α nicotinic receptor subunits. The AA rats were found to be more sensitive to the stimulatory effect of a low dose of nicotine than ANA rats, which were not significantly activated. Combination of histamine H3R antagonist, JNJ-39220675, and nicotine resulted to similar locomotor activation as nicotine alone. To further understand the mechanism underlying the difference in nicotine response in AA and ANA rats, we studied the expression of α5, α6, and α7 nicotinic receptor subunits in specific brain areas of AA and ANA rats. We found no differences in the expression of α5 nicotinic receptor subunits in the medial habenula and hippocampus or in α6 subunit in the ventral tegmental area and substantia nigra. However, the level of α7 nicotinic receptor subunit mRNA was significantly lower in the tuberomamillary nucleus of posterior hypothalamus of alcohol-preferring AA rats than in alcohol-avoiding ANA rats. Also the hypothalamic [125I-α-bungarotoxin binding was lower in AA rats indicating lower levels of α7 nicotinic receptors. The lower expression and receptor binding of α7 nicotinic receptors in the tuberomamillary nucleus of AA rats suggest a difference in the regulation of brain histamine neurons between the rat lines since the α7 nicotinic receptors are located in histaminergic neurons. Stronger nicotine-induced locomotor response, mediated partially via α7 receptors, and previously described high alcohol consumption in AA

  11. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    EPA Science Inventory

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  12. Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs.

    PubMed

    Ma, Jie; Luo, Yu; Ge, Lilin; Wang, Lei; Zhou, Mei; Zhang, Yingqi; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin-a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10(-6)M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10(-11)M and 10(-5)M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin-PPF-thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.

  13. Antagonist effects of seglitide (MK 678) at somatostatin receptors in guinea-pig isolated right atria.

    PubMed Central

    Dimech, J.; Feniuk, W.; Humphrey, P. P.

    1993-01-01

    Somatostatin (SS) exerts a negative inotropic effect in isolated atria. Here we report that in guinea-pig isolated right atria, seglitide, a potent cyclic hexapeptide somatostatin agonist, behaves as a competitive somatostatin receptor antagonist with pA2 values against SS14, SS25 and SS28, of 6.50 +/- 0.40, 6.24 +/- 0.08 and 6.09 +/- 0.06, respectively. Seglitide had little or no effect on the negative inotropic action of carbachol or N6-cyclohexyladenosine. Our findings indicate that the receptor-response coupling characteristics of guinea-pig atria are such that in this preparation seglitide has low intrinsic activity and behaves specifically as a somatostatin receptor antagonist. PMID:8104651

  14. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  15. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    PubMed Central

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  16. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

    PubMed

    Shoblock, James R; Welty, Natalie; Nepomuceno, Diane; Lord, Brian; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Sutton, Steve W; Morton, Kirsten; Galici, Ruggero; Atack, John R; Dvorak, Lisa; Swanson, Devin M; Carruthers, Nicholas I; Dvorak, Curt; Lovenberg, Timothy W; Bonaventure, Pascal

    2010-02-01

    The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.

  17. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  18. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Pharmacological evaluation of a novel series of urea, thiourea and guanidine derivatives as P2X7 receptor antagonists.

    PubMed

    Wong, Erick C N; Reekie, Tristan A; Werry, Eryn L; O'Brien-Brown, James; Bowyer, Sarah L; Kassiou, Michael

    2017-06-01

    We report on P2X 7 receptor antagonists based on a lead adamantly-cyanoguanidine-aryl moiety. We have investigated the importance of the central cyanoguanidine moiety by replacing it with urea, thiourea or guanidine moieties. We have also investigated the linker length between the central moiety and the aryl portion. All compounds were assessed for their inhibitory potency in a pore-formation dye uptake assay at the P2X 7 receptor. None of the compounds resulted in an improved potency illustrating the importance of the cyanoguanidine moiety in this chemotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  1. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    PubMed

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  2. Fluorometric determination of histamine in cheese.

    PubMed

    Chambers, T L; Staruszkiewicz, W F

    1978-09-01

    Thirty-one samples of cheese obtained from retail outlets were analyzed for histamine, using an official AOAC fluorometric method. The types of cheese analyzed and the ranges of histamine found were: colby, 0.3--2.8; camembert, 0.4--4.2; cheddar, 1.2--5.8; gouda, 1.3--2.4; provolone, 2.0--23.5; roquefort, 1.0--16.8; mozzarella 1.6--5.0; and swiss, 0.4--250 mg histamine/100 g. Ten of the 12 samples of swiss cheese contained less than 16 mg histamine/100 g. The remaining 2 samples which contained 116 and 250 mg histamine/100 g were judged organoleptically to be of poor quality. An investigation of one processing facility showed that the production of histamine in swiss cheese may have been a result of a hydrogen peroxide/low temperature treatment of the milk supply. Recovery of histamine added to methanol extracts of cheese ranged from 93 to 105%. Histamine content was confirmed by high pressure liquid chromatographic analysis of the methanol extracts.

  3. Bcl-2-independent induction of apoptosis by neuropeptide receptor antagonist in human small cell lung carcinoma cells.

    PubMed

    Matsumoto, Y; Kawatani, M; Simizu, S; Tanaka, T; Takada, M; Imoto, M

    2000-01-01

    The broad-spectrum antagonist of neuropeptide receptor, [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P, induced apoptosis selectively in human small cell lung carcinoma (SCLC) cells, which express gastrin-releasing peptide receptor, but not in other types of tumor cells as well as normal cells. The addition of gastrin-releasing peptide or bombesin and the inhibitor of caspase-3 suppressed [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P-induced apoptosis. Moreover, [D-Arg1, D-Phe5, D-Trp7,9, Leu11]substance P-induced apoptosis was not suppressed by Bcl-2 over-expression. Thus, blockage of gastrin-releasing peptide receptor-mediated signaling may provide a novel therapeutic option in SCLC which has become resistant to conventional chemotherapeutic agents.

  4. Bisquaternary dimers of strychnine and brucine. A new class of potent enhancers of antagonist binding to muscarinic M2 receptors.

    PubMed

    Zlotos, D P; Buller, S; Holzgrabe, U; Mohr, K

    2003-06-12

    Bisquaternary dimers of strychnine and brucine were synthesized and their allosteric effect on muscarinic acetylcholine M(2) receptors was examined. The compounds retarded the dissociation of the antagonist [(3)H]N-methylscopolamine ([(3)H]NMS) from porcine cardiac cholinoceptors. This action indicated ternary complex formation. All compounds exhibited higher affinity to the allosteric site of [(3)H]NMS-occupied M(2) receptors than the monomeric strychnine and brucine, while the positive cooperativity with NMS was fully maintained. SAR studies revealed the unchanged strychnine ring as an important structural feature for high allosteric potency.

  5. Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor

    PubMed Central

    Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco

    2012-01-01

    The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030

  6. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig

    PubMed Central

    Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.

    1983-01-01

    Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120

  7. (D-Phe/sup 12/)bombesin analogues: a new class of bombesin receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz-Erian, P.; Coy, D.H.; Tamura, M.

    1987-03-01

    Previous attempts to develop analogues of bombesin that function as specific receptor antagonists have been unsuccessful. Alteration of the histidine in luteinizing hormone releasing factor has resulted in analogues that function as competitive antagonists. In the present study the authors have used a similar strategy and altered the histidine in bombesin. (D-Phe/sup 12/)bombesin, (D-Phe/sup 12/,Leu/sup 14/)bombesin, and (Try/sup 4/, D-)je/sup 12/) bombesin did not stimulate amylase release from guinea pig pancreatic acini when present alone, but each analog inhibited bombesin-stimulated secretion. For each analog, detectable inhibition occurred at 1 ..mu..M and half-maximal inhibition at 4 ..mu..M. Each analog inhibited amylasemore » release by bombesin and other agonists that stimulate secretion by interacting with bombesin receptors. The analogues of bombesin did not alter stimulation by substance P or other agonists that interact with other receptors. The inhibition of the action of bombesin was competitive with Schild plots having slopes of 1.0. Each analog also inhibited binding of /sup 125/I-labeled (Try/sup 4/) bombesin but not /sup 125/I-labeled substance P. These results demonstrate that (D-Phe/sup 12/) analogues of bombesin function as bombesin receptor antagonists and are the only bombesin receptor antagonists that interact only with the bombesin receptor. Because of their specificity, these analogues may prove useful for defining the role of bombesin in various physiological or pathological processes.« less

  8. Histamine H4-Receptors Inhibit Mast Cell Renin Release in Ischemia/Reperfusion via Protein Kinase Cε-Dependent Aldehyde Dehydrogenase Type-2 Activation

    PubMed Central

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y.-K.; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L.

    2014-01-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype–ε (PKCε)–aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow–derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  9. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  10. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  11. State-dependent and -independent effects of dialyzing excitatory neuromodulator receptor antagonists into the ventral respiratory column

    PubMed Central

    Langer, Thomas M.; Neumueller, Suzanne E.; Crumley, Emma; Burgraff, Nicholas J.; Talwar, Sawan; Hodges, Matthew R.; Pan, Lawrence

    2017-01-01

    Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response. NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2) the

  12. State-dependent and -independent effects of dialyzing excitatory neuromodulator receptor antagonists into the ventral respiratory column.

    PubMed

    Langer, Thomas M; Neumueller, Suzanne E; Crumley, Emma; Burgraff, Nicholas J; Talwar, Sawan; Hodges, Matthew R; Pan, Lawrence; Forster, Hubert V

    2017-02-01

    Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1 ) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2 ) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1 ) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2 ) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response. NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2

  13. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.

    PubMed

    Aksentijevich, Ivona; Masters, Seth L; Ferguson, Polly J; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D; Sandler, Netanya G; Plass, Nicole; Stone, Deborah L; Turner, Maria L; Hill, Suvimol; Butman, John A; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R; Chapelle, Dawn; Clarke, Gillian I; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D; Gregersen, Peter K; van Hagen, P Martin; Hak, A Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C; Remmers, Elaine F; Kastner, Daniel L; Goldbach-Mansky, Raphaela

    2009-06-04

    Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) 2009 Massachusetts Medical Society

  14. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  15. Tachykinin NK2 receptors predominantly mediate tachykinin-induced contractions in ovine trachea.

    PubMed

    Reynolds, A M; Reynolds, P; Holmes, M; Scicchitano, R

    1998-01-12

    In vitro studies were conducted to characterize the contractile effects of tachykinins in normal ovine trachea with a view in the future to compare tachykinin contractile responses in allergic tissue. Tracheal smooth muscle strips were prepared for in vitro studies of isometric contraction in response to cumulative addition of carbachol, acetylcholine, histamine, neuropeptide gamma, substance P, neurokinin A, neurokinin B, [Sar9, Met(O2)11]substance P, [Nle10]neurokinin A-(4-10), and [Succinyl-Asp6, Me-Phe8]substance P-(6-11) (senktide). The rank order of potency was neuropeptide gamma > carbachol > neurokinin A > or = [Nle10]neurokinin A-(4-10) > acetylcholine > or = histamine. Phosphoramidon enhanced the contractile response to neurokinin A and substance P, but not to neuropeptide gamma, [Sar9, Met(O2)11]substance P or senktide. Repeated cumulative concentration responses for acetylcholine, substance P, neurokinin A, [Sar9, Met(O2)11]substance P and histamine were also conducted to test for tachyphylaxis. No tachyphylaxis to acetylcholine, substance P, or neurokinin A was observed, however, [Sar9, Met(O2)11]substance P and histamine did exhibit tachyphylaxis. Atropine had no effect on tracheal contractions to neurokinin A and substance P, while [Sar9, Met(O2)11]substance P contractions were atropine sensitive. Pyrilamine did not affect substance P-induced tracheal smooth muscle contractions, indicating that the response to substance P was not mediated by histamine release. These results show that, in vitro, natural tachykinins induce tracheal smooth muscle contraction predominantly by a direct effect mediated by tachykinin NK2 receptors, and a small tachykinin NK1 receptor mediated cholinergic mechanism.

  16. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting.

    PubMed

    Aziz, Fahad

    2012-07-01

    Chemotherapy can be a life-prolonging treatment for many cancer patients, but it is often associated with profound nausea and vomiting that is so distressing that patients may delay or decline treatment to avoid these side effects. The discovery of several NK1 receptor antagonists is a big revolution to dealt this problem. NK1 receptor antagonists prevent both acute and delayed chemotherapy-induced nausea and vomiting (CINV). These agents act centrally at NK-1 receptors in vomiting centers within the central nervous system to block their activation by substance P released as an unwanted consequence of chemotherapy. By controlling nausea and vomiting, these agents help improve patients' daily living and their ability to complete multiple cycles of chemotherapy. They are effective for both moderately and highly emetogenic chemotherapy regimens. Their use might be associated with increased infection rates; however, additional appraisal of specific data from RCTs is needed.

  17. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Strużyńska, Lidia

    2013-01-01

    The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20-25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.

  18. Histamine H4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2/J mice.

    PubMed

    Pini, Alessandro; Grange, Cristina; Veglia, Eleonora; Argenziano, Monica; Cavalli, Roberta; Guasti, Daniele; Calosi, Laura; Ghè, Corrado; Solarino, Roberto; Thurmond, Robin L; Camussi, Giovanni; Chazot, Paul L; Rosa, Arianna Carolina

    2018-02-01

    Due to the incidence of diabetes and the related morbidity of diabetic nephropathy, identification of new therapeutic strategies represents a priority. In the last few decades new and growing evidence on the possible role of histamine in diabetes has been provided. In particular, the histamine receptor H 4 R is emerging as a new promising pharmacological target for diabetic nephropathy. The aim of this study was to evaluate the efficacy of selective H 4 R antagonism by JNJ39758979 on the prevention of diabetic nephropathy progression in a murine model of diabetes induced by streptozotocin injection. JNJ39758979 (25, 50, 100 mg/kg/day p.o.) was administered for 15 weeks starting from the onset of diabetes. Functional parameters were monitored throughout the experimental period. JNJ39758979 did not significantly affect glycaemic status or body weight. The urine analysis indicated a dose-dependent inhibitory effect of JNJ39758979 on Albumin-Creatinine-Ratio, the Creatinine Clearance, the 24 h urine volume, and pH urine acidification (P < 0.05). The beneficial effects of JNJ39758979 on renal function paralleled comparable effects on renal morphological integrity. These effects were sustained by a significant immune infiltration and fibrosis reduction. Notably, megalin and sodium-hydrogen-exchanger 3 expression levels were preserved. Our data suggest that the H 4 R participates in diabetic nephropathy progression through both a direct effect on tubular reabsorption and an indirect action on renal tissue architecture via inflammatory cell recruitment. Therefore, H 4 R antagonism emerges as a possible new multi-mechanism therapeutic approach to counteract development of diabetic nephropathy development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome

  20. Hepatoprotective, antinociceptive and antioxidant activities of cimetidine, ranitidine and famotidine as histamine H2 receptor antagonists.

    PubMed

    Ahmadi, Amirhossein; Ebrahimzadeh, Mohammad Ali; Ahmad-Ashrafi, Saeb; Karami, Mohammad; Mahdavi, Mohammad Reza; Saravi, Seyed Soheil Saeedi

    2011-02-01

    The antioxidant, antinociceptive and hepatoprotective effects of H(2) receptor blockers were examined with different experimental models. Antioxidant activities were determined by employing various in vitro assay systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical-scavenging activity assays, reducing power determination assays, nitric oxide-scavenging activity assays and hydrogen peroxide-scavenging activity assays. Antinociceptive effects were determined using the hot plate test in mice. The hepatoprotective effects of cimetidine, ranitidine and famotidine against hepatotoxicity induced by carbon tetrachloride (CCl(4) ) were determined by measuring the levels of serum enzymes alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities in mice. We found that the IC(50) values of cimetidine, ranitidine and famotidine on DPPH radical-scavenging activity were 671±28, 538±21 and 955±43 μg/mL, respectively. Famotidine showed very strong nitric oxide-scavenging activity. All three compounds showed very weak hydrogen peroxide-scavenging activity. Moreover, the compounds did not exhibit any reducing power activity until concentrations of 1.6 mg/mL. All compounds also showed a dose-dependent and marked analgesic activity in mice relative to controls. Pretreatment of mice with cimetidine, ranitidine or famotidine for three consecutive days reduced CCl(4)-induced hepatotoxicity in mice. Treatment with 200 mg/kg ranitidine reduced AST, AST and ALP serum levels, while 200 and 40 mg/kg of cimetidine and famotidine, respectively, reduced AST and ALP serum levels. H(2) blockers exhibited varying levels of antioxidant activities in various assays. Our results indicate that the antioxidant activities of H(2) blockers have an analgesic activity and protective effect on CCl(4)-induced hepatotoxicity in mice. These effects were greater with ranitidine than with the other compounds. © 2010 The Authors Fundamental and Clinical

  1. Non-specific actions of the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, on neurotransmission.

    PubMed Central

    Wang, Z. Y.; Tung, S. R.; Strichartz, G. R.; Håkanson, R.

    1994-01-01

    1. Three non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, were found to inhibit the electrically-evoked, tachykinin-mediated contractile responses of the rabbit iris sphincter in a concentration-dependent fashion; the pIC50 values were 5.6 +/- 0.01, 5.4 +/- 0.07 and 4.8 +/- 0.03, respectively. 2. These antagonists also inhibited the electrically-evoked, parasympathetic response of the rabbit iris sphincter and the sympathetic response of the guinea-pig vas deferens in a concentration-dependent manner; the pIC50 values were 0.3-1.2 log units lower than those recorded for the tachykinin-mediated responses. 3. Two local anaesthetics, bupivacaine and oxybuprocaine, were also found to inhibit the tachykinin-mediated, cholinergic and sympathetic contractile responses in these tissues in a concentration-dependent manner; the concentration ranges for producing the inhibition were similar to those of the non-peptide tachykinin receptor antagonists. 4. On the sciatic nerves of frogs, the tachykinin receptor antagonists inhibited action potentials in a concentration-dependent manner; the potency of the three drugs was similar to that of bupivacaine. 5. Our results suggest that, in addition to blocking tachykinin receptors, the non-peptide tachykinin receptor antagonists, CP-96,345, RP 67580 and SR 48968, may exert non-specific inhibitory effects on neurotransmission. PMID:8012694

  2. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation.

    PubMed

    Schiffer, Lina; Müller, Anne-Rose; Hobler, Anna; Brixius-Anderko, Simone; Zapp, Josef; Hannemann, Frank; Bernhardt, Rita

    2016-10-01

    Spironolactone and its major metabolite canrenone are potent mineralocorticoid receptor antagonists and are, therefore, applied as drugs for the treatment of primary aldosteronism and essential hypertension. We report that both compounds can be converted by the purified adrenocortical cytochromes P450 CYP11B1 and CYP11B2, while no conversion of the selective mineralocorticoid receptor antagonist eplerenone was observed. As their natural function, CYP11B1 and CYP11B2 carry out the final steps in the biosynthesis of gluco- and mineralocorticoids. Dissociation constants for the new exogenous substrates were determined by a spectroscopic binding assay and demonstrated to be comparable to those of the natural substrates, 11-deoxycortisol and 11-deoxycorticosterone. Metabolites were produced at preparative scale with a CYP11B2-dependent Escherichia coli whole-cell system and purified by HPLC. Using NMR spectroscopy, the metabolites of spironolactone were identified as 11β-OH-spironolactone, 18-OH-spironolactone and 19-OH-spironolactone. Canrenone was converted to 11β-OH-canrenone, 18-OH-canrenone as well as to the CYP11B2-specific product 11β,18-diOH-canrenone. Therefore, a contribution of CYP11B1 and CYP11B2 to the biotransformation of drugs should be taken into account and the metabolites should be tested for their potential toxic and pharmacological effects. A mineralocorticoid receptor transactivation assay in antagonist mode revealed 11β-OH-spironolactone as pharmaceutically active metabolite, whereas all other hydroxylation products negate the antagonist properties of spironolactone and canrenone. Thus, human CYP11B1 and CYP11B2 turned out to metabolize steroid-based drugs additionally to the liver-dependent biotransformation of drugs. Compared with the action of the parental drug, changed properties of the metabolites at the target site have been observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    PubMed

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  4. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail

    PubMed Central

    Kleitz-Nelson, H.K.; Cornil, C.A.; Balthazart, J.; Ball, G.F.

    2010-01-01

    A key brain site in the control of male sexual behavior is the medial preoptic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections, so much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigates the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular (ICV) injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influence appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigate the effects of ICV injections at three doses of D1 or D2 agonists and antagonists. Results indicate that D1 receptors facilitate consummatory male sexual behavior while D2 receptors inhibit both appetitive and consummatory behaviors. Experiment 3 examines the effects of the same compounds specifically injected in the mPOA and shows that in this region, both receptors stimulate male sexual behaviors. Together, these data indicate that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggests that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior. PMID:20597974

  5. Bucindolol, a nonselective beta 1- and beta 2-adrenergic receptor antagonist, decreases beta-adrenergic receptor density in cultured embryonic chick cardiac myocyte membranes.

    PubMed

    Asano, K; Zisman, L S; Yoshikawa, T; Headley, V; Bristow, M R; Port, J D

    2001-06-01

    Bucindolol and carvedilol, nonselective beta1- and beta2-adrenergic receptor antagonists, have been widely used in clinical therapeutic trials of congestive heart failure. The aim of the current study was to investigate long-term effects of bucindolol or carvedilol on beta-adrenergic receptor protein and gene expression in cardiac myocytes. Embryonic chick cardiac myocytes were cultured and incubated with bucindolol (1 microM), carvedilol (1 microM), or norepinephrine (1 microM) for 24 h. 125I-iodocyanopindolol binding assays demonstrated that incubation with norepinephrine or bucindolol, but not carvedilol, significantly decreased beta-adrenergic receptor density in crude membranes prepared from the myocytes. Neither bucindolol nor carvedilol significantly stimulated adenylyl cyclase activity in membranes from drug-untreated cells. Unlike by norepinephrine, the receptor density reduction by bucindolol incubation was not accompanied by a change in beta1-adrenergic receptor messenger RNA abundance. A decrease in membrane beta-adrenergic receptor density without a change in cognate messenger RNA abundance was also observed in hamster DDT1 MF2 cell line incubated with bucindolol (1 microM, 24 h). We conclude that incubation with bucindolol, but not carvedilol, results in true reduction of beta-adrenergic receptor density in chick cardiac myocyte membranes by mechanisms that are distinct from those responsible for receptor density reduction by the agonist norepinephrine.

  6. Synthesis and in vivo evaluation of phenethylpiperazine amides: selective 5-hydroxytryptamine(2A) receptor antagonists for the treatment of insomnia.

    PubMed

    Xiong, Yifeng; Ullman, Brett; Choi, Jin-Sun Karoline; Cherrier, Martin; Strah-Pleynet, Sonja; Decaire, Marc; Dosa, Peter I; Feichtinger, Konrad; Teegarden, Bradley R; Frazer, John M; Yoon, Woo H; Shan, Yun; Whelan, Kevin; Hauser, Erin K; Grottick, Andrew J; Semple, Graeme; Al-Shamma, Hussien

    2010-08-12

    Recent developments in sleep research suggest that antagonism of the serotonin 5-HT(2A) receptor may improve sleep maintenance insomnia. We herein report the discovery of a series of potent and selective serotonin 5-HT(2A) receptor antagonists based on a phenethylpiperazine amide core structure. When tested in a rat sleep pharmacology model, these compounds increased both sleep consolidation and deep sleep. Within this series of compounds, an improvement in the metabolic stability of early leads was achieved by introducing a carbonyl group into the phenethylpiperazine linker. Of note, compounds 14 and 27 exhibited potent 5-HT(2A) receptor binding affinity, high selectivity over the 5-HT(2C) receptor, favorable CNS partitioning, and good pharmacokinetic and early safety profiles. In vivo, these two compounds showed dose-dependent, statistically significant improvements on deep sleep (delta power) and sleep consolidation at doses as low as 0.1 mg/kg.

  7. Effect of Combined Treatment with AT1 Receptor Antagonists and Tiagabine on Seizures, Memory and Motor Coordination in Mice.

    PubMed

    Łukawski, Krzysztof; Janowska, Agnieszka; Czuczwar, Stanisław J

    2015-01-01

    Losartan and telmisartan, angiotensin AT1 receptor antagonists, are widely used antihypertensive drugs in patients. It is also known that arterial hypertension is often present in people with epilepsy, therefore, drug interactions between AT1 receptor antagonists and antiepileptic drugs can occur in clinical practice. The aim of the current study was to assess the effect of losartan and telmisartan on the anticonvulsant activity of tiagabine, a second-generation antiepileptic drug, in mice. Additionally, the effect of the combined treatment with AT1 receptor antagonists and TGB on long-term memory and motor coordination has been assessed in animals. The study was performed on male Swiss mice. Convulsions were examined in the maximal electroshock seizure threshold test. Long-term memory was measured in the passive-avoidance task and motor coordination was evaluated in the chimney test. AT1 receptor antagonists and TGB were administered intraperitoneally. Losartan (50 mg/kg) or telmisartan (30 mg/kg) did not influence the anticonvulsant activity of TGB applied at doses of 2, 4 and 6 mg/kg. However, both AT1 receptor antagonists in combinations with TGB (6 mg/kg) impaired motor coordination in the chimney test. The concomitant treatment of the drugs did not decrease retention in the passive avoidance task. It is suggested that losartan and telmisartan should not affect the anticonvulsant action of TGB in people with epilepsy. Because the combined treatment with AT1 receptor antagonists and TGB led to neurotoxic effects in animals, caution is advised during concomitant use of these drugs in patients.

  8. Bone Morphogenetic Proteins, Antagonists and Receptors in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    expressed in prostate. This work investigates BMP receptors and BMP antagonists to understand the basic mechanisms to inhibit the BMP signaling in...during embryoge- nesis, and prostate cancer metastases to bone. BMP functions can be inhibited by antagonists such as Noggin or DAN. DAN is a protein...protein along with a constant 0-6 -1 10 100 1000 1O0ng/ml of BMP-6, we were able to show a ng/ml BMP-6 dose-dependent inhibition of BMP-6 activity in DU

  9. Endothelin A receptor antagonists in congestive heart failure: blocking the beast while leaving the beauty untouched?

    PubMed

    Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F

    2001-12-01

    Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.

  10. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes

    PubMed Central

    Suzuki, Yasuyuki; Ogasawara, Tomio; Tanaka, Yuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Mogi, Masaki; Liu, Shuang; Maeyama, Kazutaka

    2018-01-01

    G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes. Proteoglycerosomes are defined as glycerosomes that contain membrane proteins. Human histamine H1 receptor (HRH1) is one of the most studied GPCRs. In this study, we synthesized wild-type HRH1 (WT-HRH1) proteoglycerosomes and D107A-HRH1, (in which Asp107 was replaced by Ala) in a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. The mutant HRH1 has been reported to have low affinity for the H1 antagonist. In this study, the amount of synthesized WT-HRH1 in one synthesis reaction was 434 ± 66.6 μg (7.75 ± 1.19 × 103pmol). The specific binding of [3H]pyrilamine to the WT-HRH1 proteoglycerosomes became saturated as the concentration of the radioligand increased. The dissociation constant (Kd) and maximum density (Bmax) of the synthesized WT-HRH1 were 9.76 ± 1.25 nM and 21.4 ± 0.936 pmol/mg protein, respectively. However, specific binding to D107A-HRH1 was reduced compared with WT-HRH1 and the binding did not become saturated. The findings of this study highlight that HRH1 synthesized using a wheat germ cell-free protein synthesis system combined with glycerosomes has the ability to bind to H1 antagonists. PMID:29467651

  11. Reversal of sibutramine-induced anorexia with a selective 5-HT(2C) receptor antagonist.

    PubMed

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2011-04-01

    The monoamine reuptake inhibitor sibutramine reduces food intake but the receptor subtypes mediating the effects of sibutramine on feeding remain to be clearly identified. The involvement of the 5-HT(2C) receptor subtype in the satiety-enhancing effects of sibutramine was investigated by examining the effects of co-administration of sibutramine with the selective 5-HT(2C) receptor antagonist SB 242084 Microstructural analyses of licking for a glucose solution by non-deprived, male rats were performed over a range of doses of sibutramine to identify a selective satiety-enhancing dose (experiment 1). Similar analyses were performed after administration of a vehicle control, two doses of SB 242084 alone or two doses of SB 242084 in combination with sibutramine (experiment 2). Sibutramine at doses of 1-3 mg/kg selectively reduced glucose consumption via a reduction in the number of bouts of licking. Non-selective effects to increase latency to lick were only observed at the higher dose of 6 mg/kg. Co-administration of sibutramine (3 mg/kg) with SB 242084 (1 or 3 mg/kg) reversed the effect of sibutramine on bout number whereas either dose of SB 242084 alone had no significant effect. We confirm behaviourally selective effects of sibutramine on feeding and provide further support for the satiety-enhancing effects of sibutramine. Our data also provide evidence for the involvement of the 5-HT(2C) receptor in the satiety-enhancing effects of sibutramine although additional targets may have an impact, and further investigation of the molecular mechanisms underlying the efficacy of sibutramine as an anorectic is warranted.

  12. Effects of the H3 Antagonist, Thioperamide, on Behavioral Alterations Induced by Systemic MK-801 Administration in Rats

    PubMed Central

    Bardgett, Mark E.; Points, Megan; Roflow, John; Blankenship, Meredith; Griffith, Molly S.

    2009-01-01

    Rationale Recent studies have raised the possibility that antagonists of H3 histamine receptors possess cognitive-enhancing and antipsychotic properties. However, little work has assessed these compounds in classic animal models of schizophrenia. Objectives The purpose of this study was to determine if a prototypical H3 antagonist, thioperamide, could alter behavioral deficits caused by the NMDA receptor antagonist, MK-801, in adult male rats. MK-801 was chosen for study since it produces a state of NMDA receptor hypofunction in rats that may be analogous to the one hypothesized to occur in schizophrenia. Methods The interaction between thioperamide and MK-801 was measured in three behavioral tests: locomotor activity, prepulse inhibition (PPI), and delayed spatial alternation. In each test, rats received a subcutaneous injection of saline or thioperamide (3.0 & 10 mg/kg) followed 20 minutes later by a subcutaneous injection of saline or MK-801 (0.05, 0.10, & 0.30 mg/kg). Results Locomotor activity was significantly elevated by MK-801 in a dose-dependent manner. Thioperamide pretreatment alone did not alter locomotor activity, however its impact on MK-801 was dose-dependent. Each thioperamide dose enhanced the effects of two lower doses of MK801 but reduced the effect of a higher MK-801 dose. Clear deficits in PPI and delayed spatial alternation were produced by MK-801 treatment, but neither impairment was significantly modified by thioperamide pretreatment. Conclusions H3 receptors modulate responses to NMDA antagonists in behaviorally-specific ways and dependent upon the level of NMDA receptor blockade. PMID:19466392

  13. Spectrophotometric determination of some histamine H1-antagonists drugs in their pharmaceutical preparations.

    PubMed

    Hassan, Wafaa S; El-Henawee, Magda M; Gouda, Ayman A

    2008-01-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of three histamine H1-antagonists drugs, e.g., chlorphenoxamine hydrochloride (CPX), diphenhydramine hydrochloride (DPH) and clemastine (CMT) in bulk and in their pharmaceutical formulations. The first method depend upon the reaction of molybdenum(V) thiocyanate ions (Method A) with the cited drugs to form stable ion-pair complexes which extractable with methylene chloride, the orange red color complex was determined colorimetrically at lambda(max) 470nm. The second method is based on the formation of an ion-association complex with alizarin red S as chromogenic reagents in acidic medium (Method B), which is extracted into chloroform. The complexes have a maximum absorbance at 425 and 426nm for (DPH or CMT) and CPX, respectively. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration ranges of 5.0-40 and 5-70microgmL(-1) for molybdenum(V) thiocyanate (Method A) and alizarin red S (Method B), respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. Applications of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the procedure was confirmed by applying the standard addition technique and the results obtained in good agreement well with those obtained by the official method.

  14. Spectrophotometric determination of some histamine H1-antagonists drugs in their pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Hassan, Wafaa S.; El-Henawee, Magda M.; Gouda, Ayman A.

    2008-01-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of three histamine H1-antagonists drugs, e.g., chlorphenoxamine hydrochloride (CPX), diphenhydramine hydrochloride (DPH) and clemastine (CMT) in bulk and in their pharmaceutical formulations. The first method depend upon the reaction of molybdenum(V) thiocyanate ions (Method A) with the cited drugs to form stable ion-pair complexes which extractable with methylene chloride, the orange red color complex was determined colorimetrically at λmax 470 nm. The second method is based on the formation of an ion-association complex with alizarin red S as chromogenic reagents in acidic medium (Method B), which is extracted into chloroform. The complexes have a maximum absorbance at 425 and 426 nm for (DPH or CMT) and CPX, respectively. Regression analysis of Beer-Lambert plots showed a good correlation in the concentration ranges of 5.0-40 and 5-70 μg mL -1 for molybdenum(V) thiocyanate (Method A) and alizarin red S (Method B), respectively. For more accurate analysis, Ringbom optimum concentration ranges were calculated. The molar absorptivity, Sandell sensitivity, detection and quantification limits were calculated. Applications of the procedure to the analysis of various pharmaceutical preparations gave reproducible and accurate results. Further, the validity of the procedure was confirmed by applying the standard addition technique and the results obtained in good agreement well with those obtained by the official method.

  15. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists.

    PubMed

    Worden, Lila T; Shahriari, Mona; Farrar, Andrew M; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2009-04-01

    Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A(2A) receptors. Adenosine A(2A) receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A(2A) receptors on the same population of striatal neurons.

  16. Mechanism of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating hormone receptor

    PubMed Central

    van Koppen, Chris J; de Gooyer, Marcel E; Karstens, Willem-Jan; Plate, Ralf; Conti, Paolo GM; van Achterberg, Tanja AE; van Amstel, Monique GA; Brands, Jolanda HGM; Wat, Jesse; Berg, Rob JW; Lane, J Robert D; Miltenburg, Andre MM; Timmers, C Marco

    2012-01-01

    BACKGROUND AND PURPOSE Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO. PMID:22014107

  17. Tryptophanol-derived oxazolopiperidone lactams: identification of a hit compound as NMDA receptor antagonist.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Esplugas, Roser; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2014-08-01

    N-Methyl-D-aspartate receptors (NMDAR) exacerbated activation leads to neuron death through a phenomenon called excitotoxicity. These receptors are implicated in several neurological diseases (e.g., Alzheimer and Parkinson) and thus represent an important therapeutic target. We herein describe the study of enantiopure tryptophanol-derived oxazolopiperidone lactams as NMDA receptor antagonists. The most active hit exhibited an IC50 of 63.4 μM in cultured rat cerebellar granule neurons thus being 1.5 fold more active than clinically approved NMDA antagonist amantadine (IC50=92 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Histamine 50-skin-prick test: a tool to diagnose histamine intolerance.

    PubMed

    Kofler, Lukas; Ulmer, Hanno; Kofler, Heinz

    2011-01-01

    Background. Histamine intolerance results from an imbalance between histamine intake and degradation. In healthy persons, dietary histamine can be sufficiently metabolized by amine oxidases, whereas persons with low amine oxidase activity are at risk of histamine toxicity. Diamine oxidase (DAO) is the key enzyme in degradation. Histamine elicits a wide range of effects. Histamine intolerance displays symptoms, such as rhinitis, headache, gastrointestinal symptoms, palpitations, urticaria and pruritus. Objective. Diagnosis of histamine intolerance until now is based on case history; neither a validated questionnaire nor a routine test is available. It was the aim of this trial to evaluate the usefullness of a prick-test for the diagnosis of histamine intolerance. Methods. Prick-testing with 1% histamine solution and wheal size-measurement to assess the relation between the wheal in prick-test, read after 20 to 50 minutes, as sign of slowed histamine degradation as well as history and symptoms of histamine intolerance. Results. Besides a pretest with 17 patients with HIT we investigated 156 persons (81 with HIT, 75 controls): 64 out of 81 with histamine intolerance(HIT), but only 14 out of 75 persons from the control-group presented with a histamine wheal ≥3 mm after 50 minutes (P < .0001). Conclusion and Clinical Relevance. Histamine-50 skin-prickt-test offers a simple tool with relevance.

  19. Histamine 50-Skin-Prick Test: A Tool to Diagnose Histamine Intolerance

    PubMed Central

    Kofler, Lukas; Ulmer, Hanno; Kofler, Heinz

    2011-01-01

    Background. Histamine intolerance results from an imbalance between histamine intake and degradation. In healthy persons, dietary histamine can be sufficiently metabolized by amine oxidases, whereas persons with low amine oxidase activity are at risk of histamine toxicity. Diamine oxidase (DAO) is the key enzyme in degradation. Histamine elicits a wide range of effects. Histamine intolerance displays symptoms, such as rhinitis, headache, gastrointestinal symptoms, palpitations, urticaria and pruritus. Objective. Diagnosis of histamine intolerance until now is based on case history; neither a validated questionnaire nor a routine test is available. It was the aim of this trial to evaluate the usefullness of a prick-test for the diagnosis of histamine intolerance. Methods. Prick-testing with 1% histamine solution and wheal size-measurement to assess the relation between the wheal in prick-test, read after 20 to 50 minutes, as sign of slowed histamine degradation as well as history and symptoms of histamine intolerance. Results. Besides a pretest with 17 patients with HIT we investigated 156 persons (81 with HIT, 75 controls): 64 out of 81 with histamine intolerance(HIT), but only 14 out of 75 persons from the control-group presented with a histamine wheal ≥3 mm after 50 minutes (P < .0001). Conclusion and Clinical Relevance. Histamine-50 skin-prickt-test offers a simple tool with relevance. PMID:23724226

  20. The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice.

    PubMed

    Kotańska, Magdalena; Kuder, Kamil J; Szczepańska, Katarzyna; Sapa, Jacek; Kieć-Kononowicz, Katarzyna

    2018-05-25

    The pharmacological profile of pitolisant, a histamine H 3 receptor antagonist/inverse agonist, indicates that this compound might reduce body weight and metabolic disturbances. Therefore, we studied the influence of pitolisant on body weight, water and sucrose intake as well as metabolic disturbances in the high-fat and high-sugar diet-induced obesity model in mice. To induce obesity, male CD-1 mice were fed a high-fat diet consisting of 40% fat blend for 14 weeks, water and 30% sucrose solution available ad libitum. Glucose tolerance test was performed at the beginning of week 15. Insulin tolerance was tested the day after. At the end of study, plasma levels of triglycerides and cholesterol were determined. Pitolisant at dose of 10 mg/kg bw (ip) was administrated during 14 days, starting from the beginning of week 13. Metformin at dose of 100 mg/kg bw (ip) was used as reference drug. Mice fed with high-fat diet and sucrose solution showed more weight gain throughout the 12-week period of inducing obesity. Animals fed with high-fat diet and treated with pitolisant (for the next 14 days) showed significantly less weight gain than mice from the control group consuming a high-fat feed. In the group treated with pitolisant, glucose levels were significantly lower than glucose levels of control obese mice after glucose load. The plasma triglyceride levels in pitolisant-treated mice were significantly lower compared with those in control obese group. In conclusion, pitolisant has a favorable influence of body weight and improves glucose tolerance and the lipid profile in obese mice.

  1. PGE2 maintains the tone of the guinea pig trachea through a balance between activation of contractile EP1 receptors and relaxant EP2 receptors

    PubMed Central

    Säfholm, J; Dahlén, S-E; Delin, I; Maxey, K; Stark, K; Cardell, L-O; Adner, M

    2013-01-01

    Background and Purpose The guinea pig trachea (GPT) is commonly used in airway pharmacology. The aim of this study was to define the expression and function of EP receptors for PGE2 in GPT as there has been ambiguity concerning their role. Experimental Approach Expression of mRNA for EP receptors and key enzymes in the PGE2 pathway were assessed by real-time PCR using species-specific primers. Functional studies of GPT were performed in tissue organ baths. Key Results Expression of mRNA for the four EP receptors was found in airway smooth muscle. PGE2 displayed a bell-shaped concentration–response curve, where the initial contraction was inhibited by the EP1 receptor antagonist ONO-8130 and the subsequent relaxation by the EP2 receptor antagonist PF-04418948. Neither EP3 (ONO-AE5-599) nor EP4 (ONO-AE3-208) selective receptor antagonists affected the response to PGE2. Expression of COX-2 was greater than COX-1 in GPT, and the spontaneous tone was most effectively abolished by selective COX-2 inhibitors. Furthermore, ONO-8130 and a specific PGE2 antibody eliminated the spontaneous tone, whereas the EP2 antagonist PF-04418948 increased it. Antagonists of other prostanoid receptors had no effect on basal tension. The relaxant EP2 response to PGE2 was maintained after long-term culture, whereas the contractile EP1 response showed homologous desensitization to PGE2, which was prevented by COX-inhibitors. Conclusions and Implications Endogenous PGE2, synthesized predominantly by COX-2, maintains the spontaneous tone of GPT by a balance between contractile EP1 receptors and relaxant EP2 receptors. The model may be used to study interactions between EP receptors. PMID:22934927

  2. Adenosine A2A receptors and depression.

    PubMed

    El Yacoubi, Malika; Costentin, Jean; Vaugeois, Jean-Marie

    2003-12-09

    Adenosine and its analogues have been shown to induce "behavioral despair" in animal models believed to be relevant to depression. Recent data have shown that selective adenosine A2A receptor antagonists (e.g., SCH 58261, ZM241385, and KW6002) or genetic inactivation of the receptor was effective in reversing signs of behavioral despair in the tail suspension and forced swim tests, two screening procedures predictive of antidepressant activity. A2A antagonists were active in the tail suspension test using either mice previously screened for having high immobility scores or mice that were selectively bred for their spontaneous "helplessness" in this test. At stimulant doses, caffeine, a nonselective A1/A2A receptor antagonist, was effective in the forced swim test. The authors have hypothesized that the antidepressant-like effect of selective A2A antagonists is linked to an interaction with dopaminergic transmission, possibly in the frontal cortex. In support of this idea, administration of the dopamine D2 receptor antagonist haloperidol prevented antidepressant-like effects elicited by SCH 58261 in the forced swim test (putatively involving cortex), whereas it had no effect on stimulant motor effects of SCH 58261 (putatively linked to ventral striatum). The interaction profile of caffeine with haloperidol differed markedly from that of SCH 58261 in the forced swim and motor activity tests. Therefore, a clear-cut antidepressant-like effect could not be ascribed to caffeine. In conclusion, available data support the proposition that a selective blockade of the adenosine A2A receptor may be an interesting target for the development of effective antidepressant agents.

  3. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  4. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  5. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  6. DOR(2)-selective but not DOR(1)-selective antagonist abolishes anxiolytic-like effects of the δ opioid receptor agonist KNT-127.

    PubMed

    Sugiyama, Azusa; Nagase, Hiroshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko; Saitoh, Akiyoshi

    2014-04-01

    Recently, we reported that the δ opioid receptor (DOR) agonist KNT-127 produces anxiolytic-like effects in behaving rats. Here, we report on the roles of DOR subtypes ( DOR(1) and DOR(2)) play in mediating KNT-127-induced anxiolytic-like effects. Pretreatment with the DOR(2)-selective antagonist naltriben (NTB; 0.05mg/kg, s.c.) completely abolished KNT-127 (3.0mg/kg, s.c.)-induced anxiolytic-like effects in rats performing the elevated plus-maze task. By contrast, the DOR(1)-selective antagonist 7-benzylidenenaltrexone (BNTX; 0.5mg/kg, s.c.) produced no effect at a dose that completely blocked the antinociceptive effects of KNT-127. These findings were also supported by results from a light/dark test and open-field test. We clearly demonstrated that the DOR(2)-selective antagonist, but not the DOR(1)-selective antagonist, abolishes the anxiolytic-like effects of the DOR agonist KNT-127, suggesting different roles of these DOR subtypes in anxiety. We propose that DOR(2)-selective agonists would be good candidates for future development of anxiolytic drugs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Benzimidazoles as benzamide replacements within cyclohexane-based CC chemokine receptor 2 (CCR2) antagonists.

    PubMed

    Cherney, Robert J; Mo, Ruowei; Meyer, Dayton T; Pechulis, Anthony D; Guaciaro, Michael A; Lo, Yvonne C; Yang, Gengjie; Miller, Persymphonie B; Scherle, Peggy A; Zhao, Qihong; Cvijic, Mary Ellen; Barrish, Joel C; Decicco, Carl P; Carter, Percy H

    2012-10-01

    We describe the design, synthesis, and evaluation of benzimidazoles as benzamide replacements within a series of trisubstituted cyclohexane CCR2 antagonists. 7-Trifluoromethylbenzimidazoles displayed potent binding and functional antagonism of CCR2 while being selective over CCR3. These benzimidazoles were also incorporated into lactam-containing antagonists, thus completely eliminating the customary bis-amide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Enhanced attention and impulsive action following NMDA receptor GluN2B-selective antagonist pretreatment.

    PubMed

    Higgins, Guy A; Silenieks, Leo B; MacMillan, Cam; Sevo, Julia; Zeeb, Fiona D; Thevarkunnel, Sandy

    2016-09-15

    NMDA GluN2B (NR2B) subtype selective antagonists are currently in clinical development for a variety of indications, including major depression. We previously reported the selective NMDA GluN2B antagonists Ro 63-1908 and traxoprodil, increase premature responding in a 5-choice serial reaction time task (5-CSRTT) suggesting an effect on impulsive action. The present studies extend these investigations to a Go-NoGo and delay discounting task, and the 5-CSRTT under test conditions of both regular (5s) and short (2-5s) multiple ITI (Intertrial interval). Dizocilpine was included for comparison. Both Ro 63-1908 (0.1-1mg/kg SC) and traxoprodil (0.3-3mg/kg SC) increased premature and perseverative responses in both 5-CSRT tasks and improved attention when tested under a short ITI test condition. Ro 63-1908 but not traxoprodil increased motor impulsivity (false alarms) in a Go-NoGo task. Dizocilpine (0.01-0.06mg/kg SC) affected both measures of motor impulsivity and marginally improved attention. In a delay discounting test of impulsive choice, both dizocilpine and Ro 63-1908 decreased impulsive choice (increased choice for the larger, delayed reward), while traxoprodil showed a similar trend. Motor stimulant effects were evident following Ro 63-1908, but not traxoprodil treatment - although no signs of motor stereotypy characteristic of dizocilpine (>0.1mg/kg) were noted. The findings of both NMDA GluN2B antagonists affecting measures of impulsive action and compulsive behavior may underpin emerging evidence to suggest glutamate signaling through the NMDA GluN2B receptor plays an important role in behavioural flexibility. The profiles between Ro 63-1908 and traxoprodil were not identical, perhaps suggesting differences between members of this drug class. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Indomethacin-antihistamine combination for gastric ulceration control

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Danellis, J. V. (Inventor)

    1981-01-01

    An anti-inflammatory and analgesic composition containing indomethacin and an H sub 1 or an H sub 2 histamine receptor antagonist in an amount sufficient to reduce gastric distress caused by the indomethacin is described. Usable antagonists include pyrilamine, promethazine, metiamide and cimetidine.

  10. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists.

    PubMed

    Roser, Patrik; Vollenweider, Franz X; Kawohl, Wolfram

    2010-03-01

    Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the principal psychoactive constituent of the Cannabis sativa plant, and other agonists at the central cannabinoid (CB(1)) receptor may induce characteristic psychomotor effects, psychotic reactions and cognitive impairment resembling schizophrenia. These effects of Delta(9)-THC can be reduced in animal and human models of psychopathology by two exogenous cannabinoids, cannabidiol (CBD) and SR141716. CBD is the second most abundant constituent of Cannabis sativa that has weak partial antagonistic properties at the CB(1) receptor. CBD inhibits the reuptake and hydrolysis of anandamide, the most important endogenous CB(1) receptor agonist, and exhibits neuroprotective antioxidant activity. SR141716 is a potent and selective CB(1) receptor antagonist. Since both CBD and SR141716 can reverse many of the biochemical, physiological and behavioural effects of CB(1) receptor agonists, it has been proposed that both CBD and SR141716 have antipsychotic properties. Various experimental studies in animals, healthy human volunteers, and schizophrenic patients support this notion. Moreover, recent studies suggest that cannabinoids such as CBD and SR141716 have a pharmacological profile similar to that of atypical antipsychotic drugs. In this review, both preclinical and clinical studies investigating the potential antipsychotic effects of both CBD and SR141716 are presented together with the possible underlying mechanisms of action.

  11. The 5-HT₂C receptor agonist, lorcaserin, and the 5-HT₆ receptor antagonist, SB-742457, promote satiety; a microstructural analysis of feeding behaviour.

    PubMed

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2016-02-01

    Whilst the FDA-approved anorectic, lorcaserin and various 5-hydroxytryptamine (5-HT)6 receptor antagonists reduce feeding, a direct assessment of their impact upon feeding behaviour is less clear. We therefore examined the action of lorcaserin and the clinical-stage developmental candidate 5-HT6 receptor antagonist, SB-742457, upon microstructural analysis of licking behaviour. Such analysis provides a rich source of information about the mechanisms controlling food intake. The objective of the present study was to gain insight into the influence upon feeding behaviour of the 5-HT2C receptor agonist, lorcaserin and the developmental 5-HT6 receptor antagonist, SB-742457. The impact of lorcaserin and SB-742457 upon licking behaviour of non-deprived rats for a glucose solution was assessed using microstructural analysis. Lorcaserin (0.1-3.0 mg/kg) displayed a dose-dependent ability to reduce glucose consumption via reduction in the number of bouts of licking. A similar action was evident with SB-742457, but only at the lowest dose tested (3.0 mg/kg). The behavioural actions of both lorcaserin and SB-742457 demonstrate they directly promote satiety.

  12. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  13. 3D-QSAR studies on 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes as D3R antagonists

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Hui

    2018-07-01

    Dopamine D3 receptor has become an attractive target in the treatment of abused drugs. 3D-QSAR studies were performed on a novel series of D3 receptor antagonists, 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes, using CoMFA and CoMSIA methods. Two predictive 3D-QSAR models have been generated for the modified design of D3R antagonists. Based on the steric, electrostatic, hydrophobic and hydrogen-bond acceptor information of contour maps, key structural factors affecting the bioactivity were explored. This work gives helpful suggestions on the design of novel D3R antagonists with increased activities.

  14. Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists

    PubMed Central

    Kleschevnikov, A.M.; Belichenko, P.V.; Faizi, M.; Jacobs, L.F.; Htun, K.; Shamloo, M.; Mobley, W.C.

    2012-01-01

    Cognitive impairment in Down syndrome (DS) is characterized by deficient learning and memory. Mouse genetic models of DS exhibit impaired cognition in hippocampally mediated behavioral tasks and reduced synaptic plasticity of hippocampal pathways. Enhanced efficiency of GABAergic neurotransmission was implicated in those changes. We have recently shown that signaling through postsynaptic GABAB receptors is significantly increased in the dentate gyrus (DG) of Ts65Dn mice, a genetic model of DS. Here we examined a role for GABAB receptors in cognitive deficits in DS by defining the effect of selective GABAB receptor antagonists on behavior and synaptic plasticity of adult Ts65Dn mice. Treatment with the GABAB receptor antagonist CGP55845 restored memory of Ts65Dn mice in the novel place recognition, novel object recognition and contextual fear conditioning tasks, but did not affect locomotion and performance in T-maze. The treatment increased hippocampal levels of brain-derived neurotrophic factor (BDNF), equally in 2N and Ts65Dn mice. In hippocampal slices, treatment with the GABAB receptor antagonists CGP55845 or CGP52432 enhanced long-term potentiation (LTP) in the Ts65Dn DG. The enhancement of LTP was accompanied by an increase in the NMDA receptor-mediated component of the tetanus-evoked responses. These findings are evidence for a contribution of GABAB receptors to changes in hippocampal-based cognition in the Ts65Dn mouse. The ability to rescue cognitive performance through treatment with selective GABAB receptor antagonists motivates studies to further explore the therapeutic potential of these compounds in people with DS. PMID:22764230

  15. CB1 Receptor Antagonist SR141716A Inhibits Ca2+-Induced Relaxation in CB1 Receptor–Deficient Mice

    PubMed Central

    Bukoski, Richard D.; Bátkai, Sándor; Járai, Zoltán; Wang, Yanlin; Offertaler, Laszlo; Jackson, William F.; Kunos, George

    2006-01-01

    Mesenteric branch arteries isolated from cannabinoid type 1 receptor knockout (CB1−/−) mice, their wild-type littermates (CB1+/+ mice), and C57BL/J wild-type mice were studied to test the hypothesis that murine arteries undergo high sensitivity Ca2+-induced relaxation that is CB1 receptor dependent. Confocal microscope analysis of mesenteric branch arteries from wild-type mice showed the presence of Ca2+ receptor–positive periadventitial nerves. Arterial segments of C57 control mice mounted on wire myographs contracted in response to 5 μmol/L norepinephrine and responded to the cumulative addition of extracellular Ca2+ with a concentration-dependent relaxation that reached a maximum of 72.0±6.3% of the prerelaxation tone and had an EC50 for Ca2+ of 2.90±0.54 mmol/L. The relaxation was antagonized by precontraction in buffer containing 100 mmol/L K+ and by pretreatment with 10 mmol/L tetraethylammonium. Arteries from CB1−/− and CB1+/+ mice also relaxed in response to extracellular Ca2+ with no differences being detected between the knockout and their littermate controls. SR141716A, a selective CB1 antagonist, caused concentration-dependent inhibition of Ca2+-induced relaxation in both the knockout and wild-type strains (60% inhibition at 1 μmol/L). O-1918, a cannabidiol analog, had a similar blocking effect in arteries of both wild-type and CB1−/− mice at 10 μmol/L. In contrast, 1 μmol/L SR144538, a cannabinoid type 2 receptor antagonist, or 50 μmol/L 18α-glycyrrhetinic acid, a gap junction blocker, were without effect. SR141716A (1 to 30 μmol/L) was also assessed for nonspecific actions on whole-cell K+ currents in isolated vascular smooth muscle cells. SR141716A inhibited macroscopic K+ currents at concentrations higher than those required to inhibit Ca2+-induced relaxation, and appeared to have little effect on currents through large conductance Ca2+-activated K+ channels. These data indicate that arteries of the mouse relax in response to

  16. SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?

    PubMed

    Dalm, Simone U; Haeck, Joost; Doeswijk, Gabriela N; de Blois, Erik; de Jong, Marion; van Deurzen, Carolien H M

    2017-10-01

    Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated. In this preclinical study, we further investigated whether the application of an SSTR antagonist can improve SSTR-mediated BC imaging in a large panel of BC specimens. We also generated an in vivo BC mouse model and performed SPECT/MRI and biodistribution studies. Methods: Binding of 111 In-DOTA-Tyr 3 -octreotate (SSTR agonist) and 111 In-DOTA-JR11 (SSTR antagonist) to 40 human BC specimens was compared using in vitro autoradiography. SSTR2 immunostaining was performed to confirm SSTR2 expression of the tumor cells. Furthermore, binding of the radiolabeled SSTR agonist and antagonist was analyzed in tissue material from 6 patient-derived xenografts. One patient-derived xenograft, the estrogen receptor-positive model T126, was chosen to generate in vivo mouse models containing orthotopic breast tumors for in vivo SPECT/MRI and biodistribution studies after injection with 177 Lu-DOTA-Tyr 3 -octreotate or 177 Lu-DOTA-JR11. Results: 111 In-DOTA-JR11 binding to human BC tissue was significantly higher than 111 In-DOTA-Tyr 3 -octreotate binding ( P < 0.001). The median ratio of antagonist binding versus agonist binding was 3.39 (interquartile range, 2-5). SSTR2 immunostaining confirmed SSTR2 expression on the tumor cells. SPECT/MRI of the mouse model found better tumor visualization with the antagonist. This result was in line with the significantly higher tumor uptake of the radiolabeled antagonist than of the agonist as measured in biodistribution studies 285 min after radiotracer

  17. Design, synthesis and structure-activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank; Yadav, Shushil Kumar

    2010-11-15

    A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds' structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methyl-5-HT, which was expressed in the form of pA(2) value. All the synthesized compounds showed antagonism towards 5-HT(3) receptor; based on this result, a structure-activity relationship was derived, which reveals that the aromatic residue in 5-HT(3) receptor antagonists may have hydrophobic interaction with 5-HT(3) receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA(2) values exhibited good anti-depressant-like activity as compared to the vehicle-treated group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Boronic acid-containing CXCR1/2 antagonists: optimization of metabolic stability, in vivo evaluation, and a proposed receptor binding model

    PubMed Central

    Maeda, Dean Y.; Peck, Angela M.; Schuler, Aaron D.; Quinn, Mark T.; Kirpotina, Liliya N.; Wicomb, Winston N.; Auten, Richard L.; Gundla, Rambabu; Zebala, John A.

    2015-01-01

    Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. PMID:25933594

  19. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  20. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists

    PubMed Central

    Worden, Lila T.; Shahriari, Mona; Farrar, Andrew M.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.

    2010-01-01

    Rationale Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A2A receptors. Objective Adenosine A2A receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 (0.5–2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. Results MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. Conclusions The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A2A receptors on the same population of striatal neurons. PMID:19048234