Science.gov

Sample records for hiv-1 poxvirus immunizations

  1. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1.

    PubMed

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C C; Parrish, Erica H; Learn, Gerald H; West, Anthony P; Bjorkman, Pamela J; Schlesinger, Sarah J; Seaman, Michael S; Czartoski, Julie; McElrath, M Juliana; Pfeifer, Nico; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-05-20

    3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  2. Evaluation of Immune Survival Factors in Pediatric HIV-1 Infection

    PubMed Central

    SHEARER, WILLIAM T.; EASLEY, KIRK A.; GOLDFARB, JOHANNA; JENSON, HAL B.; ROSENBLATT, HOWARD M.; KOVACS, ANDREA; MCINTOSH, KENNETH

    2015-01-01

    Peripheral blood CD4+ and CD8+ T cells, CD19+/20+ B cells, and serum immunoglobulins (Igs) have been implicated as survival factors for pediatric HIV-1 infection. To determine which of these immune factors might be important in predicting survival, we studied HIV-1 vertically infected (HIV-1+) children over a 5-year period. Peripheral blood lymphocytes and Igs were measured in 298 HIV-1+ children, who were classified as survivors or nonsurvivors, and in 463 HIV-1 vertically exposed and noninfected (HIV-1–) children. Measurements of other possible survival factors were included in this study: albumin, hemoglobin, lactic dehydrogenase (LDH), and HIV-1 RNA levels. Survivors had significantly higher CD4+ T-cell, CD8+ T-cell, and CD19+/CD20+ B-cell counts and serum IgG levels, but lower serum IgA and IgM levels than nonsurvivors. Serum albumin and blood hemoglobin levels were higher, but serum LDH and HIV-1 RNA levels were lower in the survivors compared to non-survivors. In univariable analysis, factors affecting survival were baseline CD4+ T-cell and CD8+ T-cell counts, IgG, albumin, hemoglobin, LDH, and HIV-1 RNA (all p < 0.001). In multivariable analysis, high baseline CD4+ T-cell count, IgG and albumin levels, and low baseline HIV-1 RNA load remained important factors for survival. Serum IgG level has been identified as an immune factor that independently predicts survival, in addition to the already established CD4+ T-cell count. The HIV-1 RNA and serum albumin levels also predicted survival. PMID:11144332

  3. Immune reconstitution and vaccination outcome in HIV-1 infected children

    PubMed Central

    Cagigi, Alberto; Cotugno, Nicola; Giaquinto, Carlo; Nicolosi, Luciana; Bernardi, Stefania; Rossi, Paolo; Douagi, Iyadh; Palma, Paolo

    2012-01-01

    Current evidence on routine immunization of HIV-1 infected children point out the need for a special vaccine schedule in this population. However, optimal strategies for identifying individuals susceptible to infections, and then offering them sustained protection through appropriate immunization schedule, both in terms of timing and number of vaccine doses, still remain to be elucidated. Understanding the degree of immune recovery after HAART initiation is important in guiding administration of routine vaccination in HIV-1 infected children. Although quantitative measures (e.g., CD4+ T-cell counts and immunoglobulin levels) are frequently performed to evaluate immune parameters, these measures do not fully mirror functional immune recovery. Here, we will review the status of single mandatory and recommended vaccines for HIV-1 infected children in relation to immune recovery after HAART initiation with the aim of identifying new means to help design personalized vaccine schedules for this population. PMID:22906931

  4. HIV-1 and the immune response to TB

    PubMed Central

    Walker, Naomi F; Meintjes, Graeme; Wilkinson, Robert J

    2013-01-01

    TB causes 1.4 million deaths annually. HIV-1 infection is the strongest risk factor for TB. The characteristic immunological effect of HIV is on CD4 cell count. However, the risk of TB is elevated in HIV-1 infected individuals even in the first few years after HIV acquisition and also after CD4 cell counts are restored with antiretroviral therapy. In this review, we examine features of the immune response to TB and how this is affected by HIV-1 infection and vice versa. We discuss how the immunology of HIV–TB coinfection impacts on the clinical presentation and diagnosis of TB, and how antiretroviral therapy affects the immune response to TB, including the development of TB immune reconstitution inflammatory syndrome. We highlight important areas of uncertainty and future research needs. PMID:23653664

  5. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles

    PubMed Central

    2011-01-01

    Background There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. Methods Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. Results This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody

  6. HIV-1 evades innate immune recognition through specific cofactor recruitment.

    PubMed

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J; Price, Amanda J; Blondeau, Caroline; Hilditch, Laura; Jacques, David A; Selwood, David L; James, Leo C; Noursadeghi, Mahdad; Towers, Greg J

    2013-11-21

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages. PMID:24196705

  7. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  8. Structure and immune recognition of trimeric prefusion HIV-1 Env

    PubMed Central

    Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr; Georgiev, Ivelin S.; Soto, Cinque; Gorman, Jason; Huang, Jinghe; Acharya, Priyamvada; Chuang, Gwo-Yu; Ofek, Gilad; Stewart-Jones, Guillaume B. E.; Stuckey, Jonathan; Bailer, Robert T.; Joyce, M. Gordon; Louder, Mark K.; Tumba, Nancy; Yang, Yongping; Zhang, Baoshan; Cohen, Myron S.; Haynes, Barton F.; Mascola, John R.; Morris, Lynn; Munro, James B.; Blanchard, Scott C.; Mothes, Walther; Connors, Mark; Kwong, Peter D.

    2015-01-01

    The HIV-1-envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a postfusion state. As the sole viral antigen on the HIV-1-virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5-Å resolution for an HIV-1-Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the prefusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Prefusion gp41 encircles N- and C-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry likely involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the prefusion closed spike: we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation. PMID:25296255

  9. Innate immune reconstitution with suppression of HIV-1

    PubMed Central

    Scully, Eileen P.; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Chang, J. Judy; Bosch, Ronald J.; Altfeld, Marcus

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  10. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  11. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Robert J

    2016-03-01

    Patients co-infected with HIV-1 and tuberculosis (TB) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) following commencement of antiretroviral therapy (ART). TB-IRIS is characterized by transient but severe localized or systemic inflammatory reactions against Mycobacterium tuberculosis antigens. Here, we review the risk factors and clinical management of TB-IRIS, as well as the roles played by different aspects of the immune response in contributing to TB-IRIS pathogenesis. PMID:26423994

  12. A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART

    PubMed Central

    Gómez, Carmen Elena; Perdiguero, Beatriz; García-Arriaza, Juan; Cepeda, Victoria; Sánchez-Sorzano, Carlos Óscar; Mothe, Beatriz; Jiménez, José Luis; Muñoz-Fernández, María Ángeles; Gatell, Jose M.; López Bernaldo de Quirós, Juan Carlos; Brander, Christian; García, Felipe; Esteban, Mariano

    2015-01-01

    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1-specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses. Conclusion MVA-B vaccination represents a feasible strategy to improve T cell responses in individuals with pre-existing HIV-1-specific immunity. Trial Registration ClinicalTrials.gov NCT01571466 PMID:26544853

  13. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses

    PubMed Central

    Bidgood, Susanna R.; Mercer, Jason

    2015-01-01

    As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs. PMID:26308043

  14. Potentiation of the immune response in HIV-1+ individuals.

    PubMed

    Schmitz, T; Underwood, R; Khiroya, R; Bachovchin, W W; Huber, B T

    1996-03-15

    T cells from HIV-1+ individuals have a defect in mounting an antigen specific response. HIV-1 Tat has been implicated as the causative agent of this immunosuppression. We have previously shown that HIV-1 Tat inhibits antigen specific proliferation of normal T cells in vitro by binding to the accessory molecule CD26, a dipeptidase expressed on the surface of activated T cells. We now demonstrate that the defective in vitro recall antigen response in HIV-1 infected individuals can be restored by the addition of soluble CD26, probably by serving as a decoy receptor for HIV-1 Tat. The restored response is comparable to that of an HIV-1- individual, suggesting that early in HIV infection there is a block in the memory cell response, rather than deletion of these cells. PMID:8617888

  15. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily

    PubMed Central

    Nelson, Christopher A.; Epperson, Megan L.; Singh, Sukrit; Elliott, Jabari I.; Fremont, Daved H.

    2015-01-01

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection. PMID:26343707

  16. Regulatory T cells and chronic immune activation in human immunodeficiency virus 1 (HIV-1)-infected children

    PubMed Central

    Freguja, R; Gianesin, K; Mosconi, I; Zanchetta, M; Carmona, F; Rampon, O; Giaquinto, C; De Rossi, A

    2011-01-01

    The function of CD4+ T cells with regulatory activity (Tregs) is the down-regulation of immune responses. This suppressive activity may limit the magnitude of effector responses, resulting in failure to control human immunodeficiency virus 1 (HIV-1) infection, but may also suppress chronic immune activation, a characteristic feature of HIV-1 disease. We evaluated the correlation between viral load, immune activation and Tregs in HIV-1-infected children. Eighty-nine HIV-1-infected children (aged 6–14 years) were included in the study and analysed for HIV-1 plasmaviraemia, HIV-1 DNA load, CD4 and CD8 cell subsets. Treg cells [CD4+ CD25highCD127lowforkhead box P3 (FoxP3high)] and CD8-activated T cells (CD8+CD38+) were determined by flow cytometry. Results showed that the number of activated CD8+CD38+ T cells increased in relation to HIV-1 RNA plasmaviraemia (r = 0·403, P < 0·0001). The proportion of Tregs also correlated positively with HIV-1 plasmaviraemia (r = 0·323, P = 0·002), but correlated inversely with CD4+ cells (r = −0·312, P = 0·004), thus suggesting a selective expansion along with increased viraemia and CD4+ depletion. Interestingly, a positive correlation was found between the levels of Tregs and CD8+CD38+ T cells (r = 0·305, P = 0·005), and the percentage of Tregs tended to correlate with HIV-1 DNA load (r = 0·224, P = 0·062). Overall, these findings suggest that immune activation contributes to the expansion of Treg cells. In turn, the suppressive activity of Tregs may impair effector responses against HIV-1, but appears to be ineffective in limiting immune activation. PMID:21438872

  17. Interactions between HIV-1 and the Cell-Autonomous Innate Immune System

    PubMed Central

    Towers, Greg J.; Noursadeghi, Mahdad

    2014-01-01

    HIV-1 was recognized as the cause of AIDS in humans in 1984. Despite 30 years of intensive research, we are still unraveling the molecular details of the host-pathogen interactions that enable this virus to escape immune clearance and cause immunodeficiency. Here we explore a series of recent studies that consider how HIV-1 interacts with the cell-autonomous innate immune system as it navigates its way in and out of host cells. We discuss how these studies improve our knowledge of HIV-1 and host biology as well as increase our understanding of transmission, persistence, and immunodeficiency and the potential for therapeutic or prophylactic interventions. PMID:25011104

  18. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization

    PubMed Central

    McCoy, Laura E.; Quigley, Anna Forsman; Strokappe, Nika M.; Bulmer-Thomas, Bianca; Seaman, Michael S.; Mortier, Daniella; Rutten, Lucy; Chander, Nikita; Edwards, Carolyn J.; Ketteler, Robin; Davis, David; Verrips, Theo

    2012-01-01

    Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides. PMID:22641382

  19. ACTG 5197: A Placebo Controlled Trial of Immunization of HIV-1 Infected Persons with a Replication Deficient Ad5 Vaccine Expressing the HIV-1 Core Protein

    PubMed Central

    Schooley, Robert T.; Spritzler, John; Wang, Hongying; Lederman, Michael M.; Havlir, Diane; Kuritzkes, Daniel R.; Pollard, Richard; Battaglia, Cathy; Robertson, Michael; Mehrotra, Devan; Casimiro, Danilo; Cox, Kara; Schock, Barbara

    2010-01-01

    Background HIV-1 specific cellular immunity contributes to control of HIV-1 replication. HIV-1 infected volunteers on antiretroviral therapy received a replication defective Ad5 HIV-1 gag vaccine in a randomized, blinded therapeutic vaccination study. Methods HIV-1-infected vaccine or placebo recipients underwent a 16-wk analytical treatment interruption (ATI). The log10 HIV-1 RNA at the ATI set point and time averaged area under the curve (TA-AUC) served as co-primary endpoints. Immune responses were measured by intracellular cytokine staining and CFSE dye dilution. Results Vaccine benefit trends were seen for both primary endpoints, but did not reach a pre-specified p ≤ 0.025 level of significance. The estimated shift in TA-AUC and set point were 0.24 (unadjusted p=0.04) and 0.26 (unadjusted p=0.07) log10 copies lower in the vaccine than in the placebo arm. HIV-1 gag-specific CD4+ interferon-γ producing cells were an immunologic correlate of viral control. Conclusion The vaccine was generally safe and well tolerated. Despite a trend favoring viral suppression among vaccine recipients, differences in HIV-1 RNA levels did not meet the pre-specified level of significance. Induction of HIV-1 gag-specific CD4 cells correlated with control of viral replication in vivo. Future immunogenicity studies should require a substantially higher immunogenicity threshold before an ATI is contemplated. PMID:20662716

  20. Modulation Effect of HIV-1 Viral Proteins and Nicotine on Expression of the Immune-Related Genes in Brain of the HIV-1 Transgenic Rats.

    PubMed

    Yang, Zhongli; Nesil, Tanseli; Connaghan, Kaitlyn P; Li, Ming D; Chang, Sulie L

    2016-09-01

    The human immunodeficiency virus-1 transgenic (HIV-1Tg) rat is a non-infectious rodent model for HIV-1 infection which develops altered immune-responses similar to those in persons infected with HIV-1. HIV-1Tg and F344 rats respond significantly different to morphine, ethanol, nicotine and other psychostimulants, although the molecular mechanisms underlying these differences remain largely undetermined. Here, we compared expression of 52 immune-related genes in the prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) of HIV-1Tg and F344 rats treated with either nicotine (0.4 mg/kg nicotine, base, s.c.) or saline for 27 days, to identify differentially expressed genes in the presence of HIV-1 with and without nicotine treatment. Using quantitative RT-PCR array, we measured RNA expression levels. Results showed that RNA expression of CASP3, CCL5, CX3CL1, CX3CR1, IL1α, LRF4, LFR7, TGFβ1 and TLR4 in NAc, CCL2, CCL5, TGFβ1 and TLR4 in PFC, and CASP3, CX3CR1, IFNα1, IL1β and IL6 in VTA was significantly modulated in HIV-1Tg rats compared with F344 rats. IL1α showed a 58 % (P = 0.000072) decrease and IRF6 showed a 93.7 % increase (P = 0.000227) in the NAc of HIV-1Tg compared with F344 rats; results remained significant after correction for multiple testing. We also found that several genes were significantly modulated by nicotine in HIV-1Tg rats while only a small number of immune-related genes were altered by nicotine in F344 rats. These findings imply that HIV-1 viral proteins greatly impact immune function and alter responsiveness to nicotine in certain immune-related genes. PMID:27147085

  1. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGESBeta

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; Mack, Wendy J.; Lee, Ha Youn

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  2. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    PubMed

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? PMID:27109285

  3. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic

    PubMed Central

    Kinloch, Natalie N.; MacMillan, Daniel R.; Le, Anh Q.; Cotton, Laura A.; Bangsberg, David R.; Buchbinder, Susan; Carrington, Mary; Fuchs, Jonathan; Harrigan, P. Richard; Koblin, Beryl; Kushel, Margot; Markowitz, Martin; Mayer, Kenneth; Milloy, M. J.; Schechter, Martin T.; Wagner, Theresa; Walker, Bruce D.; Carlson, Jonathan M.; Poon, Art F. Y.

    2015-01-01

    ABSTRACT Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may

  4. The combination of immunosuppression and carrier cells significantly enhances the efficacy of oncolytic poxvirus in the pre-immunized host.

    PubMed

    Guo, Z S; Parimi, V; O'Malley, M E; Thirunavukarasu, P; Sathaiah, M; Austin, F; Bartlett, D L

    2010-12-01

    Pre-existing antipoxvirus immunity in cancer patients presents a severe barrier to poxvirus-mediated oncolytic virotherapy. We have explored strategies of immunosuppression (IS) and/or immune evasion for efficient delivery of an oncolytic double-deleted vaccinia virus (vvDD) to tumors in the pre-immunized mice. Transient IS using immunosuppressive drugs, including tacrolimus, mycophenolate mofetil and methylprednisolone sodium succinate, have been used successfully in organ transplantation. This drug cocktail alone did not enhance viral recovery from subcutaneous tumor after systemic viral delivery. Using B-cell knockout mice, we confirmed that the neutralizing antibodies had a significant role in preventing poxvirus infection. Using a MC38 peritoneal carcinomatosis model, we found that the combination of IS and tumor cells as carriers led to the most effective viral delivery, viral replication and viral spread inside the tumor mass. We found that our immunosuppressive drug cocktail facilitated recruitment of tumor-associated macrophages and conversion into an immunosuppressive M2 phenotype (interleukin (IL)-10(hi)/IL-12(low)) in the tumor microenvironment. A combination of IS and carrier cells led to significantly prolonged survival in the tumor model. These results showed the feasibility of treating pre-vaccinated patients with peritoneal carcinomatosis using an oncolytic poxvirus and a combined immune intervention strategy. PMID:20703311

  5. The Dual Role of Dendritic cells in the Immune Response to HIV-1 Infection

    PubMed Central

    Hogue, Ian B.; Bajaria, Seema H.; Fallert, Beth A.; Qin, Shulin; Reinhart, Todd A.; Kirschner, Denise E.

    2009-01-01

    Many aspects of the complex interaction between HIV-1 and the human immune system remain elusive. Our objective is to study these interactions, focusing on the specific roles of dendritic cells (DCs). DCs enhance HIV-1 infection processes as well as promote an anti-viral immune response. We explore the implications of these dual roles. We present and analyse a mathematical model describing the dynamics of HIV-1, CD4+ and CD8+ T-cells, and DCs interacting in a human lymph node. We validate the behaviour of our model against non-human primate SIV experimental data and published human HIV-1 data. Our model qualitatively and quantitatively recapitulates clinical HIV-1 infection dynamics. We perform sensitivity analyses on the model to determine which mechanisms strongly affect infection dynamics. Sensitivity analysis identifies system interactions that contribute to infection progression, including DC-related mechanisms. We compare DC-dependent and DC-independent routes of CD4+ T-cell infection. The model predicts that simultaneous priming and infection of T cells by DCs drives early infection dynamics when activated T-helper cell numbers are low. Further, our model predicts that, while direct failure of DC function and an indirect failure due to loss of CD4+ T-cell help are both significant contributors to infection dynamics, our results support the hypothesis that the former has a more significant impact on HIV-1 immunopathogenesis. PMID:18753232

  6. Roles of HIV-1 capsid in viral replication and immune evasion.

    PubMed

    Le Sage, Valerie; Mouland, Andrew J; Valiente-Echeverría, Fernando

    2014-11-26

    The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents. PMID:25036886

  7. Immune-Based Approaches to the Prevention of Mother-to-child-Transmission of HIV-1: Active and Passive Immunization

    PubMed Central

    Lohman-Payne, Barb; Slyker, Jennifer; Rowland-Jones, Sarah L.

    2010-01-01

    Synopsis Despite more than two decades of research, an effective vaccine that can prevent HIV-1 infection in populations exposed to the virus remains elusive. In the pursuit of an HIV-1 vaccine, does prevention of exposure to maternal HIV-1 in utero, at birth or in early life through breast-milk require special consideration? In this article we will review what is known about the immune mechanisms of susceptibility and resistance to mother-to-child transmission (MTCT) of HIV-1 and will summarise studies that have used passive or active immunisation strategies to interrupt -MTCT of HIV-1. We will also describe potentially modifiable infectious co-factors that may enhance transmission and/or disease progression (especially in the developing world). Ultimately an effective prophylactic vaccine against HIV-1 infection will need to be deployed as part of the Extended Programme of Immunisation (EPI) recommended by the World Health Organisation (WHO) for use in developing countries, so it is important to understand how the infant immune system responds to HIV-1 antigens, both in natural infection and presented by candidate vaccines. PMID:21078451

  8. Reconstructing the temporal progression of HIV-1 immune response pathways

    PubMed Central

    Jain, Siddhartha; Arrais, Joel; Venkatachari, Narasimhan J.; Ayyavoo, Velpandi; Bar-Joseph, Ziv

    2016-01-01

    Motivation: Most methods for reconstructing response networks from high throughput data generate static models which cannot distinguish between early and late response stages. Results: We present TimePath, a new method that integrates time series and static datasets to reconstruct dynamic models of host response to stimulus. TimePath uses an Integer Programming formulation to select a subset of pathways that, together, explain the observed dynamic responses. Applying TimePath to study human response to HIV-1 led to accurate reconstruction of several known regulatory and signaling pathways and to novel mechanistic insights. We experimentally validated several of TimePaths’ predictions highlighting the usefulness of temporal models. Availability and Implementation: Data, Supplementary text and the TimePath software are available from http://sb.cs.cmu.edu/timepath Contact: zivbj@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307624

  9. The growth of human HIV-1 infected U937 cells in immune-deprived mice.

    PubMed

    Chernukhin, I V; Chepurnov, A A; Gaidul, K V

    1995-01-01

    We report in vivo growth of human promonocytic cells infected with HIV-1 presented in new mouse model. Cloned U937 cells chronically infected with HIV-1 were grafted in (CBA*C57B1/6)F1 mice deprived of immunity by thymectomia and total body irradiation with subsequent marrow reconstitution. Nine weeks after cell inoculation, HIV-1-positive cells were found only in mice that received an additional single dose of cyclophosphamide (100 mg/kg bw) prior to transplantation, whereas, in mice without further immune deprivation, the complete elimination of cells bearing viral antigen occurred already on the seventh day after transplantation. The approach described may be suitable for in vivo development of antiviral drugs against latent infection in macrophage-like cells which represent a serious problem in therapy of AIDS in humans. PMID:8562863

  10. Simulating the immune response to the HIV-1 virus with cellular automata

    NASA Astrophysics Data System (ADS)

    Kougias, Ch. F.; Schulte, J.

    1990-07-01

    Two cellular automata models are presented which simulate the immune response to the HIV-1 virus at the early stage of the infection. The simple model A is based on the generalized nearest neighbor interaction, and the complex model B on the explicitly defined local interactions between the neighboring sites. These two models are discussed in the context of related work by Pandey.

  11. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1.

    PubMed

    Jacobson, Jeffrey M; Bosinger, Steven E; Kang, Minhee; Belaunzaran-Zamudio, Pablo; Matining, Roy M; Wilson, Cara C; Flexner, Charles; Clagett, Brian; Plants, Jill; Read, Sarah; Purdue, Lynette; Myers, Laurie; Boone, Linda; Tebas, Pablo; Kumar, Princy; Clifford, David; Douek, Daniel; Silvestri, Guido; Landay, Alan L; Lederman, Michael M

    2016-07-01

    Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390. PMID:26935044

  12. Neutralizing antibodies to HIV-1 induced by immunization

    PubMed Central

    McCoy, Laura E.

    2013-01-01

    Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine. PMID:23401570

  13. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates.

    PubMed

    Tomaras, Georgia D; Haynes, Barton F

    2014-03-01

    Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA), VAX004 (Vaxgen, Inc.), HIV-1 Vaccine Trials Network (HVTN) 502 (Step), HVTN 503 (Phambili), RV144 (sponsored by the U.S. Military HIV Research Program, MHRP) and HVTN 505). Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates) that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine. PMID:24932411

  14. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  15. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1

    PubMed Central

    2013-01-01

    Type I interferon (IFN-I) play a critical role in the innate immune response against viral infections. They actively participate in antiviral immunity by inducing molecular mechanisms of viral restriction and by limiting the spread of the infection, but they also orchestrate the initial phases of the adaptive immune response and influence the quality of T cell immunity. During infection with the human immunodeficiency virus type 1 (HIV-1), the production of and response to IFN-I may be severely altered by the lymphotropic nature of the virus. In this review I consider the different aspects of virus sensing, IFN-I production, signalling, and effects on target cells, with a particular focus on the alterations observed following HIV-1 infection. PMID:24455433

  16. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques.

    PubMed

    Zurawski, Gerard; Zurawski, Sandra; Flamar, Anne-Laure; Richert, Laura; Wagner, Ralf; Tomaras, Georgia D; Montefiori, David C; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Bonnabau, Henri; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E; Kao, Shing-Fen; Yates, Nicole L; LaBranche, Celia; Jacobs, Bertram L; Kibler, Karen; Asbach, Benedikt; Kliche, Alexander; Salazar, Andres; Reed, Steve; Self, Steve; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Thiebaut, Rodolphe; Pantaleo, Giuseppe; Levy, Yves

    2016-01-01

    Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1. PMID:27077384

  17. Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques

    PubMed Central

    Zurawski, Sandra; Flamar, Anne-Laure; Richert, Laura; Wagner, Ralf; Tomaras, Georgia D.; Montefiori, David C.; Roederer, Mario; Ferrari, Guido; Lacabaratz, Christine; Bonnabau, Henri; Klucar, Peter; Wang, Zhiqing; Foulds, Kathryn E.; Kao, Shing-Fen; Yates, Nicole L.; LaBranche, Celia; Jacobs, Bertram L.; Kibler, Karen; Asbach, Benedikt; Kliche, Alexander; Salazar, Andres; Reed, Steve; Self, Steve; Gottardo, Raphael; Galmin, Lindsey; Weiss, Deborah; Cristillo, Anthony; Thiebaut, Rodolphe; Pantaleo, Giuseppe; Levy, Yves

    2016-01-01

    Improved antigenicity against HIV-1 envelope (Env) protein is needed to elicit vaccine-induced protective immunity in humans. Here we describe the first tests in non-human primates (NHPs) of Env gp140 protein fused to a humanized anti-LOX-1 recombinant antibody for delivering Env directly to LOX-1-bearing antigen presenting cells, especially dendritic cells (DC). LOX-1, or 1ectin-like oxidized low-density lipoprotein (LDL) receptor-1, is expressed on various antigen presenting cells and endothelial cells, and is involved in promoting humoral immune responses. The anti-LOX-1 Env gp140 fusion protein was tested for priming immune responses and boosting responses in animals primed with replication competent NYVAC-KC Env gp140 vaccinia virus. Anti-LOX-1 Env gp140 vaccination elicited robust cellular and humoral responses when used for either priming or boosting immunity. Co-administration with Poly ICLC, a TLR3 agonist, was superior to GLA, a TLR4 agonist. Both CD4+ and CD8+ Env-specific T cell responses were elicited by anti-LOX-1 Env gp140, but in particular the CD4+ T cells were multifunctional and directed to multiple epitopes. Serum IgG and IgA antibody responses induced by anti-LOX-1 Env gp140 against various gp140 domains were cross-reactive across HIV-1 clades; however, the sera neutralized only HIV-1 bearing sequences most similar to the clade C 96ZM651 Env gp140 carried by the anti-LOX-1 vehicle. These data, as well as the safety of this protein vaccine, justify further exploration of this DC-targeting vaccine approach for protective immunity against HIV-1. PMID:27077384

  18. Intranasal HIV-1-gp160-DNA/gp41 peptide prime-boost immunization regimen in mice results in long-term HIV-1 neutralizing humoral mucosal and systemic immunity.

    PubMed

    Devito, Claudia; Zuber, Bartek; Schröder, Ulf; Benthin, Reinhold; Okuda, Kenji; Broliden, Kristina; Wahren, Britta; Hinkula, Jorma

    2004-12-01

    An intranasal DNA vaccine prime followed by a gp41 peptide booster immunization was compared with gp41 peptide and control immunizations. Serum HIV-1-specific IgG and IgA as well as IgA in feces and vaginal and lung secretions were detected after immunizations. Long-term humoral immunity was studied for up to 12 mo after the booster immunization by testing the presence of HIV-1 gp41- and CCR5-specific Abs and IgG/IgA-secreting B lymphocytes in spleen and regional lymph nodes in immunized mice. A long-term IgA-specific response in the intestines, vagina, and lungs was obtained in addition to a systemic immune response. Mice immunized only with gp41 peptides and L3 adjuvant developed a long-term gp41-specific serum IgG response systemically, although over a shorter period (1-9 mo), and long-term mucosal gp41-specific IgA immunity. HIV-1-neutralizing serum Abs were induced that were still present 12 mo after booster immunization. HIV-1 SF2-neutralizing fecal and lung IgA was detectable only in the DNA-primed mouse groups. Intranasal DNA prime followed by one peptide/L3 adjuvant booster immunization, but not a peptide prime followed by a DNA booster, was able to induce B cell memory and HIV-1-neutralizing Abs for at least half of a mouse's life span. PMID:15557206

  19. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes.

    PubMed

    Abdulhaqq, S A; Zorrilla, C; Kang, G; Yin, X; Tamayo, V; Seaton, K E; Joseph, J; Garced, S; Tomaras, G D; Linn, K A; Foulkes, A S; Azzoni, L; VerMilyea, M; Coutifaris, C; Kossenkov, A V; Showe, L; Kraiselburd, E N; Li, Q; Montaner, L J

    2016-07-01

    Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: P<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSWs also had increased levels of interferon-ɛ (IFNɛ) gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses. PMID:26555708

  20. HIV-1 Negative Female Sex Workers Sustain High Cervical IFNε, Low Immune Activation and Low Expression of HIV-1 Required Host Genes

    PubMed Central

    Abdulhaqq, Shaheed A.; Zorrilla, Carmen; Kang, Guobin; Yin, Xiangfan; Tamayo, Vivian; Seaton, Kelly E.; Joseph, Jocelin; Garced, Sheyla; Tomaras, Georgia D.; Linn, Kristin A.; Foulkes, Andrea S.; Azzoni, Livio; VerMilyea, Matthew; Coutifaris, Christos; Kossenkov, Andrew V.; Showe, Louise; Kraiselburd, Edmundo N.; Li, Qingsheng; Montaner, Luis J.

    2015-01-01

    Sex workers within high HIV endemic areas are often a target population where anti-HIV prophylactic strategies are tested. We hypothesize that in women with high levels of genital exposure to semen changes in cervicovaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity, immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers [FSW] (n=50), as compared to control women [CG] (n=32). FSW had low to absent HIV-1 specific immune responses with significantly lower CD38 expression on circulating CD4+ or CD8+ T-Cells (both: p<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSW also had increased levels of Interferon-ε gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSW was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervicovaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in absence of HIV-specific responses. PMID:26555708

  1. Autoimmune anti-HIV-1gp120 antibody with antiidiotype-like activity in sera and immune complexes of HIV-1-related immunologic thrombocytopenia.

    PubMed Central

    Karpatkin, S; Nardi, M

    1992-01-01

    Autoimmune antiidiotype-like antibody (Ab2) directed against anti-HIV-1gp120 (Ab1) was found in high titer in the sera of 10 consecutive homosexual and 11 narcotic addict HIV-1-related immunologic thrombocytopenia (HIV-1-ITP) patients, was barely detectable in 10 nonthrombocytopenic HIV-1 sero-positive individuals, and was not detectable in 5 normal subjects by use of a solid-phase RIA. Reactivity of autologous Ab2 for Ab1 was 4-120-fold greater than Ab2 for homologous Ab1. Affinity-purified Ab2 did not block the binding of affinity-purified Ab1 to its HIV-1gp120 epitopes on immunoblot, indicating the absence of "internal image" antiidiotype. Both Ab1 and Ab2 are precipitable from sera with polyethylene glycol (PEG) and present in a macromolecular complex that is excluded by gel filtration on G200 and contains IgG, IgM, C3, and the anti-F(ab')2 antiidiotype-like complex. PEG-precipitable complexes bind to platelets in a saturation-dependent manner. Neither affinity-purified Ab1 nor Ab2 binds to platelets. However, the combination of Ab1 and Ab2 (preincubated for 2 h at 22 degrees C) binds to platelets in a saturation-dependent manner at an optimum ratio range of 10-20:1. Ab2 reactivity correlates with serum PEG-precipitable immune complex level (r = 0.91; P less than 0.001) and with thrombocytopenia (r = 0.89; P less than 0.001). We suggest that the anti-HIV-1gp120 antiidiotype-like complex contributes to the markedly elevated platelet Ig and C3 level of HIV-1-ITP patients and propose that this may contribute to their thrombocytopenia. Images PMID:1737832

  2. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia.

    PubMed

    Dillon, S M; Lee, E J; Kotter, C V; Austin, G L; Dong, Z; Hecht, D K; Gianella, S; Siewe, B; Smith, D M; Landay, A L; Robertson, C E; Frank, D N; Wilson, C C

    2014-07-01

    Human immunodeficiency virus-1 (HIV-1) infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T-cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T-cell activation, inflammation, and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1-infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared with uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1-infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation, and blood T-cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  3. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia

    PubMed Central

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Dong, Z; Hecht, DK; Gianella, S; Siewe, B; Smith, DM; Landay, AL; Robertson, CE; Frank, DN; Wilson, CC

    2014-01-01

    HIV-1 infection disrupts the intestinal immune system, leading to microbial translocation and systemic immune activation. We investigated the impact of HIV-1 infection on the intestinal microbiome and its association with mucosal T cell and dendritic cell (DC) frequency and activation, as well as with levels of systemic T cell activation, inflammation and microbial translocation. Bacterial 16S ribosomal DNA sequencing was performed on colon biopsies and fecal samples from subjects with chronic, untreated HIV-1 infection and uninfected control subjects. Colon biopsies of HIV-1 infected subjects had increased abundances of Proteobacteria and decreased abundances of Firmicutes compared to uninfected donors. Furthermore at the genus level, a significant increase in Prevotella and decrease in Bacteroides was observed in HIV-1 infected subjects, indicating a disruption in the Bacteroidetes bacterial community structure. This HIV-1-associated increase in Prevotella abundance was associated with increased numbers of activated colonic T cells and myeloid DCs. Principal coordinates analysis demonstrated an HIV-1-related change in the microbiome that was associated with increased mucosal cellular immune activation, microbial translocation and blood T cell activation. These observations suggest that an important relationship exists between altered mucosal bacterial communities and intestinal inflammation during chronic HIV-1 infection. PMID:24399150

  4. Dynamic Antibody Specificities and Virion Concentrations in Circulating Immune Complexes in Acute to Chronic HIV-1 Infection ▿ †

    PubMed Central

    Liu, Pinghuang; Overman, R. Glenn; Yates, Nicole L.; Alam, S. Munir; Vandergrift, Nathan; Chen, Yue; Graw, Frederik; Freel, Stephanie A.; Kappes, John C.; Ochsenbauer, Christina; Montefiori, David C.; Gao, Feng; Perelson, Alan S.; Cohen, Myron S.; Haynes, Barton F.; Tomaras, Georgia D.

    2011-01-01

    Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection. PMID:21865397

  5. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006.

    PubMed

    Giri, Malavika S; Nebozhyn, Michael; Showe, Louise; Montaner, Luis J

    2006-11-01

    Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo. PMID:16940334

  6. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    PubMed

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-01

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors. PMID:27610569

  7. Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers

    PubMed Central

    Makhubele, Tinyiko G.; Steel, Helen C.; Anderson, Ronald; van Dyk, Gisela; Theron, Annette J.; Rossouw, Theresa M.

    2016-01-01

    Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14), beta-2 microglobulin (β2M), CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1). Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P < 0.01–P < 0.0001). The effects of antiretroviral therapy (ART) and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group. PMID:27019552

  8. Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial

    PubMed Central

    Kwon, Douglas S.; Macklin, Eric A.; Shopis, Janet R.; McLean, Anna P.; McBrine, Nicole; Flynn, Theresa; Peter, Lauren; Sbrolla, Amy; Kaufmann, Daniel E.; Porichis, Filippos; Walker, Bruce D.; Bhardwaj, Nina; Barouch, Dan H.; Kavanagh, Daniel G.

    2016-01-01

    Background: HIV-1 eradication may require reactivation of latent virus along with stimulation of HIV-1-specific immune responses to clear infected cells. Immunization with autologous dendritic cells (DCs) transfected with viral mRNA is a promising strategy for eliciting HIV-1-specific immune responses. We performed a randomized controlled clinical trial to evaluate the immunogenicity of this approach in HIV-1-infected persons on antiretroviral therapy. Methods: Fifteen participants were randomized 2:1 to receive intradermal immunization with HIV-1 Gag- and Nef-transfected DCs (vaccine) or mock-transfected DCs (placebo) at weeks 0, 2, 6, and 10. All participants also received DCs pulsed with keyhole limpet hemocyanin (KLH) to assess whether responses to a neo-antigen could be induced. Results: After immunization, there were no differences in interferon-gamma enzyme-linked immunospot responses to HIV-1 Gag or Nef in the vaccine or placebo group. CD4 proliferative responses to KLH increased 2.4-fold (P = 0.026) and CD8 proliferative responses to KLH increased 2.5-fold (P = 0.053) after vaccination. There were increases in CD4 proliferative responses to HIV-1 Gag (2.5-fold vs. baseline, 3.4-fold vs. placebo, P = 0.054) and HIV-1 Nef (2.3-fold vs. baseline, 6.3-fold vs. placebo, P = 0.009) among vaccine recipients, but these responses were short-lived. Conclusion: Immunization with DCs transfected with mRNA encoding HIV-1 Gag and Nef did not induce significant interferon-gamma enzyme-linked immunospot responses. There were increases in proliferative responses to HIV-1 antigens and to a neo-antigen, KLH, but the effects were transient. Dendritic cell vaccination should be optimized to elicit stronger and long-lasting immune responses for this strategy to be effective as an HIV-1 therapeutic vaccine. PMID:26379068

  9. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants

    PubMed Central

    2014-01-01

    Background Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers relatively short reads. Results We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes. Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies. Conclusions Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual immune escapes. PMID:24996694

  10. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  11. Influence of recombination on acquisition and reversion of immune escape and compensatory mutations in HIV-1.

    PubMed

    Nagaraja, Pradeep; Alexander, Helen K; Bonhoeffer, Sebastian; Dixit, Narendra M

    2016-03-01

    Following transmission, HIV-1 adapts in the new host by acquiring mutations that allow it to escape from the host immune response at multiple epitopes. It also reverts mutations associated with epitopes targeted in the transmitting host but not in the new host. Moreover, escape mutations are often associated with additional compensatory mutations that partially recover fitness costs. It is unclear whether recombination expedites this process of multi-locus adaptation. To elucidate the role of recombination, we constructed a detailed population dynamics model that integrates viral dynamics, host immune response at multiple epitopes through cytotoxic T lymphocytes, and viral evolution driven by mutation, recombination, and selection. Using this model, we compute the expected waiting time until the emergence of the strain that has gained escape and compensatory mutations against the new host's immune response, and reverted these mutations at epitopes no longer targeted. We find that depending on the underlying fitness landscape, shaped by both costs and benefits of mutations, adaptation proceeds via distinct dominant pathways with different effects of recombination, in particular distinguishing escape and reversion. When adaptation at a single epitope is involved, recombination can substantially accelerate immune escape but minimally affects reversion. When multiple epitopes are involved, recombination can accelerate or inhibit adaptation depending on the fitness landscape. Specifically, recombination tends to delay adaptation when a purely uphill fitness landscape is accessible at each epitope, and accelerate it when a fitness valley is associated with each epitope. Our study points to the importance of recombination in shaping the adaptation of HIV-1 following its transmission to new hosts, a process central to T cell-based vaccine strategies. PMID:26972510

  12. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  13. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice

    PubMed Central

    dela Cruz, Tracy; Cote, Joseph J.; Gordon, Evan J.; Kemp, Felicia; Xavier, Veronica; Franzusoff, Alex; Rountree, Ryan B.; Mandl, Stefanie J.

    2016-01-01

    Poxvirus-based active immunotherapies mediate anti-tumor efficacy by triggering broad and durable Th1 dominated T cell responses against the tumor. While monotherapy significantly delays tumor growth, it often does not lead to complete tumor regression. It was hypothesized that the induced robust infiltration of IFNγ-producing T cells into the tumor could provoke an adaptive immune evasive response by the tumor through the upregulation of PD-L1 expression. In therapeutic CT26-HER-2 tumor models, MVA-BN-HER2 poxvirus immunotherapy resulted in significant tumor growth delay accompanied by a robust, tumor-infiltrating T cell response that was characterized by low to mid-levels of PD-1 expression on T cells. As hypothesized, this response was countered by significantly increased PD-L1 expression on the tumor and, unexpectedly, also on infiltrating T cells. Synergistic benefit of anti-tumor therapy was observed when MVA-BN-HER2 immunotherapy was combined with PD-1 immune checkpoint blockade. Interestingly, PD-1 blockade stimulated a second immune checkpoint molecule, LAG-3, to be expressed on T cells. Combining MVA-BN-HER2 immunotherapy with dual PD-1 plus LAG-3 blockade resulted in comprehensive tumor regression in all mice treated with the triple combination therapy. Subsequent rejection of tumors lacking the HER-2 antigen by treatment-responsive mice without further therapy six months after the original challenge demonstrated long lasting memory and suggested that effective T cell immunity to novel, non-targeted tumor antigens (antigen spread) had occurred. These data support the clinical investigation of this triple therapy regimen, especially in cancer patients harboring PD-L1neg/low tumors unlikely to benefit from immune checkpoint blockade alone. PMID:26910562

  14. [Development of vaccines for HIV-1. Relevance of subtype-specific cellular immunity].

    PubMed

    Rodríguez, Ana María; Turk, Gabriela; Pascutti, María Fernanda; Falivene, Juliana; Gherardi, María Magdalena

    2010-01-01

    It has been almost 30 years since the detection of the first HIV-1 cases and yet an effective and safe vaccine has not been developed. Although, advances in antiretroviral therapy (HAART) have produced a major impact on the pandemic, and even though HIV/aids remains a major concern for developing countries, where access to therapy is limited. The last report from UNAIDS notified 33 million people living with HIV/aids, worldwide, while in Argentina it is estimated that 120,000 persons have been infected. One of the challenges to address and ultimately overcome when developing a vaccine is the high variability of HIV-1. The M group, responsible for the pandemic, is divided into 10 subtypes and several sub-subtypes, in addition to the 48 circulating recombinant forms (CRF) and over one hundred unique recombinant forms (URF). The HIV epidemic in Argentina is as complex as in the rest of the world, characterized by the high prevalence of infections caused by subtype B and BF variants. Despite the wide range of publications focused on the immune response against HIV as well as to vaccine development, how to overcome variability on vaccine antigen selection is still unclear. Studies performed in our laboratory showed the impact of the immunogenicity of BF recombinant variants, both in humans and in animal models. These results are of great concern in vaccine development for our region. PMID:21163746

  15. Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency.

    PubMed

    Takemura, Taichiro; Murakami, Tsutomu

    2012-01-01

    In mature HIV-1 particles, viral capsid (CA) proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating step but also for the later nuclear import step. Identification of proteins that interact with CA to fulfill these functions is, therefore, important for understanding the unknown HIV-1 replication machinery. CA proteins can also be targets of the host immune response. Notably, some HLA-restricted cytotoxic T-lymphocyte (CTL) responses that recognize CA functional regions can greatly contribute to delay in AIDS progression. The multi-functionality of the CA protein may limit the flexible virus evolution and reduce the possibility of an escape mutant arising. The presence of many functional regions in CA protein may make it a potential target for effective therapies. PMID:23087682

  16. Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response

    NASA Astrophysics Data System (ADS)

    Lv, Cuifang; Huang, Lihong; Yuan, Zhaohui

    2014-01-01

    In this paper, an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response is investigated. One main feature of this model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to uninfected cells. We derive the basic reproduction number R1 and the immune response reproduction number R2 for the HIV-1 infection model. By constructing Lyapunov functions, the global stabilities for the equilibria have been analyzed.

  17. SAMHD1 Restricts HIV-1 Cell-to-Cell Transmission and Limits Immune Detection in Monocyte-Derived Dendritic Cells

    PubMed Central

    Puigdomènech, Isabel; Casartelli, Nicoletta; Porrot, Françoise

    2013-01-01

    SAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response. PMID:23269793

  18. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    SciTech Connect

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-12-05

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.

  19. Oncolytic Poxviruses

    PubMed Central

    Chan, Winnie M.; McFadden, Grant

    2015-01-01

    Current standard treatments of cancer can prolong survival of many cancer patients but usually do not effectively cure the disease. Oncolytic virotherapy is an emerging therapeutic for the treatment of cancer that exploits replication-competent viruses to selectively infect and destroy cancerous cells while sparing normal cells and tissues. Clinical and/or preclinical studies on oncolytic viruses have revealed that the candidate viruses being tested in trials are remarkably safe and offer potential for treating many classes of currently incurable cancers. Among these candidates are vaccinia and myxoma viruses, which belong to the family Poxviridae and possess promising oncolytic features. This article describes poxviruses that are being developed for oncolytic virotherapy and summarizes the outcomes of both clinical and preclinical studies. Additionally, studies demonstrating superior efficacy when poxvirus oncolytic virotherapy is combined with conventional therapies are described. PMID:25839047

  20. The innate immune roles of host factors TRIM5α and Cyclophilin A on HIV-1 replication.

    PubMed

    Kuang, Yi-Qun; Liu, Hong-Liang; Zheng, Yong-Tang

    2015-10-01

    During the long-term evolutionary history, the interaction between virus and host has driven the first-line barrier, innate immunity, to invading pathogens. Innate immune factor TRIM5α and host peptidyl-prolyl cis-trans isomerase Cyclophilin A are two key players in the interaction between HIV-1 and host. Interestingly, Cyclophilin A is retrotransposed into the critical host gene, TRIM5, locus via LINE-1 element in some primate species including New World monkeys and Old World monkeys. This review aims to comprehensively discuss the sensing and immune activation procedures of TRIM5α innate signaling pathway through Cyclophilin A. It will then present the production of TRIMCyp chimeric gene and the different fusion patterns in primates. Finally, it will summarize the distinct restriction activity of TRIMCyp from different primates and explain the current understanding on the innate immune mechanisms involved in the early phase of the viral life cycle during HIV-1 replication. PMID:25894765

  1. HIV-1 Envelope Resistance to Proteasomal Cleavage: Implications for Vaccine Induced Immune Responses

    PubMed Central

    Steers, Nicholas J.; Ratto-Kim, Silvia; de Souza, Mark S.; Currier, Jeffrey R.; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Rao, Mangala

    2012-01-01

    Background Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. Methods In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4+ T-cell lines derived from RV144 volunteers. Results Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4+ T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. Conclusions Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4+T cell and antibody responses in the RV144 vaccinees. PMID:22880042

  2. High-avidity, high-IFNγ-producing CD8 T-cell responses following immune selection during HIV-1 infection

    PubMed Central

    Keane, Niamh M.; Roberts, Steven G.; Almeida, Coral-Ann M.; Krishnan, Tanya; Chopra, Abha; Demaine, Emma; Laird, Rebecca; Tschochner, Monika; Carlson, Jonathan M.; Mallal, Simon; Heckerman, David; James, Ian; John, Mina

    2011-01-01

    HIV-1 mutations which reduce or abolish cytotoxic T lymphocyte responses against virus-infected cells are frequently selected in acute and chronic HIV-infection. Among population HIV-1 sequences, immune selection is evident as HLA allele-associated substitutions of amino acids within or near CD8 T cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes which lead to formation of a new T cell epitope, suggesting that the immune responses which these variants or “neo-epitopes” elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined functional characteristics of eight CD8 T cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterised immunodominant epitopes restricted by common HLA alleles and in most cases, the T cell responses against the neo-epitope exhibited significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes but were not more cytotoxic. Neo-epitope formation and emergence of the cognate T cell response co-incident with a rise in viral load was then observed in-vivo in an acutely infected individual. These findings demonstrate that HIV-1 adaptation not only abrogates immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences. PMID:21577229

  3. Humoral Immune Responses to Streptococcus pneumoniae in the Setting of HIV-1 Infection

    PubMed Central

    Zhang, Lumin; Li, Zihai; Wan, Zhuang; Kilby, Andrew; Kilby, J Michael; Jiang, Wei

    2015-01-01

    Streptococcus pneumonia (pneumococcus) remains one of the most commonly identified causes of bacterial infection in the general population, and the risk is 30-100 fold higher in HIV-infected individuals. Both innate and adaptive host immune responses to pneumococcal infection are important against pathogen invasion. Pneumococcal-specific IgA antibody (Ab) is key to control infection at the mucosal sites. Ab responses against pneumococcal infection by B cells can be generated through T cell-dependent or T cell-independent pathways. Depletion of CD4+ T cells is a hallmark of immunodeficiency in HIV infection and this defect also contributes to B cell dysfunction, which predisposes to infections such as the pneumococcus. Two pneumococcal vaccines have been demonstrated to have potential benefits for HIV-infected patients. One is a T cell dependent 13-valent pneumococcal conjugate vaccine (PCV13); the other is a T cell independent 23-valent pneumococcal polysaccharide vaccine (PPV23). However, many questions remain unknown regarding these two vaccines in the clinical setting in HIV disease. Here we review the latest research regarding B cell immune responses against pneumococcal antigens, whether derived from potentially invading pathogens or vaccinations, in the setting of HIV-1 infection. PMID:26141012

  4. Mucosal Immunization of Lactating Female Rhesus Monkeys with a Transmitted/Founder HIV-1 Envelope Induces Strong Env-Specific IgA Antibody Responses in Breast Milk

    PubMed Central

    Fouda, Genevieve G. A.; Amos, Joshua D.; Wilks, Andrew B.; Pollara, Justin; Ray, Caroline A.; Chand, Anjali; Kunz, Erika L.; Liebl, Brooke E.; Whitaker, Kaylan; Carville, Angela; Smith, Shannon; Colvin, Lisa; Pickup, David J.; Staats, Herman F.; Overman, Glenn; Eutsey-Lloyd, Krissey; Parks, Robert; Chen, Haiyan; LaBranche, Celia; Barnett, Susan; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.; Liao, Hua-Xin; Letvin, Norman L.; Haynes, Barton F.

    2013-01-01

    We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission. PMID:23596289

  5. Blocking Type I Interferon Production: A New Therapeutic Option to Reduce the HIV-1-Induced Immune Activation

    PubMed Central

    Ries, Moritz; Pritschet, Kathrin; Schmidt, Barbara

    2012-01-01

    Highly active antiretroviral therapy has dramatically improved the morbidity and mortality of HIV-1-infected individuals. A total of 25 licensed drugs provide the basis for an optimized virus-suppressive treatment of nearly each subject. The promises of immune reconstitution and normal life expectancy, however, fall short for a number of patients, either through inadequate recovery of CD4+ T-cell counts or the occurrence of non-AIDS defining malignancies. In this respect, the prevalence of Epstein-Barr virus-associated Hodgkin lymphoma and human papillomavirus-related anal neoplasia is rising in aging HIV-1-infected individuals despite antiretroviral therapy. An important cause appears to be the HIV-1-induced chronic immune activation, propagated by inappropriate release of proinflammatory cytokines and type I interferons. This immune dysregulation can be reduced in vitro by inhibitors blocking the endosomal acidification. Recent data suggest that this concept is also of relevance in vivo, which opens the door for adjuvant immunomodulatory therapies in HIV-1 infection. PMID:22203858

  6. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    PubMed

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  7. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation

    PubMed Central

    Henrick, Bethany M.; Yao, Xiao-Dan; Rosenthal, Kenneth Lee

    2015-01-01

    Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2) physically inhibited HIV-induced NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs) for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2). Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41, act as viral PAMPs signaling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development. PMID:26347747

  8. The Association of Human Cytomegalovirus with Biomarkers of Inflammation and Immune Activation in HIV-1-Infected Women.

    PubMed

    Lurain, Nell S; Hanson, Barbara A; Hotton, Anna L; Weber, Kathleen M; Cohen, Mardge H; Landay, Alan L

    2016-02-01

    Three groups of cytomegalovirus (CMV)-seropositive women (total n = 164) were selected from the Chicago Women's Interagency HIV-1 Study to investigate the association between CMV coinfection and immune activation: (1) HIV-1 viremic, (2) HIV-1 aviremic, and (3) HIV-1 uninfected. Quantitative measures of CMV serum IgG, CMV DNA, and serum biomarkers interleukin (IL)-6, soluble CD163 (sCD163), soluble CD14 (sCD14), and interferon gamma-induced protein (IP10) were obtained. Levels of CMV IgG and the serum biomarkers were significantly higher in the HIV-1 viremic group compared to the aviremic and uninfected groups (p < 0.001). No significant associations with CMV IgG levels were found for HIV-uninfected women. When each of the HIV-infected groups was analyzed, sCD14 levels in the viremic women were significantly associated with CMV IgG levels with p < 0.02 when adjusted for age, CD4 count, and HIV viral load. There was also a modest association (p = 0.036) with IL-6 from plasma and cervical vaginal lavage specimens both unadjusted and adjusted for CD4 count and HIV viral load. The association of CMV IgG level with sCD14 implicates the monocyte as a potential site for interaction of the two viruses, which eventually may lead to non-AIDS-defining pathological conditions. PMID:26422187

  9. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope.

    PubMed

    Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W

    2005-05-31

    Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1. PMID:15893622

  10. Innate Immune Activity Correlates with CD4 T Cell-Associated HIV-1 DNA Decline during Latency-Reversing Treatment with Panobinostat

    PubMed Central

    Olesen, Rikke; Vigano, Selena; Rasmussen, Thomas A.; Søgaard, Ole S.; Ouyang, Zhengyu; Buzon, Maria; Bashirova, Arman; Carrington, Mary; Palmer, Sarah; Brinkmann, Christel R.; Yu, Xu G.; Østergaard, Lars; Tolstrup, Martin

    2015-01-01

    ABSTRACT The pharmaceutical reactivation of dormant HIV-1 proviruses by histone deacetylase inhibitors (HDACi) represents a possible strategy to reduce the reservoir of HIV-1-infected cells in individuals treated with suppressive combination antiretroviral therapy (cART). However, the effects of such latency-reversing agents on the viral reservoir size are likely to be influenced by host immune responses. Here, we analyzed the immune factors associated with changes in proviral HIV-1 DNA levels during treatment with the potent HDACi panobinostat in a human clinical trial involving 15 cART-treated HIV-1-infected patients. We observed that the magnitude, breadth, and cytokine secretion profile of HIV-1-specific CD8 T cell responses were unrelated to changes in HIV-1 DNA levels in CD4 T cells during panobinostat treatment. In contrast, the proportions of CD3− CD56+ total NK cells and CD16+ CD56dim NK cells were inversely correlated with HIV-1 DNA levels throughout the study, and changes in HIV-1 DNA levels during panobinostat treatment were negatively associated with the corresponding changes in CD69+ NK cells. Decreasing levels of HIV-1 DNA during latency-reversing treatment were also related to the proportions of plasmacytoid dendritic cells, to distinct expression patterns of interferon-stimulated genes, and to the expression of the IL28B CC genotype. Together, these data suggest that innate immune activity can critically modulate the effects of latency-reversing agents on the viral reservoir and may represent a target for future immunotherapeutic interventions in HIV-1 eradication studies. IMPORTANCE Currently available antiretroviral drugs are highly effective in suppressing HIV-1 replication, but the virus persists, despite treatment, in a latent form that does not actively express HIV-1 gene products. One approach to eliminate these cells, colloquially termed the “shock-and-kill” strategy, focuses on the use of latency-reversing agents that induce active

  11. Poxvirus pathogenesis.

    PubMed Central

    Buller, R M; Palumbo, G J

    1991-01-01

    Poxviruses are a highly successful family of pathogens, with variola virus, the causative agent of smallpox, being the most notable member. Poxviruses are unique among animal viruses in several respects. First, owing to the cytoplasmic site of virus replication, the virus encodes many enzymes required either for macromolecular precursor pool regulation or for biosynthetic processes. Second, these viruses have a very complex morphogenesis, which involves the de novo synthesis of virus-specific membranes and inclusion bodies. Third, and perhaps most surprising of all, the genomes of these viruses encode many proteins which interact with host processes at both the cellular and systemic levels. For example, a viral homolog of epidermal growth factor is active in vaccinia virus infections of cultured cells, rabbits, and mice. At least five virus proteins with homology to the serine protease inhibitor family have been identified and one, a 38-kDa protein encoded by cowpox virus, is thought to block a host pathway for generating a chemotactic substance. Finally, a protein which has homology with complement components interferes with the activation of the classical complement pathway. Poxviruses infect their hosts by all possible routes: through the skin by mechanical means (e.g., molluscum contagiosum infections of humans), via the respiratory tract (e.g., variola virus infections of humans), or by the oral route (e.g., ectromelia virus infection of the mouse). Poxvirus infections, in general, are acute, with no strong evidence for latent, persistent, or chronic infections. They can be localized or systemic. Ectromelia virus infection of the laboratory mouse can be systemic but inapparent with no mortality and little morbidity, or highly lethal with death in 10 days. On the other hand, molluscum contagiosum virus replicates only in the stratum spinosum of the human epidermis, with little or no involvement of the dermis, and does not spread systemically from the site of

  12. Differential Blood and Mucosal Immune Responses against an HIV-1 Vaccine Administered via Inguinal or Deltoid Injection

    PubMed Central

    Price, Charles; Hultin, Lance E.; Elliott, Julie; Hultin, Patricia M.; Shih, Roger; Hausner, Mary Ann; Ng, Hwee L.; Hoffman, Jennifer; Jamieson, Beth D.

    2014-01-01

    Mucosal immunity is central to sexual transmission and overall pathogenesis of HIV-1 infection, but the ability of vaccines to induce immune responses in mucosal tissue compartments is poorly defined. Because macaque vaccine studies suggest that inguinal (versus limb) vaccination may better target sexually-exposed mucosa, we performed a randomized, double-blinded, placebo-controlled Phase I trial in HIV-1-uninfected volunteers, using the recombinant Canarypox (CP) vaccine vCP205 delivered by different routes. 12 persons received vaccine and 6 received placebo, divided evenly between deltoid-intramuscular (deltoid-IM) or inguinal-subcutaneous (inguinal-SC) injection routes. The most significant safety events were injection site reactions (Grade 3) in one inguinal vaccinee. CP-specific antibodies were detected in the blood of all 12 vaccinees by Day 24, while HIV-1-specific antibodies were observed in the blood and gut mucosa of 1/9 and 4/9 evaluated vaccinees respectively, with gut antibodies appearing earlier in inguinal vaccinees (24–180 versus 180–365 days). HIV-1-specific CD8+ T lymphocytes (CTLs) were observed in 7/12 vaccinees, and blood and gut targeting were distinct. Within blood, both deltoid and inguinal responders had detectable CTL responses by 17–24 days; inguinal responders had early responses (within 10 days) while deltoid responders had later responses (24–180 days) in gut mucosa. Our results demonstrate relative safety of inguinal vaccination and qualitative or quantitative compartmentalization of immune responses between blood and gut mucosa, and highlight the importance of not only evaluating early blood responses to HIV-1 vaccines but also mucosal responses over time. Trial Registration ClinicalTrials.gov NCT00076817 PMID:24558403

  13. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    SciTech Connect

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  14. Structural Basis of Evasion of Cellular Adaptive Immunity by HIV-1 Nef

    PubMed Central

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-01-01

    The HIV-1 protein Nef inhibits antigen presentation by class I MHC (MHC-I). Here the mechanism of this activity is revealed by the crystal structure of a protein complex consisting of Nef, the MHC-I cytoplasmic domain (MHC-I CD), and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface encompassing the cargo-recognition site of μ1 and the proline rich strand of Nef. The Nef C-terminus induces a novel conformational change in μ1, while the N-terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity. PMID:22705789

  15. Enhancing poxvirus vectors vaccine immunogenicity

    PubMed Central

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought. PMID:25424927

  16. HIV-1 p24(gag) derived conserved element DNA vaccine increases the breadth of immune response in mice.

    PubMed

    Kulkarni, Viraj; Rosati, Margherita; Valentin, Antonio; Ganneru, Brunda; Singh, Ashish K; Yan, Jian; Rolland, Morgane; Alicea, Candido; Beach, Rachel Kelly; Zhang, Gen-Mu; Le Gall, Sylvie; Broderick, Kate E; Sardesai, Niranjan Y; Heckerman, David; Mothe, Beatriz; Brander, Christian; Weiner, David B; Mullins, James I; Pavlakis, George N; Felber, Barbara K

    2013-01-01

    Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag) region according to two principles: the immunogen must (i) include strictly conserved elements of the virus that cannot mutate readily, and (ii) exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag) DNA immunogens that express 7 highly Conserved Elements (CE) of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site'), together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag) DNA induced poor, CD4(+) mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+) and CD8(+) T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag), which recognize the virus encoded p24(gag) protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+) and CD8(+) T cells to additional regions of Gag compared to vaccination with p55(gag) DNA, achieving maximal cross-clade reactive cellular and humoral responses. PMID:23555935

  17. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy

    PubMed Central

    Liu, Zuqiang; Ravindranathan, Roshni; Li, Jun; Kalinski, Pawel; Guo, Z. Sheng; Bartlett, David L.

    2016-01-01

    ABSTRACT We have armed a tumor-selective oncolytic vaccinia virus (vvDD) with the chemokine (CK) CXCL11, in order to enhance its ability to attract CXCR3+ antitumor CTLs and possibly NK cells to the tumor microenvironment (TME) and improve its therapeutic efficacy. As expected, vvDD-CXCL11 attracted high numbers of tumor-specific T cells to the TME in a murine AB12 mesothelioma model. Intratumoral virus-directed CXCL11 expression enhanced local numbers of CD8+ CTLs and levels of granzyme B, while reducing expression of several suppressive molecules, TGF-β, COX2, and CCL22 in the TME. Unexpectedly, we observed that vvDD-CXCL11, but not parental vvDD, induced a systemic increase in tumor-specific IFNγ-producing CD8+ T cells in the spleen and other lymph organs, indicating the induction of systemic antitumor immunity. This effect was associated with enhanced therapeutic efficacy and a survival benefit in tumor-bearing mice treated with vvDD-CXCL11, mediated by CD8+ T cells and IFNγ, but not CD4+ T cells. These results demonstrate that intratumoral expression of CXCL11, in addition to promoting local trafficking of T cells and to a lesser extent NK cells, has a novel function as a factor eliciting systemic immunity to cancer-associated antigens. Our data provide a rationale for expressing CXCL11 to enhance the therapeutic efficacy of oncolytic viruses (OVs) and cancer vaccines. PMID:27141352

  18. Effect of Vaginal Immunization with HIVgp140 and HSP70 on HIV-1 Replication and Innate and T Cell Adaptive Immunity in Women

    PubMed Central

    Lewis, David J. M.; Wang, Yufei; Huo, Zhiming; Giemza, Raphaela; Babaahmady, Kaboutar; Rahman, Durdana; Shattock, Robin J.; Singh, Mahavir

    2014-01-01

    ABSTRACT The international effort to prevent HIV-1 infection by vaccination has failed to develop an effective vaccine. The aim of this vaccine trial in women was to administer by the vaginal mucosal route a vaccine consisting of HIV-1 gp140 linked to the chaperone 70-kDa heat shock protein (HSP70). The primary objective was to determine the safety of the vaccine. The secondary objective was to examine HIV-1 infectivity ex vivo and innate and adaptive immunity to HIV-1. Protocol-defined female volunteers were recruited. HIV-1 CN54gp140 linked to HSP70 was administered by the vaginal route. Significant adverse reactions were not detected. HIV-1 was significantly inhibited ex vivo in postimmunization CD4+ T cells compared with preimmunization CD4+ T cells. The innate antiviral restrictive factor APOBEC3G was significantly upregulated, as were CC chemokines which induce downregulation of CCR5 in CD4+ T cells. Indeed, a significant inverse correlation between the proportion of CCR5+ T cells and the concentration of CCL-3 or CCL-5 was found. Importantly, the upregulation of APOBEC3G showed a significant inverse correlation, whereas CCR5 exhibited a trend to correlate with inhibition of HIV-1 infection (r = 0.51). Furthermore, specific CD4+ and CD8+ T cell proliferative responses were significantly increased and CD4+ T cells showed a trend to have an inverse correlation with the viral load (r = −0.60). However, HIVgp140-specific IgG or IgA antibodies were not detected. The results provide proof of concept that an innate mechanism consisting of CC chemokines, APOBEC3G, and adaptive immunity by CD4 and CD8 T cells might be involved in controlling HIV-1 infectivity following vaginal mucosal immunization in women. (This study has been registered at ClinicalTrials.gov under registration no. NCT01285141.) IMPORTANCE Vaginal immunization of women with a vaccine consisting of HIVgp140 linked to the 70-kDa heat shock protein (HSP70) elicited ex vivo significant inhibition of

  19. Exploring the benefits of antibody immune response in HIV-1 infection using a discrete model.

    PubMed

    Showa, S P; Nyabadza, F; Hove-Musekwa, S D; Magombedze, G

    2016-06-01

    The role of antibodies in HIV-1 infection is investigated using a discrete-time mathematical model that considers cell-free and cell-associated transmission of the virus. Model analysis shows that the effect of each type of antibody is dependent on the stage of the infection. Neutralizing antibodies are efficient in controlling the viral levels in the early days after seroconversion and antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication are efficient when the infection becomes established. Model simulations show that antibodies that inhibit viral replication are more effective in controlling the infection than those that recruit Natural Killer T cells after infection establishment. The model was fitted to subjects of the Tsedimoso study conducted in Botswana and conclusions similar to elasticity analysis results were obtained. Model fitting results predicted that neutralizing antibodies are more efficient in controlling the viral levels than antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication in the early days after seroconversion. PMID:25899531

  20. Unique IL-13Rα2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity.

    PubMed

    Ranasinghe, C; Trivedi, S; Stambas, J; Jackson, R J

    2013-11-01

    We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)-specific CD8(+) T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor α2 (IL-13Rα2), which can "transiently" block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Rα2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8(+) T cells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8(+) T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer's patch (PP). Data revealed that intranasal delivery of these IL-13Rα2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8(+) T cells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection. PMID:23403475

  1. Immune Compromise in HIV-1/HTLV-1 Coinfection With Paradoxical Resolution of CD4 Lymphocytosis During Antiretroviral Therapy: A Case Report.

    PubMed

    Rockwood, N; Cook, L; Kagdi, H; Basnayake, S; Bangham, C R M; Pozniak, A L; Taylor, G P

    2015-12-01

    Human immunodeficiency virus type-1 (HIV-1) and human T lymphotropic virus type-1 (HTLV-1) infections have complex effects on adaptive immunity, with specific tropism for, but contrasting effects on, CD4 T lymphocytes: depletion with HIV-1, proliferation with HTLV-1. Impaired T lymphocyte function occurs early in HIV-1 infection but opportunistic infections (OIs) rarely occur in the absence of CD4 lymphopenia. In the unusual case where a HIV-1 infected individual with a high CD4 count presents with recurrent OIs, a clinician is faced with the possibility of a second underlying comorbidity. We present a case of pseudo-adult T cell leukemia/lymphoma (ATLL) in HIV-1/HTLV-1 coinfection where the individual fulfilled Shimoyama criteria for chronic ATLL and had pulmonary Mycobacterium kansasii, despite a high CD4 lymphocyte count. However, there was no evidence of clonal T-cell proliferation by T-cell receptor gene rearrangement studies nor of monoclonal HTLV-1 integration by high-throughput sequencing. Mutually beneficial interplay between HIV-1 and HTLV-1, maintaining high level HIV-1 and HTLV-1 viremia and proliferation of poorly functional CD4 cells despite chronicity of infection is a postulated mechanism. Despite good microbiological response to antimycobacterial therapy, the patient remained systemically unwell with refractory anemia. Subsequent initiation of combined antiretroviral therapy led to paradoxical resolution of CD4 T lymphocytosis as well as HIV-1 viral suppression and decreased HTLV-1 proviral load. This is proposed to be the result of attenuation of immune activation post-HIV virological control. This case illustrates the importance of screening for HTLV-1 in HIV-1 patients with appropriate clinical presentation and epidemiological risk factors and explores mechanisms for the complex interactions on HIV-1/HTLV-1 adaptive immunity. PMID:26683952

  2. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  3. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial Reveals an Association of Nonspecific Interferon-γ Secretion with Increased HIV-1 Infection Risk: A Cohort-Based Modeling Study

    PubMed Central

    Huang, Yunda; Duerr, Ann; Frahm, Nicole; Zhang, Lily; Moodie, Zoe; De Rosa, Steve; McElrath, M. Juliana; Gilbert, Peter B.

    2014-01-01

    Background Elevated risk of HIV-1 infection among recipients of an adenovirus serotype 5 (Ad5)-vectored HIV-1 vaccine was previously reported in the Step HIV-1 vaccine efficacy trial. We assessed pre-infection cellular immune responses measured at 4 weeks after the second vaccination to determine their roles in HIV-1 infection susceptibility among Step study male participants. Methods We examined ex vivo interferon-γ (IFN-γ) secretion from peripheral blood mononuclear cells (PBMC) using an ELISpot assay in 112 HIV-infected and 962 uninfected participants. In addition, we performed flow cytometric assays to examine T-cell activation, and ex vivo IFN-γ and interleukin-2 secretion from CD4+ and CD8+ T cells. We accounted for the sub-sampling design in Cox proportional hazards models to estimate hazard ratios (HRs) of HIV-1 infection per 1-loge increase of the immune responses. Findings We found that HIV-specific immune responses were not associated with risk of HIV-1 infection. However, each 1-loge increase of mock responses measured by the ELISpot assay (i.e., IFN-γ secretion in the absence of antigen-specific stimulation) was associated with a 62% increase of HIV-1 infection risk among vaccine recipients (HR = 1.62, 95% CI: (1.28, 2.04), p<0.001). This association remains after accounting for CD4+ or CD8+ T-cell activation. We observed a moderate correlation between ELISpot mock responses and CD4+ T-cells secreting IFN-γ (ρ = 0.33, p = 0.007). In addition, the effect of the Step vaccine on infection risk appeared to vary with ELISpot mock response levels, especially among participants who had pre-existing anti-Ad5 antibodies (interaction p = 0.04). Conclusions The proportion of cells, likely CD4+ T-cells, producing IFN-γ without stimulation by exogenous antigen appears to carry information beyond T-cell activation and baseline characteristics that predict risk of HIV-1 infection. These results motivate additional investigation to understand

  4. Increased Escherichia coli-Induced Interleukin-23 Production by CD16+ Monocytes Correlates with Systemic Immune Activation in Untreated HIV-1-Infected Individuals

    PubMed Central

    Manuzak, Jennifer A.; Dillon, Stephanie M.; Lee, Eric J.; Dong, Zachary M.; Hecht, Daniel K.

    2013-01-01

    The level of microbial translocation from the intestine is increased in HIV-1 infection. Proinflammatory cytokine production by peripheral antigen-presenting cells in response to translocated microbes or microbial products may contribute to systemic immune activation, a hallmark of HIV-1 infection. We investigated the cytokine responses of peripheral blood myeloid dendritic cells (mDCs) and monocytes to in vitro stimulation with commensal enteric Escherichia coli in peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected subjects and from uninfected controls. Levels of interleukin 23 (IL-23) produced by PBMC from HIV-1-infected subjects in response to E. coli stimulation were significantly higher than those produced by PBMC from uninfected subjects. IL-23 was produced primarily by CD16+ monocytes. This subset of monocytes was increased in frequency and expressed higher levels of Toll-like receptor 4 (TLR4) in HIV-1-infected individuals than in controls. Blocking TLR4 on total CD14+ monocytes reduced IL-23 production in response to E. coli stimulation. Levels of soluble CD27, an indicator of systemic immune activation, were elevated in HIV-1-infected subjects and were associated with the percentage of CD16+ monocytes and the induction of IL-23 by E. coli, providing a link between these parameters and systemic inflammation. Taken together, these results suggest that IL-23 produced by CD16+ monocytes in response to microbial stimulation may contribute to systemic immune activation in HIV-1-infected individuals. PMID:24067979

  5. Innate Invariant NKT Cell Recognition of HIV-1–Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion

    PubMed Central

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M.; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E.; Nixon, Douglas F.; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus

    2016-01-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell–mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  6. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion.

    PubMed

    Paquin-Proulx, Dominic; Gibbs, Anna; Bächle, Susanna M; Checa, Antonio; Introini, Andrea; Leeansyah, Edwin; Wheelock, Craig E; Nixon, Douglas F; Broliden, Kristina; Tjernlund, Annelie; Moll, Markus; Sandberg, Johan K

    2016-09-01

    Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms. PMID:27481843

  7. Replication of HIV-1 deleted Nef mutants in chronically immune activated human T cells.

    PubMed

    Shapira-Nahor, Orit; Maayan, Shlomo; Peden, Keith W C; Rabinowitz, Ruth; Schlesinger, Michael; Alian, Akram; Panet, Amos

    2002-11-10

    Lymphocytes (PBMC) obtained from blood of HIV-sera negative Ethiopian immigrants (ETH) were highly susceptible to HIV-1 infection in vitro with no need for stimulation by mitogens. As the HIV nef gene product has been shown to enhance viral replication in stimulated primary lymphocytes, we investigated in this work the role of Nef in viral replication in the ETH cells. Lymphocytes obtained from ETH individuals supported high replication of wild-type HIV-1 and low but significant replication level of the two deleted Nef mutants (encode truncated Nef proteins consisting only of either the first 35 or the first 86 amino acids of Nef). In contrast, no replication was observed in nonactivated cells obtained from non-ETH individuals. After activation of the PBMC from ETH individuals with PHA, replication of both wild-type strains and the two deleted Nef mutant viruses further increased. The CD4(+) T cells of ETH individuals exhibited elevated levels of the surface activation markers CD45RO and HLA-DR, compared with T cells derived from non-ETH group. Likewise, expression of the chemokine receptors CCR5 and CXCR4 on these cells was higher in the ETH group than in the non-ETH group. Replication of HIV-1 wild-type and the isogenic-deleted Nef mutants was significantly correlated with the proportion of ETH cells expressing CD45RO and the chemokine receptors. This study suggests that HIV-1 may respond differently to several activation states characteristic of T cells. One activation state, defined by chronically activated lymphocytes from ETH individuals, is permissive to the wild-type HIV-1 and, to a lesser degree, to the Nef mutants. Further activation of these cells by exogenous stimuli enhances replication of the virus. Our results support the notion that Nef enhances the basal level of T cell activation and consequently, viral replication. PMID:12482665

  8. Impact of Preexisting Vector Immunity on the Efficacy of Adeno-Associated Virus-Based HIV-1 Gag Vaccines

    PubMed Central

    Lin, Jianping; Calcedo, Roberto; Vandenberghe, Luk H.; Figueredo, Joanita M.

    2008-01-01

    Abstract Vectors based on primate-derived adeno-associated virus (AAV) are being considered in the development of genetic vaccines against a number of diseases including infection with HIV-1. Preexisting immunity to the vaccine carrier as a result of natural infections could potentially compromise vaccine efficacy. This study evaluates the impact of neutralizing antibodies against AAV capsids on the ability of HIV-1 Gag-expressing vectors to elicit transgene-specific T and B cell responses. Mice were passively transferred with pooled human immunoglobulin at various doses to simulate human antivector humoral immunity. Vectors based on serotype 2, which were evaluated in the clinic, were compared with those created from the novel monkey isolates AAV7 and AAV8. Inhibition of AAV2-directed Gag responses occurred at doses of human immunoglobulin 10- to 20-fold less than was required to inhibit immunogenicity of AAV7 and AAV8 vectors. Cynomolgus macaques were screened for preexisting immunity to AAV7 and AAV8 and sera from individual animals were passively transferred into mice that were analyzed for AAV vaccine efficacy. There was a correlation between the level of preexisting capsid neutralizing titers and diminution of vaccine efficacy; sera from a number of animals with no detectable neutralizing antibodies showed partial vaccine inhibition, suggesting that the in vitro assay is less sensitive than the in vivo passive transfer assay for detecting neutralizing antibodies to AAV. PMID:18549307

  9. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodeficiency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine.

    PubMed Central

    Johnson, R P; Hammond, S A; Trocha, A; Siliciano, R F; Walker, B D

    1994-01-01

    Efforts to induce broadly reactive immunity against human immunodeficiency virus type 1 (HIV-1) have been impaired by the extent of sequence variation exhibited by this lentivirus. Cytotoxic T lymphocytes (CTL) specific for other viruses such as influenza virus have been shown to mediate immunity against divergent viral strains, a property that is related to the ability of CTL to recognize processed antigen derived from conserved viral proteins. A recent candidate HIV-1 vaccine regimen has been described in which subjects receive a primary immunization with a recombinant vaccinia virus expressing gp160 and then a booster immunization with recombinant gp160. Volunteers immunized with this regimen have exhibited augmented humoral responses and have also developed CD4+ and CD8+ CTL specific for gp160. In this report, we have identified the epitopes recognized by CD4+ and CD8+ CTL obtained from two vaccines. An immunodominant CD8+ CTL response was HLA-A3.1 restricted and recognized a 10-amino-acid epitope (gp120/38-47) in a highly conserved region of gp120. CTL specific for the epitope gp120/38-47 were able to lyse targets sensitized with peptides corresponding to all known natural sequence variants in this region. In addition, other HLA class I-restricted CTL epitopes were identified in relatively conserved regions of gp120 and gp41, and CD4+ CTL were shown to recognize two different regions of gp120. Thus, in these two volunteers, immunization with a single strain of HIV-1 induced CD4+ and CD8+ CTL that are specific for multiple conserved regions of HIV-1 and would be expected to recognize a broad range of viral isolates. PMID:7908700

  10. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    PubMed

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, Carolyn

    2016-07-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  11. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization

    PubMed Central

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S.; Giorgi, Elena E.; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J.; Wagh, Kshitij; Carey, Brittany R.; Gao, Hongmei; Greene, Kelli M.; Tang, Haili; Marais, Jinny C.; Diphoko, Thabo E.; Hraber, Peter; Tumba, Nancy; Moore, Penny L.; Gray, Glenda E.; Kublin, James; McElrath, M. Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L.; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H.; Hahn, Beatrice H.; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C.; Williamson, Carolyn

    2016-01-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  12. Role of cell signaling in poxvirus-mediated foreign gene expression in mammalian cells

    PubMed Central

    Hu, Ningjie; Yu, Richard; Shikuma, Cecilia; Shiramizu, Bruce; Ostrwoski, Mario A.; Yu, Qigui

    2011-01-01

    Poxviruses have been extensively used as a promising vehicle to efficiently deliver a variety of antigens in mammalian hosts to induce immune responses against infectious diseases and cancer. Using recombinant vaccinia virus (VV) and canarypox virus (ALVAC) expressing enhanced green fluorescent protein (EGFP) or multiple HIV-1 gene products, we studied the role of four cellular signaling pathways, the phosphoinositide-3-OH kinase (PI3K), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), and c-Jun N-terminal kinase (JNK), in poxvirus-mediated foreign gene expression in mammalian cells. In nonpermissive infection (human monocytes), activation of PI3K, ERK, p38 MAPK, and JNK was observed both VV and ALVAC and blocking PI3K, p38 MAKP, and JNK pathways with their specific inhibitors significantly reduced viral and vaccine antigen gene expression. Whereas, blocking the ERK pathway had no significant effect. Among these cellular signaling pathways studied, PI3K was the most critical pathway involved in gene expression by VV- or ALVAC-infected monocytes. The important role of PI3K in poxvirus-mediated gene expression was further confirmed in mouse epidermal cells stably transfected with dominant-negative PI3K mutant, as poxvirus-mediated targeted gene expression was significantly decreased in these cells when compared with their parental cells. Signaling pathway activation was influenced gene expression at the mRNA level rather than virus binding. In permissive mammalian cells, however, VV DNA copies were also significantly decreased in the absence of normal function of PI3K pathway. Poxvirus-triggered activation of PI3K pathway could be completely abolished by atazanavir, a new generation of antiretroviral protease inhibitors (PIs). As a consequence, ALVAC-mediated EGFP or HIV-1 gag gene expression in infected primary human monocytes was significantly reduced in the presence of atazanavir. These findings implicate that

  13. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in-vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals

    PubMed Central

    Liu, Jun; Yu, Qigui; Stone, Geoffrey W.; Yue, Feng Yun; Ngai, Nicholas; Jones, R. Brad; Kornbluth, Richard S.; Ostrowski, Mario A.

    2011-01-01

    Summary Human immunodeficiency virus-1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal co-stimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor α chain (IL-7Rα, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor α (TNF-α) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity. PMID:18562053

  14. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  15. The use of immune complex vaccines to enhance antibody responses against neutralizing epitopes on HIV-1 envelope gp120

    PubMed Central

    Hioe, Catarina E.; Visciano, Maria Luisa; Kumar, Rajnish; Liu, Jianping; Mack, Ethan A.; Simon, Rachel E.; Levy, David N.; Tuen, Michael

    2009-01-01

    The capacity of immune complexes to augment antibody (Ab) responses is well established. The enhancing effects of immune complexes have been attributed mainly to Fc-mediated adjuvant activity, while the ability of Abs to induce antigenic alterations of specific epitopes as a result of immune complex formation have been less well studied. Previously we have shown that the interaction of anti-CD4-binding site (CD4bs) Abs with HIV-1 gp120 induces conformation changes that lead to enhanced antigenicity and immunogenicity of neutralizing epitopes in the V3 loop. The present study shows that significant increases in the antigenicity of the V3 and C1 regions of gp120 were attained for several subtype B gp120s and a subtype C gp120 upon immune complex formation with the anti-CD4bs monoclonal Ab (mAb) 654-D. Such enhancement was observed with immune complexes made with other anti-CD4bs mAbs and anti-V2 mAbs, but not with anti-C2 mAbs, indicating this activity is determined by antigen specificity of the mAb that formed the immune complex. When immune complexes of gp120LAI/654-D and gp120JRFL/654-D were tested as immunogens in mice, serum Abs to gp120 and V3 were generated at significantly higher titers than those induced by the respective uncomplexed gp120s. Notably, the anti-V3 Ab responses had distinct fine specificities; gp120JRFL/654-D stimulated more cross-reactive anti-V3 Abs than gp120LAI/654-D. Neutralizing activities against viruses with heterologous envelope were also detected in sera of mice immunized with gp120JRFL/654-D, although the neutralization breadth was still limited. Overall this study shows the potential use of gp120/Ab complexes to augment the immunogenicity of HIV-1 envelope gp120, but further improvements are needed to elicit virus-neutralizing Ab responses with higher potency and breadth. PMID:19879224

  16. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope

    SciTech Connect

    Zolla-Pazner, Susan; Cohen, Sandra; Pinter, Abraham; Krachmarov, Chavdar; Wrin, Terri; Wang Shixia; Lu Shan

    2009-09-15

    Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3{sub B}-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.

  17. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope

    SciTech Connect

    Zolla-Pazner, Susan Cohen, Sandra Sharpe; Krachmarov, Chavdar; Wang, Shixia; Pinter, Abraham; Lu, Shan

    2008-03-15

    Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.

  18. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy.

    PubMed

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L

    2016-01-01

    Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  19. Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via “Antigen Capsid-Incorporation” strategy

    PubMed Central

    Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L.; Derdeyn, Cynthia A.; Matthews, Qiana L.

    2016-01-01

    Adenoviral (Ad) vectors in combination with the “Antigen Capsid-Incorporation” strategy have been applied in developing HIV-1 vaccines, due to the vectors’ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the “Antigen Capsid-Incorporation” strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. PMID:26499044

  20. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors

    PubMed Central

    2013-01-01

    Background Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection. PMID:24047317

  1. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    SciTech Connect

    Poeschla, Eric

    2013-06-20

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.

  2. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    PubMed Central

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B.; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K.N.

    2014-01-01

    Summary The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. PMID:24726370

  3. Guillain Barre syndrome in an HIV-1-infected patient after the beginning of combined antiretroviral therapy: an immune reconstitution inflammatory syndrome?

    PubMed

    Fantauzzi, Alessandra; Digiulio, Maria Anna; Cavallari, Eugenio Nelson; d'Ettorre, Gabriella; Vullo, Vincenzo; Mezzaroma, Ivano

    2014-01-01

    HIV-1-associated Guillan-Barre syndrome (hGBS) is an ascendant progressive polyradiculoneuropathy described throughout the course of the viral disease, mainly associated with the acute retroviral syndrome. HGBS is occasionally described in severely immunocompromised subjects in the context of the immune reconstitution inflammatory syndrome. The case described occurred soon after the start of a combined antiretroviral treatment in an HIV-1 infected patient with ulcerative colitis in the absence of severe immunosuppression. This manifestation may be interpreted as an uncommon appearance of an immune reconstitution syndrome in the presence of a predisposing autoimmune pathology. PMID:24531178

  4. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine

    PubMed Central

    Kanagavelu, Saravana K.; Snarsky, Victoria; Termini, James M.; Gupta, Sachin; Barzee, Suzanne; Wright, Jacqueline A.; Khan, Wasif N.; Kornbluth, Richard S.; Stone, Geoffrey W.

    2011-01-01

    Background DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. Methodology and Principal Findings Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8

  5. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120.

    PubMed

    Kong, Leopold; Lee, Jeong Hyun; Doores, Katie J; Murin, Charles D; Julien, Jean-Philippe; McBride, Ryan; Liu, Yan; Marozsan, Andre; Cupo, Albert; Klasse, Per-Johan; Hoffenberg, Simon; Caulfield, Michael; King, C Richter; Hua, Yuanzi; Le, Khoa M; Khayat, Reza; Deller, Marc C; Clayton, Thomas; Tien, Henry; Feizi, Ten; Sanders, Rogier W; Paulson, James C; Moore, John P; Stanfield, Robyn L; Burton, Dennis R; Ward, Andrew B; Wilson, Ian A

    2013-07-01

    A substantial proportion of the broadly neutralizing antibodies (bnAbs) identified in certain HIV-infected donors recognize glycan-dependent epitopes on HIV-1 gp120. Here we elucidate how the bnAb PGT 135 binds its Asn332 glycan-dependent epitope from its 3.1-Å crystal structure with gp120, CD4 and Fab 17b. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield and access the gp120 protein surface. EM reveals that PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. Combined structural studies of PGT 135, PGT 128 and 2G12 show that this Asn332-dependent antigenic region is highly accessible and much more extensive than initially appreciated, which allows for multiple binding modes and varied angles of approach; thereby it represents a supersite of vulnerability for antibody neutralization. PMID:23708606

  6. Incomplete Immune Reconstitution Despite Virologic Suppression in HIV-1 Infected Children and Adolescents

    PubMed Central

    Krogstad, Paul; Patel, Kunjal; Karalius, Brad; Hazra, Rohan; Abzug, Mark J.; Oleske, James; Seage, George R.; Williams, Paige; Borkowsky, William; Wiznia, Andrew; Pinto, Jorge; Van Dyke, Russell B.

    2015-01-01

    Objectives Some perinatally infected children do not regain normal CD4 T cell counts despite suppression of HIV-1 plasma viremia by antiretroviral therapy (ART), The frequency, severity, and significance of these discordant treatment responses remain unclear. Design We examined the persistence of CD4 lymphocytopenia despite virologic suppression (VS) in 933 children (>5 years of age) in the US, Latin America, and the Caribbean. Methods CD4 T-cell trajectories were examined and Kaplan Meier methods used to estimate median time to CD4 T cell count ≥ 500 cells/μL. Results After 1 year of VS, most (99%) children achieved a CD4 T cell count of ≥200 cells/μl, but CD4 T cell counts remained below 500 cells/μL after 1 and 2 years of VS in 14% and 8%. Median times to first CD4 T cell count ≥ 500 cells/μl were 1.29, 0.78, and 0.46 years for children with <200, 200–349, and 350–499 cells/μL at the start of VS. New AIDS-defining events occurred in 9 children, including 4 in the first 6 months of VS. Other infectious and HIV-related diagnoses occurred more frequently and across a wide range of CD4 counts. Conclusions ART improved CD4 counts in most children, but the time to CD4 count of ≥ 500 cells was highly dependent upon baseline immunological status. Some children did not reach a CD4 T cell count of 500 cells/μl despite 2 years of VS. AIDS defining events occurred in 1% of the population, including children in whom VS and improved CD4 T cell counts were achieved. PMID:25849832

  7. Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking

    PubMed Central

    Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

    2013-01-01

    Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

  8. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome

    PubMed Central

    2012-01-01

    Background A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. Results The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. Conclusions These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness. PMID:23110705

  9. Mycobacterium avium infection in HIV-1-infected subjects increases monokine secretion and is associated with enhanced viral load and diminished immune response to viral antigens.

    PubMed Central

    Denis, M; Ghadirian, E

    1994-01-01

    The complex interaction between HIV-1 infection and Mycobacterium avium was studied. Viral burden was assessed, as well as immune response to HIV-1 in the context of Myco. avium infections. We also examined serum cytokine levels and cytokine release by blood mononuclear cells in HIV-1-infected subjects, infected or not with Myco. avium. Undetectable serum levels of IL-1, tumour necrosis factor-alpha (TNF-alpha) and IL-6 were found in normal controls and in groups I, II and III of HIV-1-infected subjects. Moderate levels of TNF-alpha, IL-1 and IL-6 were found in the sera of group IV patients. When group IV was subdivided into subjects with and without Myco. avium infections, subjects with Myco, avium infections were shown to have higher serum levels of TNF-alpha, IL-1 beta and IL-6 than those with other infections. Blood mononuclear cells from controls and HIV subjects were stimulated with bacterial lipopolysaccharide, and cytokine levels assessed. Cells from group II patients were shown to secrete normal levels of TNF-alpha and IL-6, and lower levels of IL-1 beta; group III subjects released higher levels of IL-6. Patients in group IV had blood cells that released elevated levels of IL-6 and TNF-alpha, and lower levels of IL-1 beta. Group IV subjects with Myco. avium infections had blood cells that released higher levels of TNF-alpha, IL-6 and IL-1 than group IV subjects with other infections. Assessment of viral burden in cells of HIV-1-infected subjects revealed that Myco. avium-infected subjects had a higher level of virus burden and a lower level of lymphoproliferative response to an inactivated gp120-depleted HIV-1 antigen than AIDS subjects with other infections. These data suggest that Myco. avium infections in HIV-1-infected subjects hasten the progression of viral disease, enhance cytokine release and contribute to the anergy to viral antigens. PMID:8033423

  10. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. PMID:26482408

  11. A Case of Seronegative HIV-1 Infection

    PubMed Central

    Spivak, Adam M.; Brennan, Tim; O'Connell, Karen; Sydnor, Emily; Williams, Thomas M.; Siliciano, Robert F.; Gallant, Joel E.; Blankson, Joel N.

    2009-01-01

    Patients infected with HIV-1 typically seroconvert within weeks of primary infection. In rare cases, patients do not develop antibodies against HIV-1 despite demonstrable infection. We describe an HLA-B*5802 positive individual who presented with AIDS despite repeatedly negative HIV-1 antibody screening tests. Phylogenetic analysis of env clones revealed little sequence diversity, and weak HIV-1 specific CD8+ T cell responses were present to Gag epitopes. The patient seroconverted after immune reconstitution on HAART. Lack of an antibody response to HIV-1 is rare and appears to be due to a defect in HIV-1-specific immunity rather than infection with attenuated virus. PMID:20039801

  12. Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration

    PubMed Central

    Li, Qing-Hai; Jin, Gang; Wang, Jia-Ye; Li, Hai-Ning; Liu, Huidi; Chang, Xiao-Yun; Wang, Fu-Xiang; Liu, Shu-Lin

    2016-01-01

    The HIV-1 membrane proximal external region (MPER) that is targeted by several broadly neutralizing antibodies (BNAbs) has been considered a potential immunogen for vaccine development. However, to date the immunogenicity of these BNAb epitopes has not been made sufficiently adequate. In the present work, we used live attenuated Salmonella as a platform to present the HIV-1 MPER 10E8 epitope in the fimbriae. The insertion of the 10E8 epitope into the fimbriae had no significant influence on the expression and the absorption capacity of bacterial fimbriae, nor on the virulence and invasiveness of the attenuated Salmonella. After oral administration of the vaccine construct to mice followed by 10E8 epitope peptide boost, specific antibody responses in serum and mucosa as well as memory lymphocytes in spleen and plasma cells in bone marrow were induced. We also found that the live attenuated Salmonella vector directed the immunity toward Th1 bias, induced Th1 and Th2 cytokine responses and stimulated significant B cell differentiation into GC B, memory B and plasma cells. Therefore, we propose that the live attenuated Salmonella constitutively expressing HIV-1 BNAb epitopes on the fimbriae will be an effective approach to improving immune microenvironment and enhancing the immunogenicity of HIV-1 epitope vaccines. PMID:27411313

  13. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis.

    PubMed

    Poeschla, Eric

    2013-06-20

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient "central DNA flap" in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. PMID:23561461

  14. The Importance of becoming double-stranded: innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    PubMed Central

    Poeschla, Eric

    2013-01-01

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. PMID:23561461

  15. Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1.

    PubMed

    Maelfait, Jonathan; Bridgeman, Anne; Benlahrech, Adel; Cursi, Chiara; Rehwinkel, Jan

    2016-08-01

    SAMHD1 is a restriction factor for HIV-1 infection. SAMHD1 mutations cause the autoinflammatory Aicardi-Goutières syndrome that is characterized by chronic type I interferon (IFN) secretion. We show that the spontaneous IFN response in SAMHD1-deficient cells and mice requires the cGAS/STING cytosolic DNA-sensing pathway. We provide genetic evidence that cell-autonomous control of lentivirus infection in myeloid cells by SAMHD1 limits virus-induced production of IFNs and the induction of co-stimulatory markers. This program of myeloid cell activation required reverse transcription, cGAS and STING, and signaling through the IFN receptor. Furthermore, SAMHD1 reduced the induction of virus-specific cytotoxic T cells in vivo. Therefore, virus restriction by SAMHD1 limits the magnitude of IFN and T cell responses. This demonstrates a competition between cell-autonomous virus control and subsequent innate and adaptive immune responses, a concept with important implications for the treatment of infection. PMID:27477283

  16. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    PubMed

    Peng, Hui; Sun, Lijun; Jia, Beibei; Lan, Xiqian; Zhu, Bing; Wu, Yumei; Zheng, Jialin

    2011-01-01

    Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  17. Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C.

    PubMed

    Klasse, P J; LaBranche, Celia C; Ketas, Thomas J; Ozorowski, Gabriel; Cupo, Albert; Pugach, Pavel; Ringe, Rajesh P; Golabek, Michael; van Gils, Marit J; Guttman, Miklos; Lee, Kelly K; Wilson, Ian A; Butera, Salvatore T; Ward, Andrew B; Montefiori, David C; Sanders, Rogier W; Moore, John P

    2016-09-01

    We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses. PMID:27627672

  18. Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment

    PubMed Central

    Edén, Arvid; Marcotte, Thomas D.; Heaton, Robert K.; Nilsson, Staffan; Zetterberg, Henrik; Fuchs, Dietmar; Franklin, Donald; Price, Richard W.; Grant, Igor; Letendre, Scott L.; Gisslén, Magnus

    2016-01-01

    Objective Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). Design and Methods We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Results Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001) but not in the NCN group (r = -0.13; p = 0.3). Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06). Conclusions Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies. PMID:27295036

  19. Discordant Immune Response with Antiretroviral Therapy in HIV-1: A Systematic Review of Clinical Outcomes

    PubMed Central

    Kelly, Christine; Gaskell, Katherine M.; Richardson, Marty; Klein, Nigel; Garner, Paul; MacPherson, Peter

    2016-01-01

    Background A discordant immune response (DIR) is a failure to satisfactorily increase CD4 counts on ART despite successful virological control. Literature on the clinical effects of DIR has not been systematically evaluated. We aimed to summarise the risk of mortality, AIDS and serious non-AIDS events associated with DIR with a systematic review. Methods The protocol is registered with the Centre for Review Dissemination, University of York (registration number CRD42014010821). Included studies investigated the effect of DIR on mortality, AIDS, or serious non-AIDS events in cohort studies or cohorts contained in arms of randomised controlled trials for adults aged 16 years or older. DIR was classified as a suboptimal CD4 count (as defined by the study) despite virological suppression following at least 6 months of ART. We systematically searched PubMed, Embase, and the Cochrane Library to December 2015. Risk of bias was assessed using the Cochrane tool for assessing risk of bias in cohort studies. Two authors applied inclusion criteria and one author extracted data. Risk ratios were calculated for each clinical outcome reported. Results Of 20 studies that met the inclusion criteria, 14 different definitions of DIR were used. Risk ratios for mortality in patients with and without DIR ranged between 1.00 (95% CI 0.26 to 3.92) and 4.29 (95% CI 1.96 to 9.38) with the majority of studies reporting a 2 to 3 fold increase in risk. Conclusions DIR is associated with a marked increase in mortality in most studies but definitions vary widely. We propose a standardised definition to aid the development of management options for DIR. PMID:27284683

  20. Single peptide and anti-idiotype based immunizations can broaden the antibody response against the variable V3 domain of HIV-1 in mice.

    PubMed

    Boudet, F; Keller, H; Kieny, M P; Thèze, J

    1995-05-01

    The third variable (V3) domain of the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 is a major target of neutralizing antibodies in infected persons and in experimental immunized animals. Given the high degree of sequence variability of V3, the humoral response toward this region is very type-specific. In the present study, we evaluated the potential of a single peptide and an anti-idiotypic antibody to broaden the anti-V3 antibody specificity in BALB/c mice. We show that a synthetic peptide derived from the V3 determinant of HIV-1 MN isolate (V3MN), when used as an immunogen, was able to induce an antibody response to multiple (up to six) HIV-1 strains. The extent of this cross-reactivity, which tended to enlarge as the injections increased, appeared to be inversely correlated with the binding affinity to V3MN peptide. These data thus present evidence that, despite its great sequence heterogeneity, the V3 loop encompasses conserved amino-acid positions and/or stretches which may be less immunogenic than their variable counterparts. We additionally demonstrate that a rabbit anti-idiotype (Ab2), recognizing a binding site related idiotype on a V3-specific mouse monoclonal antibody (Ab1), could mount a broadened humoral response (Ab3) in mice. Unlike nominal antibody Ab1 which strictly reacted with the European HIV-1 LAI isolate, elicited Ab3 recognized the two divergent HIV-1 strains SF2 and 1286, originating respectively from North America and Central Africa, in addition to LAI. The reasons accounting for this Ab2-induced enlargement of the V3 antibody response are discussed. Our findings suggest that single peptide and anti-idiotype based immunizations may provide viable approaches to overcome, at least in part, HIV epitope variability. PMID:7783749

  1. Effect of Schistosoma mansoni Infection on Innate and HIV-1-Specific T-Cell Immune Responses in HIV-1-Infected Ugandan Fisher Folk.

    PubMed

    Obuku, Andrew Ekii; Asiki, Gershim; Abaasa, Andrew; Ssonko, Isaac; Harari, Alexandre; van Dam, Govert J; Corstjens, Paul L; Joloba, Moses; Ding, Song; Mpendo, Juliet; Nielsen, Leslie; Kamali, Anatoli; Elliott, Alison M; Pantaleo, Giuseppe; Kaleebu, Pontiano; Pala, Pietro

    2016-07-01

    In Uganda, fisher folk have HIV prevalence rates, about four times higher than the national average, and are often coinfected with Schistosoma mansoni. We hypothesized that innate immune responses and HIV-specific Th1 immune responses might be downmodulated in HIV/S. mansoni-coinfected individuals compared with HIV+/S. mansoni-negative individuals. We stimulated whole blood with innate receptor agonists and analyzed supernatant cytokines by Luminex. We evaluated HIV-specific responses by intracellular cytokine staining for IFN-γ, IL-2, and TNF-α. We found that the plasma viral load and CD4 count were similar between the HIV+SM+ and HIV+SM- individuals. In addition, the TNF-α response to the imidazoquinoline compound CL097 and β-1, 3-glucan (curdlan), was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. The frequency of HIV-specific IFN-γ+IL-2-TNF-α- CD8 T cells and IFN-γ+IL-2-TNF-α+ CD4 T cells was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. These findings do not support the hypothesis that S. mansoni downmodulates innate or HIV-specific Th1 responses in HIV/S. mansoni-coinfected individuals. PMID:26864743

  2. Effect of Schistosoma mansoni Infection on Innate and HIV-1-Specific T-Cell Immune Responses in HIV-1-Infected Ugandan Fisher Folk

    PubMed Central

    Asiki, Gershim; Abaasa, Andrew; Ssonko, Isaac; Harari, Alexandre; van Dam, Govert J.; Corstjens, Paul L.; Joloba, Moses; Ding, Song; Mpendo, Juliet; Nielsen, Leslie; Kamali, Anatoli; Elliott, Alison M.; Pantaleo, Giuseppe; Kaleebu, Pontiano; Pala, Pietro

    2016-01-01

    Abstract In Uganda, fisher folk have HIV prevalence rates, about four times higher than the national average, and are often coinfected with Schistosoma mansoni. We hypothesized that innate immune responses and HIV-specific Th1 immune responses might be downmodulated in HIV/S. mansoni-coinfected individuals compared with HIV+/S. mansoni-negative individuals. We stimulated whole blood with innate receptor agonists and analyzed supernatant cytokines by Luminex. We evaluated HIV-specific responses by intracellular cytokine staining for IFN-γ, IL-2, and TNF-α. We found that the plasma viral load and CD4 count were similar between the HIV+SM+ and HIV+SM− individuals. In addition, the TNF-α response to the imidazoquinoline compound CL097 and β-1, 3-glucan (curdlan), was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. The frequency of HIV-specific IFN-γ+IL-2–TNF-α− CD8 T cells and IFN-γ+IL-2–TNF-α+ CD4 T cells was significantly higher in HIV/S. mansoni-coinfected individuals compared with HIV only-infected individuals. These findings do not support the hypothesis that S. mansoni downmodulates innate or HIV-specific Th1 responses in HIV/S. mansoni-coinfected individuals. PMID:26864743

  3. Pseudovirion Particle Production by Live Poxvirus Human Immunodeficiency Virus Vaccine Vector Enhances Humoral and Cellular Immune Responses

    PubMed Central

    Chen, Xuemin; Rock, Michael T.; Hammonds, Jason; Tartaglia, James; Shintani, Ayumi; Currier, Jeff; Slike, Bonnie; Crowe, James E.; Marovich, Mary; Spearman, Paul

    2005-01-01

    Live-vector-based human immunodeficiency virus (HIV) vaccines are an integral part of a number of HIV vaccine regimens currently under evaluation. Live vectors that carry an intact gag gene are capable of eliciting HIV pseudovirion particle formation from infected host cells. The impact of pseudovirion particle formation on the immune response generated by live HIV vaccine vectors has not been established. In this study, a canarypox HIV vaccine candidate vector expressing HIV gag and env genes, vCP205, was modified by the introduction of a glycine-to-alanine coding change in the N-terminal myristylation site of gag to create Myr− vCP205. This substitution effectively eliminated particle formation without altering the level of protein production. vCP205 and Myr− vCP205 were then directly compared for the ability to induce HIV-specific immune responses in mice. The particle-competent vector vCP205 elicited higher levels of CD8+ T-cell responses, as indicated by gamma interferon enzyme-linked immunospot (ELISPOT) assay and intracellular cytokine staining. Humoral responses to Gag and Env were also markedly higher from animals immunized with the particle-competent vector. Furthermore, HIV-specific CD4+ T-cell responses were greater among animals immunized with the particle-competent vector. Using a human dendritic cell model of antigen presentation in vitro, vCP205 generated greater ELISPOT responses than Myr− vCP205. These results demonstrate that pseudovirion particle production by live-vector HIV vaccines enhances HIV-specific cellular and humoral immune responses. PMID:15827168

  4. Pseudovirion particle production by live poxvirus human immunodeficiency virus vaccine vector enhances humoral and cellular immune responses.

    PubMed

    Chen, Xuemin; Rock, Michael T; Hammonds, Jason; Tartaglia, James; Shintani, Ayumi; Currier, Jeff; Slike, Bonnie; Crowe, James E; Marovich, Mary; Spearman, Paul

    2005-05-01

    Live-vector-based human immunodeficiency virus (HIV) vaccines are an integral part of a number of HIV vaccine regimens currently under evaluation. Live vectors that carry an intact gag gene are capable of eliciting HIV pseudovirion particle formation from infected host cells. The impact of pseudovirion particle formation on the immune response generated by live HIV vaccine vectors has not been established. In this study, a canarypox HIV vaccine candidate vector expressing HIV gag and env genes, vCP205, was modified by the introduction of a glycine-to-alanine coding change in the N-terminal myristylation site of gag to create Myr- vCP205. This substitution effectively eliminated particle formation without altering the level of protein production. vCP205 and Myr- vCP205 were then directly compared for the ability to induce HIV-specific immune responses in mice. The particle-competent vector vCP205 elicited higher levels of CD8+ T-cell responses, as indicated by gamma interferon enzyme-linked immunospot (ELISPOT) assay and intracellular cytokine staining. Humoral responses to Gag and Env were also markedly higher from animals immunized with the particle-competent vector. Furthermore, HIV-specific CD4+ T-cell responses were greater among animals immunized with the particle-competent vector. Using a human dendritic cell model of antigen presentation in vitro, vCP205 generated greater ELISPOT responses than Myr- vCP205. These results demonstrate that pseudovirion particle production by live-vector HIV vaccines enhances HIV-specific cellular and humoral immune responses. PMID:15827168

  5. Poxvirus membrane biogenesis.

    PubMed

    Moss, Bernard

    2015-05-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  6. Poxvirus Membrane Biogenesis

    PubMed Central

    2015-01-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  7. Poxvirus Orthologous Clusters (POCs).

    PubMed

    Ehlers, Angelika; Osborne, John; Slack, Stephanie; Roper, Rachel L; Upton, Chris

    2002-11-01

    Poxvirus Orthologous Clusters (POCs) is a JAVA client-server application which accesses an updated database containing all complete poxvirus genomes; it automatically groups orthologous genes into families based on BLASTP scores for assessment by a human database curator. POCs has a user-friendly interface permitting complex SQL queries to retrieve interesting groups of DNA and protein sequences as well as gene families for subsequent interrogation by a variety of integrated tools: BLASTP, BLASTX, TBLASTN, Jalview (multiple alignment), Dotlet (Dotplot), Laj (local alignment), and NAP (nucleotide to amino acid alignment). PMID:12424130

  8. Antibody light chain-restricted recognition of the site of immune pressure in the RV144 HIV-1 vaccine trial is phylogenetically conserved

    PubMed Central

    Wiehe, Kevin; Easterhoff, David; Luo, Kan; Nicely, Nathan I.; Bradley, Todd; Jaeger, Frederick H.; Dennison, S. Moses; Zhang, Ruijun; Lloyd, Krissey E.; Stolarchuk, Christina; Parks, Robert; Sutherland, Laura L.; Scearce, Richard M.; Morris, Lynn; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Sinangil, Faruk; Phogat, Sanjay; Michael, Nelson L.; Kim, Jerome H.; Kelsoe, Garnett; Montefiori, David C.; Tomaras, Georgia D.; Bonsignori, Mattia; Santra, Sampa; Kepler, Thomas B.; Alam, S. Munir; Moody, M. Anthony; Liao, Hua-Xin; Haynes, Barton F.

    2015-01-01

    SUMMARY In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K)169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was pre-configured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode. PMID:25526306

  9. Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120

    SciTech Connect

    Chen, Lei; Kwon, Young Do; Zhou, Tongqing; Wu, Xueling; O'Dell, Sijy; Cavacini, Lisa; Hessell, Ann J.; Pancera, Marie; Tang, Min; Xu, Ling; Yang, Zhi-Yong; Zhang, Mei-Yun; Arthos, James; Burton, Dennis R.; Dimitrov, Dimiter S.; Nabel, Gary J.; Posner, Marshall R.; Sodroski, Joseph; Wyatt, Richard; Mascola, John R.; Kwong, Peter D.

    2010-01-13

    The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorly compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.

  10. No-Go'ing Back: Co-opting RVB-2 to Control HIV-1 Gene Expression and Immune Response.

    PubMed

    Le Sage, Valerie; Cinti, Alessandro; Mouland, Andrew J

    2015-10-01

    Production of infectious HIV-1 particles requires viral envelope (Env) glycoprotein incorporation. Although, the precise mechanism remains elusive, interaction between Env and the matrix (MA) domain of Gag plays a central role. Work by Mu and colleagues demonstrates how the Env-MA interaction regulates gag mRNA stability and Gag expression levels. PMID:26342234

  11. Enhanced proliferative cellular responses to HIV-1 V3 peptide and gp120 following immunization with V3:Ty virus-like particles.

    PubMed

    Harris, S J; Gearing, A J; Layton, G T; Adams, S E; Kingsman, A J

    1992-11-01

    The induction of CD4+ T-helper (Th) cell responses is likely to be an important requirement of vaccine candidates designed to prevent or moderate human immunodeficiency virus-1 (HIV-1) infection. We have investigated the ability of hybrid Ty virus-like particles carrying the V3 loop region of the HIV-1 IIIB envelope gp120 (V3:Ty-VLP) to elicit V3-specific proliferative responses. Significant proliferation in response to stimulation in vitro with homologous IIIB V3 peptide was observed following immunization of mice with V3:Ty-VLP either as an aluminium hydroxide precipitate or without adjuvant. Responses to MN V3 peptide were also observed in certain mouse haplotypes. To assess the effect of presenting the V3 loop in this particulate form, we compared the responses induced by V3:Ty-VLP with those obtained with two non-particulate immunogens, recombinant gp120 (rgp120) and V3 peptide conjugated to albumin. V3-specific responses to V3 peptide in vitro were reproducibly higher following immunization with V3:Ty-VLP than with either rgp120 or V3-albumin coagulate (V3-alb). The data indicate that immunization with the V3 loop as a hybrid Ty-VLP results in enhanced proliferative responses to V3 peptide and recognition of rgp120 in vitro. Some cross-reactivity of Th cells for V3 sequences from different isolates was also observed. PMID:1362183

  12. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    PubMed

    Krebs, Shelly J; McBurney, Sean P; Kovarik, Dina N; Waddell, Chelsea D; Jaworski, J Pablo; Sutton, William F; Gomes, Michelle M; Trovato, Maria; Waagmeester, Garret; Barnett, Susan J; DeBerardinis, Piergiuseppe; Haigwood, Nancy L

    2014-01-01

    Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env. PMID:25514675

  13. HIV-1 Adenoviral Vector Vaccines Expressing Multi-Trimeric BAFF and 4-1BBL Enhance T Cell Mediated Anti-Viral Immunity

    PubMed Central

    Gupta, Sachin; Raffa, Francesca N.; Fuller, Katherine A.; Rivas, Yaelis; Philip, Sakhi; Kornbluth, Richard S.; Stone, Geoffrey W.

    2014-01-01

    Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia

  14. Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection.

    PubMed

    Ondondo, Beatrice; Murakoshi, Hayato; Clutton, Genevieve; Abdul-Jawad, Sultan; Wee, Edmund G-T; Gatanaga, Hiroyuki; Oka, Shinichi; McMichael, Andrew J; Takiguchi, Masafumi; Korber, Bette; Hanke, Tomáš

    2016-04-01

    An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development. PMID:26743582

  15. Neopterin and Soluble CD14 Levels as Indicators of Immune Activation in Cases with Indeterminate Pattern and True Positive HIV-1 Infection

    PubMed Central

    Uysal, Hayriye Kırkoyun; Sohrabi, Pari; Habip, Zafer; Saribas, Suat; Kocazeybek, Emre; Seyhan, Fatih; Calışkan, Reyhan; Bonabi, Esad; Yuksel, Pelin; Birinci, Ilhan; Uysal, Omer; Kocazeybek, Bekir

    2016-01-01

    Background We aimed to evaluate the roles of the plasma immune activation biomarkers neopterin and soluble CD14 (sCD14) in the indirect assessment of the immune activation status of patients with the indeterminate HIV-1 (IHIV-1) pattern and a true HIV-1-positive infection (PCG). Methods This cross-sectional and descriptive study included eighty-eight patients with the IHIV-1 pattern, 100 patients in the PCG, and 100 people in a healthy control group (HCG). Neopterin and sCD14 levels were determined by competitive and sandwich ELISA methods, respectively. Results Mean neopterin and sCD14 levels among those with the IHIV-1 pattern were significantly lower than among the PCG (p < 0.001 and p = 0.001, respectively), but they were similiar to those in the HCG (p = 0.57 and p = 0.66, respectively. Mean neopterin and sCD14 levels among the PCG were found to be significantly higher than among those with the IHIV-1 pattern (p < 0.001 and p = 0.001, respectively) and among those in the HCG (p = 0.001, p < 0.001, respectively). Neopterin did not have adequate predictive value for identifying those in the PCG (area under the curve [AUC] = 0.534; 95% CI, 0.463–0.605; p = 0.4256); sCD14 also had poor predictive value but high specificity (100%) for identifying those in the PCG (AUC = 0.627; 95% CI, 0.556–0.694; p = 0.0036). Conclusions While low levels of these two biomarkers were detected among those with the IHIV-1 pattern, they were found in high levels among those in the PCG. These two markers obviously cannot be used as a sceening test because they have low sensitivies. Taken together, we suggest that neopterin and sCD14 may be helpful because they both have high specificity (92%-100%) as indirect non-specific markers for predicting the immune activation status of individuals, whether or not they have true positive HIV-1. PMID:27031691

  16. Strategies for Eliciting HIV-1 Inhibitory Antibodies

    PubMed Central

    Tomaras, Georgia D.; Haynes, Barton F.

    2012-01-01

    Purpose of review Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. Recent Findings Heterologous prime-boost strategies can yield anti-HIV immune responses; although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4+ T cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B cell response. Summary In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission. PMID:20978384

  17. Processing of blood samples influences PBMC viability and outcome of cell-mediated immune responses in antiretroviral therapy-naïve HIV-1-infected patients.

    PubMed

    Bourguignon, Patricia; Clément, Frédéric; Renaud, Frédéric; Le Bras, Vivien; Koutsoukos, Marguerite; Burny, Wivine; Moris, Philippe; Lorin, Clarisse; Collard, Alix; Leroux-Roels, Geert; Roman, François; Janssens, Michel; Vandekerckhove, Linos

    2014-12-01

    Intracellular cytokine staining (ICS) assay is increasingly used in vaccine clinical trials to measure antigen-specific T-cell mediated immune (CMI) responses in cryopreserved peripheral blood mononuclear cells (PBMCs) and whole blood. However, recent observations indicate that several parameters involved in blood processing can impact PBMC viability and CMI responses, especially in antiretroviral therapy (ART)-naïve HIV-1-infected individuals. In this phase I study (NCT01610427), we collected blood samples from 22 ART-naïve HIV-1-infected adults. PBMCs were isolated and processed for ICS assay. The individual and combined effects of the following parameters were investigated: time between blood collection and PBMC processing (time-to-process: 2, 7 or 24 h); time between PBMC thawing and initiation of in vitro stimulation with HIV-1 antigens (resting-time: 0, 2, 6 and 18 h); and duration of antigen-stimulation in PBMC cultures (stimulation-time: 6h or overnight). The cell recovery after thawing, cell viability after ICS and magnitude of HIV-specific CD8(+) T-cell responses were considered to determine the optimal combination of process conditions. The impact of time-to-process (2 or 4 h) on HIV-specific CD8(+) T-cell responses was also assessed in a whole blood ICS assay. A higher quality of cells in terms of recovery and viability (up to 81% and >80% respectively) was obtained with shorter time-to-process (less than 7 h) and resting-time (less than 2 h) intervals. Longer (overnight) rather than shorter (6 h) stimulation-time intervals increased the frequency of CD8(+)-specific T-cell responses using ICS in PBMCs without change of the functionality. The CD8(+) specific T-cell responses detected using fresh whole blood showed a good correlation with the responses detected using frozen PBMCs. Our results support the need of standardized procedures for the evaluation of CMI responses, especially in HIV-1-infected, ART-naïve patients. PMID:25224748

  18. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    PubMed Central

    de Repentigny, Louis; Goupil, Mathieu; Jolicoeur, Paul

    2015-01-01

    IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination. PMID:26110288

  19. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation.

    PubMed

    Saulle, Irma; Biasin, Mara; Gnudi, Federica; Rainone, Veronica; Ibba, Salomè Valentina; Caputo, Sergio Lo; Mazzotta, Francesco; Trabattoni, Daria; Clerici, Mario

    2016-02-01

    Analyses of immune activation in HIV-exposed seronegative individuals (HESN) yielded discrepant results. To clarify this issue we performed an extensive investigation of immune parameters in HESN and, in particular, we analyzed in these individuals the possible presence of microbial translocation, the most widely accepted reason driving immune activation in HIV-infected patients. Results showed that immune activation, a skewing of T lymphocyte maturation, and increased responsiveness to lipopolysaccharide (LPS) characterize the HESN phenotype; this is not driven by alterations of the gastrointestinal barrier and microbial translocation. The activation state seen in HESN may influence the induction of stronger adaptive antiviral immune responses and may represent a virus exposure-induced innate immune protective phenotype against HIV. PMID:26414485

  20. A Single HIV-1 Cluster and a Skewed Immune Homeostasis Drive the Early Spread of HIV among Resting CD4+ Cell Subsets within One Month Post-Infection

    PubMed Central

    Avettand-Fenoël, Véronique; Nembot, Georges; Mélard, Adeline; Blanc, Catherine; Lascoux-Combe, Caroline; Slama, Laurence; Allegre, Thierry; Allavena, Clotilde; Yazdanpanah, Yazdan; Duvivier, Claudine; Katlama, Christine; Goujard, Cécile; Seksik, Bao Chau Phung; Leplatois, Anne; Molina, Jean-Michel; Meyer, Laurence; Autran, Brigitte; Rouzioux, Christine

    2013-01-01

    Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that

  1. Cross-Reactive HIV-1 Neutralizing Monoclonal Antibodies Selected by Screening of an Immune Human Phage Library against an Envelope Glycoprotein (gp140) Isolated from a Patient (R2) with Broadly HIV-1 Neutralizing Antibodies

    PubMed Central

    Choudhry, Vidita; Zhang, Mei-Yun; Sidorov, Igor A.; Louise, John M.; Harris, Ilia; Dimitrov, Antony S.; Bouma, Peter; Cham, Fatim; Choudhary, Anil; Rybak, Susanna M.; Fouts, Timothy; Montefiori, David C.; Broder, Christopher C.; Quinnan, Gerald V.; Dimitrov, Dimiter S.

    2009-01-01

    Elicitation of broadly cross-reactive neutralizing antibodies (bcnAbs) in HIV infections is rare. To test the hypothesis that such antibodies could be elicited by HIV envelope glycoproteins (Envs) with unusual immunogenic properties and to identify novel bcnAbs, we used a soluble Env ectodomain (gp140) from a donor (R2) with high level of bcnAbs as an antigen for panning of an immune phage-displayed antibody library. The panning with the R2 Env resulted in significantly higher number of cross-reactive antibody clones than by using Envs from two other isolates (89.6 and IIIB). Two of the identified human monoclonal antibodies (hmAbs), m22 and m24, had sequences, neutralizing and binding activities similar or identical to those of the gp120-specific bcnAbs m18 and m14. The use of the R2 Env but not other Envs for panning resulted in the identification of a novel gp41-specific hmAb, m46. For several of the tested HIV-1 primary isolates its potency on molar basis was comparable to that of T20. It inhibited entry of primary isolates from different clades with an increased activity for cell lines with low CCR5 surface concentrations. The m46 neutralizing activity against a panel of clade C isolates was significantly higher in an assay based on peripheral blood mononuclear cells (4 out of 5 isolates were neutralized with an IC50 in the range from 1.5 to 25 μg/ml) than in an assay based on a cell line with relatively high concentration of cell-surface associated CCR5. In contrast to 2F5 and Z13, this antibody did not bind to denatured gp140 and gp41-derived peptides indicating a conformational nature of its epitope. It bound to a 5-helix bundle but not to N-heptad repeat coiled coils and a 6-helix bundle construct indicating contribution of both gp41 heptad repeats to its epitope and to a possible mechanism of neutralization. These results indicate that the R2 Env may contain unique exposed conserved epitopes that could contribute to its ability to elicit broadly cross

  2. Pre-Existing Adenovirus Immunity Modifies a Complex Mixed Th1 and Th2 Cytokine Response to an Ad5/HIV-1 Vaccine Candidate in Humans

    PubMed Central

    Pine, Samuel O.; Kublin, James G.; Hammer, Scott M.; Borgerding, Joleen; Huang, Yunda; Casimiro, Danilo R.; McElrath, M. Juliana

    2011-01-01

    The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732). Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36) or Ad5-seropositive (titer >200; n = 34). Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes). At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008), and significantly more IP-10 (p = 0.0009), IL-2 (p = 0.006) and IL-10 (p = 0.05) in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these results suggest

  3. Cryptococcal Immune Reconstitution Inflammatory Syndrome in HIV-1–infected individuals: Literature Review and Proposed Clinical Case Definitions

    PubMed Central

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2011-01-01

    Cryptococcal immune reconstitution inflammatory syndrome (C-IRIS) may present as a clinical deterioration or new presentation of cryptococcal disease following initiation of antiretroviral therapy (ART) and is believed to be caused by recovery of cryptococcus-specific immune responses. We have reviewed the existing literature on C-IRIS to inform the development of a consensus case definition specific for paradoxical cryptococcal IRIS in patients with known cryptococcal disease prior to ART, and a second definition for incident cases of cryptococcosis developing during ART (here termed ART-associated cryptococcosis), a proportion of which are likely to be “unmasking” C-IRIS. These structured case definitions are intended for use in future clinical, epidemiologic and immunopathologic studies of C-IRIS, harmonizing diagnostic criteria, and facilitating comparisons between studies. As with tuberculosis-associated IRIS, these proposed definitions should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement. PMID:21029993

  4. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay.

    PubMed

    Xu, Jinhu; Zhou, Yicang

    2016-04-01

    A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and time delay in immune response is investigated. Mathematical analysis shows that delay may destabilize the infected steady state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifurcation and the stability of the periodic solutions are investigated by normal form and center manifold theory. Numerical simulations are done to explore the rich dynamics, including stability switches, Hopf bifurcations, and chaotic oscillations. PMID:27105992

  5. HIV-1 immunopathogenesis in humanized mouse models

    PubMed Central

    Zhang, Liguo; Su, Lishan

    2012-01-01

    In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies. PMID:22504952

  6. Increase in frequencies of circulating Th-17 cells correlates with microbial translocation, immune activation and exhaustion in HIV-1 infected patients with poor CD4 T-cell reconstitution.

    PubMed

    Valiathan, Ranjini; Asthana, Deshratn

    2016-05-01

    We analyzed the association of circulating Th-17 cells (cTh-17) with immune activation (IA), immune exhaustion (IE) and regulatory T-cells (T-regs) in 20 human immunodeficiency virus-1 (HIV-1) infected patients with impaired restoration of CD4 T-cell counts despite prolonged suppression of plasma viremia (discordant) and compared it with 20 HIV-1 infected patients showing good immunologic and virologic responses (concordant) following highly active antiretroviral therapy (HAART). Discordant HIV-1 infected patients showed significantly higher frequencies of cTh-17 cells compared to concordant patients and healthy controls after PMA+Ionomicin stimulation. Discordant patients also showed higher CD4 T-cell immune activation (HLA-DR+CD38+) than concordant patients which directly correlated with microbial translocation. Additionally, CD4 T-cells of discordant patients showed higher frequencies of CD4 T-cells expressing multiple immune exhaustion markers (Tim3+PD-1+) which correlated with immune activation indicating that combined analysis of inhibitory molecules along with PD-1 might be a better predictor for immune exhaustion of CD4 T-cells. Increased cTh-17 cell frequency correlated inversely with CD4 T-cell percentages and absolute counts and directly with CD4 T-cell immune activation and T-reg frequencies. Persistent CD4 T-cell immune activation might favor differentiation of activated CD4 T-cells toward cTh-17 phenotype in discordant patients. Discordant patients had significantly lower baseline CD4 T-cell counts and higher viral load at the initiation of HAART and higher immune activation and immune exhaustion after being on HAART for long time indicating that these factors might be associated with an increase in cTh-17 cell frequency, thus, increasing the risk of disease progression despite virologic control. PMID:26817581

  7. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity

    PubMed Central

    Andersen, Aram Nikolai; Landsverk, Ole Jørgen; Simonsen, Anne; Bogen, Bjarne; Corthay, Alexandre; Øynebråten, Inger

    2016-01-01

    Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans. PMID:27242780

  8. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides

    PubMed Central

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-01-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4+/CCR5+/CD38+ T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1. PMID:24496317

  9. Low-Replicating Viruses and Strong Anti-Viral Immune Response Associated with Prolonged Disease Control in a Superinfected HIV-1 LTNP Elite Controller

    PubMed Central

    Pernas, María; Casado, Concepción; Arcones, Carolina; Llano, Anuska; Sánchez-Merino, Víctor; Mothe, Beatriz; Vicario, José L.; Grau, Eulalia; Ruiz, Lidia; Sánchez, Jorge; Telenti, Amalio; Yuste, Eloísa; Brander, Christian; Galíndez, Cecilio López-

    2012-01-01

    Objective To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient. Methodology and Principal Findings We studied host genetic, virological and immunological factors associated with viral control in a SI long term non progressor elite controller (LTNP-EC). The individual contained both viruses and maintained undetectable viral loads for >20 years and he did not express any of the described host genetic polymorphisms associated with viral control. None of four full-length gp160 recombinants derived from the LTNP-EC replicated in heterologous peripheral blood mononuclear cells. CTL responses after SI were maintained in two samples separated by 9 years and they were higher in breadth and magnitude than responses seen in most of 250 treatment naïve patients and also 25 controller subjects. The LTNP-EC showed a neutralization response, against 4 of the 6 viruses analyzed, superior to other ECs. Conclusions The study demonstrated that a strong and sustained cellular and humoral immune response and low replicating viruses are associated with viral control in the superinfected LTNP-EC. PMID:22384103

  10. The extradomain A of fibronectin (EDA) combined with poly(I:C) enhances the immune response to HIV-1 p24 protein and the protection against recombinant Listeria monocytogenes-Gag infection in the mouse model.

    PubMed

    San Román, Beatriz; De Andrés, Ximena; Muñoz, Pilar-María; Obregón, Patricia; Asensio, Aaron-C; Garrido, Victoria; Mansilla, Cristina; Arribillaga, Laura; Lasarte, Juan-José; De Andrés, Damián; Amorena, Beatriz; Grilló, María-Jesús

    2012-03-28

    The development of effective vaccines against HIV-1 infection constitutes one of the major challenges in viral immunology. One of the protein candidates in vaccination against this virus is p24, since it is a conserved HIV antigen that has cytotoxic and helper T cell epitopes as well as B cell epitopes that may jointly confer enhanced protection against infection when used in immunization-challenge approaches. In this context, the adjuvant effect of EDA (used as EDAp24 fusion protein) and poly(I:C), as agonists of TLR4 and TLR3, respectively, was assessed in p24 immunizations using a recombinant Listeria monocytogenes HIV-1 Gag proteins (Lm-Gag, where p24 is the major antigen) for challenge in mice. Immunization with EDAp24 fusion protein together with poly(I:C) adjuvant induced a specific p24 IFN-γ production (Th1 profile) as well as protection against a Lm-Gag challenge, suggesting an additive or synergistic effect between both adjuvants. The combination of EDA (as a fusion protein with the antigen, which may favor antigen targeting to dendritic cells through TLR4) and poly(I:C) could thus be a good adjuvant candidate to enhance the immune response against HIV-1 proteins and its use may open new ways in vaccine investigations on this virus. PMID:22326778

  11. Synthetic Consensus HIV-1 DNA Induces Potent Cellular Immune Responses and Synthesis of Granzyme B, Perforin in HIV Infected Individuals

    PubMed Central

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-01-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection. PMID:25531694

  12. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals.

    PubMed

    Morrow, Matthew P; Tebas, Pablo; Yan, Jian; Ramirez, Lorenzo; Slager, Anna; Kraynyak, Kim; Diehl, Malissa; Shah, Divya; Khan, Amir; Lee, Jessica; Boyer, Jean; Kim, J Joseph; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-03-01

    This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection. PMID:25531694

  13. Immunological control of chronic HIV-1 infection: HLA-mediated immune function and viral evolution in adolescents

    PubMed Central

    Bansal, Anju; Yue, Ling; Conway, Joan; Yusim, Karina; Tang, Jianming; Kappes, John; Kaslow, Richard A.; Wilson, Craig M.; Goepfert, Paul A.

    2008-01-01

    Background Differential protein targeting by HIV-specific CD8 T cells is associated with disparate plasma viral loads; however, it is unclear if the quality of these responses differs depending upon the specificity of the targeted epitopes. Methods We examined HIV-specific CD8 T-cell responses in HIV-infected adolescents carrying either an HLA class I allele associated with a favorable prognosis (HLA-B*57) or an allele associated with usual disease progression (HLA-B*35 or HLA-B*53) using interferon-γ ELISpot and ICS assays. Results In an interferon-γ ELISpot assay, p24 was the dominant protein targeted by B*57 carriers while responses to Nef dominated in B*35 or B*53 positive carriers. This differential protein targeting did not change during 4 years of follow-up. In these chronically infected adolescents, there were no significant differences in the quality of the immunodominant T-cell responses between the B*57 and B*35/B*53 carriers as measured by peptide avidity, degranulation, and immune memory markers. There was a trend towards higher expression of interleukin-2 from B*57-KF11 restricted CD8 T cells although this difference was not significant. Nevertheless both B*57 and B*35/53-restricted responses were relatively potent as reflected by the propensity of CD8 T cells to escape in p24 and Nef, respectively. Conclusions Differential protein targeting rather than the quality of T-cell responses appears to be a major distinguishing feature of HIV-specific CD8 T cells induced in B*57 carriers. These data suggest that viral fitness costs associated with CD8 T-cell pressure is an important factor determining differences in the viral load among HIV-infected patients. PMID:18025875

  14. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  15. The evolution of poxvirus vaccines.

    PubMed

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-04-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  16. The Evolution of Poxvirus Vaccines

    PubMed Central

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  17. Anti-HIV-1 Activity of Elafin Depends on Its Nuclear Localization and Altered Innate Immune Activation in Female Genital Epithelial Cells

    PubMed Central

    Yao, Xiao-Dan; Henrick, Bethany M.; Ball, T. Blake; Plummer, Francis A.; Wachihi, Charles; Kimani, Joshua; Rosenthal, Kenneth L.

    2012-01-01

    Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1ADA, but not X4-HIV-1IIIB. Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered

  18. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5+ B cells.

    PubMed

    Biswas, Subhabrata; Chang, Hong; Sarkis, Phuong T N; Fikrig, Erol; Zhu, Quan; Marasco, Wayne A

    2011-12-01

    BLT mice, constructed by surgical implantation of human fetal thymus-liver tissues and intravenous delivery of autologous CD34+ haematopoietic stem cells into adult non-obese diabetic/severe combined immunodeficiency mice, were evaluated for vaccine-induced humoral immune responses. Following engraftment, these mice developed a human lymphoid system; however, the majority of the peripheral human B lymphocytes displayed an immature phenotype as evidenced by surface CD10 expression. Over 50% of the human B cells in the periphery but not in the bone marrow also expressed the CD5 antigen, which is found only infrequently on mature follicular B cells in humans. A single intramuscular immunization with recombinant viral envelope antigens, e.g., HIVgp140 and West Nile Virus envelope proteins, together with the immune stimulatory KLK/ODN1a composition) [corrected] adjuvant resulted in seroconversion characterized by antigen-specific human antibodies predominantly of the IgM isotype. However, repeated booster immunizations did not induce secondary immune responses as evidenced by the lack of class switching and specific IgM levels remaining relatively unchanged. Interestingly, the peripheral CD19+  CD5+ but not the CD19+  CD5- human B lymphocytes displayed a late developing CD27+  IgM+ memory phenotype, suggesting that the CD5+ B-cell subset, previously implicated in 'natural antibody' production, may play a role in the vaccine-induced antibody response. Furthermore, human T lymphocytes from these mice demonstrated suboptimal proliferative responses and loss of co-stimulatory surface proteins ex vivo that could be partially reversed with human interleukin-2 and interleukin-7. Therefore, vaccine-induced immune responses in BLT mice resemble a T-cell-independent pathway that can potentially be modulated in vivo by the exogenous delivery of human cytokines/growth factors. PMID:22044090

  19. HIV-1 assembly in macrophages

    PubMed Central

    2010-01-01

    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells

  20. Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins.

    PubMed

    Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K

    2016-02-01

    Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. PMID:26581986

  1. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  2. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV{sub KU2} infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail

    SciTech Connect

    Nehete, Pramod N.; Nehete, Bharti P.; Hill, Lori; Manuri, Pallavi R.; Baladandayuthapani, Veerabhadran; Feng Lei; Simmons, Johnny; Sastry, K. Jagannadha

    2008-01-05

    Infection of Indian-origin rhesus macaques by the simian human immunodeficiency virus (SHIV) is considered to be a suitable preclinical model for directly testing efficacy of vaccine candidates based on the HIV-1 envelope. We used this model for prophylactic vaccination with a peptide-cocktail comprised of highly conserved HIV-1 envelope sequences immunogenic/antigenic in macaques and humans. Separate groups of macaques were immunized with the peptide-cocktail by intravenous and subcutaneous routes using autologous dendritic cells (DC) and Freund's adjuvant, respectively. The vaccine elicited antigen specific IFN-{gamma}-producing cells and T-cell proliferation, but not HIV-neutralizing antibodies. The vaccinated animals also exhibited efficient cross-clade cytolytic activity against target cells expressing envelope proteins corresponding to HIV-1 strains representative of multiple clades that increased after intravenous challenge with pathogenic SHIV{sub KU2}. Virus-neutralizing antibodies were either undetectable or present only transiently at low levels in the control as well as vaccinated monkeys after infection. Significant control of plasma viremia leading to undetectable levels was achieved in majority of vaccinated monkeys compared to mock-vaccinated controls. Monkeys vaccinated with the peptide-cocktail using autologous DC, compared to Freund's adjuvant, and the mock-vaccinated animals, showed significantly higher IFN-{gamma} production, higher levels of vaccine-specific IFN-{gamma} producing CD4{sup +} cells and significant control of plasma viremia. These results support DC-based vaccine delivery and the utility of the conserved HIV-1 envelope peptide-cocktail, capable of priming strong cell-mediated immunity, for potential inclusion in HIV vaccination strategies.

  3. High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection.

    PubMed

    Gounder, Kamini; Padayachi, Nagavelli; Mann, Jaclyn K; Radebe, Mopo; Mokgoro, Mammekwa; van der Stok, Mary; Mkhize, Lungile; Mncube, Zenele; Jaggernath, Manjeetha; Reddy, Tarylee; Walker, Bruce D; Ndung'u, Thumbi

    2015-01-01

    In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses. PMID:25781986

  4. Quantification of the Epitope Diversity of HIV-1-Specific Binding Antibodies by Peptide Microarrays for Global HIV-1 Vaccine Development

    PubMed Central

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-01-01

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6,564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research. PMID:25445329

  5. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  6. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGESBeta

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  7. Fetal exposure to HIV-1 alters chemokine receptor expression by CD4+T cells and increases susceptibility to HIV-1.

    PubMed

    Bunders, Madeleine J; van Hamme, John L; Jansen, Machiel H; Boer, Kees; Kootstra, Neeltje A; Kuijpers, Taco W

    2014-01-01

    Absolute numbers of lymphocytes are decreased in uninfected infants born to HIV-1-infected women (HIV-1-exposed). Although the exact mechanism is unknown, fetal exposure to maternal HIV-1-infection could prime the immune system and affect T cell trafficking. We compared the expression of chemokine receptors on cord blood CD4(+) T cells from HIV-1-exposed children and healthy controls. At baseline CD4(+) T cells had a largely naïve phenotype. However, stimulation with cytokines resulted in an upregulation of inflammatory response-related chemokine receptors on CD4(+) T cells, with HIV-1-exposed infants having a significantly higher frequency of CD4(+) T cells expressing, in particularly Th2 associated chemokine receptors (CCR3 p < 0.01, CCR8 p = 0.03). Numbers of naive CCR7(+) CD4(+) T cells were reduced (p = 0.01) in HIV-1-exposed infants. We further assessed whether the inflammatory phenotype was associated with susceptibility to HIV-1 and detected higher levels of p24 upon in in vitro infection of stimulated CD4(+) T cells of HIV-1-exposed infants. In summary, fetal exposure to HIV-1 primes the immune system in the infant leading to an enhanced immune activation and altered T cell homing, with potential ramifications regarding T cell responses and the acquisition of HIV-1 as an infant. PMID:25341640

  8. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  9. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  10. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Stephenson, Kathryn E; Borducchi, Erica N; Smith, Kaitlin; Stanley, Kelly; McNally, Anna G; Liu, Jinyan; Abbink, Peter; Maxfield, Lori F; Seaman, Michael S; Dugast, Anne-Sophie; Alter, Galit; Ferguson, Melissa; Li, Wenjun; Earl, Patricia L; Moss, Bernard; Giorgi, Elena E; Szinger, James J; Eller, Leigh Anne; Billings, Erik A; Rao, Mangala; Tovanabutra, Sodsai; Sanders-Buell, Eric; Weijtens, Mo; Pau, Maria G; Schuitemaker, Hanneke; Robb, Merlin L; Kim, Jerome H; Korber, Bette T; Michael, Nelson L

    2013-10-24

    The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP: PMID:24243013

  11. Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins

    PubMed Central

    Delaloye, Julie; Filali-Mouhim, Abdelali; Cameron, Mark J.; Haddad, Elias K.; Harari, Alexandre; Goulet, Jean-Pierre; Gomez, Carmen E.; Perdiguero, Beatriz; Esteban, Mariano; Pantaleo, Giuseppe; Roger, Thierry; Sékaly, Rafick-Pierre

    2015-01-01

    ABSTRACT NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4+ T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV

  12. Mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T.; Fischer, William; Liao, Hua-Xin; Haynes, Barton F.; Letvin, Norman; Hahn; Beatrice H.

    2011-05-31

    The present invention relates to mosaic clade M HIV-1 Env polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  13. Poxviruses in bats … so what?

    PubMed

    Baker, Kate S; Murcia, Pablo R

    2014-04-01

    Poxviruses are important pathogens of man and numerous domestic and wild animal species. Cross species (including zoonotic) poxvirus infections can have drastic consequences for the recipient host. Bats are a diverse order of mammals known to carry lethal viral zoonoses such as Rabies, Hendra, Nipah, and SARS. Consequent targeted research is revealing bats to be infected with a rich diversity of novel viruses. Poxviruses were recently identified in bats and the settings in which they were found were dramatically different. Here, we review the natural history of poxviruses in bats and highlight the relationship of the viruses to each other and their context in the Poxviridae family. In addition to considering the zoonotic potential of these viruses, we reflect on the broader implications of these findings. Specifically, the potential to explore and exploit this newfound relationship to study coevolution and cross species transmission together with fundamental aspects of poxvirus host tropism as well as bat virology and immunology. PMID:24704730

  14. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge

    PubMed Central

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B.; Buchman, George W.; Volkin, David B.; Middaugh, C. Russell; Isaacs, Stuart N.

    2012-01-01

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted-vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight-loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit vaccine immunogenicity and protection. PMID:23153450

  15. Prospective Immune Dynamics during the First 24 Weeks of Efavirenz Based-Antiretroviral Therapy in HIV-1-Infected Subjects, According to CD4+ T-Cell Counts at Presentation: The IMMUNEF Clinical Trial

    PubMed Central

    Soria, Alessandro; Trabattoni, Daria; Squillace, Nicola; Rainone, Veronica; Gnudi, Federica; Clerici, Mario; Gori, Andrea; Bandera, Alessandra

    2015-01-01

    Background Longitudinal characterization of immune recovery in the first-phase of antiretroviral therapy (ART) is poorly described. We compared immune kinetics in individuals who were diagnosed early or late with HIV-1 infection, (thus commencing ART with different CD4+ T-cell counts), in order to investigate possible mechanisms involved in subsequent poor immune recovery. Methods Immunophenotyping, immune activation, proliferation, apoptosis, regulatory T-cells and intracellular cytokine production were compared at baseline and during 24-week follow-up in two groups of HIV-1-infected patients initiating the same ART (tenofovir/emtricitabine/efavirenz) and divided according to baseline CD4+ T-cell counts (late: ≤200/μL; early: >200/μL). Wilcoxon-rank sum test and analysis for repeated measures were used to evaluate differences between groups over time. Results Twenty-four out of 30 enrolled subjects were evaluable for the analysis, 13 late and 11 early presenters. Significantly lower CD4+ naïve and memory T-cells, and higher plasma viral load, as well as augmented percentages of activated (CD4+/CD25+ cells), apoptotic (CD4+/AnnexinV+/7AAD−, CD4+/caspase 8+ and CD4+/caspase 9+), and proliferating (CD8+/Ki67+ cells) lymphocytes were present at baseline in late presenters; ART resulted in a reduction of apoptotic and proliferating lymphocytes within the follow-up period. Conclusions A skewing towards memory/activated/apoptotic phenotype is seen in HIV-1-infected subjects starting ART at low CD4+ T-cell counts; ART results in early (24 weeks) trend towards normalization of these parameters. Antiretroviral therapy may play a role in rapidly limiting aberrant immune exhaustion even in late presenters, while requiring more time for re-population of highly depleted naïve T-cells. Trial Registration EU Clinical Trial Register EUDRACT number 2008-006188-35 https://www.clinicaltrialsregister.eu/ctr-search/trial/2008-006188-35/IT PMID:25671649

  16. The uses of poxviruses as vectors.

    PubMed

    Vanderplasschen, A; Pastoret, P-P

    2003-12-01

    Poxviruses have played an amazing role in the development of virology, immunology and vaccinology. In 1796, deliberate inoculation of cowpox virus to humans was proved by Dr. Edward Jenner to protect against the antigenically related smallpox virus (variola). This discovery founded the science of immunology and eventually led to smallpox eradication from the earth in 1980 after a world wide vaccination campaign with vaccinia virus (another poxvirus). Paradoxically, despite the eradication of smallpox, there has been an explosion of interest in vaccinia virus in the eighties. This interest has stemmed in part from the application of molecular genetics to clone and express foreign genes from recombinant vaccinia virus. The use of these recombinant vaccinia viruses as efficacious in vitro expression system and live vaccine has raised concerns about their safety. The work of the scientific community of the last 20 years has contributed to improve drastically the safety of poxvirus derived vectors. Firstly, the safety of vaccinia virus has been enhanced by production of genetically attenuated strains. Secondly, alternative poxvirus vectors, such as avipoxviruses, were proved to be extremely safe and efficacious non-replicating vectors when used in non avian species. In the present chapter, the basic concepts of poxvirus biology required to assess the safety of a poxvirus derived vector are provided. The principal poxvirus vectors available to date are described in regards to their biosafety. PMID:14683453

  17. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  18. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  19. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells. PMID:27199430

  20. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  1. Neuropathology of early HIV-1 infection.

    PubMed

    Gray, F; Scaravilli, F; Everall, I; Chretien, F; An, S; Boche, D; Adle-Biassette, H; Wingertsmann, L; Durigon, M; Hurtrel, B; Chiodi, F; Bell, J; Lantos, P

    1996-01-01

    Early HIV-1 invasion of the central nervous system has been demonstrated by many cerebrospinal fluid studies; however, most HIV-1 carriers remain neurologically unimpaired during the so called "asymptomatic" period lasting from seroconversion to symptomatic AIDS. Therefore, neuropathological studies in the early pre-AIDS stages are very few, and the natural history of central nervous system changes in HIV-1 infection remains poorly understood. Examination of brains of asymptomatic HIV-1 positive individuals who died accidentally and of rare cases with acute fatal encephalopathy revealing HIV infection, and comparison with experimental simian immunodeficiency virus and feline immunodeficiency virus infections suggest that, invasion of the CNS by HIV-1 occurs at the time of primary infection and induces an immunological process in the central nervous system. This includes an inflammatory T-cell reaction with vasculitis and leptomeningitis, and immune activation of brain parenchyma with increased number of microglial cells, upregulation of major histocompatibility complex class II antigens and local production of cytokines. Myelin pallor and gliosis of the white matter are usually found and are likely to be the consequence of opening of the blood brain barrier due to vasculitis; direct damage to oligodendrocytes by cytokines may also interfere. These white matter changes may explain, at least partly, the early cerebral atrophy observed, by magnetic resonance imaging, in asymptomatic HIV-1 carriers. In contrast, cortical damage seems to be a late event in the course of HIV-1 infection. There is no significant neuronal loss at the early stages of the disease, no accompanying increase in glial fibrillary acid protein staining in the cortex, and only exceptional neuronal apoptosis. Although HIV-1 proviral DNA may be demonstrated in a number of brains, viral replication remains very low during the asymptomatic stage of HIV-1 infection. This makes it likely that, although

  2. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  3. Multifarious immunotherapeutic approaches to cure HIV-1 infection

    PubMed Central

    Imami, Nesrina; Herasimtschuk, Anna A

    2015-01-01

    Immunotherapy in the context of treated HIV-1 infection aims to improve immune responses to achieve better control of the virus. To date, multifaceted immunotherapeutic approaches have been shown to reduce immune activation and increase CD4 T-lymphocyte counts, further to the effects of antiretroviral therapy alone, in addition to improving HIV-1-specific T-cell responses. While sterilizing cure of HIV-1 would involve elimination of all replication-competent virus, a functional cure in which the host has long-lasting control of viral replication may be more feasible. In this commentary, we discuss novel strategies aimed at targeting the latent viral reservoir with cure of HIV-1 infection being the ultimate goal, an achievement that would have considerable impact on worldwide HIV-1 infection. PMID:26048144

  4. Mucosal Correlates of Protection in HIV-1-Exposed Seronegative Persons

    PubMed Central

    Shen, Ruizhong; Smith, Phillip D.

    2014-01-01

    Resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) persons offers a promising opportunity to identify mechanisms of “natural” protection. Unique features of the mucosa in particular may contribute to this protection. Here we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1-neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission. PMID:24428610

  5. Stress Beyond Translation: Poxviruses and More.

    PubMed

    Liem, Jason; Liu, Jia

    2016-01-01

    Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection. PMID:27314378

  6. Stress Beyond Translation: Poxviruses and More

    PubMed Central

    Liem, Jason; Liu, Jia

    2016-01-01

    Poxviruses are large double-stranded DNA viruses that form viral factories in the cytoplasm of host cells. These viruses encode their own transcription machinery, but rely on host translation for protein synthesis. Thus, poxviruses have to cope with and, in most cases, reprogram host translation regulation. Granule structures, called antiviral granules (AVGs), have been observed surrounding poxvirus viral factories. AVG formation is associated with abortive poxvirus infection, and AVGs contain proteins that are typically found in stress granules (SGs). With certain mutant poxviruses lack of immunoregulatory factor(s), we can specifically examine the mechanisms that drive the formation of these structures. In fact, cytoplasmic macromolecular complexes form during many viral infections and contain sensing molecules that can help reprogram transcription. More importantly, the similarity between AVGs and cytoplasmic structures formed during RNA and DNA sensing events prompts us to reconsider the cause and consequence of these AVGs. In this review, we first summarize recent findings regarding how poxvirus manipulates host translation. Next, we compare and contrast SGs and AVGs. Finally, we review recent findings regarding RNA- and especially DNA-sensing bodies observed during viral infection. PMID:27314378

  7. HIV-1 Fusion Assay

    PubMed Central

    Cavrois, Marielle; Neidleman, Jason; Greene, Warner C.

    2016-01-01

    The HIV-1 fusion assay measures all steps in the HIV-1 life cycle up to and including viral fusion. It relies on the incorporation of a β-lactamase Vpr (BlaM-Vpr) protein chimera into the virion and the subsequent transfer of this chimera into the target cell by fusion (Figure 1). The transfer is monitored by the enzymatic cleavage of CCF2, a fluorescent dye substrate of β-lactamase, loaded into the target cells. Cleavage of the β-lactam ring in CCF2 by β-lactamase changes the fluorescence emission spectrum of the dye from green (520 nm) to blue (447 nm). This change reflects virion fusion and can be detected by flow cytometry (Figure 2).

  8. Short Communication: HIV-1 Infection Suppresses Circulating Viral Restriction microRNAs.

    PubMed

    Zhou, Yu; Sun, Li; Wang, Xu; Liang, Hao; Ye, Li; Zhou, Li; Liang, Bing-Yu; Li, Jie-Liang; Liu, Man-Qing; Peng, Jin-Song; Zhou, Dun-Jin; Gui, Xi-En; Ho, Wen-Zhe

    2016-04-01

    MicroRNAs (miRNAs) participate in host innate immunity against HIV-1 infection. We examined the impact of HIV-1 infection on viral restriction miRNAs in plasma of HIV-1-infected subjects. HIV-1-infected subjects had significantly lower plasma levels of HIV-1 restriction miRNAs (miRs-29a, -29b, -125b, -223, -198, and -382) than control subjects. Further in vitro studies showed that HIV-1 infection of macrophages suppressed production of the extracellular miRs-29b, -125b, and -223. These data demonstrate the compelling evidence that HIV-1 infection impairs host innate immunity by inhibiting antiviral miRNAs, which provide a possible mechanism for HIV-1 persistence in the host. PMID:26607272

  9. HIV-1 infection, microenvironment and endothelial cell dysfunction.

    PubMed

    Mazzuca, Pietro; Caruso, Arnaldo; Caccuri, Francesca

    2016-09-01

    HIV-1 promotes a generalized immune activation that involves the main targets of HIV-1 infection but also cells that are not sensitive to viral infection. ECs display major dysfunctions in HIV+ patients during long-standing viral infection that persist even in the current cART era, in which new-generation drugs have reduced dysmetabolic side effects and successfully impeded viral replication. In vivo studies have failed to demonstrate the presence of replicating virus in ECs suggesting that a direct role of the virus is unlikely, and implying that the mechanism accounting for vascular dysfunction may rely on the indirect action of molecules released in the microenvironment by HIV-1-infected cells. This article reviews the current understanding of how HIV-1 infection can contribute to vascular dysfunction. In particular, we discuss the emerging role played by different HIV-1 proteins in driving inflammation and EC dysregulation, and highlight the need to target them for therapeutic benefit. PMID:27602413

  10. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    PubMed Central

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  11. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  12. Prospects for a Globally Effective HIV-1 Vaccine.

    PubMed

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2015-12-01

    A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure. PMID:26590431

  13. Prospects for a globally effective HIV-1 vaccine.

    PubMed

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2015-11-27

    A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure. PMID:26100921

  14. Macrophage Internal HIV-1 Is Protected from Neutralizing Antibodies

    PubMed Central

    Koppensteiner, Herwig; Banning, Carina; Schneider, Carola; Hohenberg, Heinrich

    2012-01-01

    In macrophages, HIV-1 accumulates in intracellular vesicles designated virus-containing compartments (VCCs). These might play an important role in the constitution of macrophages as viral reservoirs and allow HIV-1 to evade the immune system by sequestration in an internal niche, which is difficult to access from the exterior. However, until now, evidence of whether internal virus accumulations are protected from the host's humoral immune response is still lacking. In order to be able to study the formation and antibody accessibility of VCCs, we generated HIV-1 with green fluorescent protein (GFP)-tagged Gag replicating in primary macrophages. Live-cell observations revealed faint initial cytosolic Gag expression and subsequent large intracellular Gag accumulations which stayed stable over days. Taking advantage of the opportunity to study the accessibility of intracellular VCCs via the cell surface, we demonstrate that macrophage internal HIV-1-containing compartments cannot be targeted by neutralizing antibodies. Furthermore, HIV-1 was efficiently transferred from antibody-treated macrophages to T cells. Three-dimensional reconstruction of electron microscopic slices revealed that Gag accumulations correspond to viral particles within enclosed compartments and convoluted membranes. Thus, although some VCCs were connected to the plasma membrane, the complex membrane architecture of the HIV-1-containing compartment might shield viral particles from neutralizing antibodies. In sum, our study provides evidence that HIV-1 is sequestered into a macrophage internal membranous web, posing an obstacle for the elimination of this viral reservoir. PMID:22205742

  15. Eradicating HIV-1 infection: seeking to clear a persistent pathogen

    PubMed Central

    Archin, Nancie M.; Sung, Julia Marsh; Garrido, Carolina; Soriano-Sarabia, Natalia; Margolis, David M.

    2015-01-01

    Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART. PMID:25402363

  16. Opportunistic infections and immune reconstitution inflammatory syndrome in HIV-1-infected adults in the combined antiretroviral therapy era: a comprehensive review.

    PubMed

    Manzardo, Christian; Guardo, Alberto C; Letang, Emilio; Plana, Montserrat; Gatell, Jose M; Miro, Jose M

    2015-06-01

    Despite the availability of effective combined antiretroviral treatment, many patients still present with advanced HIV infection, often accompanied by an AIDS-defining disease. A subgroup of patients starting antiretroviral treatment under these clinical conditions may experience paradoxical worsening of their disease as a result of an exaggerated immune response towards an active (but also subclinical) infectious agent, despite an appropriate virological and immunological response to the treatment. This clinical condition, known as immune reconstitution inflammatory syndrome, may cause significant morbidity and even mortality if it is not promptly recognized and treated. This review updates current knowledge about the incidence, diagnostic criteria, risk factors, clinical manifestations, and management of opportunistic infections and immune reconstitution inflammatory syndrome in the combined antiretroviral treatment era. PMID:25860288

  17. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1

    PubMed Central

    Bonsignori, Mattia; Wiehe, Kevin; Grimm, Sebastian K.; Lynch, Rebecca; Yang, Guang; Kozink, Daniel M.; Perrin, Florence; Cooper, Abby J.; Hwang, Kwan-Ki; Chen, Xi; Liu, Mengfei; McKee, Krisha; Parks, Robert J.; Eudailey, Joshua; Wang, Minyue; Clowse, Megan; Criscione-Schreiber, Lisa G.; Moody, M. Anthony; Ackerman, Margaret E.; Boyd, Scott D.; Gao, Feng; Kelsoe, Garnett; Verkoczy, Laurent; Tomaras, Georgia D.; Liao, Hua-Xin; Kepler, Thomas B.; Montefiori, David C.; Mascola, John R.; Haynes, Barton F.

    2014-01-01

    Broadly HIV-1–neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1–infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1–infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient’s plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells. PMID:24614107

  18. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFNγ production by CD4+ T cells

    PubMed Central

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D’Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2012-01-01

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFNγ. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFNγ. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFNγ-producing CD4+ T cells. PMID:20850858

  19. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    SciTech Connect

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D'Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.

  20. Revisiting HIV-1 uncoating.

    PubMed

    Arhel, Nathalie

    2010-01-01

    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered. PMID:21083892

  1. GB virus type C envelope protein E2 elicits antibodies that react with a cellular antigen on HIV-1 particles and neutralize diverse HIV-1 isolates.

    PubMed

    Mohr, Emma L; Xiang, Jinhua; McLinden, James H; Kaufman, Thomas M; Chang, Qing; Montefiori, David C; Klinzman, Donna; Stapleton, Jack T

    2010-10-01

    Broadly neutralizing Abs to HIV-1 are well described; however, identification of Ags that elicit these Abs has proven difficult. Persistent infection with GB virus type C (GBV-C) is associated with prolonged survival in HIV-1-infected individuals, and among those without HIV-1 viremia, the presence of Ab to GBV-C glycoprotein E2 is also associated with survival. GBV-C E2 protein inhibits HIV-1 entry, and an antigenic peptide within E2 interferes with gp41-induced membrane perturbations in vitro, suggesting the possibility of structural mimicry between GBV-C E2 protein and HIV-1 particles. Naturally occurring human and experimentally induced GBV-C E2 Abs were examined for their ability to neutralize infectious HIV-1 particles and HIV-1-enveloped pseudovirus particles. All GBV-C E2 Abs neutralized diverse isolates of HIV-1 with the exception of rabbit anti-peptide Abs raised against a synthetic GBV-C E2 peptide. Rabbit anti-GBV-C E2 Abs neutralized HIV-1-pseudotyped retrovirus particles but not HIV-1-pseudotyped vesicular stomatitis virus particles, and E2 Abs immune-precipitated HIV-1 gag particles containing the vesicular stomatitis virus type G envelope, HIV-1 envelope, GBV-C envelope, or no viral envelope. The Abs did not neutralize or immune-precipitate mumps or yellow fever viruses. Rabbit GBV-C E2 Abs inhibited HIV attachment to cells but did not inhibit entry following attachment. Taken together, these data indicate that the GBV-C E2 protein has a structural motif that elicits Abs that cross-react with a cellular Ag present on retrovirus particles, independent of HIV-1 envelope glycoproteins. The data provide evidence that a heterologous viral protein can induce HIV-1-neutralizing Abs. PMID:20826757

  2. The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo

    PubMed Central

    Søgaard, Ole S.; Graversen, Mette E.; Leth, Steffen; Olesen, Rikke; Brinkmann, Christel R.; Nissen, Sara K.; Kjaer, Anne Sofie; Schleimann, Mariane H.; Denton, Paul W.; Hey-Cunningham, William J.; Koelsch, Kersten K.; Pantaleo, Giuseppe; Krogsgaard, Kim; Sommerfelt, Maja; Fromentin, Remi; Chomont, Nicolas; Rasmussen, Thomas A.; Østergaard, Lars; Tolstrup, Martin

    2015-01-01

    Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. Trial Registration clinicaltrials.gov NTC02092116 PMID:26379282

  3. Relationship Between Genital Drug Concentrations and Cervical Cellular Immune Activation and Reconstitution in HIV-1-Infected Women on a Raltegravir Versus a Boosted Atazanavir Regimen.

    PubMed

    Meditz, Amie L; Palmer, Claire; Predhomme, Julie; Searls, Kristina; Kerr, Becky; Seifert, Sharon; Caraway, Patricia; Gardner, Edward M; MaWhinney, Samantha; Anderson, Peter L

    2015-10-01

    Determinants of HIV-infected women's genital tract mucosal immune health are not well understood. Because raltegravir (RAL) achieves relatively higher genital tract concentrations than ritonavir-boosted atazanavir (ATV), we examined whether an RAL-based regimen is associated with improved cervical immune reconstitution and less activation in HIV(+) women compared to an ATV-based regimen. Peripheral blood, cervical brushings, cervical-vaginal lavage (CVL), and cervical biopsies were collected from HIV(+) women on tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) and either RAL (n=14) or ATV (n=19) with CD4(+) T cells>300 cells/mm(3) and HIV RNA<48 copies/ml. HLA-DR(+)CD38(+) T cells were measured in blood and cervical cells using flow cytometry, CD4(+) and CD8(+) T cells were quantified in cervical biopsies by immunofluorescent analysis, and HIV RNA (VL), ATV, and RAL concentrations were measured in CVL. In a linear regression model of log(CVL concentration) versus both log(plasma concentration) and treatment group, the RAL CVL level was 519% (95% CI: 133, 1,525%) higher than for ATV (p<0.001). Genital tract VL was undetectable in 90% of subjects and did not differ by regimen. There were no significant differences between groups in terms of cervical %HLA-DR(+)CD38(+)CD4(+) or CD8(+) T cells, CD4(+) or CD8(+) T cells/mm(2), or CD4:CD8 ratio. After adjusting for treatment time and group, the CVL:plasma drug ratio was not associated with the cervical CD4:CD8 ratio or immune activation (p>0.6). Despite significantly higher genital tract penetration of RAL compared to ATV, there were no significant differences in cervical immune activation or reconstitution between women on these regimens, suggesting both drug regimens achieve adequate genital tract levels to suppress virus replication. PMID:26059647

  4. High-risk oncogenic HPV genotype infection associates with increased immune activation and T cell exhaustion in ART-suppressed HIV-1-infected women.

    PubMed

    Papasavvas, Emmanouil; Surrey, Lea F; Glencross, Deborah K; Azzoni, Livio; Joseph, Jocelin; Omar, Tanvier; Feldman, Michael D; Williamson, Anna-Lise; Siminya, Maureen; Swarts, Avril; Yin, Xiangfan; Liu, Qin; Firnhaber, Cynthia; Montaner, Luis J

    2016-05-01

    Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV(+) women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4(+) T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4(+), CD68(+), and CD11c(+) cells, and only in stroma for CD8(+) cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes. PMID:27467943

  5. A Prime-Boost Strategy Combining Intravaginal and Intramuscular Administration of Homologous Adenovirus to Enhance Immune Response Against HIV-1 in Mice.

    PubMed

    Ji, Zhonghua; Xie, Zhaolu; Wang, Qin; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2016-03-01

    Immune responses to HIV in the vaginal tract effectively trigger both systemic and mucosal protection, providing a double layer of defense. However, recombinant adenoviral (rAd) vectors delivered intravaginally do not effectively penetrate the mucus layer and vaginal epithelium, and instead are rapidly cleared. To overcome these barriers, we previously synthesized a novel cationic polyethylene glycol derivative that can self-assemble into nanocomplexes with rAd. These nanocomplexes can help rAd bypass the mucus layer and enhance mucosal immune response to the encoded antigen. However, the resulting cellular and humoral responses were still lower than those elicited by single intramuscular injection of rAd. Therefore, in the present study we investigated a new vaccination strategy involving intravaginal priming with our nanocomplexes, followed by an intramuscular boost with rAd-gag. Mice immunized in this way showed more potent humoral and cellular responses, as well as higher IgA levels, than animals primed and boosted intravaginally with nanocomplexes. These results show the promise of a prime-boost strategy for developing vaccine candidates against HIV. PMID:26715124

  6. Transplanting Supersites of HIV-1 Vulnerability

    PubMed Central

    Yang, Yongping; Gorman, Jason; Ofek, Gilad; Srivatsan, Sanjay; Druz, Aliaksandr; Lees, Christopher R.; Lu, Gabriel; Soto, Cinque; Stuckey, Jonathan; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Kwon, Peter D.

    2014-01-01

    into acceptor scaffolds away from the immune-evading capabilities of the rest of HIV-1 Env, thereby providing a means to focus the immune response on the scaffolded supersite. PMID:24992528

  7. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro. PMID:26714703

  8. Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1

    PubMed Central

    Pollara, Justin; McGuire, Erin; Fouda, Genevieve G.; Rountree, Wes; Eudailey, Josh; Overman, R. Glenn; Seaton, Kelly E.; Deal, Aaron; Edwards, R. Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie A. E.; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N.; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C.; Jamieson, Denise J.; van der Horst, Charles; Kourtis, Athena P.; Tomaras, Georgia D.; Ferrari, Guido

    2015-01-01

    ABSTRACT Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody

  9. IL-17A expression in HIV-specific CD8 T cells is regulated by IL-4/IL-13 following HIV-1 prime-boost immunization.

    PubMed

    Ravichandran, Jayashree; Jackson, Ronald J; Trivedi, Shubhanshi; Ranasinghe, Charani

    2015-03-01

    Although Th1 and Th2 cytokines can inhibit interleukin (IL)-17-secreting T cells, how these cells are regulated under different infectious conditions is still debated. Our previous studies have shown that vaccination of IL-4 and IL-13 gene knockout (KO) mice can induce high-avidity HIV K(d)Gag197-205-specific CD8 T cells with better protective efficacy. In this study, when IL-13, IL-4, STAT6 KO, and wild-type BALB/c mice were prime-boost immunized with an HIV poxviral modality, elevated numbers of IL-17A(+) splenic K(d)Gag197-205-specific CD8 T cells were observed in all the KO mice compared with the wt BALB/c control. Similarly, when wt BALB/c mice were immunized with IL-13Rα2-adjuvanted HIV vaccines (that transiently inhibited IL-13 activity and induced high-avidity CD8 T cells with enhanced protective efficacy), elevated IL-17A(+) K(d)Gag197-205-specific CD8 T cells were detected both in the lung and the spleen. However, at the transcriptional level, elevated TGF-β, IL-6, ROR-γt, and IL-17A mRNA copy numbers were mainly detected in IL-4 KO, but not the IL-13 KO mice. These data suggested that TGF-β, IL-6, ROR-γt, but not IL-23a, played a role in IL-17A regulation in K(d)Gag197-205-specific CD8 T cells. Collectively, our findings suggest that IL-4 and IL-13 differentially regulate the expression of IL-17A in K(d)Gag197-205-specific CD8 T cells at the transcriptional and translational level, respectively, implicating IL-17A as an indirect modulator of CD8 T cell avidity and protective immunity. PMID:25493691

  10. Sex and gender differences in HIV-1 infection.

    PubMed

    Griesbeck, Morgane; Scully, Eileen; Altfeld, Marcus

    2016-08-01

    The major burden of the human immunodeficiency (HIV) type 1 pandemic is nowadays carried by women from sub-Saharan Africa. Differences in the manifestations of HIV-1 infection between women and men have been long reported, and might be due to both socio-economic (gender) and biological (sex) factors. Several studies have shown that women are more susceptible to HIV-1 acquisition than men. Following HIV-1 infection, women have lower viral loads during acute infection and exhibit stronger antiviral responses than men, which may contribute to differences in the size of viral reservoirs. Oestrogen receptor signalling could represent an important mediator of sex differences in HIV-1 reservoir size and may represent a potential therapeutic target. Furthermore, immune activation, a hallmark of HIV-1 infection, is generally higher in women than in men and could be a central mechanism in the sex difference observed in the speed of HIV-1 disease progression. Here, we review the literature regarding sex-based differences in HIV-1 infection and discuss how a better understanding of the underlying mechanisms could improve preventive and therapeutic strategies. PMID:27389589

  11. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity.

    PubMed

    Huang, Yaoxing; Yu, Jian; Lanzi, Anastasia; Yao, Xin; Andrews, Chasity D; Tsai, Lily; Gajjar, Mili R; Sun, Ming; Seaman, Michael S; Padte, Neal N; Ho, David D

    2016-06-16

    While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1. PMID:27315479

  12. Molecular mechanisms of HIV-1 mother-to-child transmission and infection in neonatal target cells

    PubMed Central

    Ahmad, Nafees

    2010-01-01

    HIV-1 mother-to-child transmission (MTCT) occurs mainly at three stages, including prepartum, intrapartum and postpartum. Several maternal factors, including low CD4+ lymphocyte counts, high viral load, immune response, advanced disease status, smoking and abusing drugs have been implicated in an increased risk of HIV-1 MTCT. While use of antiretroviral therapy (ART) during pregnancy has significantly reduced the rate of MTCT, selective transmission of ART resistant mutants has been reported. Based on HIV-1 sequence comparison, the maternal HIV-1 minor genotypes with R5 phenotypes are predominantly transmitted to their infants and initially maintained in the infants with the same properties. Several HIV-1 structural, regulatory and accessory genes were highly conserved following MTCT. In addition, HIV-1 sequences from non-transmitting mothers are less heterogeneous compared with transmitting mothers, suggesting that a higher level of viral heterogeneity influences MTCT. Analysis of the immunologically relevant epitopes showed that variants evolved to escape the immune response that influenced HIV-1 MTCT. Several cytotoxic T lymphocyte (CTL) epitopes were identified in various HIV-1 genes that were conserved in HIV-1 mother-infant sequences, suggesting a role in MTCT. We have shown that HIV-1 replicates more efficiently in neonatal T-lymphocytes and monocytes/macrophages compared with adult cells, and this differential replication is influenced at the level of HIV-1 gene expression, which was due to differential expression of host factors, including transcriptional activators, signal transducers and cytokines in neonatal than adult cells. In addition, HIV-1 integration occurs in more actively transcribed genes in neonatal compared with adult cells, which may influence HIV-1 gene expression. The increased HIV-1 gene expression and replication in neonatal target cells contribute to a higher viral load and more rapid disease progression in neonates/infants than adults

  13. Phages and HIV-1: From Display to Interplay

    PubMed Central

    Delhalle, Sylvie; Schmit, Jean-Claude; Chevigné, Andy

    2012-01-01

    The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures. PMID:22606007

  14. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse. PMID:16611055

  15. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  16. Extreme genetic fragility of the HIV-1 capsid.

    PubMed

    Rihn, Suzannah J; Wilson, Sam J; Loman, Nick J; Alim, Mudathir; Bakker, Saskia E; Bhella, David; Gifford, Robert J; Rixon, Frazer J; Bieniasz, Paul D

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

  17. Extreme Genetic Fragility of the HIV-1 Capsid

    PubMed Central

    Rihn, Suzannah J.; Wilson, Sam J.; Loman, Nick J.; Alim, Mudathir; Bakker, Saskia E.; Bhella, David; Gifford, Robert J.; Rixon, Frazer J.; Bieniasz, Paul D.

    2013-01-01

    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

  18. HIV-1 derived peptides fused to HBsAg affect its immunogenicity.

    PubMed

    Gonzalez, Minerva Cervantes; Kostrzak, Anna; Guetard, Denise; Pniewski, Tomasz; Sala, Monica

    2009-12-01

    The hepatitis B virus (HBV) surface small antigen (HBsAg) self-assembles into virus-like particles (VLPs). HBsAg-based VLPs constitute a powerful vector for heterologous immunogenic peptides to develop a safe vaccine delivery system. HBV and the human immunodeficiency virus type 1 (HIV-1) are frequently associated in infection. An HIV-1 class I polyepitope was designed for an HIV-1/HBV vaccine prototype based on HBsAg VLPs. Invariable peptides from the original HIV-1 polyepitope were here permutated to study the influence of epitope order on HIV-1/HBV VLP immunogenicity. Anti-HIV-1 cellular responses were statistically comparable among polyepitope variants. Nevertheless, delivered HIV-1 polyepitopes impacted anti-HBsAg carrier immunogenicity in a polyepitope-specific manner. For a given set of epitopes, the choice of epitope order in polyepitopes is strategic to control immune responses towards HBsAg VLPs used as carrier of foreign immunogenic peptides. PMID:19766153

  19. Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-Like Particles

    PubMed Central

    Goepfert, Paul A.; Elizaga, Marnie L.; Seaton, Kelly; Tomaras, Georgia D.; Montefiori, David C.; Sato, Alicia; Hural, John; DeRosa, Stephen C.; Kalams, Spyros A.; McElrath, M. Juliana; Keefer, Michael C.; Baden, Lindsey R.; Lama, Javier R.; Sanchez, Jorge; Mulligan, Mark J.; Buchbinder, Susan P.; Hammer, Scott M.; Koblin, Beryl A.; Pensiero, Michael; Butler, Chris; Moss, Bernard; Robinson, Harriet L.; Donastorg, Yeycy; Qin, Li; Lawrence, Dale; Cardinali, Massimo; Bae, Jin; Holt, Renée; Redinger, Huguette; Johannessen, Jan; Broder, Gail; Moody-White, Jerri; McKay, Butch; Calazans, Gabriela; Bentley, Carter; Kakinami, Lisa; Skibinski, Katie; Estep, Scharla; Tseng, Jenny; Swenson, Molly; Madenwald, Tamra; Overton, Edgar Turner; Edupuganti, Srilatha; Rouphael, Nadine; Whitaker, Jennifer; Hay, C Mhorag; Bunce, Catherine A; Gonzales, Pedro; Hurtado, Juan Carlos; Dolin, Raphael; Mayer, Ken; Walsh, Steven; Johnson, Jennifer

    2014-01-01

    Background. Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)–uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. Methods. A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. Results. At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4+ T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8+ T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4+ and CD8+ T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. Conclusions. DDMM and MMM vaccinations with virus-like particle–expressing immunogens elicited durable antibody and T-cell responses. PMID:24403557

  20. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells.

    PubMed

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-11-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4(+) T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4(+) T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4(+) T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the "Shock and Kill" strategy for latently HIV-1 infected cells. PMID:26184775

  1. HIV-1 Induced Nuclear Factor I-B (NF-IB) Expression Negatively Regulates HIV-1 Replication through Interaction with the Long Terminal Repeat Region

    PubMed Central

    Vemula, Sai Vikram; Veerasamy, Ravichandran; Ragupathy, Viswanath; Biswas, Santanu; Devadas, Krishnakumar; Hewlett, Indira

    2015-01-01

    Background: Retroviruses rely on host factors for cell entry, replication, transcription, and other major steps during their life cycle. Human Immunodeficiency Virus-1 (HIV-1) is well known for utilizing a plethora of strategies to evade the host immune response, including the establishment of latent infection within a subpopulation of susceptible cells. HIV-1 also manipulates cellular factors in latently infected cells and persists for long periods of time, despite the presence of successful highly active antiretroviral therapy (HAART). Results: In this study we demonstrate that Nuclear Factor-IB (NF-IB) is induced during HIV-1 infection and its expression negatively impacts viral replication. During HIV-1 infection in peripheral blood mononuclear cells (PBMCs), and the T cell line, Jurkat or during induction of virus replication in latently infected cells, ACH2 and J1.1, we observed a time-dependent alteration in NF-IB expression pattern that correlated with HIV-1 viral expression. Using the Chip assay, we observed an association of NF-IB with the long terminal repeat region of HIV-1 (LTR) (-386 to -453 nt), and this association negatively correlated with HIV-1 transcription. Furthermore, knock-down of NF-IB levels in J1.1 cells resulted in an increase of HIV-1 levels. Knock-down of NF-IB levels in J-Lat-Tat-GFP (A1), (a Jurkat cell GFP reporter model for latent HIV-1 infection) resulted in an increase in GFP levels, indicating a potential negative regulatory role of NF-IB in HIV-1 replication. Conclusion: Overall, our results suggest that NF-IB may play a role in intrinsic antiretroviral defenses against HIV-1. These observations may offer new insights into the correlation of the latently infected host cell types and HIV-1, and help to define new therapeutic approaches for triggering the switch from latency to active replication thereby eliminating HIV-1 latent infection. PMID:25664610

  2. HIV-1 increases TLR responses in human primary astrocytes

    PubMed Central

    Serramía, M Jesús; Muñoz-Fernández, M Ángeles; Álvarez, Susana

    2015-01-01

    Astrocytes are the major glial cell within the central nervous system and have a number of important physiological properties related to brain homeostasis. They provide trophic support to neurons and are immune cells with key roles during states-of-inflammation. The potential for production of proinflammatory cytokines and its consequences has been studied in the context of HIV-1 infection of normal human astrocytes (NHA). NHA express TLR3, TLR4, and TLR5. TLR3 ligation induced the strongest proinflammatory polarizing response, characterized by generation of high levels of TNF-α, IL-6, and IL-8. HIV-1 increased the transient production of key inflammatory mediators, and exposure to LPS of HIV-1-infected cells increased significantly the cytokine secretion. We confirmed that it is necessary viral gene expression from the moment of pretreatment with antiretrovirals inhibited totally HIV-1-induced TLR response. The higher response to LPS from HIV-1-infected cells did not correlate with TLR4 or MyD88 increased expression. LPS responsiveness of infected cells parallels MHC class II expression, but not CD14. HIV-1-infected NHA present increased sensitivity to the proinflammatory effects of LPS. If this phenomenon occurs in vivo, it will contribute to the immunopathogenesis of this disease and may ultimately offer novel targets for immunomodulatory therapy. PMID:26671458

  3. CRISPR-mediated Activation of Latent HIV-1 Expression.

    PubMed

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection. PMID:26607397

  4. Engineering T Cells to Functionally Cure HIV-1 Infection

    PubMed Central

    Leibman, Rachel S; Riley, James L

    2015-01-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1–resistant cells, redirecting HIV-1–specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1–specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy–mediated functional cure. PMID:25896251

  5. HLA-C and HIV-1: friends or foes?

    PubMed Central

    2012-01-01

    The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins. PMID:22571741

  6. Recognition of HIV-1 Peptides by Host CTL Is Related to HIV-1 Similarity to Human Proteins

    PubMed Central

    Rolland, Morgane; Nickle, David C.; Deng, Wenjie; Frahm, Nicole; Brander, Christian; Learn, Gerald H.; Heckerman, David; Jojic, Nebosja; Jojic, Vladimir; Walker, Bruce D.; Mullins, James I.

    2007-01-01

    Background While human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocytes preferentially target specific regions of the viral proteome, HIV-1 features that contribute to immune recognition are not well understood. One hypothesis is that similarities between HIV and human proteins influence the host immune response, i.e., resemblance between viral and host peptides could preclude reactivity against certain HIV epitopes. Methodology/Principal Findings We analyzed the extent of similarity between HIV-1 and the human proteome. Proteins from the HIV-1 B consensus sequence from 2001 were dissected into overlapping k-mers, which were then probed against a non-redundant database of the human proteome in order to identify segments of high similarity. We tested the relationship between HIV-1 similarity to host encoded peptides and immune recognition in HIV-infected individuals, and found that HIV immunogenicity could be partially modulated by the sequence similarity to the host proteome. ELISpot responses to peptides spanning the entire viral proteome evaluated in 314 individuals showed a trend indicating an inverse relationship between the similarity to the host proteome and the frequency of recognition. In addition, analysis of responses by a group of 30 HIV-infected individuals against 944 overlapping peptides representing a broad range of individual HIV-1B Nef variants, affirmed that the degree of similarity to the host was significantly lower for peptides with reactive epitopes than for those that were not recognized. Conclusions/Significance Our results suggest that antigenic motifs that are scarcely represented in human proteins might represent more immunogenic CTL targets not selected against in the host. This observation could provide guidance in the design of more effective HIV immunogens, as sequences devoid of host-like features might afford superior immune reactivity. PMID:17786195

  7. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  8. No SEVI-mediated enhancement of rectal HIV-1 transmission of HIV-1 in two humanized mouse cohorts.

    PubMed

    Van Dis, Erik S; Moore, Tyler C; Lavender, Kerry J; Messer, Ronald J; Keppler, Oliver T; Verheyen, Jens; Dittmer, Ulf; Hasenkrug, Kim J

    2016-01-15

    Amyloid fibrils from semen-derived peptide (SEVI) enhance HIV-1 infectivity in vitro but the ability of SEVI to mediate enhancement of HIV infection in vivo has not been tested. In this study we used immunodeficient mice reconstituted with human immune systems to test for in vivo enhancement of HIV-1 transmission. This mouse model supports mucosal transmission of HIV-1 via the intrarectal route leading to productive infection. In separate experiments with humanized mouse cohorts reconstituted with two different donor immune systems, high dose HIV-1JR-CSF that had been incubated with SEVI amyloid fibrils at physiologically relevant concentrations did not show an increased incidence of infection compared to controls. In addition, SEVI failed to enhance rectal transmission with a reduced concentration of HIV-1. Although we confirmed potent SEVI-mediated enhancement of HIV infectivity in vitro, this model showed no evidence that it plays a role in the much more complex situation of in vivo transmission. PMID:26609939

  9. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    PubMed

    Shen, Ruizhong; Achenbach, Jenna; Shen, Yue; Palaia, Jana; Rahkola, Jeremy T; Nick, Heidi J; Smythies, Lesley E; McConnell, Michelle; Fowler, Mary G; Smith, Phillip D; Janoff, Edward N

    2015-01-01

    Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process. PMID:26680219

  10. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women

    PubMed Central

    Shen, Ruizhong; Achenbach, Jenna; Shen, Yue; Palaia, Jana; Rahkola, Jeremy T.; Nick, Heidi J.; Smythies, Lesley E.; McConnell, Michelle; Fowler, Mary G.; Smith, Phillip D.; Janoff, Edward N.

    2015-01-01

    Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT). Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs) and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process. PMID:26680219

  11. Genital HIV-1 RNA Quantity Predicts Risk of Heterosexual HIV-1 Transmission

    PubMed Central

    Baeten, Jared M.; Kahle, Erin; Lingappa, Jairam R.; Coombs, Robert W.; Delany-Moretlwe, Sinead; Nakku-Joloba, Edith; Mugo, Nelly R.; Wald, Anna; Corey, Lawrence; Donnell, Deborah; Campbell, Mary S.; Mullins, James I.; Celum, Connie

    2011-01-01

    High plasma HIV-1 RNA concentrations are associated with an increased risk of HIV-1 transmission. Although plasma and genital HIV-1 RNA concentrations are correlated, no study has evaluated the relationship between genital HIV-1 RNA and the risk of heterosexual HIV-1 transmission. In a prospective study of 2521 African HIV-1 serodiscordant couples, we assessed genital HIV-1 RNA quantity and HIV-1 transmission risk. HIV-1 transmission linkage was established within the partnership by viral sequence analysis. We tested endocervical samples from 1805 women, including 46 who transmitted HIV-1 to their partner, and semen samples from 716 men, including 32 who transmitted HIV-1 to their partner. Genital and plasma HIV-1 concentrations were correlated: For endocervical swabs, Spearman’s rank correlation coefficient rho was 0.56 (p<0.001), and for semen rho was 0.55 (p<0.001). Each 1 log10 increase in genital HIV-1 RNA was associated with a 2.20-fold (for endocervical swabs, 95% confidence interval 1.60–3.04, p<0.001) and a 1.79-fold (for semen, 95% confidence interval 1.30–2.47, p<0.001) increased risk of HIV-1 transmission. Genital HIV-1 RNA independently predicted HIV-1 transmission risk after adjusting for plasma HIV-1 quantity (hazard ratio 1.67 for endocervical swabs and 1.68 for semen). Seven female-to-male and four male-to-female HIV-1 transmissions (incidence <1% per year) occurred from persons with undetectable genital HIV-1 RNA, but in all eleven plasma HIV-1 RNA was detected. Thus, higher genital HIV-1 RNA concentrations are associated with greater risk of heterosexual HIV-1 transmission, and this effect was independent of plasma HIV-1 concentrations. These data suggest that HIV-1 RNA in genital secretions could be used as a marker of HIV-1 sexual transmission risk. PMID:21471433

  12. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8(+) T cells in African adults.

    PubMed

    Mutua, Gaudensia; Farah, Bashir; Langat, Robert; Indangasi, Jackton; Ogola, Simon; Onsembe, Brian; Kopycinski, Jakub T; Hayes, Peter; Borthwick, Nicola J; Ashraf, Ambreen; Dally, Len; Barin, Burc; Tillander, Annika; Gilmour, Jill; De Bont, Jan; Crook, Alison; Hannaman, Drew; Cox, Josephine H; Anzala, Omu; Fast, Patricia E; Reilly, Marie; Chinyenze, Kundai; Jaoko, Walter; Hanke, Tomáš; Hiv-Core 004 Study Group, The

    2016-01-01

    We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy. PMID:27617268

  13. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8+ T cells in African adults

    PubMed Central

    Mutua, Gaudensia; Farah, Bashir; Langat, Robert; Indangasi, Jackton; Ogola, Simon; Onsembe, Brian; Kopycinski, Jakub T; Hayes, Peter; Borthwick, Nicola J; Ashraf, Ambreen; Dally, Len; Barin, Burc; Tillander, Annika; Gilmour, Jill; De Bont, Jan; Crook, Alison; Hannaman, Drew; Cox, Josephine H; Anzala, Omu; Fast, Patricia E; Reilly, Marie; Chinyenze, Kundai; Jaoko, Walter; Hanke, Tomáš; HIV-CORE 004 study group, the

    2016-01-01

    We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8+ T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy. PMID:27617268

  14. Cross-reactive HIV-1-neutralizing activity of serum IgG from a rabbit immunized with gp41 fused to IgG1 Fc: Possible role of the prolonged half-life of the immunogen

    PubMed Central

    Zhang, Mei-Yun; Wang, Yanping; Mankowski, Marie K.; Ptak, Roger G.; Dimitrov, Dimiter S.

    2012-01-01

    The elicitation of broadly cross-reactive HIV-1 neutralizing antibodies in humans remains a major challenge in developing a viable AIDS vaccine. We hypothesized that prolonged exposure to candidate vaccine immunogens could enhance the elicitation of such antibodies. In an attempt to develop HIV-1 vaccine immunogens with prolonged half-lives and increased stability, we constructed a fusion protein, gp41Fc, in which a truncated HIV-1 gp4189.6 was fused to a human IgG1 Fc. Gp41Fc is stable in solution, retains its antigenic structure and is highly immunogenic in rabbits. The serum titers reached 1:102,400 for the gp41Fc and 1:5,120 for gp14089.6. Rabbit IgG neutralized diverse HIV-1 isolates and HIV-2, and the neutralization activity was attributed to gp41-specific IgG. The concentration of the gp41Fc in the serum correlated with the neutralization activity of rabbit IgG which recognized mostly conformation-independent epitopes on gp41 and predominantly bound to peptides derived from the gp41 immunodominant loop region. These results suggest that the prolonged half-life of gp41Fc in the serum may enhance the generation of cross-reactive neutralizing antibodies. Further research is needed to confirm and extend these results which may have implications for the development of vaccine immunogens with enhanced capability to elicit cross-reactive HIV-1-neutralizing antibodies. PMID:19084043

  15. Pin1 liberates the human immunodeficiency virus type-1 (HIV-1): Must we stop it?

    PubMed

    Hou, Hai; Wang, Jing-Zhang; Liu, Bao-Guo; Zhang, Ting

    2015-07-01

    Acquired immune deficiency syndrome (AIDS) is mainly caused by the human immunodeficiency virus type-1 (HIV-1). To our knowledge, this is the first review focusing on the vital role of Pin1 in the infection of HIV-1 and the development of AIDS. We and others have demonstrated that Pin1, the only known cis-to-trans isomerase recognizing the pThr/pSer-Pro motifs in proteins, plays striking roles in several human diseases. Interestingly, recent evidence gradually indicates that Pin1 regulates several key steps of the life cycle of HIV-1, including the uncoating of the HIV-1 core, the reverse transcription of the RNA genome of HIV-1, and the integration of the HIV-1 cDNA into human chromosomes. Whereas inhibiting Pin1 suppresses all of these key steps and attenuates the replication of HIV-1, at the same time different PIN1 gene variants are correlated with the susceptibility to HIV-1 infection. Furthermore, Pin1 potentially promotes HIV-1 infection by activating multiple oncogenes and inactivating multiple tumor suppressors, extending the life span of HIV-infected cells. These descriptions suggest Pin1 as a promising therapeutic target for the prevention of HIV-1 and highlight the possibility of blocking the development of AIDS by Pin1 inhibitors. PMID:25913034

  16. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

    PubMed Central

    Borgmann, Kathleen; Ghorpade, Anuja

    2015-01-01

    As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation. PMID:26579077

  17. The Brain in AIDS: Central Nervous System HIV-1 Infection and AIDS Dementia Complex.

    ERIC Educational Resources Information Center

    Price, Richard W.; And Others

    1988-01-01

    Discusses the complicated infection of human immunodeficiency virus type 1 (HIV-1) in its late stages of the acquired immune deficiency syndrome (AIDS) dementia complex. Explains the syndrome's development of abnormalities in cognition, motor performance, and behavior. (TW)

  18. [Advances in the Immunogenic Design of HIV-1 Vaccine].

    PubMed

    Zhang, Xiaohong; Wang, Tao; Yu, Xiaofang

    2016-01-01

    A safe and effective vaccine against the human immunodeficiency virus type 1 (HIV-1) is expected to have a considerable impact on elimination of acquired immune deficiency syndrome. Despite decades of effort, an effective vaccine against HIV-1 remains elusive. In recent years, the Thai HIV Vaccine Efficacy Trial (known as RV144) showed a reduction in HIV-1 acquisition by 31%, but this agent could not delay disease progression in vaccinated individuals. Clinical analyses of experimental data and experiments in vitro have revealed two main types of immunogen design: induction of broad-spectrum neutralizing antibody (bNAb) and cytotoxic T lymphocyte (CTL) responses. bNAb can prevent or reduce acquisition of infection, and its main immunogens are virus-like particles, natural envelope trimers and stable bNAb epitopes. An effective CTL response can slow-down viral infection, and its main immunogens are "mosaic" vaccines, "conserved immunogens", and the "fitness landscape" of HIV-1 proteins. This review summarizes the strategies as well as progress in the design and testing of HIV-1 immunogens to elicit bNAb and CTL responses. PMID:27295889

  19. Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae

    PubMed Central

    Yutin, Natalya; Tengs, Torstein; Senkevich, Tania; Koonin, Eugene; Rønning, Hans Petter; Alarcon, Marta; Ylving, Sonja; Lie, Kai-Inge; Saure, Britt; Tran, Linh; Dale, Ole Bendik

    2015-01-01

    ABSTRACT Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global

  20. A delayed HIV-1 model with virus waning term.

    PubMed

    Li, Bing; Chen, Yuming; Lu, Xuejuan; Liu, Shengqiang

    2016-02-01

    In this paper, we propose and analyze a delayed HIV-1 model with CTL immune response and virus waning. The two discrete delays stand for the time for infected cells to produce viruses after viral entry and for the time for CD8+ T cell immune response to emerge to control viral replication. We obtain the positiveness and boundedness of solutions and find the basic reproduction number R0. If R0 < 1, then the infection-free steady state is globally asymptotically stable and the infection is cleared from the T-cell population; whereas if R0 > 1, then the system is uniformly persistent and the viral concentration maintains at some constant level. The global dynamics when R0 > 1 is complicated. We establish the local stability of the infected steady state and show that Hopf bifurcation can occur. Both analytical and numerical results indicate that if, in the initial infection stage, the effect of delays on HIV-1 infection is ignored, then the risk of HIV-1 infection (if persists) will be underestimated. Moreover, the viral load differs from that without virus waning. These results highlight the important role of delays and virus waning on HIV-1 infection. PMID:26776264

  1. Maternal HIV-1 envelope–specific antibody responses and reduced risk of perinatal transmission

    PubMed Central

    Permar, Sallie R.; Fong, Youyi; Vandergrift, Nathan; Fouda, Genevieve G.; Gilbert, Peter; Parks, Robert; Jaeger, Frederick H.; Pollara, Justin; Martelli, Amanda; Liebl, Brooke E.; Lloyd, Krissey; Yates, Nicole L.; Overman, R. Glenn; Shen, Xiaoying; Whitaker, Kaylan; Chen, Haiyan; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Marshall, Dawn J.; Whitesides, John F.; Gurley, Thaddeus C.; Von Holle, Tarra; Martinez, David R.; Cai, Fangping; Kumar, Amit; Xia, Shi-Mao; Lu, Xiaozhi; Louzao, Raul; Wilkes, Samantha; Datta, Saheli; Sarzotti-Kelsoe, Marcella; Liao, Hua-Xin; Ferrari, Guido; Alam, S. Munir; Montefiori, David C.; Denny, Thomas N.; Moody, M. Anthony; Tomaras, Georgia D.; Gao, Feng; Haynes, Barton F.

    2015-01-01

    Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1–transmitting mothers and 165 propensity score–matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1–infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3–specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT. PMID:26053661

  2. HIV-1 Vpu Mediates HLA-C Downregulation.

    PubMed

    Apps, Richard; Del Prete, Gregory Q; Chatterjee, Pramita; Lara, Abigail; Brumme, Zabrina L; Brockman, Mark A; Neil, Stuart; Pickering, Suzanne; Schneider, Douglas K; Piechocka-Trocha, Alicja; Walker, Bruce D; Thomas, Rasmi; Shaw, George M; Hahn, Beatrice H; Keele, Brandon F; Lifson, Jeffrey D; Carrington, Mary

    2016-05-11

    Many pathogens evade cytotoxic T lymphocytes (CTLs) by downregulating HLA molecules on infected cells, but the loss of HLA can trigger NK cell-mediated lysis. HIV-1 is thought to subvert CTLs while preserving NK cell inhibition by Nef-mediated downregulation of HLA-A and -B but not HLA-C molecules. We find that HLA-C is downregulated by most primary HIV-1 clones, including transmitted founder viruses, in contrast to the laboratory-adapted NL4-3 virus. HLA-C reduction is mediated by viral Vpu and reduces the ability of HLA-C restricted CTLs to suppress viral replication in CD4+ cells in vitro. HLA-A/B are unaffected by Vpu, and primary HIV-1 clones vary in their ability to downregulate HLA-C, possibly in response to whether CTLs or NK cells dominate immune pressure through HLA-C. HIV-2 also suppresses HLA-C expression through distinct mechanisms, underscoring the immune pressure HLA-C exerts on HIV. This viral immune evasion casts new light on the roles of CTLs and NK cells in immune responses against HIV. PMID:27173934

  3. Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study

    PubMed Central

    Murray, Daniel D.; Suzuki, Kazuo; Law, Matthew; Trebicka, Jonel; Neuhaus, Jacquie; Wentworth, Deborah; Johnson, Margaret; Vjecha, Michael J.; Kelleher, Anthony D.; Emery, Sean

    2015-01-01

    Introduction The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count. Discussion No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection. PMID:26465293

  4. Interplay between HIV-1 and Toll-like receptors in human myeloid cells: friend or foe in HIV-1 pathogenesis?

    PubMed

    Donninelli, Gloria; Gessani, Sandra; Del Cornò, Manuela

    2016-01-01

    The Toll-like receptors are the first line of the host response to pathogens, representing an essential component of the innate and adaptive immune response. They recognize different pathogens and trigger responses directed at eliminating the invader and at developing immunologic long-term memory, ultimately affecting viral pathogenesis. In viral infections, sensing of nucleic acids and/or viral structural proteins generally induces a protective immune response. Thus, it is not surprising that many viruses have developed strategies to evade or counteract signaling through the Toll-like receptor pathways, to survive the host defense machinery and ensure propagation. Thus, Toll-like receptor engagement can also be part of viral pathogenic mechanisms. Evidence for a direct interaction of Toll-like receptors with human immunodeficiency virus type 1 (HIV-1) structures has started to be achieved, and alterations of their expression and function have been described in HIV-1-positive subjects. Furthermore, Toll-like receptor triggering by bacterial and viral ligands have been described to modulate HIV-1 replication and host response, leading to protective or detrimental effects. This review covers major advances in the field of HIV-1 interplay with Toll-like receptors, focusing on human myeloid cells (e.g., monocytes/macrophages and dendritic cells). The role of this interaction in the dysregulation of myeloid cell function and in dictating aspects of the multifaceted pathogenesis of acquired immunodeficiency syndrome will be discussed. PMID:26307548

  5. Poxvirus Viability and Signatures in Historical Relics

    PubMed Central

    Li, Yu; Wilkins, Kimberly; Karem, Kevin L.; Davidson, Whitni B.; Paddock, Christopher D.; Reynolds, Mary G.; Damon, Inger K.

    2014-01-01

    Although it has been >30 years since the eradication of smallpox, the unearthing of well-preserved tissue material in which the virus may reside has called into question the viability of variola virus decades or centuries after its original occurrence. Experimental data to address the long-term stability and viability of the virus are limited. There are several instances of well-preserved corpses and tissues that have been examined for poxvirus viability and viral DNA. These historical specimens cause concern for potential exposures, and each situation should be approached cautiously and independently with the available information. Nevertheless, these specimens provide information on the history of a major disease and vaccination against it. PMID:24447382

  6. Morphological evidence for natural poxvirus infection in rats

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Dantoni Damelio, E.; Damelio, F. E.

    1982-01-01

    Focal inflammatory and desquamating lesions were seen in the nasal mucosa of rats that were flown aboard the Soviet satellite, Cosmos 1129, in 1979 and in the ground based controls. The infection was clinically inapparent. Electron microscopic examination revealed the presence of poxvirus virions in desquamating cells. The specific poxvirus involved could not be identified. The lesions appeared to be similar to those described by others in rats experimentally infected with mousepox (infectious ectromelia) virus by the intranasal route.

  7. Animal Models in HIV-1 Protection and Therapy

    PubMed Central

    Hessell, Ann J.; Haigwood, Nancy L.

    2015-01-01

    Purpose of the review The purpose of this review is to highlight major advances in the development and use of animal models for HIV-1 research during the last year. Recent findings Animal model research during the last year has focused on the: (i) development and refinement of models; (ii) use of these models to explore key questions about HIV entry, immune control, and persistence; and (iii) key discoveries with these models testing therapeutic and vaccine concepts. Some of the greatest breakthroughs have been in understanding early events surrounding transmission, the effectiveness of broadly neutralizing human monoclonal antibodies as passive prophylaxis, and some new ideas in the area of eliminating the viral reservoir in established infection. Summary Despite the lack of a flawless HIV-1 infection and pathogenesis model, the field has several models that have already made important contributions to our understanding of early events, immune control, and the potential for novel therapies. PMID:25730345

  8. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  9. Differentiation between human immunodeficiency virus type 1 (HIV-1) and HIV-2 isolates by nonradioisotopic reverse transcriptase-typing assay.

    PubMed Central

    Urabe, T; Sano, K; Nakano, T; Odawara, F; Lee, M H; Otake, T; Okubo, S; Hayami, M; Misaki, H; Baba, M

    1994-01-01

    We tested whether human immunodeficiency virus type 1 (HIV-1) could be differentiated from HIV-2 by a reverse transcriptase (RT)-typing assay that measured the reduction of enzyme activity owing to specific antibody. RT-inhibiting antibody was examined for HIV type specificity by a new nonradioisotopic RT assay. Antibodies from four rabbits immunized with recombinant HIV-1 RT and from 23 HIV-1-seropositive individuals all specifically inhibited the enzyme activities of two HIV-1 strains (LAV-1 and GH-3), three zidovudine-resistant HIV-1 mutants, and a recombinant HIV-1 RT. However, none of these antisera affected the activities of six HIV-2 strains (GH-1, GH-2, GH-4, GH-5, GH-6, LAV-2ROD), Rous-associated virus type 2, and DNA polymerase I from Escherichia coli. In contrast, HIV-2 antibody from a rabbit immunized with disrupted GH-1 virions blocked the enzyme activities of the six HIV-2 strains but not those of the three HIV-1 strains, Rous-associated virus type 2, or DNA polymerase I. These results indicate that the antigenic domains of HIV-1 and HIV-2 RTs recognized by their inhibiting antibodies are distinct from each other and are highly conserved. Clinical HIV isolates from 18 HIV-1-seropositive individuals and 3 HIV-2-seropositive Ghanaian individuals were identified as HIV-1 and HIV-2, respectively, by the nonradioisotopic RT-typing assay. Images PMID:7527425

  10. In Vitro Reactivation of Replication-Competent and Infectious HIV-1 by Histone Deacetylase Inhibitors

    PubMed Central

    Banga, Riddhima; Procopio, Francesco Andrea; Cavassini, Matthias

    2015-01-01

    ABSTRACT The existence of long-lived HIV-1-infected resting memory CD4 T cells is thought to be the primary obstacle to HIV-1 eradication. In the search for novel therapeutic approaches that may reverse HIV-1 latency, inhibitors of histone deacetylases (HDACis) have been tested to reactivate HIV-1 replication with the objective of rendering HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In the present study, we evaluated the efficiency of HDACis to reactivate HIV-1 replication from resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. We demonstrate that following prolonged/repeated treatment of resting memory CD4 T cells with HDACis, HIV-1 replication may be induced from primary resting memory CD4 T cells isolated from aviremic long-term-treated HIV-1-infected subjects. More importantly, we demonstrate that HIV-1 reactivated in the cell cultures was not only replication competent but also infectious. Interestingly, givinostat, an HDACi that has not been investigated in clinical trials, was more efficient than vorinostat, panobinostat, and romidepsin in reversing HIV-1 latency in vitro. Taken together, these results support further evaluation of givinostat as a latency-reversing agent (LRA) in aviremic long-term-treated HIV-1-infected subjects. IMPORTANCE The major barrier to HIV cure is the existence of long-lived latently HIV-1-infected resting memory CD4 T cells. Latently HIV-1-infected CD4 T cells are transcriptionally silent and are therefore not targeted by conventional antiretroviral therapy (ART) or the immune system. In this context, one strategy to target latently infected cells is based on pharmacological molecules that may force the virus to replicate and would therefore render HIV-1-infected cells susceptible to elimination either by HIV-specific CD8 T cells or through virus-mediated cytopathicity. In this context, we developed an