Science.gov

Sample records for hiv peptidase inhibitors

  1. Decoding the Anti-Trypanosoma cruzi Action of HIV Peptidase Inhibitors Using Epimastigotes as a Model

    PubMed Central

    Sangenito, Leandro S.; Menna-Barreto, Rubem F. S.; d′Avila-Levy, Claudia M.; Branquinha, Marta H.

    2014-01-01

    Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand

  2. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  3. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  4. Different modes of dipeptidyl peptidase IV (CD26) inhibition by oligopeptides derived from the N-terminus of HIV-1 Tat indicate at least two inhibitor binding sites.

    PubMed

    Lorey, Susan; Stöckel-Maschek, Angela; Faust, Jürgen; Brandt, Wolfgang; Stiebitz, Beate; Gorrell, Mark D; Kähne, Thilo; Mrestani-Klaus, Carmen; Wrenger, Sabine; Reinhold, Dirk; Ansorge, Siegfried; Neubert, Klaus

    2003-05-01

    Dipeptidyl peptidase IV (DP IV, CD26) plays an essential role in the activation and proliferation of lymphocytes, which is shown by the immunosuppressive effects of synthetic DP IV inhibitors. Similarly, both human immunodeficiency virus-1 (HIV-1) Tat protein and the N-terminal peptide Tat(1-9) inhibit DP IV activity and T cell proliferation. Therefore, the N-terminal amino acid sequence of HIV-1 Tat is important for the inhibition of DP IV. Recently, we characterized the thromboxane A2 receptor peptide TXA2-R(1-9), bearing the N-terminal MWP sequence motif, as a potent DP IV inhibitor possibly playing a functional role during antigen presentation by inhibiting T cell-expressed DP IV [Wrenger, S., Faust, J., Mrestani-Klaus, C., Fengler, A., Stöckel-Maschek, A., Lorey, S., Kähne, T., Brandt, W., Neubert, K., Ansorge, S. & Reinhold, D. (2000) J. Biol. Chem.275, 22180-22186]. Here, we demonstrate that amino acid substitutions at different positions of Tat(1-9) can result in a change of the inhibition type. Certain Tat(1-9)-related peptides are found to be competitive, and others linear mixed-type or parabolic mixed-type inhibitors indicating different inhibitor binding sites on DP IV, at the active site and out of the active site. The parabolic mixed-type mechanism, attributed to both non-mutually exclusive inhibitor binding sites of the enzyme, is described in detail. From the kinetic investigations and molecular modeling experiments, possible interactions of the oligopeptides with specified amino acids of DP IV are suggested. These findings give new insights for the development of more potent and specific peptide-based DP IV inhibitors. Such inhibitors could be useful for the treatment of autoimmune and inflammatory diseases. PMID:12752434

  5. Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.

    PubMed

    Ramos, Márcio V; Pereira, Danielle A; Souza, Diego P; Silva, Maria-Lídia S; Alencar, Luciana M R; Sousa, Jeanlex S; Queiroz, Juliany-Fátima N; Freitas, Cleverson D T

    2015-01-01

    Studies investigating the resistance-susceptibility of crop insects to proteins found in latex fluids have been reported. However, latex-bearing plants also host insects. In this study, the gut proteolytic system of Pseudosphinx tetrio, which feeds on Plumeria rubra leaves, was characterized and further challenged against the latex proteolytic system of its own host plant and those of other latex-bearing plants. The gut proteolytic system of Danaus plexippus (monarch) and the latex proteolytic system of its host plant (Calotropis procera) were also studied. The latex proteins underwent extensive hydrolysis when mixed with the corresponding gut homogenates of the hosted insects. The gut homogenates partially digested the latex proteins of foreign plants. The fifth instar of D. plexippus that were fed diets containing foreign latex developed as well as those individuals who were fed diets containing latex proteins from their host plant. In vitro assays detected serine and cysteine peptidase inhibitors in both the gut homogenates and the latex fluids. Curiously, the peptidase inhibitors of caterpillars did not inhibit the latex peptidases of their host plants. However, the peptidase inhibitors of laticifer origin inhibited the proteolysis of gut homogenates. In vivo analyses of the peritrophic membrane proteins of D. plexippus demonstrate resistance against latex peptidases. Only discrete changes were observed when the peritrophic membrane was directly treated with purified latex peptidases in vitro. This study concludes that peptidase inhibitors are involved in the defensive systems of both caterpillars and their host plants. Although latex peptidase inhibitors inhibit gut peptidases (in vitro), the ability of gut peptidases to digest latex proteins (in vivo) regardless of their origin seems to be important in governing the resistance-susceptibility of caterpillars. PMID:25246317

  6. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Papagianni, M; Tziomalos, K

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective glucose-lowering agents that do not increase body weight and are associated with a low risk for hypoglycemia. Also, they appear to exert beneficial effects on other established cardiovascular risk factors, including dyslipidemia and hypertension. Moreover, DPP-4 inhibitors exert antiinflammatory and antioxidant actions, improve endothelial function and reduce urinary albumin excretion. In contrast to these favorable cardiovascular effects, three recent large, randomized, placebo-controlled trials in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease or multiple cardiovascular risk factors showed that DPP-4 inhibitors do not affect the risk of myocardial infarction or ischemic stroke and might increase the risk of heart failure. The findings of the former randomized studies highlight the limitations of surrogate markers and show that beneficial effects on cardiovascular risk factors do not necessarily translate into reductions in hard clinical endpoints. Ongoing trials will shed more light on the safety profile of DPP-4 inhibitors and will clarify whether they will improve the cardiovascular outcomes of patients with T2DM. Hippokratia 2015; 19 (3): 195-199. PMID:27418775

  7. Dipeptidyl peptidase-4 inhibitor for steroid-induced diabetes

    PubMed Central

    Yanai, Hidekatsu; Masui, Yoshinori; Yoshikawa, Reo; Kunimatsu, Junwa; Kaneko, Hiroshi

    2010-01-01

    The addition of the dipeptidyl peptidase-4 (DDP-4) inhibitor has been reported to achieve greater improvements in glucose metabolism with fewer adverse events compared to increasing the metformin dose in type 2 diabetic patients. We present a patient with steroid-induced diabetes whose blood glucose levels were ameliorated by the use of the DPP-4 inhibitor, showing that the DPP-4 inhibitors may be an effective and safe oral anti-diabetic drug for steroid-induced diabetes. PMID:21537433

  8. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  9. Lipoprotein effects of incretin analogs and dipeptidyl peptidase 4 inhibitors

    PubMed Central

    Zhong, Jixin; Maiseyeu, Andrei; Rajagopalan, Sanjay

    2015-01-01

    Elevated post-prandial lipoprotein levels are common in patients with type 2 diabetes. Post-prandial lipoprotein alterations in type 2 diabetics are widely believed to drive inflammation and are considered a major risk factor for cardiovascular disease in diabetic patients. The incretins glucagon like peptide-1 (GLP-1) and glucose insulinotropic peptide (GIP) modulate post-prandial lipoproteins through a multitude of pathways that are independent of insulin and weight loss. Evidence from both animal models and humans seems to suggest an important effect on triglyceride rich lipoproteins (Apo48 containing) with little to no effects on other lipoproteins at least in humans. Dipeptidyl peptidase-4 (DPP4) inhibitors also appear to share these effects suggesting an important role for incretins in these effects. In this review, we will summarize lipid modulating effects of incretin analogs and DPP-4 inhibitors in both animal models and human studies and provide an overview of mechanisms responsible for these effects. PMID:26005496

  10. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.

    PubMed

    Deacon, C F; Lebovitz, H E

    2016-04-01

    Type 2 diabetes (T2DM) is a progressive disease, and pharmacotherapy with a single agent does not generally provide durable glycaemic control over the long term. Sulphonylurea (SU) drugs have a history stretching back over 60 years, and have traditionally been the mainstay choice as second-line agents to be added to metformin once glycaemic control with metformin monotherapy deteriorates; however, they are associated with undesirable side effects, including increased hypoglycaemia risk and weight gain. Dipeptidyl peptidase (DPP)-4 inhibitors are, by comparison, more recent, with the first compound being launched in 2006, but the class now globally encompasses at least 11 different compounds. DPP-4 inhibitors improve glycaemic control with similar efficacy to SUs, but do not usually provoke hypoglycaemia or weight gain, are relatively free from adverse side effects, and have recently been shown not to increase cardiovascular risk in large prospective safety trials. Because of these factors, DPP-4 inhibitors have become an established therapy for T2DM and are increasingly being positioned earlier in treatment algorithms. The present article reviews these two classes of oral antidiabetic drugs (DPP-4 inhibitors and SUs), highlighting differences and similarities between members of the same class, as well as discussing the potential advantages and disadvantages of the two drug classes. While both classes have their merits, the choice of which to use depends on the characteristics of each individual patient; however, for the majority of patients, DPP-4 inhibitors are now the preferred choice. PMID:26597596

  11. NAAG peptidase inhibitors and their potential for diagnosis and therapy.

    PubMed

    Zhou, Jia; Neale, Joseph H; Pomper, Martin G; Kozikowski, Alan P

    2005-12-01

    Modulation of N-acetyl-L-aspartyl-L-glutamate peptidase activity with small-molecule inhibitors holds promise for a wide variety of diseases that involve glutamatergic transmission, and has implications for the diagnosis and therapy of cancer. This new class of compounds, of which at least one has entered clinical trials and proven to be well tolerated, has demonstrated efficacy in experimental models of pain, schizophrenia, amyotrophic lateral sclerosis, traumatic brain injury and, when appropriately functionalized, can image prostate cancer. Further investigation of these promising drug candidates will be needed to bring them to the marketplace. The recent publication of the X-ray crystal structure for the enzymatic target of these compounds should facilitate the development of other new agents with enhanced activity that could improve both the diagnosis and treatment of neurological disorders. PMID:16341066

  12. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs).

    PubMed

    Goettig, Peter; Magdolen, Viktor; Brandstetter, Hans

    2010-11-01

    Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches. PMID:20615447

  13. NAAG peptidase inhibitors and deletion of NAAG peptidase gene enhance memory in novel object recognition test.

    PubMed

    Janczura, Karolina J; Olszewski, Rafal T; Bzdega, Tomasz; Bacich, Dean J; Heston, Warren D; Neale, Joseph H

    2013-02-15

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is inactivated by the extracellular enzyme glutamate carboxypeptidase II. Inhibitors of this enzyme reverse dizocilpine (MK-801)-induced impairment of short-term memory in the novel object recognition test. The objective of this study was to test the hypothesis that NAAG peptidase inhibition enhances long-term (24h delay) memory of C57BL mice. These mice and mice in which glutamate carboxypeptidase II had been knocked out were presented with two identical objects to explore for 10min on day 1 and tested with one of these familiar objects and one novel object on day 2. Memory was assessed as the degree to which the mice recalled the familiar object and explored the novel object to a greater extent on day 2. Uninjected mice or mice injected with saline prior to the acquisition session on day 1 demonstrated a lack of memory of the acquisition experience by exploring the familiar and novel objects to the same extent on day 2. Mice treated with glutamate carboxypeptidase II inhibitors ZJ43 or 2-PMPA prior to the acquisition trial explored the novel object significantly more time than the familiar object on day 2. Consistent with these results, mice in which glutamate carboxypeptidase II had been knocked out distinguished the novel from the familiar object on day 2 while their heterozygous colony mates did not. Inhibition of glutamate carboxypeptidase II enhances recognition memory, a therapeutic action that might be useful in treatment of memory deficits related to age and neurological disorders. PMID:23200894

  14. Navigating the chemical space of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Anuwongcharoen, Nuttapat; Songtawee, Napat; Monnor, Teerawat; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    This study represents the first large-scale study on the chemical space of inhibitors of dipeptidyl peptidase-4 (DPP4), which is a potential therapeutic protein target for the treatment of diabetes mellitus. Herein, a large set of 2,937 compounds evaluated for their ability to inhibit DPP4 was compiled from the literature. Molecular descriptors were generated from the geometrically optimized low-energy conformers of these compounds at the semiempirical AM1 level. The origins of DPP4 inhibitory activity were elucidated from computed molecular descriptors that accounted for the unique physicochemical properties inherently present in the active and inactive sets of compounds as defined by their respective half maximal inhibitory concentration values of less than 1 μM and greater than 10 μM, respectively. Decision tree analysis revealed the importance of molecular weight, total energy of a molecule, topological polar surface area, lowest unoccupied molecular orbital, and number of hydrogen-bond donors, which correspond to molecular size, energy, surface polarity, electron acceptors, and hydrogen bond donors, respectively. The prediction model was subjected to rigorous independent testing via three external sets. Scaffold and chemical fragment analysis was also performed on these active and inactive sets of compounds to shed light on the distinguishing features of the functional moieties. Docking of representative active DPP4 inhibitors was also performed to unravel key interacting residues. The results of this study are anticipated to be useful in guiding the rational design of novel and robust DPP4 inhibitors for the treatment of diabetes. PMID:26309399

  15. Astacin Family Metallopeptidases and Serine Peptidase Inhibitors in Spider Digestive Fluid

    PubMed Central

    Foradori, Matthew J.; Tillinghast, Edward K.; Smith, J. Stephen; Townley, Mark A.; Mooney, Robert E.

    2006-01-01

    Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (β subunits) from several vertebrates (47–52% and 50–60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa. PMID:16458560

  16. Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function

    PubMed Central

    Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan

    2010-01-01

    In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234

  17. Some properties and possible biological role of peptidase inhibitors from the entomopathogenic fungus Tolypocladium cylindrosporum.

    PubMed

    Popova, V V; Dunaevsky, Y E; Domash, V I; Semenova, T A; Beliakova, G A; Belozersky, M A

    2015-10-01

    The activities of secreted and mycelial inhibitors of proteolytic enzymes from fungi of the order Hypocreales have been investigated. Inhibitors of bromelain, papain, and trypsin of low molecular mass (about 1 kDa) and a subtilisin proteinaceous inhibitor with molecular mass of 45 kDa were revealed in the culture liquid of the fungus Tolypocladium cylindrosporum. The subtilisin inhibitor from T. cylindrosporum has antibiotic properties, significantly decreased the activity of purified bacterial enzymes, and prevented the growth of the bacterium Pseudomonas sp. Data suggesting the existence in fungi of the Hypocreales order of two pools of peptidase inhibitors have been obtained. PMID:26210235

  18. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion.

    PubMed

    Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A

    2006-01-01

    In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector. PMID:16310789

  19. Local administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in peripheral pain in rats.

    PubMed

    Yamamoto, Tatsuo; Saito, Osamu; Aoe, Tomohiko; Bartolozzi, Alessandra; Sarva, Jayaprakash; Zhou, Jia; Kozikowski, Alan; Wroblewska, Barbara; Bzdega, Tomasz; Neale, Joseph H

    2007-01-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) selectively activates group II metabotropic glutamate receptors (mGluRs). Systemic administration of inhibitors of the enzymes that inactivate NAAG results in decreased pain responses in rat models of inflammatory and neuropathic pain. These effects are blocked by a group II mGluR antagonist. This research tested the hypothesis that some analgesic effects of NAAG peptidase inhibition are mediated by NAAG acting on sensory neurite mGluRs at the site of inflammation. Group II mGluR agonists, SLx-3095-1, NAAG and APDC, or NAAG peptidase inhibitors, ZJ-43 and 2-PMPA, injected into the rat footpad reduced pain responses in carrageenan or formalin models. The analgesic effects of SLx-3095-1, APDC, ZJ-43, 2-PMPA and NAAG were blocked by co-injection of LY341495, a selective group II mGluR antagonist. Injection of group II mGluR agonists, NAAG or the peptidase inhibitors into the contralateral rat footpad had no effect on pain perception in the injected paw. At 10-100 microm ZJ-43 and 2-PMPA demonstrated no consistent agonist activity at mGluR2 or mGluR3. Consistent with the conclusion that peripherally administered NAAG peptidase inhibitors increase the activation of mGluR3 by NAAG that is released from peripheral sensory neurites, we found that the tissue average concentration of NAAG in the unstimulated rat hind paw was about 6 microm. These data extend our understanding of the role of this peptide in sensory neurons and reveal the potential for treatment of inflammatory pain via local application of NAAG peptidase inhibitors at doses that may have little or no central nervous system effects. PMID:17241276

  20. Identification of dipeptidyl peptidase IV inhibitors: virtual screening, synthesis and biological evaluation.

    PubMed

    Xing, Junhao; Li, Qing; Zhang, Shengping; Liu, Haomiao; Zhao, Leilei; Cheng, Haibo; Zhang, Yuan; Zhou, Jinpei; Zhang, Huibin

    2014-09-01

    Inhibition of dipeptidyl peptidase IV is an important approach for the treatment of type-2 diabetes. In this study, we reported a multistage virtual screening workflow that integrated 3D pharmacophore models, structural consensus docking, and molecular mechanics/generalized Born surface area binding energy calculation to identify novel dipeptidyl peptidase IV inhibitors. After screening our in-house database, two hit compounds, HWL-405 and HWL-892, having persistent high performance in all stages of virtual screening were identified. These two hit compounds together with several analogs were synthesized and evaluated for in vitro inhibition of dipeptidyl peptidase IV. The experimental data indicated that most designed compounds exhibited significant dipeptidyl peptidase IV inhibitory activity. Among them, compounds 35f displayed the greatest potency against dipeptidyl peptidase IV in vitro with the IC50 value of 78 nm. In an oral glucose tolerance test in normal male Kunming mice, compound 35f reduced blood glucose excursion in a dose-dependent manner. PMID:24674599

  1. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  2. [Description of an acidic peptidase, insensitive to classical inhibitors, in protein extracts of Trypanosoma cruzi, from a rural area of Venezuela, where Chagas disease is endemic].

    PubMed

    Zambrano, Edgar Armando; de la Cruz, Henry Samuel; Coita, Blanca Elena

    2013-09-01

    Through two peptidase assay methods, one in liquid-phase and another, in gel-phase (gel zymography), an acid peptidase was detected in protein crude extracts of epimastigotes of Trypanosoma cruzi, from a rural area of Venezuela where Chagas disease is endemic. The peptidase shows activity at a pH range between 2.0 and 2.9. Under the experimental conditions described, the acid peptidase was insensitive to usual concentrations of peptidase inhibitors of the types: serine, cysteine, aspartic and metallopeptidases. Nevertheless, like porcine pepsin at pH 2.9, the peptidase was inhibited in the presence of 5mM DTT. PMID:24354241

  3. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors.

    PubMed

    Tulipano, Giovanni; Sibilia, Valeria; Caroli, Anna Maria; Cocchi, Daniela

    2011-04-01

    Preclinical and clinical studies suggest that whey proteins can reduce postprandial glucose levels and stimulate insulin release in healthy subjects and in subjects with type 2 diabetes by reducing dipeptidyl peptidase-4 (DPP-4) activity in the proximal bowel and hence increasing intact incretin levels. Our aim was to identify DPP-4 inhibitors among short peptides occurring in hydrolysates of β-lactoglobulin, the major whey protein found in the milk of ruminants. We proved that the bioactive peptide Ile-Pro-Ala can be regarded as a moderate DPP-4 inhibitor. PMID:21256171

  4. Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients.

    PubMed

    Kanasaki, Keizo; Konishi, Kazunori; Hayashi, Ranji; Shiroeda, Hisakazu; Nomura, Tomoe; Nakagawa, Atsushi; Nagai, Takako; Takeda-Watanabe, Ai; Ito, Hiroki; Tsuda, Shin-Ichi; Kitada, Munehiro; Fujii, Mizue; Kanasaki, Megumi; Nishizawa, Makoto; Nakano, Yasuharu; Tomita, Yasuto; Ueda, Nobuhiko; Kosaka, Takeo; Koya, Daisuke

    2013-11-27

    Dipeptidyl peptidase (DPP)-4 inhibitors are a new class of antidiabetic drugs that increase incretin hormone levels to enhance blood sugar level-dependent insulinotropic effects, suppress glucagon action, and reduce bowel motility. These incretin effects are ideal for blood sugar control. However, the safety profile of DPP-4 inhibitors is not yet established. Herein, we present three cases of ileus, considered to be closely related to the use of DPP-4 inhibitors, in diabetic patients. Each of the three patients exhibited some risk of a deficiency in bowel movement; the onset of ileus was within 40 days after strengthened inhibition of DPP-4. The use of a DPP-4 inhibitor could be safe, although the cases presented herein enable us to inform the scientific community to some of the potential adverse effects of the use of DPP-4 inhibitors in select populations. PMID:24843724

  5. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  6. Antibacterial Activity of and Resistance to Small Molecule Inhibitors of the ClpP Peptidase

    PubMed Central

    Compton, Corey L.; Schmitz, Karl R.; Sauer, Robert T.; Sello, Jason K.

    2014-01-01

    There is rapidly mounting evidence that intracellular proteases in bacteria are compelling targets for antibacterial drugs. Multiple reports suggest that the human pathogen Mycobacterium tuberculosis and other actinobacteria may be particularly sensitive to small molecules that perturb the activities of self-compartmentalized peptidases, which catalyze intracellular protein turnover as components of ATP-dependent proteolytic machines. Here, we report chemical syntheses and evaluations of structurally diverse β-lactones, which have a privileged structure for selective, suicide inhibition of the self-compartmentalized ClpP peptidase. β-lactones with certain substituents on the α- and β-carbons were found to be toxic to M. tuberculosis. Using an affinity-labeled analog of a bioactive β-lactone in a series of chemical proteomic experiments, we selectively captured the ClpP1P2 peptidase from live cultures of two different actinobacteria that are related to M. tuberculosis. Importantly, we found that the growth inhibitory β-lactones also inactivate the M. tuberculosis ClpP1P2 peptidase in vitro via formation of a covalent adduct at the ClpP2 catalytic serine. Given the potent antibacterial activity of these compounds and their medicinal potential, we sought to identify innate mechanisms of resistance. Using a genome mining strategy, we identified a genetic determinant of β-lactone resistance in Streptomyces coelicolor, a non-pathogenic relative of M. tuberculosis. Collectively, these findings validate the potential of ClpP inhibition as a strategy in antibacterial drug development and define a mechanism by which bacteria could resist the toxic effects of ClpP inhibitors. PMID:24047344

  7. Effects of NAAG peptidase inhibitor 2-PMPA in model chronic pain - relation to brain concentration.

    PubMed

    Nagel, Jens; Belozertseva, Irina; Greco, Sergio; Kashkin, Vladimir; Malyshkin, Andrey; Jirgensons, Aigars; Shekunova, Elena; Eilbacher, Bernd; Bespalov, Anton; Danysz, Wojciech

    2006-12-01

    N-acetylated-alpha-linked-acidic peptidase (NAAG peptidase) converts N-acetyl-aspartyl-glutamate (NAAG, mGluR3 agonist) into N-acetyl-aspartate and glutamate. The NAAG peptidase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) had neuroprotective activity in an animal model of stroke and anti-allodynic activity in CCI model despite its uncertain ability to penetrate the blood-brain barrier. The NAAG concentration in brain ECF under basal conditions and its alteration in relation to the brain ECF concentration of 2-PMPA is unclear. We therefore assessed those brain concentrations after i.p. administration of 2-PMPA, using in vivo microdialysis combined with LC/MS/MS analysis. Administration of 2-PMPA (50mg/kg) produced a mean peak concentration of 2-PMPA of 29.66+/-8.1microM. This concentration is about 100,000 fold more than is needed for inhibition of NAAG peptidase, and indicates very good penetration to the brain. Application of 2-PMPA was followed by a linear increase of NAAG-concentration reaching a maximum of 2.89+/-0.42microM at the end of microdialysis. However, during the time the anti-allodynic effects of 2-PMPA were observed, the NAAG concentration in the ECF did not reach levels which are likely to have an impact on any known target. It appears therefore that the observed behavioural effects of 2-PMPA may not be mediated by NAAG nor, in turn, by mGluR3 receptors. PMID:16926034

  8. Serpin peptidase inhibitor clade A member 1 is a biomarker of poor prognosis in gastric cancer

    PubMed Central

    Kwon, C H; Park, H J; Lee, J R; Kim, H K; Jeon, T Y; Jo, H-J; Kim, D H; Kim, G H; Park, D Y

    2014-01-01

    Background: In a previous study, we reported that serpin peptidase inhibitor clade A member 1 (serpinA1) is upregulated in Snail-overexpressing gastric cancer. Although serpinA1 has been studied in several types of cancer, little is known about its roles and mechanisms of action. In this study, we examined the role of serpinA1 in the migration and invasion of gastric cancers and determined its underlying mechanism. Methods: Expression levels were assessed by western blot analyses and real-time PCR. Snail binding to serpinA1 promoter was analysed by chromatin immunoprecipitation (ChIP) assays. The roles of serpinA1 were studied using cell invasion and migration assays. In addition, the clinicopathologic and prognostic significance of serpinA1 expression were validated in 400 gastric cancer patients using immunohistochemical analysis. Results: Overexpression of Snail resulted in upregulation of serpinA1 in gastric cancer cell lines, AGS and MKN45, whereas knockdown of Snail inhibited serpinA1 expression. Chromatin immunoprecipitation analysis showed that overexpression of Snail increased Snail recruitment to the serpinA1 promoter. Overexpression of serpinA1 increased the migration and invasion of gastric cancer cells, whereas knockdown of serpinA1 decreased invasion and migration. Moreover, serpinA1 increased mRNA levels and release of metalloproteinase-8 in gastric cancer cells. Serpin peptidase inhibitor clade A member 1 was observed in the cytoplasm of tumour cells and the stroma by immunohistochemistry. Enhanced serpinA1 expression was significantly associated with increased tumour size, advanced T stage, perineural invasion, lymphovascular invasion, lymph node metastases, and shorter overall survival. Conclusions: Serpin peptidase inhibitor clade A member 1 induces the invasion and migration of gastric cancer cells and its expression is associated with the progression of gastric cancer. These results may provide a potential target to prevent invasion and

  9. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials.

    PubMed

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83-1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  10. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials

    PubMed Central

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83–1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  11. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    SciTech Connect

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  12. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology. PMID:24768597

  13. Inhibition of kallikrein-related peptidases by the serine protease inhibitor of Kazal-type 6.

    PubMed

    Kantyka, Tomasz; Fischer, Jan; Wu, Zhihong; Declercq, Wim; Reiss, Karina; Schröder, Jens-Michael; Meyer-Hoffert, Ulf

    2011-06-01

    Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with K(i) around 1nM, KLK4 with K(i)=27.3nM, KLK6 with K(i)=140nM, caspase-14 with a K(i) approximating 1μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members. PMID:21439340

  14. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation

    PubMed Central

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  15. Dipeptidyl Peptidase-4 Inhibitor Increases Vascular Leakage in Retina through VE-cadherin Phosphorylation.

    PubMed

    Lee, Choon-Soo; Kim, Yun Gi; Cho, Hyun-Jai; Park, Jonghanne; Jeong, Heewon; Lee, Sang-Eun; Lee, Seung-Pyo; Kang, Hyun-Jae; Kim, Hyo-Soo

    2016-01-01

    The inhibitors of CD26 (dipeptidyl peptidase-4; DPP4) have been widely prescribed to control glucose level in diabetic patients. DPP4-inhibitors, however, accumulate stromal cell-derived factor-1α (SDF-1α), a well-known inducer of vascular leakage and angiogenesis both of which are fundamental pathophysiology of diabetic retinopathy. The aim of this study was to investigate the effects of DPP4-inhibitors on vascular permeability and diabetic retinopathy. DPP4-inhibitor (diprotin A or sitagliptin) increased the phosphorylation of Src and vascular endothelial-cadherin (VE-cadherin) in human endothelial cells and disrupted endothelial cell-to-cell junctions, which were attenuated by CXCR4 (receptor of SDF-1α)-blocker or Src-inhibitor. Disruption of endothelial cell-to-cell junctions in the immuno-fluorescence images correlated with the actual leakage of the endothelial monolayer in the transwell endothelial permeability assay. In the Miles assay, vascular leakage was observed in the ears into which SDF-1α was injected, and this effect was aggravated by DPP4-inhibitor. In the model of retinopathy of prematurity, DPP4-inhibitor increased not only retinal vascularity but also leakage. Additionally, in the murine diabetic retinopathy model, DPP4-inhibitor increased the phosphorylation of Src and VE-cadherin and aggravated vascular leakage in the retinas. Collectively, DPP4-inhibitor induced vascular leakage by augmenting the SDF-1α/CXCR4/Src/VE-cadherin signaling pathway. These data highlight safety issues associated with the use of DPP4-inhibitors. PMID:27381080

  16. Gene Pyramiding of Peptidase Inhibitors Enhances Plant Resistance to the Spider Mite Tetranychus urticae

    PubMed Central

    Santamaria, Maria Estrella; Cambra, Inés; Martinez, Manuel; Pozancos, Clara; González-Melendi, Pablo; Grbic, Vojislava; Castañera, Pedro; Ortego, Felix; Diaz, Isabel

    2012-01-01

    The two-spotted spider mite Tetranychus urticae is a damaging pest worldwide with a wide range of host plants and an extreme record of pesticide resistance. Recently, the complete T. urticae genome has been published and showed a proliferation of gene families associated with digestion and detoxification of plant secondary compounds which supports its polyphagous behaviour. To overcome spider mite adaptability a gene pyramiding approach has been developed by co-expressing two barley proteases inhibitors, the cystatin Icy6 and the trypsin inhibitor Itr1 genes in Arabidopsis plants by Agrobacterium-mediated transformation. The presence and expression of both transgenes was studied by conventional and quantitative real time RT-PCR assays and by indirect ELISA assays. The inhibitory activity of cystatin and trypsin inhibitor was in vitro analysed using specific substrates. Single and double transformants were used to assess the effects of spider mite infestation. Double transformed lines showed the lowest damaged leaf area in comparison to single transformants and non-transformed controls and different accumulation of H2O2 as defence response in the leaf feeding site, detected by diaminobenzidine staining. Additionally, an impact on endogenous mite cathepsin B- and L-like activities was observed after feeding on Arabidopsis lines, which correlates with a significant increase in the mortality of mites fed on transformed plants. These effects were analysed in view of the expression levels of the target mite protease genes, C1A cysteine peptidase and S1 serine peptidase, identified in the four developmental mite stages (embryo, larvae, nymphs and adults) performed using the RNA-seq information available at the BOGAS T. urticae database. The potential of pyramiding different classes of plant protease inhibitors to prevent plant damage caused by mites as a new tool to prevent pest resistance and to improve pest control is discussed. PMID:22900081

  17. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice.

    PubMed

    Yorifuji, Naoki; Inoue, Takuya; Iguchi, Munetaka; Fujiwara, Kaori; Kakimoto, Kazuki; Nouda, Sadaharu; Okada, Toshihiko; Kawakami, Ken; Abe, Yosuke; Takeuchi, Toshihisa; Higuchi, Kazuhide

    2016-02-01

    Patients with type 2 diabetes mellitus are known to have an increased risk of colorectal neoplasia. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been used as a new therapeutic tool for type 2 diabetes. Since the substrates for DPP-4 include intestinotrophic hormones and chemokines such as GLP-2 and stromal cell-derived factor-1 (SDF-1), which are associated with tumor progression, DPP-4 inhibitors may increase the risk of colorectal tumors. However, the influence of DPP-4 inhibitors on colorectal neoplasia in patients with type 2 diabetes remains unknown. In the present study, we show that long-term administration of a DPP-4 inhibitor, sitagliptin (STG), suppressed colon carcinogenesis in leptin-deficient (ob/ob) C57BL/6J mice. Colonic mucosal concentrations of glucagon‑like peptide-1 (GLP-1) and GLP-2 were significantly elevated in the ob/ob mice. However, mucosal GLP concentrations and the plasma level of SDF-1 were not affected by the administration of STG. Real‑time PCR analysis revealed that colonic mucosal IL-6 mRNA expression, which was significantly upregulated in the ob/ob mice, was significantly suppressed by the long-term administration of STG. These results suggest that a DPP-4 inhibitor may suppress colon carcinogenesis in mice with type 2 diabetes in a GLP-independent manner. Since DPP-4 has multiple biological functions, further studies analyzing other factors related to colon carcinogenesis are needed. PMID:26573958

  18. Combination therapy of dipeptidyl peptidase-4 inhibitors and metformin in type 2 diabetes: rationale and evidence.

    PubMed

    Liu, Y; Hong, T

    2014-02-01

    The main pathogenesis of type 2 diabetes mellitus (T2DM) includes insulin resistance and pancreatic islet dysfunction. Metformin, which attenuates insulin resistance, has been recommended as the first-line antidiabetic medication. Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel oral hypoglycaemic agents that protect glucagon-like peptide-1 (GLP-1) from degradation, maintain the bioactivity of endogenous GLP-1, and thus improve islet dysfunction. Results from clinical trials have shown that the combination therapy of DPP-4 inhibitors and metformin [as an add-on, an initial combination or a fixed-dose combination (FDC)] provides excellent efficacy and safety in patients with T2DM. Moreover, recent studies have suggested that metformin enhances the biological effect of GLP-1 by increasing GLP-1 secretion, suppressing activity of DPP-4 and upregulating the expression of GLP-1 receptor in pancreatic β-cells. Conversely, DPP-4 inhibitors have a favourable effect on insulin sensitivity in patients with T2DM. Therefore, the combination of DPP-4 inhibitors and metformin provides an additive or even synergistic effect on metabolic control in patients with T2DM. This article provides an overview of clinical evidence and discusses the rationale for the combination therapy of DPP-4 inhibitors and metformin. PMID:23668534

  19. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors

    PubMed Central

    Ran, Yong; Ladd, Gabriela Z.; Ceballos-Diaz, Carolina; Jung, Joo In; Greenbaum, Doron; Felsenstein, Kevin M.; Golde, Todd E.

    2015-01-01

    The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase. PMID:26046535

  20. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice.

    PubMed

    Kozuka, Miyuki; Yamane, Takuya; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. PMID:26296465

  1. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus.

    PubMed

    Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Zhi-Wei; Yang, Tianxin; Zhang, Xueji; Yang, Yin-Xue; Duan, Wei; Zhou, Shu-Feng

    2015-10-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of oral antidiabetic drugs that improve glycaemic control without causing weight gain or increasing hypoglycaemic risk in patients with type 2 diabetes mellitus (T2DM). The eight available DPP-4 inhibitors, including alogliptin, anagliptin, gemigliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin, and vildagliptin, are small molecules used orally with identical mechanism of action and similar safety profiles in patients with T2DM. DPP-4 inhibitors may be used as monotherapy or in double or triple combination with other oral glucose-lowering agents such as metformin, thiazolidinediones, or sulfonylureas. Although DPP-4 inhibitors have the same mode of action, they differ by some important pharmacokinetic and pharmacodynamic properties that may be clinically relevant in some patients. The main differences between the eight gliptins include: potency, target selectivity, oral bioavailability, elimination half-life, binding to plasma proteins, metabolic pathways, formation of active metabolite(s), main excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug-drug interactions. The off-target inhibition of selective DPP-4 inhibitors is responsible for multiorgan toxicities such as immune dysfunction, impaired healing, and skin reactions. As a drug class, the DPP-4 inhibitors have become accepted in clinical practice due to their excellent tolerability profile, with a low risk of hypoglycaemia, a neutral effect on body weight, and once-daily dosing. It is unknown if DPP-4 inhibitors can prevent disease progression. More clinical studies are needed to validate the optimal regimens of DPP-4 inhibitors for the management of T2DM when their potential toxicities are closely monitored. PMID:26173919

  2. HIV Entry Inhibitors and Their Potential in HIV Therapy

    PubMed Central

    Qian, Keduo; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2013-01-01

    This review discusses recent progress in the development of anti-HIV agents targeting the viral entry process. The three main classes (attachment inhibitors, co-receptor binding inhibitors, and fusion inhibitors) are further broken down by specific mechanism of action and structure. Many of these inhibitors are in advanced clinical trials, including the HIV maturation inhibitor bevirimat, from the authors’ laboratories. In addition, the CCR5 inhibitor maraviroc has recently been FDA-approved. Possible roles for these agents in anti-HIV therapy, including treatment of virus resistant to current drugs, are also discussed. PMID:18720513

  3. Synthesis and characterization of constrained peptidomimetic dipeptidyl peptidase IV inhibitors: amino-lactam boroalanines.

    PubMed

    Lai, Jack H; Wu, Wengen; Zhou, Yuhong; Maw, Hlaing H; Liu, Yuxin; Milo, Lawrence J; Poplawski, Sarah E; Henry, Gillian D; Sudmeier, James L; Sanford, David G; Bachovchin, William W

    2007-05-17

    We describe here the epimerization-free synthesis and characterization of a new class of conformationally constrained lactam aminoboronic acid inhibitors of dipeptidyl peptidase IV (DPP IV; E.C. 3.4.14.5). These compounds have the advantage that they cannot undergo the pH-dependent cyclization prevalent in most dipeptidyl boronic acids that attenuates their potency at physiological pH. For example, D-3-amino-1-[L-1-boronic-ethyl]-pyrrolidine-2-one (amino-D-lactam-L-boroAla), one of the best lactam inhibitors of DPP IV, is several orders of magnitude less potent than L-Ala-L-boroPro, as measured by Ki values (2.3 nM vs 30 pM, respectively). At physiological pH, however, it is actually more potent than L-Ala-L-boroPro, as measured by IC50 values (4.2 nM vs 1400 nM), owing to the absence of the potency-attenuating cyclization. In an interesting and at first sight surprising reversal of the relationship between stereochemistry and potency observed with the conformationally unrestrained Xaa-boroPro class of inhibitors, the L-L diastereomers of the lactams are orders of magnitude less effective than the D-L lactams. However, this interesting reversal and the unexpected potency of the D-L lactams as DPP IV inhibitors can be understood in structural terms, which is explained and discussed here. PMID:17458948

  4. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes

    PubMed Central

    Richter, Bernd; Bandeira-Echtler, Elizabeth; Bergerhoff, Karla; Lerch, Christian

    2008-01-01

    Background: In type 2 diabetes mellitus (T2DM) there is a progressive loss of β-cell function. One new approach yielding promising results is the use of the orally active dipeptidyl peptidase-4 (DPP-4) inhibitors. However, every new compound for T2DM has to prove long-term safety especially on cardiovascular outcomes. Objectives: Systematic review and meta-analysis of the effects of sitagliptin and vildagliptin therapy on main efficacy parameters and safety. Selection criteria, data collection, and analysis: Randomized controlled clinical studies of at least 12 weeks’ duration in T2DM. Results: DPP-4 inhibitors versus placebo showed glycosylated hemoglobin A1c(A1c) improvements of 0.7% versus placebo but not compared to monotherapy with other hypoglycemic agents (0.3% in favor of controls). The overall risk profile of DPP-4 inhibitors was low, however a 34% relative risk increase (95% confidence interval 10% to 64%, P = 0.004) was noted for all cause infection associated with sitagliptin use. No data on immune function, health-related quality of life and diabetic complications could be extracted. Conclusions: DPP-4 inhibitors have some theoretical advantages over existing therapies with oral antidiabetic compounds but should currently be restricted to individual patients. Long-term data on cardiovascular outcomes and safety are needed before widespread use of these new agents. PMID:19065993

  5. A Nonhost Peptidase Inhibitor of ~14 kDa from Butea monosperma (Lam.) Taub. Seeds Affects Negatively the Growth and Developmental Physiology of Helicoverpa armigera

    PubMed Central

    Pandey, Prabhash K.; Singh, Dushyant; Singh, Sangram; Khan, M. Y.; Jamal, Farrukh

    2014-01-01

    Helicoverpa armigera is one of the major devastating pests of crop plants. In this context a serine peptidase inhibitor purified from the seeds of Butea monosperma was evaluated for its effect on developmental physiology of H. armigera larvae. B. monosperma peptidase inhibitor on 12% denaturing polyacrylamide gel electrophoresis exhibited a single protein band of ~14 kDa with or without reduction. In vitro studies towards total gut proteolytic enzymes of H. armigera and bovine trypsin indicated measurable inhibitory activity. B. monosperma peptidase inhibitor dose for 50% mortality and weight reduction by 50% were 0.5% w/w and 0.10% w/w, respectively. The IC50 of B. monosperma peptidase inhibitor against total H. armigera gut proteinases activity was 2.0 µg/mL. The larval feeding assays suggested B. monosperma peptidase inhibitor to be toxic as reflected by its retarded growth and development, consequently affecting fertility and fecundity of pest and prolonging the larval-pupal duration of the insect life cycle of H. armigera. Supplementing B. monosperma peptidase inhibitor in artificial diet at 0.1% w/w, both the efficiencies of conversion of ingested as well as digested food were downregulated, whereas approximate digestibility and metabolic cost were enhanced. The efficacy of Butea monosperma peptidase inhibitor against progressive growth and development of H. armigera suggest its usefulness in insect pest management of food crops. PMID:24860667

  6. Role of dipeptidyl peptidase-4 inhibitors in new-onset diabetes after transplantation

    PubMed Central

    Lim, Sun Woo; Jin, Ji Zhe; Jin, Long; Jin, Jian; Li, Can

    2015-01-01

    Despite strict pre- and post-transplantation screening, the incidence of new-onset diabetes after transplantation (NODAT) remains as high as 60%. This complication affects the risk of cardiovascular events and patient and graft survival rates. Thus, reducing the impact of NODAT could improve overall transplant success. The pathogenesis of NODAT is multifactorial, and both modifiable and nonmodifiable risk factors have been implicated. Monitoring and controlling the blood glucose profile, implementing multidisciplinary care, performing lifestyle modifications, using a modified immunosuppressive regimen, administering anti-metabolite agents, and taking a conventional antidiabetic approach may diminish the incidence of NODAT. In addition to these preventive strategies, inhibition of dipeptidyl peptidase-4 (DPP4) by the gliptin family of drugs has recently gained considerable interest as therapy for type 2 diabetes mellitus and NODAT. This review focuses on the role of DPP4 inhibitors and discusses recent literature regarding management of NODAT. PMID:26552451

  7. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes.

    PubMed

    Mest, H-J; Mentlein, R

    2005-04-01

    Inhibitors of the regulatory protease dipeptidyl peptidase-IV (DPP-IV) are currently under development in preclinical and clinical studies (several pharmaceutical companies, now in Phase III) as potential drugs for the treatment of type 2 diabetes. Their development is based on the observation that DPP-IV rapidly inactivates the incretin hormone glucagon-like peptide-1 (GLP-1), which is released postprandially from the gut and increases insulin secretion. DPP-IV inhibitors stabilise endogenous GLP-1 at physiological concentrations, and induce insulin secretion in a glucose-dependent manner; therefore, they do not demonstrate any hypoglycaemic effects. Furthermore, they are orally bioavailable. In addition to their ability to protect GLP-1 against degradation, DPP-IV inhibitors also stabilise other incretins, including gastric inhibitory peptide and pituitary adenylate cyclase-activating peptide. They also reduce the antagonistic and desensitising effects of the fragments formed by truncation of the incretins. In clinical studies, when used for the treatment of diabetes over a 1-year period, DPP-IV inhibitors show improved efficacy over time. This finding can be explained by a GLP-1-induced increase in the number of beta cells. Potential risks associated with DPP-IV inhibitors include the prolongation of the action of other peptide hormones, neuropeptides and chemokines cleaved by the protease, and their interaction with DPP-IV-related proteases. Based on their mode of action, DPP-IV inhibitors seem to be of particular value in early forms of type 2 diabetes, either alone or in combination with other types of oral agents. PMID:15770466

  8. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease.

    PubMed

    Kosaraju, Jayasankar; Gali, Chaitanya Chakravarthi; Khatwal, Rizwan Basha; Dubala, Anil; Chinni, Santhivardhan; Holsinger, R M Damian; Madhunapantula, V Subba Rao; Muthureddy Nataraj, Satish Kumar; Basavan, Duraiswamy

    2013-09-01

    Type 2 diabetes (T2D) is one of the major risk factors associated with Alzheimer's disease (AD). Recent studies have found similarities in molecular mechanisms that underlie the respective degenerative developments in the two diseases. Pharmacological agents, such as dipeptidyl peptidase-4 (DPP-4) inhibitors, which increase the level of glucagon-like peptide-1 (GLP-1) and ameliorate T2D, have become valuable candidates as disease modifying agents in the treatment of AD. In addition, endogenous GLP-1 levels decrease amyloid beta (Aβ) peptide and tau phosphorylation in AD. The present study examines the efficacy of Saxagliptin, a DPP-4 inhibitor in a streptozotocin (STZ) induced rat model of AD. Three months following induction of AD by intracerebral administration of streptozotocin, animals were orally administered Saxagliptin (0.25, 0.5 and 1 mg/kg) for 60 days. The effect of the DPP-4 inhibitor on hippocampal GLP-1 levels, Aβ burden, tau phosphorylation, inflammatory markers and memory retention were evaluated. The results reveal an attenuation of Aβ, tau phosphorylation and inflammatory markers and an improvement in hippocampal GLP-1 and memory retention following treatment. This remarkable therapeutic effect of Saxagliptin mediated through DPP-4 inhibition demonstrates a unique mechanism for Aβ and tau clearance by increasing GLP-1 levels and reverses the behavioural deficits and pathology observed in AD. PMID:23603201

  9. Lessons learned from cardiovascular outcome clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors.

    PubMed

    Fiorentino, Teresa Vanessa; Sesti, Giorgio

    2016-08-01

    Previous trials of glucose-lowering strategies in subjects with type 2 diabetes have demonstrated a beneficial effect of intensive glycemic control on microvascular complications but failed to show a clear benefit on cardiovascular complications. The findings of meta-analyses of rosiglitazone trials suggesting that rosiglitazone might increase the risk of myocardial infarction have cast doubt on the cardiovascular safety of glucose-lowering drugs. In 2008, the US Food and Drug Administration has implemented rigorous criteria to approve new glucose-lowering drugs, requiring proof of cardiovascular safety. These regulatory requirements have led to a considerable increase in the number of cardiovascular outcome trials in type 2 diabetes to ensure that newer glucose-lowering drugs are not associated with increased cardiovascular risk. Incretin-based therapies including dipeptidyl peptidase 4 (DPP-4) inhibitors, and injectable glucagon-like peptide 1 (GLP-1) receptor agonists are novel treatment options for patients with inadequate glucose control. Although DPP-4 inhibitors have shown neutral effects on risk factors for cardiovascular diseases, it remains unclear whether treatment with these new glucose-lowering agents might be associated with a reduction in cardiovascular events. The results of the three cardiovascular outcome trials comparing DPP-4 inhibitors treatment to placebo in addition to other glucose-lowering drugs have been published. All the three DPP-4 inhibitor cardiovascular outcome trials have shown non-inferiority with regard to cardiovascular safety, compared with placebo, when added to usual care. In this review, we summarize cardiovascular outcome trials of DPP-4 inhibitors, and provide an overview of these trials and their limitations. PMID:26611248

  10. Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI.

    PubMed

    Feng, Jun-Feng; Van, Ken C; Gurkoff, Gene G; Kopriva, Christina; Olszewski, Rafal T; Song, Minsoo; Sun, Shifeng; Xu, Man; Neale, Joseph H; Yuen, Po-Wai; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2011-06-13

    Traumatic brain injury (TBI) leads to a rapid and excessive increase in glutamate concentration in the extracellular milieu, which is strongly associated with excitotoxicity and neuronal degeneration. N-acetylaspartylglutamate (NAAG), a prevalent peptide neurotransmitter in the vertebrate nervous system, is released along with glutamate and suppresses glutamate release by actions at pre-synaptic metabotropic glutamate autoreceptors. Extracellular NAAG is hydrolyzed to N-acetylaspartate and glutamate by peptidase activity. In the present study PGI-02776, a newly designed di-ester prodrug of the urea-based NAAG peptidase inhibitor ZJ-43, was tested for neuroprotective potential when administered intraperitoneally 30 min after lateral fluid percussion TBI in the rat. Stereological quantification of hippocampal CA2-3 degenerating neurons at 24 h post injury revealed that 10 mg/kg PGI-02776 significantly decreased the number of degenerating neurons (p<0.05). Both average latency analysis of Morris water maze performance and assessment of 24-hour memory retention revealed significant differences between sham-TBI and TBI-saline. In contrast, no significant difference was found between sham-TBI and PGI-02776 treated groups in either analysis indicating an improvement in cognitive performance with PGI-02776 treatment. Histological analysis on day 16 post-injury revealed significant cell death in injured animals regardless of treatment. In vitro NAAG peptidase inhibition studies demonstrated that the parent compound (ZJ-43) exhibited potent inhibitory activity while the mono-ester (PGI-02749) and di-ester (PGI-02776) prodrug compounds exhibited moderate and weak levels of inhibitory activity, respectively. Pharmacokinetic assays in uninjured animals found that the di-ester (PGI-02776) crossed the blood-brain barrier. PGI-02776 was also readily hydrolyzed to both the mono-ester (PGI-02749) and the parent compound (ZJ-43) in both blood and brain. Overall, these findings

  11. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes.

    PubMed

    Cho, Tang Peng; Gang, Lin Zhi; Long, Yang Fang; Yang, Wang; Qian, Wang; Lei, Zhang; Jing, Luo Jing; Ying, Feng; Ke, Yan Pang; Ying, Leng; Jun, Feng

    2010-06-15

    A series of novel bicyclo[3.3.0]octane derivatives have been synthesized and found to be dipeptidyl peptidase 4 (DPP-4) inhibitors. Compounds 10a and 10b demonstrate good efficacies in oral glucose tolerance tests. PMID:20488704

  12. Effects of dipeptidyl peptidase-4 inhibitor in insulin-resistant rats with myocardial infarction.

    PubMed

    Apaijai, Nattayaporn; Inthachai, Tharnwimol; Lekawanvijit, Suree; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-06-01

    Adverse cardiac remodeling after myocardial infarction (MI) leads to progressive heart failure. Obese-insulin resistance increases risks of MI and heart failure. Although dipeptidyl peptidase-4 (DPP4) inhibitor is known to exert cardioprotection, its effects on adverse remodeling after MI in obese-insulin-resistant rats are unclear. We hypothesized that DPP4 inhibitor reduces adverse left ventricular (LV) remodeling and LV dysfunction in obese-insulin-resistant rats with MI. Rats were fed either normal diet (ND) or high-fat diet (HFD) for 12 weeks to induce obese-insulin resistance, followed by left anterior descending coronary artery ligation to induce MI. Then, rats in each dietary group were divided into five subgroups to receive vehicle, enalapril (10mg/kg/day), metformin (30mg/kg/day), DPP4 inhibitor vildagliptin (3mg/kg/day), or combined metformin and vildagliptin for 8 weeks. Heart rate variability (HRV), LV function, pathological and biochemical studies for LV remodeling, and cardiomyocyte apoptosis were determined. Obese-insulin-resistant rats had severe insulin resistance and LV dysfunction. HFD rats had a higher mortality rate than ND rats, and all treatments reduced the mortality rate in obese-insulin-resistant rats. Although all drugs improved insulin resistance, HRV, LV function as well as reduced cardiac hypertrophy and fibrosis, vildagliptin effectively reduced cardiomyocyte cross-sectional areas more than enalapril and was related to markedly decreased ERK1/2 phosphorylation. In ND rats with MI, metformin neither improved LV ejection fraction nor reduced cardiac fibrosis. The infarct size and transforming growth factor-β expression were not different among groups. In obese-insulin-resistant rats with chronic MI, DPP4 inhibitor vildagliptin exerts better cardioprotection than enalapril in attenuating adverse LV remodeling. PMID:27044778

  13. The Role of Dipeptidyl Peptidase – 4 Inhibitors in Diabetic Kidney Disease

    PubMed Central

    Panchapakesan, Usha; Pollock, Carol

    2015-01-01

    Despite major advances in the understanding of the molecular mechanisms that underpin the development of diabetic kidney disease, current best practice still leaves a significant proportion of patients with end-stage kidney disease requiring renal replacement therapy. This is on a background of an increasing diabetes epidemic worldwide. Although kidney failure is a major cause of morbidity the main cause of death remains cardiovascular in nature. Hence, diabetic therapies which are both “cardio-renal” protective seem the logical way forward. In this review, we discuss the dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4inh), which are glucose-lowering agents used clinically and their role in diabetic kidney disease with specific focus on renoprotection and surrogate markers of cardiovascular disease. We highlight the novel pleiotropic effects of DPP4 that make it an attractive additional target to combat the fibrotic and inflammatory pathways in diabetic kidney disease and also discuss the current literature on the cardiovascular safety profile of DPP4inh. Clearly, these observed renoprotective effects will need to be confirmed by clinical trials to determine whether they translate into beneficial effects to patients with diabetes. PMID:26379674

  14. NAAG peptidase inhibitor reduces cellular damage in a model of TBI with secondary hypoxia.

    PubMed

    Feng, Jun-Feng; Gurkoff, Gene G; Van, Ken C; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2012-08-21

    Traumatic brain injury (TBI) leads to a rapid and excessive glutamate elevation in the extracellular milieu, resulting in neuronal degeneration and astrocyte damage. Posttraumatic hypoxia is a clinically relevant secondary insult that increases the magnitude and duration of glutamate release following TBI. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, suppresses presynaptic glutamate release by its action at the mGluR3 (a group II metabotropic glutamate receptor). However, extracellular NAAG is rapidly converted into NAA and glutamate by the catalytic enzyme glutamate carboxypeptidase II (GCPII) reducing presynaptic inhibition. We previously reported that the GCPII inhibitor ZJ-43 and its prodrug di-ester PGI-02776 reduce the deleterious effects of excessive extracellular glutamate when injected systemically within the first 30 min following injury. We now report that PGI-02776 (10mg/kg) is neuroprotective when administered 30 min post-injury in a model of TBI plus 30 min of hypoxia (FiO(2)=11%). 24h following TBI with hypoxia, significant increases in neuronal cell death in the CA1, CA2/3, CA3c, hilus and dentate gyrus were observed in the ipsilateral hippocampus. Additionally, there was a significant reduction in the number of astrocytes in the ipsilateral CA1, CA2/3 and in the CA3c/hilus/dentate gyrus. Administration of PGI-02776 immediately following the cessation of hypoxia significantly reduced neuronal and astrocytic cell death across all regions of the hippocampus. These findings indicate that NAAG peptidase inhibitors administered post-injury can significantly reduce the deleterious effects of TBI combined with a secondary hypoxic insult. PMID:22750589

  15. Drug development from the bench to the pharmacy: with special reference to dipeptidyl peptidase-4 inhibitor development.

    PubMed

    Carr, R D

    2016-06-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitor concept is an example of prospective drug design and development based upon a distinct endocrine hypothesis. The design of enzyme inhibitors is a pragmatic approach to drug design; being compatible with the identification and optimization of small molecules that have properties commensurate with oral administration, as well as acceptable drug metabolism, distribution and elimination characteristics. Glucagon-like peptide 1 (GLP-1), a hormone with a spectrum of favourable metabolic actions, including glucose-dependent stimulation of insulin and inhibition of glucagon secretion, provided the endocrine basis from which the idea of using DPP-4 inhibitors as anti-diabetic agents was developed. The origin of the DPP-4 inhibitor concept was inspired by the angiotensin-converting enzyme inhibitor approach, which succeeded in establishing a class of extensively used therapeutic agents for the treatment of cardiovascular disorders. PMID:26773271

  16. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy – focus on alogliptin

    PubMed Central

    Capuano, Annalisa; Sportiello, Liberata; Maiorino, Maria Ida; Rossi, Francesco; Giugliano, Dario; Esposito, Katherine

    2013-01-01

    Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4) slows degradation of endogenous glucagon-like peptide-1 (GLP-1) and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as ‘gliptins’ (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin), are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug–drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c) decrease of 0.5%–0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control compared with placebo in adult or elderly patients with inadequately controlled type 2 diabetes. In the EXAMINE trial, alogliptin is being compared with placebo on cardiovascular outcomes in approximately 5,400 patients with type 2 diabetes. In clinical studies, DPP-4 inhibitors were generally safe and well tolerated. However, there are limited data on their

  17. Effect of dipeptidyl peptidase-4 inhibitor, vildagliptin on plasminogen activator inhibitor-1 in patients with diabetes mellitus.

    PubMed

    Tani, Shigemasa; Takahashi, Atsuhiko; Nagao, Ken; Hirayama, Atsushi

    2015-02-15

    Dipeptidyl peptidase-4 (DPP-4) inhibitors may affect the serum levels of plasminogen activator inhibitor-1 (PAI-1) associated with triglyceride (TG) metabolism, which is a prognostic factor for cardiovascular disease, in diabetic patients. We conducted an 8-week, prospective, randomized study in which we assigned type 2 diabetic patients who were inadequately controlled with antidiabetic therapy to the vildagliptin group (50 mg bid, n = 49) or the control group (n = 49). The primary efficacy parameter was the change in the serum level of PAI-1, and the secondary end point was the change in the serum levels of TG-rich lipoproteins. In the vildagliptin group, significant decrease of the serum PAI-1 level by 16.3% (p <0.0001) and significant decreases of the serum TG, remnant-like particle cholesterol, and apolipoprotein B levels by 12.1% (p = 0.002), 13.9% (p = 0.003), and 9.5% (p <0.0001), respectively, were observed. No such changes were observed in the control group. Multivariate regression analyses identified the absolute change from the baseline (Δ) of the PAI-1, but not that of the fasting blood glucose or hemoglobin A1c, as independent predictors of the ΔTG, Δ remnant-like particle cholesterol, and Δ apolipoprotein B. In conclusion, treatment of type 2 diabetes with vildagliptin might prevent the progression of atherosclerotic cardiovascular disease in diabetic patients by decreasing the serum PAI-1 levels and improving TG metabolism. PMID:25637323

  18. Sequence-specific alterations of epitope production by HIV Protease Inhibitors

    PubMed Central

    Kourjian, Georgio; Xu, Yang; Mondesire-Crump, Ijah; Shimada, Mariko; Gourdain, Pauline; Le Gall, Sylvie

    2014-01-01

    Antigen processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first or second generation PIs on other cellular peptidases, the underlying mechanism and impact on antigen processing and epitope presentation to CTL are still unknown. Here we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMC. Using an in vitro degradation assay involving PBMC cytosolic extracts we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others’. PIs affected the sensitivity of peptides to intracellular degradation, altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC-I presentation to CTL, alter the patters of CTL responses, and may provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer or other immune disease. PMID:24616479

  19. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  20. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    PubMed Central

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450; P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744; P = 0.031) and increased (AOR = 1.981; P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment. PMID:27221742

  1. Synthesis and biological evaluation of azobicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes.

    PubMed

    Cho, Tang Peng; Long, Yang Fang; Gang, Lin Zhi; Yang, Wang; Jun, Lu He; Yuan, Shen Guang; Hong, Fu Jian; Lin, Wang; Liang, Guan Dong; Lei, Zhang; Jing, Luo Jing; Shen, Gong Ai; Hong, She Gao; Dan, Wang; Ying, Feng; Ke, Yan Pang; Ying, Leng; Jun, Feng; Tai, Mong Xian

    2010-06-15

    A series of novel azobicyclo[3.3.0]octane derivatives were synthesized and evaluated as dipeptidyl peptidase 4 (DPP-4) inhibitors. The effort resulted in the discovery of inhibitor 2a, which exhibited excellent efficacies in an oral glucose tolerance test. Introduction of methyl group (2j) could prolong the inhibition of serum DPP-4 activity. PMID:20488702

  2. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia.

    PubMed

    Gurkoff, Gene G; Feng, Jun-Feng; Van, Ken C; Izadi, Ali; Ghiasvand, Rahil; Shahlaie, Kiarash; Song, Minsoo; Lowe, David A; Zhou, Jia; Lyeth, Bruce G

    2013-06-17

    Immediately following traumatic brain injury (TBI) and TBI with hypoxia, there is a rapid and pathophysiological increase in extracellular glutamate, subsequent neuronal damage and ultimately diminished motor and cognitive function. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, is co-released with glutamate, binds to the presynaptic group II metabotropic glutamate receptor subtype 3 (mGluR3) and suppresses glutamate release. However, the catalytic enzyme glutamate carboxypeptidase II (GCP II) rapidly hydrolyzes NAAG into NAA and glutamate. Inhibition of the GCP II enzyme with NAAG peptidase inhibitors reduces the concentration of glutamate both by increasing the duration of NAAG activity on mGluR3 and by reducing degradation into NAA and glutamate resulting in reduced cell death in models of TBI and TBI with hypoxia. In the following study, rats were administered the NAAG peptidase inhibitor PGI-02776 (10mg/kg) 30 min following TBI combined with a hypoxic second insult. Over the two weeks following injury, PGI-02776-treated rats had significantly improved motor function as measured by increased duration on the rota-rod and a trend toward improved performance on the beam walk. Furthermore, two weeks post-injury, PGI-02776-treated animals had a significant decrease in latency to find the target platform in the Morris water maze as compared to vehicle-treated animals. These findings demonstrate that the application of NAAG peptidase inhibitors can reduce the deleterious motor and cognitive effects of TBI combined with a second hypoxic insult in the weeks following injury. PMID:23562458

  3. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  4. Identification of novel functional sequence variants in the gene for peptidase inhibitor 3

    PubMed Central

    Chowdhury, Mahboob A; Kuivaniemi, Helena; Romero, Roberto; Edwin, Samuel; Chaiworapongsa, Tinnakorn; Tromp, Gerard

    2006-01-01

    Background Peptidase inhibitor 3 (PI3) inhibits neutrophil elastase and proteinase-3, and has a potential role in skin and lung diseases as well as in cancer. Genome-wide expression profiling of chorioamniotic membranes revealed decreased expression of PI3 in women with preterm premature rupture of membranes. To elucidate the molecular mechanisms contributing to the decreased expression in amniotic membranes, the PI3 gene was searched for sequence variations and the functional significance of the identified promoter variants was studied. Methods Single nucleotide polymorphisms (SNPs) were identified by direct sequencing of PCR products spanning a region from 1,173 bp upstream to 1,266 bp downstream of the translation start site. Fourteen SNPs were genotyped from 112 and nine SNPs from 24 unrelated individuals. Putative transcription factor binding sites as detected by in silico search were verified by electrophoretic mobility shift assay (EMSA) using nuclear extract from Hela and amnion cell nuclear extract. Deviation from Hardy-Weinberg equilibrium (HWE) was tested by χ2 goodness-of-fit test. Haplotypes were estimated using expectation maximization (EM) algorithm. Results Twenty-three sequence variations were identified by direct sequencing of polymerase chain reaction (PCR) products covering 2,439 nt of the PI3 gene (-1,173 nt of promoter sequences and all three exons). Analysis of 112 unrelated individuals showed that 20 variants had minor allele frequencies (MAF) ranging from 0.02 to 0.46 representing "true polymorphisms", while three had MAF ≤ 0.01. Eleven variants were in the promoter region; several putative transcription factor binding sites were found at these sites by database searches. Differential binding of transcription factors was demonstrated at two polymorphic sites by electrophoretic mobility shift assays, both in amniotic and HeLa cell nuclear extracts. Differential binding of the transcription factor GATA1 at -689C>G site was confirmed by a

  5. NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats.

    PubMed

    Zhong, Chunlong; Zhao, Xueren; Sarva, Jayaprakash; Kozikowski, Alan; Neale, Joseph H; Lyeth, Bruce G

    2005-02-01

    Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate associated with excitotoxicity and secondary brain pathology. The peptide neurotransmitter Nacetylaspartylglutamate (NAAG) suppresses glutamate transmission through selective activation of presynaptic Group II metabotropic glutamate receptor subtype 3 (mGluR3). Thus, inhibition of NAAG peptidase activity and the prolong presence of synaptic NAAG were hypothesized to have significant potential for cellular protection following TBI. In the present study, a novel NAAG peptidase inhibitor, ZJ-43, was used in four different doses (0, 50, 100, or 150 mg/kg). Each dose was repeatedly administered i.p. (n=5/group) by multiple injections at three times (0 time, 8 h, 16 h) after moderate lateral fluid percussion TBI in the rat. An additional group was co-administered ZJ-43 (150 mg/kg) and the Group II mGluR antagonist, LY341495 (1 mg/kg), which was predicted to abolish any protective effects of ZJ-43. Rats were euthanized at 24 h after TBI, and brains were processed with a selective marker for degenerating neurons (Fluoro-Jade B) and a marker for astrocytes (GFAP). Ipsilateral neuronal degeneration and bilateral astrocyte loss in the CA2/3 regions of the hippocampus were quantified using stereological techniques. Compared with vehicle, ZJ-43 significantly reduced the number of the ipsilateral degenerating neurons (p<0.01) with the greatest neuroprotection at the 50 mg/kg dose. Moreover, LY341495 successfully abolished the protective effects of ZJ-43. 50 mg/kg of ZJ-43 also significantly reduced the ipsilateral astrocyte loss (p<0.05). We conclude that the NAAG peptidase inhibitor ZJ-43 is a potential novel strategy to reduce both neuronal and astrocyte damage associated with the glutamate excitotoxicity after TBI. PMID:15716632

  6. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. PMID:27480840

  7. The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2

    PubMed Central

    Mølgaard, Anne; Arnau, Jose; Lauritzen, Conni; Larsen, Sine; Petersen, Gitte; Pedersen, John

    2006-01-01

    hDDPI (human dipeptidyl peptidase I) is a lysosomal cysteine protease involved in zymogen activation of granule-associated proteases, including granzymes A and B from cytotoxic T-lymphocytes and natural killer cells, cathepsin G and neutrophil elastase, and mast cell tryptase and chymase. In the present paper, we provide the first crystal structure of an hDPPI–inhibitor complex. The inhibitor Gly-Phe-CHN2 (Gly-Phe-diazomethane) was co-crystallized with hDPPI and the structure was determined at 2.0 Å (1 Å=0.1 nm) resolution. The structure of the native enzyme was also determined to 2.05 Å resolution to resolve apparent discrepancies between the complex structure and the previously published structure of the native enzyme. The new structure of the native enzyme is, within the experimental error, identical with the structure of the enzyme–inhibitor complex presented here. The inhibitor interacts with three subunits of hDPPI, and is covalently bound to Cys234 at the active site. The interaction between the totally conserved Asp1 of hDPPI and the ammonium group of the inhibitor forms an essential interaction that mimics enzyme–substrate interactions. The structure of the inhibitor complex provides an explanation of the substrate specificity of hDPPI, and gives a background for the design of new inhibitors. PMID:17020538

  8. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  9. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  10. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  11. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results. PMID:16839248

  12. Effects of addition of a dipeptidyl peptidase IV inhibitor to metformin on sirolimus-induced diabetes mellitus.

    PubMed

    Jin, Long; Lim, Sun Woo; Jin, Jian; Chung, Byung Ha; Yang, Chul Woo

    2016-08-01

    The guideline for the management of new-onset diabetes after transplantation recommends metformin (MET) as a first-line drug, and addition of a second-line drug is needed to better control of hyperglycemia. We tested the effect of addition of a dipeptidyl peptidase IV (DPP IV) inhibitor to MET on sirolimus (SRL)-induced diabetes mellitus (DM). In animal model of SRL-induced DM, MET treatment improved pancreatic islet function (blood glucose level and insulin secretion) and attenuated oxidative stress and apoptotic cell death. Addition of a DPP IV inhibitor to MET improved these parameters more than MET alone. An in vitro study showed that SRL treatment increased pancreas beta cell death and production of reactive oxygen species (ROS), and pretreatment of ROS inhibitor, or p38MAPK inhibitor effectively decreased SRL-induced islet cell death. Exendin-4 (EXD), a substrate of DPP IV or MET significantly improved cell viability and decreased ROS production compared with SRL treatment, and combined treatment with the 2 drugs improved both parameters. At the subcellular level, impaired mitochondrial respiration by SRL were partially improved by MET or EXD and much improved further after addition of EXD to MET. Our data suggest that addition of a DPP IV inhibitor to MET decreases SRL-induced oxidative stress and improves mitochondrial respiration. This finding provides a rationale for the combined use of a DPP IV inhibitor and MET in treating SRL-induced DM. PMID:27059001

  13. Overview of Glucagon-like Peptide-1 Analogs and Dipeptidyl Peptidase-4 Inhibitors for Type 2 Diabetes

    PubMed Central

    Pratley, Richard E.

    2008-01-01

    Context Impairment of incretin activity is now recognized as integral to the metabolic derangement underlying type 2 diabetes. Glucoregulatory agents that target the incretin system have recently been developed, and the place of these drugs in the treatment of type 2 diabetes can be assessed based on a growing body of clinical data. Evidence Acquisition A PubMed search was conducted to identify clinical studies of incretin therapies in type 2 diabetes. Article reference lists were also searched for relevant information, and supplemental material such as conference abstracts, drug prescribing information, and treatment guidelines were included as appropriate. Evidence Synthesis Two classes of therapies target the incretin system. The first, glucagon-like peptide-1 (GLP-1) agonists (exemplified by exenatide and liraglutide), have demonstrated considerable efficacy in clinical trials, reducing hemoglobin A1c (HbA1c) by up to 1.3%, decreasing fasting and postprandial glucose concentrations, reducing weight by approximately 3.0 kg, and improving cardiovascular risk factors. The second class, the dipeptidyl peptidase-4 inhibitors (such as sitagliptin and vildagliptin) rely on production of endogenous GLP-1 and act by reducing its turnover. The dipeptidyl peptidase-4 (DPP-4) inhibitors produce modest reductions in HbA1c (< 1%) compared with GLP-1 agonists and are generally weight-neutral. Neither GLP-1 agonists nor DPP-4 inhibitors cause hypoglycemia unless used with other agents known to increase risk. Conclusions GLP-1 agonists and DPP-4 inhibitors provide a valuable new treatment option for patients with type 2 diabetes and may be associated with a wider range of therapeutic benefits than older drugs. PMID:18769687

  14. HIV pharmacotherapy: A review of integrase inhibitors.

    PubMed

    Wong, Elaine; Trustman, Nathan; Yalong, April

    2016-02-01

    Integrase strand transfer inhibitors (INSTIs) are a class of antiretroviral agents used to treat HIV. These drugs--raltegravir, elvitegravir, and dolutegravir--are preferred options for treatment-naïve patients when used in combination with two nucleoside reverse transcriptase inhibitors. Based on clinical trials, INSTIs have been proven to be effective with minimal safety concerns. This article reviews the pharmacologic profile, role in therapy, and safety and efficacy of each agent. PMID:26818644

  15. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia.

    PubMed

    Olszewski, R T; Janczura, K J; Ball, S R; Madore, J C; Lavin, K M; Lee, J C-M; Lee, M J; Der, E K; Hark, T J; Farago, P R; Profaci, C P; Bzdega, T; Neale, J H

    2012-01-01

    The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. PMID:22850437

  16. Economic Impact of Combining Metformin with Dipeptidyl Peptidase-4 Inhibitors in Diabetic Patients with Renal Impairment in Spanish Patients

    PubMed Central

    Navarro-Artieda, Ruth

    2015-01-01

    Background To evaluate resource use and health costs due to the combination of metformin and dipeptidyl peptidase-4 (DPP-4) inhibitors in patients with diabetes and renal impairment in routine clinical practice. Methods An observational, retrospective study was performed. Patients aged ≥30 years treated with metformin who initiated a second oral antidiabetic treatment in 2009 to 2010 were included. Two groups of patients were analysed: metformin+DPP-4 inhibitors and other oral antidiabetics. The main measures were: compliance, persistence, metabolic control (glycosylated hemoglobin< 7%) and complications (hypoglycemia, cardiovascular events) and total costs. Patients were followed up for 2 years. Results We included 395 patients, mean age 70.2 years, 56.5% male: 135 patients received metformin+DPP-4 inhibitors and 260 patients received metformin+other oral antidiabetics. Patients receiving DPP-4 inhibitors showed better compliance (66.0% vs. 60.1%), persistence (57.6% vs. 50.0%), and metabolic control (63.9% vs. 57.3%), respectively, compared with those receiving other oral antidiabetics (P<0.05), and also had a lower rate of hypoglycemia (20.0% vs. 47.7%) and lower total costs (€ 2,486 vs. € 3,002), P=0.001. Conclusion Despite the limitations of the study, patients with renal impairment treated with DPP-4 inhibitors had better metabolic control, lower rates (association) of hypoglycaemia, and lower health costs for the Spanish national health system. PMID:25729716

  17. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety.

    PubMed

    Connolly, Beth A; Sanford, David G; Chiluwal, Amrita K; Healey, Sarah E; Peters, Diane E; Dimare, Matthew T; Wu, Wengen; Liu, Yuxin; Maw, Hlaing; Zhou, Yuhong; Li, Youhua; Jin, Zhiping; Sudmeier, James L; Lai, Jack H; Bachovchin, William W

    2008-10-01

    Dipeptidyl peptidase IV (DPP-IV; E.C. 3.4.14.5), a serine protease that degrades the incretin hormones GLP-1 and GIP, is now a validated target for the treatment of type 2 diabetes. Dipeptide boronic acids, among the first, and still among the most potent DPP-IV inhibitors known, suffer from a concern over their safety. Here we evaluate the potency, in vivo efficacy, and safety of a selected set of these inhibitors. The adverse effects induced by boronic acid-based DPP-IV inhibitors are essentially limited to what has been observed previously for non-boronic acid inhibitors and attributed to cross-reactivity with DPP8/9. While consistent with the DPP8/9 hypothesis, they are also consistent with cross-reactivity with some other intracellular target. The results further show that the potency of simple dipeptide boronic acid-based inhibitors can be combined with selectivity against DPP8/9 in vivo to produce agents with a relatively wide therapeutic index (>500) in rodents. PMID:18783201

  18. Effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters of lymphocytes in intact animals and animals with experimental autoimmune process.

    PubMed

    Robinson, M V; Mel'nikova, E V; Trufakin, V A

    2014-11-01

    The effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters were studied in animals with experimental autoimmune process. The effects of the drug administered in preventive (before manifestation of autoimmune processes) and therapeutic (after manifestation of autoimmune process) modes were studied. PMID:25408522

  19. Leishmania inhibitor of serine peptidase prevents TLR4 activation by neutrophil elastase promoting parasite survival in murine macrophages

    PubMed Central

    Faria, Marilia S.; Reis, Flavia C. G.; Azevedo-Pereira, Ricardo L.; Morrison, Lesley S.; Mottram, Jeremy C.; Lima, Ana Paula C. A.

    2011-01-01

    Leishmania major is a protozoan parasite that causes skin ulcerations in cutaneous leishmaniasis. In the mammalian host, the parasite resides in professional phagocytes and has evolved to avoid killing by macrophages. We identified L. major genes encoding inhibitors of serine peptidases, ISPs, which are orthologues of bacterial ecotins and found that ISP2 inhibits trypsin-fold S1A family peptidases. Here we show that L. major mutants deficient in ISP2 and ISP3 (Δisp2/3) trigger higher phagocytosis by macrophages through a combined action of the complement type-3 receptor (CR3), toll-like receptor 4 (TLR4) and unregulated activity of neutrophil elastase (NE), leading to parasite killing. While all three components are required to mediate enhanced parasite uptake, only TLR4 and NE are necessary to promote parasite killing after infection. We found that the production of superoxide by macrophages in the absence of ISP2 is the main mechanism controlling the intracellular infection. Furthermore, we show that NE modulates macrophage infection in vivo, and that the lack of ISP leads to reduced parasite burdens at later stages of the infection. Our findings support the hypothesis that ISPs function to prevent the activation of TLR4 by NE during the Leishmania-macrophage interaction in order to promote parasite survival and growth. PMID:21098233

  20. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  1. Effect of Dipeptidyl Peptidase-4 Inhibitor on All-Cause Mortality and Coronary Revascularization in Diabetic Patients

    PubMed Central

    Park, Hyo Eun; Jeon, Jooyeong; Hwang, In-Chang; Sung, Jidong; Lee, Seung-Pyo; Kim, Hyung-Kwan; Cho, Goo-Yeong; Sohn, Dae-Won

    2015-01-01

    Background Anti-atherosclerotic effect of dipeptidyl peptidase-4 (DPP-4) inhibitors has been suggested from previous studies, and yet, its association with cardiovascular outcome has not been demonstrated. We aimed to evaluate the effect of DPP-4 inhibitors in reducing mortality and coronary revascularization, in association with baseline coronary computed tomography (CT). Methods The current study was performed as a multi-center, retrospective observational cohort study. All subjects with diabetes mellitus who had diagnostic CT during 2007-2011 were included, and 1866 DPP-4 inhibitor users and 5179 non-users were compared for outcome. The primary outcome was all-cause mortality and secondary outcome included any coronary revascularization therapy after 90 days of CT in addition to all-cause mortality. Results DPP-4 inhibitors users had significantly less adverse events [0.8% vs. 4.4% in users vs. non-users, adjusted hazard ratios (HR) 0.220, 95% confidence interval (CI) 0.102-0.474, p = 0.0001 for primary outcome, 4.1% vs. 7.6% in users vs. non-users, HR 0.517, 95% CI 0.363-0.735, p = 0.0002 for secondary outcome, adjusted variables were age, sex, presence of hypertension, high sensitivity C-reactive protein, glycated hemoglobin, statin use, coronary artery calcium score and degree of stenosis]. Interestingly, DPP-4 inhibitor seemed to be beneficial only in subjects without significant stenosis (adjusted HR 0.148, p = 0.0013 and adjusted HR 0.525, p = 0.0081 for primary and secondary outcome). Conclusion DPP-4 inhibitor is associated with reduced all-cause mortality and coronary revascularization in diabetic patients. Such beneficial effect was significant only in those without significant coronary stenosis, which implies that DPP-4 inhibitor may have beneficial effect in earlier stage of atherosclerosis. PMID:26755932

  2. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  3. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate.

    PubMed

    Rout, Subhashree; Mahapatra, Rajani Kanta

    2016-08-01

    M17 LAP (Leucine Amino Peptidase) plays an important role in the hydrolysis of amino acids essential for growth and development of Plasmodium vivax (Pv), the pathogen causing malaria. In this paper a homology model of PvLAP was generated using MODELLER v9.15. From different in-silico methods such as structure based, ligand based and de novo drug designing a total of 90 compounds were selected for docking studies. A final list of 10 compounds was prepared. The study reported the identification of 2-[(3-azaniumyl-2-hydroxy-4-phenylbutanoyl) amino]-4-methylpentanoate as the best inhibitor in terms of docking score and pharmacophoric features. The reliability of the binding mode of the inhibitor is confirmed by molecular dynamics (MD) simulation study with GROMACS software for a simulation time of 20ns in water environment. Finally, in silico ADMET analysis of the inhibitors using MedChem Designer v3 evaluated the drug likeness of the best hits to be considered for industrial pharmaceutical research. PMID:27470355

  4. Pyridoxine hydroxamic acids as novel HIV-integrase inhibitors.

    PubMed

    Stranix, Brent R; Wu, Jinzi J; Milot, Guy; Beaulieu, Françis; Bouchard, Jean-Emanuel; Gouveia, Kristine; Forte, André; Garde, Seema; Wang, Zhigang; Mouscadet, Jean-François; Delelis, Olivier; Xiao, Yong

    2016-02-15

    A series of pyridoxine hydroxamic acid analog bearing a 5-aryl-spacers were synthesized. Evaluation of these novel HIV integrase complex inhibitors revealed compounds with high potency against wild-type HIV virus. PMID:26826732

  5. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis

    PubMed Central

    Moore, Nicholas; Arnaud, Mickael; Robinson, Philip; Raschi, Emanuel; De Ponti, Fabrizio; Bégaud, Bernard; Pariente, Antoine

    2016-01-01

    Objective To quantify the risk of hypoglycaemia associated with the concomitant use of dipeptidyl peptidase-4 (DPP-4) inhibitors and sulphonylureas compared with placebo and sulphonylureas. Design Systematic review and meta-analysis. Data sources Medline, ISI Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, and clinicaltrial.gov were searched without any language restriction. Study selection Placebo controlled randomised trials comprising at least 50 participants with type 2 diabetes treated with DPP-4 inhibitors and sulphonylureas. Review methods Risk of bias in each trial was assessed using the Cochrane Collaboration tool. The risk ratio of hypoglycaemia with 95% confidence intervals was computed for each study and then pooled using fixed effect models (Mantel Haenszel method) or random effect models, when appropriate. Subgroup analyses were also performed (eg, dose of DPP-4 inhibitors). The number needed to harm (NNH) was estimated according to treatment duration. Results 10 studies were included, representing a total of 6546 participants (4020 received DPP-4 inhibitors plus sulphonylureas, 2526 placebo plus sulphonylureas). The risk ratio of hypoglycaemia was 1.52 (95% confidence interval 1.29 to 1.80). The NNH was 17 (95% confidence interval 11 to 30) for a treatment duration of six months or less, 15 (9 to 26) for 6.1 to 12 months, and 8 (5 to 15) for more than one year. In subgroup analysis, no difference was found between full and low doses of DPP-4 inhibitors: the risk ratio related to full dose DPP-4 inhibitors was 1.66 (1.34 to 2.06), whereas the increased risk ratio related to low dose DPP-4 inhibitors did not reach statistical significance (1.33, 0.92 to 1.94). Conclusions Addition of DPP-4 inhibitors to sulphonylurea to treat people with type 2 diabetes is associated with a 50% increased risk of hypoglycaemia and to one excess case of hypoglycaemia for every 17 patients in the first six months of treatment. This

  6. Treatment progression in sulfonylurea and dipeptidyl peptidase-4 inhibitor cohorts of type 2 diabetes patients on metformin

    PubMed Central

    Peng, Xiaomei; Jiang, Dingfeng; Liu, Dongju; Varnado, Oralee J; Bae, Jay P

    2016-01-01

    Background Metformin is an oral antidiabetic drug (OAD) widely used as first-line therapy in type 2 diabetes (T2D) treatments. Numerous treatment pathways after metformin failure exist. It is important to understand how treatment choices influence subsequent therapy progressions. This retrospective study compares adherence to, persistence with, and treatment progression in sulfonylurea (SU) and dipeptidyl peptidase-4 (DPP-4) inhibitor patient cohorts with T2D on metformin. Methods Using health insurance claims data, matched patient cohorts were created and OAD use was compared in patients with T2D initiating SU or DPP-4 inhibitors (index drugs) since January 1, 2010, to December 31, 2010, with background metformin therapy. Propensity score matching adjusted for possible selection bias. Persistence was measured via Cox regression as days to a ≥60-day gap in index drug possession; adherence was defined as proportion of days covered (PDC) ≥80%. Evolving treatment patterns were traced at 6-month intervals for 24 months following index drug discontinuation. Results From among 19,621 and 7,484 patients in the SU and DPP-4 inhibitor cohorts, respectively, 6,758 patient pairs were matched. Persistence at 12 months in the SU cohort was 48.0% compared to 52.5% for the DPP-4 inhibitor cohort. PDC adherence (mean [SD]) during the 12-month follow-up period was 63.3 (29.7) for the SU cohort and 65.5 (28.7) for the DPP-4 inhibitor cohort. PDC ≥80% was 40.5% and 43.4% in the SU and DPP-4 inhibitor cohorts, respectively. A higher percentage of patients in the SU cohort remained untreated. Following index drug discontinuation, monotherapy was more common in the SU cohort, while use of two or three OADs was more common in the DPP-4 inhibitor cohort. Insulin therapy initiation was higher in the SU cohort. Conclusion Slightly better adherence and persistence were seen in the DPP-4 inhibitor cohort. Adherence and persistence remain a challenge to many patients; understanding

  7. Dipeptidyl peptidase-4 inhibitors can minimize the hypoglycaemic burden and enhance safety in elderly people with diabetes.

    PubMed

    Avogaro, A; Dardano, A; de Kreutzenberg, S V; Del Prato, S

    2015-02-01

    The prevalence of type 2 diabetes mellitus (T2DM) among elderly people is increasing. Often associated with disabilities/comorbidities, T2DM lowers the chances of successful aging and is independently associated with frailty and an increased risk of hypoglycaemia, which can be further exacerbated by antihyperglycaemic treatment. From this perspective, the clinical management of T2DM in the elderly is challenging and requires individualization of optimum glycaemic targets depending on comorbidities, cognitive functioning and ability to recognize and self-manage the disease. The lack of solid evidence-based medicine supporting treatment guidelines for older people with diabetes further complicates the matter. Several classes of medicine for the treatment of T2DM are currently available and different drug combinations are often required to achieve individualized glycaemic goals. Many of these drugs, however, carry disadvantages such as the propensity to cause weight gain or hypoglycaemia. Dipeptidyl peptidase-4 (DPP-4) inhibitors, a recent addition to the pharmacological armamentarium, have become widely accepted in clinical practice because of their efficacy, low risk of hypoglycaemia, neutral effect on body weight, and apparently greater safety in patients with kidney failure. Although more information is needed to reach definitive conclusions, growing evidence suggests that DPP-4 inhibitors may become a valuable component in the pharmacological management of elderly people with T2DM. The present review aims to delineate the potential advantages of this pharmacological approach in the treatment of elderly people with T2DM. PMID:24867662

  8. ASP4000, a slow-binding dipeptidyl peptidase 4 inhibitor, has antihyperglycemic activity of long duration in Zucker fatty rats.

    PubMed

    Tanaka-Amino, Keiko; Matsumoto, Kazumi; Hatakeyama, Yoshifumi; Takakura, Shoji; Mutoh, Seitaro

    2010-03-01

    ASP4000 ((2S)-1-{[(1R,3S,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]hept-3-yl]carbonyl}-2-pyrrolidinecarbonitrile hydrochloride) is a novel, potent and selective dipeptidyl peptidase 4 (DPP IV, EC 3.4.14.5) inhibitor (Keiko Tanaka-Amino et al. in Eur J pharmacol 59:444-449, 2008). The aim of the present study was to characterize the kinetic profile of and identify the long duration effect of the antihyperglycemic activity of ASP4000. ASP4000 was found to inhibit human recombinant DPP4 activity with a K(i) of 1.05 nM, a k(on) value of 22.3 x 10(5) M(-1) s(-1), and a k (off) of 2.35 x 10(-3) M(-1) s(-1), with higher affinity than that of vildagliptin. The kinetic studies indicate that both the formation and dissociation of ASP4000/DPP4 complex were faster than those of vildagliptin, and that ASP4000 slow-bindingly inhibits DPP4 with a different mode of inhibition than vildagliptin. In addition, ASP4000 augmented the insulin response and ameliorated the glucose excursion during the oral glucose tolerance test in Zucker fatty rats at 4 h post dosing. ASP4000 is expected to be a promising, long duration DPP4 inhibitor for type 2 diabetes. PMID:19238312

  9. Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor.

    PubMed

    Meyer-Hoffert, Ulf; Wu, Zhihong; Schröder, Jens-Michael

    2009-01-01

    Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5. PMID:19190773

  10. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis.

    PubMed

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-Ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-08-01

    Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM.Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group.There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (-0.74 ± 1.57, -0.39 ± 1.45, and -0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (-1.58 ± 0.95, -0.46 ± 0.98, -0.04 ± 1.22, respectively, P = 0.001).There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  11. Efficacy of different dipeptidyl peptidase-4 (DPP-4) inhibitors on metabolic parameters in patients with type 2 diabetes undergoing dialysis

    PubMed Central

    Park, Se Hee; Nam, Joo Young; Han, Eugene; Lee, Yong-ho; Lee, Byung-Wan; Kim, Beom Seok; Cha, Bong-Soo; Kim, Chul Sik; Kang, Eun Seok

    2016-01-01

    Abstract Hyperglycemia is associated with increased mortality and morbidity in patients with type 2 diabetes mellitus (T2DM) who are undergoing dialysis. Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been widely used in end-stage renal disease (ESRD) patients with T2DM, there are few studies on their efficacy in this population. We studied the effect of 3 different DPP-4 inhibitors on metabolic parameters in ESRD patients with T2DM. Two hundred ESRD patients with T2DM who were treated with DPP-4 inhibitors (sitagliptin, vildagliptin, or linagliptin) were enrolled and analyzed retrospectively. The changes in glycated hemoglobin (HbA1c), fasting plasma glucose, and lipid profiles were assessed before and after 3 months of treatment with DPP-4 inhibitors. Subgroup analysis was done for each hemodialysis (HD) and peritoneal dialysis (PD) group. There was no significant difference in the decrease in the HbA1c level among sitagliptin, vildagliptin, and linagliptin treatment groups (−0.74 ± 1.57, −0.39 ± 1.45, and −0.08 ± 1.40, respectively, P = 0.076). The changes in fasting blood glucose and lipid profiles were also not significantly different. In HD patients (n = 115), there was no difference in the HbA1c level among the 3 groups. In contrast, in PD patients (n = 85), HbA1c was reduced more after 3 months of treatment with sitagliptin compared with vildagliptin and linagliptin (−1.58 ± 0.95, −0.46 ± 0.98, −0.04 ± 1.22, respectively, P = 0.001). There was no significant difference in the glucose-lowering effect between the different DPP-4 inhibitors tested in ESRD patients. In PD patients, sitagliptin tends to lower the HbA1c level more than the other inhibitors. The glucose-lowering efficacy of the 3 DPP-4 inhibitors was comparable. PMID:27512877

  12. Dipeptidyl Peptidase-4 Inhibitor Decreases Abdominal Aortic Aneurysm Formation through GLP-1-Dependent Monocytic Activity in Mice

    PubMed Central

    Lu, Hsin Ying; Huang, Chun Yao; Shih, Chun Ming; Chang, Wei Hung; Tsai, Chein Sung; Lin, Feng Yen; Shih, Chun Che

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a life-threatening situation affecting almost 10% of elders. There has been no effective medication for AAA other than surgical intervention. Dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to have a protective effect on cardiovascular disease. Whether DPP-4 inhibitors may be beneficial in the treatment of AAA is unclear. We investigated the effects of DPP-4 inhibitor sitagliptin on the angiotensin II (Ang II)-infused AAA formation in apoE-deficient (apoE-/-) mice. Mice with induced AAA were treated with placebo or 2.5, 5 or 10 mg/kg/day sitagliptin. Ang II-infused apoE-/- mice exhibited a 55.6% incidence of AAA formation, but treatment with sitagliptin decreased AAA formation. Specifically, administered sitagliptin in Ang II-infused mice exhibited decreased expansion of the suprarenal aorta, reduced elastin lamina degradation of the aorta, and diminished vascular inflammation by macrophage infiltration. Treatment with sitagliptin decreased gelatinolytic activity and apoptotic cells in aorta tissues. Sitaglipitn, additionally, was associated with increased levels of plasma active glucagon-like peptide-1 (GLP-1). In vitro studies, GLP-1 decreased reactive oxygen species (ROS) production, cell migration, and MMP-2 as well as MMP-9 activity in Ang II-stimulated monocytic cells. The results conclude that oral administration of sitagliptin can prevent abdominal aortic aneurysm formation in Ang II-infused apoE-/-mice, at least in part, by increasing of GLP-1 activity, decreasing MMP-2 and MMP-9 production from macrophage infiltration. The results indicate that sitagliptin may have therapeutic potential in preventing the development of AAA. PMID:25876091

  13. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choe, Mi Sun; Kim, Sung-Woo; Lee, In-Kyu

    2016-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. Methods Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. Results Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. Conclusion Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes. PMID:27098503

  14. Potential for combination of dipeptidyl peptidase-4 inhibitors and sodium-glucose co-transporter-2 inhibitors for the treatment of type 2 diabetes

    PubMed Central

    Sharma, M D

    2015-01-01

    In individuals with advanced type 2 diabetes (T2DM), combination therapy is often unavoidable to maintain glycaemic control. Currently metformin is considered the first line of defence, but many patients experience gastrointestinal adverse events, necessitating an alternative treatment approach. Established therapeutic classes, such as sulphonylureas and thiazolidinediones, have some properties undesirable in individuals with T2DM, such as hypoglycaemia risk, weight gain and fluid retention, highlighting the need for newer agents with more favourable safety profiles that can be combined and used at all stages of T2DM. New treatment strategies have focused on both dipeptidyl peptidase (DPP)-4 inhibitors, which improve hyperglycaemia by stimulating insulin secretion in a glucose-dependent fashion and suppressing glucagon secretion, and sodium-glucose co-transporter-2 (SGLT2) inhibitors, which reduce renal glucose reabsorption and induce urinary glucose excretion, thereby lowering plasma glucose. The potential complimentary mechanism of action and good tolerance profile of these two classes of agents make them attractive treatment options for combination therapy with any of the existing glucose-lowering agents, including insulin. Together, the DPP-4 and SGLT2 inhibitors fulfill a need for treatments with mechanisms of action that can be used in combination with a low risk of adverse events, such as hypoglycaemia or weight gain. PMID:25690671

  15. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure

    PubMed Central

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  16. Cardiovascular safety of dipeptidyl peptidase-4 inhibitors: recent evidence on heart failure.

    PubMed

    Kankanala, Saumya Reddy; Syed, Rafay; Gong, Quan; Ren, Boxu; Rao, Xiaoquan; Zhong, Jixin

    2016-01-01

    The cardiovascular safety of DPP4 inhibitors as a class, especially in regards to heart failure, has been questioned after the publication of first trials (SAVOR-TIMI 53 and EXAMINE) assessing the cardiovascular risks of DPP4 inhibitors alogliptin and sitagliptin in 2013. Although there were no increased risks in composite cardiovascular outcomes, the SAVOR-TIMI 53 trial reported a 27% increase in hospitalization for heart failure in diabetic patients who received the DPP4 inhibitor saxagliptin. There has been substantial increase in knowledge on the heart failure effect of DPP4 inhibition since 2013. This review will summarize the role of the DPP4/incretin axis in heart failure and discuss the findings from recent large scale clinical trials assessing the effects of DPP4 inhibitors on heart failure. PMID:27347354

  17. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Su, Mingbo; Wang, Jiang; Deng, Guanghui; Deng, Sisi; Li, Zeng; Tang, Chunlan; Li, Jingya; Li, Jia; Zhao, Linxiang; Jiang, Hualiang; Liu, Hong

    2014-03-21

    A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h). PMID:24531224

  18. Treatment with metformin and a dipeptidyl peptidase-4 inhibitor elevates apelin levels in patients with type 2 diabetes mellitus

    PubMed Central

    Fan, Yujuan; Zhang, Yu; Li, Xuesong; Zheng, Hui; Song, Yuping; Zhang, Ning; Shen, Chunfang; Fan, Xiaofang; Ren, Fengdong; Shen, Jiayi; Ren, Guoguang; Yang, Jialin

    2015-01-01

    Background The objective of this study was to assess the effects of metformin monotherapy or combined treatment with a dipeptidyl peptidase-4 inhibitor (vildagliptin) on apelin levels in patients with type 2 diabetes mellitus. Methods Twenty-five patients with poor glycemic control (glycosylated hemoglobin >6.5% [48 mmol/mol]) taking 1,000 mg of metformin daily and 25 healthy controls matched for age and body mass index were enrolled in this study. Anthropometric parameters, glycemic and lipid profile, insulin resistance (homeostasis model assessment of insulin resistance index), and apelin levels were measured at baseline and at 12-week and 24-week visits. Results At baseline, apelin levels were higher in the T2DM patients than in the controls (1.93±1.81 ng/mL versus 6.09±4.90 ng/mL; P<0.05). After 12 weeks, when vildagliptin was added, fasting blood glucose and glycosylated hemoglobin decreased, and apelin levels increased further (from 6.09±4.90 ng/mL to 24.23±12.59 ng/mL; P<0.05). Follow-up at 24 weeks showed no further improvement in the glycemic profile and no further increase in apelin levels. Conclusion Both metformin and vildagliptin favorably changed glycemic indices and apelin levels. For patients inadequately controlled on a low dose of metformin, addition of vildagliptin may be helpful. PMID:26316706

  19. Gemigliptin, a novel dipeptidyl peptidase-4 inhibitor, exhibits potent anti-glycation properties in vitro and in vivo.

    PubMed

    Jung, Eunsoo; Kim, Junghyun; Kim, Sung Ho; Kim, Sanghwa; Cho, Myung-Haing

    2014-12-01

    This study evaluated the inhibitory effects of gemigliptin, a highly selective dipeptidyl peptidase-4 inhibitor, on the formation of advanced glycation end products (AGEs) and AGE cross-links with proteins in in vitro as well as in type 2 diabetic db/db mice. In in vitro assay, gemigliptin dose-dependently inhibited methylglyoxal-modified AGE-bovine serum albumin (BSA) formation (IC50=11.69 mM). AGE-collagen cross-linking assays showed that gemigliptin had a potent inhibitory effect (IC50=1.39 mM) on AGE-BSA cross-links to rat tail tendon collagen, and its activity was stronger than aminoguanidine (IC50=26.4 mM). In addition, gemigliptin directly trapped methylglyoxal in a concentration-dependent manner in vitro. To determine whether gemigliptin inhibits the in vivo glycation processes, gemigliptin (100 mg/kg/day) was orally administered into type 2 diabetic db/db mice for 12 weeks. Elevated serum levels of AGEs in db/db mice were suppressed by the administration of gemigliptin. These inhibitory effects of gemigliptin on the glycation process in both in vitro and in vivo suggest its therapeutic potential for ameliorating AGE-related diabetic complications. PMID:25448307

  20. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity. PMID:27438064

  1. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes.

    PubMed

    Jamaluddin, Jazlina Liza; Huri, Hasniza Zaman; Vethakkan, Shireene Ratna; Mustafa, Norlaila

    2014-02-01

    In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease. PMID:24444412

  2. Dipeptidyl peptidase 4 inhibitor improves brain insulin sensitivity, but fails to prevent cognitive impairment in orchiectomy obese rats.

    PubMed

    Pintana, Hiranya; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2015-08-01

    It is unclear whether the dipeptidyl peptidase 4 (DPP4) inhibitor can counteract brain insulin resistance, brain mitochondrial dysfunction, impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived obese rats. We hypothesized that DPP4 inhibitor vildagliptin improves cognitive function in testosterone-deprived obese rats by restoring brain insulin sensitivity, brain mitochondrial function and hippocampal synaptic plasticity. Thirty male Wistar rats received either a sham-operated (S, n=6) or bilateral orchiectomy (ORX, n=24). ORX rats were divided into two groups and fed with either a normal diet (ND (NDO)) or a high-fat diet (HFO) for 12 weeks. Then, ORX rats in each dietary group were divided into two subgroups (n=6/subgroup) to receive either a vehicle or vildagliptin (3 mg/kg per day, p.o.) for 4 weeks. After treatment, cognitive function, metabolic parameters, brain insulin sensitivity, hippocampal synaptic plasticity and brain mitochondrial function were determined in each rat. We found that HFO rats exhibited peripheral and brain insulin resistance, brain mitochondrial dysfunction, impaired hippocampal synaptic plasticity and cognitive decline. NDO rats did not develop peripheral and brain insulin resistance. However, impaired hippocampal synaptic plasticity and cognitive decline occurred. Vildagliptin significantly improved peripheral insulin sensitivity, restored brain insulin sensitivity and decreased brain mitochondrial reactive oxygen species production in HFO rats. However, vildagliptin did not restore hippocampal synaptic plasticity and cognitive function in both NDO and HFO rats. These findings suggest that vildagliptin could not counteract the impairment of hippocampal synaptic plasticity and cognitive decline in testosterone-deprived subjects, despite its effects on improved peripheral and brain insulin sensitivity as well as brain mitochondrial function. PMID:26016746

  3. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects.

    PubMed

    Rhee, Su-Jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration-time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01-1.12) and 1.02 (0.99-1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration-time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79-0.89) and 0.94 (0.89-0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  4. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats.

    PubMed

    Uchii, Masako; Kimoto, Naoya; Sakai, Mariko; Kitayama, Tetsuya; Kunori, Shunji

    2016-07-15

    Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats. PMID:27063445

  5. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    PubMed Central

    Rhee, Su-jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01–1.12) and 1.02 (0.99–1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79–0.89) and 0.94 (0.89–0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  6. Clinical Characteristics of the Responders to Dipeptidyl Peptidase-4 Inhibitors in Korean Subjects with Type 2 Diabetes

    PubMed Central

    Oh, Tae Jung; Bae, Jae Hyun; Kim, Yeong Gi; Park, Kyeong Seon; Cho, Young Min; Park, Kyong Soo; Kim, Seong Yeon

    2013-01-01

    We investigated characteristics associated with the efficacy of dipeptidyl peptidase-4 inhibitors (DPP4i) in Korean patients with type 2 diabetes. We reviewed medical records of 477 patients who had taken sitagliptin or vildagliptin longer than 40 weeks. Response to DPP4i was evaluated with HbA1c change after therapy (ΔHbA1c). The Student's t-test between good responders (GR: ΔHbA1c > 1.0%) and poor responders (PR: ΔHbA1c < 0.5%), a correlation analysis among clinical parameters, and a linear multivariate regression analysis were performed. The mean age was 60 yr, duration of diabetes 11 yr and HbA1c was 8.1%. Baseline fasting plasma glucose (FPG), HbA1c, C-peptide, and creatinine were significantly higher in the GR compared to the PR. Duration of diabetes, FPG, HbA1c, C-peptide and creatinine were significantly correlated with ΔHbA1c. In the multivariate analysis, age (r2 = 0.006), duration of diabetes (r2 = 0.019), HbA1c (r2 = 0.296), and creatinine levels (r2 = 0.024) were independent predictors for the response to DPP4i. Body mass index and insulin resistance were not associated with the response to DPP4i. In conclusion, better response to DPP4i would be expected in Korean patients with type 2 diabetes who have higher baseline HbA1c and creatinine levels with shorter duration of diabetes. PMID:23772153

  7. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    PubMed Central

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  8. Grassypeptolides As Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation

    PubMed Central

    Kwan, Jason C.; Liu, Yanxia; Ratnayake, Ranjala; Hatano, Ryo; Kuribara, Akiko; Morimoto, Chiko; Ohnuma, Kei; Paul, Valerie J.; Ye, Tao

    2014-01-01

    Natural products made by marine cyanobacteria are often highly modified peptides and depsipeptides that have the potential to act as inhibitors for proteases. In the interest of finding novel protease inhibition activity and selectivity grassypeptolide A (1) was screened against a panel of proteases and found to selectively inhibit DPP8 over DPP4. Grassypeptolides were also found to inhibit IL-2 production and proliferation in activated T-cells, consistent with a putative role of DPP8 in the immune system. These effects were also observed in Jurkat cells, and DPP activity in Jurkat cell cytosol was shown to be inhibited by grassypeptolides. In silico docking suggests two possible binding modes of grassypeptolides – both at the active site of DPP8 and at one of the entrances to the internal cavity. Collectively these results suggest that grassypeptolides may be useful tool compounds in the study of DPP8 function. PMID:24591193

  9. Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model.

    PubMed

    Yamamoto, Tatsuo; Hirasawa, Serabi; Wroblewska, Barbara; Grajkowska, Ewa; Zhou, Jia; Kozikowski, Alan; Wroblewski, Jarda; Neale, Joseph H

    2004-07-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) acts as an agonist at group II metabotropic glutamate receptors (mGluRs). NAAG is inactivated by extracellular peptidase activity yielding glutamate and N-acetylaspartate. We recently developed a series of potent NAAG peptidase inhibitors, including ZJ-11, ZJ-17 and ZJ-43. In the present study, we examined the effects of intrathecally administered ZJ-11 and ZJ-17 and intravenously administered ZJ-11 and ZJ-43 in the rat formalin test (an inflammatory pain model) and in the rat partial sciatic nerve ligation model (a neuropathic pain model). Intrathecal injection of ZJ-11 or ZJ-17 or intravenous injection of ZJ-11 or ZJ-43 suppressed both phases of the agitation behaviour induced by paw formalin injection. Intrathecal and intravenous injection of ZJ-11 suppressed the expression of Fos-like immunoreactivity, induced by paw formalin injection, in laminae I-II in segments L4-L5 of the spinal cord, suggesting an action on sensory spinal transmission. Partial sciatic nerve ligation induced significant mechanical allodynia 7 days after the nerve injury. Intrathecal injection of ZJ-11 or ZJ-17 or intravenous administration of ZJ-11 or ZJ-43 attenuated the level of mechanical allodynia induced by this nerve ligation. These effects of intrathecally or intravenously administered ZJ compounds in both the formalin test and the partial sciatic nerve ligation model were completely antagonized by pretreatment with LY-341495, a highly selective group II mGluR antagonist. Thus, elevation of extracellular NAAG, induced by the inhibition of NAAG peptidase, activates group II mGluRs and produces an analgesic effect in neuropathic and inflammatory and pain models. In contrast, peptidase inhibition did not affect the threshold for withdrawal from a noxious mechanical stimulus or from an acute thermal stimulus in the hotplate test. PMID:15233757

  10. Synergy between Colistin and the Signal Peptidase Inhibitor MD3 Is Dependent on the Mechanism of Colistin Resistance in Acinetobacter baumannii.

    PubMed

    Martínez-Guitián, Marta; Vázquez-Ucha, Juan C; Odingo, Joshua; Parish, Tanya; Poza, Margarita; Waite, Richard D; Bou, German; Wareham, David W; Beceiro, Alejandro

    2016-07-01

    Synergy between colistin and the signal peptidase inhibitor MD3 was tested against isogenic mutants and clinical pairs of Acinetobacter baumannii isolates. Checkerboard assays and growth curves showed synergy against both colistin-susceptible strains (fractional inhibitory concentration index [FICindex] = 0.13 to 0.24) and colistin-resistant strains with mutations in pmrB and phosphoethanolamine modification of lipid A (FICindex = 0.14 to 0.25) but not against colistin-resistant Δlpx strains with loss of lipopolysaccharide (FICindex = 0.75 to 1). A colistin/MD3 combination would need to be targeted to strains with specific colistin resistance mechanisms. PMID:27139471

  11. Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM. PMID:27042423

  12. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3–5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  13. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3-5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  14. Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors combination therapy in type 2 diabetes: A systematic review of current evidence.

    PubMed

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    As type 2 diabetes mellitus (T2DM) is a chronic and progressive disease with multiple pathophysiologic defects, no single anti-diabetic agent can tackle all these multi-factorial pathways. Consequently, multiple agents working through the different mechanisms will be required for the optimal glycemic control. Moreover, the combination therapies of different anti-diabetic agents may complement their actions and possibly act synergistic. Furthermore, these combinations could possess the additional properties to counter their undesired physiological compensatory response. Sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are newly emerging class of drugs, with a great potential to reduce glucose effectively with an additional quality of lowering cardiovascular events as demonstrated very recently by one of the agents of this class. However, increase in endogenous glucose production (EGP) from the liver, either due to the increase in glucagon or compensatory response to glucosuria can offset the glucose-lowering potential of SGLT-2I. Interestingly, another class of drugs such as dipeptidyl peptidase-4 inhibitors (DPP-4I) effectively decrease glucagon and reduce EGP. In light of these findings, combination therapies with SGLT-2I and DPP-4I are particularly appealing and are expected to produce a synergistic effect. Preclinical studies of combination therapies with DPP-4I and SGLT-2I have already demonstrated a significant lowering of hemoglobin A1c potential and human studies also find no drug-drug interaction between these agents. This article aims to systematically review the efficacy and safety of combination therapy of SGLT-2I and DPP-4I in T2DM. PMID:27042423

  15. A concise review of the bioanalytical methods for the quantitation of sitagliptin, an important dipeptidyl peptidase-4 (DPP4) inhibitor, utilized for the characterization of the drug.

    PubMed

    Suresh, P S; Srinivas, Nuggehally R; Mullangi, Ramesh

    2016-05-01

    Inhibition of dipeptidyl peptidase-4 (DPP4) is an emerging therapeutic approach for treating type 2 diabetes and has revolutionized the concept of diabetes management. Sitagliptin is the first approved orally active, potent, selective and nonpeptidomimetic DPP4 inhibitor. Incidence of hypoglycemia and weight gain is negligible with sitagliptin treatment. It is used as monotherapy or in combination with other anti-diabetic drugs to treat type 2 diabetes. There are numerous bioanalytical methods published for the analysis of sitagliptin in preclinical and clinical samples. This review focuses on the various HPLC and LC-MS/MS methods that have been used to analyze sitagliptin in various biological matrices. A small section is devoted to the bioanalysis of other DPP4 inhibitors such as vildagliptin, saxagliptin and linagliptin. This review provides key information in a concise manner regarding sample processing options, chromatographic/detection conditions and validation parameters of the chosen methods for sitagliptin and other DPP4 inhibitors. PMID:26873580

  16. Use of Dipeptidyl-Peptidase-4 Inhibitors and the Risk of Pneumonia: A Population-Based Cohort Study

    PubMed Central

    Wvan der Zanden, Rogier; de Vries, Frank; Lalmohamed, Arief; Driessen, Johanna H. M.; de Boer, Anthonius; Rohde, Gernot; Neef, Cees; den Heijer, Casper

    2015-01-01

    Background Dipeptidyl-peptidase-4 inhibitors (DPP4Is) are drugs for the treatment of type 2 diabetes mellitus (T2DM). There is increasing evidence that DPP4Is may result in suppression of the immune system and may increase the risk of infections such as pneumonia. Aim of this study was to evaluate the association between the use of DPP4Is and the risk of pneumonia in a population-based study. Methods We conducted a population-based cohort study using data from the world’s largest primary care database, the UK Clinical Practice Research Datalink (CPRD). We selected all users of non-insulin antidiabetic drugs (NIADs), including DPP4Is, between 2007 and 2012. To each NIAD user, we matched randomly selected non-users. The NIAD user’s first prescription defined the index date, which was then assigned to the matched non-users. Patients were followed from their first prescription until end of data collection or the first event of pneumonia, whichever came first. Cox regression analysis estimated the association between pneumonia and current use of DPP4Is versus 1) current use of other NIADs and 2) non-users. DPP4I use was then stratified to daily and cumulative dose. Analyses were statistically adjusted for age, sex, lifestyle factors and comorbidities and concomitant use of various other drugs. Results Risk of pneumonia was not increased with current DPP4I use versus use of other NIADs, adjusted Hazard Ratio (HR) 0.70; 95% Confidence Interval (CI) 0.55–0.91. Also higher cumulative doses or daily doses did not further increase risk of pneumonia. Conclusion We found no increased risk of pneumonia in T2DM patients using DPP4Is compared to T2DM patients using other NIADs. Our finding is in line with direct and indirect evidence from observational studies and RCTs. There is probably no need to avoid prescribing of DPP4Is to elderly patients who are at risk of pneumonia. PMID:26468883

  17. Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229), a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers

    PubMed Central

    Gu, Namyi; Park, Min Kyu; Kim, Tae-Eun; Bahng, Mi Young; Lim, Kyoung Soo; Cho, Sang-Heon; Yoon, Seo Hyun; Cho, Joo-Youn; Jang, In-Jin; Yu, Kyung-Sang

    2014-01-01

    Purpose Evogliptin (DA-1229) is a novel, potent, and selective dipeptidyl peptidase IV (DPP-IV) inhibitor in clinical development for the treatment of type 2 diabetes mellitus. This study aimed to investigate the pharmacokinetic and pharmacodynamic profiles and tolerability of evogliptin after repeated oral administration in healthy subjects. Patients and methods A block-randomized, double-blind, placebo-controlled, multiple-dose, dose-escalation study was performed in a total of 30 subjects. Repeated once-daily doses of 5, 10, or 20 mg evogliptin or the same doses of placebo were orally administered to ten subjects in each dosage group for 10 days. Subjects in each group were randomized to receive evogliptin or placebo with a ratio of 8:2. Pharmacokinetics of evogliptin were evaluated, with its concentrations in serial plasma and urine samples collected following the first and last administrations. DPP-IV activity and glucagon-like peptide-1, glucose, and insulin levels were quantified to evaluate evogliptin’s pharmacodynamics on the first and last dosing days. Results All participants completed the study without any serious or severe adverse event. The evogliptin plasma concentration reached its peak within 4–5 hours and decreased relatively slowly, with a terminal elimination half-life of 33–39 hours. Repeated administration resulted in a 1.4- to 1.5-fold accumulation. Evogliptin’s systemic exposure and inhibition of plasma DPP-IV activity increased in a dose-dependent manner. Inhibition of DPP-IV activity >80% was sustained over 24 hours in all evogliptin dose groups and provided an increase in postprandial active glucagon-like peptide-1 levels by 1.5- to 2.4-fold. Postprandial glucose levels in the evogliptin-treated groups were reduced 20%–35% compared to placebo, but were not accompanied by increased insulin levels. Conclusion Repeated administration of evogliptin in healthy subjects was well tolerated and exhibited linear pharmacokinetics within

  18. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri.

    PubMed

    Ogata, T; Higuchi, H; Mochida, S; Matsumoto, H; Kato, A; Endo, T; Kaji, A; Kaji, H

    1992-11-01

    An aqueous extract of Phyllanthus niruri (Euphorbiaceae) inhibited human immunodeficiency virus type-1 reverse transcriptase (HIV-1-RT). The inhibitor against HIV-1-RT in this plant was purified by combination of three column chromatographies, Sephadex LH-20, cellulose, and reverse-phase high-performance liquid chromatography. The inhibitor was then identified by nuclear magnetic resonance (NMR) spectra as repandusinic acid A monosodium salt (RA) which was originally isolated from Mallotus repandus. The 50% inhibitory doses (ID50) of RA on HIV-1-RT and DNA polymerase alpha (from HeLa cells) were 0.05 microM and 0.6 microM, respectively, representing approximately a 10-fold more sensitivity of HIV-1-RT compared with DNA polymerase alpha. RA was shown to be a competitive inhibitor with respect to the template-primer while it was a noncompetitive inhibitor with respect to the substrate. RA as low as 10.1 microM inhibited HIV-1-induced cytopathogenicity in MT-4 cells. In addition, 4.5 microM of RA inhibited HIV-1-induced giant cell formation of SUP-T1 approximately 50%. RA (2.5 microM) inhibited up to 90% of HIV-1 specific p24 antigen production in a Clone H9 cell system. PMID:1283310

  19. Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors.

    PubMed

    Imamichi, Tomozumi

    2004-01-01

    Currently, 20 drugs have been approved for Human Immunodeficiency Virus type-1 (HIV-1) clinical therapy. These drugs inhibit HIV-1 reverse transcriptase, protease, or virus entry. Introduction of a combination therapy with reverse transcriptase inhibitors and protease inhibitors has resulted in a drastic decrease in HIV-1 related mortality. Although the combination therapy can suppress viral replication below detection levels in current available assays, low levels of on-going viral replication still persist in some patients. Long-term administration of the combination therapy may increase selective pressure against viruses, and subsequently induce emergence of multiple drug-resistant HIV-1 variants. Attempts have been made to design novel antiretroviral drugs that would be able to suppress replication of the resistant variants. At present, several investigational drugs are being tested in clinical trials. These drugs target not only the resistant variants, but also improvement in oral bioavilability or other viral proteins such as HIV-1 integrase, ribonuclease H, and HIV-1 entry (CD4 attachment inhibitors, chemokine receptors antagonists, and fusion inhibitors). Understanding mechanism(s) of action of the drugs and mechanisms of drug resistance is necessary for successful designs in the next generation of anti-HIV-1 drugs. In this review, the mechanisms of action of reverse transcriptase- and protease-inhibitors, and the mechanism of resistance to these inhibitors, are described. PMID:15579086

  20. A novel small-molecule inhibitor of HIV-1 entry

    PubMed Central

    Heredia, Alonso; Latinovic, Olga S; Barbault, Florent; de Leeuw, Erik PH

    2015-01-01

    Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention. PMID:26491257

  1. The Discovery of Potent, Selective, and Reversible Inhibitors of the House Dust Mite Peptidase Allergen Der p 1: An Innovative Approach to the Treatment of Allergic Asthma

    PubMed Central

    2014-01-01

    Blocking the bioactivity of allergens is conceptually attractive as a small-molecule therapy for allergic diseases but has not been attempted previously. Group 1 allergens of house dust mites (HDM) are meaningful targets in this quest because they are globally prevalent and clinically important triggers of allergic asthma. Group 1 HDM allergens are cysteine peptidases whose proteolytic activity triggers essential steps in the allergy cascade. Using the HDM allergen Der p 1 as an archetype for structure-based drug discovery, we have identified a series of novel, reversible inhibitors. Potency and selectivity were manipulated by optimizing drug interactions with enzyme binding pockets, while variation of terminal groups conferred the physicochemical and pharmacokinetic attributes required for inhaled delivery. Studies in animals challenged with the gamut of HDM allergens showed an attenuation of allergic responses by targeting just a single component, namely, Der p 1. Our findings suggest that these inhibitors may be used as novel therapies for allergic asthma. PMID:25365789

  2. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    SciTech Connect

    Kodera, Ryo; Shikata, Kenichi; Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro; Usui, Hitomi Kataoka; Makino, Hirofumi

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  3. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors.

    PubMed

    Souza, Thais P; Dias, Renata O; Castelhano, Elaine C; Brandão, Marcelo M; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Peptidase inhibitors (PIs) are essential proteins involved in plant resistance to herbivorous insects, yet many insect species are able to escape the negative effects of these molecules. We compared the effects of acute and chronic ingestion of soybean peptidase inhibitors (SPIs) on Spodoptera frugiperda and Diatraea saccharalis, two Lepidoptera species with different sensitivities to SPI ingestion. We analyzed the trypsin and chymotrypsin gene expression profiles in both species. Acute exposure of S. frugiperda to the inhibitors activated seven genes (SfChy5, SfChy9, SfChy19, SfChy22, SfTry6, SfTry8, and SfTry10), whereas chronic exposure activated 16 genes (SfChy2, SfChy4, SfChy5, SfChy8, SfChy9, SfChy11, SfChy12, SfChy15, SfChy17, SfChy21, SfChy22, SfTry6, SfTry8, SfTry9, SfTry10, and SfTry12). By contrast, the challenge of D. saccharalis with SPIs did not differentially induce the expression of trypsin- or chymotrypsin-encoding genes, with the exception of DsChy7. Bayesian phylogenetic analysis of S. frugiperda trypsin protein sequences revealed two gene clades: one composed of genes responsive to the SPIs and a second composed of the unresponsive genes. D. saccharalis trypsin proteins were clustered nearest to the S. frugiperda unresponsive genes. Overall, our findings support a hypothesized mechanism of resistance of Noctuidae moths to SPIs, involving gene number expansion of trypsin and chymotrypsin families and regulation of gene expression, which could also explain the variable susceptibility between S. frugiperda and D. saccharalis to these plant inhibitors. PMID:26944308

  4. Inhibitors of HIV infection via the cellular CD4 receptor.

    PubMed

    Vermeire, Kurt; Schols, Dominique; Bell, Thomas W

    2006-01-01

    Recent advances in our understanding of cellular and molecular mechanisms of viral penetration of the target cell have provided the basis for novel chemotherapy and prophylaxis of HIV-1 infections. This knowledge has been successfully applied to the development of inhibitors that target discrete steps of the entry process. Interesting approaches for prevention of HIV-1 entry include the use of small-molecule inhibitors, natural ligands and/or monoclonal antibodies that interfere with gp120/CD4 interaction. Other compounds acting by novel mechanisms have recently been identified as anti-HIV agents and seem worthy of further preclinical development. Of particular interest in this regard are cyclotriazadisulfonamide (CADA) compounds, which down-modulate the cellular receptor, CD4. A series of analogues of 9-benzyl-3-methylene-1,5-di-p-toluenesulfonyl-1,5,9-triazacyclododecane (CADA) has been synthesized and tested for CD4 down-modulation and anti-HIV activity. Some derivatives proved to be highly effective in decreasing cellular CD4 and in acting as HIV entry inhibitors. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies correlating molecular features with potency have been used to produce a computational model. This model can be used to design more potent CD4 down-modulating drugs for HIV therapy and prophylaxis. This review summarizes the results of recent studies relating to inhibitors of HIV infection via CD4 and discusses the therapeutic potential of targeting this cellular receptor. Special attention is given to our own work on small-molecule HIV entry inhibitors endowed with CD4 down-modulating properties. PMID:16611063

  5. Past, present, and future of entry inhibitors as HIV microbicides.

    PubMed

    Gibson, Richard M; Arts, Eric J

    2012-01-01

    Preventing the transmission of human immunodeficiency virus (HIV) is the main goal of numerous studies trying to develop an effective vaccine and microbicide agents. Here we review the use of antiretroviral drugs to inhibit viral entry as potential HIV microbicides. After the failure of nonoxynol-9 microbicide strategies shifted towards the use of compounds creating a physical barrier to virus attachment (e.g., surfactants) or inhibit the virus in the vaginal milieu (e.g., polyanions). These early, non-specific inhibitors showed promise in both in vitro and in vivo(non-human primates) studies but provided only modest protection from HIV transmission in clinical efficacy trials. The next generation of HIV entry microbicides was based on specifically blocking virus from entering host cells by targeting CD4 attachment, gp120 binding, and virus-cell membrane fusion events. Although protection from an SIV-HIV hybrid was evident in non-human primates treated and challenged in the vaginal cavity, none of these compounds have advanced to clinical trials as a microbicide. Here we will discuss the reasons for these failures, including the selection of drug resistant HIV variants, which raises questions as to the future of broadly effective microbicides based on HIV entry inhibitors. The outcome of continued research and potential efficacy trials on the next generation of entry inhibitors might reveal whether or not an effective entry microbicide can be developed. PMID:22264042

  6. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  7. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  8. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  9. A symmetric inhibitor binds HIV-1 protease asymmetrically.

    PubMed

    Dreyer, G B; Boehm, J C; Chenera, B; DesJarlais, R L; Hassell, A M; Meek, T D; Tomaszek, T A; Lewis, M

    1993-01-26

    Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules. PMID:8422397

  10. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat.

    PubMed

    Zhong, Chunlong; Zhao, Xueren; Van, Ken C; Bzdega, Tomasz; Smyth, Aoife; Zhou, Jia; Kozikowski, Alan P; Jiang, Jiyao; O'Connor, William T; Berman, Robert F; Neale, Joseph H; Lyeth, Bruce G

    2006-05-01

    Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI. PMID:16606367

  11. Effects of Dipeptidyl Peptidase-4 Inhibitors on Hyperglycemia and Blood Cyclosporine Levels in Renal Transplant Patients with Diabetes: A Pilot Study

    PubMed Central

    Bae, Jaehyun; Lee, Min Jung; Choe, Eun Yeong; Jung, Chang Hee; Wang, Hye Jin; Kim, Myoung Soo; Kim, Yu Seun

    2016-01-01

    Background The use of dipeptidyl peptidase-4 (DPP-4) inhibitors is increasing among renal transplant patients with diabetes. However, the glucose-lowering efficacies of various DPP-4 inhibitors and their effects on blood cyclosporine levels have not been fully investigated. We compared the glucose-lowering efficacies of DPP 4 inhibitors and evaluate their effects on the blood levels of cyclosporine in renal transplant recipients with diabetes. Methods Sixty-five renal allograft recipients who received treatment with DPP-4 inhibitors (vildagliptin, sitagliptin, or linagliptin) following kidney transplant were enrolled. The glucose-lowering efficacies of the DPP-4 inhibitors were compared according to the changes in the hemoglobin A1c (HbA1c) levels after 3 months of treatment. Changes in the trough levels of the cyclosporine were also assessed 2 months after treatment with each DPP-4 inhibitor. Results HbA1c significantly decreased in the linagliptin group in comparison with other DPP-4 inhibitors (vildagliptin –0.38%±1.03%, sitagliptin –0.53%±0.95%, and linagliptin –1.40±1.34; P=0.016). Cyclosporine trough levels were significantly increased in the sitagliptin group compared with vildagliptin group (30.62±81.70 ng/mL vs. –24.22±53.54 ng/mL, P=0.036). Cyclosporine trough levels were minimally changed in patients with linagliptin. Conclusion Linagliptin demonstrates superior glucose-lowering efficacy and minimal effect on cyclosporine trough levels in comparison with other DPP-4 inhibitors in kidney transplant patients with diabetes. PMID:26754588

  12. Identification of HIV Inhibitors Guided by Free Energy Perturbation Calculations

    PubMed Central

    Acevedo, Orlando; Ambrose, Zandrea; Flaherty, Patrick T.; Aamer, Hadega; Jain, Prashi; Sambasivarao, Somisetti V.

    2013-01-01

    Free energy perturbation (FEP) theory coupled to molecular dynamics (MD) or Monte Carlo (MC) statistical mechanics offers a theoretically precise method for determining the free energy differences of related biological inhibitors. Traditionally requiring extensive computational resources and expertise, it is only recently that its impact is being felt in drug discovery. A review of computer-aided anti-HIV efforts employing FEP calculations is provided here that describes early and recent successes in the design of human immunodeficiency virus type 1 (HIV-1) protease and non-nucleoside reverse transcriptase inhibitors. In addition, our ongoing work developing and optimizing leads for small molecule inhibitors of cyclophilin A (CypA) is highlighted as an update on the current capabilities of the field. CypA has been shown to aid HIV-1 replication by catalyzing the cis/trans isomerization of a conserved Gly-Pro motif in the N-terminal domain of HIV-1 capsid (CA) protein. In the absence of a functional CypA, e.g., by the addition of an inhibitor such as cyclosporine A (CsA), HIV-1 has reduced infectivity. Our simulations of acylurea-based and 1-indanylketone-based CypA inhibitors have determined that their nanomolar and micromolar binding affinities, respectively, are tied to their ability to stabilize Arg55 and Asn102. A structurally novel 1-(2,6-dichlorobenzamido) indole core was proposed to maximize these interactions. FEP-guided optimization, experimental synthesis, and biological testing of lead compounds for toxicity and inhibition of wild-type HIV-1 and CA mutants have demonstrated a dose-dependent inhibition of HIV-1 infection in two cell lines. While the inhibition is modest compared to CsA, the results are encouraging. PMID:22316150

  13. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes

    SciTech Connect

    Rezacova, Pavlina; Pokorna, Jana; Brynda, Ji; Kozisek, Milan; Cigler, Petr; Lesik, Martin; Fanfrlik, Jindrich; Rezac, Jan; Saskova, Klara Grantz; Sieglova, Irena; Plesek, Jaromir; Sicha, Vaclav; Gruner, Bohumir; Oberwinkler, Heike; Sedlacek, Juraj; Krausslich, Hans-Georg; Hobza, Pavel; Kral, Vladimir; Konvalinka, Jan

    2010-04-19

    HIV protease (HIV PR) is a primary target for anti-HIV drug design. We have previously identified and characterized substituted metallacarboranes as a new class of HIV protease inhibitors. In a structure-guided drug design effort, we connected the two cobalt bis(dicarbollide) clusters with a linker to substituted ammonium group and obtained a set of compounds based on a lead formula [H{sub 2}N-(8-(C{sub 2}H{sub 4}O){sub 2}-1,2-C{sub 2}B{sub 9}H{sub 10})(1',2'-C{sub 2}B{sub 9}H{sub 11})-3,3'-Co){sub 2}]Na. We explored inhibition properties of these compounds with various substitutions, determined the HIV PR:inhibitor crystal structure, and computationally explored the conformational space of the linker. Our results prove the capacity of linker-substituted dual-cage cobalt bis(dicarbollides) as lead compounds for design of more potent inhibitors of HIV PR.

  14. HIV Protease Inhibitors: Effect on the Opportunistic Protozoan Parasites

    PubMed Central

    Alfonso, Yenisey; Monzote, Lianet

    2011-01-01

    The impact of highly active antiretroviral therapy (HAART) in the natural history of AIDS disease has been allowed to prolong the survival of people with HIV infection, particularly whose with increased HIV viral load. Additionally, the antiretroviral therapy could exert a certain degree of protection against parasitic diseases. A number of studies have been evidenced a decrease in the incidence of opportunistic parasitic infections in the era of HAART. Although these changes have been attributed to the restoration of cell-mediated immunity, induced by either non-nucleoside reverse transcriptase inhibitors or HIV protease inhibitors, in combination with at least two nucleoside reverse transcriptase inhibitors included in HAART, there are evidence that the control of these parasitic infections in HIV-positive persons under HAART, is also induced by the inhibition of the proteases of the parasites. This review focuses on the principal available data related with therapeutic HIV-protease inhibitors and their in vitro and in vivo effects on the opportunistic protozoan parasites. PMID:21629510

  15. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  16. Chemically Programmed Antibodies As HIV-1 Attachment Inhibitors

    PubMed Central

    2013-01-01

    Herein, we describe the design and application of two small-molecule anti-HIV compounds for the creation of chemically programmed antibodies. N-Acyl-β-lactam derivatives of two previously described molecules BMS-378806 and BMS-488043 that inhibit the interaction between HIV-1 gp120 and T-cells were synthesized and used to program the binding activity of aldolase antibody 38C2. Discovery of a successful linkage site to BMS-488043 allowed for the synthesis of chemically programmed antibodies with affinity for HIV-1 gp120 and potent HIV-1 neutralization activity. Derivation of a successful conjugation strategy for this family of HIV-1 entry inhibitors enables its application in chemically programmed antibodies and vaccines and may facilitate the development of novel bispecific antibodies and topical microbicides. PMID:23750312

  17. Identification of potent maturation inhibitors against HIV-1 clade C.

    PubMed

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J; Wild, Carl T; Freed, Eric O; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  18. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  19. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  20. Clinical Characteristics and Metabolic Predictors of Rapid Responders to Dipeptidyl Peptidase-4 Inhibitor as an Add-on Therapy to Sulfonylurea and Metformin

    PubMed Central

    Kim, Ye An; Yoo, Won Sang; Hong, Eun Shil; Ku, Eu Jeong; Park, Kyeong Seon; Lim, Soo; Cho, Young Min; Park, Kyong Soo; Jang, Hak Chul

    2015-01-01

    Background Dipeptidyl peptidase-4 (DPP-4) inhibitor add-on therapy is a new option for patients with inadequately controlled type 2 diabetes who are taking combined metformin and sulfonylurea (SU). We evaluated the efficacy and safety of this triple therapy and the characteristics of rapid responders and hypoglycemia-prone patients. Methods We included 807 patients with type 2 diabetes who were prescribed a newly added DPP-4 inhibitor to ongoing metformin and SU in 2009 to 2011. Glycemia and other metabolic parameters at baseline, 12, 24, and 52 weeks, as well as episodes of hypoglycemia were analyzed. Rapid responders were defined as patients with ≥25% reduction in glycosylated hemoglobin (HbA1c) within 12 weeks. Results At baseline, while on the submaximal metformin and SU combination, the mean HbA1c level was 8.4%. Twelve weeks after initiation of DPP-4 inhibitor add-on, 269 patients (34.4%) achieved an HbA1c level ≤7%. Sixty-six patients (8.2%, 47 men) were rapid responders. The duration of diabetes was shorter in rapid responders, and their baseline fasting plasma glucose (FPG), HbA1c, C-peptide, and homeostasis model assessment of insulin resistance were significantly higher. Patients who experienced hypoglycemia after taking DPP-4 inhibitor add-on were more likely to be female, to have a lower body weight and lower triglyceride and FPG levels, and to have higher homeostasis model assessment of β-cells. Conclusion An oral hypoglycemic triple agent combination including a DPP-4 inhibitor was effective in patients with uncontrolled diabetes. Proactive dose reduction of SU should be considered when a DPP-4 inhibitor is added for rapid responders and hypoglycemia-prone patients. PMID:26616595

  1. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A “Me Too” or “the Special One” Antidiabetic Class?

    PubMed Central

    Godinho, Ricardo; Carvalho, Eugénia; Teixeira, Frederico

    2015-01-01

    Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the “incretin defect” seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications. PMID:26075286

  2. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice.

    PubMed

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  3. The Dipeptidyl Peptidase-4 Inhibitor Teneligliptin Attenuates Hepatic Lipogenesis via AMPK Activation in Non-Alcoholic Fatty Liver Disease Model Mice

    PubMed Central

    Ideta, Takayasu; Shirakami, Yohei; Miyazaki, Tsuneyuki; Kochi, Takahiro; Sakai, Hiroyasu; Moriwaki, Hisataka; Shimizu, Masahito

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4 inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG) and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice (p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis. PMID:26670228

  4. Sulfonation Pathway Inhibitors Block Reactivation of Latent HIV-1

    PubMed Central

    Murry, Jeffrey P.; Godoy, Joseph; Mukim, Amey; Swann, Justine; Bruce, James W.; Ahlquist, Paul; Bosque, Alberto; Planelles, Vicente; Spina, Celsa A.; Young, John A. T.

    2015-01-01

    Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful. PMID:25310595

  5. An updated systematic review and meta-analysis on the efficacy and tolerability of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes with moderate to severe chronic kidney disease

    PubMed Central

    Singh-Franco, Devada; Harrington, Catherine; Tellez-Corrales, Eglis

    2016-01-01

    Objective: This updated meta-analysis determines the effect of dipeptidyl peptidase-4 inhibitors on glycemic and tolerability outcomes in patients with type 2 diabetes mellitus and chronic kidney disease with glomerular filtration rate of ⩽60 mL/min or on dialysis. Methods: In all, 14 citations were identified from multiple databases. Qualitative assessments and quantitative analyses were performed. Results: There were 2261 participants, 49–79 years of age, 49% men and 44% Caucasians. In seven placebo-comparator studies, reduction in hemoglobin A1c at weeks 12–24 was 0.55% (95% confidence interval: −0.68 to −0.43), P < 0.00001). In three sulfonylurea-comparator studies, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c at weeks 52–54 (−0.15% (95% confidence interval: −0.32 to 0.02)). In one sitagliptin versus albiglutide study, albiglutide significantly reduced hemoglobin A1c in patients with moderate renal impairment (−0.51%). A similar reduction in hemoglobin A1c was seen with sitagliptin versus vildagliptin (−0.56% vs −0.54%). Compared with placebo or sulfonylurea, dipeptidyl peptidase-4 inhibitors did not significantly reduce hemoglobin A1c after 12 and 54 weeks in patients on dialysis. Hypoglycemia was reported by ~30% of patients in both dipeptidyl peptidase-4 inhibitors and placebo groups over 24–52 weeks. While hypoglycemia was more common with a sulfonylurea at 52–54 weeks (risk ratio: 0.46 (95% confidence interval: 0.18 to 1.18)), there was significant heterogeneity (I2 = 87%). Limitations included high drop-out rate from most studies and small number of active-comparator studies. Conclusions: Dipeptidyl peptidase-4 inhibitors in patients with chronic kidney disease caused a modest reduction in hemoglobin A1c versus placebo, but not when compared with sulfonylureas or albiglutide, or when used in patients on dialysis. Additional active-comparator studies are needed to further

  6. 2-PMPA, a NAAG peptidase inhibitor, attenuates magnetic resonance BOLD signals in brain of anesthetized mice: evidence of a link between neuron NAAG release and hyperemia.

    PubMed

    Baslow, Morris H; Dyakin, Victor V; Nowak, Karen L; Hungund, Basalingappa L; Guilfoyle, David N

    2005-01-01

    N-acetylaspartylglutamate (NAAG), a dipeptide derivative of N-acetylaspartate (NAA) and glutamate (Glu), is present in neurons. Upon neurostimulation, NAAG is exported to astrocytes where it activates a specific metabotropic Glu surface receptor (mGluR3), and is then hydrolyzed by an astrocyte-specific enzyme, NAAG peptidase, liberating Glu, which can then be taken up by the astrocyte. NAAG is a selective mGluR3 agonist, one of several mGluRs that, when activated, triggers Ca2+ waves that spread to astrocytic endfeet in contact with the vascular system, where a secondary release of vasoactive agents induces a focal hyperemic response providing increased oxygen and nutrient availability to the stimulated neurons. Changes in blood oxygen levels can be assessed in vivo using a blood oxygenation level-dependent (BOLD) magnetic resonance imaging technique that reflects a paramagnetic effect of deoxyhemoglobin. In this study we used the competitive NAAG peptidase inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) as a probe to interrupt the NAAG-mGluR3- Glu-astrocyte Ca2+ activation sequence. Using this probe, we investigated the relationship between release of the endogenous neuropeptide NAAG and brain blood oxygenation levels, as measured by changes in BOLD signals. In an anesthetized mouse, using an overtly nontoxic dose of 2-PMPA of 250 mg/kg i.p., there was an initial global BOLD signal increase of about 3% above control, lasting about 4 min, followed by a decrease from control of about 4%, sustained over a 32.5-min period of the drug test procedure. Similar changes, but of reduced magnitude and duration, were observed at a dose of 167 mg/kg. The 2-PMPA-induced decreases in BOLD signals appear to indicate that blood deoxyhemoglobin is elevated when endogenous NAAG cannot be hydrolyzed, thus linking the efflux of NAAG from neurons and its hydrolysis by astrocytes to hyperemic oxygenation responses in brain. PMID:15968081

  7. Real-world evaluation of glycemic control among patients with type 2 diabetes mellitus treated with canagliflozin versus dipeptidyl peptidase-4 inhibitors.

    PubMed

    Thayer, Sarah; Chow, Wing; Korrer, Stephanie; Aguilar, Richard

    2016-06-01

    Objective To evaluate glycemic control among patients with type 2 diabetes mellitus (T2DM) treated with canagliflozin (CANA) vs. dipeptidyl peptidase-4 (DPP-4) inhibitors. Methods Using integrated claims and lab data from a US health plan of commercial and Medicare Advantage enrollees, this matched-control cohort study assessed adult T2DM patients receiving treatment with CANA or DPP-4 inhibitors (1 April 2013-31 December 2013). Cohorts were chosen hierarchically; the first pharmacy claim for CANA was identified as the index date; then the first pharmacy claim for a DPP-4 inhibitor was identified and index date set. Eligible patients had 6 months of continuous health plan enrollment before the index date (baseline) and 9 months after (follow-up) and no evidence of index drug in baseline. Patients were matched 1:1 using propensity score matching. Changes in glycated hemoglobin (HbA1c) and percentages of patients with HbA1c <8% and <7% during the follow-up were evaluated. Results The matched CANA and DPP-4 inhibitor cohorts (53.2% treated with sitagliptin) included 2766 patients each (mean age: 55.7 years). Among patients with baseline and follow-up HbA1c results, mean baseline HbA1c values were similar, 8.62% and 8.57% (p = 0.615) for the CANA (n = 729) and DPP-4 inhibitor (n = 710) cohorts, respectively. Change in HbA1c was greater among patients in the CANA cohort than for those in the DPP-4 inhibitor cohort (-0.92% vs. -0.63%, p < 0.001), and also among the subset of patients with baseline HbA1c ≥7% (-1.07% [n = 624] vs. -0.79% [n = 603], p = 0.004). During follow-up, greater percentages of the CANA cohort relative to the DPP-4 inhibitor cohort achieved HbA1c of <8% (66.0% vs. 58.6%, p = 0.004) and <7% (35.4% vs. 29.9%, p = 0.022). Limitations This study was observational and residual confounding remains a possibility. Conclusions In this real-world study of patients with T2DM, CANA use was associated with greater HbA1c

  8. Vildagliptin, a novel dipeptidyl peptidase IV inhibitor, has no pharmacokinetic interactions with the antihypertensive agents amlodipine, valsartan, and ramipril in healthy subjects.

    PubMed

    He, Yan-Ling; Ligueros-Saylan, Monica; Sunkara, Gangadhar; Sabo, Ron; Zhao, Charlie; Wang, Yibin; Campestrini, Joelle; Pommier, Francoise; Dole, Kiran; Marion, Alan; Dole, William P; Howard, Dan

    2008-01-01

    We conducted 3 open-label, multiple-dose, 3-period, randomized, crossover studies in healthy subjects to assess the potential pharmacokinetic interaction between vildagliptin, a novel dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes, and representatives of 3 commonly prescribed antihypertensive drug classes: (1) the calcium channel blocker, amlodipine; (2) the angiotensin receptor blocker, valsartan; and (3) the angiotensin-converting enzyme inhibitor, ramipril. Coadministration of vildagliptin 100 mg with amlodipine 5 mg, valsartan 320 mg, or ramipril 5 mg had no clinically significant effect on the pharmacokinetics of these drugs. The 90% confidence intervals of the geometric mean ratios for area under the plasma concentration-time curve from time zero to 24 hours (AUC0-24h) and maximum plasma concentration (Cmax) for vildagliptin, amlodipine, and ramipril (and its active metabolite, ramiprilat) were contained within the acceptance range for bioequivalence (0.80-1.25). Valsartan AUC0-24h and Cmax increased by 24% and 14%, respectively, following coadministration of vildagliptin, but this was not considered clinically significant. Vildagliptin was generally well tolerated when given alone or in combination with amlodipine, valsartan, or ramipril in healthy subjects at steady state. No adjustment in dosage based on pharmacokinetic considerations is required should vildagliptin be coadministered with amlodipine, valsartan, or ramipril in patients with type 2 diabetes and hypertension. PMID:17986525

  9. Differential Cardiovascular Outcomes after Dipeptidyl Peptidase-4 Inhibitor, Sulfonylurea, and Pioglitazone Therapy, All in Combination with Metformin, for Type 2 Diabetes: A Population-Based Cohort Study

    PubMed Central

    Shin, Ju-Young; Chang, Yoosoo; Kim, Ye-Jee; Lee, Joongyub; Kim, Ju-Young; Park, Byung-Joo

    2015-01-01

    Background/Objectives Data on the comparative effectiveness of oral antidiabetics on cardiovascular outcomes in a clinical practice setting are limited. This study sought to determine whether a differential risk of cardiovascular disease (CVD) exists for the combination of a dipeptidyl peptidase-4 (DPP-4) inhibitor plus metformin versus a sulfonylurea derivative plus metformin or pioglitazone plus metformin. Methods We conducted a cohort study of 349,476 patients who received treatment with a DPP-4 inhibitor, sulfonylurea, or pioglitazone plus metformin for type 2 diabetes using the Korean national health insurance claims database. The incidence of total CVD and individual outcomes of myocardial infarction (MI), heart failure (HF), and ischemic stroke (IS) were assessed using the hazard ratios (HRs) estimated from a Cox proportional-hazards model weighted for a propensity score. Results During follow-up, 3,881 patients developed a CVD, including 428 MIs, 212 HFs, and 1,487 ISs. The adjusted HR with 95% confidence interval (CI) for a sulfonylurea derivative plus metformin compared with a DPP-4 inhibitor plus metformin was 1.20 (1.09-1.32) for total CVD; 1.14 (1.04-1.91) for MI; 1.07 (0.71-1.62) for HF; and 1.51 (1.28-1.79) for IS. The HRs with 95% CI for total CVD, MI, HF, and IS for pioglitazone plus metformin were 0.89 (0.81-0.99), 1.05 (0.76-1.46), 4.81 (3.53-6.56), and 0.81 (0.67-0.99), respectively. Conclusions Compared with a DPP-4 inhibitor plus metformin, treatment with a sulfonylurea drug plus metformin was associated with increased risks of total CVD, MI, and IS, whereas the use of pioglitazone plus metformin was associated with decreased total CVD and IS risks. PMID:25992614

  10. Purification and characterization of tenerplasminin-1, a serine peptidase inhibitor with antiplasmin activity from the coral snake (Micrurus tener tener) venom

    PubMed Central

    Vivas, Jeilyn; Ibarra, Carlos; Salazar, Ana M.; Neves-Ferreira, Ana G.C.; Sánchez, Elda E.; Perales, Jonás; Rodríguez-Acosta, Alexis; Guerrero, Belsy

    2015-01-01

    A plasmin inhibitor, named tenerplasminin-1 (TP1), was isolated from Micrurus tener tener (Mtt) venom. It showed a molecular mass of 6542 Da, similarly to Kunitz-type serine peptidase inhibitors. The amidolytic activity of plasmin (0.5 nM) on synthetic substrate S-2251 was inhibited by 91% following the incubation with TP1 (1 nM). Aprotinin (2 nM) used as the positive control of inhibition, reduced the plasmin amidolytic activity by 71%. Plasmin fibrinolytic activity (0.05 nM) was inhibited by 67% following incubation with TP1 (0.1 nM). The degradation of fibrinogen chains induced by plasmin, trypsin or elastase was inhibited by TP1 at a 1:2, 1:4 and 1:20 enzyme:inhibitor ratio, respectively. On the other hand, the proteolytic activity of crude Mtt venom on fibrinogen chains, previously attributed to metallopeptidases, was not abolished by TP1. The tPA-clot lysis assay showed that TP1 (0.2 nM) acts like aprotinin (0.4 nM) inducing a delay in lysis time and lysis rate which may be associated with the inhibition of plasmin generated from the endogenous plasminogen activation. TP1 is the first serine protease plasmin-like inhibitor isolated from Mtt snake venom which has been characterized in relation to its mechanism of action, formation of a plasmin:TP1 complex and therapeutic potential as anti-fibrinolytic agent, a biological characteristic of great interest in the field of biomedical research. They could be used to regulate the fibrinolytic system in pathologies such as metastatic cancer, parasitic infections, hemophilia and other hemorrhagic syndromes, in which an intense fibrinolytic activity is observed. PMID:26419785

  11. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41

    PubMed Central

    Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044

  12. Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease.

    PubMed

    Kar, Parimal; Knecht, Volker

    2012-03-01

    Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV) type 1 and 2 (HIV-1 and HIV-2). HIV-1 is observed worldwide while HIV-2 though prevalent in West Africa is persistently spreading to other parts of the world. An important target for AIDS treatment is the use of HIV protease (PR) inhibitors preventing the replication of the virus. In this work, the popular molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method has been used to investigate the effectiveness of the HIV-1 PR inhibitors darunavir, GRL-06579A, and GRL-98065 against HIV-2 and HIV-1 protease. The affinity of the inhibitors for both HIV-1 and HIV-2 PR decreases in the order GRL-06579A > darunavir > GRL-98065, in accordance with experimental data. On the other hand, our results show that all these inhibitors bind less strongly to HIV-2 than to HIV-1 protease, again in agreement with experimental findings. The decrease in binding affinity for HIV-2 relative to HIV-1 PR is found to arise from an increase in the energetic penalty from the desolvation of polar groups (DRV) or a decrease in the size of the electrostatic interactions between the inhibitor and the PR (GRL-06579A and GRL-98065). For GRL-98065, also a decrease in the magnitude of the van der Waals interactions contributes to the reduction in binding affinity. A detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of efficient inhibitors against HIV-2 protease. PMID:22280246

  13. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus patients with severe renal impairment: a meta-analysis.

    PubMed

    Chen, Maosheng; Liu, Yueming; Jin, Juan; He, Qiang

    2016-05-01

    Aims/introduction Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of oral antidiabetic agents, and have been increasingly and widely used in the treatment of diabetes mellitus (DM). However, information of DPP-4 inhibitors in type 2 DM patients with severe renal impairment (RI) is limited. Our study aimed to assess the efficacy and safety of DPP-4 inhibitors as compared to placebos or other hypoglycemic drugs in type 2 DM patients with severe RI. Materials and methods A meta-analysis was conducted to examine the literature comparing the effects of DPP-4 inhibitors on hemoglobin A1c (HbA1c) and fasting blood glucose (FBG). Randomized control trials (RCTs) including adults with type 2 DM and severe RI were analyzed. Safety was evaluated based on the percentage of patients who developed hypoglycemia and the occurrence of adverse events (AEs) as well as the incidence of peripheral edema, urinary tract infection, diarrhea, and death. Results Five RCTs including 503 patients were analyzed. Compared with a placebo or no treatment, DPP-4 inhibitors were associated with a larger decline in HbA1c (mean difference (MD) = -0.57, 95% confidence interval (CI): -0.73 to -0.41; p < 0.01) but not with FBG (MD = -0.26, 95% CI: -1.40 to 0.8; p = 0.66). Compared with glipizide monotherapy, no significant differences in HbA1c (MD = 0.15, 95% CI: -0.19 to 0.49; p = 0.38) or FBG (MD = -0.26, 95% CI: -1.16 to 0.64; p = 0.57) were found. Similar odds of experiencing an AE were found in both the DPP-4 inhibitor groups and comparison groups. Conclusions In type 2 DM patients with severe RI, treatment with DPP-4 inhibitors is safe and it effectively lowers HbA1c. PMID:26915531

  14. Structure based activity prediction of HIV-1 reverse transcriptase inhibitors.

    PubMed

    de Jonge, Marc R; Koymans, Lucien M H; Vinkers, H Maarten; Daeyaert, Frits F D; Heeres, Jan; Lewi, Paul J; Janssen, Paul A J

    2005-03-24

    We have developed a fast and robust computational method for prediction of antiviral activity in automated de novo design of HIV-1 reverse transcriptase inhibitors. This is a structure-based approach that uses a linear relation between activity and interaction energy with discrete orientation sampling and with localized interaction energy terms. The localization allows for the analysis of mutations of the protein target and for the separation of inhibition and a specific binding to the enzyme. We apply the method to the prediction of pIC(50) of HIV-1 reverse transcriptase inhibitors. The model predicts the activity of an arbitrary compound with a q(2) of 0.681 and an average absolute error of 0.66 log value, and it is fast enough to be used in high-throughput computational applications. PMID:15771460

  15. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice

    PubMed Central

    Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  16. Novel dual small-molecule HIV inhibitors: scaffolds and discovery strategies.

    PubMed

    Song, Anran; Yu, Haiqing; Wang, Changyuan; Zhu, Xingqi; Liu, Kexin; Ma, Xiaodong

    2015-01-01

    Searching for safe and effective treatments for HIV infection is still a great challenge worldwide in spite of the 27 marketed anti-HIV drugs and the powerful highly active antiretroviral therapy (HAART). As a promising prospect for generation of new HIV therapy drugs, multiple ligands (MDLs) were greatly focused on recently due to their lower toxicity, simplified dosing and patient adherence than single-target drugs. Till now, by disrupting two active sites or steps of HIV replications, a number of HIV dual inhibitors, such as CD4-gssucap120 inhibitors, CXCR4-gp20 inhibitors, RT-CXCR4 inhibitors, RT-protease inhibitors, RT-integrase inhibitors, and RTassociated functions inhibitors have been identified. Generally, these dual inhibitors were discovered mainly through screening approaches and design strategies. Of these compounds, the molecules bearing small skeletons exhibited strong anti-HIV activity and aroused great attention recently. Reviewing the progress of the dual small-molecule HIV inhibitors from the point of view of their scaffolds and discovery strategies will provide valuable information for producing more effective anti-HIV drugs. In this regard, novel dual small-molecule HIV inhibitors were illustrated, and their discovery paradigms as the major contents were also summarized in this manuscript. PMID:25269561

  17. Effect of transcription peptide inhibitors on HIV-1 replication.

    PubMed

    Van Duyne, Rachel; Cardenas, Jessica; Easley, Rebecca; Wu, Weilin; Kehn-Hall, Kylene; Klase, Zak; Mendez, Susana; Zeng, Chen; Chen, Hao; Saifuddin, Mohammed; Kashanchi, Fatah

    2008-07-01

    HIV-1 manipulates cellular machineries such as cyclin dependent kinases (cdks) and their cyclin elements, to stimulate virus production and maintain latent infection. Specifically, the HIV-1 viral protein Tat increases viral transcription by binding to the TAR promoter element. This binding event is mediated by the phosphorylation of Pol II by complexes such as cdk9/Cyclin T and cdk2/Cyclin E. Recent studies have shown that a Tat 41/44 peptide derivative prevents the loading of cdk2 onto the HIV-1 promoter, inhibiting gene expression and replication. Here we show that Tat peptide analogs computationally designed to dock at the cyclin binding site of cdk2 have the ability to bind to cdk2 and inhibit the association of cdk2 with the HIV promoter. Specifically, the peptide LAALS dissociated the complex and decreased kinase activity in vitro. We also describe our novel small animal model which utilizes humanized Rag2(-/-)gamma(c)(-/-) mice. This small peptide inhibitor induces a decrease in HIV-1 viral transcription in vitro and minimizes viral loads in vivo. PMID:18455747

  18. An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus.

    PubMed

    Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Zhi-Wei; Yang, Tianxin; Zhang, Xueji; Yang, Yin-Xue; Duan, Wei; Zhou, Shu-Feng

    2015-12-01

    Alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor that is a class of relatively new oral hypoglycaemic drugs used in patients with type 2 diabetes (T2DM), can be used as monotherapy or in combination with other anti-diabetic agents, including metformin, pioglitazone, sulfonylureas and insulin with a considerable therapeutic effect. Alogliptin exhibits favorable pharmacokinetic and pharmacodynamic profiles in humans. Alogliptin is mainly metabolized by cytochrome P450 (CYP2D6) and CYP3A4. Dose reduction is recommended for patients with moderate or worse renal impairment. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections and headache. Hypoglycaemia is seen in about 1.5% of the T2DM patients. Rare but severe adverse reactions such as acute pancreatitis, serious hypersensitivity including anaphylaxis, angioedema and severe cutaneous reactions such as Stevens-Johnson syndrome have been reported from post-marketing monitoring. Pharmacokinetic interactions have not been observed between alogliptin and other drugs including glyburide, metformin, pioglitazone, insulin and warfarin. The present review aimed to update the clinical information on pharmacodynamics, pharmacokinetics, adverse effects and drug interactions, and to discuss the future directions of alogliptin. PMID:26218204

  19. Design, synthesis and biological evaluation of 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors.

    PubMed

    Ji, Xun; Xia, Chunmei; Wang, Jiang; Su, Mingbo; Zhang, Lei; Dong, Tiancheng; Li, Zeng; Wan, Xia; Li, Jingya; Li, Jia; Zhao, Linxiang; Gao, Zhaobing; Jiang, Hualiang; Liu, Hong

    2014-10-30

    Based on the previous work in our group and the principle of computer-aided drug design, a series of novel β-amino pyrrole-2-carbonitrile derivatives was designed and synthesized. Compounds 8l and 9l were efficacious and selective DPP4 inhibitors resulting in decreased blood glucose in vivo. Compound 8l had moderate DPP4 inhibitory activity (IC50 = 0.05 μM) and good oral bioavailability (F = 53.2%). Compound 9l showed excellent DPP4 inhibitory activity (IC50 = 0.01 μM), good selectivity (selective ratio: DPP8/DPP4 = 898.00; DPP9/DPP4 = 566.00) against related peptidases, and good efficacy in an oral glucose tolerance tests in ICR mice and moderate PK profiles (F = 22.8%, t1/2 = 2.74 h). Moreover, compound 9l did not block hERG channel and exhibited no inhibition of liver metabolic enzymes such as CYP2C9. PMID:25164763

  20. Comparative activity of proline-containing dipeptide noopept and inhibitor of dipeptidyl peptidase-4 sitagliptin in a rat model of developing diabetes.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2014-01-01

    Developing diabetes was modeled on adult male Wistar rats by repeated intraperitoneal injections of streptozotocin in a subdiabetogenic dose of 30 mg/kg for 3 days. Proline-containing dipeptide drug Noopept or a standard diabetic drug dipeptidyl peptidase-4 inhibitor sitagliptin was administered per os in a dose of 5 mg/kg before each injection of the toxin and then for 16 days after streptozotocin course. In active control group, spontaneously increase glucose level and reduced tolerance to glucose load (1000 mg/kg intraperitoneally) were observed on the next day after the third administration of toxin. Basal glucose level decreased by day 16, but glucose tolerance remained impaired. Noopept normalized the basal blood glucose level and tolerance to glucose load on the next day after administration of streptozotocin. The effect of Noopept persisted to the end of the experiment. At early terms of the experiment, sitagliptin was somewhat superior to Noopept by the effect on baseline glucose level, but was inferior by the influence on glucose tolerance.. By the end of the experiment, Noopept significantly (by 2 times) surpassed sitagliptin by its effect on glucose tolerance. PMID:24771372

  1. HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors

    National Institute of Standards and Technology Data Gateway

    SRD 155 HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors (Web, free access)   The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB).

  2. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.

    PubMed

    Tsuprykov, Oleg; Ando, Ryotaro; Reichetzeder, Christoph; von Websky, Karoline; Antonenko, Viktoriia; Sharkovska, Yuliya; Chaykovska, Lyubov; Rahnenführer, Jan; Hasan, Ahmed A; Tammen, Harald; Alter, Markus; Klein, Thomas; Ueda, Seiji; Yamagishi, Sho-Ichi; Okuda, Seiya; Hocher, Berthold

    2016-05-01

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different. PMID:27083282

  3. Dipeptidyl-peptidase IV (DPP-IV) inhibitor delays tolerance to anxiolytic effect of ethanol and withdrawal-induced anxiety in rats.

    PubMed

    Sharma, Ajaykumar N; Pise, Ashish; Sharma, Jay N; Shukla, Praveen

    2015-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme responsible for the metabolism of endogenous gut-derived hormone, glucagon-like peptide-1 (GLP-1). DPP-IV is known for its role in energy homeostasis and pharmacological blockade of this enzyme is a recently approved clinical strategy for the management of type II diabetes. Accumulating evidences suggest that enzyme DPP-IV can affect spectrum of central nervous system (CNS) functions. However, little is known about the role of this enzyme in ethanol-mediated neurobehavioral complications. The objective of the present study was to examine the impact of DPP-IV inhibitor, sitagliptin on the development of tolerance to anxiolytic effect of ethanol and anxiety associated with ethanol withdrawal in rats. A dose-response study revealed that sitaglitpin (20 mg/kg, p.o.) per se exhibit anxiolytic effect in the elevated plus maze (EPM) test in rats. Tolerance to anxiolytic effect of ethanol (2 g/kg, i.p.; 8 % w/v) was observed from 7(th) day of ethanol-diet (6 % v/v) consumption. In contrast, tolerance to anxiolytic effect of ethanol was delayed in rats that were treated daily with sitagliptin (20 mg/kg, p.o.) as tolerance was observed from 13(th)day since commencement of ethanol-diet consumption. Discontinuation of rats from ethanol-diet after 15-days of ethanol consumption resulted in withdrawal anxiety between 8 h and 12 h post-abstinence. However, rats on 15-day ethanol-diet with concomitant sitagliptin (20 mg/kg, p.o.) treatment exhibited delay in appearance (24 h post-withdrawal) of withdrawal anxiety. In summary, DPP-IV inhibitors may prove as an attractive research strategy against ethanol tolerance and dependence. PMID:25129124

  4. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients. PMID:26489970

  5. The Dose-Dependent Organ-Specific Effects of a Dipeptidyl Peptidase-4 Inhibitor on Cardiovascular Complications in a Model of Type 2 Diabetes

    PubMed Central

    Seo, Jung-Woo; Lee, Arah; Kim, Dong Jin; Kim, Yang-Gyun; Kim, Se-Yeun; Lee, Kyung Hye; Lim, Sung-Jig; Cheng, Xian Wu; Lee, Sang-Ho; Kim, Weon

    2016-01-01

    Objective Although dipeptidyl peptidase-4 (DPP-4) inhibitors have been suggested to have a non-glucoregulatory protective effect in various tissues, the effects of long-term inhibition of DPP-4 on the micro- and macro-vascular complications of type 2 diabetes remain uncertain. The aim of the present study was to investigate the organ-specific protective effects of DPP-4 inhibitor in rodent model of type 2 diabetes. Methods Eight-week-old diabetic and obese db/db mice and controls (db/m mice) received vehicle or one of two doses of gemigliptin (0.04 and 0.4%) daily for 12 weeks. Urine albumin excretion and echocardiography measured at 20 weeks of age. Heart and kidney tissue were subjected to molecular analysis and immunohistochemical evaluation. Results Gemigliptin effectively suppressed plasma DPP-4 activation in db/db mice in a dose-dependent manner. The HbA1c level was normalized in the 0.4% gemigliptin, but not in the 0.04% gemigliptin group. Gemigliptin showed a dose-dependent protective effect on podocytes, anti-apoptotic and anti-oxidant effects in the diabetic kidney. However, the dose-dependent effect of gemigliptin on diabetic cardiomyopathy was ambivalent. The lower dose significantly attenuated left ventricular (LV) dysfunction, apoptosis, and cardiac fibrosis, but the higher dose could not protect the LV dysfunction and cardiac fibrosis. Conclusion Gemigliptin exerted non-glucoregulatory protective effects on both diabetic nephropathy and cardiomyopathy. However, high-level inhibition of DPP-4 was associated with an organ-specific effect on cardiovascular complications in type 2 diabetes. PMID:26959365

  6. Investigational reverse transcriptase inhibitors for the treatment of HIV

    PubMed Central

    Cory, Theodore J; Midde, Narasimha M; Rao, PSS; Kumar, Santosh

    2015-01-01

    Introduction While considerable advances have been made in the development of antiretroviral agents, there is still work to be done. Reverse transcriptase inhibitors are important drugs for the treatment of HIV, and considerable research is currently ongoing to develop new agents and to modify currently existing agents. Areas covered Herein, the authors discuss both investigational nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), including agents that are in various stages of development. They also discuss novel formulations that are being investigated for currently available drugs, and discuss the advantages that these new formulations may provide. Expert opinion New formulations and co-formulations of currently existing antiretrovirals will represent an important area of development, as a means to improve adherence for HIV-positive individuals. New formulations will continue to be developed, with a focus on allowing for less-frequent administration, as well increasing drug concentrations at local sites such as vaginal tissue, rectal tissue and sites in the immune system. PMID:26088266

  7. Convenient cell fusion assay for rapid screening for HIV entry inhibitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shibo; Radigan, Lin; Zhang, Li

    2000-03-01

    Human immunodeficiency viruses (HIV)-induced cell fusion is a critical pathway of HIV spread from infected cells to uninfected cells. A rapid and simple assay was established to measure HIV-induce cell fusion. This study is particularly useful to rapid screen for HIV inhibitors that block HIV cell-to-cell transmission. Present study demonstrated that coculture of HIV-infected cells with uninfected cells at 37 degree(s)C for 2 hours resulted in the highest cell fusion rate. Using this cell fusion assay, we have identified several potent HIV inhibitors targeted to the HIV gp41 core. These antiviral agents can be potentially developed as antiviral drugs for chemotherapy and prophylaxis of HIV infection and AIDS.

  8. Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    PubMed Central

    Lim, Soo; Choi, Sung Hee; Shin, Hayley; Cho, Bong Jun; Park, Ho Seon; Ahn, Byung Yong; Kang, Seon Mee; Yoon, Ji Won; Jang, Hak Chul; Kim, Young-Bum; Park, Kyong Soo

    2012-01-01

    Background Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes. PMID:22493727

  9. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  10. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay

    SciTech Connect

    Pontow, Suzanne; Harmon, Brooke; Campbell, Nancy; Ratner, Lee

    2007-11-10

    A virus-dependent fusion assay was utilized to examine the activity of a panel of HIV-1, -2, and SIV isolates of distinct coreceptor phenotypes. This assay allowed identification of entry inhibitors, and characterization of an antagonist of a Rac guanine nucleotide exchange factor, as an inhibitor of HIV-mediated fusion.

  11. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile. PMID:27437081

  12. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies

    PubMed Central

    Li, Ling; Li, Sheyu; Deng, Ke; Liu, Jiali; Vandvik, Per Olav; Zhao, Pujing; Zhang, Longhao; Shen, Jiantong; Bala, Malgorzata M; Sohani, Zahra N; Wong, Evelyn; Busse, Jason W; Ebrahim, Shanil; Malaga, German; Rios, Lorena P; Wang, Yingqiang; Chen, Qunfei; Guyatt, Gordon H

    2016-01-01

    Objectives To examine the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of heart failure or hospital admission for heart failure in patients with type 2 diabetes. Design Systematic review and meta-analysis of randomised and observational studies. Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov searched up to 25 June 2015, and communication with experts. Eligibility criteria Randomised controlled trials, non-randomised controlled trials, cohort studies, and case-control studies that compared DPP-4 inhibitors against placebo, lifestyle modification, or active antidiabetic drugs in adults with type 2 diabetes, and explicitly reported the outcome of heart failure or hospital admission for heart failure. Data collection and analysis Teams of paired reviewers independently screened for eligible studies, assessed risk of bias, and extracted data using standardised, pilot tested forms. Data from trials and observational studies were pooled separately; quality of evidence was assessed by the GRADE approach. Results Eligible studies included 43 trials (n=68 775) and 12 observational studies (nine cohort studies, three nested case-control studies; n=1 777 358). Pooling of 38 trials reporting heart failure provided low quality evidence for a possible similar risk of heart failure between DPP-4 inhibitor use versus control (42/15 701 v 33/12 591; odds ratio 0.97 (95% confidence interval 0.61 to 1.56); risk difference 2 fewer (19 fewer to 28 more) events per 1000 patients with type 2 diabetes over five years). The observational studies provided effect estimates generally consistent with trial findings, but with very low quality evidence. Pooling of the five trials reporting admission for heart failure provided moderate quality evidence for an increased risk in patients treated with DPP-4 inhibitors versus control (622/18 554 v 552/18 474; 1.13 (1.00 to 1.26); 8 more (0 more to

  13. Potent D-Peptide Inhibitors of HIV-1 Entry

    SciTech Connect

    Welch,B.; VanDemark, A.; Heroux, A.; Hill, C.; Kay, M.

    2007-01-01

    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS.

  14. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    PubMed Central

    Goda, Jayant S.; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-01-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies. PMID:27121513

  15. Functional Characterization of Polymorphisms in the Peptidase Inhibitor 3 (Elafin) Gene and Validation of Their Contribution to Risk of Acute Respiratory Distress Syndrome

    PubMed Central

    Tejera, Paula; O’Mahony, D. Shane; Owen, Caroline A.; Wei, Yongyue; Wang, Zhaoxi; Gupta, Kushagra; Su, Li; Villar, Jesus; Wurfel, Mark

    2014-01-01

    Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04–1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele–promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP −338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of

  16. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome.

    PubMed

    Tejera, Paula; O'Mahony, D Shane; Owen, Caroline A; Wei, Yongyue; Wang, Zhaoxi; Gupta, Kushagra; Su, Li; Villar, Jesus; Wurfel, Mark; Christiani, David C

    2014-08-01

    Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04-1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele-promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP -338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of ARDS

  17. Expedient screening for HIV-1 protease inhibitors using a simplified immunochromatographic assay.

    PubMed

    Kitidee, Kuntida; Khamaikawin, Wannisa; Thongkum, Weeraya; Tawon, Yardpiroon; Cressey, Tim R; Jevprasesphant, Rachaneekorn; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2016-05-15

    A colloidal gold-based immunochromatographic (IC) strip test was developed and validated for the detection of HIV-1 protease (HIV-PR) activity and inhibitory effect of HIV-PR inhibitors (PIs). It is a unique 'two-step' process requiring the combination of proteolysis of HIV-PR and an immunochromatographic reaction. Monoclonal antibodies to the free C-terminus of HIV matrix protein (HIV-MA) conjugated to gold particles and a monoclonal antibody against intact and cleaved forms of the HIV-MA are immobilized on the 'Test'-line of the IC strip. Using lopinavir, a potent HIV protease inhibitor, the IC-strip was optimized to detect inhibitory activity against HIV-protease. At a lopinavir concentration of 1000ng/mL (its suggested minimum effective concentration), a HIV-PRH6 concentration of 6mg/mL and incubation period of 60min were the optimal conditions. A preliminary comparison between a validated high-performance liquid chromatography assay and the IC-strip to semi-quantify HIV protease inhibitor concentrations (lopinavir and atazanavir) demonstrated good agreement. This simplified method is suitable for the rapid screening of novel protease inhibitors for future therapeutic use. Moreover, the IC strip could also be optimized to semi-quantify PIs concentrations in plasma samples. PMID:26490422

  18. Dipeptidyl Peptidase-4 Inhibitor Use Is Not Associated With Acute Pancreatitis in High-Risk Type 2 Diabetic Patients

    PubMed Central

    Chang, Chia-Hsuin; Lin, Jou-Wei; Chen, Shu-Ting; Lai, Mei-Shu; Chuang, Lee-Ming; Chang, Yi-Cheng

    2016-01-01

    Abstract To analyze the association between use of DPP-4 inhibitors and acute pancreatitis in high-risk type 2 diabetic patients. A retrospective nationwide cohort study was conducted using the Taiwan National Health Insurance claim database. The risk associated with sitagliptin was compared to that with acarbose, a second-line antidiabetic drug prescribed for patients with similar diabetes severity and with a known neutral effect on pancreatitis. Between January 1, 2009 and December 31, 2010, a total of 8526 sitagliptin initiators and 8055 acarbose initiators who had hypertriglyceridemia or prior hospitalization history for acute pancreatitis were analyzed for the risk of hospitalization due to acute pancreatitis stratified for baseline propensity score. In the crude analysis, sitagliptin was associated with a decreased risk of acute pancreatitis (hazard ratio [HR] 0.74; 95% confidence interval [CI]: 0.62–0.88) compared to acarbose in diabetic patients with prior history of hospitalization for pancreatitis or hypertriglyceridemia. The association was abolished after stratification for propensity score quintiles (adjusted HR 0.95; 95% CI: 0.79–1.16). Similar results were found separately in both patients’ histories of prior hospitalization of acute pancreatitis (adjusted HR 0.97; 95% CI: 0.76–1.24) and those with hypertriglyceridemia (adjusted HR 0.86; 95% CI: 0.65–1.13). No significant association was found for different durations or accumulative doses of sitagliptin. In the stratified analysis, no significant effect modification was found in relation to patients’ characteristics. Use of sitagliptin was not associated with an increased risk of acute pancreatitis in high-risk diabetic patients with hypertriglyceridemia or with history of acute pancreatitis. PMID:26886601

  19. Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket.

    PubMed

    Yu, Fei; Lu, Lu; Du, Lanying; Zhu, Xiaojie; Debnath, Asim K; Jiang, Shibo

    2013-01-01

    The hydrophobic pocket in the HIV-1 gp41 N-terminal heptad repeat (NHR) domain plays an important role in viral fusion and entry into the host cell, and serves as an attractive target for development of HIV-1 fusion/entry inhibitors. The peptide anti-HIV drug targeting gp41 NHR, T-20 (generic name: enfuvirtide; brand name: Fuzeon), was approved by the U.S. FDA in 2003 as the first HIV fusion/entry inhibitor for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, because T20 lacks the pocket-binding domain (PBD), it exhibits low anti-HIV-1 activity and short half-life. Therefore, several next-generation HIV fusion inhibitory peptides with PBD have been developed. They possess longer half-life and more potent antiviral activity against a broad spectrum of HIV-1 strains, including the T-20-resistant variants. Nonetheless, the clinical application of these peptides is still limited by the lack of oral availability and the high cost of production. Thus, development of small molecule compounds targeting the gp41 pocket with oral availability has been promoted. This review describes the main approaches for identification of HIV fusion/entry inhibitors targeting the gp41 pocket and summarizes the latest progress in developing these inhibitors as a new class of anti-HIV drugs. PMID:23344560

  20. 3-Hydroxypyrimidine-2,4-diones as an Inhibitor Scaffold of HIV Integrase

    PubMed Central

    Tang, Jing; Maddali, Kasthuraiah; Sham, Yuk Y.; Vince, Robert; Pommier, Yves; Wang, Zhengqiang

    2011-01-01

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold. PMID:21381765

  1. 3-Hydroxypyrimidine-2,4-diones as an inhibitor scaffold of HIV integrase.

    PubMed

    Tang, Jing; Maddali, Kasthuraiah; Metifiot, Mathieu; Sham, Yuk Y; Vince, Robert; Pommier, Yves; Wang, Zhengqiang

    2011-04-14

    Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). Inhibitors with a novel structure core are essential for combating resistance associated with known IN inhibitors (INIs). We have previously disclosed a novel dual inhibitor scaffold of HIV IN and reverse transcriptase (RT). Here we report the complete structure-activity relationship (SAR), molecular modeling, and resistance profile of this inhibitor type on IN inhibition. These studies support an antiviral mechanism of dual inhibition against both IN and RT and validate 3-hydroxypyrimidine-2,4-diones as an IN inhibitor scaffold. PMID:21381765

  2. Synthesis and anti-HIV activity of some [Nucleoside Reverse Transcriptase Inhibitor]-C5'-linker-[Integrase Inhibitor] heterodimers as inhibitors of HIV replication.

    PubMed

    Sugeac, Elena; Fossey, Christine; Ladurée, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2004-12-01

    Selected for their expected ability to inhibit HIV replication, a series of eight heterodimers containing a Nucleoside Reverse Transcriptase Inhibitor (NRTI) and an Integrase Inhibitor (INI), bound by a linker, were designed and synthesized. For the NRTIs, d4U, d2U and d4T were chosen. For the INIs, 4-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]-2,4-dioxobutyric acid (6) and 4-(3,5-dibenzyloxyphenyl)-2,4-dioxobutyric acid (9) (belonging to the beta-diketo acids class) were chosen. The conjugation of the two different inhibitors (NRTI and INI) was performed using an amino acid (glycine or beta-alanine) as a cleavable linker. PMID:15662954

  3. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  4. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity.

    PubMed

    Yanvarev, D V; Korovina, A N; Usanov, N N; Khomich, O A; Vepsäläinen, J; Puljula, E; Kukhanova, M K; Kochetkov, S N

    2016-08-01

    The structure-function analysis of 36 methylenebisphosphonates (BPs) as inhibitors of the phosphorolytic activity of native and drug-resistant forms of HIV-1 reverse transcriptase (RT) was performed. It was shown that with the increase of the inhibitory potential of BPs towards the phosphorolytic activity raises their ability to inhibit the RT-catalyzed DNA elongation. Herein, we report the impact of the thymidine analog mutations (TAM) on the activity of bisphosphonates, as well as some structural features of the BPs, allowing them to maintain the inhibitory activity on the enzyme resistant to nucleoside analog therapy. We estimated the Mg(2+)-coordinating group structure, the linker and the aromatic pharmacophore influence on the inhibitory potential of the BPs. Based on the 31 BPs SAR, several BPs with improved inhibitory properties were designed and synthesized. PMID:27230835

  5. HIV-1 integrase inhibitor resistance and its clinical implications.

    PubMed

    Blanco, Jose-Luis; Varghese, Vici; Rhee, Soo-Yon; Gatell, Jose M; Shafer, Robert W

    2011-05-01

    With the approval in 2007 of the first integrase inhibitor (INI), raltegravir, clinicians became better able to suppress virus replication in patients infected with human immunodeficiency virus type 1 (HIV-1) who were harboring many of the most highly drug-resistant viruses. Raltegravir also provided clinicians with additional options for first-line therapy and for the simplification of regimens in patients with stable virological suppression. Two additional INIs in advanced clinical development-elvitegravir and S/GSK1349572-may prove equally versatile. However, the INIs have a relatively low genetic barrier to resistance in that 1 or 2 mutations are capable of causing marked reductions in susceptibility to raltegravir and elvitegravir, the most well-studied INIs. This perspective reviews the genetic mechanisms of INI resistance and their implications for initial INI therapy, the treatment of antiretroviral-experienced patients, and regimen simplification. PMID:21459813

  6. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Sharma, Anju; Garg, Prabha; Roy, Nilanjan

    2013-03-01

    A QSAR study was performed on curcumine derivatives as HIV-1 integrase inhibitors using multiple linear regression. The statistically significant model was developed with squared correlation coefficients (r(2)) 0.891 and cross validated r(2) (r(2) cv) 0.825. The developed model revealed that electronic, shape, size, geometry, substitution's information and hydrophilicity were important atomic properties for determining the inhibitory activity of these molecules. The model was also tested successfully for external validation (r(2) pred = 0.849) as well as Tropsha's test for model predictability. Furthermore, the domain analysis was carried out to evaluate the prediction reliability of external set molecules. The model was statistically robust and had good predictive power which can be successfully utilized for screening of new molecules. PMID:23286784

  7. Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Chapsal, Bruno D.; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-03

    The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance.

  8. HOW IMMUNE PEPTIDASES CHANGE SPECIFICITY

    PubMed Central

    Raymond, Wilfred W.; Trivedi, Neil N.; Makarova, Anastasia; Ray, Manisha; Craik, Charles S.; Caughey, George H.

    2014-01-01

    Cathepsin G is a major secreted serine peptidase of neutrophils and mast cells. Studies in Ctsg-null mice suggest that cathepsin G supports antimicrobial defenses but can injure host tissues. The human enzyme has unusual “Janus-faced” ability to cleave peptides at basic (tryptic) as well as aromatic (chymotryptic) sites. Tryptic activity has been attributed to acidic Glu226 in the primary specificity pocket and underlies proposed important functions such as activation of pro-urokinase. However, most mammals, including mice, substitute Ala for Glu226, suggesting that human tryptic activity may be anomalous. To test this hypothesis, human cathepsin G was compared with mouse wild type and humanized active site mutants, revealing that mouse primary specificity is markedly narrower than that of human cathepsin G, with much greater Tyr activity and selectivity and near absence of tryptic activity. It also differs from human in resisting tryptic peptidase inhibitors (e.g., aprotinin), while favoring angiotensin destruction at Tyr4 over activation at Phe8. Ala226Glu mutants of mouse cathepsin G acquire tryptic activity and human ability to activate pro-urokinase. Phylogenetic analysis reveals that the Ala226Glu missense mutation appearing in primates 31–43 million years ago represented an apparently unprecedented way to create tryptic activity in a serine peptidase. We propose that tryptic activity is not an attribute of ancestral mammalian cathepsin G, which was primarily chymotryptic, and that primate-selective broadening of specificity opposed the general trend of increased specialization by immune peptidases and allowed acquisition of new functions. PMID:20889553

  9. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis.

    PubMed

    Chellappan, Sripriya; Kiran Kumar Reddy, G S; Ali, Akbar; Nalam, Madhavi N L; Anjum, Saima Ghafoor; Cao, Hong; Kairys, Visvaldas; Fernandes, Miguel X; Altman, Michael D; Tidor, Bruce; Rana, Tariq M; Schiffer, Celia A; Gilson, Michael K

    2007-05-01

    There is a clinical need for HIV protease inhibitors that can evade resistance mutations. One possible approach to designing such inhibitors relies upon the crystallographic observation that the substrates of HIV protease occupy a rather constant region within the binding site. In particular, it has been hypothesized that inhibitors which lie within this region will tend to resist clinically relevant mutations. The present study offers the first prospective evaluation of this hypothesis, via computational design of inhibitors predicted to conform to the substrate envelope, followed by synthesis and evaluation against wild-type and mutant proteases, as well as structural studies of complexes of the designed inhibitors with HIV protease. The results support the utility of the substrate envelope hypothesis as a guide to the design of robust protease inhibitors. PMID:17539822

  10. In vitro Isolation and Identification of Human Immunodeficiency Virus (HIV) Variants with Reduced Sensitivity to C-2 Symmetrical Inhibitors of HIV Type 1 Protease

    NASA Astrophysics Data System (ADS)

    Otto, M. J.; Garber, S.; Winslow, D. L.; Reid, C. D.; Aldrich, P.; Jadhav, P. K.; Patterson, C. E.; Hodge, C. N.; Cheng, Y.-S. E.

    1993-08-01

    Protease inhibitors are another class of compounds for treatment of human immunodeficiency virus (HIV)-caused disease. The emergence of resistance to the current anti-HIV drugs makes the determination of potential resistance to protease inhibitors imperative. Here we describe the isolation of an HIV type 1 (HIV-1) resistant to an HIV-protease inhibitor. Serial passage of HIV-1 (strain RF) in the presence of the inhibitor, [2-pyridylacetylisoleucylphenylalanyl-psi(CHOH)]_2 (P9941), failed to yield a stock of virus with a resistance phenotype. However, variants of the virus with 6- to 8-fold reduced sensitivity to P9941 were selected by using a combination of plaque assay and endpoint titration. Genetic analysis and computer modeling of the variant proteases revealed a single change in the codon for amino acid 82 (Val -> Ala), which resulted in a protease with lower affinity and reduced sensitivity to this inhibitor and certain, but not all, related inhibitors.

  11. Impact of Stereochemistry on Ligand Binding: X-ray Crystallographic Analysis of an Epoxide-Based HIV Protease Inhibitor.

    PubMed

    Benedetti, Fabio; Berti, Federico; Campaner, Pietro; Fanfoni, Lidia; Demitri, Nicola; Olajuyigbe, Folasade M; De March, Matteo; Geremia, Silvano

    2014-09-11

    A new pseudopeptide epoxide inhibitor, designed for irreversible binding to HIV protease (HIV-PR), has been synthesized and characterized in solution and in the solid state. However, the crystal structure of the complex obtained by inhibitor-enzyme cocrystallization revealed that a minor isomer, with inverted configuration of the epoxide carbons, has been selected by HIV-PR during crystallization. The structural characterization of the well-ordered pseudopeptide, inserted in the catalytic channel with its epoxide group intact, provides deeper insights into inhibitor binding and HIV-PR stereoselectivity, which aids development of future epoxide-based HIV inhibitors. PMID:25221650

  12. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    SciTech Connect

    Zhao, Zhijian; Wolkenberg, Scott E.; Lu, Meiqing; Munshi, Vandna; Moyer, Gregory; Feng, Meizhen; Carella, Anthony V.; Ecto, Linda T.; Gabryelski, Lori J.; Lai, Ming-Tain; Prasad, Sridar G.; Yan, Youwei; McGaughey, Georgia B.; Miller, Michael D.; Lindsley, Craig W.; Hartman, George D.; Vacca, Joseph P.; Williams, Theresa M.

    2008-09-29

    This Letter describes the design, synthesis, and biological evaluation of novel 3-indole sulfonamides as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) with balanced profiles against common HIV RT mutants K103N and Y181C.

  13. De novo design and discovery of potent, nonpeptidal HIV-1 protease inhibitors

    SciTech Connect

    Lam, P.Y.S.; Eyermann, C.J.; Hodge, C.N.; Jadhav, P.K.; Ru, Yu; Bacheler, L.T.; Meek, J.L.; Otto, M.J.; Rayner, M.M.; Wong, N.Y.; Chang, C.H.; Weber, P.C.; Jackson, D.A.; Sharpe, T.R.; Erickson-Viitanen, S.K.

    1993-12-31

    Intense worldwide research in HIV-1 protease inhibition has resulted in many inhibitors with nanomolar Ki. However, they are mostly pseudopeptides (containing amide bonds) and substrate-like. In this work the authors report that using 3-D database searching, computer modeling and x-ray structures of the HIV-1 protease/inhibitor complex, a completely novel class of potent nonpeptides has been designed and synthesized. The Ki is in the subnanomolar range and the IC90 for the cell assays in the submicromolar range. Confirmation of the mode of binding was achieved by a high resolution x-ray structure of a HIV-1 protease/inhibitor complex. Molecular recognition studies between HIV-1 protease and these inhibitors will also be discussed.

  14. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor

    PubMed Central

    Schimer, Jiří; Pávová, Marcela; Anders, Maria; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, Hans-Georg; Müller, Barbara; Konvalinka, Jan

    2015-01-01

    HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time. PMID:25751579

  15. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor.

    PubMed

    Schimer, Jiří; Pávová, Marcela; Anders, Maria; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, Hans-Georg; Müller, Barbara; Konvalinka, Jan

    2015-01-01

    HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time. PMID:25751579

  16. Structural Evidence for Effectiveness of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Protease

    SciTech Connect

    Kovalevsky, Andrey Y.; Louis, John M.; Aniana, Annie; Ghosh, Arun K.; Weber, Irene T.

    2008-12-08

    No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2' to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-{angstrom} resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 {angstrom} on main-chain atoms. Most hydrogen-bond and weaker C-H...O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.

  17. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors

    SciTech Connect

    Tie, Yunfeng; Wang, Yuan-Fang; Boross, Peter I.; Chiu, Ting-Yi; Ghosh, Arun K.; Tozser, Jozsef; Louis, John M.; Harrison, Robert W.; Weber, Irene T.

    2012-03-15

    Clinical inhibitor amprenavir (APV) is less effective on HIV-2 protease (PR{sub 2}) than on HIV-1 protease (PR{sub 1}). We solved the crystal structure of PR{sub 2} with APV at 1.5 {angstrom} resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR{sub 1} mutant (PR{sub 1M}) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR{sub 2}. PR{sub 1M} more closely resembled PR{sub 2} than PR{sub 1} in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR{sub 1M} with APV, DRV, and SQV were compared with available PR{sub 1} and PR{sub 2} complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR{sub 1M} and PR{sub 1}, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR{sub 1M}. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR{sub 1M} and PR{sub 2} relative to the strong hydrogen bonds observed in PR{sub 1}, consistent with 15- and 19-fold weaker inhibition, respectively. Overall, PR{sub 1M} partially replicates the specificity of PR{sub 2} and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV-2.

  18. Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids.

    PubMed

    Nair, Vasu; Okello, Maurice

    2015-01-01

    HIV integrase, encoded at the 3'-end of the HIV pol gene, is essential for HIV replication. This enzyme catalyzes the incorporation of HIV DNA into human DNA, which represents the point of "no-return" in HIV infection. Integrase is a significant target in anti-HIV drug discovery. This review article focuses largely on the design of integrase inhibitors that are β-diketo acids constructed on pyridinone scaffolds. Methodologies for synthesis of these compounds are discussed. Integrase inhibition data for the strand transfer (ST) step are compared with in vitro anti-HIV data. The review also examines the issue of the lack of correlation between the ST enzymology data and anti-HIV assay results. Because this disconnect appeared to be a problem associated with permeability, prodrugs of these inhibitors were designed and synthesized. Prodrugs dramatically improved the anti-HIV activity data. For example, for compound, 96, the anti-HIV activity (EC50) improved from 500 nM for this diketo acid to 9 nM for its prodrug 116. In addition, there was excellent correlation between the IC50 and IC90 ST enzymology data for 96 (6 nM and 97 nM, respectively) and the EC50 and EC90 anti-HIV data for its prodrug 116 (9 nM and 94 nM, respectively). Finally, it was confirmed that the prodrug 116 was rapidly hydrolyzed in cells to the active compound 96. PMID:26184144

  19. Enantioselective Synthesis of Dioxatriquinane Structural Motifs for HIV-1 Protease Inhibitors Using a Cascade Radical Cyclization†

    PubMed Central

    Ghosh, Arun K.; Xu, Chun-Xiao; Osswald, Heather L.

    2015-01-01

    Synthesis of novel HIV-1 protease inhibitors incorporating dioxatriquinane-derived P2-ligands is described. The tricyclic ligand alcohol contains five contiguous chiral centers. The ligand alcohols were prepared in optically active form by an enzymatic asymmetrization of mesodiacetate, cascade radical cyclization, and Lewis acid catalyzed reduction as the key steps. Inhibitors with dioxatriquinane-derived P2-ligands exhibited low nanomolar HIV-1 protease activity. PMID:26185337

  20. Evolutionary families of peptidases.

    PubMed Central

    Rawlings, N D; Barrett, A J

    1993-01-01

    The available amino acid sequences of peptidases have been examined, and the enzymes have been allocated to evolutionary families. Some of the families can be grouped together in 'clans' that show signs of distant relationship, but nevertheless, it appears that there may be as many as 60 evolutionary lines of peptidases with separate origins. Some of these contain members with quite diverse peptidase activities, and yet there are some striking examples of convergence. We suggest that the classification by families could be used as an extension of the current classification by catalytic type. PMID:8439290

  1. HIV-1 protease mutations and protease inhibitor cross-resistance.

    PubMed

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W

    2010-10-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  2. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening.

    PubMed

    La, Jennifer; Latham, Catherine F; Tinetti, Ricky N; Johnson, Adam; Tyssen, David; Huber, Kelly D; Sluis-Cremer, Nicolas; Simpson, Jamie S; Headey, Stephen J; Chalmers, David K; Tachedjian, Gilda

    2015-06-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  3. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening

    PubMed Central

    La, Jennifer; Latham, Catherine F.; Tinetti, Ricky N.; Johnson, Adam; Tyssen, David; Huber, Kelly D.; Sluis-Cremer, Nicolas; Simpson, Jamie S.; Headey, Stephen J.; Chalmers, David K.; Tachedjian, Gilda

    2015-01-01

    Fragment-based screening methods can be used to discover novel active site or allosteric inhibitors for therapeutic intervention. Using saturation transfer difference (STD) NMR and in vitro activity assays, we have identified fragment-sized inhibitors of HIV-1 reverse transcriptase (RT) with distinct chemical scaffolds and mechanisms compared to nonnucleoside RT inhibitors (NNRTIs) and nucleoside/nucleotide RT inhibitors (NRTIs). Three compounds were found to inhibit RNA- and DNA-dependent DNA polymerase activity of HIV-1 RT in the micromolar range while retaining potency against RT variants carrying one of three major NNRTI resistance mutations: K103N, Y181C, or G190A. These compounds also inhibit Moloney murine leukemia virus RT but not the Klenow fragment of Escherichia coli DNA polymerase I. Steady-state kinetic analyses demonstrate that one of these fragments is a competitive inhibitor of HIV-1 RT with respect to deoxyribonucleoside triphosphate (dNTP) substrate, whereas a second compound is a competitive inhibitor of RT polymerase activity with respect to the DNA template/primer (T/P), and consequently also inhibits RNase H activity. The dNTP competing RT inhibitor retains activity against the NRTI-resistant mutants K65R and M184V, demonstrating a drug resistance profile distinct from the nucleotide competing RT inhibitors indolopyridone-1 (INDOPY-1) and 4-dimethylamino-6-vinylpyrimidine-1 (DAVP-1). In antiviral assays, the T/P competing compound inhibits HIV-1 replication at a step consistent with an RT inhibitor. Screening of additional structurally related compounds to the three fragments led to the discovery of molecules with improved potency against HIV-1 RT. These fragment inhibitors represent previously unidentified scaffolds for development of novel drugs for HIV-1 prevention or treatment. PMID:26038551

  4. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    SciTech Connect

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  5. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    PubMed Central

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  6. MEROPS: the peptidase database

    PubMed Central

    Rawlings, Neil D.; Barrett, Alan J.

    2000-01-01

    Important additions have been made to the MEROPS database (http://www.bi.bbsrc.ac.uk/Merops/Merops.htm ). These include sequence alignments and cladograms for many of the families of peptidases, and these have proved very helpful in the difficult task of distinguishing the sequences of peptidases that are simply species variants of already known enzymes from those that represent novel enzymes. PMID:10592261

  7. Solubility profiling of HIV protease inhibitors in human intestinal fluids.

    PubMed

    Wuyts, Benjamin; Brouwers, Joachim; Mols, Raf; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2013-10-01

    The present study pursued to profile the intestinal solubility of nine HIV protease inhibitors (PIs) in fasted- and fed-state human intestinal fluids (FaHIF, FeHIF) aspirated from four volunteers. In addition, the ability of fasted- and fed-state simulated intestinal fluids (FaSSIF, FeSSIF) to predict the intestinal solubility was evaluated. All PIs were poorly soluble in FaHIF (from 7 μM for ritonavir to 327 μM for darunavir) and FeHIF (from 15 μM for atazanavir to 409μM for darunavir). For four of nine PIs, food intake significantly enhanced the solubilizing capacity of intestinal fluids (up to 18.4-fold increase for ritonavir). The intersubject variability (average coefficient of variance CVfed = 60.6%, CVfasted = 40.4%) was higher as compared with the intrasubject variability (CVfed = 41.3%, CVfasted = 20.5%). PI solubilities correlated reasonably well between FaSSIF and FaHIF (R = 0.817), but not between FeSSIF and FeHIF (R = 0.617). To conclude, postprandial conditions increased the inter- and intrasubject variability of the PIs. The inability of FeSSIF to accurately predict the FeHIF solubility emphasizes the need for a multivariate approach to determine solubility profiles, taking into account solid-state characteristics, pH, mixed bile acid/phospholipid micelles, and digestive products. PMID:23939880

  8. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  9. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Garg, Prabha; Roy, Nilanjan

    2011-08-01

    The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3' processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r(2) value of 0.815 and non-cross validated r (2) value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors. PMID:21327540

  10. Substituted indoles as HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent evaluation (WO2015044928).

    PubMed

    Li, Xiao; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-05-01

    The invention described in this patent (WO2015044928) is related to compounds based on the substituted indole scaffold, their synthetic process and application to inhibit HIV-1 replication as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the newly claimed compounds presented improved potency against wild-type (WT) HIV-1 strain in comparison to previously disclosed indole-based NNRTIs and were also shown to be effective against common resistant HIV-1 strains. In light of their novel structural characteristics, simple synthetic route and improved anti-HIV activity, these compounds deserve further study as promising NNRTIs. PMID:26742549

  11. Basic Quinolinonyl Diketo Acid Derivatives as Inhibitors of HIV Integrase and their Activity against RNase H Function of Reverse Transcriptase

    PubMed Central

    2015-01-01

    A series of antiviral basic quinolinonyl diketo acid derivatives were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of magnitude selectivity over 3′-processing. These strand transfer selective inhibitors also inhibited HIV-1 RNase H with low micromolar potencies. Molecular modeling studies based on both the HIV-1 IN and RNase H catalytic core domains provided new structural insights for the future development of these compounds as dual HIV-1 IN and RNase H inhibitors. PMID:24684270

  12. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.

    PubMed

    Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X; Schiffer, Celia; Gilson, Michael K

    2007-08-01

    Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The present study describes a quantitative measure of the volume of a bound inhibitor falling outside the substrate envelope, and observes that this quantity correlates with the inhibitor's losses in affinity to clinically relevant mutants. This measure may thus be useful as a penalty function in the design of robust HIV protease inhibitors. PMID:17474129

  13. Impact of protease inhibitors on intracellular concentration of tenofovir-diphosphate among HIV-1 infected patients

    PubMed Central

    Lahiri, Cecile D.; Tao, Sijia; Jiang, Yong; Sheth, Anandi N.; Acosta, Edward P.; Marconi, Vincent C.; Armstrong, Wendy S.; Schinazi, Raymond F.; Vunnava, Aswani; Sanford, Sara; Ofotokun, Ighovwerha

    2015-01-01

    Intracellular nucleoside reverse transcriptase inhibitor (NRTI) concentrations are associated with plasma HIV-1 response. Coadministration of protease inhibitors with NRTIs can affect intra-cellular concentrations due to protease inhibitor inhibition of efflux transporters. Tenofovir-diphosphate (TFV-DP) concentrations within peripheral blood mononuclear cells were compared among individuals receiving either atazanavir or darunavir-based regimens. There was a trend towards higher TFV-DP concentrations among women and among participants receiving atazanavir. TFV-DP intracellular concentrations were positively associated with undetectable plasma HIV-1 RNA. PMID:25870991

  14. Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy

    PubMed Central

    Chugh, Pauline; Bradel-Tretheway, Birgit; Monteiro-Filho, Carlos MR; Planelles, Vicente; Maggirwar, Sanjay B; Dewhurst, Stephen; Kim, Baek

    2008-01-01

    Background Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs. Results Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-living virus-infected macrophages. These PI3K/Akt inhibitors hyper-sensitize infected macrophages to extracellular stresses that they are normally exposed to, and eventually lead to cell death of infected macrophages without harming uninfected cells. Based on the data from these Akt inhibitors, we were able to further investigate how HIV-1 infection utilizes the PI3K/Akt pathway to establish the cytoprotective effect of HIV-1 infection, which extends the lifespan of infected macrophages, a key viral reservoir. First, we found that HIV-1 infection activates the well characterized pro-survival PI3K/Akt pathway in primary human macrophages, as reflected by decreased PTEN protein expression and increased Akt kinase activity. Interestingly, the expression of HIV-1 or SIV Tat is sufficient to mediate this cytoprotective effect, which is dependent on the basic domain of Tat – a region that has previously been shown to bind p53. Next, we observed that this interaction appears to contribute to the downregulation of PTEN expression, since HIV-1 Tat was found to compete with PTEN for p53 binding; this is known to result in p53 destabilization, with a consequent reduction in PTEN protein production. Conclusion Since HIV-1 infected macrophages display highly elevated Akt activity, our results collectively show that PI3K/Akt inhibitors may be a novel therapy for interfering with the establishment of long-living HIV-1 infected reservoirs. PMID:18237430

  15. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    PubMed

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%. PMID:16257208

  16. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    PubMed Central

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-01

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976

  17. Pyrroloaryls and pyrroloheteroaryls: Inhibitors of the HIV fusion/attachment, reverse transcriptase and integrase.

    PubMed

    Patel, Rahul V; Park, Se Won

    2015-09-01

    Heterocyclic compounds execute a very important role in drug design and discovery. This article provides the basic milestones of the research for pyrroloaryl and pyrroloheteroaryl based components targeting HIV viral replication cycle. Anti-HIV activity is elaborated for several classes of pyrrolo-compounds as pyrrolopyridines, pyrrolopyrimidines, pyrrolopyridazines, pyrrolobenzodiazepinones, pyrrolobenzothiazepines, pyrrolobenzoxazepinones, pyrrolophenanthridines, pyrroloquinoxalines, pyrrolotriazines, pyrroloquinolines, pyrrolopyrazinones, pyrrolothiatriazines, arylthiopyrroles and pyrrolopyrazolones targeting two essential HIV enzymes, reverse transcriptase and integrase as well as attachment/fusion of HIV virons to the host CD-4 cell. Such attempts were resulted in a discovery of highly potent anti-HIV agents suitable for clinical trials, for example, BMS-378806, BMS-585248, BMS-626529, BMS-663068, BMS-488043 and BMS-663749, etc. as anti-HIV attachment agents, triciribine, QX432, BI-1 and BI-2 as HIV RT inhibitors which are in preclinical or clinical development. Mechanism of action of compounds presented in this article towards the suppression of HIV attachment/fusion as well as against the activities of HIV enzymes reverse transcriptase and integrase has been discussed. Relationships of new compounds' molecular framework and HIV viral target has been overviewed in order to facilitate further construction of promising anti-HIV agents in future drug discovery process. PMID:26116177

  18. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model.

    PubMed

    Haile, Woldeab B; Gavegnano, Christina; Tao, Sijia; Jiang, Yong; Schinazi, Raymond F; Tyor, William R

    2016-08-01

    A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the replication of HIV in vitro, penetrates the BBB when systemically administered in mice and reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be useful as a novel therapeutic to treat humans with HAND. PMID:26851503

  19. Topical application of entry inhibitors as "virustats" to prevent sexual transmission of HIV infection

    PubMed Central

    Lederman, Michael M; Jump, Robin; Pilch-Cooper, Heather A; Root, Michael; Sieg, Scott F

    2008-01-01

    With the continuing march of the AIDS epidemic and little hope for an effective vaccine in the near future, work to develop a topical strategy to prevent HIV infection is increasingly important. This stated, the track record of large scale "microbicide" trials has been disappointing with nonspecific inhibitors either failing to protect women from infection or even increasing HIV acquisition. Newer strategies that target directly the elements needed for viral entry into cells have shown promise in non-human primate models of HIV transmission and as these agents have not yet been broadly introduced in regions of highest HIV prevalence, they are particularly attractive for prophylaxis. We review here the agents that can block HIV cellular entry and that show promise as topical strategies or "virustats" to prevent mucosal transmission of HIV infection PMID:19094217

  20. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System

    PubMed Central

    Mahdi, Mohamed; Szojka, Zsófia; Mótyán, János András; Tőzsér, József

    2015-01-01

    Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing. PMID:26633459

  1. Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice.

    PubMed

    Dasuri, Kalavathi; Pepping, Jennifer K; Fernandez-Kim, Sun-Ok; Gupta, Sunita; Keller, Jeffrey N; Scherer, Philipp E; Bruce-Keller, Annadora J

    2016-06-01

    HIV protease inhibitors are key components of HIV antiretroviral therapies, which are fundamental in the treatment of HIV infection. However, the protease inhibitors are well-known to induce metabolic dysfunction which can in turn escalate the complications of HIV, including HIV associated neurocognitive disorders. As experimental and epidemiological data support a therapeutic role for adiponectin in both metabolic and neurologic homeostasis, this study was designed to determine if increased adiponectin could prevent the detrimental effects of protease inhibitors in mice. Adult male wild type (WT) and adiponectin-overexpressing (ADTg) mice were thus subjected to a 4-week regimen of lopinavir/ritonavir, followed by comprehensive metabolic, neurobehavioral, and neurochemical analyses. Data show that lopinavir/ritonavir-induced lipodystrophy, hypoadiponectinemia, hyperglycemia, hyperinsulinemia, and hypertriglyceridemia were attenuated in ADTg mice. Furthermore, cognitive function and blood-brain barrier integrity were preserved, while loss of cerebrovascular markers and white matter injury were prevented in ADTg mice. Finally, lopinavir/ritonavir caused significant increases in expression of markers of brain inflammation and decreases in synaptic markers in WT, but not in ADTg mice. Collectively, these data reinforce the pathophysiologic link from metabolic dysfunction to loss of cerebrovascular and cognitive homeostasis; and suggest that preservation and/or replacement of adiponectin could prevent these key aspects of HIV protease inhibitor-induced toxicity in clinical settings. PMID:26912411

  2. Inhibition Profiling of Retroviral Protease Inhibitors Using an HIV-2 Modular System.

    PubMed

    Mahdi, Mohamed; Szojka, Zsófia; Mótyán, János András; Tőzsér, József

    2015-12-01

    Retroviral protease inhibitors (PIs) are fundamental pillars in the treatment of HIV infection and acquired immunodeficiency syndrome (AIDS). Currently used PIs are designed against HIV-1, and their effect on HIV-2 is understudied. Using a modular HIV-2 protease cassette system, inhibition profiling assays were carried out for protease inhibitors both in enzymatic and cell culture assays. Moreover, the treatment-associated resistance mutations (I54M, L90M) were introduced into the modular system, and comparative inhibition assays were performed to determine their effect on the susceptibility of the protease. Our results indicate that darunavir, saquinavir, indinavir and lopinavir were very effective HIV-2 protease inhibitors, while tipranavir, nelfinavir and amprenavir showed a decreased efficacy. I54M, L90M double mutation resulted in a significant reduction in the susceptibility to most of the inhibitors with the exception of tipranavir. To our knowledge, this modular system constitutes a novel approach in the field of HIV-2 protease characterization and susceptibility testing. PMID:26633459

  3. Inhibitors of HIV-1 entry and integration: recent developments and impact on treatment.

    PubMed

    Sharma, Anil K; George, Varghese; Valiathan, Ranjini; Pilakka-Kanthikeel, Sudheesh; Pallikkuth, Suresh

    2013-05-01

    Advances in the drug development against HIV-1 have lead to the identification of new compounds which could be used to target cellular entry and nuclear integration of virus in addition to drugs that commonly target reverse transcriptase and protease. These additional targets have added a new dimension to fight against HIV. Cellular entry of HIV is a multistep procedure involving a range of cellular and molecular interactions between virus envelope protein and receptors expressed on the surface of the target cells, thus providing many opportunities to block infection. Some of these entry inhibitors are currently being used in the clinic and more compounds are under various stages of development. Integration of the HIV-1 DNA is required and essential to maintain the viral DNA in the infected cell. The design and discovery of integrase inhibitors were first focused at targeting the catalytic site of integrase that selectively acting on strand transfer and thus inhibits integration of virus DNA with host cell genome. Thus, entry and integrase inhibitors present a real added value in combined treatment against HIV infection. This review discusses the recent development in the discovery of inhibitors of HIV entry and integration along with some of recent patents in the field. PMID:23578097

  4. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb

    PubMed Central

    Lu, Panpan; Qu, Xiying; Shen, Yinzhong; Jiang, Zhengtao; Wang, Pengfei; Zeng, Hanxian; Ji, Haiyan; Deng, Junxiao; Yang, Xinyi; Li, Xian; Lu, Hongzhou; Zhu, Huanzhang

    2016-01-01

    None of the currently used anti-HIV-1 agents can effectively eliminate latent HIV-1 reservoirs, which is a major hurdle to a complete cure for AIDS. We report here that a novel oral BET inhibitor OTX015, a thienotriazolodiazepine compound that has entered phase Ib clinical development for advanced hematologic malignancies, can effectively reactivate HIV-1 in different latency models with an EC50 value 1.95–4.34 times lower than JQ1, a known BET inhibitor that can reactivate HIV-1 latency. We also found that OTX015 was more potent when used in combination with prostratin. More importantly, OTX015 treatment induced HIV-1 full-length transcripts and viral outgrowth in resting CD4+ T cells from infected individuals receiving suppressive antiretroviral therapy (ART), while exerting minimal toxicity and effects on T cell activation. Finally, biochemical analysis showed that OTX015-mediated activation of HIV-1 involved an increase in CDK9 occupancy and RNAP II C-terminal domain (CTD) phosphorylation. Our results suggest that the BET inhibitor OTX015 may be a candidate for anti-HIV-1-latency therapies. PMID:27067814

  5. Novel HIV-1 Integrase Inhibitor Development by Virtual Screening Based on QSAR Models.

    PubMed

    Guasch, Laura; Zakharov, Alexey V; Tarasova, Olga A; Poroikov, Vladimir V; Liao, Chenzhong; Nicklaus, Marc C

    2016-01-01

    HIV-1 integrase (IN) plays an important role in the life cycle of HIV and is responsible for integration of the virus into the human genome. We present computational approaches used to design novel HIV-1 IN inhibitors. We created an IN inhibitor database by collecting experimental data from the literature. We developed quantitative structure-activity relationship (QSAR) models of HIV-1 IN strand transfer (ST) inhibitors using this database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as with an additional validation set of 308 structurally distinct compounds from the publicly accessible BindingDB database. The validated models were used to screen a small combinatorial library of potential synthetic candidates to identify hits, with a subsequent docking approach applied to further filter out compounds to arrive at a small set of potential HIV-1 IN inhibitors. As result, 236 compounds with good druglikeness properties and with correct docking poses were identified as potential candidates for synthesis. One of the six compounds finally chosen for synthesis was experimentally confirmed to inhibit the ST reaction with an IC50(ST) of 37 µM. The IN inhibitor database is available for download from http://cactus.nci.nih.gov/download/iidb/. PMID:26268340

  6. Simian-tropic HIV as a model to study drug resistance against integrase inhibitors.

    PubMed

    Wares, Melissa; Hassounah, Said; Mesplède, Thibault; Sandstrom, Paul A; Wainberg, Mark A

    2015-04-01

    Drug resistance represents a key aspect of human immunodeficiency virus (HIV) treatment failure. It is important to develop nonhuman primate models for studying issues of drug resistance and the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses for studying resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell-tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1 were replaced with their SIV counterparts (simian-tropic HIV-1 [stHIV-1](SCA,SVIF)) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H, and R263K on drug resistance, viral infectivity, and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their effects in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the role of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI resistance substitutions on viral persistence, transmissibility, and pathogenesis in a nonhuman primate model. PMID:25583721

  7. Discovery of HIV-1 integrase inhibitors: pharmacophore mapping, virtual screening, molecular docking, synthesis, and biological evaluation.

    PubMed

    Bhatt, Hardik; Patel, Paresh; Pannecouque, Christophe

    2014-02-01

    HIV-1 integrase enzyme plays an important role in the life cycle of HIV and responsible for integration of virus into human genome. Here, both computational and synthetic approaches were used to design and synthesize newer HIV-1 integrase inhibitors. Pharmacophore mapping was performed on 20 chemically diverse molecules using DISCOtech, and refinement was carried out using GASP. Ten pharmacophore models were generated, and model 2, containing four features including two donor sites, one acceptor atom, and one hydrophobic region, was considered the best model as it has the highest fitness score. It was used as a query in NCI and Maybridge databases. Molecules having more than 99% Q(fit) value were used to design 30 molecules bearing pteridine ring and were docked on co-crystal structure of HIV-1 integrase enzyme. Among these, six molecules, showing good docking score compared with the reference standards, were synthesized by conventional as well as microwave-assisted methods. All compounds were characterized by physical and spectral data and evaluated for in vitro anti-HIV activity against the replication of HIV-1 (IIIB) in MT-4 cells. The used approach of molecular docking and anti-HIV activity data of designed molecules will provide significant insights to discover novel HIV-1 Integrase Inhibitors. PMID:23957390

  8. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an

  9. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. PMID:25066578

  10. Computer tools in the discovery of HIV-I integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Nicklaus, Marc C

    2010-01-01

    Computer-aided drug design (CADD) methodologies have made great advances and contributed significantly to the discovery and/or optimization of many clinically used drugs in recent years. CADD tools have likewise been applied to the discovery of inhibitors of HIV-I integrase, a difficult and worthwhile target for the development of efficient anti-HIV drugs. This article reviews the application of CADD tools, including pharmacophore search, quantitative structure–activity relationships, model building of integrase complexed with viral DNA and quantum-chemical studies in the discovery of HIV-I integrase inhibitors. Different structurally diverse integrase inhibitors have been identified by, or with significant help from, various CADD tools. PMID:21426160

  11. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 Integrase Inhibitors

    PubMed Central

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Smith, Steven J.; Métifiot, Mathieu; Johnson, Barry C.; Marchand, Christophe; Hughes, Stephen H.; Pommier, Yves; Burke, Terrence R.

    2012-01-01

    Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck’s raltegravir and Gilead’s elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5- positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant. PMID:23149229

  12. 6,7-Dihydroxy-1-oxoisoindoline-4-sulfonamide-containing HIV-1 integrase inhibitors.

    PubMed

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Smith, Steven J; Métifiot, Mathieu; Johnson, Barry C; Marchand, Christophe; Hughes, Stephen H; Pommier, Yves; Burke, Terrence R

    2012-12-15

    Although an extensive body of scientific and patent literature exists describing the development of HIV-1 integrase (IN) inhibitors, Merck's raltegravir and Gilead's elvitegravir remain the only IN inhibitors FDA-approved for the treatment of AIDS. The emergence of raltegravir-resistant strains of HIV-1 containing mutated forms of IN underlies the need for continued efforts to enhance the efficacy of IN inhibitors against resistant mutants. We have previously described bicyclic 6,7-dihydroxyoxoisoindolin-1-ones that show good IN inhibitory potency. This report describes the effects of introducing substituents into the 4- and 5-positions of the parent 6,7-dihydroxyoxoisoindolin-1-one platform. We have developed several sulfonamide-containing analogs that enhance potency in cell-based HIV assays by more than two orders-of-magnitude and we describe several compounds that are more potent than raltegravir against the clinically relevant Y143R IN mutant. PMID:23149229

  13. The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors.

    PubMed

    Velthuisen, Emile J; Johns, Brian A; Temelkoff, David P; Brown, Kevin W; Danehower, Susan C

    2016-07-19

    A novel series of HIV-1 integrase strand transfer inhibitors were designed using the venerable two-metal binding pharmacophore model and incorporating structural elements from two different literature scaffolds. This manuscript describes a number of 8-hydroxyquinoline tetracyclic lactams with exceptional antiviral activity against HIV-1 and little loss of potency against the IN signature resistance mutations Q148K and G140S/Q148H. PMID:27092410

  14. Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptidase IV. 1. Variation of the P2 position of Xaa-boroPro dipeptides.

    PubMed

    Coutts, S J; Kelly, T A; Snow, R J; Kennedy, C A; Barton, R W; Adams, J; Krolikowski, D A; Freeman, D M; Campbell, S J; Ksiazek, J F; Bachovchin, W W

    1996-05-10

    A series of prolineboronic acid (boroPro) containing dipeptides were synthesized and assayed for their ability to inhibit the serine protease dipeptidyl peptidase IV (DPPIV). Inhibitory activity, which requires the (R)-stereoisomer of boroPro in the P1 position, appears to tolerate a variety of L-amino acids in the P2 position. Substitution at the P2 position which is not tolerated include the D-amino acids, alpha,alpha-disubstituted amino acids, and glycine. Specificity against DPPII and proline specific endopeptidase is reported. A correlation between the ability to inhibit DPPIV in cell culture and in the human mixed lymphocyte reaction is demonstrated. A synthesis of prolineboronic acid is reported as well as conditions for generating the fully unprotected boronic acid dipeptides in either their cyclic or acyclic forms. PMID:8642568

  15. Probing Multidrug-Resistance and Protein-Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

    SciTech Connect

    Ghosh, Arun K.; Xu, Chun-Xiao; Rao, Kalapala V.; Baldridge, Abigail; Agniswamy, Johnson; Wang, Yuan-Fang; Weber, Irene T.; Aoki, Manabu; Miguel, Salcedo Pedro; Amano, Masayuki; Mitsuya, Hiroaki

    2010-10-29

    We report the design, synthesis, biological evaluation, and X-ray crystallographic analysis of a new class of HIV-1 protease inhibitors. Compound 4 proved to be an extremely potent inhibitor toward various multidrug-resistant HIV-1 variants, representing a near 10-fold improvement over darunavir (DRV). Compound 4 also blocked protease dimerization with at least 10-fold greater potency than DRV.

  16. Safety and effectiveness of dipeptidyl peptidase-4 inhibitors versus intermediate-acting insulin or placebo for patients with type 2 diabetes failing two oral antihyperglycaemic agents: a systematic review and network meta-analysis

    PubMed Central

    Tricco, Andrea C; Antony, Jesmin; Khan, Paul A; Ghassemi, Marco; Hamid, Jemila S; Ashoor, Huda; Blondal, Erik; Soobiah, Charlene; Yu, Catherine H; Hutton, Brian; Hemmelgarn, Brenda R; Moher, David; Majumdar, Sumit R; Straus, Sharon E

    2014-01-01

    Objective To evaluate the effectiveness and safety of dipeptidyl peptidase-4 (DPP-4) inhibitors versus intermediate-acting insulin for adults with type 2 diabetes mellitus (T2DM) and poor glycaemic control despite treatment with two oral agents. Setting Studies were multicentre and multinational. Participants Ten studies including 2967 patients with T2DM. Interventions Studies that examined DPP-4 inhibitors compared with each other, intermediate-acting insulin, no treatment or placebo in patients with T2DM. Primary and secondary outcome measures Primary outcome was glycosylated haemoglobin (HbA1c). Secondary outcomes were healthcare utilisation, body weight, fractures, quality of life, microvascular complications, macrovascular complications, all-cause mortality, harms, cost and cost-effectiveness. Results 10 randomised clinical trials with 2967 patients were included after screening 5831 titles and abstracts, and 180 full-text articles. DPP-4 inhibitors significantly reduced HbA1c versus placebo in network meta-analysis (NMA; mean difference (MD) −0.62%, 95% CI −0.93% to −0.33%) and meta-analysis (MD −0.61%, 95% CI −0.81% to −0.41%), respectively. Significant differences in HbA1c were not observed for neutral protamine Hagedorn (NPH) insulin versus placebo and DPP-4 inhibitors versus NPH insulin in NMA. In meta-analysis, no significant differences were observed between DPP-4 inhibitors and placebo for severe hypoglycaemia, weight gain, cardiovascular disease, overall harms, treatment-related harms and mortality, although patients receiving DPP-4 inhibitors experienced less infections (relative risk 0.72, 95% CI 0.57 to 0.91). Conclusions DPP-4 inhibitors were superior to placebo in reducing HbA1c levels in adults with T2DM taking at least two oral agents. Compared with placebo, no safety signals were detected with DPP-4 inhibitors and there was a reduced risk of infection. There was no significant difference in HbA1c observed between NPH and placebo or

  17. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    PubMed

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. PMID:26810656

  18. Novel Neuroprotective GSK-3β Inhibitor Restricts Tat-Mediated HIV-1 Replication

    PubMed Central

    Guendel, Irene; Iordanskiy, Sergey; Van Duyne, Rachel; Kehn-Hall, Kylene; Saifuddin, Mohammed; Das, Ravi; Jaworski, Elizabeth; Sampey, Gavin C.; Senina, Svetlana; Shultz, Leonard; Narayanan, Aarthi; Chen, Hao; Lepene, Benjamin; Zeng, Chen

    2014-01-01

    The implementation of new antiretroviral therapies targeting transcription of early viral proteins in postintegrated HIV-1 can aid in overcoming current therapy limitations. Using high-throughput screening assays, we have previously described a novel Tat-dependent HIV-1 transcriptional inhibitor named 6-bromoindirubin-3′-oxime (6BIO). The screening of 6BIO derivatives yielded unique compounds that show potent inhibition of HIV-1 transcription. We have identified a second-generation derivative called 18BIOder as an inhibitor of HIV-1 Tat-dependent transcription in TZM-bl cells and a potent inhibitor of GSK-3β kinase in vitro. Structurally, 18BIOder is half the molecular weight and structure of its parental compound, 6BIO. More importantly, we also have found a different GSK-3β complex present only in HIV-1-infected cells. 18BIOder preferentially inhibits this novel kinase complex from infected cells at nanomolar concentrations. Finally, we observed that neuronal cultures treated with Tat protein are protected from Tat-mediated cytotoxicity when treated with 18BIOder. Overall, our data suggest that HIV-1 Tat-dependent transcription is sensitive to small-molecule inhibition of GSK-3β. PMID:24227837

  19. [Research progress of dual inhibitors targeting HIV-1 reverse transcriptase and integrase].

    PubMed

    Liu, Hong; Zhan, Peng; Liu, Xin-Yong

    2013-04-01

    Both reverse transcriptase (RT) and integrase (IN) play crucial roles in the life cycle of HIV-1, which are also key targets in the area of anti-HIV drug research. Reverse transcriptase inhibitors are involved in the most employed drugs used to treat AIDS patients and HIV-infected people, while one of the integrase inhibitors has already been approved by US FDA to appear on the market. Great achievement has been made in the research on both, separately. Recently, much more attention of medicinal chemistry researchers has been attracted to the strategies of multi-target drugs. Compounds with excellent potency against both HIV RT and IN, evidently defined as dual inhibitors targeting both enzymes, have been obtained through considerable significant exploration, which can be classified into two categories according to different strategies. Combinatorial chemistry approach together with high throughput screening methods and multi-target-based virtual screening strategy have been useful tools for identifying selective anti-HIV compounds for long times; Rational drug design based on pharmacophore combination has also led to remarkable results. In this paper, latest progress of both categories in the discovery and structural modification will be covered, with a view to contribute to the career of anti-HIV research. PMID:23833931

  20. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Thammaporn, Ratsupa; Ishii, Kentaro; Yagi-Utsumi, Maho; Uchiyama, Susumu; Hannongbua, Supa; Kato, Koichi

    2016-01-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs. PMID:26934936

  1. Modulation of the LDL receptor and LRP levels by HIV protease inhibitors.

    PubMed

    Tran, Huan; Robinson, Susan; Mikhailenko, Irina; Strickland, Dudley K

    2003-10-01

    Inhibitors of the human immunodeficiency virus (HIV)-1 protease have proven to be effective antiretroviral drugs. However, patients receiving these drugs develop serious metabolic abnormalities, including hypercholesterolemia. The objective of the present study was to identify mechanisms by which HIV protease inhibitors increase plasma cholesterol levels. We hypothesized that HIV protease inhibitors may affect gene regulation of certain LDL receptor (LDLR) family members, thereby altering the catabolism of cholesterol-containing lipoproteins. In this present study we investigated the effect of several HIV protease inhibitors (ABT-378, Amprenavir, Indinavir, Nelfinavir, Ritonavir, and Saquinavir) on mRNA, protein, and functional levels of LDLR family members. Our results demonstrate that one of these drugs, Nelfinavir, significantly decreases LDLR and LDLR-related protein (LRP) mRNA and protein levels, resulting in the reduced functional activity of these two receptors. Nelfinavir exerts its effect by reducing levels of active SREBP1 in the nucleus. The finding that Nelfinavir reduces the levels of two key receptors (LRP and LDLR) involved in lipoprotein catabolism and maintenance of vessel wall integrity identifies a mechanism that causes hypercholesterolemia complications in HIV patients treated with this drug and raises concerns about the atherogenic nature of Nelfinavir. PMID:12837856

  2. Virtual screening of Indonesian herbal database as HIV-1 reverse transcriptase inhibitor

    PubMed Central

    Syahdi, Rezi Riadhi; Mun'im, Abdul; Suhartanto, Heru; Yanuar, Arry

    2012-01-01

    HIV-1 (Human immunodeficiency virus type 1) is a member of retrovirus family that could infect human and causing AIDS disease. AIDS epidemic is one of most destructive diseases in modern era. There were more than 33 million people infected by HIV until 2010. Various studies have been widely employed to design drugs that target the essential enzymes of HIV-1 that is, reverse transcriptase, protease and integrase. In this study, in silico virtual screening approach is used to find lead molecules from the library or database of natural compounds as HIV-1 reverse transcriptase inhibitor. Virtual screening against Indonesian Herbal Database using AutoDock4 performed on HIV-1 reverse transcriptase. From the virtual screening, top ten compounds were mulberrin, plucheoside A, vitexilactone, brucine N-oxide, cyanidin 3-arabinoside, alpha-mangostin, guaijaverin, erycristagallin, morusin and sanggenol N. PMID:23275721

  3. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L

    2015-11-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data. PMID:26166629

  4. Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors.

    PubMed

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Metifiot, Mathieu; Smith, Steven J; Vu, B Christie; Marchand, Christophe; Hughes, Stephen H; Pommier, Yves; Burke, Terrence R

    2011-05-15

    New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3'-processing. PMID:21493066

  5. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors.

    PubMed

    Liang, Guodong; Wang, Huixin; Chong, Huihui; Cheng, Siqi; Jiang, Xifeng; He, Yuxian; Wang, Chao; Liu, Keliang

    2016-08-16

    Lengthy peptides corresponding to the C-terminal heptad repeat (C-peptides) of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors against virus-cell fusion. Designing short C-peptide-based HIV-1 fusion inhibitors could potentially redress the physicochemical and technical liabilities of a long-peptide therapeutic. However, designing such inhibitors with high potency has been challenging. We generated a conjugated architecture by incorporating small-molecule inhibitors of gp41 into the N-terminus of a panel of truncated C-peptides. Among these small molecule-capped short peptides, the 26-residue peptide Indole-T26 inhibited HIV-1 Env-mediated cell-cell fusion and viral replication at low nanomolar levels, reaching the potency of the only clinically used 36-residue peptide T20 (enfuvirtide). Collectively, our work opens up a new avenue for developing short peptide-based HIV-1 fusion inhibitors, and may have broad applicability to the development of modulators of other class I fusion proteins. PMID:27454320

  6. HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases.

    PubMed

    Zhao, Xue Zhi; Smith, Steven J; Maskell, Daniel P; Metifiot, Mathieu; Pye, Valerie E; Fesen, Katherine; Marchand, Christophe; Pommier, Yves; Cherepanov, Peter; Hughes, Stephen H; Burke, Terrence R

    2016-04-15

    HIV integrase (IN) strand transfer inhibitors (INSTIs) are among the newest anti-AIDS drugs; however, mutant forms of IN can confer resistance. We developed noncytotoxic naphthyridine-containing INSTIs that retain low nanomolar IC50 values against HIV-1 variants harboring all of the major INSTI-resistant mutations. We found by analyzing crystal structures of inhibitors bound to the IN from the prototype foamy virus (PFV) that the most successful inhibitors show striking mimicry of the bound viral DNA prior to 3'-processing and the bound host DNA prior to strand transfer. Using this concept of "bi-substrate mimicry," we developed a new broadly effective inhibitor that not only mimics aspects of both the bound target and viral DNA but also more completely fills the space they would normally occupy. Maximizing shape complementarity and recapitulating structural components encompassing both of the IN DNA substrates could serve as a guiding principle for the development of new INSTIs. PMID:26808478

  7. Solvation effects are responsible for the reduced inhibitor affinity of some HIV-1 PR mutants.

    PubMed Central

    Sussman, F.; Villaverde, M. C.; Davis, A.

    1997-01-01

    The formulation of HIV-1 PR inhibitors as anti-viral drugs has been hindered by the appearance of protease strains that present drug resistance to these compounds. The mechanism by which the HIV-1 PR mutants lower their affinity for the inhibitor is not yet fully understood. We have applied a modified Poisson-Boltzmann method to the evaluation of the molecular interactions that contribute to the lowering of the inhibitor affinity to some polar mutants at position 82. These strains present drug resistance behavior and hence are ideally suited for these studies. Our results indicate that the reduction in binding affinity is due to the solvation effects that penalize the binding to the more polar mutants. The inhibitor binding ranking of the different mutants can be explained from the analysis of the different components of our free energy scoring function. PMID:9144773

  8. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells

    PubMed Central

    2013-01-01

    Background The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. Results Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4–20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. Conclusions We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread. PMID:24364896

  9. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase.

    PubMed

    Rawson, Jonathan M O; Roth, Megan E; Xie, Jiashu; Daly, Michele B; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-06-01

    Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity. PMID:27117260

  10. Bis-Tetrahydrofuran: a Privileged Ligand for Darunavir and a New Generation of HIV Protease Inhibitors That Combat Drug Resistance

    SciTech Connect

    Ghosh, Arun K.; Sridhar, Perali Ramu; Kumaragurubaran, Nagaswamy; Koh, Yasuhiro; Weber, Irene T.; Mitsuya, Hiroaki

    2008-06-06

    Two inhibitors that incorporate bis-THF as an effective high-affinity P{sub 2} ligand for the HIV-1 protease substrate binding site maintain impressive potency against mutant strains resistant to currently approved protease inhibitors. Crystallographic structures of protein-ligand complexes help to explain the superior antiviral property of these inhibitors and their potency against a wide spectrum of HIV-1 strains.

  11. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal.

    PubMed

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C; Mahmoudi, Tokameh

    2016-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  12. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    PubMed Central

    Stoszko, Mateusz; De Crignis, Elisa; Rokx, Casper; Khalid, Mir Mubashir; Lungu, Cynthia; Palstra, Robert-Jan; Kan, Tsung Wai; Boucher, Charles; Verbon, Annelies; Dykhuizen, Emily C.; Mahmoudi, Tokameh

    2015-01-01

    Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's) for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4 + T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal. PMID:26870822

  13. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    SciTech Connect

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  14. The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors

    PubMed Central

    Shafer, Robert W.; Kantor, Rami; Gonzales, Matthew J.

    2008-01-01

    HIV-1 drug resistance is caused by mutations in the reverse transcriptase (RT) and protease enzymes, the molecular targets of antiretroviral therapy. At the beginning of the year 2000, two expert panels recommended that HIV-1 RT and protease susceptibility testing be used to help select antiretroviral drugs for HIV-1-infected patients. Genotypic assays have been developed to detect HIV-1 mutations known to confer antiretroviral drug resistance. Genotypic assays using dideoxynucleoside sequencing provide extensive insight into the presence of drug-resistant variants in the population of viruses within an individual. However, the interpretation of these assays in clinical settings is formidable because of the large numbers of drug resistance mutations and because these mutations interact with one another and emerge in complex patterns. In addition, cross-resistance between antiretroviral drugs is greater than that anticipated from initial in vitro studies. This review summarises the published data linking HIV-1 RT and protease mutations to in vitro and clinical resistance to the currently available nucleoside RT inhibitors, non-nucleoside RT inhibitors, and protease inhibitors. PMID:19096725

  15. Kuwanon-L as a New Allosteric HIV-1 Integrase Inhibitor: Molecular Modeling and Biological Evaluation.

    PubMed

    Esposito, Francesca; Tintori, Cristina; Martini, Riccardo; Christ, Frauke; Debyser, Zeger; Ferrarese, Roberto; Cabiddu, Gianluigi; Corona, Angela; Ceresola, Elisa Rita; Calcaterra, Andrea; Iovine, Valentina; Botta, Bruno; Clementi, Massimo; Canducci, Filippo; Botta, Maurizio; Tramontano, Enzo

    2015-11-01

    HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents. PMID:26360521

  16. Pharmacological cyclin-dependent kinase inhibitors as HIV-1 antiviral therapeutics.

    PubMed

    de la Fuente, Cynthia; Maddukuri, Anil; Kehn, Kylene; Baylor, Shanese Y; Deng, Longwen; Pumfery, Anne; Kashanchi, Fatah

    2003-04-01

    Human immunodeficiency virus type 1 (HIV-1) can infect quiescent cells; however, viral production is restricted to actively proliferating cells. Recent evidence has indicated that HIV-1 viral proteins, Vpr and Tat, perturb the cell cycle to optimize HIV-1 replication. Vpr arrests the cell cycle at G2 by inactivating the cyclin B/cdk1 complex. Tat regulates the cell cycle by altering factors involved in proliferation and differentiation (i.e. the cdk inhibitor p21/waf1) and associating with cyclin/cdk complexes (i.e. cyclin E/cdk2, cyclin H/cdk7, and cyclin T/cdk9). These studies indicate the importance of host cellular factors, such as cyclin/cdk complexes, in regulating HIV-1 replication and therefore represent novel targets for antiviral therapeutics. Recently, the efficacy of pharmalogical cdk inhibitors (PCIs) in abrogating viral replication has been under development. To date there are 25-30 PCIs that have been synthesized against known cdks, several of which have been shown to inhibit HIV-1 and other AIDS-associated viruses in vitro and in vivo. Targeting these critical cyclin/cdk complexes needed for viral propagation may solve the problems inherent in current HAART therapy, including the emergence of drug-resistant viruses. Thus, PCIs have the potential to become novel therapeutic antiviral drugs that can inhibit HIV-1 transcription and opens the possibility of new avenues of treatment. PMID:15043199

  17. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    SciTech Connect

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W.

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  18. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts

    PubMed Central

    Liu, Zhanglong; Casey, Thomas M.; Blackburn, Mandy E.; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S.; Carter, Jeffrey D.; Kear-Scott, Jamie L.; Veloro, Angelo M.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed “curled/tucked”, “closed”, “semi-open” and “wide-open” conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  19. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts.

    PubMed

    Liu, Zhanglong; Casey, Thomas M; Blackburn, Mandy E; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S; Carter, Jeffrey D; Kear-Scott, Jamie L; Veloro, Angelo M; Galiano, Luis; Fanucci, Gail E

    2016-02-17

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  20. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way. PMID:26329615

  1. Use of tumor necrosis factor (TNF) inhibitors in patients with HIV/AIDS.

    PubMed

    Gallitano, Stephanie M; McDermott, Laura; Brar, Kanwaljit; Lowenstein, Eve

    2016-05-01

    Patients with HIV and AIDS are living longer because of advancements in antiretroviral therapy. These patients are often susceptible to debilitating inflammatory disorders that are refractory to standard treatment. We discuss the relationship of tumor necrosis factor-alpha and HIV and then review 27 published cases of patients with HIV being treated with tumor necrosis factor-alpha inhibitors. This review is limited because no randomized controlled trials have been performed with this patient population. Regardless, we propose that reliable seropositive patients, who are adherent to medication regimens and frequent monitoring and have failed other treatment modalities, should be considered for treatment with tumor necrosis factor-alpha inhibitors. PMID:26774690

  2. Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect

    NASA Astrophysics Data System (ADS)

    Yang, Maoyou; Jiang, Xiaonan; Jiang, Ning

    2014-06-01

    The protonation states of catalytic Asp25/25‧ residues remarkably affect the binding mechanism of the HIV-1 protease-inhibitor complex. Here we report a molecular dynamics simulation study, which includes electrostatic polarisation effect, to investigate the influence of Asp25/25‧ protonation states upon the binding free energy of the HIV-1 protease and a C2-symmetric inhibitor. Good agreements are obtained on inhibitor structure, hydrogen bond network, and binding free energy between our theoretical calculations and the experimental data. The calculations show that the Asp25 residue is deprotonated, and the Asp25‧ residue is protonated. Our results reveal that the Asp25/25‧ residues can have different protonation states when binding to different inhibitors although the protease and the inhibitors have the same symmetry. This study offers some insights into understanding the protonation state of HIV-1 protease-inhibitor complex, which could be helpful in designing new inhibitor molecules.

  3. Relationship between HIV protease inhibitors and QTc interval duration in HIV-infected patients: a cross-sectional study

    PubMed Central

    Charbit, Beny; Rosier, Arnaud; Bollens, Diane; Boccara, Franck; Boelle, Pierre-Yves; Koubaa, Afef; Girard, Pierre-Marie; Funck-Brentano, Christian

    2009-01-01

    AIMS QTc interval prolongation and torsades de pointes have been reported in HIV-infected patients. Protease inhibitors (PIs) are suspected to contribute to this adverse reaction. However, many factors can prolong QTc interval. We examined factors influencing QTc duration in HIV-infected patients. METHODS Unselected HIV-infected patients (n = 978) were enrolled in this prospective, single-centre cross-sectional study. Variables related to infection and treatments were collected. A digital electrocardiographic record was recorded in each patient and QT interval duration was measured and corrected using both Bazett's (QTcB) and Fridericia's (QTcF) formula. Results were analysed with a multivariable linear model. RESULTS After excluding arrhythmias and complete bundle branch blocks, QT interval was measured in 956 patients. The mean (SD) QTcB was 418 ms (23) and QTcF was 405 ms (20). QTc was found prolonged (>450 ms in women and >440 ms in men) in 129 [13.5%; 95% confidence interval (CI) 11.5, 15.8] and 38 (4%; 95% CI 2.9, 5.4) patients using Bazett and Fridericia corrections, respectively. On multivariable analysis, incomplete bundle branch block, ventricular hypertrophy, signs of ischaemic cardiopathy, female gender, White ethnic origin and age were significantly associated with QTc prolongation. The only HIV variable independently associated with QTc prolongation was the duration of infection (P = 0.023). After adjustment, anti-HIV treatment, in particular PI (P = 0.99), was not associated with QTc prolongation. CONCLUSIONS Although PIs block in vitro hERG current, they are not independently associated with QTc interval prolongation. Prolonged QTc interval in HIV-infected patients is primarily associated with factors commonly known to prolong QT and with the duration of HIV infection. PMID:19076152

  4. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor

    PubMed Central

    Yanuar, Arry; Suhartanto, Heru; Mun׳im, Abdul; Anugraha, Bram Hik; Syahdi, Rezi Riadhi

    2014-01-01

    HIV-1 (Human immunodeficiency virus type 1)׳s infection is considered as one of most harmful disease known by human, the survivability rate of the host reduced significantly when it developed into AIDS. HIV drug resistance is one of the main problems of its treatment and several drug designs have been done to find new leads compound as the cure. In this study, in silico virtual screening approach was used to find lead molecules from the library or database of natural compounds as HIV-1 protease inhibitor. Virtual screening against Indonesian Herbal Database with AutoDock was performed on HIV-1 protease. From the virtual screening, top ten compounds obtained were 8-Hydroxyapigenin 8-(2",4"-disulfatoglucuronide), Isoscutellarein 4'-methyl ether, Amaranthin, Torvanol A, Ursonic acid, 5-Carboxypyranocyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), Oleoside, Jacoumaric acid, Platanic acid and 5-Carboxypyranocyanidin 3-O-beta-glucopyranoside. PMID:24616554

  5. SAMHD1 Specifically Affects the Antiviral Potency of Thymidine Analog HIV Reverse Transcriptase Inhibitors

    PubMed Central

    Ballana, Ester; Badia, Roger; Terradas, Gerard; Torres-Torronteras, Javier; Ruiz, Alba; Pauls, Eduardo; Riveira-Muñoz, Eva; Clotet, Bonaventura; Martí, Ramon

    2014-01-01

    Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4+ T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4+ T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes. PMID:24913159

  6. Use of Integrase Inhibitors in HIV-Infected Children and Adolescents.

    PubMed

    Dehority, Walter; Abadi, Jacobo; Wiznia, Andrew; Viani, Rolando M

    2015-09-01

    Resistance to antiretroviral drugs is an increasingly prevalent challenge affecting both the adult and pediatric HIV-infected populations. Though data on the safety, pharmacokinetics, and efficacy of newer antiretroviral agents in children typically lags behind adult data, newer agents are becoming available for use in HIV-infected children who are failing to respond to or are experiencing toxicities with traditional antiretroviral regimens. Integrase strand transfer inhibitors are one such new class of antiretrovirals. Raltegravir has been US Food and Drug Administration (FDA) approved for use in patients over the age of 4 weeks. Elvitegravir is a second member of this class, and has the potential for use in children but does not yet have a Pediatric FDA indication. Dolutegravir, a second-generation integrase inhibitor, is approved for those older than 12 years. This review summarizes the use of integrase inhibitors in children and adolescents, and highlights the results of recent clinical trials. PMID:26242765

  7. Design of Annulated Pyrazoles As Inhibitors of HIV-1 Reverse Transcriptase

    SciTech Connect

    Sweeney, Z.K.; Harris, S.F.; Arora, N.; Javanbakht, H.; Li, Y.; Fretland, J.; Davidson, J.P.; Billedeau, J.R.; Gleason, S.; Hirschfeld, D.; Kennedy-Smith, J.J.; Mirzadegan, T.; Roetz, R.; Smith, M.; Sperry, S.; Suh, J.M.; Wu, J.; Tsing, S.; Villasenor, A.G.; Paul, A.; Su, G.

    2009-05-26

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are recommended components of preferred combination antiretroviral therapies used for the treatment of HIV. These regimens are extremely effective in suppressing virus replication. Structure-based optimization of diaryl ether inhibitors led to the discovery of a new series of pyrazolo[3,4-c]pyridazine NNRTIs that bind the reverse transcriptase enzyme of human immunodeficiency virus-1 (HIV-RT) in an expanded volume relative to most other inhibitors in this class. The binding mode maintains the {beta}13 and {beta}14 strands bearing Pro236 in a position similar to that in the unliganded reverse transcriptase structure, and the distribution of interactions creates the opportunity for substantial resilience to single point mutations. Several pyrazolopyridazine NNRTIs were found to be highly effective against wild-type and NNRTI-resistant viral strains in cell culture.

  8. Sphingopeptides: dihydrosphingosine-based fusion inhibitors against wild-type and enfuvirtide-resistant HIV-1.

    PubMed

    Ashkenazi, Avraham; Viard, Mathias; Unger, Linor; Blumenthal, Robert; Shai, Yechiel

    2012-11-01

    Understanding the structural organization of lipids in the cell and viral membranes is essential for elucidating mechanisms of viral fusion that lead to entry of enveloped viruses into their host cells. The HIV lipidome shows a remarkable enrichment in dihydrosphingomyelin, an unusual sphingolipid formed by a dihydrosphingosine backbone. Here we investigated the ability of dihydrosphingosine to incorporate into the site of membrane fusion mediated by the HIV envelope (Env) protein. Dihydrosphingosine as well as cholesterol, fatty acid, and tocopherol was conjugated to highly conserved, short HIV-1 Env-derived peptides with no antiviral activity otherwise. We showed that dihydrosphingosine exclusively endowed nanomolar antiviral activity to the peptides (IC(50) as low as 120 nM) in HIV-1 infection on TZM-bl cells and on Jurkat T cells, as well as in the cell-cell fusion assay. These sphingopeptides were active against enfuvirtide-resistant and wild-type CXCR4 and CCR5 tropic HIV strains. The anti-HIV activity was determined by both the peptides and their dihydrosphingosine conjugate. Moreover, their mode of action involved accumulation in the cells and viruses and binding to membranes enriched in sphingomyelin and cholesterol. The data suggest that sphingopeptides are recruited to the HIV membrane fusion site and provide a general concept in developing inhibitors of sphingolipid-mediated biological systems. PMID:22872679

  9. Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase.

    PubMed

    Patel, Rahul V; Keum, Young-Soo; Park, Se Won

    2015-06-01

    Heterocyclic substances perform a very unique role in drug design and discovery. This article provides the primary objectives of the analysis within pyrimidine centered new heterocyclic elements chronologically from their finding focusing on one of the essential enzyme of HIV virus particle that is integrase upon suppressing its strand transfer function. The class of compounds reviewed here includes bicyclic pyrimidines, dihydroxypyrimidines, pyrimidine-2,4-dinones, N-methylpyrimidones, pyranopyrimidine, pyridine-quinoline conjugates, pyrimidine-2-carboxamides, N-3 hydroxylated pyrimidine-2,4-diones as well as their various substituted analogues. Such initiatives released an effective drug Raltegravir as a first FDA approved anti-HIV integrase inhibitor as well as several of its derivatives along with other pyrimidones is under clinical or preclinical growth. Some of the provided scaffolds indicated dual anti-HIV efficacies against HIV reverse transcriptase and integrase enzymes at both cites as 3'-processing and strand transfer, while several scaffolds exhibited potency against Raltegravir resistant HIV mutant strains determining themselves a potent class of compounds having appealing upcoming implementations. Connections of the new compounds' molecular structure and HIV viral target has been overviewed to be able to accomplish further growth of promising anti-HIV agents in future drug discovery process. PMID:25084622

  10. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor

    PubMed Central

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N.; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54–74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection. PMID:26701275

  11. Localization of Peptidases in Lactococci

    PubMed Central

    Tan, Paris S. T.; Chapot-Chartier, Marie-Pierre; Pos, Klaas M.; Rousseau, Micheline; Boquien, Clair-Yves; Gripon, Jean-Claude; Konings, Wil N.

    1992-01-01

    The localization of two aminopeptidases, an X-prolyl-dipeptidyl aminopeptidase, an endopeptidase, and a tripeptidase in Lactococcus lactis was studied. Polyclonal antibodies raised against each purified peptidase are specific and do not cross-react with other peptidases. Experiments were performed by immunoblotting after cell fractionation and by electron microscopy of immunogold-labeled peptidases. All peptidases were found to be intracellular. However, immunogold studies showed a peripheral labeling of the X-prolyl-dipeptidyl aminopeptidase, the tripeptidase, and the endopeptidase. This peripheral location was further supported by the detection of these three enzymes in cell membrane fractions in which none of the two aminopeptidases was present. Images PMID:16348629

  12. Remediation of undesirable secondary interactions encountered in hydrophilic interaction chromatography during development of a quantitative LC-MS/MS assay for a dipeptidyl peptidase IV (DPP-IV) inhibitor in monkey serum.

    PubMed

    Kadar, Eugene P; Wujcik, Chad E

    2009-02-15

    PF-00734200 (3,3-Difluoropyrrolidin-1-yl)-((2S,4S)-4-(4-(pyrimidin-2-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone) is an inhibitor of dipeptidyl peptidase IV (DPP-IV) for the treatment of diabetic complications and other disorders. A sensitive and selective LC-MS/MS assay capable of quantifying PF-00734200 in monkey serum was required to support regulated safety studies. Due to the polar nature of this compound and for ease of sample processing, hydrophilic interaction chromatography (HILIC) was identified as an ideal assay technique. During the initial phase of method development significant peak tailing was observed. The effects of polar organic modifier percentage, buffer concentration, column particle size, and flow rate were assessed to determine the final optimal conditions. PF-00734200 demonstrated a strong dependence on buffer concentration with respect to height equivalent to a theoretical plate (HETP), capacity factor (k'), and tailing factor (T). Improvements in chromatography were observed with increasing buffer concentration due to reduction of electrostatic secondary interactions with ionized silanols. A plot of logk' versus percentage organic modifier at an elevated buffer concentration, produced a linear fit with a correlation coefficient of 0.996, indicating that the primary chromatographic retention mechanism was partitioning. A LC-MS/MS assay was successfully developed and validated for GLP bioanalysis of PF-00734200 in monkey serum utilizing the optimized HILIC conditions. Additionally, carryover was effectively minimized through fortification of ethylene glycol to the sample extract. PMID:19162567

  13. Asymmetric Deactivation of HIV-1 gp41 following Fusion Inhibitor Binding

    PubMed Central

    Kahle, Kristen M.; Steger, H. Kirby; Root, Michael J.

    2009-01-01

    Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states. PMID:19956769

  14. Heterogeneous production of metallo-type peptidases in parasites belonging to the family Trypanosomatidae.

    PubMed

    dos Santos, André Luis Souza; Soares, Rosangela Maria de Araújo; Alviano, Celuta Sales; Kneipp, Lucimar Ferreira

    2008-05-01

    Proteolytic enzymes play a central role in the physiology of all living organisms, participating in several metabolic pathways and in different phases of parasite-host interactions. We have identified cell-associated peptidase activities in 33 distinct flagellates, including representatives of almost all known trypanosomatid genera parasitizing insects (Herpetomonas, Crithidia, Leishmania, Trypanosoma, Leptomonas, Phytomonas, Blastocrithidia and Endotrypanum) as well as the biflagellate kinetoplastid Bodo, by using SDS-PAGE containing gelatin as co-polymerized substrate and proteolytic inhibitors. Under the alkaline pH (9.0) conditions employed, all the flagellates presented at least one peptidase, with the exception of Crithidia acanthocephali and Phytomonas serpens, which did not display any detectable proteolytic enzyme activity. All the proteolytic activities were completely inhibited by 1,10-phenanthroline, a zinc-chelating agent, putatively identifying these activities as metallo-type peptidases. EDTA and EGTA, two other metallopeptidase inhibitors, E-64 (a cysteine peptidase inhibitor), pepstatin A (an aspartyl peptidase inhibitor) and PMSF (a serine peptidase inhibitor) did not interfere with the metallopeptidase activities detected in the studied trypanosomatids. Conversely, Bodo-derived peptidases were resistant to 1,10-phenanthroline and only partially inhibited by EDTA, showing a distinct inhibition profile. Together, our data demonstrated great heterogeneity of expression of metallopeptidases in a wide range of parasites belonging to the family Trypanosomatidae. PMID:17942292

  15. Comparative molecular field analysis of a series of inhibitors of HIV-1 protease.

    PubMed

    Ferreira, Leonardo G; Leitão, Andrei; Montanari, Carlos A; Andricopulo, Adriano D

    2011-03-01

    Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency. PMID:21222610

  16. New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action

    PubMed Central

    Tsiang, Manuel; Jones, Gregg S.; Niedziela-Majka, Anita; Kan, Elaine; Lansdon, Eric B.; Huang, Wayne; Hung, Magdeleine; Samuel, Dharmaraj; Novikov, Nikolai; Xu, Yili; Mitchell, Michael; Guo, Hongyan; Babaoglu, Kerim; Liu, Xiaohong; Geleziunas, Romas; Sakowicz, Roman

    2012-01-01

    tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3′-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction. PMID:22535962

  17. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action.

    PubMed

    Tsiang, Manuel; Jones, Gregg S; Niedziela-Majka, Anita; Kan, Elaine; Lansdon, Eric B; Huang, Wayne; Hung, Magdeleine; Samuel, Dharmaraj; Novikov, Nikolai; Xu, Yili; Mitchell, Michael; Guo, Hongyan; Babaoglu, Kerim; Liu, Xiaohong; Geleziunas, Romas; Sakowicz, Roman

    2012-06-15

    tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction. PMID:22535962

  18. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    SciTech Connect

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E. . E-mail: sylvieb@burnham.org

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.

  19. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines.

    PubMed

    Nomura, Wataru; Mizuguchi, Takaaki; Tamamura, Hirokazu

    2016-11-01

    To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016. PMID:26583370

  20. Identification of a small molecule HIV-1 inhibitor that targets the capsid hexamer.

    PubMed

    Xu, Jimmy P; Branson, Jeffrey D; Lawrence, Rae; Cocklin, Simon

    2016-02-01

    The HIV-1 CA protein is an attractive therapeutic target for the development of new antivirals. An inter-protomer pocket within the hexamer configuration of the CA, which is a binding site for key host dependency factors, is an especially appealing region for small molecule targeting. Using a field-based pharmacophore derived from an inhibitor known to interact with this region, coupled to biochemical and biological assessment, we have identified a new compound that inhibits HIV-1 infection and that targets the assembled CA hexamer. PMID:26747394

  1. Structure of HIV-1 nonnucleoside reverse transcriptase inhibitors derivatives of N-benzyl-benzimidazole with different substituents in position 4

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-01-01

    The constant development of new drugs against HIV-1 is necessary due to global expansion of AIDS and HIV-1 drug resistance. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic drugs in AIDS therapy. The crystal structures of six nonnucleoside inhibitors of HIV-1 reverse transcriptase (RT) derivatives of N-benzyl-benzimidazole are reported here. The investigated compounds belong to the group of so called "butterfly like" inhibitors with characteristic two π-electron moieties with an angled orientation. The structural data show the influence of the substituents of the benzimidazole ring on the geometry of the molecule and correlation between the structure of the inhibitor and its biological activity.

  2. Evolutionary lines of cysteine peptidases.

    PubMed

    Barrett, A J; Rawlings, N D

    2001-05-01

    The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases. PMID:11517925

  3. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures.

    PubMed

    Semashko, Tatiana A; Vorotnikova, Elena A; Sharikova, Valeriya F; Vinokurov, Konstantin S; Smirnova, Yulia A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N; Filippova, Irina Y

    2014-03-15

    This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes. PMID:24388866

  4. Molecular modeling, synthesis and biological evaluation of N-heteroaryl compounds as reverse transcriptase inhibitors against HIV-1.

    PubMed

    Singh, Anuradha; Yadav, Dipti; Yadav, Madhu; Dhamanage, Ashwini; Kulkarni, Smita; Singh, Ramendra K

    2015-03-01

    Different N-heteroaryl compounds bearing pyrimidine and benzimidazole moieties have been designed in silico using Discovery studio 2.5 software, synthesized and evaluated for their inhibitory activity as reverse transcriptase inhibitors against HIV-1 replication using laboratory adapted strains HIV-1IIIB (X4, subtype B) and HIV-1Ada5 (R5, subtype B), and the primary isolates HIV-1UG070 (X4, subtype D) and HIV-1VB59 (R5, subtype C). Cell-based assay showed that compounds were active at 1.394 μm concentrations (Selectivity Index: 1.29-38.39). The studies on structure-activity relationship clearly suggested anti-HIV activity of pyrimidine and benzimidazole derivatives and these findings were consistent with the in vitro cell-based experimental data. The results of molecular modeling and docking confirmed that all compounds assumed a butterfly-like conformation and showed H-bond, 'π-π' and 'π-+' and hydrophobic interactions within flexible non-nucleoside inhibitor binding pocket of HIV-1 reverse transcriptase, similar to known non-nucleoside reverse transcriptase inhibitors, such as nevirapine. In view of the results obtained, it can be said that the chemical skeletons of N, N'-bis-(pyridin-2-yl)-succinamide (14 and 15) and 1, 4-bis-benzoimidazol-1-yl-butane-1, 4-dione (16 and 17) may be used for developing potent inhibitors of HIV-1 replication, with suitable structure/pharmacophore modifications. PMID:25055732

  5. Potent and Selective Inhibition of Plasma Membrane Monoamine Transporter by HIV Protease Inhibitors.

    PubMed

    Duan, Haichuan; Hu, Tao; Foti, Robert S; Pan, Yongmei; Swaan, Peter W; Wang, Joanne

    2015-11-01

    Plasma membrane monoamine transporter (PMAT) is a major uptake-2 monoamine transporter that shares extensive substrate and inhibitor overlap with organic cation transporters 1-3 (OCT1-3). Currently, there are no PMAT-specific inhibitors available that can be used in in vitro and in vivo studies to differentiate between PMAT and OCT activities. In this study, we showed that IDT307 (4-(4-(dimethylamino)phenyl)-1-methylpyridinium iodide), a fluorescent analog of 1-methyl-4-phenylpyridinium (MPP+), is a transportable substrate for PMAT and that IDT307-based fluorescence assay can be used to rapidly identify and characterize PMAT inhibitors. Using the fluorescent substrate-based assays, we analyzed the interactions of eight human immunodeficiency virus (HIV) protease inhibitors (PIs) with human PMAT and OCT1-3 in human embryonic kidney 293 (HEK293) cells stably transfected with individual transporters. Our data revealed that PMAT and OCTs exhibit distinct sensitivity and inhibition patterns toward HIV PIs. PMAT is most sensitive to PI inhibition whereas OCT2 and OCT3 are resistant. OCT1 showed an intermediate sensitivity and a distinct inhibition profile from PMAT. Importantly, lopinavir is a potent PMAT inhibitor and exhibited >120 fold selectivity toward PMAT (IC₅₀ = 1.4 ± 0.2 µM) over OCT1 (IC₅₀ = 174 ± 40 µM). Lopinavir has no inhibitory effect on OCT2 or OCT3 at maximal tested concentrations. Lopinavir also exhibited no or much weaker interactions with uptake-1 monoamine transporters. Together, our results reveal that PMAT and OCTs have distinct specificity exemplified by their differential interaction with HIV PIs. Further, we demonstrate that lopinavir can be used as a selective PMAT inhibitor to differentiate PMAT-mediated monoamine and organic cation transport from those mediated by OCT1-3. PMID:26285765

  6. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors.

    PubMed

    Latham, Catherine F; La, Jennifer; Tinetti, Ricky N; Chalmers, David K; Tachedjian, Gilda

    2016-01-01

    Human immunodeficiency virus (HIV) remains a global health problem. While combined antiretroviral therapy has been successful in controlling the virus in patients, HIV can develop resistance to drugs used for treatment, rendering available drugs less effective and limiting treatment options. Initiatives to find novel drugs for HIV treatment are ongoing, although traditional drug design approaches often focus on known binding sites for inhibition of established drug targets like reverse transcriptase and integrase. These approaches tend towards generating more inhibitors in the same drug classes already used in the clinic. Lack of diversity in antiretroviral drug classes can result in limited treatment options, as cross-resistance can emerge to a whole drug class in patients treated with only one drug from that class. A fresh approach in the search for new HIV-1 drugs is fragment-based drug discovery (FBDD), a validated strategy for drug discovery based on using smaller libraries of low molecular weight molecules (<300 Da) screened using primarily biophysical assays. FBDD is aimed at not only finding novel drug scaffolds, but also probing the target protein to find new, often allosteric, inhibitory binding sites. Several fragment-based strategies have been successful in identifying novel inhibitory sites or scaffolds for two proven drug targets for HIV-1, reverse transcriptase and integrase. While any FBDD-generated HIV-1 drugs have yet to enter the clinic, recent FBDD initiatives against these two well-characterised HIV-1 targets have reinvigorated antiretroviral drug discovery and the search for novel classes of HIV-1 drugs. PMID:26324045

  7. Therapeutic effects of the dipeptidyl peptidase-IV inhibitor, sitagliptin, on non-alcoholic steatohepatitis in FLS-ob/ob male mice.

    PubMed

    Onoyama, Takumi; Koda, Masahiko; Okamoto, Toshiaki; Kishina, Manabu; Matono, Tomomitsu; Sugihara, Takaaki; Murawaki, Yoshikazu

    2015-11-01

    Non-alcoholic steatohepatitis is characterized by hepatic fat accumulation, inflammation and varying degrees of fibrosis. The dipeptidyl peptidase‑IV enzyme is important in glucose metabolism, as well as lipid accumulation, extracellular matrix metabolism and immune stimulation. Furthermore, the enzyme activity of dipeptidyl peptidase‑IV is known to be increased in non‑alcoholic steatohepatitis. Therefore, dipeptidyl peptidase‑IV inhibitors are potential therapeutic agents for non‑alcoholic steatohepatitis. The present study assessed the therapeutic effects of sitagliptin, a dipeptidyl peptidase‑IV inhibitor, on non‑alcoholic steatohepatitis using fatty liver Shionogi‑ob/ob male mice. Sitagliptin (2 mg/kg/day; n=10) or placebo (control; n=10) was orally administered to fatty liver Shionogi‑ob/ob mice for 12 weeks, and hepatic steatosis, fibrosis, inflammation and oxidative stress were assessed in comparison with the controls. Sitagliptin administration reduced body weight and blood glucose levels, and improved hepatic fibrosis. It also inhibited the gene expression levels of fatty acid synthase, transforming growth factor‑β1, tissue inhibitor of metalloproteinases‑1, procollagen‑type 1, tumor necrosis factor‑α, monocyte chemoattractant protein‑1 and enhanced peroxisome proliferator activated receptor‑α. Furthermore, a marked attenuation of hepatic stellate cell activation and Kupffer cells was observed in the sitagliptin group. A decrease in oxidative stress and apoptosis was also observed. Sitagliptin attenuated the progression of hepatic fibrosis by improving lipid metabolism, inflammation and oxidative stress in non-alcoholic steatohepatitis. PMID:26397061

  8. Design and synthesis of 4-(2,4,5-trifluorophenyl)butane-1,3-diamines as dipeptidyl peptidase IV inhibitors.

    PubMed

    Zhu, Linrong; Li, Yuanyuan; Qiu, Ling; Su, Mingbo; Wang, Xin; Xia, Chunmei; Qu, Yi; Li, Jingya; Li, Jia; Xiong, Bing; Shen, Jingkang

    2013-07-01

    The worldwide prevalence of diabetes has spurred numerous studies on the development of new antidiabetic medicines. As a result, dipeptidyl peptidase IV (DPP4) has been recognized as a validated target. In our efforts to discover new DPP4 inhibitors, we analyzed the complexed structures of DPP4 available in Protein Data Bank and designed a series of triazole compounds. After enzyme activity assays and crystallographic verification of the binding interaction patterns, we found that the triazole compounds can inhibit DPP4 with micromolar IC50 values. Liver microsome stability and cytochrome P450 metabolic tests were performed on this series, revealing undesirable pharmacokinetic profiles for the triazole compounds. To overcome this liability, we substituted the triazole ring with an amide or urea group to produce a new series of DPP4 inhibitors. Based on its enzyme activity, metabolic stability, and selectivity over DPP8 and DPP9, we selected compound 21 r for further study of its in vivo effects in mice using an oral glucose tolerance test (OGTT). The results show that 21 r has efficacy similar to that of sitagliptin at a dose of 3 mg kg(-1) . The crystal structure of 21 r bound to DPP4 also reveals that the trifluoromethyl group is directed toward a subpocket different from the subsite bound by sitagliptin, providing clues for the design of new DPP4 inhibitors. PMID:23671024

  9. Fluorogenic Assay for Inhibitors of HIV-1 Protease with Sub-picomolar Affinity

    NASA Astrophysics Data System (ADS)

    Windsor, Ian W.; Raines, Ronald T.

    2015-08-01

    A fluorogenic substrate for HIV-1 protease was designed and used as the basis for a hypersensitive assay. The substrate exhibits a kcat of 7.4 s-1, KM of 15 μM, and an increase in fluorescence intensity of 104-fold upon cleavage, thus providing sensitivity that is unmatched in a continuous assay of HIV-1 protease. These properties enabled the enzyme concentration in an activity assay to be reduced to 25 pM, which is close to the Kd value of the protease dimer. By fitting inhibition data to Morrison’s equation, Ki values of amprenavir, darunavir, and tipranavir were determined to be 135, 10, and 82 pM, respectively. This assay, which is capable of measuring Ki values as low as 0.25 pM, is well-suited for characterizing the next generation of HIV-1 protease inhibitors.

  10. HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest.

    PubMed

    Jiang, Wei; Mikochik, Peter J; Ra, Jin H; Lei, Hanqin; Flaherty, Keith T; Winkler, Jeffrey D; Spitz, Francis R

    2007-02-01

    HIV protease inhibitors (HIV PI) are a class of antiretroviral drugs that are designed to target the viral protease. Unexpectedly, this class of drugs is also reported to have antitumor activity. In this study, we have evaluated the in vitro activity of nelfinavir, a HIV PI, against human melanoma cells. Nelfinavir inhibits the growth of melanoma cell lines at low micromolar concentrations that are clinically attainable. Nelfinavir promotes apoptosis and arrests cell cycle at G(1) phase. Cell cycle arrest is attributed to inhibition of cyclin-dependent kinase 2 (CDK2) and concomitant dephosphorylation of retinoblastoma tumor suppressor. We further show that nelfinavir inhibits CDK2 through proteasome-dependent degradation of Cdc25A phosphatase. Our results suggest that nelfinavir is a promising candidate chemotherapeutic agent for advanced melanoma, for which novel and effective therapies are urgently needed. PMID:17283158

  11. Potential use of pharmacological cyclin-dependent kinase inhibitors as anti-HIV therapeutics.

    PubMed

    Pumfery, Anne; de la Fuente, Cynthia; Berro, Reem; Nekhai, Sergei; Kashanchi, Fatah; Chao, Sheng-Hao

    2006-01-01

    Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and RNA polymerase II transcription. Several pharmacological CDK inhibitors (PCIs) are currently in clinical trials as potential cancer therapeutics since CDK hyperactivation is detected in the majority of neoplasias. Within the last few years, the anti-viral effects of PCIs have also been observed against various viruses, including human immunodeficiency virus (HIV), herpes simplex virus, and murine leukemia virus. Through the inhibition of CDK2 and 9, the cellular co-factors for HIV-1 Tat transactivation, HIV-1 replication is blocked by two specific PCIs, CYC202 and flavopiridol, respectively. In this article, we will review the inhibitory mechanisms of flavopiridol and CYC202 and discuss their possible usage in AIDS treatment. PMID:16787240

  12. Synthesis and evaluation of 2-pyridinylpyrimidines as inhibitors of HIV-1 structural protein assembly.

    PubMed

    Kožíšek, Milan; Štěpánek, Ondřej; Parkan, Kamil; Berenguer Albiñana, Carlos; Pávová, Marcela; Weber, Jan; Krӓusslich, Hans-Georg; Konvalinka, Jan; Machara, Aleš

    2016-08-01

    In an effort to identify an HIV-1 capsid assembly inhibitor with improved solubility and potency, we synthesized two series of pyrimidine analogues based on our earlier lead compound N-(4-(ethoxycarbonyl)phenyl)-2-(pyridine-4-yl)quinazoline-4-amine. In vitro binding experiments showed that our series of 2-pyridine-4-ylpyrimidines had IC50 values higher than 28μM. Our series of 2-pyridine-3-ylpyrimidines exhibited IC50 values ranging from 3 to 60μM. The congeners with a fluoro substituent introduced at the 4-N-phenyl moiety, along with a methyl at C-6, represent potent HIV capsid assembly inhibitors binding to the C-terminal domain of the capsid protein. PMID:27353536

  13. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors

    SciTech Connect

    Spallarossa, Andrea Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0 A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  14. Development of a receptor model for efficient in silico screening of HIV-1 integrase inhibitors.

    PubMed

    Quevedo, Mario A; Ribone, Sergio R; Briñón, Margarita C; Dehaen, Wim

    2014-07-01

    Integrase (IN) is a key viral enzyme for the replication of the type-1 human immunodeficiency virus (HIV-1), and as such constitutes a relevant therapeutic target for the development of anti-HIV agents. However, the lack of crystallographic data of HIV IN complexed with the corresponding viral DNA has historically hindered the application of modern structure-based drug design techniques to the discovery of new potent IN inhibitors (INIs). Consequently, the development and validation of reliable HIV IN structural models that may be useful for the screening of large databases of chemical compounds is of particular interest. In this study, four HIV-1 IN homology models were evaluated respect to their capability to predict the inhibition potency of a training set comprising 36 previously reported INIs with IC50 values in the low nanomolar to the high micromolar range. Also, 9 inactive structurally related compounds were included in this training set. In addition, a crystallographic structure of the IN-DNA complex corresponding to the prototype foamy virus (PFV) was also evaluated as structural model for the screening of inhibitors. The applicability of high throughput screening techniques, such as blind and ligand-guided exhaustive rigid docking was assessed. The receptor models were also refined by molecular dynamics and clustering techniques to assess protein sidechain flexibility and solvent effect on inhibitor binding. Among the studied models, we conclude that the one derived from the X-ray structure of the PFV integrase exhibited the best performance to rank the potencies of the compounds in the training set, with the predictive power being further improved by explicitly modeling five water molecules within the catalytic side of IN. Also, accounting for protein sidechain flexibility enhanced the prediction of inhibition potencies among the studied compounds. Finally, an interaction fingerprint pattern was established for the fast identification of potent IN

  15. Identification of HIV-1 Inhibitors Targeting The Nucleocapsid Protein

    PubMed Central

    Breuer, Sebastian; Chang, Max W.; Yuan, Jinyun; Torbett, Bruce E.

    2012-01-01

    The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication, identification of compounds that disrupt the NC-RNA/DNA interaction may have value as an anti-viral strategy. To identify small molecules that disrupt NC-viral RNA/DNA binding a high-throughput fluorescence polarization assay was developed and a library of 14,400 diverse, drug-like compounds was screened. Compounds that disrupted NC binding to a fluorescence-labeled DNA tracer were next evaluated by differential scanning fluorimetry to identify compounds that must bind to NC or Gag to impart their effects. Two compounds were identified that inhibited NC-DNA interaction, specifically bound NC with nM affinity, and showed modest anti-HIV-1 activity in ex vivo cell assays. PMID:22587465

  16. Pharmacokinetics and dose-range finding toxicity of a novel anti-HIV active integrase inhibitor.

    PubMed

    Nair, Vasu; Okello, Maurice; Mishra, Sanjay; Mirsalis, Jon; O'Loughlin, Kathleen; Zhong, Yu

    2014-08-01

    Integration of viral DNA into human chromosomal DNA catalyzed by HIV integrase represents the "point of no return" in HIV infection. For this reason, HIV integrase is considered a crucial target in the development of new anti-HIV therapeutic agents. We have discovered a novel HIV integrase inhibitor 1, that exhibits potent antiviral activity and a favorable metabolism profile. This paper reports on the pharmacokinetics and toxicokinetics of compound 1 and the relevance of these findings with respect to further development of this integrase-targeted antiviral agent. Oral administration of compound 1 in Sprague Dawley rats revealed rapid absorption. Drug exposure increased with increasing drug concentration, indicative of appropriate dose-dependence correlation. Compound 1 exhibited suitable plasma half-life, extensive extravascular distribution and acceptable bioavailability. Toxicity studies revealed no compound-related clinical pathology findings. There were no changes in erythropoietic, white blood cell or platelet parameters in male and female rats. There was no test-article related change in other clinical chemistry parameters. In addition, there were no detectable levels of bilirubin in the urine and there were no treatment-related effects on urobilinogen or other urinalysis parameters. The preclinical studies also revealed that the no observed adverse effect level and the maximum tolerated dose were both high (>500mg/kg/day). The broad and significant antiviral activity and favorable metabolism profile of this integrase inhibitor, when combined with the in vivo pharmacokinetic and toxicokinetic data and their pharmacological relevance, provide compelling and critical support for its further development as an anti-HIV therapeutic agent. PMID:24821255

  17. HIV type 1 integrase inhibitors: from basic research to clinical implications.

    PubMed

    Jegede, Oyebisi; Babu, John; Di Santo, Roberto; McColl, Damian J; Weber, Jan; Quiñones-Mateu, Miguel

    2008-01-01

    Similar to other retroviruses, productive infection with HIV-1 requires three key steps in the viral replication: (i) reverse transcription of viral genomic RNA into viral cDNA by the viral reverse transcriptase; (ii) integration of viral cDNA into host cell genome using the viral integrase; and (iii) cleavage of newly synthesized viral polypeptide by the viral protease into individual viral proteins during new virion assembly. Following their discovery, all three viral enzymes were considered as targets for antiretroviral drugs. However, while multiple reverse transcriptase and protease inhibitors have been used for more than 12 years to treat HIV-infected individuals, only recently has the viral integrase enzyme emerged as an alternative, clinically validated target to block HIV-1 replication. Here we review the biology of HIV-1 integration, the mechanisms of action and development of resistance to integrase inhibitors, and the latest data on the most recent clinical trials involving this promising, novel class of antiretroviral drugs. PMID:18820719

  18. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design.

    PubMed Central

    Wallqvist, A.; Jernigan, R. L.; Covell, D. G.

    1995-01-01

    The interface between protein receptor-ligand complexes has been studied with respect to their binary interatomic interactions. Crystal structure data have been used to catalogue surfaces buried by atoms from each member of a bound complex and determine a statistical preference for pairs of amino-acid atoms. A simple free energy model of the receptor-ligand system is constructed from these atom-atom preferences and used to assess the energetic importance of interfacial interactions. The free energy approximation of binding strength in this model has a reliability of about +/- 1.5 kcal/mol, despite limited knowledge of the unbound states. The main utility of such a scheme lies in the identification of important stabilizing atomic interactions across the receptor-ligand interface. Thus, apart from an overall hydrophobic attraction (Young L, Jernigan RL, Covell DG, 1994, Protein Sci 3:717-729), a rich variety of specific interactions is observed. An analysis of 10 HIV-1 protease inhibitor complexes is presented that reveals a common binding motif comprised of energetically important contacts with a rather limited set of atoms. Design improvements to existing HIV-1 protease inhibitors are explored based on a detailed analysis of this binding motif. PMID:8528086

  19. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4(+) T cells from elite controllers.

    PubMed

    Leng, Jin; Ho, Hsin-Pin; Buzon, Maria J; Pereyra, Florencia; Walker, Bruce D; Yu, Xu G; Chang, Emmanuel J; Lichterfeld, Mathias

    2014-06-11

    HIV-1 reverse transcription represents the predominant target for pharmacological inhibition of viral replication, but cell-intrinsic mechanisms that can block HIV-1 reverse transcription in a clinically significant way are poorly defined. We find that effective HIV-1 reverse transcription depends on the phosphorylation of viral reverse transcriptase by host cyclin-dependent kinase (CDK) 2 at a highly conserved Threonine residue. CDK2-dependent phosphorylation increased the efficacy and stability of viral reverse transcriptase and enhanced viral fitness. Interestingly, p21, a cell-intrinsic CDK inhibitor that is upregulated in CD4(+) T cells from "elite controllers," potently inhibited CDK2-dependent phosphorylation of HIV-1 reverse transcriptase and significantly reduced the efficacy of viral reverse transcription. These data suggest that p21 can indirectly block HIV-1 reverse transcription by inhibiting host cofactors supporting HIV-1 replication and identify sites of viral vulnerability that are effectively targeted in persons with natural control of HIV-1 replication. PMID:24922574

  20. Resistance against Integrase Strand Transfer Inhibitors and Relevance to HIV Persistence.

    PubMed

    Mesplède, Thibault; Wainberg, Mark A

    2015-07-01

    Drug resistance prevents the successful treatment of HIV-positive individuals by decreasing viral sensitivity to a drug or a class of drugs. In addition to transmitted resistant viruses, treatment-naïve individuals can be confronted with the problem of drug resistance through de novo emergence of such variants. Resistant viruses have been reported for every antiretroviral drug tested so far, including the integrase strand transfer inhibitors raltegravir, elvitegravir and dolutegravir. However, de novo resistant variants against dolutegravir have been found in treatment-experienced but not in treatment-naïve individuals, a characteristic that is unique amongst antiretroviral drugs. We review here the issue of drug resistance against integrase strand transfer inhibitors as well as both pre-clinical and clinical studies that have led to the identification of the R263K mutation in integrase as a signature resistance substitution for dolutegravir. We also discuss how the topic of drug resistance against integrase strand transfer inhibitors may have relevance in regard to the nature of the HIV reservoir and possible HIV curative strategies. PMID:26198244

  1. Swapped domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection

    PubMed Central

    Chu, Shidong; Kaur, Hardeep; Nemati, Ariana; Walsh, Joseph D.; Partida, Vivian; Zhang, Shao-Qing; Gochin, Miriam

    2015-01-01

    The conformational rearrangement of N-and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus – cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nM inhibitors, while peptides derived from the NHR are low μM inhibitors. Here we describe the inhibitory activity of swapped domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nM inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content and trimer stability. Low nM activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped domain design resolves the problem of unstable and weakly active NHR peptides, and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion. PMID:25646644

  2. A Novel Histone Deacetylase Inhibitor, AR-42, Reactivates HIV-1 from Chronically and Latently Infected CD4+ T-cells

    PubMed Central

    Mates, Jessica M.; de Silva, Suresh; Lustberg, Mark; Van Deusen, Kelsey; Baiocchi, Robert A.; Wu, Li; Kwiek, Jesse J.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) latency is a major barrier to a cure of AIDS. Latently infected cells harbor an integrated HIV-1 genome but are not actively producing HIV-1. Histone deacetylase (HDAC) inhibitors, such as vorinostat (SAHA), have been shown to reactivate latent HIV-1. AR-42, a modified HDAC inhibitor, has demonstrated efficacy against malignant melanoma, meningioma, and acute myeloid leukemia and is currently used in clinical trials for non-Hodgkin’s lymphoma and multiple myeloma. In this study, we evaluated the ability of AR-42 to reactivate HIV-1 in the two established CD4+ T-cell line models of HIV-1 latency. In HIV-1 chronically infected ACH-2 cells, AR-42-induced histone acetylation was more potent and robust than that of vorinostat. Although AR-42 and vorinostat were equipotent in their ability to reactivate HIV-1, AR-42-induced maximal HIV-1 reactivation was twofold greater than vorinostat in ACH-2 and J-Lat (clone 9.2) cells. These data provide rationale for assessing the efficacy of AR-42-mediated HIV-1 reactivation within primary CD4+ T-cells. PMID:26855567

  3. Evaluation of novel Saquinavir analogs for resistance mutation compatibility and potential as an HIV-Protease inhibitor drug

    PubMed Central

    Jayaswal, Amit; Mishra, Ankita; Mishra, Hirdyesh; Shah, Kavita

    2014-01-01

    A fundamental issue related to therapy of HIV-1 infection is the emergence of viral mutations which severely limits the long term efficiency of the HIV-protease (HIV-PR) inhibitors. Development of new drugs is therefore continuously needed. Chemoinformatics enables to design and discover novel molecules analogous to established drugs using computational tools and databases. Saquinavir, an anti-HIV Protease drug is administered for HIV therapy. In this work chemoinformatics tools were used to design structural analogs of Saquinavir as ligand and molecular dockings at AutoDock were performed to identify potential HIV-PR inhibitors. The analogs S1 and S2 when docked with HIV-PR had binding energies of -4.08 and -3.07 kcal/mol respectively which were similar to that for Saquinavir. The molecular docking studies revealed that the changes at N2 of Saquinavir to obtain newly designed analogs S1 (having N2 benzoyl group at N1) and S2 (having 3-oxo-3phenyl propanyl group at N2) were able to dock with HIV-PR with similar affinity as that of Saquinavir. Docking studies and computationally derived pharmacodynamic and pharmacokinetic properties׳ comparisons at ACD/I-lab establish that analog S2 has more potential to evade the problem of drug resistance mutation against HIV-1 PR subtype-A. S2 can be further developed and tested clinically as a real alternative drug for HIV-1 PR across the clades in future. PMID:24966525

  4. Design and synthesis of HIV-1 protease inhibitors for a long-acting injectable drug application.

    PubMed

    Kesteleyn, Bart; Amssoms, Katie; Schepens, Wim; Hache, Geerwin; Verschueren, Wim; Van De Vreken, Wim; Rombauts, Klara; Meurs, Greet; Sterkens, Patrick; Stoops, Bart; Baert, Lieven; Austin, Nigel; Wegner, Jörg; Masungi, Chantal; Dierynck, Inge; Lundgren, Stina; Jönsson, Daniel; Parkes, Kevin; Kalayanov, Genadiy; Wallberg, Hans; Rosenquist, Asa; Samuelsson, Bertil; Van Emelen, Kristof; Thuring, Jan Willem

    2013-01-01

    The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS. PMID:23177258

  5. Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors.

    PubMed

    Muraglia, Ester; Kinzel, Olaf; Gardelli, Cristina; Crescenzi, Benedetta; Donghi, Monica; Ferrara, Marco; Nizi, Emanuela; Orvieto, Federica; Pescatore, Giovanna; Laufer, Ralph; Gonzalez-Paz, Odalys; Di Marco, Annalise; Fiore, Fabrizio; Monteagudo, Edith; Fonsi, Massimiliano; Felock, Peter J; Rowley, Michael; Summa, Vincenzo

    2008-02-28

    HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species. PMID:18217703

  6. Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao; Debnath, Asim K

    2004-01-01

    Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored. PMID:15485580

  7. Design and implementation of a particle concentration fluorescence method for the detection of HIV-1 protease inhibitors.

    PubMed

    Manetta, J V; Lai, M H; Osborne, H E; Dee, A; Margolin, N; Sportsman, J R; Vlahos, C J; Yan, S B; Heath, W F

    1992-04-01

    A critical step in the replicative cycle of the human immunodeficiency virus HIV-1 involves the proteolytic processing of the polyprotein products Prgag and Prgag-pol that are encoded by the gag and pol genes in the viral genome. Inhibitors of this processing step have the potential to be important therapeutic agents in the management of acquired immunodeficiency syndrome. Current assays for inhibitors of HIV-1 protease are slow, cumbersome, or susceptible to interference by test compounds. An approach to the generation of a rapid, sensitive assay for HIV-1 protease inhibitors that is devoid of interference problems is to use a capture system which allows for isolation of the products from the reaction mixture prior to signal quantitation. In this paper, we describe a novel method for the detection of HIV-1 protease inhibitors utilizing the concept of particle concentration fluorescence. Our approach involves the use of the HIV-1 protease peptide substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val which has been modified to contain a biotin moiety on one side and a fluorescein reporter molecule on the other side of the scissile Tyr-Pro bond. This substrate is efficiently cleaved by the HIV-1 protease and the reaction can be readily quantitated. Known inhibitors of the protease were readily detected using this new assay. In addition, this approach is compatible with existing instrumentation in use for broad screening and is highly sensitive, accurate, and reproducible. PMID:1621970

  8. Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182.

    PubMed

    Sun, Lin; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-09-01

    The emergence of drug resistance in Combination Antiretroviral Therapy (cART) confirms a continuing need to investigate novel HIV-1 inhibitors with unexplored mechanisms of action. Recently, a series of pyrazolopyrimidine-based macrocyclic compounds were reported as inhibitors of HIV-1 replication disclosed in the patent WO2015123182. Most of the disclosed compounds possessed in vitro antiviral potency in single-digit nanomolar range, which were determined by MT-2 cell assay. Then, the structural diversity, pharmacophore similarity of HIV-1 IN-LEDGF/p75 inhibitors, and implications for drug design were analyzed. In the end of this article, a glimpse of some macrocycles as potent antiviral agents (drug candidates) was provided. Some strategies and technologies enabling macrocycle design were also described. We expect that further development of these macrocyclic compounds will offer new anti-HIV-1 drug candidates. PMID:27398994

  9. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGESBeta

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; Wang, Qian; Xu, Wei; Su, Shan; Sun, Zhiwu; Yu, Fei; Liu, Qi; Wang, Chao; et al

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognizedmore » AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  10. d(GGGT)4 and r(GGGU)4 are both HIV-1 inhibitors and interleukin-6 receptor aptamers

    PubMed Central

    Magbanua, Eileen; Zivkovic, Tijana; Hansen, Björn; Beschorner, Niklas; Meyer, Cindy; Lorenzen, Inken; Grötzinger, Joachim; Hauber, Joachim; Torda, Andrew E.; Mayer, Günter; Rose-John, Stefan; Hahn, Ulrich

    2013-01-01

    Aptamers are oligonucleotides that bind targets with high specificity and affinity. They have become important tools for biosensing, target detection, drug delivery and therapy. We selected the quadruplex-forming 16-mer DNA aptamer AID-1 [d(GGGT)4] with affinity for the interleukin-6 receptor (IL-6R) and identified single nucleotide variants that showed no significant loss of binding ability. The RNA counterpart of AID-1 [r(GGGU)4] also bound IL-6R as quadruplex structure. AID-1 is identical to the well-known HIV inhibitor T30923, which inhibits both HIV infection and HIV-1 integrase. We also demonstrated that IL-6R specific RNA aptamers not only bind HIV-1 integrase and inhibit its 3′ processing activity in vitro, but also are capable of preventing HIV de novo infection with the same efficacy as the established inhibitor T30175. All these aptamer target interactions are highly dependent on formation of quadruplex structure. PMID:23235494

  11. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance

    PubMed Central

    Vivithanaporn, Pornpun; Asahchop, Eugene L.; Acharjee, Shaona; Baker, Glen B.; Power, Christopher

    2016-01-01

    Objective: The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. Design: With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. Methods: Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. Results: Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular l-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Cai] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of l-glutamate, l-aspartate and l-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). Conclusion: These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS. PMID:26558720

  12. Cellular HIV-1 DNA quantitation in patients during simplification therapy with protease inhibitor-sparing regimens.

    PubMed

    Sarmati, Loredana; Parisi, Saverio Giuseppe; Nicastri, Emanuele; d'Ettorre, Gabriella; Andreoni, Carolina; Dori, Luca; Gatti, Francesca; Montano, Marco; Buonomini, Anna Rita; Boldrin, Caterina; Palù, Giorgio; Vullo, Vincenzo; Andreoni, Massimo

    2007-07-01

    Simplified regimens containing protease-inhibitors (PI)-sparing combinations were used in patients with virological suppression after prolonged highly active antiretroviral therapy. This study evaluated the total HIV-1 DNA quantitation as a predictor of long-term success for PI-sparing simplified therapy. Sixty-two patients were enrolled in a prospective non-randomized cohort. All patients have been receiving a triple-therapy regimen, two nucleoside reverse transcriptase inhibitors (NRTIs) plus one PI, for at least 9 months and were characterized by undetectable plasma HIV-1 RNA levels (<50 cp/ml) for at least 6 months. Patients were changed to a simplified PI-sparing regimen to overcome PI-associated adverse effects. HIV-DNA levels in peripheral blood mononuclear cells (PBMCs) were evaluated at baseline and at the end of follow-up. Patients with proviral DNA levels below the median value (226 copies/10(6) PBMCs) had a significant higher CD4 cell count at nadir (P = 0.003) and at enrolment (P = 0.001) with respect to patients with HIV-DNA levels above the median value. At month 18, 53 out of 62 (85%) patients on simplified regimen showed virological success, 4 (6.4%) patients experienced virological failure and 5 (8%) patients showed viral blip. At logistic regression analysis, HIV-DNA levels below 226 copies/10(6) PBMCs at baseline were associated independently to a reduced risk of virological failure or viral blip during simplified therapy (OR 0.002, 95% CI 0.001-0.46, P = 0.025). The substitution of PI with NRTI or non-NRTIs may represent an effective treatment option. Indeed, treatment failure or viral blip were experienced by 6% and 8% of the patients on simplified therapy, respectively. In addition, sustained suppression of the plasma viral load was significantly correlated with low levels of proviral DNA before treatment simplification. PMID:17516532

  13. Effect of mimetic CDK9 inhibitors on HIV-1 activated transcription

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Jaworski, Elizabeth; Sampey, Gavin; Klase, Zachary; Chen, Hao; Zeng, Chen; Kovalskyy, Dmytro; el Kouni, Mahmoud H.; Lepene, Benjamin; Patanarut, Alexis; Nekhai, Sergei; Price, David H.; Kashanchi, Fatah

    2013-01-01

    Potent antiretroviral therapy (ART) has transformed HIV-1 infection into a chronic manageable disease; however drug resistance remains a common problem that limits the effectiveness and clinical benefits of this type of treatment. The discovery of viral reservoirs in the body, in which HIV-1 may persist, has helped to explain why therapeutic eradication of HIV-1 has proved so difficult. In the current study we utilized a combination of structure based analysis of Cyclin/CDK complexes with our previously published Tat peptide derivatives. We modeled the Tat peptide inhibitors with CDKs and found a particular pocket which showed the most stable binding site (Cavity 1) using in silico analysis. Furthermore, we were able to find peptide mimetics that bound to similar regions using in silico searches of a chemical library, followed by cell based biological assays. Using these methods we obtained the first generation mimetic drugs and tested these compounds on HIV-1 LTR activated transcription. Using biological assays followed by similar in silico analysis to find a 2nd generation drugs resembling the original mimetic, we found the new targets of Cavity 1 and Cavity 2 regions on CDK9. We examined the 2nd generation mimetic against various viral isolates, and observed a generalized suppression of most HIV-1 isolates. Finally, the drug inhibited viral replication in humanized mouse models of Rag2-/-γc-/- with no toxicity to the animals at tested concentrations. Our results suggest that it may be possible to model peptide inhibitors into available crystal structures and further find drug mimetics using in silico analysis. PMID:23247501

  14. Computational Prediction of HIV-1 Resistance to Protease Inhibitors.

    PubMed

    Hosseini, Ali; Alibés, Andreu; Noguera-Julian, Marc; Gil, Victor; Paredes, Roger; Soliva, Robert; Orozco, Modesto; Guallar, Victor

    2016-05-23

    The development of mutations in HIV-1 protease (PR) hinders the activity of antiretroviral drugs, forcing changes in drug prescription. Most resistance assessments used to date rely on expert-based rules on predefined sets of stereotypical mutations; such an information-driven approach cannot capture new polymorphisms or be applied for new drugs. Computational modeling could provide a more general assessment of drug resistance and could be made available to clinicians through the Internet. We have created a protocol involving sequence comparison and all-atom protein-ligand induced fit simulations to predict resistance at the molecular level. We first compared our predictions with the experimentally determined IC50 values of darunavir, amprenavir, ritonavir, and indinavir from reference PR mutants displaying different resistance levels. We then performed analyses on a large set of variants harboring more than 10 mutations. Finally, several sequences from real patients were analyzed for amprenavir and darunavir. Our computational approach detected all of the genotype changes triggering high-level resistance, even those involving a large number of mutations. PMID:27082876

  15. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements

    SciTech Connect

    Agniswamy, Johnson; Shen, Chen-Hsiang; Aniana, Annie; Sayer, Jane M.; Louis, John M.; Weber, Irene T.

    2012-06-28

    The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.

  16. Structure of HIV-1 Reverse Transcriptase with the Inhibitor -thujaplicinol Bound at the RNase H Active Site

    SciTech Connect

    Himmel, D.; Maegley, K; Pauly, T; Bauman, J; Das, K; Dharia, C; Clark, Jr., A; Ryan, K; Hickey, M; et al.

    2009-01-01

    Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 {angstrom} and 2.04 {angstrom} resolution crystal structures of an RNH inhibitor, {beta}-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. {beta}-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that {beta}-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.

  17. Neutralizing antibody and anti-retroviral drug sensitivities of HIV-1 isolates resistant to small molecule CCR5 inhibitors

    SciTech Connect

    Pugach, Pavel; Ketas, Thomas J.; Michael, Elizabeth; Moore, John P.

    2008-08-01

    The small molecule CCR5 inhibitors are a new class of drugs for treating infection by human immunodeficiency virus type 1 (HIV-1). They act by binding to the CCR5 co-receptor and preventing its use during HIV-1-cell fusion. Escape mutants can be raised against CCR5 inhibitors in vitro and will arise when these drugs are used clinically. Here, we have assessed the responses of CCR5 inhibitor-resistant viruses to other anti-retroviral drugs that act by different mechanisms, and their sensitivities to neutralizing antibodies (NAbs). The rationale for the latter study is that the resistance pathway for CCR5 inhibitors involves changes in the HIV-1 envelope glycoproteins (Env), which are also targets for NAbs. The escape mutants CC101.19 and D1/85.16 were selected for resistance to AD101 and vicriviroc (VVC), respectively, from the primary R5 HIV-1 isolate CC1/85. Each escape mutant was cross-resistant to other small molecule CCR5 inhibitors (aplaviroc, maraviroc, VVC, AD101 and CMPD 167), but sensitive to protein ligands of CCR5: the modified chemokine PSC-RANTES and the humanized MAb PRO-140. The resistant viruses also retained wild-type sensitivity to the nucleoside reverse transcriptase inhibitor (RTI) zidovudine, the non-nucleoside RTI nevirapine, the protease inhibitor atazanavir and other attachment and fusion inhibitors that act independently of CCR5 (BMS-806, PRO-542 and enfuvirtide). Of note is that the escape mutants were more sensitive than the parental CC1/85 isolate to a subset of neutralizing monoclonal antibodies and to some sera from HIV-1-infected people, implying that sequence changes in Env that confer resistance to CCR5 inhibitors can increase the accessibility of some NAb epitopes. The need to preserve NAb resistance may therefore be a constraint upon how escape from CCR5 inhibitors occurs in vivo.

  18. A new class of HIV-1 protease inhibitor: the crystallographic structure, inhibition and chemical synthesis of an aminimide peptide isostere.

    PubMed

    Rutenber, E E; McPhee, F; Kaplan, A P; Gallion, S L; Hogan, J C; Craik, C S; Stroud, R M

    1996-09-01

    The essential role of HIV-1 protease (HIV-1 PR) in the viral life cycle makes it an attractive target for the development of substrate-based inhibitors that may find efficacy as anti-AIDS drugs. However, resistance has arisen to potent peptidomimetic drugs necessitating the further development of novel chemical backbones for diversity based chemistry focused on probing the active site for inhibitor interactions and binding modes that evade protease resistance. AQ148 is a potent inhibitor of HIV-1 PR and represents a new class of transition state analogues incorporating an aminimide peptide isostere. A 3-D crystallographic structure of AQ148, a tetrapeptide isostere, has been determined in complex with its target HIV-1 PR to a resolution of 2.5 A and used to evaluate the specific structural determinants of AQ148 potency and to correlate structure-activity relationships within the class of related compounds. AQ148 is a competitive inhibitor of HIV-1 PR with a Ki value of 137 nM. Twenty-nine derivatives have been synthesized and chemical modifications have been made at the P1, P2, P1', and P2' sites. The atomic resolution structure of AQ148 bound to HIV-1 PR reveals both an inhibitor binding mode that closely resembles that of other peptidomimetic inhibitors and specific protein/inhibitor interactions that correlate with structure-activity relationships. The structure provides the basis for the design, synthesis and evaluation of the next generation of hydroxyethyl aminimide inhibitors. The aminimide peptide isostere is a scaffold with favorable biological properties well suited to both the combinatorial methods of peptidomimesis and the rational design of potent and specific substrate-based analogues. PMID:8894111

  19. Preclinical Evaluation of the HIV-1 Fusion Inhibitor L'644 as a Potential Candidate Microbicide

    PubMed Central

    Harman, Sarah; Herrera, Carolina; Armanasco, Naomi; Nuttall, Jeremy

    2012-01-01

    Topical blockade of the gp41 fusogenic protein of HIV-1 is one possible strategy by which microbicides could prevent HIV transmission, working early against infection, by inhibiting viral entry into host cells. In this study, we examined the potential of gp41 fusion inhibitors (FIs) as candidate anti-HIV microbicides. Preclinical evaluation of four FIs, C34, T20, T1249, and L'644, was performed using cellular and ex vivo genital and colorectal tissue explant models. Increased and sustained activity was detected for L'644, a cholesterol-derivatized version of C34, relative to the other FIs. The higher potency of L'644 was further increased with sustained exposure of cells or tissue to the compound. The activity of L'644 was not affected by biological fluids, and the compound was still active when tissue explants were treated after viral exposure. L'644 was also more active than other FIs against a viral escape mutant resistant to reverse transcriptase inhibitors (RTIs), demonstrating the potential of L'644 to be included as part of a multiactive antiretroviral (ARV) combination-based microbicide. These data support the further development of L'644 for microbicide application. PMID:22330930

  20. Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors

    PubMed Central

    Urano, Emiko; Ablan, Sherimay D.; Mandt, Rebecca; Pauly, Gary T.; Sigano, Dina M.; Schneider, Joel P.; Martin, David E.; Nitz, Theodore J.; Wild, Carl T.

    2015-01-01

    Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1. PMID:26482309

  1. Dipeptidyl Peptidase-4 Inhibitor Use Is Not Associated With Acute Pancreatitis in High-Risk Type 2 Diabetic Patients: A Nationwide Cohort Study.

    PubMed

    Chang, Chia-Hsuin; Lin, Jou-Wei; Chen, Shu-Ting; Lai, Mei-Shu; Chuang, Lee-Ming; Chang, Yi-Cheng

    2016-02-01

    To analyze the association between use of DPP-4 inhibitors and acute pancreatitis in high-risk type 2 diabetic patients. A retrospective nationwide cohort study was conducted using the Taiwan National Health Insurance claim database. The risk associated with sitagliptin was compared to that with acarbose, a second-line antidiabetic drug prescribed for patients with similar diabetes severity and with a known neutral effect on pancreatitis. Between January 1, 2009 and December 31, 2010, a total of 8526 sitagliptin initiators and 8055 acarbose initiators who had hypertriglyceridemia or prior hospitalization history for acute pancreatitis were analyzed for the risk of hospitalization due to acute pancreatitis stratified for baseline propensity score. In the crude analysis, sitagliptin was associated with a decreased risk of acute pancreatitis (hazard ratio [HR] 0.74; 95% confidence interval [CI]: 0.62-0.88) compared to acarbose in diabetic patients with prior history of hospitalization for pancreatitis or hypertriglyceridemia. The association was abolished after stratification for propensity score quintiles (adjusted HR 0.95; 95% CI: 0.79-1.16). Similar results were found separately in both patients' histories of prior hospitalization of acute pancreatitis (adjusted HR 0.97; 95% CI: 0.76-1.24) and those with hypertriglyceridemia (adjusted HR 0.86; 95% CI: 0.65-1.13). No significant association was found for different durations or accumulative doses of sitagliptin. In the stratified analysis, no significant effect modification was found in relation to patients' characteristics. Use of sitagliptin was not associated with an increased risk of acute pancreatitis in high-risk diabetic patients with hypertriglyceridemia or with history of acute pancreatitis. PMID:26886601

  2. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose

    PubMed Central

    Salheen, Salheen M.; Panchapakesan, Usha; Pollock, Carol A.; Woodman, Owen L.

    2015-01-01

    The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity. PMID:26618855

  3. Excretion/secretion products from Schistosoma mansoni adults, eggs and schistosomula have unique peptidase specificity profiles.

    PubMed

    Dvořák, Jan; Fajtová, Pavla; Ulrychová, Lenka; Leontovyč, Adrian; Rojo-Arreola, Liliana; Suzuki, Brian M; Horn, Martin; Mareš, Michael; Craik, Charles S; Caffrey, Conor R; O'Donoghue, Anthony J

    2016-03-01

    Schistosomiasis is one of a number of chronic helminth diseases of poverty that severely impact personal and societal well-being and productivity. Peptidases (proteases) are vital to successful parasitism, and can modulate host physiology and immunology. Interference of peptidase action by specific drugs or vaccines can be therapeutically beneficial. To date, research on peptidases in the schistosome parasite has focused on either the functional characterization of individual peptidases or their annotation as part of global genome or transcriptome studies. We were interested in functionally characterizing the complexity of peptidase activity operating at the host-parasite interface, therefore the excretory-secretory products of key developmental stages of Schistosoma mansoni that parasitize the human were examined. Using class specific peptidase inhibitors in combination with a multiplex substrate profiling assay, a number of unique activities derived from endo- and exo-peptidases were revealed in the excretory-secretory products of schistosomula (larval migratory worms), adults and eggs. The data highlight the complexity of the functional degradome for each developmental stage of this parasite and facilitate further enquiry to establish peptidase identity, physiological and immunological function, and utility as drug or vaccine candidates. PMID:26409899

  4. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    PubMed Central

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  5. Crystal Structure of An FIV/HIV Chimeric Protease Complexed With the Broad-Based Inhibitor, TL-3

    SciTech Connect

    Heaslet, H.; Lin, Y.-C.; Tam, K.; Torbett, B.E.; Elder, J.E.; Stout, C.D.; /Pfizer Global Res. Devel. /Scripps Res. Inst.

    2007-07-09

    We have obtained the 1.7 angstrom crystal structure of FIV protease (PR) in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR). The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants [1-4]. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively [2-4]. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed the formation of additional van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.

  6. Nucleocapsid Annealing-Mediated Electrophoresis (NAME) Assay Allows the Rapid Identification of HIV-1 Nucleocapsid Inhibitors

    PubMed Central

    Sosic, Alice; Cappellini, Marta; Scalabrin, Matteo; Gatto, Barbara

    2015-01-01

    RNA or DNA folded in stable tridimensional folding are interesting targets in the development of antitumor or antiviral drugs. In the case of HIV-1, viral proteins involved in the regulation of the virus activity recognize several nucleic acids. The nucleocapsid protein NCp7 (NC) is a key protein regulating several processes during virus replication. NC is in fact a chaperone destabilizing the secondary structures of RNA and DNA and facilitating their annealing. The inactivation of NC is a new approach and an interesting target for anti-HIV therapy. The Nucleocapsid Annealing-Mediated Electrophoresis (NAME) assay was developed to identify molecules able to inhibit the melting and annealing of RNA and DNA folded in thermodynamically stable tridimensional conformations, such as hairpin structures of TAR and cTAR elements of HIV, by the nucleocapsid protein of HIV-1. The new assay employs either the recombinant or the synthetic protein, and oligonucleotides without the need of their previous labeling. The analysis of the results is achieved by standard polyacrylamide gel electrophoresis (PAGE) followed by conventional nucleic acid staining. The protocol reported in this work describes how to perform the NAME assay with the full-length protein or its truncated version lacking the basic N-terminal domain, both competent as nucleic acids chaperones, and how to assess the inhibition of NC chaperone activity by a threading intercalator. Moreover, NAME can be performed in two different modes, useful to obtain indications on the putative mechanism of action of the identified NC inhibitors. PMID:25650789

  7. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1

    PubMed Central

    Martínez-Bonet, Marta; Isabel Clemente, Maria; Jesús Serramía, Maria; Muñoz, Eduardo; Moreno, Santiago; Ángeles Muñoz-Fernández, Maria

    2015-01-01

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials. PMID:26563568

  8. Nutritional status changes in HIV-infected children receiving combined antiretroviral therapy including protease inhibitors.

    PubMed

    Fiore, P; Donelli, E; Boni, S; Pontali, E; Tramalloni, R; Bassetti, D

    2000-11-01

    Maintaining linear growth and weight gain in HIV-infected children is often difficult. Nutritional evaluation and support are recognised as important factors to improve their quality of life. Combination antiretroviral therapy including protease inhibitors (HAART) reduces HIV-viral load and improves survival, quality of life and nutritional status. Our study aimed to determine changes in nutrional status based on body weight, height and nutritional habits, of HIV-infected children receiving HAART. Possible side effects of lipid metabolism were also studied. Twenty five children, 13 treated with HAART (group B) were followed up for 12 months. We did not observe statistically significant differences in nutritional status over that time or between groups A and B. Inadequate energy intake was more common in patients with advanced HIV-disease. Hyperlipidemia was found in 70% of children receiving ritonavir and in approximately 50% of children receiving nelfinavir. We observed an important although not statistically significative modification in the height of those in group B. PMID:11091066

  9. CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics

    PubMed Central

    Schweizer, Andreas; Rusert, Peter; Berlinger, Livia; Ruprecht, Claudia R.; Mann, Axel; Corthésy, Stéphanie; Turville, Stuart G.; Aravantinou, Meropi; Fischer, Marek; Robbiani, Melissa; Amstutz, Patrick; Trkola, Alexandra

    2008-01-01

    Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development. PMID:18654624

  10. Prevalence and incidence of diabetes in HIV-infected minority patients on protease inhibitors.

    PubMed Central

    Salehian, Behrouz; Bilas, Josephine; Bazargan, Mohsen; Abbasian, Mohammad

    2005-01-01

    In HIV-infected patients, the use of protease inhibitors (PIs) is associated with a constellation of abdominal obesity; buffalo hump; decreased facial and subcutaneous fat; hyperlipidemia and type-2 diabetes mellitus, a so-called HAART-associated dysmetabolic syndrome. The incidence and prevalence of one of its components, the type-2 diabetes mellitus, among minority population is unknown. In August and September 1999, we reviewed 101 charts of HIV-infected patients who visited an inner-city HIV outpatient clinic. The age, gender, ethnicity, BMI, fasting plasma glucose, random serum glucose, triglycerides, CD4 counts, and the type and duration of antiretroviral drugs were recorded. Three years later (2002), the same patient charts were reviewed for evidence of new-onset diabetes. Ten percent of the subjects were identified as diabetic at baseline. The prevalence of diabetes was 12% among those who were taking PIs, compared to 0% among those who were not taking PIs. The incidence of newly diagnosed diabetes during this three-year period was 7.2%. Diabetes occurred only in the group taking PIs. Diabetic subjects were older than their nondiabetic counterparts. All were African Americans. Our study suggests that PIs increase the likelihood of diabetes developing with increasing age in African Americans infected with HIV. PMID:16173323

  11. In silico design, synthesis, and screening of novel deoxyhypusine synthase inhibitors targeting HIV-1 replication.

    PubMed

    Schroeder, Marcus; Kolodzik, Adrian; Pfaff, Katharina; Priyadarshini, Poornima; Krepstakies, Marcel; Hauber, Joachim; Rarey, Matthias; Meier, Chris

    2014-05-01

    The human enzyme deoxyhypusine synthase (DHS) is an important host cell factor that participates in the post-translational hypusine modification of eukaryotic initiation factor 5A (eIF-5A). Hypusine-modified eIF-5A plays a role in a number of diseases, including HIV infection/AIDS. Thus, DHS represents a novel and attractive drug target. So far, four crystal structures are available, and various substances have been tested for inhibition of human DHS. Among these inhibitors, N-1-guanyl-1,7-diaminoheptane (GC7) has been co-crystallized in the active site of DHS. However, despite its potency, GC7 is not selective enough to be used in drug applications. Therefore, new compounds that target DHS are needed. Herein we report the in silico design, chemical synthesis, and biological evaluation of new DHS inhibitors. One of these inhibitors showed dose-dependent inhibition of DHS in vitro, as well as suppression of HIV replication in cell cultures. Furthermore, the compound exhibited no cytotoxic effects at active concentrations. Thus, this designed compound demonstrated proof of principle and represents a promising starting point for the development of new drug candidates to specifically interfere with DHS activity. PMID:24616161

  12. The thioacetate-ω(γ-lactam carboxamide) HDAC inhibitor ST7612AA1 as HIV-1 latency reactivation agent.

    PubMed

    Badia, Roger; Grau, Judith; Riveira-Muñoz, Eva; Ballana, Ester; Giannini, Giuseppe; Esté, José A

    2015-11-01

    Antiretroviral therapy (ART) is unable to cure HIV infection. The ability of HIV to establish a subset of latent infected CD4(+) T cells, which remain undetectable to the immune system, becomes a major roadblock to achieve viral eradication. Histone deacetylase inhibitors (HDACi) have been shown to potently induce the reactivation of latent HIV. Here, we show that a new thiol-based HDACi, the thioacetate-ω(γ-lactam carboxamide) derivative ST7612AA1, is a potent inducer of HIV reactivation. We evaluated HIV reactivation activity of ST7612AA1 compared to panobinostat (PNB), romidepsin (RMD) and vorinostat (VOR) in cell culture models of HIV-1 latency, in latently infected primary CD4(+) T lymphocytes and in PBMCs from HIV(+) patients. ST7612AA1 potently induced HIV-1 reactivation at submicromolar concentrations with comparable potency to panobinostat or superior to vorinostat. The presence of known antiretrovirals did not affect ST7612AA1-induced reactivation and their activity was not affected by ST7612AA1. Cell proliferation and cell activation were not affected by ST7612AA1, or any other HDACi used. In conclusion, our results indicate that ST7612AA1 is a potent activator of latent HIV and that reactivation activity of ST7612AA1 is exerted without activation or proliferation of CD4(+) T cells. ST7612AA1 is a suitable candidate for further studies of HIV reactivation strategies and potential new therapies to eradicate the viral reservoirs. PMID:26348004

  13. Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Stanton, Richard A; Lu, Xiao; Detorio, Mervi; Montero, Catherine; Hammond, Emily T; Ehteshami, Maryam; Domaoal, Robert A; Nettles, James H; Feraud, Michel; Schinazi, Raymond F

    2016-08-15

    A library of 585 compounds built off a 7-azaindole core was evaluated for anti-HIV-1 activity, and ten hits emerged with submicromolar potency and therapeutic index >100. Of these, three were identified as non-nucleoside reverse transcriptase (RT) inhibitors and were assayed against relevant resistant mutants. Lead compound 8 inhibited RT with submicromolar potency (IC50=0.73μM) and also maintained some activity against the clinically important RT mutants K103N and Y181C (IC50=9.2, 3.5μM) in cell-free assays. Free energy perturbation guided lead optimization resulted in the development of a compound with a two-fold increase in potency against RT (IC50=0.36μM). These data highlight the discovery of a unique scaffold with the potential to move forward as next-generation anti-HIV-1 agents. PMID:27390064

  14. Investigating and Targeting Chronic Lymphocytic Leukemia Metabolism with the HIV Protease Inhibitor Ritonavir and Metformin

    PubMed Central

    Adekola, Kehinde U.A.; Aydemir, Sevim D.; Ma, Shuo; Zhou, Zheng; Rosen, Steven T.; Shanmugam, Mala

    2016-01-01

    Chronic Lymphocytic Leukemia (CLL) remains fatal due to the development of resistance to existing therapies. Targeting abnormal glucose metabolism sensitizes various cancer cells to chemotherapy and/or elicits toxicity. Examination of glucose dependency in CLL demonstrated variable sensitivity to glucose deprivation. Further evaluation of metabolic dependencies of CLL cells resistant to glucose deprivation revealed increased engagement of fatty acid oxidation upon glucose withdrawal. Investigation of glucose transporter expression in CLL reveals up-regulation of glucose transporter GLUT4. Treatment of CLL cells with HIV protease inhibitor ritonavir, that inhibits GLUT4, elicits toxicity similar to that elicited upon glucose-deprivation. CLL cells resistant to ritonavir are sensitized by co-treatment with metformin, potentially targeting compensatory mitochondrial complex 1 activity. Ritonavir and metformin have been administered in humans for treatment of diabetes in HIV patients, demonstrating the tolerance of this combination in humans. Our studies strongly substantiate further investigation of FDA approved ritonavir and metformin for CLL. PMID:24828872

  15. Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A

    2011-01-01

    We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. PMID:20937333

  16. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component

    PubMed Central

    O'Keefe, Barry R.; Vojdani, Fakhrieh; Buffa, Viviana; Shattock, Robin J.; Montefiori, David C.; Bakke, James; Mirsalis, Jon; d'Andrea, Anna-Lisa; Hume, Steven D.; Bratcher, Barry; Saucedo, Carrie J.; McMahon, James B.; Pogue, Gregory P.; Palmer, Kenneth E.

    2009-01-01

    To prevent sexually transmitted HIV, the most desirable active ingredients of microbicides are antiretrovirals (ARVs) that directly target viral entry and avert infection at mucosal surfaces. However, most promising ARV entry inhibitors are biologicals, which are costly to manufacture and deliver to resource-poor areas where effective microbicides are urgently needed. Here, we report a manufacturing breakthrough for griffithsin (GRFT), one of the most potent HIV entry inhibitors. This red algal protein was produced in multigram quantities after extraction from Nicotiana benthamiana plants transduced with a tobacco mosaic virus vector expressing GRFT. Plant-produced GRFT (GRFT-P) was shown as active against HIV at picomolar concentrations, directly virucidal via binding to HIV envelope glycoproteins, and capable of blocking cell-to-cell HIV transmission. GRFT-P has broad-spectrum activity against HIV clades A, B, and C, with utility as a microbicide component for HIV prevention in established epidemics in sub-Saharan Africa, South Asia, China, and the industrialized West. Cognizant of the imperative that microbicides not induce epithelial damage or inflammatory responses, we also show that GRFT-P is nonirritating and noninflammatory in human cervical explants and in vivo in the rabbit vaginal irritation model. Moreover, GRFT-P is potently active in preventing infection of cervical explants by HIV-1 and has no mitogenic activity on cultured human lymphocytes. PMID:19332801

  17. Anti-human immunodeficiency virus (HIV) activities of halogenated gomisin J derivatives, new nonnucleoside inhibitors of HIV type 1 reverse transcriptase.

    PubMed Central

    Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A

    1995-01-01

    Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity. PMID:8540706

  18. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGESBeta

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; et al

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy of trelagliptin.

  19. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism

    PubMed Central

    Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  20. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism.

    PubMed

    Grimshaw, Charles E; Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  1. A novel chimeric protein-based HIV-1 fusion inhibitor targeting gp41 glycoprotein with high potency and stability.

    PubMed

    Pan, Chungen; Cai, Lifeng; Lu, Hong; Lu, Lu; Jiang, Shibo

    2011-08-12

    T20 (enfuvirtide, Fuzeon) is the first generation HIV-1 fusion inhibitor approved for salvage therapy of HIV-1-infected patients refractory to current antiretroviral drugs. However, its application is limited by the high cost of peptide synthesis, rapid proteolysis, and poor efficacy against emerging drug-resistant strains. Here we reported the design of a novel chimera protein-based fusion inhibitor targeting gp41, TLT35, that uses a flexible 35-mer linker to couple T20 and T1144, the first and next generation HIV-1 fusion inhibitors, respectively. TLT35, which was expressed in Escherichia coli with good yield, showed low nm activity against HIV-1-mediated cell-cell fusion and infection by laboratory-adapted HIV-1 strains (X4 or R5), including T20-resistant variants and primary HIV-1 isolates of clades A to G and group O (R5 or X4R5). TLT35 was stable in human sera and in peripheral blood mononuclear cell culture and was more resistant to proteolysis than either T20 or T1144 alone. Circular dichroism spectra showed that TLT35 folded into a thermally stable conformation with high α-helical content and T(m) value in aqueous solution. It formed a highly stable complex with gp41 N-terminal heptad repeat peptide and blocked formation of the gp41 six-helix-bundle core. These merits combined with an anticipated low production cost for expression of TLT35 in E. coli make this novel protein-based fusion inhibitor a promising candidate for further development as an anti-HIV-1 microbicide or therapeutic for the prevention and treatment of HIV-1 infection. PMID:21690094

  2. Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2016-02-23

    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, RMSD = 2.847, Q(2) = 0.912, se = 0.498, Rpred(2) = 0.847 and rm(test)(2) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in complex with the most active and final screened compounds were subjected to 50 ns molecular dynamics (MD) simulation studies to check comparative stability of the complexes. The study suggested that the screened compounds might be promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to experimental studies to confirm potential inhibition of HIV integrase. PMID:26809073

  3. Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors

    PubMed Central

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A.; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva’a, Luc Mbaze; Abegaz, Berhanu M.; Rice, Charles M.; Andrae-Marobela, Kerstin; Brockman, Mark A.; Brumme, Zabrina L.; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world. PMID:25830320

  4. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site

    SciTech Connect

    Wu, J.C.; Warren, T.C.; Adams, J.; Proudfoot, J.; Skiles, J.; Raghavan, P.; Perry, C.; Potocki, I.; Farina, P.R.; Grob, P.M. )

    1991-02-26

    A novel dipyridodiazepinone, 6,11-dihydro-11-cyclopropyl-4-methyldipyrido(2,3-b:2{prime},3{prime}-e)-(1,4)diazepin-6-one (BI-RG-587), is a selective noncompetitive inhibitor of HIV-1 reverse transcriptase (RT-1). An azido photoaffinity analogue of BI-RG-587 was synthesized and found to irreversibly inhibit the enzyme upon UV irradiation. BI-RG-587 and close structural analogues competitively protected RT-1 from inactivation by the photoaffinity label. A thiobenzimidazolone (TIBO) derivative, a nonnucleoside inhibitor of RT-1, also protected the enzyme from photoinactivation, which suggests a common binding site for these compounds. Substrates dGTP, template-primer, and tRNA afforded no protection from enzyme inactivation. A tritiated photoaffinity probe was found to stoichiometrically and selectively label p66 such that 1 mol of probe inactivates 1 mol of RT-1.

  5. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice. PMID:26497774

  6. Structural Studies of the HIV-1 Integrase Protein: Compound Screening and Characterization of a DNA-Binding Inhibitor

    PubMed Central

    Hassounah, Said; Mesplède, Thibault; Wainberg, Mark A.

    2015-01-01

    Understanding the HIV integrase protein and mechanisms of resistance to HIV integrase inhibitors is complicated by the lack of a full length HIV integrase crystal structure. Moreover, a lentiviral integrase structure with co-crystallised DNA has not been described. For these reasons, we have developed a structural method that utilizes free software to create quaternary HIV integrase homology models, based partially on available full-length prototype foamy virus integrase structures as well as several structures of truncated HIV integrase. We have tested the utility of these models in screening of small anti-integrase compounds using randomly selected molecules from the ZINC database as well as a well characterized IN:DNA binding inhibitor, FZ41, and a putative IN:DNA binding inhibitor, HDS1. Docking studies showed that the ZINC compounds that had the best binding energies bound at the IN:IN dimer interface and that the FZ41 and HDS1 compounds docked at approximately the same location in integrase, i.e. behind the DNA binding domain, although there is some overlap with the IN:IN dimer interface to which the ZINC compounds bind. Thus, we have revealed two possible locations in integrase that could potentially be targeted by allosteric integrase inhibitors, that are distinct from the binding sites of other allosteric molecules such as LEDGF inhibitors. Virological and biochemical studies confirmed that HDS1 and FZ41 share a similar activity profile and that both can inhibit each of integrase and reverse transcriptase activities. The inhibitory mechanism of HDS1 for HIV integrase seems to be at the DNA binding step and not at either of the strand transfer or 3' processing steps of the integrase reaction. Furthermore, HDS1 does not directly interact with DNA. The modeling and docking methodology described here will be useful for future screening of integrase inhibitors as well as for the generation of models for the study of integrase drug resistance. PMID:26046987

  7. Discovery of Novel Small-Molecule HIV-1 Replication Inhibitors That Stabilize Capsid Complexes

    PubMed Central

    Titolo, Steve; Lemke, Christopher T.; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Shah, Vaibhav B.; von Schwedler, Uta K.; Langelier, Charles; Banik, Soma S. R.; Aiken, Christopher; Sundquist, Wesley I.

    2013-01-01

    The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex. Selection of viruses resistant to BI-2 revealed that substitutions at residues A105 and T107 within the capsid (CA) amino-terminal domain (CANTD) conferred high-level resistance to both compounds, implicating CA as the antiviral target. Direct binding of BI-1 and/or BI-2 to CANTD was demonstrated using isothermal titration calorimetry and nuclear magnetic resonance (NMR) chemical shift titration analyses. A high-resolution crystal structure of the BI-1:CANTD complex revealed that the inhibitor bound within a recently identified inhibitor binding pocket (CANTD site 2) between CA helices 4, 5, and 7, on the surface of the CANTD, that also corresponds to the binding site for the host factor CPSF-6. The functional consequences of BI-1 and BI-2 binding differ from previously characterized inhibitors that bind the same site since the BI compounds did not inhibit reverse transcription but stabilized preassembled CA complexes. Hence, this new class of antiviral compounds binds CA and may inhibit viral replication by stabilizing the viral capsid. PMID:23817385

  8. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes.

    PubMed

    Lamorte, Louie; Titolo, Steve; Lemke, Christopher T; Goudreau, Nathalie; Mercier, Jean-François; Wardrop, Elizabeth; Shah, Vaibhav B; von Schwedler, Uta K; Langelier, Charles; Banik, Soma S R; Aiken, Christopher; Sundquist, Wesley I; Mason, Stephen W

    2013-10-01

    The identification of novel antiretroviral agents is required to provide alternative treatment options for HIV-1-infected patients. The screening of a phenotypic cell-based viral replication assay led to the identification of a novel class of 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one (pyrrolopyrazolone) HIV-1 inhibitors, exemplified by two compounds: BI-1 and BI-2. These compounds inhibited early postentry stages of viral replication at a step(s) following reverse transcription but prior to 2 long terminal repeat (2-LTR) circle formation, suggesting that they may block nuclear targeting of the preintegration complex. Selection of viruses resistant to BI-2 revealed that substitutions at residues A105 and T107 within the capsid (CA) amino-terminal domain (CANTD) conferred high-level resistance to both compounds, implicating CA as the antiviral target. Direct binding of BI-1 and/or BI-2 to CANTD was demonstrated using isothermal titration calorimetry and nuclear magnetic resonance (NMR) chemical shift titration analyses. A high-resolution crystal structure of the BI-1:CANTD complex revealed that the inhibitor bound within a recently identified inhibitor binding pocket (CANTD site 2) between CA helices 4, 5, and 7, on the surface of the CANTD, that also corresponds to the binding site for the host factor CPSF-6. The functional consequences of BI-1 and BI-2 binding differ from previously characterized inhibitors that bind the same site since the BI compounds did not inhibit reverse transcription but stabilized preassembled CA complexes. Hence, this new class of antiviral compounds binds CA and may inhibit viral replication by stabilizing the viral capsid. PMID:23817385

  9. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity.

    PubMed

    Chander, Subhash; Ashok, Penta; Zheng, Yong-Tang; Wang, Ping; Raja, Krishnamohan S; Taneja, Akash; Murugesan, Sankaranarayanan

    2016-02-01

    Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) are vital class of drugs in treating HIV-1 infection, but drug resistance and toxicity drive the need for effective new inhibitors with potent antiviral activity, less toxicity and improved physicochemical properties. In the present study, twelve novel 1-(4-chlorophenyl)-2-(3,4-dihydroquinolin-1(2H)-yl)ethyl phenylcarbamate derivatives were designed as inhibitor of HIV-1 RT using the ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT. Among these, four compounds (6b, 6i, 6j and 6l) exhibited significant inhibition of HIV-1 RT (IC50 ⩽ 20 μM). Among four compounds, most active compounds 6b and 6j inhibited the RT activity with IC50 8.12 and 5.42 μM respectively. Docking studies of compounds 6b and 6j were performed against wild HIV-1 RT in order to predict their putative binding mode with selected target. Further, cytotoxicity and anti-HIV activity of compounds 6b and 6j were evaluated on T lymphocytes (C8166 cells). All the synthesized compounds were also evaluated for antifungal activity against Candida albicans and Aspergillus niger fungal strains. PMID:26717022

  10. Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor.

    PubMed

    Razzaghi-Asl, Nima; Sepehri, Saghi; Ebadi, Ahmad; Miri, Ramin; Shahabipour, Sara

    2015-01-01

    Human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR inhibitor/drug design. In the present contribution, the effect of HIV-1 PR flexibility (within multiple crystallographic structures of HIV-1 PR) on binding to the Amprenavir was elucidated via an ensemble docking approach. Molecular docking studies were performed via advanced AutoDock4.2 software. Ensemble docking of Amprenavir into the active site of various conformations of HIV-1 PR predicted different interaction modes/energies. Analysis of binding factors in terms of docking false negatives/positives revealed a determinant role of enzyme conformational variation in prediction of optimum induced fit (PDB ID: 1HPV). The outcomes of this study demonstrated that conformation of receptor may significantly affect the accuracy of docking/binding results in structure-based rational design of anti HIV-1 PR agents. Furthermore; some strategies to re-score the docking results in HIV-1 PR targeted docking studies were proposed. PMID:26330867

  11. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase

    PubMed Central

    Kessl, Jacques J.; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  12. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase.

    PubMed

    Kessl, Jacques J; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  13. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41

    PubMed Central

    Zhou, Guangyan; Wu, Dong; Snyder, Beth; Ptak, Roger G.; Kaur, Harmeet; Gochin, Miriam

    2011-01-01

    Non-peptide inhibition of fusion remains an important goal in anti-HIV research, due to its potential for low cost prophylaxis or prevention of cell–cell transmission of the virus. We report here on a series of indole compounds that have been identified as fusion inhibitors of gp41 through a structure-based drug design approach. Experimental binding affinities of the compounds for the hydrophobic pocket were strongly correlated to fusion inhibitory data (R2 = 0.91), and corresponding inhibition of viral replication confirmed the hydrophobic pocket as a valid target for low molecular weight fusion inhibitors. The most active compound bound to the hydrophobic pocket and inhibited cell-cell fusion and viral replication at sub-µM levels. A common binding mode for the inhibitors in this series was established by carrying out docking studies using structures of gp41 in the Protein Data Bank. The molecules were flexible enough to conform to the contours of the pocket, and the most active compound was able to adopt a structure mimicking the hydrophobic contacts of the D-peptide PIE7. The results enhance our understanding of indole compounds as inhibitors of gp41. PMID:21928824

  14. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication. PMID:26910179

  15. Expression of oral secretory leukocyte protease inhibitor in HIV-infected subjects with long-term use of antiretroviral therapy

    PubMed Central

    Nittayananta, Wipawee; Kemapunmanus, Marisa; Yangngam, Supaporn; Talungchit, Sineepat; Sriplung, Hutcha

    2012-01-01

    BACKGROUND The objectives of this study were to determine 1) expression of oral secretory leukocyte protease inhibitor (SLPI) in HIV-infected subjects compared to non-HIV controls, 2) the oral SLPI expression in HIV-infected subjects with ART compared to those without ART, and 3) factors associated with the expression of oral SLPI. METHODS Oral tissues and samples of both un-stimulated and stimulated saliva were collected from HIV-infected subjects with and without ART, and non-HIV individuals. The expression of SLPI mRNA in the tissue was determined by quantitative real-time PCR. Salivary SLPI protein was detected using ELISA. Chi-square test and logistic regression analysis were performed to determine the association between HIV/ART status and the expression of oral SLPI. RESULTS One hundred and fifty-seven HIV-infected subjects were enrolled; 99 on ART (age range 23–57 yr, mean 39 yr), 58 not on ART (age range 20–59 yr, mean 34 yr), and 50 non-HIV controls (age range 19–59 yr, mean 36 yr). The most common ART regimen was 2 NRTIs+1 NNRTI. The expression of oral SLPI in stimulated saliva was significantly decreased with HIV infection (p< 0.001). The expression was also significantly different with respect to ART use (p=0.007). Smoking, CD4+ cell count, and HIV viral load were the factors associated with the oral SLPI expression. CONCLUSION The expression of oral SLPI is altered by HIV infection and use of ART. Thus, oral SLPI may be the useful biomarker to identify subjects at risk of infections and malignant transformation due to HIV infection and long-term ART. PMID:23126266

  16. A homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion.

    PubMed

    Smeulders, Liesbet; Bunkens, Lieve; Vereycken, Inge; Van Acker, Koen; Holemans, Pascale; Gustin, Emmanuel; Van Loock, Marnix; Dams, Géry

    2013-01-01

    The human immunodeficiency virus type 1 (HIV-1) initiates infection through sequential interactions with CD4 and chemokine coreceptors unmasking the gp41 subunit of the viral envelope protein. Consequently, the N-terminal heptad repeats of gp41 form a trimeric coiled-coil groove in which the C-terminal heptad repeats collapse, generating a stable six-helix bundle. This brings the viral and cell membrane in close proximity enabling fusion and the release of viral genome in the cytosol of the host cell. In this chapter, we describe a homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion, based on the ability of soluble peptides, derived from the N- and C-terminal domains of gp41, to form a stable six-helix bundle in vitro. Labeling of the peptides with allophycocyanin and the lanthanide europium results in a Föster resonance energy transfer (FRET) signal upon formation of the six-helix bundle. Compounds interfering with the six-helix bundle formation inhibit the HIV-1 fusion process and suppress the FRET signal. PMID:23821256

  17. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment

    PubMed Central

    2013-01-01

    Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site. PMID:23642074

  18. Dolutegravir, the Second-Generation of Integrase Strand Transfer Inhibitors (INSTIs) for the Treatment of HIV.

    PubMed

    Dow, Dorothy E; Bartlett, John A

    2014-12-01

    The integrase strand transfer inhibitors (INSTIs) are the newest antiretroviral class in the HIV treatment armamentarium. Dolutegravir (DTG) is the only second-generation INSTI with FDA approval (2013). It has potential advantages in comparison to first-generation INSTI's, including unboosted daily dosing, limited cross resistance with raltegravir and elvitegravir, and a high barrier to resistance. Clinical trials have evaluated DTG as a 50-mg daily dose in both treatment-naïve and treatment-experienced, INSTI-naïve participants. In those treatment-naïve participants with baseline viral load <100,000 copies/mL, DTG combined with abacavir and lamivudine was non-inferior and superior to fixed-dose combination emtricitabine/tenofovir/efavirenz. DTG was also superior to the protease inhibitor regimen darunavir/ritonavir in treatment-naïve participants regardless of baseline viral load. Among treatment-experienced patients naïve to INSTI, DTG (50 mg daily) demonstrated both non-inferiority and superiority when compared to the first-generation INSTI raltegravir (400 mg twice daily) regardless of the background regimen. No phenotypically significant DTG resistance has been demonstrated in INSTI-naïve participant trials. The VIKING trials evaluated DTG's ability to treat persons with HIV with prior INSTI exposure. VIKING demonstrated twice-daily DTG was more efficacious than daily dosing when treating participants receiving and failing first-generation INSTI regimens. DTG maintained potency against single mutations from any of the three major INSTI pathways (Y143, H155, Q148); however, the Q148 mutation with two or more additional mutations significantly reduced its potency. The long-acting formulation of DTG, GSK1265744LA, is the next innovation in this second-generation INSTI class, holding promise for the future of HIV prevention and treatment. PMID:25134686

  19. Insights into the Functions of M-T Hook Structure in HIV Fusion Inhibitor Using Molecular Modeling.

    PubMed

    Tan, Jianjun; Yuan, Hongling; Li, Chunhua; Zhang, Xiaoyi; Wang, Cunxin

    2016-04-01

    HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future. PMID:26897548

  20. Dipeptidyl peptidase-4: A key player in chronic liver disease

    PubMed Central

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2013-01-01

    Dipeptidyl peptidase-4 (DPP-4) is a membrane-associated peptidase, also known as CD26. DPP-4 has widespread organ distribution throughout the body and exerts pleiotropic effects via its peptidase activity. A representative target peptide is glucagon-like peptide-1, and inactivation of glucagon-like peptide-1 results in the development of glucose intolerance/diabetes mellitus and hepatic steatosis. In addition to its peptidase activity, DPP-4 is known to be associated with immune stimulation, binding to and degradation of extracellular matrix, resistance to anti-cancer agents, and lipid accumulation. The liver expresses DPP-4 to a high degree, and recent accumulating data suggest that DPP-4 is involved in the development of various chronic liver diseases such as hepatitis C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Furthermore, DPP-4 occurs in hepatic stem cells and plays a crucial role in hepatic regeneration. In this review, we described the tissue distribution and various biological effects of DPP-4. Then, we discussed the impact of DPP-4 in chronic liver disease and the possible therapeutic effects of a DPP-4 inhibitor. PMID:23613622

  1. Use of Nucleoside Reverse Transcriptase Inhibitor Only Regimens in HIV-infected Children and Adolescents

    PubMed Central

    Neely, Michael; Rutstein, Richard; Del Bianco, Gabriela; Heresi, Gloria; Barton, Theresa; Wiznia, Andrew; Wiegand, Ryan; Wheeling, Travis; Bohannon, Beverly; Dominguez, Kenneth

    2013-01-01

    In adults, nucleoside reverse transcriptase inhibitor (NRTI)-only antiretroviral regimens (NOARs) with ≥ three NRTIs are less potent than highly active antiretroviral therapy (HAART). However published pediatric experience with NOARs is limited. Methods We analyzed data from NOAR-treated participants in LEGACY, a multicenter observational cohort study of HIV-infected children and adolescents. NOAR-treated case-participantswere matched to participantswithout prior NOAR who initiated HAART during the same year for comparison. Results Of 575 participants with data from time of HIV diagnosis through 2006, 67 (12%) received NOARs for at least 24 weeks; most (46%) received the fixed dose combination of zidovudine/lamivudine/abacavir. NOAR use peaked in 2001-2002. NOAR-treated participants were significantly older and more treatment-experienced than HAART-treated participants. Virologic outcomes, including the percentage of participants with a plasma HIV RNA viral load <400 copies/mL at week 24 (47% vs. 34%) and the mean 24-week change in log10 plasma HIV RNA viral load from baseline (−0.63 vs. −1.02) were similar between NOAR- and HAART-treated participants, but virologic rebound was more likely in NOAR-treated participants (77% vs. 54%, P = 0.02). Increase in CD4 percentage points from baseline to 24 weeks was negligible in NOAR-treated participants compared with HAART-treated participants (0.95% vs. 10.1%, P <0.001). Anemia and leukopenia were more commonly reported with NOARs than HAART. Discussion Week 24 virologic outcomes were similar between NOAR- and HAART-treated participants, but NOAR durability was poorer and their use was associated with less immunologic reconstitution. NOARs should play a limited role in pediatric and adolescent ART. PMID:24008749

  2. Hybrid Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of HIV-1 Integrase/Inhibitor Complexes

    PubMed Central

    Nunthaboot, Nadtanet; Pianwanit, Somsak; Parasuk, Vudhichai; Ebalunode, Jerry O.; Briggs, James M.; Kokpol, Sirirat

    2007-01-01

    Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116–119 and 140–166. In the conventional MD simulation, the coordination of Mg2+ was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60–68, 116–119, and 140–149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg2+ in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors. PMID:17693479

  3. Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction.

    PubMed

    Liu, Xiao-Ming; Durante, Zane E; Peyton, Kelly J; Durante, William

    2016-05-01

    The use of HIV protease inhibitors (PIs) has extended the duration and quality of life for HIV-positive individuals. However there is increasing concern that this antiviral therapy may promote premature cardiovascular disease by impairing endothelial cell (EC) function. In the present study, we investigated the effect of HIV PIs on EC function and determined if the enzyme heme oxygenase (HO-1) influences the biological action of these drugs. We found that three distinct PIs, including ritonavir, atazanavir, and lopinavir, stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). PIs also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the PI-mediated induction of HO-1 was abolished by N-acetyl-l-cysteine and rotenone. Furthermore, PIs blocked EC proliferation and migration and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition of HO-1 activity or expression potentiated the anti-proliferative and inflammatory actions of PIs which was reversed by bilirubin but not carbon monoxide. Alternatively, adenovirus-mediated overexpression of HO-1 attenuated the growth-inhibitory and inflammatory effect of PIs. In contrast, blocking HO-1 activity failed to modify the anti-migratory effect of the PIs. Thus, induction of HO-1 via the ROS-Nrf2 pathway in human ECs counteracts the anti-proliferative and inflammatory actions of PIs by generating bilirubin. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing EC dysfunction and vascular disease in HIV-infected patients undergoing antiretroviral therapy. PMID:26968795

  4. Solvent accessibility as a predictive tool for the free energy of inhibitor binding to the HIV-1 protease.

    PubMed Central

    Nauchitel, V.; Villaverde, M. C.; Sussman, F.

    1995-01-01

    We have developed a simple approach for the evaluation of the free energies of inhibitor binding to the protease of the human immunodeficiency virus (HIV-1 PR). Our algorithm is based on the observation that most groups that line the binding pockets of this enzyme are hydrophobic in nature. Based on this fact, we have likened the binding of an inhibitor to this enzyme to its transfer from water to a medium of lower polarity. The resulting expression produced values for the free energy of binding of inhibitors to the HIV-1 PR that are in good agreement with experimental values. The additive nature of this approach has enabled us to partition the free energy of binding into the contributions of single fragments. The resulting analysis clearly indicates the existence of a ranking in the participation of the enzyme's subsites in binding. Although all the enzyme's pockets contribute to binding, the ones that bind the P2-P'2 span of the inhibitor are in general the most critical for high inhibitor potency. Moreover, our method has allowed us to determine the nature of the functional groups that fit into given enzyme binding pockets. Perusal of the energy contributions of single side chains has shown that a large number of hydrophobic and aromatic groups located in the central portion of the HIV-1 PR inhibitors present optimal binding. All of these observations are in agreement with experimental evidence, providing a validation for the physical relevancy of our model. PMID:7670378

  5. Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic-Site Integrase Inhibitor

    PubMed Central

    Amad, Ma'an; Bailey, Murray D.; Bethell, Richard; Bös, Michael; Bonneau, Pierre; Cordingley, Michael; Coulombe, René; Duan, Jianmin; Edwards, Paul; Faucher, Anne-Marie; Garneau, Michel; Jakalian, Araz; Kawai, Stephen; Lamorte, Louie; LaPlante, Steven; Luo, Laibin; Mason, Steve; Poupart, Marc-André; Rioux, Nathalie; Schroeder, Patricia; Simoneau, Bruno; Tremblay, Sonia; Tsantrizos, Youla; Witvrouw, Myriam; Yoakim, Christiane

    2014-01-01

    BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials. PMID:24663024

  6. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro

    SciTech Connect

    Pang, Wei; Wang Ruirui; Yang Liumeng; Liu Changmei; Tien Po Zheng Yongtang

    2008-07-20

    HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1{sub IIIB} entry and replication with EC{sub 50} values of 3.92 {+-} 0.62 and 6.59 {+-} 1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1{sub KM018} with EC{sub 50} values of 44.44 {+-} 10.20 nM, as well as suppressing HIV-1-induced cytopathic effect with an EC{sub 50} value of 3.04 {+-} 1.20 nM. It also inhibited HIV-2{sub ROD} and HIV-2{sub CBL-20} entry and replication in the {mu}M range. Notably, HR212 was highly effective against T20-resistant strains with EC{sub 50} values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/AIDS patients, particularly for those infected by T20-resistant variants.

  7. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.

    PubMed Central

    Trylska, J.; Antosiewicz, J.; Geller, M.; Hodge, C. N.; Klabe, R. M.; Head, M. S.; Gilson, M. K.

    1999-01-01

    The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed. PMID:10210196

  8. Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors.

    PubMed

    Yang, Liang; Wang, Ping; Wu, Ji-Feng; Yang, Liu-Meng; Wang, Rui-Rui; Pang, Wei; Li, Yong-Gang; Shen, Yue-Mao; Zheng, Yong-Tang; Li, Xun

    2016-05-01

    As our ongoing work on research of gelatinase inhibitors, an array of hydrazide-containing peptidomimetic derivatives bearing quinoxalinone as well as spiro-heterocyclic backbones were designed, synthesized, and assayed for their in vitro enzymatic inhibitory effects. The results demonstrated that both the quinoxalinone (series I and II) and 1,4-dithia-7-azaspiro[4,4]nonane-based hydrazide peptidomimetics (series III) displayed remarkably selectivity towards gelatinase A as compared to APN, with IC50 values in the micromole range. Structure-activity relationships were herein briefly discussed. Given evidences have validated that gelatinase inhibition may be contributable to the therapy of HIV-1 infection, all the target compounds were also submitted to the preliminary in vitro anti-HIV-1 evaluation. It resulted that gelatinase inhibition really has positive correlation with anti-HIV-1 activity, especially compounds 4m and 7h, which gave enhanced gelatinase inhibition in comparison with the positive control LY52, and also decent anti-HIV-1 potencies. The FlexX docking results provided a straightforward insight into the binding pattern between inhibitors and gelatinase, as well as the selective inhibition towards gelatinase over APN. Collectively, our research encouraged potent gelatinase inhibitors might be used in the development of anti-HIV-1 agents. And else, compounds 4m and 7h might be promising candidates to be considered for further chemical optimization. PMID:27039251

  9. Biophysical Property and Broad Anti-HIV Activity of Albuvirtide, a 3-Maleimimidopropionic Acid-Modified Peptide Fusion Inhibitor

    PubMed Central

    Chong, Huihui; Yao, Xue; Zhang, Chao; Cai, Lifeng; Cui, Sheng; Wang, Youchun; He, Yuxian

    2012-01-01

    Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B′, CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor. PMID:22403678

  10. Bringing Research into a First Semester Organic Chemistry Laboratory with the Multistep Synthesis of Carbohydrate-Based HIV Inhibitor Mimics

    ERIC Educational Resources Information Center

    Pontrello, Jason K.

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a…

  11. A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism

    PubMed Central

    Nijhuis, Monique; van Maarseveen, Noortje M; Lastere, Stephane; Schipper, Pauline; Coakley, Eoin; Glass, Bärbel; Rovenska, Mirka; de Jong, Dorien; Chappey, Colombe; Goedegebuure, Irma W; Heilek-Snyder, Gabrielle; Dulude, Dominic; Cammack, Nick; Brakier-Gingras, Lea; Konvalinka, Jan; Parkin, Neil; Kräusslich, Hans-Georg; Brun-Vezinet, Francoise; Boucher, Charles A. B

    2007-01-01

    Background HIV protease inhibitor (PI) therapy results in the rapid selection of drug resistant viral variants harbouring one or two substitutions in the viral protease. To combat PI resistance development, two approaches have been developed. The first is to increase the level of PI in the plasma of the patient, and the second is to develop novel PI with high potency against the known PI-resistant HIV protease variants. Both approaches share the requirement for a considerable increase in the number of protease mutations to lead to clinical resistance, thereby increasing the genetic barrier. We investigated whether HIV could yet again find a way to become less susceptible to these novel inhibitors. Methods and Findings We have performed in vitro selection experiments using a novel PI with an increased genetic barrier (RO033-4649) and demonstrated selection of three viruses 4- to 8-fold resistant to all PI compared to wild type. These PI-resistant viruses did not have a single substitution in the viral protease. Full genomic sequencing revealed the presence of NC/p1 cleavage site substitutions in the viral Gag polyprotein (K436E and/or I437T/V) in all three resistant viruses. These changes, when introduced in a reference strain, conferred PI resistance. The mechanism leading to PI resistance is enhancement of the processing efficiency of the altered substrate by wild-type protease. Analysis of genotypic and phenotypic resistance profiles of 28,000 clinical isolates demonstrated the presence of these NC/p1 cleavage site mutations in some clinical samples (codon 431 substitutions in 13%, codon 436 substitutions in 8%, and codon 437 substitutions in 10%). Moreover, these cleavage site substitutions were highly significantly associated with reduced susceptibility to PI in clinical isolates lacking primary protease mutations. Furthermore, we used data from a clinical trial (NARVAL, ANRS 088) to demonstrate that these NC/p1 cleavage site changes are associated with

  12. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds.

    PubMed

    Machara, Aleš; Lux, Vanda; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, Ondřej; Kotora, Martin; Parkan, Kamil; Pávová, Marcela; Glass, Bärbel; Sehr, Peter; Lewis, Joe; Müller, Barbara; Kräusslich, Hans-Georg; Konvalinka, Jan

    2016-01-28

    Assembly of human immunodeficiency virus (HIV-1) represents an attractive target for antiretroviral therapy which is not exploited by currently available drugs. We established high-throughput screening for assembly inhibitors based on competition of small molecules for the binding of a known dodecapeptide assembly inhibitor to the C-terminal domain of HIV-1 CA (capsid). Screening of >70000 compounds from different libraries identified 2-arylquinazolines as low micromolecular inhibitors of HIV-1 capsid assembly. We prepared focused libraries of modified 2-arylquinazolines and tested their capacity to bind HIV-1 CA to compete with the known peptide inhibitor and to prevent the replication of HIV-1 in tissue culture. Some of the compounds showed potent binding to the C-terminal domain of CA and were found to block viral replication at low micromolar concentrations. PMID:26685880

  13. Identification of a novel sulfonamide non-nucleoside reverse transcriptase inhibitor by a phenotypic HIV-1 full replication assay.

    PubMed

    Kim, Tae-Hee; Ko, Yoonae; Christophe, Thierry; Cechetto, Jonathan; Kim, Junwon; Kim, Kyoung-Ae; Boese, Annette S; Garcia, Jean-Michel; Fenistein, Denis; Ju, Moon Kyeong; Kim, Junghwan; Han, Sung-Jun; Kwon, Ho Jeong; Brondani, Vincent; Sommer, Peter

    2013-01-01

    Classical target-based, high-throughput screening has been useful for the identification of inhibitors for known molecular mechanisms involved in the HIV life cycle. In this study, the development of a cell-based assay that uses a phenotypic drug discovery approach based on automated high-content screening is described. Using this screening approach, the antiviral activity of 26,500 small molecules from a relevant chemical scaffold library was evaluated. Among the selected hits, one sulfonamide compound showed strong anti-HIV activity against wild-type and clinically relevant multidrug resistant HIV strains. The biochemical inhibition, point resistance mutations and the activity of structural analogs allowed us to understand the mode of action and propose a binding model for this compound with HIV-1 reverse transcriptase. PMID:23874756

  14. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    PubMed Central

    Bocanegra, Rebeca; Nevot, María; Doménech, Rosa; López, Inmaculada; Abián, Olga; Rodríguez-Huete, Alicia; Cavasotto, Claudio N.; Velázquez-Campoy, Adrián; Gómez, Javier; Martínez, Miguel Ángel; Neira, José Luis; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly

  15. Increase of anti-HIV activity of C-peptide fusion inhibitors using a bivalent drug design approach.

    PubMed

    Ling, Yanbo; Xue, Huifang; Jiang, Xifeng; Cai, Lifeng; Liu, Keliang

    2013-09-01

    We reported the design of fusion inhibitors with improved activity using a multivalent inhibitor design strategy. First, we chose C29 as the template sequence, which is a 29-mer peptide derived from HIV-1 gp41 CHR domain and has anti-HIV activity of IC50 118 nM in a cell-cell fusion assay. We optimized the crosslink sites and linkers of the template peptide. We found that N-terminal crosslink caused activity improvement based on the multivalent co-operative effect. Especially, the IC50 of peptide (CAcaC29)2 was improved from 49.02 (monomeric form) to 5.71 nM. Compared with long peptides, short peptides may be more suitable to analyze the co-operative effect. So we selected a shorter peptide C22 to synthesize the bivalent inhibitors. Due its weak helicity, no co-operative effect appeared. Therefore, we chose SC22EK, which were introduced salt bridges to consolidate the helicity based on the natural sequence C22. The cross-linked (CAcaSC22EK)2 was four times more potent than the monomer SC22EK in anti-HIV activity, with an IC50 value of 4.92 nM close to the high active peptide fusion inhibitor C34. The strategy used in this study may be used to design new fusion inhibitors to interfere similar processes. PMID:23906421

  16. Side Effects of HIV Medicines: HIV and Lactic Acidosis

    MedlinePlus

    ... HIV medicines. All HIV medicines in the nucleoside reverse transcriptase inhibitor (NRTI) drug class may cause lactic acidosis, but ... some HIV medicines. HIV medicines in the nucleoside reverse transcriptase inhibitor (NRTI) drug class can cause the body to ...

  17. Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase.

    PubMed

    Seetaha, Supaporn; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Ishii, Kentaro; Hannongbua, Supa; Choowongkomon, Kiattawee; Kato, Koichi

    2016-02-17

    Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques can provide long-range structural information complemented with local information derived from chemical-shift perturbation and nuclear Overhauser effect data. Here, we address the application of paramagnetic relaxation enhancement (PRE) to detect inhibitor-induced conformational change of a drug target protein using human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) as a model protein. Using a site-specific spin-labeled HIV-1 RT mutant with selective (13) C labeling, conformation-dependent PREs were successfully observed reflecting the stabilization of an open conformation of this enzyme caused by inhibitor binding. This study demonstrates that the paramagnetism-assisted NMR approach offers an alternative strategy in protein-based drug screening to identify allosteric inhibitors of a target protein. PMID:26804978

  18. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities

    PubMed Central

    Thammaporn, Ratsupa; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Boonsri, Pornthip; Saparpakorn, Patchreenart; Choowongkomon, Kiattawee; Techasakul, Supanna; Kato, Koichi; Hannongbua, Supa

    2015-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding of HIV-1 RT to various non-nucleoside reverse transcriptase inhibitors (NNRTIs) with different activities, i.e., nevirapine, delavirdine, efavirenz, dapivirine, etravirine, and rilpivirine. 1H-13C heteronuclear single-quantum coherence (HSQC) spectral data of HIV-1 RT, in which the methionine methyl groups of the p66 subunit were selectively labeled with 13C, were collected in the presence and absence of these NNRTIs. We found that the methyl 13C chemical shifts of the M230 resonance of HIV-1 RT bound to these drugs exhibited a high correlation with their anti-HIV-1 RT activities. This methionine residue is located in proximity to the NNRTI-binding pocket but not directly involved in drug interactions and serves as a conformational probe, indicating that the open conformation of HIV-1 RT was more populated with NNRTIs with higher inhibitory activities. Thus, the NMR approach offers a useful tool to screen for novel NNRTIs in developing anti-HIV drugs. PMID:26510386

  19. Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods.

    PubMed

    Wei, Yu; Li, Jinlong; Chen, Zeming; Wang, Fengwei; Huang, Weiqiang; Hong, Zhangyong; Lin, Jianping

    2015-08-28

    The HIV-1 protease has proven to be a crucial component of the HIV replication machinery and a reliable target for anti-HIV drug discovery. In this study, we applied an optimized hierarchical multistage virtual screening method targeting HIV-1 protease. The method sequentially applied SVM (Support Vector Machine), shape similarity, pharmacophore modeling and molecular docking. Using a validation set (270 positives, 155,996 negatives), the multistage virtual screening method showed a high hit rate and high enrichment factor of 80.47% and 465.75, respectively. Furthermore, this approach was applied to screen the National Cancer Institute database (NCI), which contains 260,000 molecules. From the final hit list, 6 molecules were selected for further testing in an in vitro HIV-1 protease inhibitory assay, and 2 molecules (NSC111887 and NSC121217) showed inhibitory potency against HIV-1 protease, with IC50 values of 62 μM and 162 μM, respectively. With further chemical development, these 2 molecules could potentially serve as HIV-1 protease inhibitors. PMID:26185005

  20. Enabled clinical use of an HIV-1 attachment inhibitor through drug delivery.

    PubMed

    Timmins, Peter; Brown, Jonathan; Meanwell, Nicholas A; Hanna, George J; Zhu, Li; Kadow, John F

    2014-09-01

    The clinical advancement of HIV-1 attachment inhibitors was hindered initially by poor bioavailability. Attempts to identify improved candidates revealed that solubility and dissolution-rate-limited absorption are barriers to achieving adequate antiviral plasma levels. This was mitigated by forming nanosized drugs or by creating stabilised amorphous drug-polymer composites. In further improving drug potency and mitigating solubility-limited bioavailability, a candidate based on a phosphate ester prodrug was identified that, although having excellent bioavailability, exhibited unacceptable pharmacokinetics. Based on in silico modelling and a site of absorption study it was confirmed that creating an extended release formulation could provide the desired pharmacokinetic profile. The optimised formulation showed good antiviral activity when dosed employing a once or twice a day regimen. PMID:24727410

  1. Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro.

    PubMed Central

    Li, M X; Yeung, H W; Pan, L P; Chan, S I

    1991-01-01

    Trichosanthin, an abortifacient, immunosuppressive and anti-tumor protein purified from the traditional Chinese herb medicine Tian Hua Fen, is a potent inhibitor against HIV-1 replication. Under normal enzymatic digestion conditions, trichosanthin cleaves the supercoiled double-stranded DNA to produce nicked circular and linear DNA. Trichosanthin has no effect on linear double-stranded DNA. Neither does it convert relaxed circular duplex DNA into a supercoiled form in the presence of ATP. Thus trichosanthin is not a DNA gyrase. However, trichosanthin can cleave the relaxed circular DNA into a linear form, indicating that both the circular as well as the supercoiled forms are essential for trichosanthin recognition. In addition, trichosanthin contains one calcium metal ion per protein molecule, which presumably is related to its endonucleolytic activity. Images PMID:1659689

  2. In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.

    PubMed

    Hazen, Richard; Harvey, Robert; Ferris, Robert; Craig, Charles; Yates, Phillip; Griffin, Philip; Miller, John; Kaldor, Istvan; Ray, John; Samano, Vincente; Furfine, Eric; Spaltenstein, Andrew; Hale, Michael; Tung, Roger; St Clair, Marty; Hanlon, Mary; Boone, Lawrence

    2007-09-01

    Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro. PMID:17620375

  3. In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor

    PubMed Central

    Feng, Meizhen; Falgueyret, Jean-Pierre; Tawa, Paul; Witmer, Marc; DiStefano, Daniel; Li, Yuan; Burch, Jason; Sachs, Nancy; Lu, Meiqing; Cauchon, Elizabeth; Campeau, Louis-Charles; Grobler, Jay; Yan, Youwei; Ducharme, Yves; Côté, Bernard; Asante-Appiah, Ernest; Hazuda, Daria J.; Miller, Michael D.

    2014-01-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a mainstay of therapy for treating human immunodeficiency type 1 virus (HIV-1)-infected patients. MK-1439 is a novel NNRTI with a 50% inhibitory concentration (IC50) of 12, 9.7, and 9.7 nM against the wild type (WT) and K103N and Y181C reverse transcriptase (RT) mutants, respectively, in a biochemical assay. Selectivity and cytotoxicity studies confirmed that MK-1439 is a highly specific NNRTI with minimum off-target activities. In the presence of 50% normal human serum (NHS), MK-1439 showed excellent potency in suppressing the replication of WT virus, with a 95% effective concentration (EC95) of 20 nM, as well as K103N, Y181C, and K103N/Y181C mutant viruses with EC95 of 43, 27, and 55 nM, respectively. MK-1439 exhibited similar antiviral activities against 10 different HIV-1 subtype viruses (a total of 93 viruses). In addition, the susceptibility of a broader array of clinical NNRTI-associated mutant viruses (a total of 96 viruses) to MK-1439 and other benchmark NNRTIs was investigated. The results showed that the mutant profile of MK-1439 was superior overall to that of efavirenz (EFV) and comparable to that of etravirine (ETR) and rilpivirine (RPV). Furthermore, E138K, Y181C, and K101E mutant viruses that are associated with ETR and RPV were susceptible to MK-1439 with a fold change (FC) of <3. A two-drug in vitro combination study indicated that MK-1439 acts nonantagonistically in the antiviral activity with each of 18 FDA-licensed drugs for HIV infection. Taken together, these in vitro data suggest that MK-1439 possesses the desired properties for further development as a new antiviral agent. PMID:24379202

  4. Association of Hypercholesterolemia Incidence With Antiretroviral Treatment, Including Protease Inhibitors, Among Perinatally HIV-Infected Children

    PubMed Central

    Tassiopoulos, Katherine; Williams, Paige L.; Seage, George R.; Crain, Marilyn; Oleske, James; Farley, John

    2011-01-01

    Context Antiretroviral therapy has been associated with hypercholesterolemia in HIV-infected children. Few longitudinal studies have been conducted to examine this association, however. Objective To evaluate the incidence of and risk factors for development of hypercholesterolemia in a large pediatric study. Design Prospective cohort study (Pediatric AIDS Clinical Trials Group 219C). Participants A total of 2122 perinatally HIV-infected children free of hypercholesterolemia at entry. Outcome Development of hypercholesterolemia (total cholesterol ≥220 mg/dL at 2 consecutive visits). Cox proportional hazards models were used to evaluate risk factors. Results Thirteen percent of children had hypercholesterolemia at entry, and an additional 13% developed hypercholesterolemia during follow-up for an incidence rate of 3.4 cases per 100 person-years (95% confidence interval [CI]: 3.0 to 3.9). After adjustment for age, boosted protease inhibitor (PI) use (hazard ratio [HR] = 13.9, 95% CI: 6.73 to 28.6), nonboosted PI use (HR = 8.65, 95% CI: 4.19 to 17.9), and nonnucleoside reverse transcriptase inhibitor use (HR = 1.33, 95% CI: 1.04 to 1.71) were associated with increased risk of hypercholesterolemia, and higher viral load was protective (>50,000 vs. ≤400 copies/mL; HR = 0.59, 95% CI: 0.39 to 0.90). Self-reported adherent subjects had higher risk. Conclusions PIs were significant risk factors for hypercholesterolemia. Higher viral load was protective and may reflect non-adherence. Further follow-up is critical to evaluate long-term consequences of chronic PI exposure and hypercholesterolemia. PMID:18209684

  5. A phase I trial of the HIV protease inhibitor nelfinavir in adults with solid tumors

    PubMed Central

    Blumenthal, Gideon M.; Gills, Joell J.; Ballas, Marc S.; Bernstein, Wendy B.; Komiya, Takefumi; Dechowdhury, Roopa; Morrow, Betsy; Root, Hyejeong; Chun, Guinevere; Helsabeck, Cynthia; Steinberg, Seth M.; LoPiccolo, Jaclyn; Kawabata, Shigeru; Gardner, Erin R.; Figg, William D.; Dennis, Phillip A.

    2014-01-01

    Nelfinavir is an HIV protease inhibitor being repurposed as an anti-cancer agent in preclinical models and in small oncology trials, yet the MTD of nelfinavir has not been determined. Therefore, we conducted a Phase Ia study to establish the maximum tolerated dose (MTD) and dose limiting toxicities (DLT) of nelfinavir in subjects with advanced solid tumors. Adults with refractory cancers were given oral nelfinavir twice daily with pharmacokinetic and pharmacodynamic analyses. Twenty-eight subjects were enrolled. Nelfinavir was generally well tolerated. Common adverse events included diarrhea, anemia, and lymphopenia, which were mostly mild. The DLT was rapid-onset neutropenia that was reversible. The MTD was established at 3125 mg twice daily. In an expansion cohort at the MTD, one of 11 (9%) evaluable subjects had a confirmed partial response. This, plus two minor responses, occurred in subjects with neuroendocrine tumors of the midgut or pancreatic origin. Thirty-six percent of subjects had stable disease for more than 6 months. In peripheral blood mononuclear cells, Nelfinavir inhibited AKT and induced markers of ER stress. In summary, nelfinavir is well tolerated in cancer patients at doses 2.5 times the FDA-approved dose for HIV management and showed preliminary activity in tumors of neuroendocrine origin. PMID:25327558

  6. TOE1 is an inhibitor of HIV-1 replication with cell-penetrating capability

    PubMed Central

    Sperandio, Sabina; Barat, Corinne; Cabrita, Miguel A.; Gargaun, Ana; Berezovski, Maxim V.; Tremblay, Michel J.; de Belle, Ian

    2015-01-01

    Target of Egr1 (TOE1) is a nuclear protein localized primarily in nucleoli and Cajal bodies that was identified as a downstream target of the immediate early gene Egr1. TOE1 displays a functional deadenylation domain and has been shown to participate in spliceosome assembly. We report here that TOE1 can function as an inhibitor of HIV-1 replication and show evidence that supports a direct interaction of TOE1 with the viral specific transactivator response element as part of the inhibitory mechanism. In addition, we show that TOE1 can be secreted by activated CD8+ T lymphocytes and can be cleaved by the serine protease granzyme B, one of the main components of cytotoxic granules. Both full-length and cleaved TOE1 can spontaneously cross the plasma membrane and penetrate cells in culture, retaining HIV-1 inhibitory activity. Antiviral potency of TOE1 and its cell-penetrating capability have been identified to lie within a 35-amino-acid region containing the nuclear localization sequence. PMID:26056259

  7. Linker-Region Modified Derivatives of the Deoxyhypusine Synthase Inhibitor CNI-1493 Suppress HIV-1 Replication.

    PubMed

    Schröder, Marcus; Kolodzik, Adrian; Windshügel, Björn; Krepstakies, Marcel; Priyadarshini, Poornima; Hartjen, Philip; van Lunzen, Jan; Rarey, Matthias; Hauber, Joachim; Meier, Chris

    2016-02-01

    The inhibition of cellular factors that are involved in viral replication may be an important alternative to the commonly used strategy of targeting viral enzymes. The guanylhydrazone CNI-1493, a potent inhibitor of the deoxyhypusine synthase (DHS), prevents the activation of the cellular factor eIF-5A and thereby suppresses HIV replication and a number of other diseases. Here, we report on the design, synthesis and biological evaluation of a series of CNI-1493 analogues. The sebacoyl linker in CNI-1493 was replaced by different alkyl or aryl dicarboxylic acids. Most of the tested derivatives suppress HIV-1 replication efficiently in a dose-dependent manner without showing toxic side effects. The unexpected antiviral activity of the rigid derivatives point to a second binding mode as previously assumed for CNI-1493. Moreover, the chemical stability of CNI-1493 was analysed, showing a successive hydrolysis of the imino bonds. By molecular dynamics simulations, the behaviour of the parent CNI-1493 in solution and its interactions with DHS were investigated. PMID:26725082

  8. Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.

    PubMed

    Nalam, Madhavi N L; Ali, Akbar; Altman, Michael D; Reddy, G S Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Ozen, Aysegül; Cao, Hong; Gilson, Michael K; Tidor, Bruce; Rana, Tariq M; Schiffer, Celia A

    2010-05-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to "lock" into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  9. Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance ▿

    PubMed Central

    Nalam, Madhavi N. L.; Ali, Akbar; Altman, Michael D.; Reddy, G. S. Kiran Kumar; Chellappan, Sripriya; Kairys, Visvaldas; Özen, Ayşegül; Cao, Hong; Gilson, Michael K.; Tidor, Bruce; Rana, Tariq M.; Schiffer, Celia A.

    2010-01-01

    Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to “lock” into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors. PMID:20237088

  10. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics.

    PubMed

    Wang, Chao; Lu, Lu; Na, Heya; Li, Xiangpeng; Wang, Qian; Jiang, Xifeng; Xu, Xiaoyu; Yu, Fei; Zhang, Tianhong; Li, Jinglai; Zhang, Zhenqing; Zheng, Baohua; Liang, Guodong; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2014-09-11

    Triterpene saponins are a major group of active components in natural products with nonspecific antiviral activities, while T20 peptide (enfuvirtide), which contains a helix zone-binding domain (HBD), is a gp41-specific HIV-1 fusion inhibitor. In this paper, we report the design, synthesis, and structure-activity relationship (SAR) of a group of hybrid molecules in which bioactive triterpene sapogenins were covalently attached to the HBD-containing peptides via click chemistry. We found that either the triterpenes or peptide part alone showed weak activity against HIV-1 Env-mediated cell-cell fusion, while the hybrids generated a strong cooperative effect. Among them, P26-BApc exhibited anti-HIV-1 activity against both T20-sensitive and -resistant HIV-1 strains and improved pharmacokinetic properties. These results suggest that this scaffold design is a promising strategy for developing new HIV-1 fusion inhibitors and possibly novel antiviral therapeutics against other viruses with class I fusion proteins. PMID:25156906

  11. HIV-1 Reverse Transcriptase Structure with RNase H Inhibitor dihydroxy benzoyl naphthyl Hydrazone Bound at a Novel Site

    SciTech Connect

    Himmel,D.; Sarafianos, S.; Dharmasena, S.; Hossain, M.; McCoy-Simandle, K.; Ilina, T.; Clark, A.; Knight, J.; Julias, J.; et al.

    2007-01-01

    The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 {angstrom} resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 {angstrom} away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.

  12. In Vitro and Ex Vivo Evaluations on Transdermal Delivery of the HIV Inhibitor IQP-0410

    PubMed Central

    Ham, Anthony S.; Lustig, William; Yang, Lu; Boczar, Ashlee; Buckheit, Karen W.; Buckheit Jr, Robert W.

    2013-01-01

    The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w) IQP-0410. Composed of 60% (w/w) ethyl cellulose and 20% (w/w) HPMC, the films contained < 1.2% (w/w) of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS) and 0.58 ± 0.03 nM (PBMC). The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants further development

  13. Insights into the mechanism of inhibition of CXCR4: identification of Piperidinylethanamine analogs as anti-HIV-1 inhibitors.

    PubMed

    Das, Debananda; Maeda, Kenji; Hayashi, Yasuhiro; Gavande, Navnath; Desai, Darshan V; Chang, Simon B; Ghosh, Arun K; Mitsuya, Hiroaki

    2015-04-01

    The cellular entry of HIV-1 into CD4(+) T cells requires ordered interactions of HIV-1 envelope glycoprotein with C-X-C chemokine receptor type 4 (CXCR4) receptors. However, such interactions, which should be critical for rational structure-based discovery of new CXCR4 inhibitors, remain poorly understood. Here we first determined the effects of amino acid substitutions in CXCR4 on HIV-1NL 4 - 3 glycoprotein-elicited fusion events using site-directed mutagenesis-based fusion assays and identified 11 potentially key amino acid substitutions, including D97A and E288A, which caused >30% reductions in fusion. We subsequently carried out a computational search of a screening library containing ∼604,000 compounds, in order to identify potential CXCR4 inhibitors. The computational search used the shape of IT1t, a known CXCR4 inhibitor, as a reference and employed various algorithms, including shape similarity, isomer generation, and docking against a CXCR4 crystal structure. Sixteen small molecules were identified for biological assays based on their high shape similarity to IT1t, and their putative binding modes formed hydrogen bond interactions with the amino acids identified above. Three compounds with piperidinylethanamine cores showed activity and were resynthesized. One molecule, designated CX6, was shown to significantly inhibit fusion elicited by X4 HIV-1NL 4 - 3 glycoprotein (50% inhibitory concentration [IC50], 1.9 μM), to inhibit Ca(2+) flux elicited by stromal cell-derived factor 1α (SDF-1α) (IC50, 92 nM), and to exert anti-HIV-1 activity (IC50, 1.5 μM). Structural modeling demonstrated that CX6 bound to CXCR4 through hydrogen bond interactions with Asp97 and Glu288. Our study suggests that targeting CXCR4 residues important for fusion elicited by HIV-1 envelope glycoprotein should be a useful and feasible approach to identifying novel CXCR4 inhibitors, and it provides important insights into the mechanism by which small-molecule CXCR4 inhibitors exert

  14. Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor

    PubMed Central

    Lubkowski, Jacek; Yang, Fan; Alexandratos, Jerry; Wlodawer, Alexander; Zhao, He; Burke, Terrence R.; Neamati, Nouri; Pommier, Yves; Merkel, George; Skalka, Anna Marie

    1998-01-01

    The x-ray structures of an inhibitor complex of the catalytic core domain of avian sarcoma virus integrase (ASV IN) were solved at 1.9- to 2.0-Å resolution at two pH values, with and without Mn2+ cations. This inhibitor (Y-3), originally identified in a screen for inhibitors of the catalytic activity of HIV type 1 integrase (HIV-1 IN), was found in the present study to be active against ASV IN as well as HIV-1 IN. The Y-3 molecule is located in close proximity to the enzyme active site, interacts with the flexible loop, alters loop conformation, and affects the conformations of active site residues. As crystallized, a Y-3 molecule stacks against its symmetry-related mate. Preincubation of IN with metal cations does not prevent inhibition, and Y-3 binding does not prevent binding of divalent cations to IN. Three compounds chemically related to Y-3 also were investigated, but no binding was observed in the crystals. Our results identify the structural elements of the inhibitor that likely determine its binding properties. PMID:9560188

  15. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes

    SciTech Connect

    Ketas, Thomas J.; Schader, Susan M.; Zurita, Juan; Teo, Esther; Polonis, Victoria; Lu Min; Klasse, Per Johan; Moore, John P. . E-mail: jpm2003@med.cornell.edu

    2007-08-01

    Inhibitors of viral entry are under consideration as topical microbicides to prevent HIV-1 sexual transmission. Small molecules targeting HIV-1 gp120 (BMS-378806) or CCR5 (CMPD167), and a peptide fusion inhibitor (C52L), each blocks vaginal infection of macaques by a SHIV. A microbicide, however, must be active against multiple HIV-1 variants. We therefore tested BMS-C (a BMS-378806 derivative), CMPD167, C52L and the CXCR4 ligand AMD3465, alone and in combination, against 25 primary R5, 12 X4 and 7 R5X4 isolates from subtypes A-G. At high concentrations (0.1-1 {mu}M), the replication of most R5 isolates in human donor lymphocytes was inhibited by > 90%. At lower concentrations, double and triple combinations were more effective than individual inhibitors. Similar results were obtained with X4 viruses when AMD3465 was substituted for CMPD167. The R5X4 viruses were inhibited by combining AMD3465 with CMPD167, or by the coreceptor-independent compounds. Thus, combining entry inhibitors may improve microbicide effectiveness.

  16. An Acquired Factor VIII Inhibitor in a Patient with HIV and HCV: A Case Presentation and Literature Review

    PubMed Central

    Zeichner, S. B.; Harris, A.; Turner, G.; Francavilla, M.; Lutzky, J.

    2013-01-01

    Introduction. Despite its low incidence, acquired factor VIII inhibitor is the most common autoantibody affecting the clotting cascade. The exact mechanism of acquisition remains unclear, but postpartum patients, those with autoimmune conditions or malignancies, and those with exposure to particular drugs appear most susceptible. There have been several case reports describing acquired FVIII inhibitors in patients receiving interferon alpha for HCV treatment and in patients being treated for HIV. To our knowledge, this is the first case of a patient with HCV and HIV who was not actively receiving treatment for either condition. Case Presentation. A 57-year-old Caucasian male with a history of HIV and HCV was admitted to our hospital for a several day history of progressively worsening right thigh bruising and generalized weakness. CTA of the abdominal arteries revealed large bilateral retroperitoneal hematomas. Laboratory studies revealed the presence of a high titer FVIII inhibitor. Conclusion. Our case of a very rare condition highlights the importance of recognizing and understanding the diagnosis of acquired FVIII inhibitor. Laboratory research and clinical data on the role of newer agents are needed in order to better characterize disease pathogenesis, disease associations, genetic markers, and optimal disease management. PMID:24198984

  17. Short-peptide fusion inhibitors with high potency against wild-type and enfuvirtide-resistant HIV-1.

    PubMed

    Chong, Huihui; Yao, Xue; Qiu, Zonglin; Sun, Jianping; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Liu, Shan-Lu; Cui, Sheng; He, Yuxian

    2013-03-01

    Peptides derived from the C-terminal heptad repeat (C peptides) of HIV-1 gp41 are potent inhibitors against virus entry. However, development of a short C peptide possessing high anti-HIV potency is considered a daunting challenge. We recently discovered that the residues Met626 and Thr627 preceding the pocket-binding domain of the C peptide adopt a unique M-T hook structure that is crucial for the design of HIV-1 fusion inhibitors. In this study, we first presented a proof-of-concept prototype that the M-T hook residues can dramatically improve the antiviral activity and thermostability of a short C peptide. We then generated a 24-mer peptide termed MT-SC22EK by incorporating the M-T hook structure to the N terminus of the poorly active short C peptide SC22EK. Amazingly, MT-SC22EK inhibited HIV-1-mediated cell fusion and infection at a level comparable to C34, T1249, SC29EK, and sifuvirtide, and it was highly active against diverse HIV-1 subtypes and variants, including those T20 (enfuvirtide) and SC29EK-resistant viruses. The high-resolution crystal structure of MT-SC22EK reveals the N-terminal M-T hook conformation folded by incorporated Met626 and Thr627 and identifies the C-terminal boundary critical for the anti-HIV activity. Collectively, our studies provide new insights into the mechanisms of HIV-1 fusion and its inhibition. PMID:23233535

  18. Peptidase activities in Saccharomyces cerevisiae.

    PubMed Central

    Rose, B; Becker, J M; Naider, F

    1979-01-01

    At least four distinct aminopeptidase activities and a single dipeptidase activity were found in cell extracts of a leucine-lysine auxotroph of Saccharomyces cerevisiae. The assay for peptidase activity involved polyacrylamide gel electrophoresis followed by an enzyme-coupled activity staining procedure. The aminopeptidases had largely overlapping specificities but could be distinguished from one another by their electrophoretic mobilities and activities toward different peptide substrates. Substrates tested included both free and blocked di- and tripeptides and amino acid derivatives. Images PMID:378955

  19. HIV-1 Integrase Strand Transfer Inhibitors Stabilize an Integrase-Single Blunt-Ended DNA Complex

    PubMed Central

    Bera, Sibes; Pandey, Krishan K.; Vora, Ajaykumar C.; Grandgenett, Duane P.

    2011-01-01

    Summary Integration of HIV (human immunodeficiency virus) cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt-ends to form the synaptic complex (SC) which is the intermediate in the concerted integration pathway. SC is inactivated by strand transfer inhibitors (STI) with IC50 values of ~20 nM for inhibition of concerted integration. We detected a new nucleoprotein complex on native agarose that was produced in the presence of STI >200 nM, termed IN-single DNA (ISD) complex. Two IN dimers appear to bind in a parallel fashion at the DNA terminus producing a ~32 bp DNaseI protective footprint. In the presence of Raltegravir, MK-2048 and L-841,411, IN incorporated ~20 to 25% of the input blunt-ended DNA substrate into the stabilized ISD complex. Seven other STI also produced the ISD complex (≤ 5% of input DNA). The formation of the ISD complex was not dependent upon 3’ OH processing and the DNA was predominately blunt-ended in the complex. Raltegravir-resistant IN mutant N155H weakly form the ISD complex in the presence of Raltegravir at ~25% level of wild type IN. In contrast, MK-2048 and L-841,411 produced ~3 to 5-fold more ISD than Raltegravir with N155H IN, which is susceptible to these two inhibitors. The results suggest STI are slow binding inhibitors and the potency to form and stabilize the ISD complex is not always related to inhibition of concerted integration. Rather, the apparent binding and dissociation properties of each STI influenced the production of the ISD complex. PMID:21295584

  20. Computing Clinically Relevant Binding Free Energies of HIV-1 Protease Inhibitors

    PubMed Central

    2014-01-01

    The use of molecular simulation to estimate the strength of macromolecular binding free energies is becoming increasingly widespread, with goals ranging from lead optimization and enrichment in drug discovery to personalizing or stratifying treatment regimes. In order to realize the potential of such approaches to predict new results, not merely to explain previous experimental findings, it is necessary that the methods used are reliable and accurate, and that their limitations are thoroughly understood. However, the computational cost of atomistic simulation techniques such as molecular dynamics (MD) has meant that until recently little work has focused on validating and verifying the available free energy methodologies, with the consequence that many of the results published in the literature are not reproducible. Here, we present a detailed analysis of two of the most popular approximate methods for calculating binding free energies from molecular simulations, molecular mechanics Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalized Born surface area (MMGBSA), applied to the nine FDA-approved HIV-1 protease inhibitors. Our results show that the values obtained from replica simulations of the same protease–drug complex, differing only in initially assigned atom velocities, can vary by as much as 10 kcal mol–1, which is greater than the difference between the best and worst binding inhibitors under investigation. Despite this, analysis of ensembles of simulations producing 50 trajectories of 4 ns duration leads to well converged free energy estimates. For seven inhibitors, we find that with correctly converged normal mode estimates of the configurational entropy, we can correctly distinguish inhibitors in agreement with experimental data for both the MMPBSA and MMGBSA methods and thus have the ability to rank the efficacy of binding of this selection of drugs to the protease (no account is made for free energy penalties associated with

  1. Liver Fibrosis in HCV Monoinfected and HIV/HCV Coinfected Patients: Dysregulation of Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors TIMPs and Effect of HCV Protease Inhibitors.

    PubMed

    Latronico, Tiziana; Mascia, Claudia; Pati, Ilaria; Zuccala, Paola; Mengoni, Fabio; Marocco, Raffaella; Tieghi, Tiziana; Belvisi, Valeria; Lichtner, Miriam; Vullo, Vincenzo; Mastroianni, Claudio Maria; Liuzzi, Grazia Maria

    2016-01-01

    An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to liver fibrosis in patients with hepatitis C (HCV) infection. We measured the circulating levels of different MMPs and TIMPs in HCV monoinfected and HIV/HCV coinfected patients and evaluated the potential for anti-HCV therapy to modulate MMP and TIMP levels in HCV subjects. We analyzed 83 plasma samples from 16 HCV monoinfected patients undergoing dual or triple anti-HCV therapy, 15 HIV/HCV coinfected patients with undetectable HIV load, and 10 healthy donors (HD). Levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, TIMP-1, and TIMP-2 were measured by a SearchLight Multiplex Immunoassay Kit. MMP-2 and MMP-9 were the highest expressed MMPs among all the analyzed samples and their levels significantly increased in HCV monoinfected and HIV/HCV coinfected subjects compared to HD. TIMP-1 levels were significantly higher in HCV and HIV/HCV subjects compared to HD and were correlated with liver stiffness. These findings raise the possibility of using circulating TIMP-1 as a non-invasive marker of liver fibrosis in HCV infection. A longitudinal study demonstrated that MMP-9 levels significantly decreased (40% reduction from baseline) in patients receiving dual as well as triple direct-acting antivirals (DAA) anti-HCV therapy, which had no effect on MMP-2, TIMP-1, and TIMP-2. As the dysregulation of MMP-2 and MMP-9 may reflect inflammatory processes in the liver, the decrease of MMP-9 following HCV protease inhibitor treatment suggests a positive effect on the reduction of liver inflammation. PMID:27023536

  2. Liver Fibrosis in HCV Monoinfected and HIV/HCV Coinfected Patients: Dysregulation of Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors TIMPs and Effect of HCV Protease Inhibitors

    PubMed Central

    Latronico, Tiziana; Mascia, Claudia; Pati, Ilaria; Zuccala, Paola; Mengoni, Fabio; Marocco, Raffaella; Tieghi, Tiziana; Belvisi, Valeria; Lichtner, Miriam; Vullo, Vincenzo; Mastroianni, Claudio Maria; Liuzzi, Grazia Maria

    2016-01-01

    An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to liver fibrosis in patients with hepatitis C (HCV) infection. We measured the circulating levels of different MMPs and TIMPs in HCV monoinfected and HIV/HCV coinfected patients and evaluated the potential for anti-HCV therapy to modulate MMP and TIMP levels in HCV subjects. We analyzed 83 plasma samples from 16 HCV monoinfected patients undergoing dual or triple anti-HCV therapy, 15 HIV/HCV coinfected patients with undetectable HIV load, and 10 healthy donors (HD). Levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, TIMP-1, and TIMP-2 were measured by a SearchLight Multiplex Immunoassay Kit. MMP-2 and MMP-9 were the highest expressed MMPs among all the analyzed samples and their levels significantly increased in HCV monoinfected and HIV/HCV coinfected subjects compared to HD. TIMP-1 levels were significantly higher in HCV and HIV/HCV subjects compared to HD and were correlated with liver stiffness. These findings raise the possibility of using circulating TIMP-1 as a non-invasive marker of liver fibrosis in HCV infection. A longitudinal study demonstrated that MMP-9 levels significantly decreased (40% reduction from baseline) in patients receiving dual as well as triple direct-acting antivirals (DAA) anti-HCV therapy, which had no effect on MMP-2, TIMP-1, and TIMP-2. As the dysregulation of MMP-2 and MMP-9 may reflect inflammatory processes in the liver, the decrease of MMP-9 following HCV protease inhibitor treatment suggests a positive effect on the reduction of liver inflammation. PMID:27023536

  3. Extracellular peptidases from Deinococcus radiodurans.

    PubMed

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism. PMID:26216108

  4. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  5. Cathepsin K: a unique collagenolytic cysteine peptidase.

    PubMed

    Novinec, Marko; Lenarčič, Brigita

    2013-09-01

    Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation. PMID:23629523

  6. Comparison of cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni cercariae.

    PubMed

    Kasný, M; Mikes, L; Dalton, J P; Mountford, A P; Horák, P

    2007-10-01

    Cercariae of the bird schistosome Trichobilharzia regenti and of the human schistosome Schistosoma mansoni employ proteases to invade the skin of their definitive hosts. To investigate whether a similar proteolytic mechanism is used by both species, cercarial extracts of T. regenti and S. mansoni were biochemically characterized, with the primary focus on cysteine peptidases. A similar pattern of cysteine peptidase activities was detected by zymography of cercarial extracts and their chromatographic fractions from T. regenti and S. mansoni. The greatest peptidase activity was recorded in both species against the fluorogenic peptide substrate Z-Phe-Arg-AMC, commonly used to detect cathepsins B and L, and was markedly inhibited (> 96%) by Z-Phe-Ala-CHN2 at pH 4.5. Cysteine peptidases of 33 kDa and 33-34 kDa were identified in extracts of T. regenti and S. mansoni cercariae employing a biotinylated Clan CA cysteine peptidase-specific inhibitor (DCG-04). Finally, cercarial extracts from both T. regenti and S. mansoni were able to degrade native substrates present in skin (collagen II and IV, keratin) at physiological pH suggesting that cysteine peptidases are important in the pentration of host skin. PMID:17517170

  7. Type III procollagen peptide and PZ-peptidase serum levels in pre-cirrhotic liver diseases.

    PubMed

    Morelli, A; Vedovelli, A; Fiorucci, S; Angelini, G P; Fini, C; Palmerini, C A; Floridi, A

    1985-05-30

    To obtain a dynamic and non-invasive picture of hepatic fibrosis in pre-cirrhotic liver diseases we measured both the concentration of the N-terminal peptide of procollagen III, as a marker of collagen synthesis, and the activity of PZ-peptidase, an enzyme involved in collagen degradation, in the serum of alcoholic or chronic viral hepatitis patients. Peptide serum levels were similar in chronic persistent hepatitis and controls, but significantly higher in chronic active hepatitis. Chronic persistent hepatitis patients had PZ-peptidase levels higher than controls, but similar to chronic active hepatitis. The increase in collagen synthesis without a parallel increase in collagen degradation seen in chronic active hepatitis could be regarded as a sign of impending cirrhosis, whereas the unbalanced rise in PZ-peptidase observed in chronic persistent hepatitis is consistent with the non-progressive character of this disorder. In alcoholic hepatitis both peptide concentration and PZ-peptidase activity were elevated, thus suggesting that both collagen synthesis and degradation are activated. However, the greater increase in PZ-peptidase than in peptide serum levels seen in some patients seems to indicate a minor tendency to progressive fibrosis or a trend towards resolution. Unlike liver disease patients, normal peptide and PZ-peptidase levels were found in patients with pancreatic fibrosis. Since circulating inhibitors and activators of the PZ-peptidase activity can be excluded, as proved by this study, joint peptide and PZ-peptidase serum measurements would seem to offer a simple reliable non-invasive method for differentiating and monitoring progressive and non-progressive forms of hepatic fibrosis. PMID:3888456

  8. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance

    PubMed Central

    Wainberg, Mark A.

    2012-01-01

    The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance. PMID:24278679

  9. Recent Advances in the Development of Small-Molecular Inhibitors Target HIV Integrase-LEDGF/p75 Interaction.

    PubMed

    Zhao, Yu; Luo, Zaigang

    2015-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) plays an essential role in the HIV-1 replication. It acts by tethering integrase (IN) into the host cellular chromatin. Due to its significance of the IN-LEDGF/p75 interaction affords a novel therapeutic approach for the design of new classes of antiretroviral agents. To date, many small molecules have been found to be the inhibitors of INLEDGF/ p75 interaction. This review summarizes recent advances in the development of potential structure-based IN-LEDGF/p75 interaction inhibitors. The work will be helpful to shed light on the antiretroviral drug development pipeline in the next future. PMID:26156421

  10. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir – insights for drug design

    PubMed Central

    Weber, Irene T.; Waltman, Mary Jo; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Ghosh, Arun K.; Langan, Paul; Kovalevsky, Andrey Y.

    2013-01-01

    HIV-1 protease is an important target for the development of antiviral inhibitors to treat AIDS. A room-temperature joint X-ray/neutron structure of the protease in complex with clinical drug amprenavir has been determined at 2.0 Å resolution. The structure provides direct determination of hydrogen atom positions in the enzyme active site. Analysis of the enzyme-drug interactions suggests that some hydrogen bonds may be weaker than deduced from the non-hydrogen interatomic distances. This information may be valuable for the design of improved protease inhibitors. PMID:23772563

  11. Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations.

    PubMed

    Schäfer, W; Friebe, W G; Leinert, H; Mertens, A; Poll, T; von der Saal, W; Zilch, H; Nuber, B; Ziegler, M L

    1993-03-19

    The structural features of a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors (3) are presented. Comparison of the structural and electronic properties with those of TIBO (1) and Nevirapine (2) yields a common three-dimensional model. This model permits the improvement of the lead compound 3 by chemical modification (5,6). Additionally, two new types of inhibitors (4, 7) with similar biological activity can be derived from this model. The structure of the new compounds, including their absolute configuration, are determined by X-ray crystallography. PMID:7681480

  12. Mucosal tissue pharmacokinetics of the integrase inhibitor raltegravir in a humanized mouse model: Implications for HIV pre-exposure prophylaxis.

    PubMed

    Veselinovic, Milena; Yang, Kuo-Hsiung; Sykes, Craig; Remling-Mulder, Leila; Kashuba, Angela D M; Akkina, Ramesh

    2016-02-01

    Orally administered anti-retroviral drugs show considerable promise for HIV/AIDS pre-exposure prophylaxis (PrEP). For the success of these strategies, pharmacokinetic (PK) data defining the optimal concentration of the drug needed for protection in relevant mucosal exposure sites is essential. Here we employed a humanized mouse model to derive comprehensive PK data on the HIV integrase inhibitor raltegravir (RAL), a leading PrEP drug candidate. Under steady state conditions following oral dosing, plasma and multiple mucosal tissues were sampled simultaneously. RAL exhibited higher drug exposure in mucosal tissues relative to that in plasma with one log higher exposure in vaginal and rectal tissue and two logs higher exposure in intestinal mucosa reflecting the trends seen in the human studies. These data demonstrate the suitability of RAL for HIV PrEP and validate the utility of humanized mouse models for deriving important preclinical PK-PD data. PMID:26771889

  13. Discovery of a novel HIV-1 integrase inhibitor from natural compounds through structure based virtual screening and cell imaging.

    PubMed

    Gu, Wan-Gang; Zhang, Xuan; Ip, Denis Tsz-Ming; Yang, Liu-Meng; Zheng, Yong-Tang; Wan, David Chi-Cheong

    2014-09-17

    The interaction between HIV-1 integrase and LEDGF/P75 has been validated as a target for anti-HIV drug development. Based on the crystal structure of integrase in complex with LEDGF/P75, a library containing 80 thousand natural compounds was filtered with virtual screening. 11 hits were selected for cell based assays. One compound, 3-(1,3-benzothiazol-2-yl)-8-{[bis(2-hydroxyethyl)amino]methyl}-7-hydroxy-2H-chromen-2-one (D719) inhibited integrase nuclear translocation in cell imaging. The binding mode of D719 was analyzed with molecular simulation. The anti-HIV activity of D719 was assayed by measuring the p24 antigen production in acute infection. The structure characteristics of D719 may provide valuable information for integrase inhibitor design. PMID:25128456

  14. Synthesis, docking, and biological studies of phenanthrene β-diketo acids as novel HIV-1 integrase inhibitors

    PubMed Central

    Sharma, Horrick; Sanchez, Tino W.; Neamati, Nouri; Detorio, Mervi; Schinazi, Raymond F.; Cheng, Xiaolin; Buolamwini, John K.

    2013-01-01

    In the present study we report the synthesis of halogen-substituted phenanthrene β-diketo acids as new HIV-1 integrase inhibitors. The target phenanthrenes were obtained using both standard thermal- and microwave-assisted synthesis. 4-(6-Chlorophenanthren-2-yl)-2,4-dioxobutanoic acid (18) was the most active compound of the series that inhibited both 3′-end processing (3′-P) and strand transfer (ST) with IC50 values of 5 and 1.3 μM, respectively. Docking studies revealed two predominant binding modes that were distinct from the binding modes of raltegravir and elvitegravir, and suggest a novel binding region in the IN active site. Moreover, these compounds do not interact significantly with some of the key amino acids (Q148 and N155) implicated in viral resistance. Therefore, this series of compounds can further be investigated for a possible chemotype to circumvent resistance to clinical HIV-1 IN inhibitors. PMID:24091080

  15. Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV.

    PubMed

    Tabarrini, Oriana; Desantis, Jenny; Massari, Serena

    2016-03-01

    The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update. PMID:26933891

  16. Lead expansion and virtual screening of Indinavir derivate HIV-1 protease inhibitors using pharmacophoric - shape similarity scoring function

    PubMed Central

    Shityakov, Sergey; Dandekar, Thomas

    2010-01-01

    Indinavir (Crivaxan®) is a potent inhibitor of the HIV (human immunodeficiency virus) protease. This enzyme has an important role in viral replication and is considered to be very attractive target for new antiretroviral drugs. However, it becomes less effective due to highly resistant new viral strains of HIV, which have multiple mutations in their proteases. For this reason, we used a lead expansion method to create a new set of compounds with a new mode of action to protease binding site. 1300 compounds chemically diverse from the initial hit were generated and screened to determine their ability to interact with protease and establish their QSAR properties. Further computational analyses revealed one unique compound with different protease binding ability from the initial hit and its role for possible new class of protease inhibitors is discussed in this report. PMID:20978602

  17. HIV-1 Protease Mutations and Protease Inhibitor Cross-Resistance▿ † ‡

    PubMed Central

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W. Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W.

    2010-01-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  18. Variable selection based QSAR modeling on Bisphenylbenzimidazole as Inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Kumar, Surendra; Tiwari, Meena

    2013-11-01

    The emergence of mutant virus in drug therapy for HIV-1 infection has steadily risen in the last decade. Inhibition of reverse transcriptase enzyme has emerged as a novel target for the treatment of HIV infection. The aim to decipher the structural features that interact with receptor, we report a quantitative structure activity relationship (QSAR) study on a dataset of thirty seven compounds belonging to bisphenylbenzimidazoles (BPBIs) as reverse transcriptase inhibitors using enhanced replacement method (ERM), stepwise multiple linear regression (Stepwise-MLR) and genetic function approximation (GFA) method for selecting a subset of relevant descriptors, developing the best multiple linear regression model and defining the QSAR model applicability domain boundaries. The enhanced replacement method was found to give better results r²=0.8542, Q²(loo) = 0.7917, r²pred = 0.7812) at five variables as compared to stepwise MLR and GFA method, evidenced by internal and external validation parameters. The modified r² (r²m) of the training set, test set and whole data set were calculated and are in agreement with the enhanced replacement method. The results of QSAR study rationalize the structural requirement for optimum binding of ligands. The developed QSAR model shows that hydrophobicity, flexibility, three dimensional surface area, volume and shape of molecule are important parameters to be considered for designing new compounds and to decipher reverse transcriptase enzyme inhibition activity of these compounds at molecular level. The applicability domain was defined to find the similar analogs with better prediction power. PMID:23106285

  19. Polyanion inhibitors of HIV and other viruses. 7. Polyanionic compounds and polyzwitterionic compounds derived from cyclodextrins as inhibitors of HIV transmission.

    PubMed

    Leydet, A; Moullet, C; Roque, J P; Witvrouw, M; Pannecouque, C; Andrei, G; Snoeck, R; Neyts, J; Schols, D; De Clercq, E

    1998-12-01

    New polyanionic compounds were obtained from radical addition of thiomalic acid and mercaptopropionic acid onto perallylated cyclodextrins (CDs) under UV irradiation with a catalytic amount of alpha,alpha'-azobis(isobutyronitrile). All these polyanions, bearing 18-48 carboxylate groups, inhibited human immunodeficiency virus type 1 (HIV-1) strain IIIB replication in MT-4 cells at a 50% inhibitory concentration (IC50) of 0.1-2.9 microM, while not being toxic to the host cells at concentrations up to 62 microM. These compounds were also active against a clinical HIV-1 isolate (HE) at >/=4-fold higher concentrations. Only some compounds showed activity against the two HIV-2 strains (ROD and EHO) but at higher concentrations than those required to inhibit HIV-1 (IIIB and HE) replication. In addition, these compounds were not active against the M-tropic HIV-1 strain BaL but were active against simian immunodeficiency virus [SIV (MAC251)]. These compounds were also inhibitory to the replication of human cytomegalovirus at an IC50 of 1-10 microM, but not herpes simplex virus (type 1 and type 2) or other (picorna-, toga-, reo-, orthomyxo-, paramyxo-, bunya-, rhabdo-, and poxvirus) viruses. Radical addition on perallylated CDs of a protected cysteine gave polyzwitterionic compounds. None of these last compounds proved inhibitory to the replication of HIV-1, HIV-2, or any of the other viruses tested. PMID:9836609

  20. Structural studies of series HIV-1 nonnucleoside reverse transcriptase inhibitors 1-(2,6-difluorobenzyl)-2-(2,6-difluorophenyl)-benzimidazoles with different 4-substituents

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2010-03-01

    Over the past 10 years, several anti-viral drugs have become available to fight the HIV infection. Antiretroviral treatment reduces the mortality of AIDS. Nonnucleoside inhibitors of HIV-1 reverse transcriptase are specific and potentially nontoxic drugs against AIDS. The crystal structures of five nonnucleoside inhibitors of HIV-1 reverse transcriptase are presented here. The structural parameters, especially those describing the angular orientation of the π-electron systems and influencing biological activity, were determined for all of the investigated inhibitors. The chemical character and orientation of the substituent at C4 position of the benzimidazole moiety substantially influences the anti-viral activity. The structural data of the investigated inhibitors is a good basis for modeling enzyme-inhibitor interactions for structure-assisted drug design.

  1. Implications of integrase inhibitors for HIV-infected transplantation recipients: raltegravir and dolutegravir (S/GSK 1349572).

    PubMed

    Waki, Kayo; Sugawara, Yasuhiko

    2011-01-01

    In the modern era of highly active antiretroviral therapy (HAART), reluctance to perform transplantation (Tx) in HIV-infected individuals is no longer justified. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) or protease inhibitors (PIs), the current first line regimens of HAART, are metabolized by the cytochrome P450 family (CYP3A4). Most NNRTIs induce CYP3A4, whereas PIs inhibit it. Calcinuerin inhibitors (CNIs), which are mandatory for Tx, need the same enzyme complex for their clearance. Therefore, a significant drug-drug interaction (DDI) is encountered between current HAART and CNIs. This results in extreme difficulty in adjusting the optimal dose of CNIs, for which the therapeutic range is narrow. Of interest, integrase inhibitors (INIs) - novel, potent anti-HIV drugs - are mainly metabolized by uridine diphosphate glucuronosyltransferase (UGT) 1A1 and do not induce or inhibit CYP3A4. DDI is presumably absent when NNTRIs or PIs are replaced by INIs. Raltegravir (RAL), a first generation INI, has been introduced into kidney and liver Tx. There is increasing evidence that rejection is well controlled without renal impairment due to CNI over-exposure while persistent, robust suppression of HIV is achieved. Global phase III clinical trials of dolutegravir (DTG), a second generation INI, are currently in progress. In vitro data has suggested that DTG may be less prone to resistance than RAL (referred to as having a higher genetic barrier). The time has come to extensively discuss the implications of INIs in Tx for HIV positive patients. PMID:22101373

  2. Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance

    SciTech Connect

    Parai, Maloy Kumar; Huggins, David J.; Cao, Hong; Nalam, Madhavi N.L.; Ali, Akbar; Schiffer, Celia A.; Tidor, Bruce; Rana, Tariq M.

    2012-09-11

    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with Ki values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.

  3. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line

    PubMed Central

    Kumar, Amit; Abbas, Wasim; Colin, Laurence; Khan, Kashif Aziz; Bouchat, Sophie; Varin, Audrey; Larbi, Anis; Gatot, Jean-Stéphane; Kabeya, Kabamba; Vanhulle, Caroline; Delacourt, Nadège; Pasquereau, Sébastien; Coquard, Laurie; Borch, Alexandra; König, Renate; Clumeck, Nathan; De Wit, Stephane; Rohr, Olivier; Rouzioux, Christine; Fulop, Tamas; Van Lint, Carine; Herbein, Georges

    2016-01-01

    Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine473 and threonine308. In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients. PMID:27076174

  4. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line.

    PubMed

    Kumar, Amit; Abbas, Wasim; Colin, Laurence; Khan, Kashif Aziz; Bouchat, Sophie; Varin, Audrey; Larbi, Anis; Gatot, Jean-Stéphane; Kabeya, Kabamba; Vanhulle, Caroline; Delacourt, Nadège; Pasquereau, Sébastien; Coquard, Laurie; Borch, Alexandra; König, Renate; Clumeck, Nathan; De Wit, Stephane; Rohr, Olivier; Rouzioux, Christine; Fulop, Tamas; Van Lint, Carine; Herbein, Georges

    2016-01-01

    Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine(473) and threonine(308). In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients. PMID:27076174

  5. Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition

    SciTech Connect

    Lee-Huang, Sylvia . E-mail: sylvia.lee-huang@med.nyu.edu; Huang, Philip Lin; Zhang Dawei; Lee, Jae Wook; Bao Ju; Sun Yongtao; Chang, Young-Tae; Zhang, John; Huang, Paul Lee

    2007-03-23

    We have identified oleuropein (Ole) and hydroxytyrosol (HT) as a unique class of HIV-1 inhibitors from olive leaf extracts effective against viral fusion and integration. We used molecular docking simulation to study the interactions of Ole and HT with viral targets. We find that Ole and HT bind to the conserved hydrophobic pocket on the surface of the HIV-gp41 fusion domain by hydrogen bonds with Q577 and hydrophobic interactions with I573, G572, and L568 on the gp41 N-terminal heptad repeat peptide N36, interfering with formation of the gp41 fusion-active core. To test and confirm modeling predications, we examined the effect of Ole and HT on HIV-1 fusion complex formation using native polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Ole and HT exhibit dose-dependent inhibition on HIV-1 fusion core formation with EC{sub 50}s of 66-58 nM, with no detectable toxicity. Our findings on effects of HIV-1 integrase are reported in the subsequent article.

  6. Lack of relevance of kinetic parameters for exocellular DD-peptidases to cephalosporin MICs.

    PubMed Central

    Boyd, D B; Ott, J L

    1986-01-01

    MICs of a set of cephalosporins against a variety of gram-positive and gram-negative pathogens showed no strong correlations with the rate at which these inhibitors acylate or are deacylated by beta-lactam-sensitive DD-peptidases excreted by Streptomyces sp. strain R61 and Actinomadura sp. strain R39. PMID:3729340

  7. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage

    PubMed Central

    2013-01-01

    Background LEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction. Results We describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket. Conclusion Mut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral

  8. HIV Protease Inhibitors Sensitize Human Head and Neck Squamous Carcinoma Cells to Radiation by Activating Endoplasmic Reticulum Stress

    PubMed Central

    Liu, Runping; Zhang, Luyong; Yang, Jing; Zhang, Xiaoxuan; Mikkelsen, Ross; Song, Shiyu; Zhou, Huiping

    2015-01-01

    Background Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC. Methodology and Principal Findings HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase. Conclusion and Significance HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC. PMID:25933118

  9. Second-line protease inhibitor-based highly active antiretroviral therapy after failing non-nucleoside reverse transcriptase inhibitors-based regimens in Asian HIV-infected children

    PubMed Central

    Bunupuradah, Torsak; Puthanakit, Thanyawee; Fahey, Paul; Kariminia, Azar; Yusoff, Nik Khairulddin Nik; Khanh, Truong Huu; Sohn, Annette H.; Chokephaibulkit, Kulkanya; Lumbiganon, Pagakrong; Hansudewechakul, Rawiwan; Razali, Kamarul; Kurniati, Nia; Huy, Bui Vu; Sudjaritruk, Tavitiya; Kumarasamy, Nagalingeswaran; Fong, Siew Moy; Saphonn, Vonthanak; Ananworanich, Jintanat

    2013-01-01

    Background The WHO recommends boosted protease inhibitor (bPI)-based highly active antiretroviral therapy (HAART) after failing non-nucleoside reverse transcriptase inhibitor (NNRTI) treatment. We examined outcomes of this regimen in Asian HIV-infected children. Methods Children from five Asian countries in the TREAT Asia Pediatric HIV Observational Database (TApHOD) with ≥24 weeks of NNRTI-based HAART followed by ≥24 weeks of bPI-based HAART were eligible. Primary outcomes were the proportions with virologic suppression (HIV-RNA <400 copies/ml) and immune recovery (CD4% ≥25% if age <5 years and CD4 count ≥500 cells/mm3 if age ≥5 years) at 48 and 96 weeks. Results Of 3422 children, 153 were eligible; 52% were female. At switch, median age was 10 years, 26% were in WHO stage 4. Median weight-for-age z-score (WAZ) was −1.9 (n=121), CD4% was 12.5% (n=106), CD4 count was 237 (n=112) cells/mm3, and HIV-RNA was 4.6 log10copies/ml (n=61). The most common PI was lopinavir/ritonavir (83%). At 48 weeks, 61% (79/129) had immune recovery, 60% (26/43) had undetectable HIV-RNA and 73% (58/79) had fasting triglycerides ≥130mg/dl. By 96 weeks, 70% (57/82) achieved immune recovery, 65% (17/26) virologic suppression, and hypertriglyceridemia occurred in 66% (33/50). Predictors for virologic suppression at week 48 were longer duration of NNRTI-based HAART (p=0.006), younger age (p=0.007), higher WAZ (p=0.020), and HIV-RNA at switch <10,000 copies/ml (p=0.049). Conclusion In this regional cohort of Asian children on bPI-based second-line HAART, 60% of children tested had immune recovery by one year, and two-thirds had hyperlipidemia, highlighting difficulties in optimizing second-line HAART with limited drug options. PMID:23296119

  10. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  11. HIV-1 integrase strand-transfer inhibitors: design, synthesis and molecular modeling investigation.

    PubMed

    De Luca, Laura; De Grazia, Sara; Ferro, Stefania; Gitto, Rosaria; Christ, Frauke; Debyser, Zeger; Chimirri, Alba

    2011-02-01

    This study is focused on a new series of benzylindole derivatives with various substituents at the benzene-fused ring, suggested by our 3D pharmacophore model developed for HIV-1 integrase inhibitors (INIs). All synthesized compounds proved to be active in the nanomolar range (6-35 nM) on the strand-transfer step (ST). In particular, derivative 4-[1-(4-fluorobenzyl)-5,7-dimethoxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid (8e), presenting the highest best-fit value on pharmacophore model, showed a potency comparable to that of clinical INSTIs GS 9137 (1) and MK-0518 (2). The binding mode of our molecules has been investigated using the recently published crystal structure of the complex of full-length integrase from the prototype foamy virus in complex with its cognate DNA (PFV-IN/DNA). The results highlighted the ability of derivative 8e to assume the same binding mode of MK-0518 and GS 9137. PMID:21227550

  12. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat

    2004-02-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.

  13. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches.

    PubMed

    Fakes, Michael G; Vakkalagadda, Blisse J; Qian, Feng; Desikan, Sridhar; Gandhi, Rajesh B; Lai, Chiajen; Hsieh, Alice; Franchini, Miriam K; Toale, Helen; Brown, Jonathan

    2009-03-31

    BMS-488043 is an HIV-attachment inhibitor that exhibited suboptimal oral bioavailability upon using conventional dosage forms prepared utilizing micronized crystalline drug substance. BMS-488043 is classified as a Biopharmaceutics Classification System (BCS) Class-II compound with a poor aqueous solubility of 0.04mg/mL and an acceptable permeability of 178nm/s in the Caco2 cell-line model. Two strategies were evaluated to potentially enhance the oral bioavailability of BMS-488043. The first strategy targeted particle size reduction through nanosizing the crystalline drug substance. The second strategy aimed at altering the drug's physical form by producing an amorphous drug. Both strategies provided an enhancement in oral bioavailability in dogs as compared to a conventional formulation containing the micronized crystalline drug substance. BMS-488043 oral bioavailability enhancement was approximately 5- and 9-folds for nanosizing and amorphous formulation approaches, respectively. The stability of the amorphous coprecipitated drug prepared at different compositions of BMS-488043/polyvinylpyrrolidone (PVP) was evaluated upon exposure to stressed stability conditions of temperature and humidity. The drastic effect of exposure to humidity on conversion of the amorphous drug to crystalline form was observed. Additionally, the dissolution behavior of coprecipitated drug was evaluated under discriminatory conditions of different pH values to optimize the BMS-488043/PVP composition and produce a stabilized, amorphous BMS-488043/PVP (40/60, w/w) spray-dried intermediate (SDI), which was formulated into an oral dosage form for further development and evaluation. PMID:19100319

  14. Exploitation of HIV protease inhibitor Indinavir as a memory restorative agent in experimental dementia.

    PubMed

    Sharma, Bhupesh; Singh, Nirmal; Singh, Manjeet; Jaggi, Amteshwar Singh

    2008-06-01

    The present study was undertaken to investigate the beneficial effect of HIV protease inhibitor Indinavir on memory deficits associated with experimental dementia of Alzheimer disease's (AD) type. Dementia was induced in Swiss albino mice by administration of Celecoxib (100 mg kg(-1) orally, daily for 9 days) or Streptozotocin (3 mg kg(-1) administered intracerebroventricularly on 1st and 3rd day) and the cognitive behaviors of Swiss albino mice were assessed using Morris water maze test. Brain acetyl cholinesterase (AChE) activity was measured by Ell Mann's method. Brain thiobarbituric acid reactive species (TBARS) levels and reduced glutathione (GSH) levels were measured by Ohokawa's and Beutler's method respectively to assess total oxidative stress. Donepezil (0.1 mg kg(-1) i.p.) served as positive control in the present investigation. Celecoxib as well as Streptozotocin (STZ) produced a significant loss of learning and memory. Indinavir (100 and 200 mg kg(-1) orally) successfully attenuated Celecoxib as well as STZ induced cognitive deficits. Higher levels of brain AChE activity, TBARS and lower levels of GSH were observed in Celecoxib as well as STZ treated animals, which were significantly attenuated by Donepezil and Indinavir. Study highlights the potential of Indinavir in memory dysfunctions associated with dementia of AD. PMID:18343489

  15. Structure of the antiviral assembly inhibitor CAP-1 bound to the HIV-1 CA protein

    PubMed Central

    Kelly, Brian N.; Kyere, Sampson; Kinde, Isaac; Tang, Chun; Howard, Bruce R.; Robinson, Howard; Sundquist, Wesley I.; Summers, Michael F.; Hill, Christopher P.

    2007-01-01

    The CA domain of the HIV-1 Gag polyprotein plays critical roles in both the early and late phases of viral replication and is therefore an attractive antiviral target. Compounds with antiviral activity were recently identified that bind to the N-terminal domain of CA (CAN) and inhibit core assembly during viral maturation. We have determined the structure of the complex between CAN and the antiviral assembly inhibitor N-(3-chloro-4-methylphenyl)-N'-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)-sulfanyl]ethyl}-urea) (CAP-1) using a combination of NMR spectroscopy and X-ray crystallography. The protein undergoes a remarkable conformational change upon CAP-1 binding, in which Phe32 is displaced from its buried position in the protein core to open a deep hydrophobic cavity that serves as the ligand binding site. The aromatic ring of CAP-1 inserts into the cavity, with the urea NH groups forming hydrogen bonds with the backbone oxygen of Val59 and the dimethylamino group interacting with the side chains of Glu28 and Glu29. Elements that could be exploited to improve binding affinity are apparent in the structure. The displacement of Phe32 by CAP-1 appears to be facilitated by a strained main chain conformation, which suggests a potential role for a Phe32 conformational switch during normal capsid assembly. PMID:17826792

  16. Quassinoids: Viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection.

    PubMed

    Win, Nwet Nwet; Ito, Takuya; Win, Yi Yi; Ngwe, Hla; Kodama, Takeshi; Abe, Ikuro; Morita, Hiroyuki

    2016-10-01

    Viral protein R (Vpr) is an accessory protein that plays important roles in the viral pathogenesis of Human Immunodeficiency Virus-1 (HIV-1). An assay for anti-Vpr activity, using TREx-HeLa-Vpr cells, is a promising strategy to discover Vpr inhibitors. The anti-Vpr assay revealed that the CHCl3-soluble extract of Picrasma javanica bark possesses potent anti-Vpr activity. Furthermore, studies of quassinoids (1-15) previously isolated from the extract demonstrated that all of the tested quassinoids exhibit anti-Vpr activity. Among the tested compounds, javanicin I (15) exhibited the most potent anti-Vpr activity ((***)p <0.001) in comparing with that of the positive control, damnacanthal. The structure-activity relationships of the active quassinoids suggested that the presence of a methyl group at C-13 in the 2,12,14-triene-1,11,16-trione-2,12-dimethoxy-18-norpicrasane quassinoids is the important factor for the potent inhibitory effect in TREx-HeLa-Vpr cells. PMID:27575477

  17. Searching for novel scaffold of triazole non-nucleoside inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Frączek, Tomasz; Paneth, Agata; Kamiński, Rafał; Krakowiak, Agnieszka; Paneth, Piotr

    2016-06-01

    Azoles are a promising class of the new generation of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. In order to find novel extensions for this basic scaffold, we explored the 5-position substitution pattern of triazole NNRTIs using molecular docking followed by the synthesis of selected compounds. We found that heterocyclic substituents in the 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with four-membered thioglycolamide linker and this substitution seems to be viable only for compounds with shorter two-membered linker. Promising compound, N-(4-carboxy-2-chlorophenyl)-2-((4-benzyl-5-methyl-4H-1,2,4-triazol-3-yl)sulfanyl)acetamide, with potent inhibitory activity and acceptable aqueous solubility has been identified in this study that could serve as lead scaffold for the development of novel water-soluble salts of triazole NNRTIs. PMID:25942362

  18. Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein-Ligand X-ray Crystal Structure

    SciTech Connect

    Ghosh, Arun K; Chapsal, Bruno D; Parham, Garth L; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2011-11-07

    We report the design, synthesis, biological evaluation, and the X-ray crystal structure of a novel inhibitor bound to the HIV-1 protease. Various C3-functionalized cyclopentanyltetrahydrofurans (Cp-THF) were designed to interact with the flap Gly48 carbonyl or amide NH in the S2-subsite of the HIV-1 protease. We investigated the potential of those functionalized ligands in combination with hydroxyethylsulfonamide isosteres. Inhibitor 26 containing a 3-(R)-hydroxyl group on the Cp-THF core displayed the most potent enzyme inhibitory and antiviral activity. Our studies revealed a preference for the 3-(R)-configuration over the corresponding 3-(S)-derivative. Inhibitor 26 exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray structure of 26-bound HIV-1 protease revealed important molecular insight into the ligand-binding site interactions.

  19. Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization

    PubMed Central

    Christ, Frauke; Shaw, Stephen; Demeulemeester, Jonas; Desimmie, Belete A.; Marchand, Arnaud; Butler, Scott; Smets, Wim; Chaltin, Patrick; Westby, Mike

    2012-01-01

    Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs. PMID:22664975

  20. Identification of dipeptidyl peptidase 3 as the Angiotensin-(1-7) degrading peptidase in human HK-2 renal epithelial cells.

    PubMed

    Cruz-Diaz, Nildris; Wilson, Bryan A; Pirro, Nancy T; Brosnihan, K Bridget; Marshall, Allyson C; Chappell, Mark C

    2016-09-01

    Angiotensin-(1-7) (Ang-(1-7)) is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic and pro-oxidant effects of the Ang II-AT1 receptor axis. We previously identified a peptidase activity from sheep brain, proximal tubules and human HK-2 proximal tubule cells that metabolized Ang-(1-7); thus, the present study isolated and identified the Ang-(1-7) peptidase. Utilizing ion exchange and hydrophobic interaction chromatography, a single 80kDa protein band on SDS-PAGE was purified from HK-2 cells. The 80kDa band was excised, the tryptic digest peptides analyzed by LC-MS and a protein was identified as the enzyme dipeptidyl peptidase 3 (DPP 3, EC: 3.4.14.4). A human DPP 3 antibody identified a single 80kDa band in the purified enzyme preparation identical to recombinant human DPP 3. Both the purified Ang-(1-7) peptidase and DPP 3 exhibited an identical hydrolysis profile of Ang-(1-7) and both activities were abolished by the metallopeptidase inhibitor JMV-390. DPP 3 sequentially hydrolyzed Ang-(1-7) to Ang-(3-7) and rapidly converted Ang-(3-7) to Ang-(5-7). Kinetic analysis revealed that Ang-(3-7) was hydrolyzed at a greater rate than Ang-(1-7) [17.9 vs. 5.5 nmol/min/μg protein], and the Km for Ang-(3-7) was lower than Ang-(1-7) [3 vs. 12μM]. Finally, chronic treatment of the HK-2 cells with 20nM JMV-390 reduced intracellular DPP 3 activity and tended to augment the cellular levels of Ang-(1-7). We conclude that DPP 3 may influence the cellular expression of Ang-(1-7) and potentially reflect a therapeutic target to augment the actions of the peptide. PMID:27315786

  1. Probing Lipophilic Adamantyl Group as the P1-Ligand for HIV-1 Protease Inhibitors: Design, Synthesis, Protein X-ray Structural Studies, and Biological Evaluation.

    PubMed

    Ghosh, Arun K; Osswald, Heather L; Glauninger, Kristof; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T; Mitsuya, Hiroaki

    2016-07-28

    A series of potent HIV-1 protease inhibitors with a lipophilic adamantyl P1 ligand have been designed, synthesized, and evaluated. We have developed an enantioselective synthesis of adamantane-derived hydroxyethylamine isosteres utilizing Sharpless asymmetric epoxidation as the key step. Various inhibitors incorporating P1-adamantylmethyl in combination with P2 ligands such as 3-(R)-THF, 3-(S)-THF, bis-THF, and THF-THP were examined. The S1' pocket was also probed with phenyl and phenylmethyl ligands. Inhibitor 15d, with an isobutyl P1' ligand and a bis-THF P2 ligand, proved to be the most potent of the series. The cLogP value of inhibitor 15d is improved compared to inhibitor 2 with a phenylmethyl P1-ligand. X-ray structural studies of 15d, 15h, and 15i with HIV-1 protease complexes revealed molecular insight into the inhibitor-protein interaction. PMID:27389367

  2. HIV protease inhibitors in pulmonary hypertension: rationale and design of a pilot trial in idiopathic pulmonary arterial hypertension

    PubMed Central

    Li, Ying; Li, Xiao-hui; Yu, Zai-xin; Cai, Jing-jing; Billiar, Timothy R.; Chen, Alex F.; Lv, Ben; Chen, Zi-ying; Huang, Zhi-jun; Yang, Guo-ping; Song, Jie; Liu, Bin

    2015-01-01

    Abstract We propose an exploratory clinical study, the first of its kind to our knowledge, to determine the safety and potential clinical benefit of the combination of the HIV protease inhibitors (HIV-PIs) saquinavir and ritonavir (SQV+RIT) in patients with idiopathic pulmonary arterial hypertension (IPAH). This study is based on evidence that (1) HIV-PIs can improve pulmonary hemodynamics in experimental models; (2) both Toll-like receptor 4 and high-mobility group box 1 (HMGB1) participate in the pathogenesis of experimental pulmonary hypertension; and (3) a high-throughput screen for inhibitors of HMGB1-induced macrophage activation yielded HIV-PIs as potent inhibitors of HMGB1-induced cytokine production. In this proposed open-label, pre-post study, micro, low, and standard doses of SQV+RIT will be given to IPAH patients for 14 days. Patients will receive follow-up for the next 14 days. The primary outcome to be evaluated is change in HMGB1 level from baseline at 14 days. The secondary outcome is changes in tumor necrosis factor α, interleukin 1β, interleukin 6, C-reactive protein, pulmonary arterial pressure based on echocardiography parameters and New York Heart Association/World Health Organization functional class, and Brog dyspnea scale index from baseline at 14 days. Other secondary measurements will include N-terminal pro-brain natriuretic peptide, atrial natriuretic peptide, and 6-minute walk distance. We propose that SQV+RIT treatment will improve inflammatory disorders and pulmonary hemodynamics in IPAH patients. If the data support a potentially useful therapeutic effect and suggest that SQV+RIT is safe in IPAH patients, the study will warrant further investigation. (ClinicalTrials.gov identifier: NCT02023450.) PMID:26401255

  3. Molecular Modeling, Synthesis, and Anti-HIV Activity of Novel Isoindolinedione Analogues as Potent Non-nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Kumari, Garima; Singh, Ramendra K

    2016-02-01

    Different isoindolinedione derivatives bearing imine, amide, thioamide, and sulfonamide linkages have been designed in silico using discovery studio software (BIOVIA, San Diego, CA, USA), synthesized, and evaluated for their anti-HIV activity. SAR studies revealed that the linkages in these molecules did affect their anti-HIV activity and the molecules having sulfonamide linkages were the most potent HIV-RT inhibitors as the S=O bonds of the sulfonamide moiety interacted with Lys103 (NH or carbonyl or both) and Pro236; the NH part of the sulfonamide linkage formed bond with carbonyl of Lys101. blood-brain barrier (BBB) plots were also studied, and it was found that all the designed molecules have potential to cross BBB, a very vital criteria for anti-HIV drugs. In vitro screening was performed using HIV-1 strain IIIB in MT-4 cells using the MTT assay, and it was seen that some of these molecules were effective inhibitors of HIV-1 replication at nanomolar concentration with selectivity indices ranging from 33.75 to 73.33 under in vitro conditions. Some of these molecules have shown good anti-HIV activity at 3-4 nm concentrations. These derivatives have potential to be developed as lead molecules effective against HIV-1. Novel isoindolinedione derivatives as probable NNRTIs have been synthesized and characterized. Some of these molecules have shown good anti-HIV activity at 3-4 nm concentrations. PMID:26212217

  4. Structure and Catalysis of Acylaminoacyl Peptidase

    PubMed Central

    Harmat, Veronika; Domokos, Klarissza; Menyhárd, Dóra K.; Palló, Anna; Szeltner, Zoltán; Szamosi, Ilona; Beke-Somfai, Tamás; Náray-Szabó, Gábor; Polgár, László

    2011-01-01

    Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism. PMID:21084296

  5. An Essential Signal Peptide Peptidase Identified in an RNAi Screen of Serine Peptidases of Trypanosoma brucei

    PubMed Central

    Moss, Catherine X.; Brown, Elaine; Hamilton, Alana; Van der Veken, Pieter; Augustyns, Koen; Mottram, Jeremy C.

    2015-01-01

    The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1). This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival. PMID:25816352

  6. Escape of HIV-1 from a Small Molecule CCR5 Inhibitor Is Not Associated with a Fitness Loss

    PubMed Central

    Anastassopoulou, Cleo G; Marozsan, Andre J; Matet, Alexandre; Snyder, Amy D; Arts, Eric J; Kuhmann, Shawn E; Moore, John P

    2007-01-01

    Fitness is a parameter used to quantify how well an organism adapts to its environment; in the present study, fitness is a measure of how well strains of human immunodeficiency virus type 1 (HIV-1) replicate in tissue culture. When HIV-1 develops resistance in vitro or in vivo to antiretroviral drugs such as reverse transcriptase or protease inhibitors, its fitness is often impaired. Here, we have investigated whether the development of resistance in vitro to a small molecule CCR5 inhibitor, AD101, has an associated fitness cost. To do this, we developed a growth-competition assay involving dual infections with molecularly cloned viruses that are essentially isogenic outside the env genes under study. Real-time TaqMan quantitative PCR (QPCR) was used to quantify each competing virus individually via probes specific to different, phenotypically silent target sequences engineered within their vif genes. Head-to-head competition assays of env clones derived from the AD101 escape mutant isolate, the inhibitor-sensitive parental virus, and a passage control virus showed that AD101 resistance was not associated with a fitness loss. This observation is consistent with the retention of the resistant phenotype when the escape mutant was cultured for a total of 20 passages in the absence of the selecting compound. Amino acid substitutions in the V3 region of gp120 that confer complete AD101 resistance cause a fitness loss when introduced into an AD101-sensitive, parental clone; however, in the resistant isolate, changes elsewhere in env that occurred prior to the substitutions within V3 appear to compensate for the adverse effect of the V3 changes on replicative capacity. These in vitro studies may have implications for the development and management of resistance to other CCR5 inhibitors that are being evaluated clinically for the treatment of HIV-1 infection. PMID:17542646

  7. THERAPEUTIC DRUG MONITORING OF PROTEASE INHIBITORS AND EFAVIRENZ IN HIV-INFECTED INDIVIDUALS WITH ACTIVE SUBSTANCE RELATED DISORDERS

    PubMed Central

    Ma, Qing; Zingman, Barry S.; Luque, Amneris; Fischl, Margaret A.; Gripshover, Barbara; Venuto, Charles; DiFrancesco, Robin; Forrest, Alan; Morse, Gene D.

    2011-01-01

    Background Achieving targeted antiretroviral (ART) plasma concentrations during long-term treatment in HIV-infected patients with substance related disorders (SRD) may be challenging due to a number of factors including medication adherence, co-infection with hepatitis B or C virus, medication intolerance and drug interactions. One approach to investigate these factors is to conduct therapeutic drug monitoring (TDM) to measure ART exposure during treatment. The objective of this study was to utilize TDM to compare efavirenz and protease inhibitor pharmacokinetics in patients with and without SRDs. Methods This was a multi-center, cross-sectional open-label study in patients with HIV-1 infection receiving ART, with active (n=129) or without (n=146) SRD according to National Institute on Drug Abuse criteria. 275 subjects who were receiving either protease inhibitor- or efavirenz-based ART regimens for more than 6 months were enrolled at four HIV treatment centers with an equal distribution of SRD and non-SRD at each site. Patients were instructed during enrollment visits with regard to the importance of adherence prior to and after study visits. Demographics and routine clinical laboratory tests were recorded. Results Among the 275 patients, 47% had SRD with at least one substance. There were no significant differences between SRD and non-SRD groups for race, gender, age, or CD4 count at entry. A significantly higher proportion of patients with SRD had an entry HIV RNA plasma concentration > 75 copies/ml compared to patients without SRD (40% vs. 28%, p=0.044). Logistic regression modeling revealed an association between HIV RNA plasma concentration and African-American race (p=0.017). A significantly higher proportion of SRDs also had an efavirenz or protease inhibitor trough concentration below the desired range (23% vs. 9%, p=0.048). Significantly lower trough concentrations were noted in patients with SRDs receiving atazanavir (0.290 vs. 0.976 µg/mL) or lopinavir

  8. Design, synthesis and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1

    PubMed Central

    Curreli, Francesca; Choudhury, Spreeha; Pyatkin, Ilya; Zagorodnikov, Victor P.; Bulay, Anna Khulianova; Altieri, Andrea; Kwon, Young Do; Kwong, Peter D.; Debnath, Asim K.

    2012-01-01

    The CD4 binding site on HIV-1 gp120 has been validated as a drug target to prevent HIV-1 entry to cells. Previously, we identified two small molecule inhibitors consisting of a 2,2,6,6-tetramethylpiperidine ring linked by an oxalamide to a p-halide-substituted phenyl group, which target this site, specifically, a cavity termed “Phe43 cavity”. Here we use synthetic chemistry, functional assessment and structure-based analysis to explore variants of each region of these inhibitors for improved antiviral properties. Alterations of the phenyl group and of the oxalamide linker indicated that these regions were close to optimal in the original lead compounds. Design of a series of compounds, where the tetramethylpiperidine ring was replaced with new scaffolds, lead to improved antiviral activity. These new scaffolds provide insight into the surface chemistry at the entrance of the cavity and offer additional opportunities by which to optimize further these potential-next-generation therapeutics and microbicides against HIV-1. PMID:22524483

  9. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  10. Sublimation characterization and vapor pressure estimation of an HIV nonnucleoside reverse transcriptase inhibitor using thermogravimetric analysis.

    PubMed

    Xie, Minli; Ziemba, Theresa M; Maurin, Michael B

    2003-01-01

    The purpose of this research is to investigate the sublimation process of DPC 963, a second-generation nonnucleoside reverse transcriptase inhibitor for HIV-1 retrovirus, and to better understand the effect of sublimation during active pharmaceutical ingredient (API) manufacture and formulation development, especially the drying processes. Sublimation of DPC 963 at 150 degrees C and above was determined by thermogravimetric analysis-Fourier transform infrared (TGA-FTIR). The rates of sublimation at different temperatures were measured using isothermal TGA. Condensed material was collected and analyzed by differential scanning calorimetry (DSC), x-ray powder diffraction (XRPD), and infrared (IR) spectrometry. Benzoic acid was used as a reference standard to derive a linear logarithmic relationship between sublimation/evaporation rate and vapor pressure specific to the TGA system used in this study. Sublimation and evaporation of DPC 963 were found to follow apparent zero-order kinetics. Using the Eyring equation, the enthalpy and entropy of the sublimation and evaporation processes were obtained. The enthalpies of sublimation and evaporation were found to be 29 and 22 kcal/mol, respectively. The condensed material from the vapor phase was found to exist in 2 physical forms, amorphous and crystalline. Using benzoic acid as a reference standard, vapor pressure of DPC 963 at different temperatures was calculated using the linear logarithmic relationship obtained. DPC 963 undergoes sublimation at appreciable rates at 150 degrees C and above but this is not likely to pose a serious issue during the manufacturing process. Vapor pressure estimation using thermogravimetric analysis provided sufficient accuracy to be used as a fast, simple, and safe alternative to the traditional methods of vapor pressure determination. PMID:12916905

  11. Pharmacokinetics and brain uptake of HIV-1 replication inhibitor DB213 in Sprague-Dawley rats.

    PubMed

    Wang, Qianwen; Zhang, Yufeng; Qian, Shuai; Peng, Shaohong; Zhang, Qian; Wong, Chun-Ho; Chan, H Y Edwin; Zuo, Zhong

    2016-06-01

    The current study aims to investigate the pharmacokinetics and brain uptake of HIV-1 replication inhibitor DB213 via a developed LC/MS/MS analytical method. A sensitive, selective, accurate and reliable LC/MS/MS method for determination and quantification of DB213 in rat plasma and brain was developed and validated. A triple quadrupole mass spectrometer equipped with electrospray ionization (ESI) source was applied for the detection of DB213 and benzamidine (Internal Standard). The analytes were quantified by using multiple reaction monitoring (MRM) mode with m/z 333.4→86.1 and m/z 121.2→104 for DB213 and benzamidine respectively. Chromatographic separation of DB213 and benzamidine was achieved on a SunFire C8 (4.6×250mm, i.d. 5μm) analytical column with gradient elution of a mobile phase consisted of acetonitrile and 20mM ammonium formate buffer (containing 0.5% formic acid). The method achieved good linearity from 1.95∼1000ng/ml (r(2)=0.999) in plasma and 0.98∼125ng/ml (r(2)=0.999) in brain. The validated method was successfully applied to plasma pharmacokinetics (PK) and brain uptake of intravenous administration of DB213 water solution (1mg/kg) to Sprague-Dawley rats. It was found that the area under the plasma concentration-time curve from 0 to 360min (AUC0→360min) was 184422.1±42450.8ngmin/ml and the elimination half-life of DB213 after intravenous administration was 70.9±16.1min. In addition, DB213 has demonstrated a potential to cross the blood-brain barrier via intravenous administration with a brain tissue concentration of 11.3±3.6ng/g peaked at 30min post-dosing. PMID:26999321

  12. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors.

    PubMed

    Brenner, Bluma G; Lowe, Matthew; Moisi, Daniela; Hardy, Isabelle; Gagnon, Simon; Charest, Hugues; Baril, Jean Guy; Wainberg, Mark A; Roger, Michel

    2011-05-01

    We used genotypic and phylogenetic analysis to determine integrase diversity among subtypes, and studied natural polymorphisms and mutations implicated in resistance to integrase inhibitors (INI) in treatment-naïve persons (n = 220) and -experienced individuals (n = 24). Phylogenetics revealed 7 and 10% inter-subtype diversity in the integrase and reverse transcriptase (RT)/protease regions, respectively. Integrase sequencing identified a novel A/B recombinant in which all viruses in a male-sex-male (MSM) transmission cluster (n = 12) appeared to possess subtype B in integrase and subtype A in the remainder of the pol region. Natural variations and signature polymorphisms were observed at codon positions 140, 148, 151, 157, and 160 among HIV subtypes. These variations predicted higher genetic barriers to G140S and G140C in subtypes C, CRF02_AG, and A/CRF01_AE, as well as higher genetic barriers toward acquisition of V151I in subtypes CRF02_AG and A/CRF01_AE. The E157Q and E160Q mutational motif was observed in 35% of INI-naïve patients harboring subtype C infections, indicating intra-subtype variations. Thirteen patients failed raltegravir (RAL)-containing regimens within 8 ± 1 months, in association with the major Q148K/R/H and G140A/S (n = 8/24) or N155H (n = 5/24) mutational pathways. Of note, the remaining patients on RAL regimens for 14 ± 3 months harbored no or only minor integrase mutations/polymorphisms (T66I, T97A, H114P, S119P, A124S, G163R, I203M, R263K). These results demonstrate the importance of understanding subtype variability in the development of resistance to INIs. PMID:21360548

  13. A broad spectrum anti-HIV inhibitor significantly disturbs V1/V2 domain rearrangements of HIV-1 gp120 and inhibits virus entry.

    PubMed

    Berinyuy, Emiliene; Soliman, Mahmoud E S</