Science.gov

Sample records for hmx based high

  1. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  2. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  3. Observation of sub-detonative responses in confined high density HMX-based PBXs

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Wood, Andrew; Steward, Paul; Ottley, Philip; Gould, Peter; Lewtas, Ian

    2015-06-01

    This paper describes experiments and modelling aimed at understanding the behaviour of highly loaded (90%-95%) pressed HMX-based PBXs, when subjected to shock compression and ignition by means of distinct mechanical and thermal insults under confinement. In order to separate the role of the stimuli, a test has been designed where a metal impactor is propelled at test samples using a well characterised propellant over a range of velocities to produce various levels of mechanical damage. The impactor is then heated using a characterised pyrotechnic composition which ignites the mechanically damaged explosive. Tubes have been designed to examine the effect of confinement at burst pressures of 218.5MPa and 120MPa. The high confinement tubes employ polycarbonate windows and the low confinement tubes are manufactured from polycarbonate blocks to allow the reaction of the energetic material to be captured using high-speed video. Tests carried out using these tubes have given a good insight into the processes occurring. Modelling runs have predicted an oscillating compressive wave in the explosive and considerable damage at either end of the explosive column. The latter leads to potential deconsolidation once the donor charge has burnt out allowing increased burning and violence.

  4. Observation of sub-detonation response in confined high density HMX based PBXs

    NASA Astrophysics Data System (ADS)

    Cook, M. D.; Wood, A. D.; Ottley, P. R.; Cheese, P. J.

    2014-05-01

    This paper describes experiments and modelling aimed at understanding the behaviour of highly loaded (90%-95%) pressed HMX-based PBX compositions, when subjected to shock compression and ignition, by means of a propellant donor charge, under confinement. Such tests are routinely carried out in the UK on new formulations to determine their burn to violent reaction characteristics. The Bullseye propellant donor charge has been characterised in terms of pressure and temperature output. A range of tubes have been designed to examine the contribution of tube material properties (steel versus aluminium, 218.5 MPa) and to examine the effect of reduced confinement (120 MPa). For the reduced confinement scenario polycarbonate as well as steel and aluminium vessels have been designed which allow the reaction of the energetic material to be captured using a Phantom high-speed camera. In particular, tests carried out in the polycarbonate tubes have given a good insight of the processes occurring. Preliminary hydrocode modelling runs predicted an oscillating compressive wave in the explosive and considerable damage at either end of the explosive column. The latter leads to potential deconsolidation once the donor charge has burnt out allowing increased burning and violence.

  5. Observation of sub-detonative responses in confined high density HMX-based PBXs

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm; Wood, Andrew; Ottley, Philip; Cheese, Phil

    2013-06-01

    This paper describes experiments and modelling aimed at understanding the behaviour of highly loaded (90%-95%) pressed HMX-based PBX compositions, when subjected to shock compression and ignition, by means of a propellant donor charge, under confinement. Such tests are routinely carried out in the UK on new formulations to determine their burn to violent reaction characteristics. The Bullseye propellant donor charge has been characterised in terms of pressure and temperature output. A range of tubes have been designed to examine the contribution of tube material properties (steel versus aluminium, 218.5 MPa) and to examine the effect of reduced confinement (120 MPa). For the reduced confinement scenario polycarbonate as well as steel and aluminium vessels have been designed which allow the reaction of the energetic material to be captured using high-speed video. In particular, tests carried out in the polycarbonate tubes have given a good insight of the processes occurring. Preliminary hydrocode modelling runs predicted an oscillating compressive wave in the explosive and considerable damage at either end of the explosive column. The latter leads to potential deconsolidation once the donor charge has burnt out allowing increased burning and violence. This work was undertaken as part of the MOD funded UK-Energetics research programme.

  6. Detonation wave profiles in HMX based explosives

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1997-11-01

    Detonation wave profiles have been measured in several HMX based plastic bonded explosives including PBX9404, PBX9501, and EDC-37, as well as two HMX powders (coarse and fine) pressed to 65% of crystal density. The powders had 120 and 10 {micro}m average grain sizes, respectively. Planar detonations were produced by impacting the explosive with projectiles launched in a 72-mm bore gas gun. Impactors, impact velocity, and explosive thickness were chosen so that the run distance to detonation was always less than half the explosive thickness. For the high density plastic bonded explosives, particle velocity wave profiles were measured at an explosive/window interface using two VISAR interferometers. PMMA windows with vapor deposited aluminum mirrors were used for all experiments. Wave profiles for the powdered explosives were measured using magnetic particle velocity gauges. Estimates of the reaction zone parameters were obtained from the profiles using Hugoniots of the explosive and window.

  7. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  8. MESOSCALE MODELLING OF SHOCK INITIATION IN HMX-BASED EXPLOSIVES

    SciTech Connect

    Mulford, R. N. R.; Swift, D. C.

    2001-01-01

    Hydrocode calculations we used to simulate initiation in single- and double-shock experiments on several HMX-based explosives. Variations in the reactive behavior of theee materials reflects the differences between binders in the material, providing information regarding the sensitivity of the explosive to the mechanical properties of the constituents. Materials considered are EDC-37, with a soft binder, PBX-9601, with a relatively malleable binder, and PIBX-9404, with a stiff binder. Bulk reactive behavior of these materials is dominated by the HMX component and should be comparable, while the mechanical response varies. The reactive flow model is temperature-dependent, based on a modified Arrhenius rate. Some unreacted material is allowed to react at a rate given by the state of the hotspot rather than the bulk state of the unreacted explosive, according to a length scale reflecting the hotspot size, and a time scale for thermal equilibration. The Arrhenius rate for HMX is wsumed to be the same for all compositions. The initiation data for different HMX-bwd explosives axe modelled by choosing plausible parameters to describe the reactive and dissipative properties of the binder, and hence the behavior of the hotspots in each formulation.

  9. Pressure Wave Measurements Resulting from Thermal Cook-Off of the HMX Based High Explosive LX-04

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Vandersall, Kevin S.; Forbes, Jerry W.; Tarver, Craig M.; Greenwood, Daniel

    2004-07-01

    Experiments that investigate thermal and nearby explosion scenarios are needed to provide essential data to models for accurate predictions. A porous LX-04 (85/15 wt% HMX/Viton) sample was heated in a heavily confined donor charge until it thermally exploded. The reaction accelerated a steel cover plate across a 10 cm gap into a preheated gauged acceptor cylinder (near its theoretical maximum density) of LX-04. The carbon resistor gauges in the acceptor measured the resulting multi-dimensional ramp wave as it propagated through the pre-heated LX-04. Detonation of the LX-04 acceptor does not occur. Results are compared to similar experiments with acceptors at room temperature.

  10. THERMAL COOK-OFF EXPERIMENTS OF THE HMX BASED HIGH EXPLOSIVE LX-04 TO CHARACTERIZE VIOLENCE WITH VARYING CONFINEMENT

    SciTech Connect

    Garcia, F; Vandersall, K S; Forbes, J W; Tarver, C M; Greenwood, D

    2005-07-25

    Thermal cook-off experiments were carried out using LX-04 explosive (85% HMX and 15% Viton by weight) with different levels of confinement to characterize the effect of confinement on the reaction violence. These experiments involved heating a porous LX-04 sample in a stainless steel container with varying container end plate thickness and assembly bolt diameter to control overall confinement. As expected, detonation did not occur and reducing the overall confinement lowered the reaction violence. This is consistent with modeling results that predict that a lower confinement will act to lower the cook-off pressure and thus the overall burn rate which lowers the overall violence. These results suggest that controlling the overall system confinement can modify the relative safety in a given scenario.

  11. Thermal Cook-Off Experiments of the HMX Based High Explosive LX-04 to Characterize Violence with Varying Confinement

    NASA Astrophysics Data System (ADS)

    Garcia, Frank; Forbes, Jerry W.

    2005-07-01

    Thermal cook-off experiments were carried out using LX-04 explosive (85% HMX and 15% Viton by weight) with different levels of confinement to characterize the effect of confinement on the reaction violence. These experiments involved heating a porous LX-04 sample in a stainless steel container with varying container end plate thickness and assembly bolt diameter to control overall confinement. As expected, detonation did not occur and reducing the overall confinement lowered the reaction violence. Modeling was also performed using Ignition and Growth kinetics with reasonable agreement to the experiment. These results suggest that controlling the overall system confinement can modify the relative safety in a given scenario. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  12. The role and importance of porosity in the deflagration rates of HMX-based materials

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K

    2011-03-15

    The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate that the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.

  13. Shockless Compression Studies of Hmx-Based Explosives

    NASA Astrophysics Data System (ADS)

    Baer, M. R.; Root, S.; Dattelbaum, D.; Hooks, D. E.; Gustavsen, R. L.; Orler, B.; Pierce, T.; Garcia, F.; Vandersall, K.; DeFisher, S.; Travers, B.

    2009-12-01

    Several HMX-based explosive samples were subjected to shockless compression using Sandia's Z magnetic compression accelerator. A multi-panel ICE configuration containing various thicknesses of energetic composites PBX9501, PBXN9, LX-10 was subjected to ramp loading up to 320 Kbar over 500 ns. A Velocity Interferometer System for Any Reflector (VISAR) was used to measure transmitted wave profile data of particle velocity and forward and backward procedures were used with an optimization method to determine appropriate EOS data.

  14. Chemical destruction of HMX-based explosives with ammonium hydroxide

    SciTech Connect

    Skidmore, C.; Dell`Orco, P.; Flesner, R.; Kramer, J.; Spontarelli, T.

    1995-09-01

    A series of experiments at Los Alamos National Laboratory explored the efficacy of ammonium hydroxide solutions in converting HMX (cyclotetramethylene-tetranitramine, or Octogen) and HMX-based explosives to nonenergetic, nonhazardous materials. When 80 g of explosive was converted in a reactor operating at 85 psig pressure at 140 C, the principal gaseous products were nitrous oxide (46% to 51%), nitrogen (22% to 32%), and ammonia (17% to 28%). Formate and hexamethylene-tetramine (hexamine) account for effectively 100% of the carbon-bearing aqueous species. Nitrate, nitrite, and acetate were present in the liquid in trace amounts. The process effectively treated molding powders of the plastic-bonded explosives PBX 9501 (2.5% estane), LX-04 (15% viton), and PBX 9404 (3% nitrocellulose). Results were compared with those achieved using sodium hydroxide solutions at 150 C in a pressurized reactor.

  15. SHOCK INITIATION EXPERIMENTS ON THE HMX BASED EXPLOSIVE LX-10 WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A; Chidester, S K

    2007-06-15

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of the binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.

  16. Temperature Dependent Equations of State for HMX-based Composites

    NASA Astrophysics Data System (ADS)

    Baer, Melvin; Root, S.; Gustavsen, R.; Pierce, T.; Defisher, S.; Travers, B.; Sandia National Laboratories Collaboration; Los Alamos National Laboratory Collaboration; U. S. Army Ardec Collaboration

    2011-06-01

    In order to examine the temperature dependence of the equation of state (EOS) of two HMX-based explosives, PBX9501 and PBXN9, samples were subjected to shockless compression using the Sandia VELOCE magnetic compression system. Prior to compression, the energetic composites were heated to temperatures up to 155° C , just below the HMX β - δ phase transition at atmospheric pressure conditions. The phase transition is explored at higher stress conditions when subjected to near isentropic loading. A Velocity Interferometer System for Any Reflector (VISAR) was used to measure particle velocity of the transmitted compression wave. The velocity profile data was analyzed using forward/backward integration methods along with an optimization method to determine unreacted EOS parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. The Evolution of Sensitivity in Hmx-Based Explosives during the Reversion from Delta to Beta Phase

    NASA Astrophysics Data System (ADS)

    Peterson, P. D.; Lee, K.-Y.; Moore, D. S.; Scharff, R. J.; Avilucea, G. R.

    2007-12-01

    In an effort to better understand the evolution of sensitivity in HMX-based explosives formulations during the reversion from the delta to the beta polymorph, we have performed friction and impact experiments on Class 1 (coarse) and Class 2 (fine) HMX [1]. Initial baselines for Type 12 drop weight impact and BAM friction sensitivities were obtained for the β-HMX starting material. The HMX was then heated at ˜184 °C for 14 h. Raman spectroscopy was used to confirm the conversion to delta-phase. Raman results show that the δ material remains δ for long periods when stored in a dessicator at room temperature (RT), converts to alpha when stored at RT and 20-40% relative humidity (RH) over a period of days, and reverts to beta over a period of days when stored at RT and 95-98% relative humidity (RH). Impact and friction tests were performed on the δ-HMX, converted α-HMX, and reverted β-HMX. The tests show similar sensitivities of the δ-HMX and converted α-HMX in both impact and friction, both of which are ˜10-20% more sensitive than the β-HMX and reverted beta depending on the particle size distribution. The α-HMX appears to be fairly stable over time (by Raman analysis) at ambient conditions, but fairly low humidity (20-40%), or in a dessicator.

  18. Reaction of Shocked but Undetonated HMX-Based Explosive

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.

    2001-06-01

    Cylindrical samples of the pressed plastic bonded HMX-based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a run distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed run distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by the explosive which is shocked and reacting but not detonated. The results are compared with Eulerian hydrocode calculations incorporating the three term Lee and Tarver reaction model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.

  19. Experimental and numerical study of deformation modes of a pressed HMX-based explosive composition

    NASA Astrophysics Data System (ADS)

    Picart, Didier; Vial, Jerome; Bailly, Patrice

    Safety of industrial or military explosives is still studied to prevent inadvertent ignition of pressed HMX-based explosive compositions submitted to a low-velocity impact. Our aim is to determine the dissipative mechanisms leading to the local heating of the material. To observe the dissipative mechanisms, a reversed edge-on impact test has been developed. This test enables real-time observations of the microstructural scale. No friction is observed between the biggest HMX grains and the matrix (the smallest grains, the binder and the porosity). Plasticity of HMX grains is obtained as well as damage by micro-cracking. Meanwhile, a biphasic numerical representation (HMX grains and matrix) is used to mimic our material. A comparison between experimental observations and simulations is used to determine the yield stress of HMX. The behavior of the matrix has been determined to account for the effect of strain rate and damage. Lastly, a comparison between tests and simulations has highlighted (1) that heating should rather be located in the matrix than in the biggest HMX grains and (2) that the most likely heating mechanism is the friction of micro(or meso)-cracks lips.

  20. First Results of Reaction Propagation Rates in HMX at High Pressure

    SciTech Connect

    Farber, D L; Esposito, A; Zaug, J M; Aracne-Ruddle, C

    2001-06-15

    The authors have measured the reaction propagation rate (RPR) in weapons-grade, ultrafine octahydro-1,3,57-tetranitro-1,3,5,7-tetrazocine (HMX) powder in a diamond anvil cell over the pressure range 0.7-35 GPa. In order to have a cross-comparison of their experiments, they carried out a series of experiments on nitromethane (NM) up to 15 GPa. The results on NM are indistinguishable from previous measurements of Rice and Folz. In comparison to high-pressure, NM, the burn process for solid HMX is not spatially uniform.

  1. First Results of Reaction Propagation Rates in HMX at High Pressure

    SciTech Connect

    Farber, D L; Esposito, A; Zaug, J M; Aracne-Ruddle, C

    2001-06-15

    The authors have measured the reaction propagation rate (RPR) in weapons-grade, ultrafine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) powder in a diamond anvil cell over the pressure range 0.7-35 GPa. In order to have a cross-comparison of their experiments, they carried out a series of experiments on nitromethane (NM) up to 15 GPa. The results on NM are indistinguishable from previous measurements of Rice and Folz. In comparison to high-pressure NM, the burn process for solid HMX is between 5-10 times faster at pressures above 10 GPa.

  2. Determination of sound velocities of "overcompressed" detonation in HMX-based explosive

    NASA Astrophysics Data System (ADS)

    Zhernokletov, Mikhail V.; Kovalev, Alexey E.; Bel'sky, Vladimir M.; Bogdanov, Evgeny N.

    2015-09-01

    The authors present results of determination of sound velocities in explosion products (EP) of HMX-based explosive overcompressed up to the pressures of 50-85 GPa by overtaking unloading method. The radiowave and optical methods are used to record the time when a front of overcompressed detonation wave in investigated sample of high explosive (HE) is overtaken by expansion wave, which propagates from the back surface of impactor with sound velocity. The data on sound velocities, which were independently obtained by two different methods, were in agreement. The methods with use of radiointerferometer and indicator liquid are rather effective for determination of sound velocities in overcompresed EP and for investigation of parameters at the Jouget point of various HEs, which are required for calibration of their equations of state (EOS).

  3. Temperature dependent equation of state for HMX-based composites

    NASA Astrophysics Data System (ADS)

    Baer, Melvin; Root, S.; Gustavsen, R. L.; Pierce, T.; DeFisher, S.; Travers, B.

    2012-03-01

    In order to examine the temperature dependence of the equation of state (EOS) of HMXbased explosives, two energetic composites, PBX9501 and PBXN9, were subjected to shockless compression using the Sandia VELOCE magnetic compression system. Prior to compression, the energetic samples were heated to temperatures up to 155°C, presumed to be below the HMX β - δ phase transition at atmospheric pressure conditions. A Velocity Interferometer System for Any Reflector (VISAR) was used to measure particle velocity of the transmitted compression wave. Temperature corrections in the drive plates and windows were estimated and velocity profile data was analyzed using forward/backward integration methods along with an optimization method to determine unreacted Mie-Grüneisen EOS parameters.

  4. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    SciTech Connect

    Maienschein, J L; Wardell, J F; Reaugh, J E

    2000-10-25

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that an explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.

  5. Toward a Role of Light Absorption in Initiation Chemistry of Shocked HMX single Crystals and Crystalline High Explosives

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Rodrigues, L.

    2013-06-01

    Question which mechanism is driving radiation-induced reactions, thermal or athermal becomes a subject of conflicting discussions. Major challenge of this work is to identify at micro- (sub-granular), meso- (grain level) and macro-scale roles of these two mechanisms in triggering initiation chemistry in HMX-based HEs. Four acceptor-patterns were tested at 20 GPa input pressure: single HMX crystal-in-water, HMX/water-slurry, PBX(HMX/HTPB) & inert PBX-simulant (HMX-particles replaced by crystalline sucrose). Scenario of reaction onset-localizations-dissipation was spatially resolved using Multi-Channel Optical Analyzer MCOA-UC (96 channels, 100um-spatial accuracy, 0.2ns-timeresolution, 450-850 nm-spectral range) through real-time panoramic recording emitted reaction light and shock field in standard optic monitor. Experiments reveal a dual nature of initiation chemistry: athermal and thermal. Single-crystal tests disclose origination of photo-induced reactions downstream of emitting reaction spot due to intensified radiation absorption in surface micro-defects. Polycrystalline samples reveal cyclic reproducibility of radiation-induced thermal precursors in which radiation absorption causes thermal expansion/phase-changes of HMX-grains resulting in oscillating detonation. Work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Cliff Bedford and Shawn Thorne Program Managers.

  6. Shock wave and detonation wave response of selected HMX based research explosives with HTPB binder systems

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.; Lemar, E. R.; Forbes, J. W.; Anderson, E.; Miller, P.; Ashwell, K. D.; Baker, R. N.; Liddiard, T. P.

    1994-07-01

    The sensitivity, detonation properties, and performance of selected HMX based explosives are compared. All explosives were manufactured using a hydroxyl-terminated polybutadiene (HTPB) binder system. IRX class explosives were manufactured to obtain explosives in which ingredients were systematically varied. The particle size range of the HMX particles was controlled by sieving. Sensitivity and performance experiments were conducted using the explosives IRX-1, and IRX-3A. These experiments measured: detonation pressure, detonation velocity, modified gap test shock sensitivity, and detonation wave curvature. Modified gap tests were also performed for SW-21 and PBXN-110. In addition, light gas gun experiments were performed in which reactive stress-time profiles were obtained for IRX-1 and PBXN-110.

  7. The Effect of Localised Short Duration Thermal Insults on HMX based Explosives

    NASA Astrophysics Data System (ADS)

    Wortley, Steve

    2011-06-01

    This paper describes some experiments undertaken to address a specific concern regarding the susceptibility of a bare HMX based explosive charge to an extremely hot source but with a short duration of application such as a metal spark arising from a cutting operation or a single drop of hot material. In a short series of experiments small pressed charges of HMX formulated with Viton where heated by the application of a pre-heated thermocouple. The temperature of the thermocouple and the duration of the contact were varied and the response of the explosive was observed. In general the explosive was remarkably tolerant of the thermal insult. However, at the highest test temperatures and at the longest durations ignitions leading to prolonged burning were observed. Although materials in these experiments were undamaged prior to application of the thermal insult this data may help to understand the likely response of explosives to bullets or fragments preheated by penetration of protective layers.

  8. Elastic properties of HMX.

    SciTech Connect

    Sewell, T. D.; Bedrov, D.; Menikoff, Ralph; Smith, G. D.

    2001-01-01

    Atomistic molecular dynamics simulations have been used to calculate isothermal elastic properties for {beta}-, {alpha}-, and {delta}-HMX. The complete elastic tensor for each polymorph was determined at room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to Rahman and Parrinello [J. Chem. Phys. 76,2662 (1982)]. Additionally, the isothermal compression curve was computed for {beta}-HMX for 0 {le} p {le} 10.6 GPa; the bulk modulus K and its pressure derivative K{prime} were obtained from two fitting forms employed previously in experimental studies of the {beta}-HMX equation of state. Overall, the results indicate good agreement between the bulk modulus predicted from the measured and calculated compression curves. The bulk modulus determined directly from the elastic tensor of {beta}-HMX is in significant disagreement with the compression curve-based results. The explanation for this discrepancy is an area of current research.

  9. Violent cookoff reactions in HMX-based explosives in DDT tubes: Tracking luminous waves with streak imaging

    NASA Astrophysics Data System (ADS)

    Parker, Gary; Dickson, Peter; Asay, Blaine W.; Smilowitz, Laura; Henson, Bryan; McAfee, John

    2012-03-01

    Recent implementation of modern high-speed video cameras has permitted the experimental flexibility needed to revisit classic deflagration-to-detonation (DDT) tube experiments and capture novel and valuable results displaying the progression of luminous reaction from a cookoff event. The authors present select data from a series of experiments where the HMX-based high explosives PBX 9501 and LX-07 were heated above 180°C for various durations to impose damage (i.e. phase transitions and void generation) before being driven to cook off. These two explosives have different polymeric binders, HMX mass fractions and cook off responses and a comparison between the two offers mechanistic insights on how thermal explosions evolve. From this series, results will be displayed indicating a wide range of violence from somewhat mild pressure bursts, to intermediate power compressive burns, to high-violence DDT. Image data from high temperature DDT tube experiments, where the explosive was ignited on one end, were also collected and will be included for comparison.

  10. One-dimensional plate impact experiments on the cyclotetramethylene tetranitramine (HMX) based explosive EDC32

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm J.; Gustavsen, Richard L.; Bartram, Brian D.

    2012-09-01

    Eight one-dimensional plate impact experiments have been performed to study both the Shock to Detonation Transition and Hugoniot state in the cyclotetramethylene tetranitramine (HMX) based explosive EDC32. The experiments covered shock pressures ranging from 0.59 to 7.5 GPa with sustained shocks, double shocks, and short pulse shocks. Experiments were instrumented with embedded magnetic particle velocity gauges. Results include; (1) wave profiles of particle velocity vs. time vs. depth in the explosive, (2) time-distance coordinates for onset of detonation vs. initial shock pressure (aka the Pop-plot), (3) a reactants Hugoniot, and (4) measurement of the Hugoniot Elastic Limit of 0.22.GPa.

  11. Shock Induced Shear Strength in Two HMX Based Polymer Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy; Taylor, Peter; Appleby-Thomas, Gareth

    2015-06-01

    The response of energetic materials to shock loading has largely concentrated on their detonation behaviour. However, they can also be considered to be structural materials in their own right, and hence their response to a purely mechanical shock loading is also of interest. Therefore we present results from two HMX based polymer bonded explosives, EDC37 and EDC32, where we investigate the shock induced shear strength behind the shock front. Results are discussed in terms of microstructure and differences of the binder phases.

  12. Mesoscale modelling of shock initiation in HMX-based explosives

    SciTech Connect

    Swift, D. C.; Mulford, R. N. R.; Winter, R. E.; Taylor, P.; Salisbury, D. A.; Harris, E. J.

    2002-01-01

    Motivation: predictive capability Want to predict initiation, detonics and performance given: {sm_bullet} Variations in composition {sm_bullet} Variations in morphology {sm_bullet}Different loading conditions Previous work on PBX and ANFO: need physically-based model rather than just mechanical calibrations

  13. First Results of Reaction Propagation Rates in HMX at High Pressure

    NASA Astrophysics Data System (ADS)

    Farber, Daniel L.; Zaug, Joseph M.; Ruddle, Chantel

    2001-06-01

    We have measured the reaction propagation speed in weapons grade ultrafine HMX (lot B-881-wet) powder that contains less than 7% RDX in the pressure range 0.7 to 3.7 GPa. Our high-pressure cells consist of two counter opposed 0.25 carat diamonds, with a culet diameter range of 0.5-1.0mm. A 150-400 μm diameter metal gasket hole laterally confines the 100-150 μm thick samples. Ruby powder was placed on the rear diamond surface to permit determination of the initial pressure. Samples were ignited with a Q-switched Nd:YAG laser pulse, frequency doubled to 532 nm. Typical pulse energies were in the range of 10 * 1300 μJ focused to a 5 μm spot, with a pulse width of ~9 ns. At low (<0.5 GPa) pressures the highest energy pulse was insufficient to cause reliable ignition whereas at the highest pressures, the lowest energy densities caused accidental ignition during optical alignment. Light emission from the sample was magnified ( ~10x) and focused onto a 50 μm wide slit. The image of this slit was then magnified (9.5x) and focused onto the entrance slits of both the EG&G L-CA-20 electronic streak camera and a Kaiser Optics f1.8 spectrograph for ruby fluorescence pressure measurements. For all experiments the streak duration is 10s. In order to have a cross-comparison of our experiments, we carried out a series of experiments on Nitromethane (NM) up to 15 GPa. Our results on NM are indistinguishable from previous measurements of Rice and Foltz. In comparison to high-pressure NM, the burn process for solid HMX is not spatially uniform.

  14. Thermal Cook-off of an HMX Based Explosive: Pressure Gauge Experiments and Modeling

    SciTech Connect

    Urtiew, P A; Forbes, J W; Tarver, C M; Garcia, F; Greenwood, D W; Vandersall, K S

    2002-04-02

    Safety issues related to thermal cook-off are important for handling and storing explosive devices. Violence of event as a function of confinement is important for prediction of collateral events. There are major issues, which require an understanding of the following events: (1) transit to detonation of a pressure wave from a cook-off event, (2) sensitivity of HMX based explosives changes with thermally induced phase transitions and (3) the potential danger of neighboring explosive devices being affected by a cook-off reaction. Results of cook-off events of known size, confinement and thermal history allows for development and/or calibrating computer models for calculating events that are difficult to measure experimentally.

  15. Development of a portable non-contact optical diagnostic system for the detection of δ-HMX

    NASA Astrophysics Data System (ADS)

    Dale, Andrew J.; Wright, Mark W.; Hughes, Christopher T.; Bowden, Mike D.

    2007-09-01

    If a HMX-based explosive is subjected to an insult then there is a potential for the insulted β-HMX to undergo a phase change to the more sensitive δ form. AWE has an ongoing programme to develop a science-based model of the response of HMX-based explosives to potential insults. As part of this programme there is a need to identify whether δ-HMX has been formed, as this would subsequently affect the intrinsic safety properties of the formulation. δ-HMX, unlike the more stable β form, exhibits unusual optical properties for an explosive, as it acts as a frequency-doubling material. When illuminated by a high-energy laser pulse areas of the explosive charge that contain δ-HMX emit frequency doubled light. This non-linear optical phenomenon allows for a non-invasive diagnostic to be developed to study creation of the more sensitive δ phase within HMX based formulations. AWE has developed a portable diagnostic system based on this concept to investigate the behaviour of HMX-based explosives after low-speed impacts. The results of the commissioning trials are presented; using both an inert simulant, KDP, to align and prove the system and HMX samples from low-speed impact experiments. The results of these experiments are compared to initial calculations using the Hydrocode EDEN.

  16. Equation of state formulation for unreacted solid high explosives, PETN and HMX

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito

    2015-06-01

    Equation of state (EOS) for unreacted explosives has been formulated thermodynamically aiming at using with numerical code of SDT processes. A generalized form of EOS is given in terms of p-v-E from the available static isothermal compression curve with non-constant specific heat, and arbitrary Grüneisen volume function. In this paper, a procedure of providing p-v-E EOS is developed based on the specific heat at constant volume as a function of entropy, Grüneisen volume function, together with Birch-Murnagan form of the isotherm. Material function of EOS and shock Hugoniot for PETN and HMX has been calculated, which is compared with the experimental data of shock-particle velocity Hugoniot. Dependence of shock pressure and temperature on the Grüneisen volume function is discussed. Insensitivity of the shock-particle velocity relationship to functional form of Grüneisen volume function is also shown. Second author: Dr. Shiro Kubota (AIST Japan).

  17. Dynamic compression of solid HMX-based explosives under ramp wave loading

    NASA Astrophysics Data System (ADS)

    Wang, G. J.; Cai, J. T.; Zhang, H. P.; Zhao, F.; Tan, F. L.; Wu, G.

    2012-11-01

    By means of the new techniques of magnetically driven quasi-isentropic compression based on compact capacitor bank facility CQ-1.5 developed by us, the dynamic compression of two mixed HMX-based plastic bonded explosives (PBX) explosives is researched under ramp wave loading. A pressure of 5-8 GPa over 600-800 ns is realized on explosive samples by optimizing loading electrodes and controlling charging voltages of CQ-1.5. And loading strain rates vary from 105 1/s to 106 1/s along the thickness of explosive samples. For experiments, the particle velocities of interface between explosive samples with different thicknesses and LiF windows are measured to determine material response by a displacement interferometry technique of Doppler pins system (DPS), and the experimental compression isentropes of researched explosives are obtained using the data processing method of backward integration and Lagrangian analysis for quasi-isentropic compression experiments, which are in agreement with the theoretical isentropes based on Mie-Grüneisen equation of state (EOS) and the results by Baer. For simulations, one-dimensional hydrodynamics code SSS is used to analyze the dynamic process, and the calculated results of particle velocity of interfaces are consistent with the experimental ones. Finally, one of the explosive constituents, the binder fluoride rubber F2311, is also investigated using this technique, and some properties under ramp wave loading are gained.

  18. Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.

  19. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2002-03-14

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  20. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2002-08-26

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501) have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.

  1. Multi-physics Meso-scale Finite Element Simulation of HMX-based Solid Propellant Subjected to Thermal Insults

    NASA Astrophysics Data System (ADS)

    Srivastava, Gaurav; Matous, Karel

    2014-03-01

    A large strain chemo-thermo-mechanical numerical framework has been developed to model the coupled chemical, thermal and mechanical behavior of solid propellant at the meso-scale. The mechanical behavior is modeled using a hyperelastic material model with viscous damage and J2 plasticity. The model admits a general nonlinear coefficient of thermal expansion to capture the thermo-mechanical behavior. The chemical model considers a system of chemical reactions with the rate kinetics being governed by a modified Arrhenius law. The thermal model considers thermodynamically consistent energy contributions from the inelastic mechanical deformations and the chemical reactions. The finite element method has been employed to discretize the continuum equations. Some simulation results will be presented to demonstrate the use of the developed framework in modeling the behavior of HMX-based solid propellant under thermal loads. The developed framework captures the large volumetric strains that are a characteristic of the β- δ phase transition of the HMX crystals and is able to predict locations of potential cracks in the binder. Such a simulation tool may prove to be useful in determining optimal conditions for the safe storage of such materials. Indian Institute of Technology, Gandhinagar VGEC Complex, Chandkheda, Ahmedabad, Gujarat - 382424.

  2. Threshold Studies of Heated HMX-Based Energetic Material Targets Using the Steven Impact Test

    SciTech Connect

    Switzer, L L; Vandersall, K S; Chidester, S K; Greenwood, D W; Tarver, C M

    2003-07-01

    Impact tests performed at low velocity on heated energetic material samples are of interest when considering the situation of energetic materials involved in a fire. To determine heated reaction thresholds, Steven Test targets containing PBX 9404 or LX-04 samples heated to the range of 150-170 C were impacted at velocities up to 150 m/s by two different projectile head geometries. Comparing these measured thresholds to ambient temperature thresholds revealed that the heated LX-04 thresholds were considerably higher than ambient, whereas the heated PBX 9404 thresholds were only slightly higher than the ambient temperature thresholds. The violence of reaction level of the PBX 9404 was considerably higher than that of the LX-04 as measured with four overpressure gauges. The varying results in these samples with different HMX/binder configurations indicate that friction plays a dominant role in reaction ignition during impact. This work outlines the experimental details, compares the thresholds and violence levels of the heated and ambient temperature experiments, and discusses the dominant mechanisms of the measured thresholds.

  3. Short Shock Experiments and Modeling of Initiation in the HMX Based Explosive PBX 9501

    NASA Astrophysics Data System (ADS)

    Gustavsen, Richard; Dattelbaum, Dana; Handley, Caroline; Johnson, Carl; Sheffield, Stephen; Gibson, Lee

    2011-06-01

    We present results from a series of gas-gun driven plate impact experiments designed to measure the initiation response of PBX 9501 (95 wt.% HMX, 2.5 wt.% estane and 2.5 wt.% nitroplasticizer) to short duration shocks. Embedded electromagnetic particle velocity gauges measured the reactive growth and initiation progress. Photonic Doppler Velocimetry (PDV) measured a particle velocity wave profile at the interface of the ~ 23 mm thick PBX 9501 sample and a Lithium Fluoride (LiF) window. Impact stress in all three experiments was 4.4 GPa. Pulse durations of 0.5, 0.36, and 0.25 μs were created using 1.0, 0.75, and 0.5 mm thick Kel-F81 flyers backed by syntactic foam. The 0.5 μs pulse transited to detonation at tD = 2.08 μs, xD = 9.32 mm, considerably beyond the coordinates of tD = 1.4 μs, xD = 6.2 mm, expected for a long pulse. The 0.25 μs pulse failed to transition to detonation while the 0.36 μs pulse transitioned to a detonation at a position slightly less than the sample thickness of 23 mm. These experiments provide a more stringent test for reactive burn models than do the long pulse experiments used to generate the Pop-plot.

  4. Preparation and Properties of Surface-Coated HMX with Viton and Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Ye, Baoyun; An, Chongwei; Wu, Bidong; Li, Hequn; Wei, Yanju

    2016-07-01

    To improve the safety performance of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) particles, the new carbon material graphene oxide (GO) and Viton were used to coat HMX via a solvent-slurry process. For comparison, the HMX/Viton/graphite (HMX/Viton/G) and HMX/Viton composites were also prepared by the same process. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) were employed to characterize the morphology, composition, and thermal decomposition of samples. The impact sensitivity and shock wave sensitivity of HMX-based composites were also measured and analyzed. The results of SEM, XRD, and XPS indicate that the cladding layer of HMX-based composites is successfully constructed. HMX/Viton/GO composites exhibit better thermal stability compared to HMX and HMX/Viton. The results show that both impact and shock wave sensitivities of HMX/Viton/GO composites are much lower than that of HMX/Viton. In addition, GO sheets exhibit a better desensitizing effect than G sheets. These combined properties suggest that nano-GO has good compatibility with explosives and can be utilized as a desensitizer in HMX particles.

  5. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    NASA Astrophysics Data System (ADS)

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; van Buuren, Tony; Glascoe, Elizabeth A.; Tringe, Joseph W.; Lee, Jonathan R. I.; Springer, H. Keo; Ilavsky, Jan

    2015-08-01

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.

  6. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    SciTech Connect

    Willey, Trevor M. Lauderbach, Lisa; Gagliardi, Franco; Buuren, Tony van; Glascoe, Elizabeth A.; Tringe, Joseph W.; Lee, Jonathan R. I.; Springer, H. Keo; Ilavsky, Jan

    2015-08-07

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.

  7. The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K; DeHaven, M R; Tan, N; Turner, H C

    2010-12-10

    PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a small amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.

  8. Understanding and Predicting the Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Experimental Measurements of Material Properties and Reaction Violence

    SciTech Connect

    Maienschein, J L; Wardell, J F; Weese, R K; Cunningham, B J; Tran, T D

    2002-07-03

    The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation of the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.

  9. Computer Simulations to Study the High-Pressure Deflagration of HMX

    SciTech Connect

    Reaugh, J E

    2003-07-11

    The accepted micro-mechanical picture of the build-up of detonation in solid explosives from a shock is that imperfections are a source of hot spots. The hot spots ignite and link up in the reaction zone by high-pressure deflagration. Although the deflagration is subsonic, there are so many ignition sites that the pressure build-up is rapid enough to strengthen the initial shock. Quantitative advances in this research require a detailed understanding of deflagration at the high pressure, 1 to 50 GPa, which is present in the reaction zone. We performed direct numerical simulations of high-pressure deflagrations using a simplified global (3-reaction) chemical kinetics scheme. We used ALE-3D to calculate coupled chemical reactions, heat transfer, and hydrodynamic flow for finite-difference zones comprising a mixture of reactants and products at pressure and temperature equilibrium. The speed of isobaric deflagrations depends on the pressure and initial temperature. We show how this dependence changes with kinetic parameters, including the order of the last reaction step and the heat of formation of the species formed, relative to the reactant.

  10. Binder/HMX Interaction in PBX9501 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Saw, Cheng K.; Tarver, Craig M.

    2004-07-01

    Plastic bonded explosives (PBX) generally consist of 85-95 % by weight energetic material, such as HMX, and 5-15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX β- to δ-phase transition in PBX 9501 is similar to that in neat HMX. However, in the presence of the PBX 9501 binder, δ-phase HMX readily converts back to β-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of δ-phase to β-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the δ-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the δ-phase to β-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.

  11. Violent Reactions and DDT in Hot, Thermally Damaged HMX-Based PBXs

    SciTech Connect

    Parker, Gary R. Jr.; Holmes, Matthew D.; Dickson, Peter; Asay, Blaine W.; McAfee, John M.

    2012-07-03

    Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

  12. Pilot-scale pressurized base hydrolysis of HMX plastic-bonded explosives

    SciTech Connect

    Larson, S.A.; Brewer, G.R.; Harradine, D.M.; Polston, C.E.; Le, L.A.; Bishop, R.L.; Dell`Orco, P.C.; Flesner, R.L.

    1998-12-31

    A pilot-scale, pressurized, base hydrolysis reactor has been designed and its construction is nearly completed. Up to 120 L of 1--6 M NaOH aqueous solutions will convert as much as 25 kg of consolidated, explosive pieces to non-energetic compounds. Temperatures approaching 155 C in the pressurized unit will reduce reaction times significantly for the destruction of plastic-bonded explosives compared to previous atmospheric-pressure reactors. The hydrolysis effluent is then pumped into a holding tank where it is fed into a hydrothermal oxidation reactor for complete destruction to non-hazardous products. The hydrothermal unit operates at 480 C and 100 MPa and hydrogen peroxide fed into the reactor at two points will ensure complete destruction of all organic species and nitrogen-containing salts. The entire system is comprised of eight major components and is assembled on five separate and transportable skids. Following construction and preliminary testing at Los Alamos National Laboratory, the unit will be shipped to the Pantex Plant where it will be used for continuous demilitarization activities.

  13. Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Reaugh, J. E.; May, C. M.

    2014-05-01

    We performed reactive meso-scale simulations of short-pulse experiments to study the influence of flyer velocity and pore structure on shock initiation of LX-10 (95wt% HMX, 5wt% Viton A). Our calculations show that the reaction evolution fit a power law relationship in time and increases with increasing porosity, decreasing pore size, and increasing flyer velocity. While heterogeneous shock initiation modes, dependent on hot spot mechanisms, are predicted at lower flyer velocities, mixed heterogeneous-homogeneous shock initiation modes, less dependent on hot spots, are predicted at higher velocities. These studies are important because they enable the development of predictive shock initiation models that incorporate complex microstructure and can be used to optimize performance-safety characteristics of explosives.

  14. Thermal reactive hazards of HMX with contaminants.

    PubMed

    Peng, Deng-Jr; Chang, Cheng-Ming; Chiu, Miin

    2004-10-18

    In the past, many unexpected runaway accidents occurred in manufacturing processes, involving volatile chemical and explosive storage and transportation. Incompatible product reactions of high explosives must be carefully considered using loss prevention strategies for thermal hazards risk analysis. High explosive reactions vary via environmental changes, contact materials, or process situations, such as onset temperature and shifts in reaction type when high explosives are in contact with contaminants. Therefore, the manufacture and handling of high explosives require the utmost in safety and loss prevention. HMX (cyclotetramethyene tetranitramine) is one kind of high explosive widely used around the world which is stable with high detonation strength properties. In this study, the influences of contaminants on HMX are investigated. The studied contaminants include ferrous chloride tetrahydrate, ferric chloride hexahydrate, acetone solution, acetic acid, and nitric acid. DSC thermal curves and incompatible reaction kinetic evaluations were preformed using iron, chlorine and acid. Organic acetone solution has lesser effects on HMX. Hopefully, this study will lead to improved thermal hazards risk analysis and reduce accidents. PMID:15511569

  15. Method for synthesizing HMX

    SciTech Connect

    McGuire, R.R.; Coon, C.L.; Harrar, J.E.; Pearson, R.K.

    1984-02-21

    A method and apparatus for electrochemically synthesizing N/sub 2/O/sub 5/ includes oxidizing a solution of N/sub 2/O/sub 4//HNO/sub 3/ at an anode, while maintaining a controlled potential between the N/sub 2/O/sub 4//HNO/sub 3/ solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N/sub 2/O/sub 5/ is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  16. Method for synthesizing HMX

    DOEpatents

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  17. Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei.

    PubMed

    Savard, Kathleen; Berthelot, Yann; Auroy, Aurelie; Spear, Philip A; Trottier, Bertin; Robidoux, Pierre Yves

    2007-10-01

    High metal (e.g., Pb) concentrations are typically found in explosive-contaminated soil, and their presence may increase, decrease, or not influence toxicity predicted on the basis of one explosive alone (e.g., HMX). Nevertheless, few data are available in the scientific literature for this type of multiple exposure. Soil organisms, such as earthworms, are one of the first receptors affected by the contamination of soil. Therefore, a reproductive study was conducted using Eisenia andrei in a forest-type soil. Both HMX and Pb decreased reproduction parameters (number of total cocoons, hatched cocoons, and surviving juveniles) individually. Based on the total number of cocoons, HMX was more toxic in a forest soil than Pb, with EC(50) of 31 mg kg(-1), and 1068 mg kg(-1), respectively. The slope of the concentration-response curve was significantly greater in the case of Pb, which is consistent with the possibility that the two compounds do not act on the same target site. The response-addition model was used to predict the response of earthworms and to test for interaction between the two contaminants. The predicted toxicity was not significantly different than the observed toxicity, implying that Pb and HMX were considered noninteractive compounds. The combined action of Pb-HMX may be described, therefore, as dissimilar-noninteractive joint action in a forest soil. The results illustrate the relevance of considering the presence of metals in the risk assessment of explosive-contaminated sites because metals can add their toxicity to explosives. Extension of this study to other types of soil and other metals would improve the understanding of toxicity at these sites. PMID:17690834

  18. A comparative study of 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under high pressures using Raman spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Zeng, Yangyang; Song, Yunfei; Yu, Guoyang; Zheng, Xianxu; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2016-09-01

    High pressure Raman experiment was performed to compare RDX and HMX crystals. Ab initio calculations using B3LYP Density Functional Theory method with Sadlej's medium-sized polarized basis set (SadlejpVTZ) were carried out for Caae RDX and 1,5-diaxial-3,7-diequatorial chair HMX molecules. Our calculations and measured Raman vibrational spectra reveal both molecules have similarities on bonding and vibrational properties at ambient pressure. However, high pressure responses for both molecules aren't the same. For RDX, at pressure near 4 GPa, a number of changes become apparent in the Raman spectra, such as modes splitting, intensity modification, and discontinuity of pressure-dependence of frequency shifts, which are consistent with previous experiment and believed to associate with α-γ phase transition. For HMX, only slight conformational deformation involving NO2 group was observed, and was considered as an onset of β-ε phase transition. It is proposed that the markedly different behavior under high pressure for these two molecules results from different molecular packing in unit cell.

  19. An Analytic Tool to Investigate the Effect of Binder on the Sensitivity of HMX-Based Plastic Bonded Explosives in the Skid Test

    SciTech Connect

    D.W. Hayden

    2005-02-01

    This project will develop an analytical tool to calculate performance of HMX based PBXs in the skid test. The skid-test is used as a means to measure sensitivity for large charges in handling situations. Each series of skid tests requires dozens of drops of large billets. It is proposed that the reaction (or lack of one) of PBXs in the skid test is governed by the mechanical properties of the binder. If true, one might be able to develop an analytical tool to estimate skid test behavior for new PBX formulations. Others over the past 50 years have tried to develop similar models. This project will research and summarize the works of others and couple the work of 3 into an analytical tool that can be run on a PC to calculate drop height of HMX based PBXs. Detonation due to dropping a billet is argued to be a dynamic thermal event. To avoid detonation, the heat created due to friction at impact, must be conducted into the charge or the target faster than the chemical kinetics can create additional energy. The methodology will involve numerically solving the Frank-Kamenetskii equation in one dimension. The analytical problem needs to be bounded in terms of how much heat is introduced to the billet and for how long. Assuming an inelastic collision with no rebound, the billet will be in contact with the target for a short duration determined by the equations of motion. For the purposes of the calculations, it will be assumed that if a detonation is to occur, it will transpire within that time. The surface temperature will be raised according to the friction created using the equations of motion of dropping the billet on a rigid surface. The study will connect the works of Charles Anderson, Alan Randolph, Larry Hatler, Alfonse Popolato, and Charles Mader into a single PC based analytic tool. Anderson's equations of motion will be used to calculate the temperature rise upon impact, the time this temperature is maintained (contact time) will be obtained from the work of

  20. Surface-Accelerated Decomposition of δ-HMX.

    PubMed

    Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M

    2013-03-01

    Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions. PMID:26281926

  1. Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests

    SciTech Connect

    Tarver, C M

    2004-03-02

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts. Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.

  2. Burning rate for steel-cased, pressed binderless HMX

    NASA Technical Reports Server (NTRS)

    Fifer, R. A.; Cole, J. E.

    1980-01-01

    The burning behavior of pressed binderless HMX laterally confined in 6.4 mm i.d. steel cases was measured over the pressure range 1.45 to 338 MPa in a constant pressure strand burner. The measured regression rates are compared to those reported previously for unconfined samples. It is shown that lateral confinement results in a several-fold decrease in the regression rate for the coarse particle size HMX above the transition to super fast regression. For class E samples, confinement shifts the transition to super fast regression from low pressure to high pressure. These results are interpreted in terms of the previously proposed progressive deconsolidation mechanism. Preliminary holographic photography and closed bomb tests are also described. Theoretical one dimensional modeling calculations were carried out to predict the expected flame height (particle burn out distance) as a function of particle size and pressure for binderless HMX burning by a progressive deconsolidation mechanism.

  3. Ignition and Growth Modeling of Detonation Reaction Zone Experiments on Single Crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley; Tarver, Craig

    2015-06-01

    Fedorov et al. reported nanosecond time resolved interface particle velocity records for detonation reaction zone profiles of single crystals of PETN and HMX with adjoining LiF windows. Von Neumann spike and Chapman-Jouguet pressures were measured, and reaction zone lengths and times wereinferred. The single crystal detonation velocities and von Neumann spike pressures are higher than those measured for heterogeneous PETN and HMX-based explosives pressed to 98-99% theoretical maximum density. Due to the absence of voids, the single crystal detonation reaction zone lengths and times for both PETN and HMX were longer than those for their heterogeneous explosives. Ignition and Growth modeling results are compared to the single crystal PETN and HMX measurements and to previous experimental results for pressed PETN and HMX charges. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives

    SciTech Connect

    McGuire, R.R.; Tarver, C.M.

    1981-03-26

    Chemical decomposition models have been deduced from the available chemical kinetic data on the thermal decomposition of HMX, TATB, RDX, and TNT. A thermal conduction model is used in which the thermal conductivity of the reacting explosive decreases linearly with the mass fraction reacted to that of the gaseous products. These reactive heat flow models are used to predict the time to explosion versus reciprocal temperature curves from several heavily confined explosive tests. Good agreement is obtained between experimental and calculated explosion times for the pure explosives HMX, TATB, RDX, and TNT, mixtures such as RX-26-AF (HMX/TATB), Octol (HMX/TNT), and Comp B (RDX/TNT), and for PBX 9404, an HMX-based explosive containing an energetic nitrocellulose binder.

  5. Picosecond Dynamics of Shock Compressed and Flash-Heated Nanometer Thick Films of HMX

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Dlott, Dana

    2013-06-01

    New results are described for probing molecular dynamics of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) subjected to shock compression to a few GPa and/or temperature excursions exceeding thermal decomposition values (T > 500 K). 5-10 nm thick films of δ-HMX were grown on metallic substrates coated with monolayers of 4-nitrothiophenol. Due to shock velocities of a few nm/ps, nanometer thick films allowed picosecond time resolution of shock loading. A plastic polymer layer a few microns in thickness was spin-coated on top of HMX for shock confinement purposes. Both the monolayer and explosive layer were probed utilizing an ultrafast nonlinear coherent vibrational spectroscopy, vibrational sum-frequency generation. Shock compression pressures were estimated via comparison of the monolayer nitro transition frequency shift with static high pressure measurements in a diamond anvil cell. Temperature determinations were based on thermoreflectance measurements of the metallic substrate. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  6. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam; Sundararaghavan, Veera

    2015-06-01

    In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.

  7. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  8. Ignition and Growth Reactive Flow Modeling of Recent HMX/TATB Detonation Experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2015-06-01

    Ignition and Growth model parameters for detonating PBX 9501 (95%HMX, 2.5 %Estane, 2.5%BDNPAF) and PBX 9502 (95%TATB, 5%Kel-F800) are used to simulate two experiments in which detonating HMX-based PBX's accelerate slower detonating TATB PBX's. The measured HMX and TATB detonation velocities, the angles produced in the detonating TATB charges by the leading HMX detonation waves, the arrival times of the complex detonation wave front, and the PDV records measured at several positions along the interfaces between the two explosives and LiF windows are accurately calculated. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  9. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  10. Kinetics of HMX and Phase Transitions: Effects of Grain Size at Elevated Temperature

    SciTech Connect

    Saw, C K

    2002-06-13

    To date a global kinetic rate law has not been written to accurately describe solid-solid phase transformations of HMX and TATB where contributions from grain size effects, binder contents, and impurity levels are explicitly defined. Our recent work presented at the 2001 SCCM topical APS meeting, Atlanta, GA, demonstrated one can not confidently use the second harmonic generation (SHG) diagnostic to study energetic material phase transitions where non-uniform grain size distributions are present. For example, in HMX, the early arrival of SHG before the XRD in the SHG/XRD simultaneous high temperature experiment clearly indicates the partial molecular conversion from centrosymmetric to non-centrosymmetric without any structural changes as exhibit by the XRD pattern. This conversion is attributed to the changes of the surface molecules due to the differences in potential between the surface and the bulk. The present paper reports on accurate XRD measurements following changes of {beta}-HMX to {delta}-HMX at elevated temperature. The results are compared for sample with 2 different grain sizes for HMX. We report accurate temperature dependent lattice parameters and hence volume and linear thermal expansion coefficients along each crystallographic axis. We have also conducted kinetic studies of the behavior of 2 grain-sizes of HMX and concluded that their kinetics, are drastically different.

  11. Ignition Chemistry in HMX from Thermal Explosion to Detonation

    NASA Astrophysics Data System (ADS)

    Henson, Bryan F.; Asay, Blaine W.; Smilowitz, Laura B.; Dickson, Peter M.

    2002-07-01

    We present a global chemical decomposition model for HMX based materials. The model contains three component processes, the initial beta to delta phase transition, solid to gas decomposition and gas phase ignition, for which all kinetic and thermodynamic parameters are fixed by independent measurement. We present an isothermal ignition calculation over the range of temperatures from thermal explosion to detonation. The calculation is performed for a sphere of material and the critical diameter and time for ignition are determined. The sample diameter, and thus the balance of heat generation and dissipation, is the only degree of freedom in the calculation. The results of the calculation are in good agreement with data with respect to both the ignition times and length scales over the full temperature range of energetic response in HMX.

  12. Ignition chemistry in HMX from thermal explosion to detonation

    NASA Astrophysics Data System (ADS)

    Henson, Bryan; Smilowitz, Laura; Asay, Blaine; Dickson, Peter

    2001-06-01

    We present a global chemical decomposition model for HMX based materials. The model contains three component processes, the initial beta to delta phase transition, solid to gas decomposition and gas phase ignition, for which all kinetic and thermodynamic parameters are fixed by independent measurement. We present isothermal ignition calculations over the range of temperatures from thermal explosion to detonation. The calculation is performed for a sphere of material and the critical diameter and time for ignition are determined. The sample diameter, and thus the balance of heat generation and dissipation, is the only degree of freedom in the calculation. The results of the calculation are in good agreement with data with respect to both the ignition times and length scales over the full temperature range of energetic response in HMX.

  13. Treatment of HMX and RDX contamination

    SciTech Connect

    Card, R.E. Jr.; Autenrieth, R.

    1998-03-01

    HMX and RDX are often found in the soil, groundwater, and surface waters at facilities where they are manufactured as the result of negligent disposal methods. The toxicity of these compounds and their degradation products has led to concern about their fate in the environment and the potential for human exposure. HMX and RDX are recalcitrant in the environment with low rates of biodegradation and photolysis. Several methods of treating contaminated soils and waters have been developed and studied. Many of these technologies (i.e., carbon adsorption, oxidation, and chemical treatment) have been developed to treat munition plant wastewaters that are contaminated with explosives. These methods need to be adapted to remediate contaminated water. Other technologies such as bioremediation and composting are being developed as methods of remediating HMX and RDX contamination in a solid matrix. This report describes and evaluates each of these technologies. This report also describes the processes which affect HMX and RDX in the environment. The major transformation processes of RDX and HMX in the environment are biodegradation and photolysis. A major factor affecting the transport and treatment of RDX and HMX in soil-water environments is their sorption and desorption to soil particles. Finally, this report draws conclusions as to which treatment methods are currently most suitable for the remediation of contaminated soils and waters.

  14. Pressure wave measurements from thermal cook-off of an HMX based high explosive

    SciTech Connect

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2000-10-10

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  15. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    SciTech Connect

    Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2001-05-31

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  16. Deflagration-to-detonation transition in granular HMX

    NASA Technical Reports Server (NTRS)

    Campbell, A. W.

    1980-01-01

    Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.

  17. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-05-05

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. Our activation energies are about 10% lower than those derived from data supplied by the University of Utah, which we consider the best previous work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  18. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  19. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  20. Damaging HMX/HTPB formulations: In-situ compression imaging using X-ray micro computed tomography

    SciTech Connect

    Patterson, Brian M.; Cordes, Nikolaus Lynn; Tappan, Bryce C.; Thompson, Darla Graff; Manner, Virginia Warren

    2015-04-17

    HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is a powerful high explosive that is routinely used in formulations such as PBX 9501. Much remains to be learned about the performance and mechanical properties of HMX formulations such as these, particularly after dynamic damage has occurred. We have prepared formulations with HMX using hydroxyl terminated polybutadiene (HTPB) binder in order to form an explosive that is relatively insensitive to mild stimuli, analogous to PBXB-110 (different only is substitution of dioctyladipate (DO) for isodecyl pelargonate).

  1. Complete equation of state for [beta]-HMX and implications for initiation

    SciTech Connect

    Sewell, T. D.; Menikoff, Ralph

    2003-01-01

    A thermodynamically consistent equation of state for {beta}-HMX, the stable ambient polymorph of HMX, is developed that fits isothermal compression data and the temperature dependence of the specific heat computed from molecular dynamics. The equation of state is used to assess hot-spot conditions that would result from hydrodynamic pore collapse in a shock-to-detonation transition. The hot-spot temperature is determined as a function of shock strength by solving two Riemann problems in sequence: first for the velocity and density of the jet formed when the shock overtakes the pore, and second for the stagnation state when the jet impacts the far side of the pore. For a shock pressure below 5 GPa, the stagnation temperature from the jet is below the melt temperature at ambient pressure and hence insufficient for rapid reaction. Consequently for weak shocks a dissipation mechanism in addition to shock heating is needed to generate hot spots. When the stagnation temperature is sufficiently high for rapid reaction, the shock emanating from the hot spot is computed, assuming aconstant volume burn. For initial shocks below 20 GPa, the temperature behind the second shock is below 1000K and would not propagate a detonation wave. This analysis, based solely on the equation of state of the explosive, can serve as a check on mesoscale simulations of initiation in a plastic-bonded explosive.

  2. Synthesis and First Principles Investigation of HMX/NMP Cocrystal Explosive

    NASA Astrophysics Data System (ADS)

    Lin, He; Zhu, Shun-Guan; Zhang, Lin; Peng, Xin-Hua; LI, Hong-Zhen

    2013-10-01

    1,3,5,7-Tetranitro-l,3,5,7-tetrazocine (HMX)/N-methyl-2-pyrrolidone (NMP) cocrystal explosive was prepared by a solution evaporation method. This cocrystal explosive crystallized in the trigonal system (space group ? ), with cell parameters a = 16.605(8) Å and c = 31.496(4) Å. Theoretical investigations of the formation mechanism of HMX/NMP cocrystal were carried out in Cambridge serial total energy package (CASTEP) based on dispersion-corrected density functional theory (DFT-D) with a plane wave scheme. The exchange-correlation potential was treated with the Perdew-Burke-Ernzerhof function of generalized gradient approximation, and dispersion force was correlated using Grimme's method. The band structure, density of states, projected density of states, and Mulliken populations were calculated at the generalized gradient approximation level. The results showed that the main host-guest interactions in HMX/NMP cocrystal were hydrogen bonds and stacking interactions, which were the same as those analyzed using X-ray diffraction. Theoretical investigations of HMX/NMP cocrystal explosive may provide the basis for the preparation of cocrystal explosive composed of HMX and energetic materials.

  3. A Molecular Dynamics simulation of Hugoniot curves of HMX using ReaxFF and its application in SPH modeling of macroscale terminal effects

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Rong; Wang, Gangyu; Peng, Qing; de, Suvranu

    2015-06-01

    HMX is a widely used high explosive. Hugoniot curve is a valuable tool for analyzing the equations of state, and is of importance for all energetic materials including HMX. The Hugoniot curves serve as one of the key character in continuum modeling of high explosives. It can be obtained from experimental measurements, and recently also from computational studies. In this study, the Hugoniot curve of HMX is calculated using a multi-scale shock technique via Molecular Dynamics (MD) simulations, where the reactive force field ReaxFF is obtained from Quantum Mechanics calculations and tailored for HMX. It is found that our MD Hugoniot curve of HMX from the optimized ReaxFF potential agree well with experiments. The MD Hugoniot curve of HMX is also incorporated in our in-house Smoothed Particle Hydrodynamics (SPH) code for the modeling of the macro-scale explosive behaviors of HMX explosives and HMX cased in a 3D cylinder. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant HDTRA1-13-1-0025.

  4. Pressure Dependent Decomposition Kinetics of the Energetic Material HMX up to 3.6 GPa

    SciTech Connect

    Glascoe, E A; Zaug, J M; Burnham, A K

    2009-05-29

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  5. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue. PMID

  6. A theoretical study of the stress relaxation in HMX on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2015-12-01

    The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.

  7. Shock Sensitivity of LX-04 Containing Delta Phase HMX at Elevated Temperatures

    SciTech Connect

    Urtiew, P A; Forbes, J W; Tarver, C M; Vandersall, K S; Garcia, F; Greenwood, D W; Hsu, P C; Maienschein, J L

    2003-07-11

    LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experiments conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.

  8. Human health risks from TNT, RDX, and HMX in environmental media and consideration of the US Regulatory Environment

    SciTech Connect

    Daniels, J.I.; Knezovich, J.P.

    1994-12-01

    Although the most economical method for disposing of unwanted energetic high explosives [HEs; e.g., 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-triazine (RDX, also known as Cyclonite), and octahydro-1,3,5,7-tetrazocine (HMX, also known as Octogen)] involves open burning and open or underground detonation [OB/O(U)D]; federal, state, and even local government agencies in the United States (U.S.) are implementing stricter environmental regulations that eventually may prevent such activities. These stricter regulations will promote alternative technologies that are designed to be environmentally benign. However, past HE-waste disposal practices at manufacturing and fabrication facilities in the U.S. have included uncontrolled OB/O(U)D, as well as direct surface discharge of HE-contaminated waste water, resulting in contaminated environmental media (e.g., ground water, soil, and perhaps even edible vegetation) near residential areas. Using TNT, RDX, and HMX as examples, this paper describes how risk-based standards for HEs can be derived that account for potential multimedia exposures (associated with contaminated air, water, food, and soil) by individuals near a contaminated site, and used to (1) protect public health and safety; (2)prevent limited resources from being dedicated to unnecessary cleanup activities; and (3) identify the most cost-effective, practical, and environmentally benign technologies suitable for integrating with the handling of the large quantity of high explosives scheduled for demilitarization.

  9. Accumulation and effects of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) exposure in the green anole (Anolis carolinensis).

    PubMed

    McMurry, S T; Jones, L E; Smith, P N; Cobb, G P; Anderson, T A; Lovern, M B; Cox, S; Pan, X

    2012-03-01

    Environmental contamination by energetic compounds is an increasing international concern, although little is known of their accumulation in and affect on wildlife. Reptiles are often good models for contaminants studies due to natural history traits that increase their potential for exposure. We report a study to assess accumulation and effects of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, High Melting Explosive) in green anoles (Anolis carolinensis). Acute oral toxicity (LD(50)) was estimated to exceed 2000 mg/kg body weight in adult male and female anoles using a standard up-and-down method. Accumulation of HMX was assessed in adult females via dietary exposure and into eggs by two routes (directly from the soil and via maternal transfer). HMX readily accumulated into adult females in a dose-dependent manner and into eggs following both exposure pathways. However, total HMX in soil-exposed eggs was up to 40-times greater than those exposed via maternal transfer. Although there was a suggestion of an HMX-induced reduction in body weight in adult females, overall there were no effects observed over the 12 week exposure period. The only significant effect on eggs was a 50% reduction in hatching success for eggs exposed to 2000 mg/kg HMX in the soil during incubation. Growth and survival of hatchlings was not affected by HMX exposure. Our results demonstrate that HMX accumulates through the food chain and into eggs from the soil, but likely poses minimal threat to lizards except to hatching success in eggs incubated in soils with HMX levels near maximum environmental concentrations. PMID:21947615

  10. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites.

    PubMed

    Wang, Yi; Song, Xiaolan; Song, Dan; Liang, Li; An, Chongwei; Wang, Jingyu

    2016-07-15

    1,3,5,7-Tetranittro-1,3,5,7-tetrazocane/nitrocellulose (HMX/NC) nanocomposites were successfully synthesized by an improved sol-gel-supercritical method. NC nanoparticles with a size of ∼30nm were cross-linked to form a network structure, and HMX nanoparticles were imbedded in the nano-NC matrix. The key factors, i.e., the selection of catalyst and solvent, were probed. No phase transformation of the HMX occurred before or after fabrication, and the molecular structures of the HMX and NC did not change. Thermal analyses were performed, and the kinetic and thermodynamic parameters, such as activation energy (EK), per-exponent factor (lnAK), rate constant (k), activation heat (ΔH(≠)), activation free energy (ΔG(≠)), activation entropy (ΔS(≠)), critical temperature of thermal explosion (Tb), and critical heating rate of thermal explosion (dT/dt)Tb, were calculated. The results indicate that HMX/NC presented a much lower activation energy (165.03kJ/mol) than raw HMX (282.5kJ/mol) or raw NC (175.51kJ/mol). The chemical potential (ΔG(≠)) for the thermal decomposition of HMX/NC has a positive value, which means that the activation of the molecules would not proceed spontaneously. The significantly lower ΔH(≠) value of HMX/NC, which represents the heat needed to be absorbed by an explosive molecule to change it from its initial state to an activated state, implies that the molecules of HMX/NC are much easier to be activated than those of raw HMX. Similarly, the HMX/NC presented a much lower Tb (168.2°C) than raw HMX (283.2°C). From the results of the sensitivity tests, the impact and friction sensitivities of HMX/NC were significantly decreased compared with those of raw HMX, but the thermal sensitivity was distinctly higher. The activation of the particles under external stimulation was simulated, and the mechanism was found to be crucial. Combining the thermodynamic parameters, the mechanism as determined from the results of the sensitivity tests was

  11. Kinetics of (beta)(right arrow)(delta) Solid-Solid Phase Transition of HMX

    SciTech Connect

    Weese, R K

    2000-09-01

    In order to calculate the kinetic parameters from DSC data, we have used the generally accepted methods of Bershtein [13]. We have calculated the rate constants for 4 temperatures and the activation energy based on the shift in the transition temperature, {beta} {yields} {delta} for HMX. The values of E{sub a} from this work is 402 kJ/mol compared to previous results by Brill [9] of 204 kJ/mol. Brill and associates measured the phase transition of HMX using FTIR, sodium chloride plates and silicon oil. Given the differences in technique between FTIR and DSC the results found in this work are reasonable. In this investigation a large sample set (16) proved to be statistically valid for the determinations of k. Linear regressions were performed, observed and good fits were obtained, for each temperature. The enthalpy determination of {Delta}H{sub o}, for the {beta} {yields} {delta} phase transition was reproducible with in 3 parts in 100 over the range of this experiment. Thus, the data derived from this experiment k, E{sub a}, and {Delta}H{sub o} are valid parameters for the solid-solid phase transition. Obtaining pure {beta} phase HMX was very important for this investigation. Related to the phase change is the particle size distribution and is presented in Figure 3. Compared to previous work on HMX, this study utilized very pure {beta} phase material. In addition, the particle size was controlled more rigorously at about 160 {micro}m, giving a more consistent result for {alpha}. Thus, these kinetic results should have less scatter than results with less control of HMX purity and particle size. The kinetic basis of the polymorphic conversion is due to the cohesive forces in the HMX crystal lattice [21]. The energy required to bring about change from chair to chair-chair conformation has been reported by Brill [21] as ring torsion and is essentially a normal mode of the molecule that requires about 4 kJ mol{sup -1}. For the purpose of this investigation the energy

  12. Modeling compaction-induced energy dissipation of granular HMX

    SciTech Connect

    Gonthier, K.A.; Menikoff, R.; Son, S.F.; Asay, B.W.

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  13. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    NASA Astrophysics Data System (ADS)

    Bassett, Will P.; Dlott, Dana D.

    2016-06-01

    A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.

  14. How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX?

    PubMed

    Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming

    2015-09-21

    We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives. PMID:26264421

  15. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study.

    PubMed

    Alavi, Ghasem; Chung, Mel; Lichwa, Joseph; D'Alessio, Matteo; Ray, Chittaranjan

    2011-01-30

    The adsorption and degradation behavior of RDX, HMX, TNT and DNT and the impact of pH, ionic strength and dissolved organic matter on sorption were examined for two volcanic soils of a former military training area on Hawaii Island, Hawaii, USA. The transport of these chemicals in the soil was also studied in small packed columns and simulated using a water-flow and solute-transport model, HYDRUS_1D. The results show that HMX and RDX are both significantly more mobile than TNT and DNT. The adsorbability of the four chemicals was ranked as: RDX<HMXHMX>RDX>DNT>TNT. No significant trend was observed for the effect of ionic strength, pH and dissolved organic carbon (DOC) on the adsorption of explosive compounds within the concentrations and pH ranges evaluated. The simulation results show that TNT and DNT would not leach beyond a depth of 30cm soil profile whereas a significant amount of HMX and RDX would pass the 30cm depth. It seems that the risk for contamination of groundwater is much higher for both HMX and RDX than for DNT and TNT as the substratum in this area consists of highly permeable lavas. PMID:21087822

  16. A direct method to calculate thermal conductivity and its application in solid HMX.

    PubMed

    Long, Y; Chen, J; Liu, Y G; Nie, F D; Sun, J S

    2010-05-12

    The calculation of thermal conductivity for complex material systems is a challenging problem in computational materials science. Its key point is to calculate heat flux. In this work, we derive a concise formula for this purpose based on the equation of motion and then use it to study the thermal conduction properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), which is a widely used plastic-bonded explosive (PBX). The results are in fair agreement with experiments and show a distinct thermal conduction anisotropy for HMX single crystals. Then we investigate some key issues of thermal conductivity, such as its temperature-dependence and composition-dependence. A series of interesting results are obtained. PMID:21393685

  17. Porous HMX initiation studies -- Sugar as an inert simulant

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R.

    1997-11-01

    For several years the authors have been using magnetic particle velocity gauges to study the shock loading of porous HMX (65 and 73% TMD) of different particle sizes to determine their compaction and initiation characteristics. Because it has been difficult to separate the effects of compaction and reaction, an inert simulant was needed with properties similar to HMX. Sugar was selected as the simulant for several reasons: (1) the particle size distribution of C and H granulated sugar is similar to the coarse HMX the authors have been using (120 {micro}m average size), (2) the particle size of C and H confectioners (powdered) sugar is similar to the fine HMX in the studies (10 {micro}m average size), (3) it is an organic material, and (4) sugar was readily available. Because the densities of HMX and sugar are somewhat different, the authors chose to do the experiments on sugar compacts at 65 and 73% TMD. As expected, no reaction was observed in the sugar experiments. Compaction wave profiles were similar to those measured earlier for the HMX, i.e., the compaction waves in the coarse sugar were quite disperse while those in the fine sugar were much sharper. This indicates that the compaction wave profiles are controlled by particle size and not reaction. Also, the coarse sugar gauge signals exhibited a great deal of noise, thought to the be result of fracto-emission.

  18. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-05-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.

  19. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.

    PubMed

    Wang, Chen; Huang, Helin; Bunes, Benjamin R; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-01-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2(+)) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and (1)H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290

  20. Kinetics of HMX and CP Decomposition and Their Extrapolation for Lifetime Assessment

    SciTech Connect

    Burnham, A K; Weese, R K; Andrzejewski, W J

    2005-03-10

    Decomposition kinetics are determined for HMX (nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and CP (2-(5-cyanotetrazalato) pentaammine cobalt (III) perchlorate) separately and together. For high levels of thermal stress, the two materials decompose faster as a mixture than individually. This effect is observed both in high-temperature thermal analysis experiments and in long-term thermal aging experiments. An Arrhenius plot of the 10% level of HMX decomposition by itself from a diverse set of experiments is linear from 120 to 260 C, with an apparent activation energy of 165 kJ/mol. Similar but less extensive thermal analysis data for the mixture suggests a slightly lower activation energy for the mixture, and an analogous extrapolation is consistent with the amount of gas observed in the long-term detonator aging experiments, which is about 30 times greater than expected from HMX by itself for 50 months at 100 C. Even with this acceleration, however, it would take {approx}10,000 years to achieve 10% decomposition at {approx}30 C. Correspondingly, negligible decomposition is predicted by this kinetic model for a few decades aging at temperatures slightly above ambient. This prediction is consistent with additional sealed-tube aging experiments at 100-120 C, which are estimated to have an effective thermal dose greater than that from decades of exposure to temperatures slightly above ambient.

  1. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    PubMed Central

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-01-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290

  2. The Anisotropic Dynamic Response of Ultrafast Shocked Single Crystal PETN and Beta-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Armstrong, Michael; Crowhurst, Jonathan; Austin, Ryan; Ferranti, Louis; Fried, Laurence; Bastea, Sorin

    2015-06-01

    We report results from ultrafast shockwave experiments conducted on single crystal high explosives. Experimental results consist of 12 picosecond time-resolved dynamic response wave profile data, (ultrafast time-domain interferometry-TDI), which are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. In addition, here we present unreacted equations of state data from PETN and beta-HMX up to higher pressures than previously reported, which are used to extend the predictive confidence of hydrodynamic simulations. Our previous results derived from a 360 ps drive duration yielded anisotropic elastic wave response in single crystal beta-HMX ((110) and (010) impact planes). Here we provide results using a 3x longer drive duration to probe the plastic response regime of these materials. We compare our ultrafast time domain interferometry (TDI) results with previous gun platform results. Ultrafast time scale resolution TDI measurements further guide the development of continuum models aimed to study pore collapse and energy localization in shock-compressed crystals of beta-HMX. This work was performed under the auspices of the U.S. Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Deflagration to detonation experiments in granular HMX

    SciTech Connect

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  4. Modeling pore collapse and chemical reactions in shock-loaded HMX crystals

    NASA Astrophysics Data System (ADS)

    Austin, Ryan; Barton, Nathan; Howard, William; Fried, Laurence

    2013-06-01

    The collapse of micron-sized pores in crystalline high explosives is the primary route to initiating thermal decomposition reactions under shock wave loading. Given the difficulty of resolving such processes in experiments, it is useful to study pore collapse using numerical simulation. A significant challenge that is encountered in such calculations is accounting for anisotropic mechanical responses and the effects of highly exothermic chemical reactions. In this work, we focus on simulating the shock-wave-induced collapse of a single pore in crystalline HMX using a multiphysics finite element code (ALE3D). The constitutive model set includes a crystal-mechanics-based model of thermoelasto-viscoplasticity and a single-step decomposition reaction with empirically determined kinetics. The model is exercised for shock stresses up to ~10 GPa to study the localization of energy about the collapsing pore and the early stages of reaction initiation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-618941).

  5. Photoexcitation, Reaction Localization and Energy Dissipation in Single beta-HMX Crystals subjected to 20 GPa Shock and PBX Detonation

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Rodrigues, L.; Plaksin, S.; Mendes, R.; Campos, J.; Simoes, P.

    2011-06-01

    We present experimentally revealed highly anisotropic dynamics of the detonation conversion occurring in beta-HMX crystals. Panoramic observation of 1-mm single b-HMX crystal surrounded by different binder materials (HTPB, GAP, water) and by fine-grained PBX (HMX 85/15 GAP as a dirty binder) performed by mean of Multi-Channel Optical Analyzer (96 optical fibers) provided spatially resolved measurements of reaction spots onset/growth and a post-detonation ejecta of reaction products via the radiance registration carried out with 100 μm-spatial and 0.2 ns-temporal accuracy in a spectral range 450-850 nm. Experimental evidences obtained in more than 20 tests with b-HMX crystals subjected to a 20 GPa shock and to the PBX detonation (51 GPa-VN spike at entering to a crystal and 21.5 GPa-CJ pressure), demonstrate that independently on orientation crystal vs. input front, a major reaction spots are localized in crystal vertexes/edges and the emitted reaction radiance induces photoexcitation in the crystal bulk causing a radiation-induced precursor of the major reaction front. Further reaction spots dissipation is attended by origination of the reaction products' longitudinal/transversal ejecta moving behind the leading front with the 20-30 micron/ns speed. This work was funded by the Office of Naval Research under the Grant No 0014-08-1-0096 with Dr. Clifford Bedford as Program Manager.

  6. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    DOEpatents

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  7. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant

    NASA Astrophysics Data System (ADS)

    Naya, Tomoki; Kohga, Makoto

    2015-04-01

    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  8. Vibron dynamics in RDX, β-HMX and Tetryl crystals

    NASA Astrophysics Data System (ADS)

    Ye, Shuji; Tonokura, Kenichi; Koshi, Mitsuo

    2003-08-01

    The Raman line widths of 16 vibron modes in RDX, β-HMX and Tetryl crystals have been measured at the temperature ranging from 3.6 to 300.0 K. The experimental line shapes were deconvoluted to extract inhomogeneous contribution to the line broadening due to probably crystal defects. The inhomogeneous line width is independent of temperature for most measured modes. The homogeneous line width is interpreted on the basis of elementary relaxation mechanisms. Three-phonon and dephasing processes are dominant relaxation processes for most of the vibrons of RDX, β-HMX and Tetryl. In particular, for Tetryl crystal, the vibrational relaxation is dominated by three-phonon down processes. For RDX and β-HMX crystals, vibrational relaxation is dominated by three-phonon down processes at lower temperature, three-phonon up or dephasing mechanisms generally contribute to the vibron dynamics while above 60 K. The lifetimes of some vibrons in the frequency range of 200-900 cm -1 in RDX, 200-1450 cm -1 in β-HMX and 200-1100 cm -1 in Tetryl crystal were calculated in term of the line widths at low temperature. The lifetimes of the measured vibrons fall in the range of 2.5-11 ps.

  9. The deflagration-to-detonation transition in granular HMX

    SciTech Connect

    McAfee, J.M.; Asay, B.; Campbell, A.W.; Ramsay, J.B.

    1991-01-01

    The transition from deflagration to detonation in porous beds of explosive and propellant has received considerable attention both experimentally and theoretically. In many cases, the use of a hot-gas-producing igniter complicates the interpretation and subsequent modeling of experiments because considerable effort is required to account for the effect of the igniter gases on the granular bed. Hot-wire ignition is less intrusive; however, the ignition front is not planar. Thus the early events in these experiments cannot be approximated as one-dimensional. We have studied the deflagration-to-detonation behavior of granular HMX confined in steel tubes with x-radiography, light emission, stress gauges, and various pin techniques. Simplification and consistency of results were obtained by igniting the HMX with a piston (initially at rest and in contact with the HMX) driven into the bed. A gasless igniter is used to stare the burning of the piston propellant (low-density HMX) providing the piston with a smooth initial motion. Analysis of the data gives a detailed picture of the DDT process under these conditions. The qualitative and quantitative experimental results show the transition from the burning to detonation is discontinuous. The results are discussed in terms of a descriptive model.

  10. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.

    1998-12-31

    Mechanical insults of granular high explosives (HE) can result in localized areas of elevated temperature, or hot spots. The evolution of these hot spots is a central issue of HE science. Because of the complexity involved, it is worthwhile to study mechanical and reaction processes in isolation. Mechanical processes are isolated and studied using inert materials or weak insults where reaction may be minimal. Likewise, purely thermal processes can be considered to isolate HE reaction response. In this work the authors study the radiant ignition of various HEs of interest, including HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}), PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), RDX (C{sub 3}H{sub 6}N{sub 6}O{sub 6}), TATB (C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502. Initial work has included unconfined samples at ambient pressure in air. Diagnostics have included photodiodes to record first light emission, high speed photography, microthermocouple and IR emission measurement to obtain surface temperature, IR emission of gases above the pellet, and a novel nonlinear optical technique to characterize the dynamic {beta}-{delta} solid phase transformation and the formation of a liquid layer. The authors find that ignition delays at various power levels is very similar for HMX and RDX; except that the minimum radiant flux needed for RDX ignition is higher. The addition of only 5% binder (PBX 9501) causes significantly longer ignition delays at lower heat fluxes compared with HMX alone. TATB and TATB-based explosives exhibit much longer ignition delays than HMX. In contrast to HMX, however, no measurable difference is observed in TATB by the addition of a binder (PBX 9502, aged or pristine).

  11. Theoretical study of β-HMX decomposition mechanism of the solid phase under shock loadings

    NASA Astrophysics Data System (ADS)

    Ji, Guangfu; Ge, Nina; Chen, Xiangrong

    2015-06-01

    Study material properties under extreme conditions is a fundamental problem in the field of condensed matter physics. The decomposition mechanisms of energetic materials under the shock wave become a hot topic in recent years. In this paper, molecular dynamics simulations combined with multi-scale shock technology (MSST) are used to study the decomposition mechanism, shock sensitivity and electronic structure of β-HMX. First, the decomposition mechanism of β-HMX perfect crystal were studied at different shock speeds. We found that when the shock wave at a speed 8 km / s is loaded, the decomposition reaction start at N-NO2 bond breakage; when the shock wave at a speed of 10 km / s and 11 km / s is loaded, the the first decomposition reaction is CH bond breaking, and accompanied by the formation of five-membered ring and transfer of hydrogen ions. The simulation results also show that when the shock wave velocity is increased, the higher the pressure generated in the high-pressure N-NO2 bond cleavage was inhibited significantly. Secondly, the impact of its initial chemical reaction process along different crystal axis directions were studied, the results showed that along the a-axis and c-axis shock sensitivity is higher, and along the b-axis sensitivity is lower. We believe that the system of all sensitivity of direction is due to the rotation of the friction between the slip plane of crystals and molecules. Finally, we discussed the solid phase β-HMX electronic properties change under the shock wave loadings. We found that in the 11 km/s under the impact load, when the pressure reaches 130 GPa, zero bandgap is reached.

  12. One dimensional time-to-explode (ODTX) in HMX spheres

    SciTech Connect

    Breshears, D.

    1997-06-02

    In a series of papers researchers at Lawrence Livermore National Laboratory (LLNL) have reported measurements of the time to explosion in spheres of various high explosives following a rapid, uniform increase in the surface temperature of the sphere. Due to the spherical symmetry, the time-dependent properties of the explosive (temperature, chemical composition, etc.) are functions of the radial spatial coordinate only; thus the name one-dimensional time-to-explosion (ODTX). The LLNL researchers also report an evolving series of computational modeling results for the ODTX experiments, culminating in those obtained using a sophisticated heat transfer code incorporating accurate descriptions of chemical reaction. Although the chemical reaction mechanism used to describe HMX decomposition is quite simple, the computational results agree very well with the experimental data. In addition to reproducing the magnitude and temperature dependence of the measured times to explosion, the computational results also agree with the results of post reaction visual inspection. The ODTX experiments offer a near-ideal example of a transport process (heat transfer in this case) tightly coupled with chemical reaction. The LLNL computational model clearly captures the important features of the ODTX experiments. An obvious question of interest is to what extent the model and/or its individual components (specifically the chemical reaction mechanism) are applicable to other experimental scenarios. Valid exploration of this question requires accurate understanding of (1) the experimental scenario addressed by the LLNL model and (2) details of the application of the model. The author reports here recent work addressing points (1) and (2).

  13. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  14. The evolution of microstructural changes in pressed HMX explosives

    SciTech Connect

    Skidmore, C.B.; Phillips, D.S.; Howe, P.M.; Mang, J.T.; Romero, J.A.

    1998-12-31

    Recently developed techniques for investigating the microstructure of plastic-bonded explosives have been applied to HMX explosives pressed to various levels of porosity. Microstructural changes in PBX 9501 area followed from the early stages of prill consolidation through typical density to very low porosity (0.6%). As porosity is reduced, the following sequence is observed. Large inter- and intra-prill voids are eliminated with first damage to HMX crystals occurring at prill boundaries. This is followed by increased incidence of crystal twinning and cracking. At the lowest porosities, spall pullout artifacts are observed, cracks associated with particle contact points are more obvious, and the results of intercrystalline indentation or intergrowth migration processes are apparent. A comparison is made, at lowest porosities achieved, with PX 9404 and X-0242 (a formulation like PBX 9501 with higher binder volume). Possible implications on porosity trends in shock sensitivity data are discussed.

  15. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Effect of HMX on the combustion response function

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Cohen, N. S.

    1980-01-01

    Over a pressure range of 3.5-7 MPa and a frequency range of 500-2000 Hz and compared to propellants having equivalent energy and burn rate, HMX produces less pressure-coupled acoustic driving than AP and is equivalent to NC/TMETN. Formation of carbonaceous combustion products indicates that binder decomposition does not follow equilibrium thermochemistry, and that this is aggravated by fuel richness or the absence of AP.

  17. Pressing Induced Polymorphic Phase Transition in Submicron-Sized Gamma-Hmx

    NASA Astrophysics Data System (ADS)

    Lee, K.-Y.; Moore, D. S.

    2007-12-01

    Using Raman spectroscopy, a novel submicron-sized HMX (sm-HMX) was determined to be both the gamma polymorph and stable with respect to conversion to beta-HMX under ambient conditions for at least a year. Pressing of sm-HMX powder in a small diameter pellet press at pressures from 10,000 psi to 31,000 psi and 1 to 5 minute hold times was found to promote the gamma to beta polymorphic phase transition. The fraction converted and rate of conversion versus time after pellet removal from the press, measured using Raman spectroscopy, fit a sigmoidal curve, indicating nucleation and growth as a possible polymorphic transition mechanism.

  18. Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants.

    PubMed

    Panz, Katarzyna; Miksch, Korneliusz

    2012-12-30

    The large-scale production and processing of munitions has led to vast environmental pollution by the compounds TNT(2,4,6-trinitrotoluene), RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). Explosives contain these toxic and mutagenic xenobiotics, which are stable in the environment and recalcitrant to remediation. Certain technologies used thus far (incineration, adsorption, advanced oxidations processes, chemical reduction etc.) have not only been very expensive but also caused additional environmental problems. During recent decades, the most popular technologies have been biotechnological methods, such as phytoremediation, which is relatively cheap, environmentally friendly, and a highly accepted solution by society. The most promising of these technologies is the usage of genetically modified plants, which combines the ability of bacterial genes to detoxify compounds with the phytoremediation benefits of plants. This paper is a review related to the latest and most important achievements in the field of phytoremediation of water and soil contaminated with TNT, RDX and HMX. PMID:22996005

  19. Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems

    SciTech Connect

    Perry, William L; Gunderson, Jake A; Dickson, Peter M

    2010-01-01

    There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problem of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the

  20. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion.

    PubMed

    Quina, Lely A; Tempest, Lynne; Hsu, Yun-Wei A; Cox, Timothy C; Turner, Eric E

    2012-05-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  1. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential.

    PubMed

    Feng, Rui-Zhi; Zhang, Shu-Hai; Ren, Fu-de; Gou, Rui-Jun; Gao, Li

    2016-06-01

    Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, β-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, β-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with β-conformation (β-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b (*) and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/β-HMX/DMF). The values of E b (*) and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/β-HMX, and those of CL-20/β-HMX are the smallest. For CL-20/FOX-7 and CL-20/β-HMX, the largest E b (*) appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or β-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/β-HMX, and ε-CL-20 and β-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/β-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation. Graphical Abstract MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, β-CL-20 cocrystals with FOX-7, β-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals. PMID:27168198

  2. The Application of Global Kinetic Models to HMX Beta-Delta Transition and Cookoff Processes

    SciTech Connect

    Wemhoff, A P; Burnham, A K; Nichols III, A L

    2006-12-07

    The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.

  3. LDRD final report : raman spectroscopic measurements to monitor the HMX beta-delta phase transition.

    SciTech Connect

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    2000-11-01

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell was heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.

  4. Decomposition Kinetics for Mass Loss and Heat Released for HMX

    SciTech Connect

    Weese, R K; Burnham, A K

    2004-07-27

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  5. Pressing induced polymorphic phase transition in submicron-sized gamma-HMX

    NASA Astrophysics Data System (ADS)

    Moore, David; Lee, Kien-Yin

    2007-06-01

    Submicron HMX has been produced and characterized to be less sensitive than impact standard HMX in small-scale sensitivity tests. The sm-HMX was found to be the gamma polymorph and to be stable under ambient conditions for at least a year. Pressing of sm-HMX in a small diameter pellet press at pressures from 10 000 psi to 31 000 psi and 1 to 5 minute hold times was found to promote the gamma to beta polymorphic phase transition. The fraction converted and rate of conversion versus time after pellet removal from the press were found to fit a sigmoidal curve, indicating nucleation and growth as a possible polymorphic transition mechanism.

  6. Equation of state of unreacted high explosives at high pressures

    SciTech Connect

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  7. Raman Spectroscopic and Ultrasonic Measurements to Monitor the HMX ( ) Phase Transition

    SciTech Connect

    GIESKE,JOHN H.; MILLER,JILL C.; RENLUND,ANITA M.; TAPPAN,ALEXANDER S.

    1999-10-14

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is clearly linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to a predictive safety model for HMX and HMX-containing EMs. We report work in progress on monitoring the phase transition with real-time Raman spectroscopy and ultrasonic measurements aimed towards a better understanding of physical properties through the phase transition. HMX samples were confined with minimal free volume.in a cell with constant volume. The cell was heated at a controlled rate and real-time Raman spectroscopic or ultrasonic measurements were performed. Raman spectroscopy provides a clear distinction between the two phases because the vibrational transitions of the molecule change with confirmational changes associated with the phase transition. Ultrasonic time-of-flight measurements provide an additional method of distinguishing the two phases because the sound speed through the material changes with the phase transition. Ultrasonic attenuation measurements also provide information about microstructural changes such as increased porosity due to evolution of gaseous decomposition products.

  8. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.

    PubMed

    Payne, Zachary M; Lamichhane, Krishna M; Babcock, Roger W; Turnbull, Stephen J

    2013-10-01

    A nine-month in situ bioremediation study was conducted in Makua Military Reservation (MMR) in Oahu, Hawaii (USA) to evaluate the potential of molasses to enhance biodegradation of royal demolition explosive (RDX) and high-melting explosive (HMX) contaminated soil below the root zone. MMR has been in operation since the 1940's resulting in subsurface contamination that in some locations exceeds USEPA preliminary remediation goals for these chemicals. A molasses-water mixture (1 : 40 dilution) was applied to a treatment plot and clean water was applied to a control plot via seven flood irrigation events. Pore water samples were collected from 12 lysimeters installed at different depths in 3 boreholes in each test plot. The difference in mean concentrations of RDX in pore water samples from the two test plots was very highly significant (p < 0.001). The concentrations differences with depth were also very highly significant (p < 0.001) and degradation was greatly enhanced at depths from 5 to 13.5 ft. biodegradation was modeled as first order and the rate constant was 0.063 per day at 5 ft and decreased to 0.023 per day at 11 ft to 13.5 ft depth. Enhanced biodegradation of HMX was also observed in molasses treated plot samples but only at a depth of 5 ft. The difference in mean TOC concentration (surrogate for molasses) was highly significant with depth (p = 0.003) and very highly significant with treatment (p < 0.001). Mean total nitrogen concentrations also differed significantly with treatment (p < 0.001) and depth (p = 0.059). The molasses water mixture had a similar infiltration rate to that of plain water (average 4.12 ft per day) and reached the deepest sensor (31 ft) within 5 days of application. Most of the molasses was consumed by soil microorganisms by about 13.5 feet below ground surface and treatment of deeper depths may require greater molasses concentrations and/or more frequent flood irrigation. Use of the bioremediation method described herein

  9. Recent developments in formulating model descriptors for subsurface transformation and sorption of TNT, RDX, and HMX. Final report

    SciTech Connect

    Townsend, D.M.; Myers, T.E.

    1996-02-01

    Subsurface contamination with 2,4,6-trinitrotoluene (TNT), 2,3,5-trinitro-1,3,5-triazine (RDX), and oxyhydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) is a problem at military installations where these explosives were manufactured or used in loading munitions. Recent laboratory batch and column studies conducted to identify processes affecting subsurface transport of TNT, RDX, and HMX provide new information on the relative significance of transformation and sorption for these explosives and yield estimates of key process descriptors. This report assesses the current state of knowledge regarding subsurface transformation and sorption of TNT, RDX, and HMX, provides estimates for subsurface transport descriptors, and recommends further research. Transformation and sorption are important processes in the subsurface transport of TNT, RDX, and HMX. Measurement of transformation products has provided unequivocal evidence of TNT transformation. Research has also indicated that RDX and HMX are affected by subsurface transformations, but RDX and HMX transformation products have not been measured due to lack of chemical analytical capability. The order to magnitude of transformation is TNT >> RDX approx equal to HMX, and the order of magnitude of sorption in TNT > HMX > RDX.

  10. Surface Polarity Of Beta-hmx Crystal And The Related Adhesive Forces With Estane Binder

    SciTech Connect

    Yang, Lu; Hanson, David E

    2008-01-01

    Here we present the results on the study of surface properties of {beta}-HMX crystal utilizing molecular simulations. The surface polarity of three principal crystal surfaces are investigated by measuring the water contact angles. The calculated contact angles agree excellently with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain with and without nitroplasticizer from the three principal crystal surfaces were calculated using umbrella sampling technique. We find that the detaching free energy/force increases with the increasing HMX surface polarity. In addition, our results also show that nitroplasticizer plays an important role in the adhesion forces between Estane and HMX surfaces.

  11. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  12. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  13. Critical analysis of nitramine decomposition data: Activation energies and frequency factors for HMX and RDX decomposition

    NASA Technical Reports Server (NTRS)

    Schroeder, M. A.

    1980-01-01

    A summary of a literature review on thermal decomposition of HMX and RDX is presented. The decomposition apparently fits first order kinetics. Recommended values for Arrhenius parameters for HMX and RDX decomposition in the gaseous and liquid phases and for decomposition of RDX in solution in TNT are given. The apparent importance of autocatalysis is pointed out, as are some possible complications that may be encountered in interpreting extending or extrapolating kinetic data for these compounds from measurements carried out below their melting points to the higher temperatures and pressure characteristic of combustion.

  14. Role of soil organic carbon and colloids in fate of TNT, RDX and HMX in training range soils.

    SciTech Connect

    Sharma, Prasesh; Mayes, Melanie; Tang, Guoping

    2013-01-01

    Contamination of soils/groundwater by munition compounds (TNT, RDX, HMX) is of significant concern at many U.S. Department of Defense sites. We collected soils from operational ranges in Maryland (APG), Massachusetts (MMR-B and MMR-E) and Washington (JBLM) and conducted sorption/transport studies to investigate effects of soil organic carbon (OC) and clay content on fate of dissolved munition compounds (MCs). Sorption experiments showed higher sorption coefficients [TNT:42-68 kg/L, RDX:6.9-8.7 Kg/L and HMX:2.6-3.1 Kg/L] in OC rich soils (JBLM, MMR-E) compared to clay rich soils MMR-B and APG [TNT:19-21 Kg/L, RDX:2.5-3.4 Kg/L, HMX:0.9-1.2 Kg/L]. In column experiments, breakthrough of MCs was mostly quicker in MMR-B and APG soil filled columns compared to MMR-E and JBLM. Between TNT, RDX and HMX, breakthrough was fastest for RDX followed by HMX and TNT for all soil columns. Separation of effluents into dissolved (<3 kDa) vs unfiltered (total) fractions in effluents showed 30-50% of TNT in the fraction >3kDa (colloidal fraction). HMX and RDX were completely associated with dissolved fraction. Results demonstrate that OC rich soils may enhance sorption and delay transport of TNT, RDX and HMX. Furthermore, colloids could contribute to transport of dissolved TNT to a significant amount.

  15. Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    Integrated Risk Information System (IRIS)

    Octahydro - 1,3,5,7 - tetranitro - 1,3,5,7 - tetr . . . ( HMX ) ; CASRN 2691 - 41 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I

  16. Nonideal detonation and initiation behavior of a composite solid rocket propellant. [HMX/AP/Al

    SciTech Connect

    Dick, J.J.

    1981-01-01

    Shock initiation and detonation behavior of an HMX/AP/Al rocket propellant were studied for nonideal character. Low detonation velocities and unusual shock initiation behavior were observed. Failure to propagate steady detonation in cylinders of the propellant was also noted.

  17. 4-Aminothiophenol functionalized gold nanoparticle-based colorimetric sensor for the determination of nitramine energetic materials.

    PubMed

    Üzer, Ayşem; Can, Ziya; Akın, Ilknur; Erçağ, Erol; Apak, Reşat

    2014-01-01

    The heterocyclic nitramine compounds, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are two most important military-purpose high explosives. Differentiation of RDX and HMX with colorimetric methods of determination has not yet been made because of their similar chemical structures. In this study, a sensitive colorimetric method for the determination of RDX and HMX was proposed on the basis of differential kinetics in the hydrolysis of the two compounds (yielding nitrite as a product) followed by their colorimetric determination using 4-aminothiophenol (4-ATP) modified gold nanoparticles (AuNPs) and naphthylethylene diamine (NED) as coupling agent for azo-dye formation, abbreviated as "4-ATP-AuNP+NED" colorimetric method. After alkaline hydrolysis in a 1 M Na2CO3 + 0.04 M NaOH mixture solution at room temperature, only RDX (but not HMX) was hydrolyzed to give a sufficient colorimetric response in neutralized solution, the molar absorptivity (ε) at 565 nm and the limit of detection (LOD) for RDX being (17.6 ± 1.3) × 10(3) L mol(-1) cm(-1) and 0.55 μg mL(-1), respectively. On the other hand, hot water bath (at 60 °C) hydrolysis enabled both nitramines, RDX and HMX, to give substantial colorimetric responses; i.e., ε and LOD for RDX were (32.8 ± 0.5) × 10(3) L mol(-1)cm(-1) and 0.20 μg mL(-1) and for HMX were (37.1 ± 2.8) × 10(3) L mol(-1)cm(-1) and 0.24 μg mL(-1), respectively. Unlike other AuNP-based nitrite sensors in the literature showing absorbance quenching within a relatively narrow concentration range, the developed sensor operated with an absorbance increase over a wide range of nitrite. Synthetic mixtures of (RDX + HMX) gave additive responses, and the proposed method was statistically validated against HPLC using nitramine mixtures. PMID:24299426

  18. Stand-off detection of HMX traces by active spectral imaging with a tunable CO{sub 2} laser

    SciTech Connect

    Pavlenko, A A; Maksimenko, E V; Chernyshova, L V

    2014-04-28

    Experimental results on stand-off detection of HMX traces at various surfaces using the method of active spectral imaging in the IR region are reported. (laser applications and other topics in quantum electronics)

  19. Isentropic Compression Loading of HMX and the Pressure-induced Phase Transition at 27 GPa

    SciTech Connect

    Hare, D E; Reisman, D B; Dick, J J; Forbes, J W

    2004-02-25

    The 27 GPa pressure-induced epsilon-phi phase transition in HMX is explored using the Isentropic Compression Experiment (ICE) technique at the Sandia National Laboratories Z-machine facility. Our data indicate that this phase transition is sluggish and if it does occur to any extent under the time scales (200-500 ns) and strain rates (5 x 10{sup 5}) typical of ICE loading conditions, the amount of conversion is small.

  20. Compaction of granular HMX: P-α porosity model in CTH hydrocode

    NASA Astrophysics Data System (ADS)

    Mahon, K. S.; Lee, T.-W.

    2015-12-01

    Compaction waves traveling through porous cyclotetramethylene-tetranitramine (HMX) are computationally modeled using the Eulerian hydrocode CTH and validated with gas gun experimental data. The method employed use of a newly generated set of P-α parameters for granular HMX in a Mie-Gruneisen equation of state. The P-α model adds a separate parameter to differentiate between the volume changes of a solid material due to compression from the volume change due to compaction, void collapse in a granular material. Computational results are compared via five validation schema for two different initial-porosity experiments. These schema include stress measurements, velocity rise times and arrival times, elastic sound speeds though the material and final compaction densities for a series of two different percent Theoretical Maximum Density (TMD) HMX sets of experimental data. There is a good agreement between the simulations and the experimental gas gun data with the largest source of error being an 11% overestimate of the peak stress which may be due to impedance mismatch on the experimental gauge interface. Determination of these P-α parameters are important as they enable modeling of porosity and are a vital first step in modeling of precursory hotspots, caused by hydrodynamic collapse of void regions or grain interactions, prior to deflagration to detonation transition of granular explosives.

  1. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal

    SciTech Connect

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; Fried, Laurence E.

    2015-05-14

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shear bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.

  2. Coefficient of Thermal Expansion of the Beta and Delta Polymorphs of HMX

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-01-11

    Dimensional changes related to temperature cycling of the {beta} and {delta} polymorphs of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are important for a variety of applications. The coefficient of thermal expansion (CTE) of the {beta} and {delta} phases are measured over a temperature range of -20 C to 215 C by thermo-mechanical analysis (TMA). Dimensional changes associated with the phase transition were also measured, and the time-temperature dependence of the dimensional change is consistent with phase transition kinetics measured earlier by differential scanning calorimetry (DSC). One HMX sample measured by TMA during its initial heating and again three days later during a second heating showed the {beta}-to-{delta} phase transition a second time, thereby indicating back conversion from {delta}-to-{beta} phase HMX during those three days. DSC was used to measure kinetics of the {delta}-to-{beta} back conversion. The most successful approach was to first heat the material to create the {delta} phase, then after a given period at room temperature, measure the heat absorbed during a second pass through the {beta}-to-{delta} phase transition. Back conversion at room temperature follows nucleation-growth kinetics.

  3. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal

    DOE PAGESBeta

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; Fried, Laurence E.

    2015-05-14

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less

  4. Carbon and nitrogen isotope ratios of factory-produced RDX and HMX.

    PubMed

    Howa, John D; Lott, Michael J; Chesson, Lesley A; Ehleringer, James R

    2014-07-01

    RDX and HMX are explosive compounds commonly used by the military and also occasionally associated with acts of terrorism. The isotopic characterization of an explosive can be a powerful approach to link evidence to an event or an explosives cache. We sampled explosive products and their reactants from commercial RDX manufacturers that used the direct nitration and/or the Bachmann synthesis process, and then analyzed these materials for carbon and nitrogen isotope ratios. For manufacturers using the Bachmann process, RDX (13)C enrichment relative to the hexamine substrate was small (+0.9‰) compared to RDX produced using the direct nitration process (+8.2‰ to +12.0‰). RDX (15)N depletion relative to the nitrogen-containing substrates (-3.6‰) was smaller in the Bachmann process than in the direct nitration process (-12.6‰ to -10.6‰). The sign and scale of these differences agree with theorized mechanisms of mass-dependent fractionation. We also examined the isotopic relationship between RDX and HMX isolated from explosive samples. The δ(13)C and δ(15)N values of RDX generally matched those of the HMX with few exceptions, most notably from a manufacturer known to make RDX using two different synthesis processes. The range in δ(13)C values of RDX in a survey of 100 samples from 12 manufacturers spanned 33‰ while the range spanned by δ(15)N values was 26‰; these ranges were much greater than any previously published observations. Understanding the relationship between products and reactants further explains the observed variation in industrially manufactured RDX and can be used as a diagnostic tool to analyze explosives found at a crime scene. PMID:24814332

  5. Deflagration-to-detonation in granular HMX: Ignition, kinetics, and shock formation

    SciTech Connect

    McAfee, J.M.; Asay, B.W.; Bdzil, J.B.

    1993-06-01

    Experimental studies and analysis of the deflagration-to detonation transition (DDT) in granular HMX are continued. Experiments performed using a direct-gasless igniter exhibit the same phenomenology as those ignited with a piston. Simple kinetics and mechanics describe the formation of the {approximately}100% TMD plug in terms of competing pressurization processes. A mass-conservation analysis of the experimentally observed structures shows how the low velocities characteristic of convective burning are amplified to shock-wave velocities through non-convective processes.

  6. HMX and HNS Shock Sensitivity Correlation with Specific Heat and Reactive Temperature Magnitudes

    NASA Astrophysics Data System (ADS)

    Billingsley, J. P.

    1999-06-01

    A paper in the 1995 SCCM Conference Proceedings(pages 429-432) documents that shock sensitivity of five explosives(TETRYL, PETN,TNT, RDX, and TATB) could be correlated with their specific heats and reactive temperature magnitudes. In fact, it was demonstrated that the shock sensitivity of these explosives was basically related to their reactive temperatures such as T(melt), T(phase change), and T(explode). Two additional explosives(HMX and HNS) have also been investigated and similar results are documented in this article. Thus, this concept has been affirmatively demonstrated via comparisons with experimental results for seven important explosive chemical compounds.

  7. Monte Carlo calculations of the physical properties of RDX, {beta}-HMX, and TATB

    SciTech Connect

    Sewell, T.D.

    1998-07-01

    Atomistic Monte Carlo simulations in the {ital NpT} ensemble are used to calculate the physical properties of crystalline RDX, {beta}-HMX, and TATB. Among the issues being considered are the effects of various treatments of the intermolecular potential, inclusion of intramolecular flexibility, and simulation size dependence of the results. Calculations of the density, lattice energy, and lattice parameters are made over a wide domain of pressures; thereby allowing for predictions of the bulk and linear coefficients of isothermal expansion of the crystals. Comparison with experiment is made where possible. {copyright} {ital 1998 American Institute of Physics.}

  8. Time-resolved spectroscopic studies of detonating heterogeneous explosives. [HMX and HNS

    SciTech Connect

    Trott, W.M.; Renlund, A.M.

    1985-01-01

    Emission spectroscopy and pulsed-laser-excited Raman scattering methods have been applied to the study of detonating heterogeneous explosives, including PETN, HMX and HNS. Time-resolved spectra of emission from detonating HNS show the evolution of features due to electronically-excited radical species. For HNS, the CN(B-X) system near 388 nm has been studied at a wavelength resolution of 0.5 A. Boltzmann vibrational temperatures have been calculated by comparing the experimental data with computer-simulated spectra. These temperatures are consistent with the expected trend of detonation temperature as a function of charge density. Using 532-nm laser excitation, single-pulse Raman scattering measurements have been made at the free surface of detonating HMX and PETN samples. Monotonic attenuation of Raman scattering intensity over a 100-ns interval is observed after detonation front arrival at the free surface. Depletion of the Raman signal occurs prior to significant loss of the scattered laser light. The significance of the Raman measurements as a possible probe of reaction zone length in detonating explosives is discussed. 21 refs., 11 figs.

  9. Analysis of Compaction Shock Interactions During DDT of Low Density HMX

    NASA Astrophysics Data System (ADS)

    Rao, Pratap; Gonthier, Keith

    2015-06-01

    Deflagration-to-Detonation Transition (DDT) within low density HMX often occurs by a complex mechanism that involves compaction shock interactions. Piston driven DDT experiments indicate that detonation can be abruptly triggered by the interaction of a strong combustion driven shock and a lead piston supported shock, where the nature of the interaction depends on initial density and lead shock strength. These shocks induce dissipation and thermomechanical fluctuations at the meso-scale due to pore collapse resulting in hot-spots. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by initial density, and lead and trailing shock strength. Emphasis is placed on interpreting solutions in a phase space expressed in terms of effective pressure and dissipative work because of their relevance to hot-spot formation. Meso-scale predictions are shown to compare favorably to those given by a macro-scale theory. This information is being used to formulate a dissipation-dependent reactive burn model to describe shock desensitization and DDT. Preliminary redictions will be presented that illustrate how initial density and input shock strength can affect the transition mechanism. This research is supported by the Defense Threat Reduction Agency (DTRA) under sponsor Award Number HDTRA1-10-1-0018, and the Air Force Research Laboratory (AFRL-RWME) under sponsor Award Number FA8651-09-0021.

  10. Predicting Elastic Properties of β-HMX from First-principles Calculations

    NASA Astrophysics Data System (ADS)

    Peng, Qing; Rahul, -; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; de, Suvranu

    2015-03-01

    We investigate the performance of the van der Waals (vdW) functions in predicting the elastic constants of the β-polymorph of cyclotetramethylene tetranitramine (HMX) energetic molecular crystal using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX, with compared to the experimental stress-strain data. The PBEsol without vdW corrections can also predict the elastic constants well. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025, and the Office of Naval Research grants ONR Award # N00014-08-1-0462 and # N00014-12-1-0527.

  11. Shock initiation studies of low density HMX using electromagnetic particle velocity and PVDF stress gauges

    SciTech Connect

    Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R.; Graham, R.A.; Anderson, M.U.

    1993-09-01

    Magnetic particle velocity and PVDF stress rate gauges have been used to measure the shock response of low density octotetramethylene tetranitramine (HMX) (1.24 &/cm{sup 3}). In experiments done at LANL, magnetic particle velocity gauges were located on both sides of the explosive. In nearly identical experiments done at SNL, PVDF stress rate gauges were located at the same positions so both particle velocity and stress histories were obtained for a particular experimental condition. Unreacted Hugoniot data were obtained and an EOS was developed by combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model. Using this technique, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. Loading and reaction paths were established in the stress-particle velocity plane for some experimental conditions. This information was used to determine a global reaction rate of {approx} 0.13 {mu}s{sup {minus}1} for porous HMX shocked to 0.8 GPa. At low input stresses the transmitted wave profiles had long rise times (up to 1 {mu}s) due to the compaction processes.

  12. A distal 594 bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex.

    PubMed

    Rosin, Jessica M; Li, Wenjie; Cox, Liza L; Rolfe, Sara M; Latorre, Victor; Akiyama, Jennifer A; Visel, Axel; Kuramoto, Takashi; Bobola, Nicoletta; Turner, Eric E; Cox, Timothy C

    2016-07-15

    Hmx1 encodes a homeodomain transcription factor expressed in the developing lateral craniofacial mesenchyme, retina and sensory ganglia. Mutation or mis-regulation of Hmx1 underlies malformations of the eye and external ear in multiple species. Deletion or insertional duplication of an evolutionarily conserved region (ECR) downstream of Hmx1 has recently been described in rat and cow, respectively. Here, we demonstrate that the impact of Hmx1 loss is greater than previously appreciated, with a variety of lateral cranioskeletal defects, auriculofacial nerve deficits, and duplication of the caudal region of the external ear. Using a transgenic approach, we demonstrate that a 594 bp sequence encompassing the ECR recapitulates specific aspects of the endogenous Hmx1 lateral facial expression pattern. Moreover, we show that Hoxa2, Meis and Pbx proteins act cooperatively on the ECR, via a core 32 bp sequence, to regulate Hmx1 expression. These studies highlight the conserved role for Hmx1 in BA2-derived tissues and provide an entry point for improved understanding of the causes of the frequent lateral facial birth defects in humans. PMID:27287804

  13. Anaerobic transformation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by ovine rumen microorganisms.

    PubMed

    Perumbakkam, Sudeep; Craig, A M

    2012-01-01

    Explosives such as octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) provide a challenge in terms of bioremediation. In the present study, sheep rumen was studied for its potential to detoxify HMX using analytical chemistry and molecular microbial ecology tools. Results indicated significant loss (p < 0.05) of HMX at 8 h post-incubation and complete disappearance of the parent molecule after 16 h. Qualitative LC-MS/MS analysis provided evidence for the formation of 1-NO-HMX and MEDINA metabolites. A total of 1006 16S rRNA-V3 clones were sequenced and the Classifier tool of the RDPII database was used to sort the sequences at their phylum level. Most sequences were associated with either the phylum Bacteroidetes or Firmicutes. Significant differences at the phylum level (p < 0.001) were found between 0 h and 8 h HMX treatments. Using LibCompare analysis, 8 h HMX treatment showed enrichment of clones (p < 0.01) belonging to the genus Prevotella. From these results, it could be concluded that members of the genus Prevotella are enriched in the rumen and are capable of detoxifying HMX. PMID:22903090

  14. A comparative study of chemical kinetics models for HMX in mesoscale simulations of shock initiation due to void collapse

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal; Schweigert, Igor; Udaykumar, H. S.

    2015-06-01

    The development of chemical kinetics schemes for use in modeling the reactive mechanics of energetic materials such as HMX has been an active area of research. Decomposition, deflagration and detonation models need to predict time to ignition and locations of onset of chemical reaction in energetic materials when used in meso- and macro-scale simulations. Modeling the chemical processes and development of appropriate kinetic law is challenging work because of lack of experimental data. However, significant work has been done in this area. Multistep kinetic models by Tarver and Tran, Henson and Smilowitz have provided plausible chemical kinetic rate laws for HMX. These models vary in the way they model the details of the decomposition process. Hence, a comparative study of different models will provide an understanding of the uncertainties involved in predicting ignition in HMX. In the current work, hot-spot ignition due to void collapse in shock compressed HMX has been analyzed using several reaction rate models, including the Tarver-Tran 4-equation model, the Henson-Smilowitz 7-equation model, and a new rate model that combines the condensed-phase decomposition rates measured by Brill et al and the detailed mechanism of nitramine flame chemistry due to Yetter et al. The chemical models have been incorporated in a massively parallel Eulerian code SCIMITAR3D. The variations in the predicted thresholds due to differences in the rate models will be discussed.

  15. A Non-Coding Genomic Duplication at the HMX1 Locus Is Associated with Crop Ears in Highland Cattle

    PubMed Central

    Koch, Caroline Tina; Bruggmann, Rémy; Tetens, Jens; Drögemüller, Cord

    2013-01-01

    Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait. PMID:24194898

  16. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives. PMID:27307079

  17. Vibrational and Thermal Properties of β-HMX and TATB from Dispersion Corrected Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Landerville, Aaron; Oleynik, Ivan

    2015-06-01

    Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of optimized unit cells along the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in PVT equations of state for each material that is in excellent agreement with experiment. Further, heat capacities, thermal expansion coefficients, and Gruneissen parameters as functions of temperature are calculated and compared with experiment. The vibrational properties, including phonon densities of states and pressure dependencies of individual modes, are also analyzed and compared with experiment.

  18. Modeling energy dissipation induced by quasi-static compaction of granular HMX

    SciTech Connect

    Gonthier, K.A.; Menikoff, R.; Son, S.F.; Asay, B.W.

    1998-07-01

    A simple extension of a conventional two-phase continuum model of Deflagration-to-Detonation Transition (DDT) in energetic granular material is given to account for energy dissipation induced by quasi-static compaction. To this end, the conventional model equations are supplemented by a relaxation equation that accounts for irreversible changes in solid volume fraction due to intergranular friction, plastic deformation of granules, and granule fracture. The proposed model, which is consistent with the Second Law of Thermodynamics for a two-phase mixture, is demonstrated by applying it to the quasi-static compaction of granular HMX. The model predicts results commensurate with experimental data including stress relaxation and substantial dissipation; such phenomena have not been previously accounted for by two-phase DDT models. {copyright} {ital 1998 American Institute of Physics.}

  19. Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20

    PubMed Central

    Jiang, Yuan; Shi, Herong; Amin, Nirav M.; Sultan, Ibrahim; Liu, Jun

    2008-01-01

    Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of developmental genes and identify corresponding trans-regulatory factors. Here, we focus on the regulation of a HMX homoebox gene called mls-2, which functions at the intersection of a network that regulates cleavage orientation, cell proliferation and fate specification in the C. elegans postembryonic mesoderm. In addition to its transient expression in the postembryonic mesodermal lineage, the M lineage, mls-2 expression is detected in a subset of embryonic cells, in three pairs of head neurons and transiently in the somatic gonad. Through mutational analysis of the mls-2 promoter, we identified two elements (E1 and E2) involved in regulating the temporal-spatial expression of mls-2. In particular, we showed that one of the elements (E1) required for mls-2 expression in the M lineage contains two critical putative PBC-Hox binding sites that are evolutionarily conserved in C. briggsae and C. remanei. Furthermore, the C. elegans PBC homolog CEH-20 is required for mls-2 expression in the M lineage. Our data suggests that mls-2 might be a direct target of CEH-20 in the M lineage and that the regulation of CEH-20 on mls-2 is likely Hox-independent. PMID:18316179

  20. Modeling the material strength and equations of state of beta-HMX from both first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Peng, Qing; Wang, Guangyu; Liu, G. R.; de, Suvranu

    2015-06-01

    We investigate the elastic constants and equations of state (EOS) of the β-polymorph of cyclotetramethylene tetranitramine (HMX) energetic molecular crystal using density functional theory (DFT) calculations. The combination of vdW-DF2 van der Waals functionals and PBE exchange-correlation functionals gives optimized results. The DFT results are used to optimize the Reactive Force Field (ReaxFF). The material strength and EOS of beta-HMX at finite temperatures are then predicted from ReaxFF molecular dynamics simulations. Our results suggest that the optimized ReaxFF predicts the mechanics and EOS of beta-HMX well. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  1. FPGA Based High Performance Computing

    SciTech Connect

    Bennett, Dave; Mason, Jeff; Sundararajan, Prasanna; Dellinger, Erik; Putnam, Andrew; Storaasli, Olaf O

    2008-01-01

    Current high performance computing (HPC) applications are found in many consumer, industrial and research fields. From web searches to auto crash simulations to weather predictions, these applications require large amounts of power by the compute farms and supercomputers required to run them. The demand for more and faster computation continues to increase along with an even sharper increase in the cost of the power required to operate and cool these installations. The ability of standard processor based systems to address these needs has declined in both speed of computation and in power consumption over the past few years. This paper presents a new method of computation based upon programmable logic as represented by Field Programmable Gate Arrays (FPGAs) that addresses these needs in a manner requiring only minimal changes to the current software design environment.

  2. Thermal decomposition of HMX: Low temperature reaction kinetics and their use for assessing response in abnormal thermal environments and implications for long-term aging

    SciTech Connect

    Behrens, R.; Bulusu, S.

    1995-12-01

    The thermal decomposition of HMX between 175 and 200{degree}C has been studied using the simultaneous thermogravimetric modulated beam mass spectrometer (STMBMS) apparatus with a focus on the initial stages of the decomposition. The identity of thermal decomposition products is the same as that measured in previous higher temperature experiments. The initial stages of the decomposition are characterized by an induction period followed by two acceleratory periods. The Arrhenius parameters for the induction and two acceleratory periods are (Log(A) = 18.2 {plus_minus} 0.8, Ea = 48.2 {plus_minus} 1.8 kcal/mole), (Log(A) = 17.15 {plus_minus} 1.5 and Ea = 48.9 {plus_minus} 3.2 kcal/mole), (Log A) = 19.1 {plus_minus} 3.0 and Ea = 52.1 {plus_minus} 6.3 kcal/mole), respectively. This data can be used to calculate the time and temperature required to decompose a desired fraction of a sample that is being prepared to test the effect of thermal degradation on its sensitivity or burn rates. It can also be used to estimate the extent of decomposition that may be expected under normal storage conditions for munitions containing HMX. This data, along with previous mechanistic studies conducted at higher temperatures, suggest that the process that controls the early stages of decomposition of HMX in the solid phase is scission of the N-NO{sub 2} bond, reaction of the N0{sub 2} within a ``lattice cage`` to form the mononitroso analogue of HMX and decomposition of the mononitroso HMX within the HMX lattice to form gaseous products that are retained in bubbles or diffuse into the surrounding lattice.

  3. Pressure Wave Measurements from Thermal Cook-off of an HMX Based Explosive

    SciTech Connect

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2001-05-09

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  4. Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance.

    PubMed

    Zhang, Jiaheng; Dharavath, Srinivas; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-06-22

    Molecular modification of known explosives is considered to be an efficient route to design new energetic materials. A new family of energetic salts based on the 3,5-bis(dinitromethyl)-1,2,4-triazole monoanion and dianion were controllably synthesized by using 1-diamino-2,2-dinitroethene as a precursor. X-ray structure determination of monohydrazinium 3,5-bis(dinitromethyl)-1,2,4-triazolate (5) and monoammonium (6) and diammonium 3,5-bis(dinitromethyl)-1,2,4-triazolate hydrate (8·H2O) further confirmed the structures of these anions. In addition, as supported by X-ray data, in the monoanion system, the roving proton on the ring nitrogen rather than on the gem-dinitro carbon results in extensive hydrogen-bonding interactions and higher packing coefficients. Interestingly, 5 and 6 possess the highest calculated crystal densities, 1.965 and 1.957 g cm(-3) at 150 K, for hydrazinium and ammonium energetic salts, respectively. Energetic evaluation indicates that 5 (detonation velocity vD = 9086 m s(-1); detonation pressure P = 38.7 GPa) and 6 (vD, 9271 m s(-1); P = 41.0 GPa) exhibit great detonation properties, superior to those of current highly explosive benchmarks, such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). PMID:27267735

  5. Comparison of the thermal decompositions of HMX and 2,4-DNI for evaluation of slow cookoff response and long-term stability

    SciTech Connect

    Minier, L.; Behrens, R.; Bulusu, S.

    1995-12-01

    Thermal decomposition of HMX between 175C and 200C was studied using the simultaneous thermogravimetric modulated beam mass spectrometer with focus on initial stages of the decomposition. Thermal decomposition products are the same as in previous higher temperature experiments. The initial stages of the decomposition have an induction period followed by two acceleratory periods. Arrhenius parameters for the induction and two acceleratory periods are (Log(A)= 18.2 {plus_minus} 0.8, Ea = 48.2 {plus_minus} 1.8 kcal/mole), (Log (A) = 17.15 {plus_minus} 1.5 and Ea = 48.9 {plus_minus} 3.2 kcal/mole), (Log (A) = 19.1 {plus_minus} 3.0 and Ea = 52.1 {plus_minus} 6.3 kcal/mole). This data can be used to calculate the time and temperature required to decompose a desired fraction of a test sample testing the effect of thermal degradation on sensitivity or bum rates. It can also be used to estimate the extent of decomposition expected under normal storage conditions for munitions containing HMX. This data, along with previous mechanistic studies conducted at higher temperatures, suggest that the process that controls the early stages of decomposition of HMX in the solid phase is scission of the N-NO{sub 2} bond, reaction of the N0{sub 2} within a lattice cage to form the mononitroso analogue of HMX and decomposition of the mononitroso HMX within the HMX lattice to form gaseous products that are retained in bubbles or diffuse into the surrounding lattice. These methods evaluating HMX can be used to evaluate new energetic materials such as 2,4-DNI. The early 2,4-DNI thermal decomposition is characterized by an initial decomposition, an apparent induction period, then an initial acceleratory period. The main gaseous products are NO, C0{sub 2}, HNCO, H{sub 2}0, N{sub 2}, CO, HCN and C{sub 2}N{sub 2}. The presence of adsorbed and occluded H{sub 2}0 is the major cause of the early decomposition.

  6. Burning mechanism and regression rate of RX-35-AU and RX-35-AV as a function of HMX particle size measured by the hybrid closed bomb-strand burner

    SciTech Connect

    Tao, W.C.; Costantino, M.S.; Ornellas, D.L.

    1990-04-01

    In this study, the average surface regression rate of two HMX-based cast explosives, RX-35-AU and RX-35-AV, is measured to pressures above 750 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate over a large range of pressures in each experiment. Nitroglycerin/Triacetin (75/25) and polyethylene glycol (PEG) are used as the energetic plasticizer and polymeric binder, respectively, in both formulations. The HMX solids loading in each formulation is 50 wt %, consisting of a narrow particle size distribution of 6--8 {mu}m for RX-35-AU and 150--177 {mu}m for RX-35-AV. Of special interest are the regression rate and burning mechanism as a function of the initial particle size distribution and the mechanical properties fo the cast explosives. In general, the regression rate for the larger particle size formulation, RX-35-AV, is two to three times faster compared to that for RX-35-AU. Up to 750 MPa and independent of the initial confinement pressure, RX-35-AU exhibits a planar burning mechanism with the regression rate obeying the classical aP{sup n} formalism. For RX-35-AV, however, the burning behavior is erratic for samples ignited at 200 MPa confinement pressure. At confinement pressures above 400 MPa, the regression exhibits more of a planar burning mechanism. The unstable combustion behavior for RX-35-AV at lower confinement pressures is related to several mechanisms: (1) an abrupt increase in surface area due to particle fracture and subsequent translation and rotation, resulting in debonding and creating porosity, (2) thixotropic'' separation of the binder and nitramine, causing the significantly greater fracture damage to the nitramine during the loading cycle, (3) microscopic damage to the nitramine crystals that increase its intrinsic burning rate. 12 refs., 8 figs., 2 tabs.

  7. Characterization of layers of Tetryl, TNB, and HMX on metal surfaces using fiber optics coupled grazing angle-FTIR

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo; Santiago, Angel; Pujols, Jackson; Primera-Pedrozo, Oliva M.; Mattei, Alessandra; Ortiz, William; Ruiz, Orlando; Ramirez, Michael; Hernández-Rivera, Samuel P.

    2007-04-01

    Fiber optics coupled-grazing angle probe Fourier transform infrared (FTIR) spectroscopy and infrared microspectroscopy have been used for characterization of the distribution and form of layers of some explosives deposited on stainless steel sheets. Among the explosives tested were trinitrobenzene, HMX and Tetryl. Various solvents were used to deposit the films on stainless steel slides. Isopropyl alcohol was the preferred solvent because it produced more homogeneous mass distributions of target explosives on the substrates. The film thickness, analyte distribution and the relation of thickness to infrared absorption/reflection response of these explosives were compared with those previously reported for TNT, 2,4-DNT and RDX. This comparison was used for described the general optical behavior of the explosives studied.

  8. Method and apparatus for synthesizing HMX and N/sub 2/O/sub 5/. [Patent application; cyclotetramethylenetetraamine

    DOEpatents

    McGuire, R.R.; Coon, C.L.; Harrar, J.E.; Pearson, R.K.

    1982-07-20

    A method and apparatus for electrochemically synthesizing N/sub 2/O/sub 5/ includes oxidizing a solution of N/sub 2/O/sub 4//HNO/sub 3/ at an anode, while maintaining a controlled potential between the N/sub 2/O/sub 4//HNO/sub 3/ solution and the anode. A potential of about 1.35 to 2.0V vs. SCE is preferred, while a potential of about 1.80V vs. SCE is most preferred. Thereafter, the N/sub 2/O/sub 5/ is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  9. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.

    PubMed

    Douglas, Thomas A; Walsh, Marianne E; McGrath, Christian J; Weiss, Charles A

    2009-01-01

    Explosives compounds, known toxins, are loaded to soils on military training ranges predominantly during explosives detonation events that likely fracture soil particles. This study was conducted to investigate the fate of explosives compounds in aqueous slurries containing fractured and pristine soil particles. Three soils were crushed with a piston to emulate detonation-induced fracturing. X-ray diffraction, energy-dispersive X-ray spectrometry, gas adsorption surface area measurements, and scanning electron microscopy were used to quantify and image pristine and fractured soil particles. Aqueous batches were prepared by spiking soils with solutions containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4-dinitrotoluene (2,4-DNT). Samples were collected over 92 d and the concentrations of the spiked explosives compounds and TNT transformation products 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT) were measured. Our results suggest soil mineralogical and geochemical compositions were not changed during piston-induced fracturing but morphological differences were evident with fractured soils exhibiting more angular surfaces, more fine grained particles, and some microfracturing that is not visible in the pristine samples. TNT, 2,4-DNT, RDX, and HMX exhibited greater analyte loss over time in batch solutions containing fractured soil particles compared to their pristine counterparts. 2ADNT and 4ADNT exhibited greater concentrations in slurries containing pristine soils than in slurries containing fractured soils. Explosives compound transformation is greater in the presence of fractured soil particles than in the presence of pristine soil particles. Our results imply fractured soil particles promote explosive compound transformation and/or explosives compounds have a greater affinity for adsorption to fractured soil particle surfaces. PMID

  10. Small Scale Characterization of the Presence of the Explosive Octahydro-1,3,5,7-tetranitro- 1,3,5,7 tetrazocine (HMX) Near Former Naval Sites on Vieques Island, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Simmons, C. C.; Carvalho-Knighton, K. M.; Pyrtle, A. J.

    2007-12-01

    Octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX) is a synthetic energetic compounds that has been commonly used in military munitions. The presence and movement of HMX through the environment is of growing concern because of potential civilian exposure and impacts on human health. HMX remains in the environment unreactive with little degradation. It can be transported great distances in water thus having the possibility for migrating into groundwater. The former naval sites in Vieques were used for weapons training and housed several disposal sites. Previous studies around these sites indicate the presence of radioactive materials produced through thermal fission, such as Cs-137. Since HMX was primarily used to implode fissionable materials in nuclear devices, evaluating the release of HMX and consequent movement through the environment at these sites is essential. Surface water and soil samples as well as core and pore water samples were collected from two sites in Vieques; Kiani Lagoon and Mosquito Bay. All samples were extracted using EPA method 8330 and analyzed using RP-HPLC analysis with a C-18 column. HMX was undetected in samples collected from both Kiani Lagoon and Mosquito Bay. The development of a model that studies the flow rates and fate of water runoff in these areas of interest, coupled with data on groundwater testing inside the actual former naval facilities, is being explored for further sample collection and analysis.

  11. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  12. Low amplitude impact testing and analysis of pristine and aged solid high explosives

    SciTech Connect

    Chidester, S K; Garza, R; Tarver, C M

    1998-08-17

    The critical impact velocities of 60.1 mm diameter blunt steel projectiles required for ignition of exothermic chemical reaction were determined for heavily confined charges of new and aged (15-30 years) solid HMX-based high explosives. The explosives in order of decreasing impact sensitivity were: PBX 9404; LX-lo; LX-14; PBX 9501; and LX-04. Embedded pressure gauges measured the interior pressure histories. Stockpile aged LX-04 and PBX 9501 from dismantled units were tested and compared to freshly pressed charges. The understanding of explosive aging on impact ignition and other hazards must improve as systems are being deployed longer than their initial estimated lifetimes. The charges that did not react on the first impact were subjected to multiple impacts. While the violence of reaction increased with impact velocity, it remained much lower than that produced by an intentional detonation. Ignition and Growth reactive flow models were developed to predict HMX-based explosive impact sensitivity in other geometries and scenarios.

  13. Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory

    SciTech Connect

    Gu, Bang-Ming; Lin, He; Zhu, Shun-Guan

    2014-04-14

    A detailed study of structural, electronic, and thermodynamic properties of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/1,3-dimethyl-2-imidazolidinone (DMI) cocrystal under the hydrostatic pressure of 0–100 GPa was performed by using dispersion-corrected density functional theory (DFT-D) method. The calculated crystal structure is in reasonable agreement with the experimental data at the ambient pressure. Based on the analysis of lattice constants, bond lengths, bond angles, and dihedral angles under compression, it is found that HMX molecules in HMX/DMI cocrystal are seriously distorted. In addition, as the pressure increases, the band gap decreases gradually, which suggests that HMX/DMI cocrystal is becoming more metallic. Some important intermolecular interactions between HMX and DMI are also observed in the density of states spectrum. Finally, its thermodynamic properties were characterized, and the results show that HMX/DMI cocrystal is more easily formed in the low pressure.

  14. Simulating Thermal Explosion of Octahydrotetranitrotetrazine-based explosives: Model Comparison with Experiment

    SciTech Connect

    Yoh, J J; McClelland, M A; Maienschein, J L; Nichols, A L; Tarver, C M

    2006-02-07

    The authors compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two octahydrotetranitrotetrazine (HMX)-based explosives, LX-04 and LX-10, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The present HMX modeling work shows very first violence calculations with thermal predictions associated with a confined thermal explosion test. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in larger scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 1 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase.

  15. Behavior of Plastic Bonded Composite Explosives During High Acceleration

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Y.

    1998-03-01

    The mechanical behavior of plastic bonded composite explosives has been studied during high acceleration in an ultracentrifuge. The pressed explosives studied include LX-14 [95% HMX (cyclotetramethylene- tetranitramine), 5% Estane], Composition A3 type II [91% RDX (cyclotrimethylene-trinitramine), 99% BDNPF (bis-dinitropropyl acetal formal), 6% CAB (cellulose acetate butyrate)], and PAX-3 (85% HMX, 9% BDNPF, 6% CAB/25% Aluminum). The fracture strength of LX-14 is greater than all pressed explosives studied to date. The fracture strength of Composition A3 type II is smaller than all pressed explosives studied to date.

  16. High performance pitch-based carbon fiber

    SciTech Connect

    Tadokoro, Hiroyuki; Tsuji, Nobuyuki; Shibata, Hirotaka; Furuyama, Masatoshi

    1996-12-31

    The high performance pitch-based carbon fiber with smaller diameter, six micro in developed by Nippon Graphite Fiber Corporation. This fiber possesses high tensile modulus, high tensile strength, excellent yarn handle ability, low thermal expansion coefficient, and high thermal conductivity which make it an ideal material for space applications such as artificial satellites. Performance of this fiber as a reinforcement of composites was sufficient. With these characteristics, this pitch-based carbon fiber is expected to find wide variety of possible applications in space structures, industrial field, sporting goods and civil infrastructures.

  17. Project Surveys Community Based Organizations High Schools

    ERIC Educational Resources Information Center

    Black Issues in Higher Education, 2004

    2004-01-01

    A new report aims to promote awareness at the state level of the importance of Community Based Organizations (CBO) high schools, highlighting the promising lessons these schools hold for improving the educational outcomes of youth at risk of school failure or dropping out. This document briefly analyzes the report, "CBO High Schools: Their Value…

  18. High sensitivity cymbal-based accelerometer

    SciTech Connect

    Sun Chengliang; Lam, K.H.; Choy, S.H.; Chan, H.L. W.; Zhao, X.-Z.; Choy, C.L.

    2006-03-15

    A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d{sub 33}{sup '} coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of {approx}97 pC/ms{sup -2} with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d{sub 33}{sup '} coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.

  19. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  20. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Ahluwalia, P. K.

    2012-06-01

    We report first principles calculations of the electronic structure of monolayer 1H-MX2 (M = Mo, W; X = S, Se, Te), using the pseudopotential and numerical atomic orbital basis sets based methods within the local density approximation. Electronic band structure and density of states calculations found that the states around the Fermi energy are mainly due to metal d states. From partial density of states we find a strong hybridisation between metal d and chalcogen p states below the Fermi energy. All studied compounds in this work have emerged as new direct band gap semiconductors. The electronic band gap is found to decrease as one goes from sulphides to the tellurides of both Mo and W. Reducing the slab thickness systematically from bulk to monolayers causes a blue shift in the band gap energies, resulting in tunability of the electronic band gap. The magnitudes of the blue shift in the band gap energies are found to be 1.14 eV, 1.16 eV, 0.78 eV, 0.64, 0.57 eV and 0.37 eV for MoS2, WS2, MoSe2, WSe2, MoTe2 and WTe2, respectively, as we go from bulk phase (indirect band gap) to monolayer limit (direct band gap). This tunability in the electronic band gap and transitions from indirect to direct band make these materials potential candidates for the fabrication of optoelectronic devices.

  1. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    SciTech Connect

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  2. Phosphonate Based High Nuclearity Magnetic Cages.

    PubMed

    Sheikh, Javeed Ahmad; Jena, Himanshu Sekhar; Clearfield, Abraham; Konar, Sanjit

    2016-06-21

    Transition metal based high nuclearity molecular magnetic cages are a very important class of compounds owing to their potential applications in fabricating new generation molecular magnets such as single molecular magnets, magnetic refrigerants, etc. Most of the reported polynuclear cages contain carboxylates or alkoxides as ligands. However, the binding ability of phosphonates with transition metal ions is stronger than the carboxylates or alkoxides. The presence of three oxygen donor sites enables phosphonates to bridge up to nine metal centers simultaneously. But very few phosphonate based transition metal cages were reported in the literature until recently, mainly because of synthetic difficulties, propensity to result in layered compounds, and also their poor crystalline properties. Accordingly, various synthetic strategies have been followed by several groups in order to overcome such synthetic difficulties. These strategies mainly include use of small preformed metal precursors, proper choice of coligands along with the phosphonate ligands, and use of sterically hindered bulky phosphonate ligands. Currently, the phosphonate system offers a library of high nuclearity transition metal and mixed metal (3d-4f) cages with aesthetically pleasing structures and interesting magnetic properties. This Account is in the form of a research landscape on our efforts to synthesize and characterize new types of phosphonate based high nuclearity paramagnetic transition metal cages. We quite often experienced synthetic difficulties with such versatile systems in assembling high nuclearity metal cages. Few methods have been emphasized for the self-assembly of phosphonate systems with suitable transition metal ions in achieving high nuclearity. We highlighted our journey from 2005 until today for phosphonate based high nuclearity transition metal cages with V(IV/V), Mn(II/III), Fe(III), Co(II), Ni(II), and Cu(II) metal ions and their magnetic properties. We observed that

  3. Single and multiple impact ignition of new and aged high explosives in the Steven Impact Test

    SciTech Connect

    Chidester, S K; DePiero, A H; Garza, R G; Tarver, C M

    1999-06-01

    Threshold impact velocities for ignition of exothermic reaction were determined for several new and aged HMX-based solid high explosives using three types of projectiles in the Steven Test. Multiple impact threshold velocities were found to be approximately 10% lower in damaged charges that did not react in one or more prior impacts. Projectiles with protrusions that concentrate the friction work in a small volume of explosive reduced the threshold velocities by approximately 30%. Flat projectiles required nearly twice as high velocities for ignition as rounded projectiles. Blast overpressure gauges were used for both pristine and damaged charges to quantitatively measure reaction violence. Reactive flow calculations of single and multiple impacts with various projectiles suggest that the ignition rates double in damaged charges.

  4. Small-angle X-ray analysis of the effect of grain size on the thermal damage of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7 tetrazocine-based plastic-bounded expolsives

    NASA Astrophysics Data System (ADS)

    Yan, Guan-Yun; Tian, Qiang; Liu, Jia-Hui; Chen, Bo; Sun, Guang-Ai; Huang, Ming; Li, Xiu-Hong

    2014-07-01

    The microstructure evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX)-based PBXs with different HMX particle sizes [approximately 40 (FHP) and 100 μm (LHP)] were measured using small-angle X-ray scattering (SAXS). No obvious pore variations were found in the LHP samples heated at 160 °C for 6 h, whereas the amount of pores of FHP decreased when subjected to 160 °C for 6 h. At 180 °C, the average pore radii of FHP and LHP decreased from approximately 45 nm to 25 nm, and the total pore volume increased distinctively because of phase transformation. The LHP sample reached a high level of pore content after being held at 180 °C for 1 h, whereas FHP required 3 h. Both FHP and LHP had relatively high pore volumes when subjected to 200 °C for 1 and 3 h.

  5. Elastic constants of B-HMX and tantalum, equations of state of supercritical fluids and fluid mixtures and thermal transport determinations

    SciTech Connect

    Zaug, J M

    1998-08-21

    Ultrasonic sound speed measurements via Impulsive Stimulated Light Scattering (ISLS) were made in single crystals of b-HMX and tantalum over an extended range of temperatures. Elastic constants are consequently determined for b-HMX. Sound speeds are calculated for tantalum, from known elastic constants, and compare favorably with the results presented here. ISLS time-domain fits of tantalum records allowed for thermal diffusion determinations and, correspondingly, thermal conductivity. Measurements of the speed of sound and of the thermal diffusivities of fluid oxygen up to pressures of 13 GPa and at several temperatures are presented. Between 0.1 and 13 GPa the fluid's density increases by a factor of three. Thermal diffusivities rise slowly over this range, and are substantially smaller than those previously measured for the solid b-phase. Additional sound speed measurements were made along the 250 C isotherm in a 1:1 molar ratio mixture of liquid oxygen and nitrogen. These experiments demonstrate the versatility and potential application of a new laboratory within the U. S. DOD and DOE complex. 1

  6. A High Performance COTS Based Computer Architecture

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  7. Sensitivity of once-shocked, weathered high explosives

    SciTech Connect

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  8. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  9. Highly stretchable nanoalginate based polyurethane elastomers.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data. PMID:23648022

  10. High Performance Oxides-Based Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Ren, Guangkun; Lan, Jinle; Zeng, Chengcheng; Liu, Yaochun; Zhan, Bin; Butt, Sajid; Lin, Yuan-Hua; Nan, Ce-Wen

    2015-01-01

    Thermoelectric materials have attracted much attention due to their applications in waste-heat recovery, power generation, and solid state cooling. In comparison with thermoelectric alloys, oxide semiconductors, which are thermally and chemically stable in air at high temperature, are regarded as the candidates for high-temperature thermoelectric applications. However, their figure-of-merit ZT value has remained low, around 0.1-0.4 for more than 20 years. The poor performance in oxides is ascribed to the low electrical conductivity and high thermal conductivity. Since the electrical transport properties in these thermoelectric oxides are strongly correlated, it is difficult to improve both the thermoelectric power and electrical conductivity simultaneously by conventional methods. This review summarizes recent progresses on high-performance oxide-based thermoelectric bulk-materials including n-type ZnO, SrTiO3, and In2O3, and p-type Ca3Co4O9, BiCuSeO, and NiO, enhanced by heavy-element doping, band engineering and nanostructuring.

  11. PRESSURE AND TEMPERATURE DEPENDENT DEFLAGRATION RATE MEASUREMENTS OF LLM-105 AND TATB BASED EXPLOSIVES

    SciTech Connect

    Glascoe, E A; Tan, N; Koerner, J; Lorenz, K T; Maienschein, J L

    2009-11-10

    The pressure dependent deflagration rates of LLM-105 and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. Two different formulations of LLM-105 and three formulations of TATB were studied and results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating TATB formulations causes the deflagration rate to accelerate and become erratic. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  12. Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Pachman, Jiri; Zeman, Svatopluk; Vávra, Pavel; Trzciński, Waldemar A.; Akštein, zbyněk

    2012-10-01

    Four highly brisant nitramines, RDX (1,3,5-trinitro-1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole), and ɛ-HNIW (ɛ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), were studied as extruded plastic explosives bonded by two plastic matrices based on polyisobutylene (C4 matrix) and poly-methylmethacrylate (plasticized by dioctyl-adipate) binders. The detonation velocities, D, were measured experimentally. Detonation parameters were also calculated by means of the Kamlet and Jacobs method and CHEETAH and EXPLO5 codes. These detonation parameters showed that plastic-bonded explosives (PBXs) based on BCHMX are more powerful explosives than those based on RDX. The Urizar coefficient for poly(methyl methacrylate) binder was also calculated.

  13. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  14. Reactive Force Fields Based on Quantum Mechanics for Applications to Materials at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    van Duin, Adri C. T.; Zybin, Sergey V.; Chenoweth, Kimberley; Zhang, Luzheng; Han, Si-Ping; Strachan, Alejandro; Goddard, William A.

    2006-07-01

    Understanding the response of energetic materials (EM) to thermal or shock loading at the atomistic level demands a highly accurate description of the reaction dynamics of multimillion-atom systems to capture the complex chemical and mechanical behavior involved: nonequilibrium energy/mass transfer, molecule excitation and decomposition under high strain/heat rates, formation of defects, plastic flow, and phase transitions. To enable such simulations, we developed the ReaxFF reactive force fields based on quantum mechanics (QM) calculations of reactants, products, high-energy intermediates and transition states, but using functional forms suitable for large-scale molecular dynamics simulations of chemical reactions under extreme conditions. The elements of ReaxFF are: - charge distributions change instantaneously as atomic coordinates change, - all valence interactions use bond orders derived uniquely from the bond distances which in turn describe uniquely the energies and forces, - three body (angle) and four body (torsion and inversion) terms are allowed but not required, - a general "van der Waals" term describes short range Pauli repulsion and long range dispersion interactions, which with Coulomb terms are included between all pairs of atoms (no bond or angle exclusions), - no environmental distinctions are made of atoms involving the same element; thus every carbon has the same parameters whether in diamond, graphite, benzene, porphyrin, allyl radical, HMX or TATP. ReaxFF uses the same functional form and parameters for reactive simulations in hydrocarbons, polymers, metal oxides, and metal alloys, allowing mixtures of all these systems into one simulation. We will present an overview of recent progress in ReaxFF developments, including the extension of ReaxFF to nitramine-based (nitromethane, HMX) and peroxide-based (TATP) explosives. To demonstrate the versatility and transferability of ReaxFF, we also present applications to silicone polymer poly

  15. Diaphragm based high sensitive FBG pressure sensor

    NASA Astrophysics Data System (ADS)

    Vengal Rao, P.; Srimannarayana, K.; Sai Shankar, M.; Kishore, P.

    2013-06-01

    A high sensitive pressure sensor based on Fiber Bragg grating (FBG) integrated with a thin metal diaphragm was designed and demonstrated. To enhance the pressure sensitivity FBG is firmly glued across the diameter of the diaphragm. Under pressure, the diaphragm deforms and produces an induced strain along the length of the fiber causes shift in Bragg wavelength of the FBG. Pressure measurement is made by measuring the Bragg wavelength shift against change in pressure. The sensor was tested up to the maximum pressure of 140 psi and the corresponding pressure sensitivity was found to be 0.0204 nm/psi, which is approximately 970 times higher than that can be achieved with a bare FBG. The experimental results show good agreement with the theoretical results and possess good linearity and repeatability. This sensor can be used for the measurement of medium pressure, liquid level and depth of underwater.

  16. High weldability nickel-base superalloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    This is a nickel-base superalloy with excellent weldability and high strength. Its composition consists essentially of, by weight percent, 10-20 iron, 57-63 nickel, 7-18 chromium, 4-6 molybdenum, 1-2 niobium, 0.2-0.8 silicon, 0.01-0.05 zirconium, 1.0-2.5 titanium, 1.0-2.5 aluminum, 0.02-0.06 carbon, and 0.002-0.015 boron. The weldability and strength of this alloy give it a variety of applications. The long-time structural stability of this alloy together with its low swelling under nuclear radiation conditions, make it especially suitable for use as a duct material and controlling element cladding for sodium-cooled nuclear reactors.

  17. Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials.

    PubMed

    Liu, Yuji; Zhang, Jiaheng; Wang, Kangcai; Li, Jinshan; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-09-12

    Bis(4-nitraminofurazanyl-3-azoxy)azofurazan (1) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine-furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD : 9541 m s(-1) ; P: 40.5 GPa), and 4 (vD : 9256 m s(-1) ; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD : 8724 m s(-1) ; P: 35.2 GPa) and HMX (vD : 9059 m s(-1) ; P: 39.2 GPa). PMID:27511132

  18. A thermodynamically based definition of fast verses slow heating in secondary explosives

    NASA Astrophysics Data System (ADS)

    Henson, Bryan; Smilowitz, Laura

    2013-06-01

    The thermal response of energetic materials is often categorized according to the rate of heating as either fast or slow, e.g. slow cook-off. Such categorizations have most often followed some operational rationale, without a material based definition. We have spent several years demonstrating that for the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) a single mechanism of thermal response reproduces times to ignition independent of rate or means of heating over the entire range of thermal response. HMX is unique in that bulk melting is rarely observed in either thermal ignition or combustion. We have recently discovered a means of expressing this mechanism for HMX in a reduced form applicable to many secondary explosives. We will show that with this mechanism a natural definition of fast versus slow rates of heating emerges, related to the rate of melting, and we use this to illustrate why HMX does not exhibit melting, and why a number of other secondary explosives do, and require the two separate categories.

  19. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  20. Network based high performance concurrent computing

    SciTech Connect

    Sunderam, V.S.

    1991-01-01

    The overall objectives of this project are to investigate research issues pertaining to programming tools and efficiency issues in network based concurrent computing systems. The basis for these efforts is the PVM project that evolved during my visits to Oak Ridge Laboratories under the DOE Faculty Research Participation program; I continue to collaborate with researchers at Oak Ridge on some portions of the project.

  1. Nano copper based high temperature solder alternative

    NASA Astrophysics Data System (ADS)

    Sharma, Akshay

    Nano Cu an alternative to high temperature solder is developed by the Advance Technological Center at the Lockheed Martin Corporation. A printable paste of Cu nano particles is developed with an ability to fuse at 200°C in reflow oven. After reflow the deposited material has nano crystalline and nano porous structure which affects its properties. Accelerated test are performed on nano Cu deposition having nano porous and nano crystalline structure for assessment and prediction of reliability. Nano Cu assemblies with different bond layer thickness are sheared to calculate the strength of the material and are correlated with the porous and crystalline structure of nano Cu. Thermal and isothermal fatigue test are performed on nano Cu to see the dependency of life on stress and further surface of failed assemblies were observed to determine the type of failure. Creep test at RT are performed to find the type of creep mechanism and how they are affected when subjected to high temperature. TEM, SEM, X-ray, C-SAM and optical microscopy is done on the nano Cu sample for structure and surface analysis.

  2. High Frequency Laser-Based Ultrasound

    SciTech Connect

    Huber, R; Chinn, D; Balogun, O; Murray, T

    2005-09-12

    To obtain micrometer resolution of materials using acoustics requires frequencies around 1 GHz. Attenuation of such frequencies is high, limiting the thickness of the parts that can be characterized. Although acoustic microscopes can operate up to several GHz in frequency, they are used primarily as a surface characterization tool. The use of a pulsed laser for acoustic generation allows generation directly in the part, eliminating the loss of energy associated with coupling the energy from a piezoelectric transducer to the part of interest. The use of pulsed laser acoustic generation in combination with optical detection is investigated for the non-contact characterization of materials with features that must be characterized to micrometer resolution.

  3. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  4. PETN, RDX, HMX, TATB: band gap dependence on pressure under hydrostatic compression from DFT with GW and vdW corrections

    NASA Astrophysics Data System (ADS)

    Mukhanov, Andrei; Yanilkin, Alexei

    2014-03-01

    In the middle of 1990s Gilman (Gilman J. J. 1995 Phil. Mag. B, 71:6, 1057) proposed the idea that explosives transit from insulator to conductor state with following adiabatic expansion of free electrons in shockwave. One of the reasons of such a behavior of electrons is narrowing or disappearing of the fundamental band gap in explosive single crystal. It is well known that similar behavior can be simulated by DFT. But there is a severe problem of lowering the value of gap by DFT. So for quantitative prediction of narrowing of gap under pressure it is necessary to use more complicated methods like GW. From first principle calculations we determined elastic moduli for ideal crystals of PETN, RDX, HMX, and TATB. Accounting for those moduli we simulated the 0 K isotherms for hydrostatic compression of single crystal. Due to the essential role of van der Waals interaction in such materials the vdW corrections to DFT in Grimme's form was used. We obtained the dependencies for band gap on pressure under hydrostatic compression. Our preliminary results on GW calculations show that for TATB at initial uncompressed volume we have the value of gap twice a bigger in GW than in DFT.

  5. Influence of Small Change of Porosity on Shock Initiation of an HMX/TATB/Viton Explosive and Ignition and Growth Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping

    2016-07-01

    All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.

  6. A high throughput droplet based electroporation system

    NASA Astrophysics Data System (ADS)

    Yoo, Byeongsun; Ahn, Myungmo; Im, Dojin; Kang, Inseok

    2014-11-01

    Delivery of exogenous genetic materials across the cell membrane is a powerful and popular research tool for bioengineering. Among conventional non-viral DNA delivery methods, electroporation (EP) is one of the most widely used technologies and is a standard lab procedure in molecular biology. We developed a novel digital microfluidic electroporation system which has higher efficiency of transgene expression and better cell viability than that of conventional EP techniques. We present the successful performance of digital EP system for transformation of various cell lines by investigating effects of the EP conditions such as electric pulse voltage, number, and duration on the cell viability and transfection efficiency in comparison with a conventional bulk EP system. Through the numerical analysis, we have also calculated the electric field distribution around the cells precisely to verify the effect of the electric field on the high efficiency of the digital EP system. Furthermore, the parallelization of the EP processes has been developed to increase the transformation productivity. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  7. High Performance Graphene Oxide Based Rubber Composites

    NASA Astrophysics Data System (ADS)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-08-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.

  8. High Performance Graphene Oxide Based Rubber Composites

    PubMed Central

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  9. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    SciTech Connect

    Jones, K.E. ); Salmon, R. )

    1990-08-01

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs.

  10. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  11. High Brightness GaN-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Lee, Ya-Ju; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2007-06-01

    This paper reviews our recent progress of GaN-based high brightness light-emitting diodes (LEDs). Firstly, by adopting chemical wet etching patterned sapphire substrates in GaN-based LEDs, not only could increase the extraction quantum efficiency, but also improve the internal quantum efficiency. Secondly, we present a high light-extraction 465-nm GaN-based vertical light-emitting diode structure with double diffuse surfaces. The external quantum efficiency was demonstrated to be about 40%. The high performance LED was achieved mainly due to the strong guided-light scattering efficiency while employing double diffuse surfaces.

  12. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives.

    PubMed

    Zhang, Qinghua; Zhang, Jiaheng; Qi, Xiujuan; Shreeve, Jean'ne M

    2014-11-13

    Research in energetic materials is now heavily focused on the design and synthesis of novel insensitive high explosives (IHEs) for specialized applications. As an effective and time-saving tool for screening potential explosive structures, computer simulation has been widely used for the prediction of detonation properties of energetic molecules with relatively high precision. In this work, a series of new polynitrotetraoxopentaaza[3.3.3]-propellane molecules with tricyclic structures were designed. Their properties as potential high explosives including density, heats of formation, detonation properties, impact sensitivity, etc., have been extensively evaluated using volume-based thermodynamic calculations and density functional theory (DFT).These new energetic molecules exhibit high densities of >1.82 g cm(-3), in which 1 gives the highest density of 2.04 g cm(-3). Moreover, most new materials show good detonation properties and acceptable impact sensitivities, in which 5 displays much higher detonation velocity (9482 m s(-1)) and pressure (43.9 GPa) than HMX and has a h50 value of 11 cm. These results are expected to facilitate the experimental synthesis of new-generation nitramine-based high explosives. PMID:25325391

  13. High-energy attosecond nanoplasmonic-based electron gun

    NASA Astrophysics Data System (ADS)

    Greig, S. R.; Elezzabi, A. Y.

    2016-03-01

    We present the design of an ultrafast conical lens based nanoplasmonic electron gun. Through excitation with a radially polarized laser pulse, and a combination of magnetostatic and spatial filtering, high energy electron packets with attosecond durations can be achieved.

  14. Competency-Based Adult High School Curriculum Project.

    ERIC Educational Resources Information Center

    Singer, Elizabeth

    This compilation of program materials serves as an introduction to and overview of Florida's Brevard Community College's (BCC's) Competency-Based Adult High School Completion Project, which was conducted to teach administrators, counselors, and teachers how to organize and implement a competency-based adult education (CBAE) program; to critique…

  15. Hershey Montessori Farm School: Place-Based High School Biology.

    ERIC Educational Resources Information Center

    Venaleck, Judy; McDonald, Pete

    2001-01-01

    Describes how the Hershey Montessori Farm School in Huntsburg, Ohio, developed an advanced biology course, which begins with an experience-based, task-oriented approach within different biomes of the surrounding environs while incorporating high school content and scientific method. Concludes that integrating place-based and contextual inquiries…

  16. High School Students' Concepts of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram H. B.

    An investigation of Ontario high school students' understanding of acids and bases with quantitative and qualitative methods revealed misconceptions. A concept map, based on the objectives of the Chemistry Curriculum Guideline, generated multiple-choice items and interview questions. The multiple-choice test was administered to 34 grade 12…

  17. Effects of Problem Based Economics on High School Economics Instruction

    ERIC Educational Resources Information Center

    Finkelstein, Neal; Hanson, Thomas

    2011-01-01

    The primary purpose of this study is to assess student-level impacts of a problem-based instructional approach to high school economics. The curriculum approach examined here was designed to increase class participation and content knowledge for high school students who are learning economics. This study tests the effectiveness of Problem Based…

  18. Research On Bi-Based High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  19. High harmonic generation by novel fiber amplifier based sources.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Tavella, F; Willner, A; Limpert, J; Tünnermann, A

    2010-09-13

    Significant progress in high repetition rate ultrashort pulse sources based on fiber technology is presented. These systems enable operation at a high repetition rate of up to 500 kHz and high average power in the extreme ultraviolet wavelength range via high harmonic generation in a gas jet. High average power few-cycle pulses of a fiber amplifier pumped optical parametric chirped pulse amplifier are used to produce µW level average power for the strongest harmonic at 42.9 nm at a repetition rate of 96 kHz. PMID:20940915

  20. Investigation into low-temperatures influence on high explosive compounds sensitivity to shock-wave impacts

    SciTech Connect

    Averin, A.N.; Alekseev, A.V.; Batalov, S.V.; Loboiko, B.G.; Litvinov, B.V.; Sumin, V.D.; Filin, V.P.; Yagnakov, A.N.

    1996-05-01

    Study of shock-wave sensitivity of explosives under various temperatures is of great significance for correct analysis of safe application of different industrial processes, technologies, as well as for correct understanding of explosion initiation mechanism in (explosives). Currently, the influence of low, ({minus}100{degree}C{hor_ellipsis}{minus}200{degree}C) temperatures on explosive sensitivity to weak shock waves is poorly studied. This paper gives experimental results on the influence of low temperatures on the sensitivity of HMX{emdash}based explosives to weak shock-waves. In the present paper an attempt is made to experimentally determine dependence of HMX{emdash}based explosive sensitivity to weak shock waves on temperatures. The original technique of the experiment is presented in the report. {copyright} {ital 1996 American Institute of Physics.}

  1. Looking for high energy density compounds among polynitraminecubanes.

    PubMed

    Chi, Wei-Jie; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun

    2013-02-01

    Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much higher than that of triaminotrinitrobenzene (TATB), which means that cubane derivatives may be more sensitive than TATB. Polynitraminecubanes have high and positive heats of formation, and a good linear relationship between heats of formation and nitramine group numbers was presented. As the number of nitramine groups in the molecule increases, the enthalpies of combustion values are increasingly negative, but the specific enthalpy of combustion values decreases. It is found that all cubane derivatives have high strain energies, which are affected by the number and position of nitramine group. The calculated bond dissociation energies of C-NHNO(2) and C-C bond show that the C-C bond should be the trigger bond in the pyrolysis process. It is found that detonation velocity (D), detonation pressure (P) and molecule density (ρ) have good linear relationship with substituented group numbers. Heptanitraminecubane and octanitraminecubane have good detonation performance over 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), and they can be regarded as potential candidates of high energy density compounds (HEDCs). The results have not only shown that these compounds may be used as HEDCs, but also provide some useful information for further investigation. PMID:22961623

  2. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  3. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  4. Abstracting event-based control models for high autonomy systems

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  5. Integrated Ring Oscillators based on high-performance Graphene Inverters

    PubMed Central

    Schall, Daniel; Otto, Martin; Neumaier, Daniel; Kurz, Heinrich

    2013-01-01

    The road to the realization of complex integrated circuits based on graphene remains an open issue so far. Current graphene based integrated circuits are limited by low integration depth and significant doping variations, representing major road blocks for the success of graphene in future electronic devices. Here we report on the realization of graphene based integrated inverters and ring oscillators. By using an optimized process technology for high-performance graphene transistors with local back-gate electrodes we demonstrate that complex graphene based integrated circuits can be manufactured reproducibly, circumventing problems associated with doping variations. The fabrication process developed here is scalable and fully compatible with conventional silicon technology. Therefore, our results pave the way towards applications based on graphene transistors in future electronic devices. PMID:24005257

  6. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  7. High Fidelity of Base Paring by 2-Selenothymidine in DNA

    SciTech Connect

    Hassan, A.; Sheng, J; Zhang, W; Huang, Z

    2010-01-01

    The base pairs are the contributors to the sequence-dependent recognition of nucleic acids, genetic information storage, and high fidelity of DNA polymerase replication. However, the wobble base pairing, where T pairs with G instead of A, reduces specific base-pairing recognition and compromises the high fidelity of the enzymatic polymerization. Via the selenium atomic probing at the 2-position of thymidine, we have investigated the wobble discrimination by manipulating the steric and electronic effects at the 2-exo position, providing a unique chemical strategy to enhance the base pair specificity. We report here the first synthesis of the novel 2-Se-thymidine ({sup Se}T) derivative, its phosphoramidite, and the Se-DNAs. Our biophysical and structural studies of the 2-Se-T DNAs reveal that the bulky 2-Se atom with a weak hydrogen-bonding ability can largely increase mismatch discriminations (including T/G wobble and T/C mismatched base pairs) while maintaining the {sup Se}T/A virtually identical to the native T/A base pair. The 2-Se atom bulkiness and the electronic effect are probably the main factors responsible for the discrimination against the formation of the wobble {sup Se}T/G base pair. Our investigations provide a potential novel tool to investigate the specific recognition of base pairs, which is the basis of high fidelity during replication, transcription, and translation. Furthermore, this Se-atom-specific substitution and probing are useful for X-ray crystal structure and function studies of nucleic acids.

  8. High speed electric motors based on high performance novel soft magnets

    NASA Astrophysics Data System (ADS)

    Silveyra, J. M.; Leary, A. M.; DeGeorge, V.; Simizu, S.; McHenry, M. E.

    2014-05-01

    Novel Co-based soft magnetic materials are presented as a potential substitute for electrical steels in high speed motors for current industry applications. The low losses, high permeabilities, and good mechanical strength of these materials enable application in high rotational speed induction machines. Here, we present a finite element analysis of Parallel Path Magnetic Technology rotating motors constructed with both silicon steel and Co-based nanocomposite. The later achieved a 70% size reduction and an 83% reduction on NdFeB magnet volume with respect to a similar Si-steel design.

  9. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    PubMed

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-01

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics. PMID:26842553

  10. Content-Based Curriculum for High-Ability Learners.

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce, Ed.; Little, Catherine A., Ed.

    The 14 chapters in this volume are intended to facilitate differentiated curriculum development for gifted students that is substantive, rigorous, and in keeping with disciplinary structures. The chapters are: (1) "Content-Based Curriculum for High Ability Learners: An Introduction" (Joyce VanTassel-Baska); (2) "Accelerating Learning Experiences…

  11. A high energy output nanogenerator based on reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Weiping; Zhang, Yupeng; Liu, Liangliang; Li, Delong; Liao, Lei; Pan, Chunxu

    2015-10-01

    In this paper, we report a novel graphene-based nanogenerator for high energy harvesting. Experimental and theoretical results revealed that the energy output mechanism is the joint action of the strain effect (band engineering) and the triboelectric effect of reduced graphene oxide. It was found that the current could be adjusted by experimental parameters, such as the electrolyte concentration and rotation rate. Furthermore, the voltage output could be amplified by series connection of the system. Compared with other nanogenerators, the present graphene-based nanogenerator provides advantages, such as simple assembly, flexibility and high structural stability. It is expected that this nanogenerator will be of potential application in active sensors and sustainable power sources.In this paper, we report a novel graphene-based nanogenerator for high energy harvesting. Experimental and theoretical results revealed that the energy output mechanism is the joint action of the strain effect (band engineering) and the triboelectric effect of reduced graphene oxide. It was found that the current could be adjusted by experimental parameters, such as the electrolyte concentration and rotation rate. Furthermore, the voltage output could be amplified by series connection of the system. Compared with other nanogenerators, the present graphene-based nanogenerator provides advantages, such as simple assembly, flexibility and high structural stability. It is expected that this nanogenerator will be of potential application in active sensors and sustainable power sources. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04971g

  12. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  13. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  14. Planning and Implementing a High Performance Knowledge Base.

    ERIC Educational Resources Information Center

    Cortez, Edwin M.

    1999-01-01

    Discusses the conceptual framework for developing a rapid-prototype high-performance knowledge base for the four mission agencies of the United States Department of Agriculture and their university partners. Describes the background of the project and methods used for establishing the requirements; examines issues and problems surrounding semantic…

  15. Citizenship. Nevada Competency-Based Adult High School Diploma Project.

    ERIC Educational Resources Information Center

    Nevada Univ., Las Vegas. Coll. of Education.

    This document is one of ten curriculum guides developed by the Nevada Competency-Based Adult High School Diploma (CBAHSD) Project. This curriculum guide on citizenship is divided into twelve topics. The topics included are How to Become a Citizen, Voter Registration, Political Parties, Nominations, Elections, Evaluating Issues, Public Opinion,…

  16. Mathematics. Nevada Competency-Based Adult High School Diploma Project.

    ERIC Educational Resources Information Center

    Nevada Univ., Las Vegas. Coll. of Education.

    This document is one of ten curriculum guides developed by the Nevada Competency-Based Adult High School Diploma (CBAHSD) Project. This curriculum guide on mathematics is divided into three topics. The topics included are Problem Solving, Computation, and Geometry and Measurement. Competency statements and performance indicators are provided for…

  17. High School Art Education Guide. Competency-Based Education.

    ERIC Educational Resources Information Center

    Frederick County Public Schools, MD.

    Arranged into 26 sections, this curriculum guide provides high school teachers with a competency based approach to teaching art education. Following a statement of appreciation, the philosophy and goals for art education in Maryland are presented. An excerpt from Edmund Feldman's "Varieties of Visual Experience" discusses aesthetic expression.…

  18. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  19. Curriculum-Based Measures of Writing for High School Students

    ERIC Educational Resources Information Center

    Diercks-Gransee, Barbara; Weissenburger, Jacalyn Wright; Johnson, Cindy L.; Christensen, Paul

    2009-01-01

    The purpose of this study was to determine whether technically adequate curriculum-based measures of writing could be identified for use with high school students. The participants included 10th-grade general and special education students from two public school districts in Wisconsin. Students (n = 82) completed two narrative writing samples in…

  20. A highly reliable RAID system based on GPUs.

    SciTech Connect

    Curry, Matthew L.

    2010-06-01

    While RAID is the prevailing method of creating reliable secondary storage infrastructure, many users desire more flexibility than offered by current implementations. To attain needed performance, customers have often sought after hardware-based RAID solutions. This talk describes a RAID system that offloads erasure correction coding calculations to GPUs, allowing increased reliability by supporting new RAID levels while maintaining high performance.

  1. Mental Health Care in a High School Based Health Service.

    ERIC Educational Resources Information Center

    Jepson, Lisa; Juszczak, Linda; Fisher, Martin

    1998-01-01

    Describes the mental-health and medical services provided at a high-school-based service center. Five years after the center's inception mental health visits had quadrupled. One third of students utilizing the center reported substance abuse within their family. Other reasons for center use included pregnancy, suicidal ideation, obesity,…

  2. Health. Nevada Competency-Based Adult High School Diploma Project.

    ERIC Educational Resources Information Center

    Nevada Univ., Las Vegas. Coll. of Education.

    This document is one of ten curriculum guides developed by the Nevada Competency-Based Adult High School Diploma (CBAHSD) Project. This curriculum guide on health is divided into ten topics. The topics included are Nutrition, Reproduction, Menstruation, Contraception, Alcohol Abuse, Tobacco, Immunization, Disease, Accident Prevention, and…

  3. College-Based High Schools Fill Growing Need

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2005-01-01

    College-based programs that motivate underachieving teenagers to graduate and pursue further education is part of a menu of initiatives Guilford County, North Carolina, has introduced to meet the academic, social, and emotional needs of students in its middle and high schools, where racial and ethnic diversity and poverty have been on the rise. As…

  4. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  5. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  6. Alternative Processing of High Temperature Hafnium and Zirconium Based Materials

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Gusman, Michael; Ellerby, Don; Irby, Edward; Johnson, Sylvia M.

    2003-01-01

    The behavior of refractory hafnium and zirconium based materials are being investigated at NASA Ames as part of ongoing research aimed at developing superior heat resistant materials for aerospace applications. Hafnium and zirconium diboride based materials have shown high temperature capabilities in simulated reentry environments indicating that these materials may successfully operate as reusable oxidation resistant components for leading edge applications. Due to the refractory nature of these materials, processing of fine-grained uniform microstructures poses a number of challenges. To better understand the process-property-microstructure relationship, processing of these materials has been carried out with conventional hot pressing in addition to the novel approach of Spark Plasma Sintering (SPS). The two processing methods are compared and contrasted in an evaluation of the sintering behavior of high temperature diboride based materials and preliminary physical and mechanical properties are presented.

  7. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  8. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  9. Low Noise, High Detectivity Photodetectors based on Organic Materials

    NASA Astrophysics Data System (ADS)

    Guo, Fawen

    Organic photodetectors (OPDs) are potentially useful in many applications because of their light weight, flexibility and good form factors. Despite the high detectivities that have been frequently reported for OPDs recently, the application of these OPDs for weak light detection has been rarely demonstrated. In this thesis, low noise, high gain photodetectors based on organic and ZnO nanoparticles were proposed and demonstrated for highly sensitive UV light detection. The nanocomposite photodetector works in a hybrid mode of photodiode and photoconductor with the transition controlled by the UV light illumination. The nanocomposite detector shows two orders of magnitude higher sensitivity than silicon detectors in the UV range, which is the first time an organic, solution-processed detector has been shown to significantly outperform the inorganic photonic devices. In the fullerene-based photodetector, the dark-current has been successfully reduced by a cross-linked TPD (C-TPD) buffer layer. The high detectivity of 3.6 x 1011 cm Hz½ W-1 (Jones) at 370 nm and the wide Linear dynamic range (LDR) of 90 dB, along with a response speed faster than 20 kHz, suggests that the fullerene-based organic photodetectors proposed here can open the way for many potential applications. The ZnO nanoparticles have been introduced into the C-TPD buffer layer of the fullerene-based photodetector to increase the photoconductive gain and reduce the noise current. The peak external quantum efficiency (EQE) value of approximately 400% and the peak specific detectivity of 6.5 x 10 12 Jones at the wavelength of 390 nm, along with the record high LDR of 120 dB, enable the photodetector to be used in wide range of applications such as imaging, communication, and defense. The extremely high sensitivity of the photodetector also makes it particularly attractive for very weak light detection.

  10. Highly crystalline MOF-based materials grown on electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Bechelany, M.; Drobek, M.; Vallicari, C.; Abou Chaaya, A.; Julbe, A.; Miele, P.

    2015-03-01

    Supported Metal Organic Frameworks (MOFs) with a high specific surface area are of great interest for applications in gas storage, separation, sensing, and catalysis. In the present work we report the synthesis of a novel composite architecture of MOF materials supported on a flexible mat of electrospun nanofibers. The system, based on three-dimensional interwoven nanofibers, was designed by using a low-cost and scalable multistep synthesis protocol involving a combination of electrospinning and low-temperature atomic layer deposition of oxide materials, and their subsequent solvothermal conversion under either conventional or microwave-assisted heating. This highly versatile approach allows the production of different types of supported MOF crystals with controlled sizes, morphology, orientation and high accessibility.Supported Metal Organic Frameworks (MOFs) with a high specific surface area are of great interest for applications in gas storage, separation, sensing, and catalysis. In the present work we report the synthesis of a novel composite architecture of MOF materials supported on a flexible mat of electrospun nanofibers. The system, based on three-dimensional interwoven nanofibers, was designed by using a low-cost and scalable multistep synthesis protocol involving a combination of electrospinning and low-temperature atomic layer deposition of oxide materials, and their subsequent solvothermal conversion under either conventional or microwave-assisted heating. This highly versatile approach allows the production of different types of supported MOF crystals with controlled sizes, morphology, orientation and high accessibility. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06640e

  11. [Extracting municipal solid waste dumps based on high resolution images].

    PubMed

    Zhang, Fang-Li; Du, Shi-Hong; Guo, Zhou

    2013-08-01

    The dramatically increasing informal MSW dumps are endangering the urban environment. Remote sensing (RS) technologies are more efficient to monitor and manage municipal solid wastes (MSW) than traditional survey-based methods. In high spatial resolution remotely sensed images, these irregularly distributed dumps have complex compositions and strong heterogeneities, thus it is still hard to extract them automatically no matter the pixel-or object-based image analysis method is used. Therefore, based on the analysis of MSW characteristics, the present study develops a multiresolution strategy to extract MSW dumps by combining image features at both high resolution and resampled low heterogeneity images, while the high resolution images can provide detailed information and the low resolution images can suppress the strong heterogeneities of informal MSW dumps. Taking the QuickBird image covering part of Beijing as an example, this multi-resolution strategy produced a high accuracy (75%), indicating that this multi-resolution strategy is quite effective for extracting the open-air informal MSW dumps. PMID:24159838

  12. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be easily and inexpensively upgraded). In the frame of EUCLID RTP 9.8 project, a specific work element was dedicated to develop the architecture of a system able to acquire telemetry data of up to 600 Mbps. Laben S.p.A - a Finmeccanica Company -, entrusted of this work, has designed a PCI-based telemetry system making possible the communication between a satellite down-link and a wide area network at the required rate.

  13. GPU-based High-Performance Computing for Radiation Therapy

    PubMed Central

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639

  14. High power density reactors based on direct cooled particle beds

    SciTech Connect

    Powell, J.R.; Horn, F.L.

    1985-01-01

    Reactors based on direct cooled HTGR type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out long the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBR's) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed. 12 figs.

  15. Highly swelling hydrogels from ordered galactose-based polyacrylates.

    PubMed

    Martin, B D; Linhardt, R J; Dordick, J S

    1998-01-01

    High swelling galactose-based hydrogels have been prepared using a chemoenzymatic procedure. Regioselective acylation of beta-O-methyl-galactopyranoside in nearly anhydrous pyridine with lipase from Pseudomonas cepacia yields the 6-acryloyl derivative (Compound I). Further lipase-catalysed acylation of the monoacrylate derivative in nearly anhydrous acetone yielded 2,6-diacryloyl-beta-O-methyl galactopyranoside (Compound II) that can act as a cross-linker with a structure similar to that of the sugar-based monomer. The high selectivity of enzyme catalysis yielded apparently highly regular hydrogel networks with swelling ratios at equilibrium ranging from 170 to 1100. elastic moduli ranging from 0.005 to 0.088 MPa and calculated mesh sizes ranging from 1160 to 6600 A. These values are far higher than conventional uncharged or lightly charged hydrogels at similar elastic moduli. Gel swelling was fast, with 75% of the equilibrium swelling value reached in a fractional time of 0.17. Non-selective chemical acryloylation of beta-O-methyl galactopyranoside followed by polymerization yielded a far lower-swelling hydrogel than that obtained using selective enzyme catalysis. These results indicate that the highly regular polymer structure achieved by regioselective enzyme-catalysed acylation yields relatively strong and highly swellable materials. Sugar-based hydrogels, such as those described herein, may find particular use as biomaterials because of their high water content, homogeneity, stability and expected non-toxicity. A wide range of pore sizes can be attained, suggesting that they may also be especially useful as matrices for enzyme immobilization and controlled delivery of biological macromolecules. PMID:9678852

  16. Bioremediation of high explosives

    SciTech Connect

    Kitts, C.L.; Alvarez, M.A.; Hanners, J.L.; Ogden, K.L.; Vanderberg-Twary, L.; Unkefer, P.J.

    1995-09-01

    Manufacture and use of high explosives has resulted in contamination of ground water and soils throughout the world. The use of biological methods for remediation of high explosives contamination has received considerable attention in recent years. Biodegradation is most easily studied using organisms in liquid cultures. Thus, the amount of explosive that can be degraded in liquid culture is quite small. However, these experiments are useful for gathering basic information about the biochemical pathways of biodegradation, identifying appropriate organisms and obtaining rates of degradation. The authors` laboratory has investigated all three major areas of explosives bioremediation: explosives in solution, explosives in soil, and the disposal of bulk explosives from demilitarization operations. They investigated the three explosives most commonly used in modern high explosive formulations: 2,4,6-trinitrotoluene (TNT), hexahydro 1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

  17. Highly concentrated active nonlinear media based on oxides

    SciTech Connect

    Bakin, D.V.; Dorozhkin, L.M.; Krasilov, Yu.I.; Kuznetsov, N.T.; Potemkin, A.V.; Tadzhi-Aglaev, K.S.; Shestakov, A.V.

    1987-07-01

    Important characteristics of highly concentrated active nonlinear media were studied which were based on oxide compounds of phosphates, niobates, tantalates, and titanates of neodymium with alkaline earth metals. Compounds of the indicated classes were synthesized and their spectral luminescent and nonlinear optical properties were studied. Single crystals were grown from the selected compounds (5-8mm) and preliminary measurements of the laser and nonlinear optical parameters were taken. Formulas are given for materials that demonstrated high nonlinear and luminescent properties simultaneously. Spectroscopic and nonlinear optical properties of some oxygen compounds of rare earth elements are shown.

  18. Highly sensitive bovine serum albumin biosensor based on liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Kumar, Ajay; Ganguly, Prasun; Biradar, A. M.

    2014-01-01

    A highly sensitive liquid crystal (LC) based bovine serum albumin (BSA) protein biosensor is designed. A uniform homeotropic alignment of nematic LC was observed in BSA free substrate which changed into homogeneous in presence of BSA. The change in the LC orientation is found to depend strongly on BSA concentration. This change in the LC alignment is attributed to the modification in the surface conditions which is verified by contact angle measurements. We have detected an ultra low concentration (0.5 μg/ml) of BSA. The present study demonstrates the utilization of LC in the realization of high sensitivity biosensors.

  19. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  20. Modulator-Based, High Bandwidth Optical Links for HEP Experiments

    NASA Astrophysics Data System (ADS)

    Underwood, David G.; Drake, G.; Fernando, W. S.; Stanek, R. W.

    2013-10-01

    As a concern with the reliability, bandwidth and mass of future optical links in LHC experiments, we are investigating CW lasers and light modulators as an alternative to VCSELs. These links will be particularly useful if they utilize light modulators which are very small, low power, high bandwidth, and are very radiation hard. We have constructed a test system with 3 such links, each operating at 10 Gb/s. We present the quality of these links (jitter, rise and fall time, BER) and eye mask margins (10GbE) for 3 different types of modulators: LiNbO3-based, InP-based, and Si-based. We present the results of radiation hardness measurements with up to ~1012 protons/cm2 and ~65 krad total ionizing dose (TID), confirming no single event effects (SEE) at 10 Gb/s with either of the 3 types of modulators. These optical links will be an integral part of intelligent tracking systems at various scales from coupled sensors through intra-module and off detector communication. We have used a Si-based photonic transceiver to build a complete 40 Gb/s bi-directional link (10 Gb/s in each of four fibers) for a 100m run and have characterized it to compare with standard VCSEL-based optical links. Some future developments of optical modulator-based high bandwidth optical readout systems, and applications based on both fiber and free space data links, such as local triggering and data readout and trigger-clock distribution, are also discussed.

  1. Spatial augmented reality based high accuracy human face projection

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  2. Iron-based superconductors in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Coldea, Amalia I.; Braithwaite, Daniel; Carrington, Antony

    2013-01-01

    Here we review measurements of the normal and superconducting state properties of iron-based superconductors using high magnetic fields. We discuss the various physical mechanisms that limit superconductivity in high fields, and the information on the superconducting state that can be extracted from the upper critical field, but also how thermal fluctuations affect its determination by resistivity and specific heat measurements. We also discuss measurements of the normal state electronic structure focusing on measurement of quantum oscillations, particularly the de Haas-van Alphen effect. These results have determined very accurately, the topology of the Fermi surface and the quasi-particle masses in a number of different iron-based superconductors, from the 1111, 122 and 111 families.

  3. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  4. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    PubMed Central

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  5. High gain preamplifier based on optical parametric amplification

    DOEpatents

    Jovanovic, Igor; Bonner, Randal A.

    2004-08-10

    A high-gain preamplifier based on optical parametric amplification. A first nonlinear crystal is operatively connected to a second nonlinear crystal. A first beam relay telescope is operatively connected to a second beam relay telescope, to the first nonlinear crystal, and to the second nonlinear crystal. A first harmonic beamsplitter is operatively connected to a second harmonic beamsplitter, to the first nonlinear crystal, to the second nonlinear crystal, to the first beam relay telescope, and to the second beam relay telescope.

  6. High performance, LED powered, waveguide based total internal reflection microscopy

    NASA Astrophysics Data System (ADS)

    Ramachandran, Srinivasan; Cohen, Daniel A.; Quist, Arjan P.; Lal, Ratnesh

    2013-07-01

    Total internal reflection fluorescence (TIRF) microscopy is a rapidly expanding optical technique with excellent surface sensitivity and limited background fluorescence. Commercially available TIRF systems are either objective based that employ expensive special high numerical aperture (NA) objectives or prism based that restrict integrating other modalities of investigation for structure-function analysis. Both techniques result in uneven illumination of the field of view and require training and experience in optics. Here we describe a novel, inexpensive, LED powered, waveguide based TIRF system that could be used as an add-on module to any standard fluorescence microscope even with low NA objectives. This system requires no alignment, illuminates the entire field evenly, and allows switching between epifluorescence/TIRF/bright field modes without adjustments or objective replacements. The simple design allows integration with other imaging systems, including atomic force microscopy (AFM), for probing complex biological systems at their native nanoscale regimes.

  7. Novel class of highly selective divanillin-based PACs

    NASA Astrophysics Data System (ADS)

    Medina, Arturo N.; Ferreira, Lawrence; Tadros, Sobhy P.; Sizensky, Joseph J.; Fregeolle, M.; Blakeney, Andrew J.; Toukhy, Medhat A.

    1996-06-01

    A new class of diazonaphthoquinone (DNQ) photoactive compounds (PACs) based on the divanillin core is introduced in this paper. The general structure of these PAC backbones is shown in Formula 1. The divanillin structure possesses unique electronic characteristics which influence its DNQ-SO2Cl esterification reactions to be highly selective. The most reactive site for esterification in Formula 1 is one of the divanillin hydroxyls despite the typically higher steric hindrance. Surprisingly, the esterification product is then significantly deactivated towards esterification at the other previously equivalent divanillin OH. The result of using 3 equivalents of DNQ-SO2Cl to esterify tetraphenolic species is the formation of high percentages of the specific triester in which the second divanillyl OH remains unesterified. The deactivation of the second divanillin OH after the initial esterification indicates some interaction between the two o,o-biphenol rings despite its inability to be coplanar for conjugation of (pi) electrons because of steric hindrance. Possible explanations for this interaction are explored using molecular simulation tools. Diverse members of the divanillin PAC family have been prepared from phenols of varying structure and hydrophobicities. These PACs were tested lithographically and the results correlated with PAC backbone structure. The characteristic dissolution rate behavior of the resist formulations based on triesterified PACs, measured as a function of exposure dose, generally show high discrimination and strong inhibition, even with the more hydrophilic PACs. These formulations typically exhibited high resolution, wide focus latitude, and exposure margins greater than 2.0 in lithographic screening.

  8. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  9. Improved performance of silicon nitride-based high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.

    1977-01-01

    Recent progress in the production of Si3N4 based ceramics is reviewed: (1) high temperature strength and toughness of hot pressed Si3N4 were improved by using high purity powder and a stabilized ZrO2 additive, (2) impact resistance of hot pressed Si3N4 was increased by the use of a crushable energy absorbing layer, (3) the oxidation resistance and strength of reaction sintered Si3N4 were increased by impregnating reaction sintered silicon nitride with solutions that oxidize to Al2O3 or ZrO2, (4) beta prime SiA1ON compositions and sintering aids were developed for improved oxidation resistance or improved high temperature strength.

  10. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-11-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis.

  11. Laser-based strain measurements for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lant, Christian T.

    1992-09-01

    The Instrumentation and Control Technology Division at NASA Lewis Research Center has developed a high performance optical strain measurement system for high temperature applications using wires and fibers. The system is based on Yamaguchi's two-beam speckle-shift strain measurement technique. The system automatically calculates surface strains at a rate of 5 Hz using a digital signal processor in a high speed micro-computer. The system is fully automated, and can be operated remotely. This report describes the speckle-shift technique and the latest NASA system design. It also shows low temperature strain test results obtained from small diameter tungsten, silicon carbide, and sapphire specimens. These specimens are of interest due to their roles in composite materials research at NASA Lewis.

  12. A SOA-based high Q microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Li, Lipei; Wang, Fei; Yu, Yuan; Li, Xiang; Zhang, Xinliang; Huang, Dexiu

    2011-01-01

    We propose and experimentally demonstrate a novel all-optical microwave filter with high quality factor (Q). It is based on a recirculating delay line (RDL) loop in which a semiconductor optical amplifier (SOA) is followed by a tunable narrow-band optical filter and a 1x2 10:90 optical coupler. Converted signal used as a negative tap is generated through wavelength conversion employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the SOA. The converted signal can circulate in the RDL loop so that the proposed filter realizes a high Q factor response after photo-detection. The 1x2 10:90 coupler is employed to extract 10% optical power from the loop as output. A frequency response with a high Q factor of 543, a rejection ratio of 40 dB is experimentally demonstrated.

  13. A SOA-based high Q microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Li, Lipei; Wang, Fei; Yu, Yuan; Li, Xiang; Zhang, Xinliang; Huang, Dexiu

    2010-12-01

    We propose and experimentally demonstrate a novel all-optical microwave filter with high quality factor (Q). It is based on a recirculating delay line (RDL) loop in which a semiconductor optical amplifier (SOA) is followed by a tunable narrow-band optical filter and a 1x2 10:90 optical coupler. Converted signal used as a negative tap is generated through wavelength conversion employing the cross-gain modulation (XGM) of the amplified spontaneous emission (ASE) spectrum of the SOA. The converted signal can circulate in the RDL loop so that the proposed filter realizes a high Q factor response after photo-detection. The 1x2 10:90 coupler is employed to extract 10% optical power from the loop as output. A frequency response with a high Q factor of 543, a rejection ratio of 40 dB is experimentally demonstrated.

  14. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  15. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.

    PubMed

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  16. Quantum chemical studies on three novel 1,2,4-triazole N-oxides as potential insensitive high explosives.

    PubMed

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-09-01

    Three novel explosives were designed by introducing N-oxides into 1,2,4-triazole: 1-amino-3,5-dinitro-1,2,4-triazole-2 N-oxide (ADT2NO), 1-amino-2,5-dinitro-1,2,4-triazole-3 N-oxide (ADT3NO), and 1-amino-3,5-dinitro-1,2,4-triazole-4 N-oxide (ADT4NO). Their detonation performance and sensitivity were estimated by using density functional theory and compared with some famous explosives like 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 1-methyl-2,4,6-trinitrobenzene (TNT). All three designed molecules are more powerful than HMX and less sensitive than TNT, indicating that ADT2NO, ADT3NO, and ADT4NO have high detonation performance as HMX and low sensitivity as TNT, making them being very valuable and may be considered as the potential candidates of insensitive high explosives. Properly introducing N-oxides into the energetic triazole derivatives can generate some superior energetic compounds with both high explosive performance and reduced sensitivity. PMID:25213112

  17. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel.

    PubMed

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-01-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol. PMID:24503897

  18. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    PubMed Central

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-01-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol. PMID:24503897

  19. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-02-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol.

  20. Inquiry-Based Instruction and High Stakes Testing

    NASA Astrophysics Data System (ADS)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  1. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous Fe¹¹ solutions

    SciTech Connect

    Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit; Szecsody, James E.; Grossl, Paul; Shea, Patrick

    2010-05-11

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifer solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.

  2. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    NASA Astrophysics Data System (ADS)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  3. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi

    2015-06-01

    An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.

  4. High Quality Factor Mechanical Resonators Based on WSe2 Monolayers.

    PubMed

    Morell, Nicolas; Reserbat-Plantey, Antoine; Tsioutsios, Ioannis; Schädler, Kevin G; Dubin, François; Koppens, Frank H L; Bachtold, Adrian

    2016-08-10

    Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 10(4) at liquid nitrogen temperature and 4.7 × 10(4) at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction. PMID:27459399

  5. High-throughput GPU-based LDPC decoding

    NASA Astrophysics Data System (ADS)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  6. Highly spectral efficient networks based on grouped optical path routing.

    PubMed

    Terada, Yuki; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-Ichi

    2016-03-21

    In order to mitigate the signal spectrum narrowing caused by optical filtering at nodes, an adequate guard band is needed between optical channels, which degrades the frequency utilization of optical fibers. In this study, we propose a grouped routing based network architecture that minimizes spectrum narrowing while greatly improving spectral efficiency. Coarse granular routing at GRE (grouped routing entity) level is employed at each ROADM node, but fine granular add/drop is adopted to retain high frequency utilization. Optical channels are packed densely in each GRE, and sufficient guard bands are inserted between GREs. As a result, signal spectrum narrowing is minimized and efficient spectrum utilization is achieved. Network design/control algorithms that support both static and dynamic traffic growth are developed. Extensive simulations demonstrate the effectiveness of the proposed architecture. To implement the scheme, current LCOS-based ROADMs are applied without any hardware changes; only the control schema are modified. PMID:27136815

  7. Modulator based high bandwidth optical readout for HEP detectors

    NASA Astrophysics Data System (ADS)

    Drake, G.; Fernando, W. S.; Stanek, R. W.; Underwood, D. G.

    2013-02-01

    Optical links will be an integral part of future LHC experiments at various scales from coupled sensors to off-detector communication. We are investigating CW lasers and light modulators as an alternative to VCSELs. Light modulators are small, use less power, have high bandwidth, are reliable, have low bit error rates and are very rad-hard. We present the quality of the links at 10Gbps and the results of radiation hardness measurements for the modulators built based on LiNbO3, InP, and Si. Also we present results on modulator-based free space data links, steered by MEMS mirrors and optical feedback paths for the control loop.

  8. Large motion high cycle high speed optical fibers for space based applications.

    SciTech Connect

    Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  9. Disintegration of rocks based on magnetically isolated high voltage discharge

    NASA Astrophysics Data System (ADS)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  10. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  11. A fluorescence high-temperature sensor based on fluorescence lifetime

    NASA Astrophysics Data System (ADS)

    Wu, Jinling; Wang, Yutian; Wang, Xinian

    2006-11-01

    A kind of fluorescence optic-fiber temperature sensor is devised based on the alexandrite crystal. In this system, a new optic- fiber probe fabrication techniques is proposed. This system is particularly adapted to the temperature measurement in the range of room temperature to 650°C. During the cause of experimentation, using the PLD-PMTR (termed the Pulse Modulated Phase-locked detection with Two References) signal processing scheme. This temperature measurement method is proved to be effective and useful for its highly resolution and precision. It ensured the detected fluorescence signal to noise ratio was high enough to be measurable when the temperature is raised to 650°C.

  12. Very High Output Thermoelectric Devices Based on ITO Nanocomposites

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave; Gregory, Otto J.

    2009-01-01

    A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.

  13. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.

    PubMed

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%. PMID:25485987

  14. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Hirata, Shuzo; Sakai, Yumi; Masui, Kensuke; Tanaka, Hiroyuki; Lee, Sae Youn; Nomura, Hiroko; Nakamura, Nozomi; Yasumatsu, Mao; Nakanotani, Hajime; Zhang, Qisheng; Shizu, Katsuyuki; Miyazaki, Hiroshi; Adachi, Chihaya

    2015-03-01

    Organic compounds that exhibit highly efficient, stable blue emission are required to realize inexpensive organic light-emitting diodes for future displays and lighting applications. Here, we define the design rules for increasing the electroluminescence efficiency of blue-emitting organic molecules that exhibit thermally activated delayed fluorescence. We show that a large delocalization of the highest occupied molecular orbital and lowest unoccupied molecular orbital in these charge-transfer compounds enhances the rate of radiative decay considerably by inducing a large oscillator strength even when there is a small overlap between the two wavefunctions. A compound based on our design principles exhibited a high rate of fluorescence decay and efficient up-conversion of triplet excitons into singlet excited states, leading to both photoluminescence and internal electroluminescence quantum yields of nearly 100%.

  15. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  16. Highly sensitive passive radio frequency identification based sensor systems

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  17. Highly sensitive passive radio frequency identification based sensor systems.

    PubMed

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments. PMID:20192517

  18. Further observations on high impact strength denture-base materials.

    PubMed

    Rodford, R A; Braden, M

    1992-01-01

    Previous studies have shown that high impact strength can be conferred on denture-base poly(methyl methacrylate) polymers by modification with acrylic-terminated butadiene-styrene block copolymers, and that the acrylic end-group was necessary for effective reinforcement. It is now shown that, by solvent extraction studies, grafting of the copolymer occurs both with acrylic-terminated and non-terminated block copolymers. It is therefore concluded that the mode of grafting is different, and some possible mechanisms are discussed. PMID:1420720

  19. Small Cation-Based High-Performance Energetic Nitraminofurazanates.

    PubMed

    Tang, Yongxing; He, Chunlin; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-08-01

    Large nitramino-substituted furazan anions were combined with small cations (hydroxylammonium, hydrazinium, and ammonium) to form a series of energetic salts that was fully characterized. The structures of several of the compounds (1 a, 2 a, 3 a, and 4 a) were further confirmed by single-crystal X-ray diffraction. Based on their physiochemical properties, such as density, thermal stability, and sensitivity, together with the calculated detonation properties, it was found that they exhibit good detonation performance and have potential application as high-energy-density materials. PMID:27356077

  20. Component-Based Software for High-Performance Scientific Computing

    SciTech Connect

    Alexeev, Yuri; Allan, Benjamin A.; Armstrong, Robert C.; Bernholdt, David E.; Dahlgren, Tamara L.; Gannon, Dennis B.; Janssen, Curtis; Kenny, Joseph P.; Krishnan, Manoj Kumar; Kohl, James A.; Kumfert, Gary K.; McInnes, Lois C.; Nieplocha, Jarek; Parker, Steven G.; Rasmussen, Craig; Windus, Theresa L.

    2005-06-26

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  1. High-brightness source based on luminescent concentration.

    PubMed

    de Boer, Dick K G; Bruls, Dominique; Jagt, Henri

    2016-07-11

    The concept of a high-luminance light source based on luminescent conversion of LED light and optical concentration in a transparent phosphor is explained. Experiments on a realized light source show that a luminous flux of 8500 lm and a luminance of 500 cd/mm2 can be attained using 56 pump LEDs at 330 W electrical input power. The measurement results are compared to optical simulations, showing that the experimental optical efficiency is slightly lower than expected. The present status enables applications like mid-segment digital projection using LED technology, whereas the concept is scalable to higher fluxes. PMID:27410894

  2. Semantic-based high resolution remote sensing image retrieval

    NASA Astrophysics Data System (ADS)

    Guo, Dihua

    High Resolution Remote Sensing (HRRS) imagery has been experiencing extraordinary development in the past decade. Technology development means increased resolution imagery is available at lower cost, making it a precious resource for planners, environmental scientists, as well as others who can learn from the ground truth. Image retrieval plays an important role in managing and accessing huge image database. Current image retrieval techniques, cannot satisfy users' requests on retrieving remote sensing images based on semantics. In this dissertation, we make two fundamental contributions to the area of content based image retrieval. First, we propose a novel unsupervised texture-based segmentation approach suitable for accurately segmenting HRRS images. The results of existing segmentation algorithms dramatically deteriorate if simply adopted to HRRS images. This is primarily clue to the multi-texture scales and the high level noise present in these images. Therefore, we propose an effective and efficient segmentation model, which is a two-step process. At high-level, we improved the unsupervised segmentation algorithm by coping with two special features possessed by HRRS images. By preprocessing images with wavelet transform, we not only obtain multi-resolution images but also denoise the original images. By optimizing the splitting results, we solve the problem of textons in HRRS images existing in different scales. At fine level, we employ fuzzy classification segmentation techniques with adjusted parameters for different land cover. We implement our algorithm using real world 1-foot resolution aerial images. Second, we devise methodologies to automatically annotate HRRS images based on semantics. In this, we address the issue of semantic feature selection, the major challenge faced by semantic-based image retrieval. To discover and make use of hidden semantics of images is application dependent. One type of the semantics in HRRS image is conveyed by composite

  3. Segmentation Based Fuzzy Classification of High Resolution Images

    NASA Astrophysics Data System (ADS)

    Rao, Mukund; Rao, Suryaprakash; Masser, Ian; Kasturirangan, K.

    images, we build a much needed bridge between the methodology domains of GIS and Image Analysis. The idea of having an integrated 'geographical information processing' environment is becoming much more realistic now that 'GIS' objects can be used for analysing an image and vice versa, new 'GIS' objects can be directly generated without ignoring the rich information environment of geographical concepts, relations and scales. In the above scenario, the main aim of this project is to assess whether object-oriented classification techniques would be more suitable for remote sensing images - specifically in the context of high resolution images. The paper basically examines potentials of classification techniques - especially segmentation based methods that is based on an object-semantics and that uses not only the spectral information but also the spatial characteristics; studies the integration of segmentation and fuzzy-classification to derive user-oriented information from the high resolution images and evaluates how such segmentation based classification compares with the more common pixel- based statistical technique. Segmentation based fuzzy classification is applied to high resolution images from IRS and for 1m images from satellites - especially to extract urban information.

  4. High flux research reactors based on particulate fuel

    SciTech Connect

    Powell, J.R.; Takahashi, H.; Horn, F.L.

    1986-02-01

    High Flux Particle Bed Reactor (HFPBR) designs based on High Temperature Gas Reactors (HTGR) particular fuel are described. The coated fuel particles, approx.500 microns in diameter, are packed between porous metal frits, and directly cooled by flowing D/sub 2/O. The large heat transfer surface area in the packed bed, approx.100 cm/sup 2//cm/sup 3/ of volume, allows high power densities, typically 10 MW/liter. Peak thermal fluxes in the HFPBR are 1 to 2 x 1/sup 16/ n/c/sup 2/ sec., depending on configuration and moderator choice with beryllium and D/sub 2/O Moderators yielding the best flux performance. Spent fuel particles can be hydraulically unloaded every day or two and fresh fuel reloaded. The short fuel cycle allows HFPBR fuel loading to be very low, approx.2 kg of /sup 235/U, with a fission product inventory one-tenth of that in present high flux research reactors. The HFPBR can use partially enriched fuel, 20% /sup 235/U, without degradation in flux reactivity. 8 refs., 12 figs., 2 tabs.

  5. Development of Dielectric-Based High Gradient Accelerating Structures

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J.; Liu, W.; Gold, S. H.; Kinkead, A. K.; Kanareykin, A.; Kazakov, S.

    2006-11-27

    High gradient accelerating structures using dielectric-lined circular waveguides have been developed for a number of years at Argonne National Laboratory. In this article, we first report the experimental results of high power rf testing on the quartz based Dielectric-Loaded Accelerating (DLA) structure carried out on Feb. 2006 at the Naval Research Laboratory. The motivation for this experiment is to test the multipactor effect on different materials under high power and high vacuum condition. Up to 12 MW pulsed rf went through the tube without breakdown. Multipactor appeared during the experiment but with different features compared to other materials like alumina. Photomultiplier Tube (PMT) measurements were introduced into the experiment for the first time to observe the light emission time and intensity. In the second part of this paper, ways to achieve higher gradient for DLA structures are proposed: 1) smaller ID and longitudinal gap free DLA structures to reduce multipactor and obtain higher gradient; 2) new coaxial type coupler to avoid dielectric gap and improve impedance matching; 3) double layered DLA structure to reduce rf loss and enhance shunt impedance as well.

  6. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    NASA Astrophysics Data System (ADS)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ∼103) graphite nanobelt thin films deposited by a modified Langmuir–Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain–release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  7. Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Liu, Hongbo; Shi, Lei; He, Yuede

    2012-09-01

    Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77 K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7 m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190 F/g at 1 mA/cm2 was obtained in 1 M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.

  8. Ultra-high speed communications based on solitons in fibers

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira

    2000-10-01

    The citation of the Maxwell prize reads: ``For innovative discoveries and seminal contributions to the theories of nonlinear drift wave turbulence, Alfvén wave propagation in laboratory and space plasmas, and optical solitons and their application to high speed communication". The prize is given to three somewhat unrelated contributions made during the course of my career as a plasma physicist. Traditionally an award talk summarizes works related to the citation. However, because of the diversified contents of the citations, I prepared my talk with the focus only on the last topic because some of the audience may be of more expertise on the other subjects. I apologize for the fact that the talk may be worth only one third of the prize. Multi-Terabits’s, ultra-high speed optical transmissions over several thousand kilometers on fibers are becoming reality and are expected to serve as the trunk line for highly demanded Internet traffics. Most of them use soliton or soliton-like RZ (Return to Zero) format in fibers with properly managed (group velocity) dispersion. These formats are the only stable envelope waveforms of light waves in fibers in the presence of Kerr (cubic) nonlineariy and dispersion with loss compensated by periodic optical amplifications. In practice, the transmission systems utilize the all-optical transmission concept and the nonlinear Schrodinger equation assisted by the split step numerical solutions as the master equation to describe the information transfer in fibers. All these facts are the outcome of research on optical solitons in fibers. The talk presents a brief historical development of the soliton based high-speed communications followed by current status of ultra-high speed communications by means of solitons as well as by other formats. Although the talk may not be of a core interest of plasma physics community, it presents an interesting example of a useful by-product of plasma physics research.

  9. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-01

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA D+ beam with 45 keV energy. Neutron yield density at target surface of 109 s-1 cm-2 was detected with a system of two 3He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by D+ beam demonstrated in present work accelerated to 100 keV could reach 6 × 1010 s-1 cm-2. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  10. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  11. SOI-Based High-Voltage, High-Temperature Integrated Circuit Gate Driver for SiC-Based Power FETs

    SciTech Connect

    Huque, Mohammad A; Tolbert, Leon M; Blalock, Benjamin; Islam, Syed K

    2010-01-01

    Silicon carbide (SiC)-based field effect transistors (FETs) are gaining popularity as switching elements in power electronic circuits designed for high-temperature environments like hybrid electric vehicle, aircraft, well logging, geothermal power generation etc. Like any other power switches, SiC-based power devices also need gate driver circuits to interface them with the logic units. The placement of the gate driver circuit next to the power switch is optimal for minimizing system complexity. Successful operation of the gate driver circuit in a harsh environment, especially with minimal or no heat sink and without liquid cooling, can increase the power-to-volume ratio as well as the power-to-weight ratio for power conversion modules such as a DC-DC converter, inverter etc. A silicon-on-insulator (SOI)-based high-voltage, high-temperature integrated circuit (IC) gate driver for SiC power FETs has been designed and fabricated using a commercially available 0.8-m, 2-poly and 3-metal bipolar-complementary metal oxide semiconductor (CMOS)-double diffused metal oxide semiconductor (DMOS) process. The prototype circuit-s maximum gate drive supply can be 40-V with peak 2.3-A sourcing/sinking current driving capability. Owing to the wide driving range, this gate driver IC can be used to drive a wide variety of SiC FET switches (both normally OFF metal oxide semiconductor field effect transistor (MOSFET) and normally ON junction field effect transistor (JFET)). The switching frequency is 20-kHz and the duty cycle can be varied from 0 to 100-. The circuit has been successfully tested with SiC power MOSFETs and JFETs without any heat sink and cooling mechanism. During these tests, SiC switches were kept at room temperature and ambient temperature of the driver circuit was increased to 200-C. The circuit underwent numerous temperature cycles with negligible performance degradation.

  12. Calibration of GPS based high accuracy speed meter for vehicles

    NASA Astrophysics Data System (ADS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-02-01

    GPS based high accuracy speed meter for vehicles is a special type of GPS speed meter which uses Doppler Demodulation of GPS signals to calculate the speed of a moving target. It is increasingly used as reference equipment in the field of traffic speed measurement, but acknowledged standard calibration methods are still lacking. To solve this problem, this paper presents the set-ups of simulated calibration, field test signal replay calibration, and in-field test comparison with an optical sensor based non-contact speed meter. All the experiments were carried out on particular speed values in the range of (40-180) km/h with the same GPS speed meter. The speed measurement errors of simulated calibration fall in the range of +/-0.1 km/h or +/-0.1%, with uncertainties smaller than 0.02% (k=2). The errors of replay calibration fall in the range of +/-0.1% with uncertainties smaller than 0.10% (k=2). The calibration results justify the effectiveness of the two methods. The relative deviations of the GPS speed meter from the optical sensor based noncontact speed meter fall in the range of +/-0.3%, which validates the use of GPS speed meter as reference instruments. The results of this research can provide technical basis for the establishment of internationally standard calibration methods of GPS speed meters, and thus ensures the legal status of GPS speed meters as reference equipment in the field of traffic speed metrology.

  13. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    SciTech Connect

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  14. Graph - Based High Resolution Satellite Image Segmentation for Object Recognition

    NASA Astrophysics Data System (ADS)

    Ravali, K.; Kumar, M. V. Ravi; Venugopala Rao, K.

    2014-11-01

    Object based image processing and analysis is challenging research in very high resolution satellite utilisation. Commonly ei ther pixel based classification or visual interpretation is used to recognize and delineate land cover categories. The pixel based classification techniques use rich spectral content of satellite images and fail to utilise spatial relations. To overcome th is drawback, traditional time consuming visual interpretation methods are being used operational ly for preparation of thematic maps. This paper addresses computational vision principles to object level image segmentation. In this study, computer vision algorithms are developed to define the boundary between two object regions and segmentation by representing image as graph. Image is represented as a graph G (V, E), where nodes belong to pixels and, edges (E) connect nodes belonging to neighbouring pixels. The transformed Mahalanobis distance has been used to define a weight function for partition of graph into components such that each component represents the region of land category. This implies that edges between two vertices in the same component have relatively low weights and edges between vertices in different components should have higher weights. The derived segments are categorised to different land cover using supervised classification. The paper presents the experimental results on real world multi-spectral remote sensing images of different landscapes such as Urban, agriculture and mixed land cover. Graph construction done in C program and list the run time for both graph construction and segmentation calculation on dual core Intel i7 system with 16 GB RAM, running 64bit window 7.

  15. A DSP Based POD Implementation for High Speed Multimedia Communications

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Nian; Li, Hua; Zhang, Nuannuan; Xie, Jiesheng

    2002-12-01

    In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD) security module, proposed by[InlineEquation not available: see fulltext.], allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP) (TMS320C6211) based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA), elliptic curve Diffie Hellman (ECDH) key exchange, elliptic curve key derivation function (ECKDF), cellular automata (CA) cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to[InlineEquation not available: see fulltext.]. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  16. A laser-based FAIMS detector for detection of ultra-low concentrations of explosives

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Tugaenko, Anton V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Eugene M.

    2014-06-01

    A non-contact method for analyzing of explosives traces from surfaces was developed. The method is based on the laser desorption of analyzed molecules from the surveyed surfaces followed by the laser ionization of air sample combined with the field asymmetric ion mobility spectrometry (FAIMS). The pulsed radiation of the fourth harmonic of a portable GSGG: Cr3+ :Nd3+ laser (λ = 266 nm) is used. The laser desorption FAIMS analyzer have been developed. The detection limit of the analyzer equals 40 pg for TNT. The results of detection of trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) are presented. It is shown that laser desorption of nitro-compounds from metals is accompanied by their surface decomposition. A method for detecting and analyzing of small concentrations of explosives in air based on the laser ionization and the FAIMS was developed. The method includes a highly efficient multipass optical scheme of the intracavity fourthharmonic generation of pulsed laser radiation (λ = 266 nm) and the field asymmetric ion mobility (FAIM) spectrometer disposed within a resonator. The ions formation and detection proceed inside a resonant cavity. The laser ion source based on the multi-passage of radiation at λ = 266 nm through the ionization region was elaborated. On the basis of the method the laser FAIMS analyzer has been created. The analyzer provides efficient detection of low concentrations of nitro-compounds in air and shows a detection limit of 10-14 - 10-15 g/cm3 both for RDX and TNT.

  17. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits. PMID:20831235

  18. Machine Learning Based Road Detection from High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Lv, Ye; Wang, Guofeng; Hu, Xiangyun

    2016-06-01

    At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads' ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads' pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads' area and to detect the centerline of roads.

  19. Integrating reconfigurable hardware-based grid for high performance computing.

    PubMed

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  20. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    PubMed Central

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  1. High compliance vascular grafts based on semi-interpenetrating networks

    PubMed Central

    Dempsey, David K.; Nezarati, Roya M.; Mackey, Calvin E.

    2014-01-01

    Current synthetic vascular grafts have poor patency rates in small diameter applications (<6 mm) due to intimal hyperplasia arising from a compliance mismatch between the graft and native vasculature. Enormous efforts have focused on improving biomechanical properties; however, polymeric grafts are often constrained by an inverse relationship between burst pressure and compliance. We have developed a new, semi-interpenetrating network (semi-IPN) approach to improve compliance without sacrificing burst pressure. The effects of heat treatment on graft morphology, fiber architecture, and resultant biomechanical properties are presented. In addition, biomechanical properties after equilibration at physiological temperature were investigated in relation to polyurethane microstructure to better predict in vivo performance. Compliance values as high as 9.2 ± 2.7 %/mmHg x 10−4 were observed for the semi-IPN graft while also maintaining high burst pressure, 1780 ± 230 mm Hg. The high compliance of these heat-treated poly(carbonate urethane) (PCU) and semi-IPN grafts is expected to improve long-term patency rates beyond even saphenous vein autografts by preventing intimal hyperplasia. The fundamental structure-property relationships gained from this work may also be utilized to advance biomedical device designs based on thermoplastic polyurethanes. PMID:25601822

  2. Current trends in virtual high throughput screening using ligand-based and structure-based methods.

    PubMed

    Sukumar, Nagamani; Das, Sourav

    2011-12-01

    High throughput in silico methods have offered the tantalizing potential to drastically accelerate the drug discovery process. Yet despite significant efforts expended by academia, national labs and industry over the years, many of these methods have not lived up to their initial promise of reducing the time and costs associated with the drug discovery enterprise, a process that can typically take over a decade and cost hundreds of millions of dollars from conception to final approval and marketing of a drug. Nevertheless structure-based modeling has become a mainstay of computational biology and medicinal chemistry, helping to leverage our knowledge of the biological target and the chemistry of protein-ligand interactions. While ligand-based methods utilize the chemistry of molecules that are known to bind to the biological target, structure-based drug design methods rely on knowledge of the three-dimensional structure of the target, as obtained through crystallographic, spectroscopic or bioinformatics techniques. Here we review recent developments in the methodology and applications of structure-based and ligand-based methods and target-based chemogenomics in Virtual High Throughput Screening (VHTS), highlighting some case studies of recent applications, as well as current research in further development of these methods. The limitations of these approaches will also be discussed, to give the reader an indication of what might be expected in years to come. PMID:21843144

  3. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  4. II-VI Materials-Based High Performance Intersubband Devices

    NASA Astrophysics Data System (ADS)

    Ravikumar, Arvind Pawan

    Mid-infrared (mid-IR) light is of vital technological importance because of its application in trace-gas absorption spectroscopy, imaging, free-space communication or infrared countermeasures. Thus the ability to generate and detect mid-IR light at low cost and preferably, at room temperature is of utmost importance. High performance quantum cascade (QC) lasers - mid-IR light sources based on optical transitions in thin quantum wells, and intersubband infrared detectors - namely the quantum well infrared photodetectors (QWIPs) and quantum cascade detectors (QCDs), have rapidly advanced, due to excellent material quality of III-V materials. In spite of this tremendous success, there lie challenges such as lack of efficient short-wavelength emitters or broadband detectors - challenges that arise from intrinsic materials properties. As a central theme in this thesis, we look at a new class of materials, the II-VI based ZnCdSe/ZnCdMgSe system, to close technological gaps and develop high performance infrared light sources and detectors in the entire mid-IR regime. To that end, we first demonstrate the flexibility that the combination of II-VI materials and band structure engineering allows by developing various QWIPs, QCDs and QC emitters at different wavelengths, not easily achieved by other materials. The performance of these first-of-their-kind detectors is already comparable to existing commercial solutions. To fully realize the potential of this new material system, we also developed a room-temperature broadband infrared detector detecting between 3 and 6 mum with record responsivity. With this technology, it is now possible to monolithically integrate high performance mid-IR lasers and detectors for on-chip applications. One of the challenges with all intersubband detectors is that they do not absorb normally incident light, like most conventional detectors. In order to make intersubband detectors attractive to commercial exploration, we develop a novel method to

  5. Using problem based learning and guided inquiry in a high school acid-base chemistry unit

    NASA Astrophysics Data System (ADS)

    McKinley, Katie

    The purpose of this investigation was to determine if incorporating problem based learning and guided inquiry would improve student achievement in an acid base unit for high school chemistry. The activities and labs in the unit were modified to be centered around the problem of a fish kill that students investigated. Students also participated in guided inquiry labs to increase the amount of critical thinking and problem solving being done in the classroom. The hypothesis was that the implementation of problem based learning and guided inquiry would foster student learning. Students took a pre-test and post-test on questions covering the objectives of the acid base unit. These assessments were compared to determine the effectiveness of the unit. The results indicate that the unit was effective in increasing student performance on the unit test. This study also analyzed the process of problem based learning. Problem based learning can be an effective method of engaging students in inquiry. However, designing an effective problem based learning unit requires careful design of the problem and enough structure to assure students learn the intended content.

  6. Highly sensitive biological sensor based on photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Azzam, Shaimaa I. H.; Hameed, Mohamed F.; Obayya, S. S. A.

    2014-05-01

    A photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor is proposed and analysed. The proposed sensor consists of microuidic slots enclosing a dodecagonal layer of air holes cladding and a central air hole. The sensor can perform analyte detection using both HEx 11 and HEy 11 modes with a relatively high sensitivities up to 4000 nm=RIU and 3000 nm=RIU and resolutions of 2.5×10-5 RIU-1 and 3.33×10-5 RIU-1 with HEx11 and HEy11, respectively, with regards to spectral interrogation which to our knowledge are higher than those reported in the literature. Moreover, the structure of the suggested sensor is simple with no fabrication complexities which makes it easy to fabricate with standard PCF fabrication technologies.

  7. UAV-based high-throughput phenotyping in legume crops

    NASA Astrophysics Data System (ADS)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  8. Java-based communication in a High Performance Computing environment

    NASA Astrophysics Data System (ADS)

    Fries, A.; de Mora, J. Portell I.; Sirvent, R.

    2011-02-01

    Java is one of the most widely used computer programming languages, however its use in High Performance Computing (HPC) is relatively low. A typical HPC environment consists of a number of multi-core computing nodes, while a typical application running in such an environment will normally contain CPU intensive code that can be executed in parallel. Such an application may require inter-node as well as intra-node communication. Message Passing Interface (MPI) is a language independent specification of an API to allow such communication. MPJExpress (Baker et al. 2006) and F-MPJ (Taboada et al. 2009) are Java-based implementations of MPI, designed with the efficient performance of data transfers as a main objective. In this paper we discuss the scalability of one approach of distributing data to compute nodes in HPC and we propose the design of an alternative data transfer system, building upon MPI.

  9. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  10. A High-Level Language for Rule-Based Modelling

    PubMed Central

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D.

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  11. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  12. Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.

  13. Theoretically predicted Fox-7 based new high energy density molecules

    NASA Astrophysics Data System (ADS)

    Ghanta, Susanta

    2016-08-01

    Computational investigation of CHNO based high energy density molecules (HEDM) are designed with FOX-7 (1, 1-dinitro 2, 2-diamino ethylene) skeleton. We report structures, stability and detonation properties of these new molecules. A systematic analysis is presented for the crystal density, activation energy for nitro to nitrite isomerisation and the C-NO2 bond dissociation energy of these molecules. The Atoms in molecules (AIM) calculations have been performed to interpret the intra-molecular weak H-bonding interactions and the stability of C-NO2 bonds. The structure optimization, frequency and bond dissociation energy calculations have been performed at B3LYP level of theory by using G03 quantum chemistry package. Some of the designed molecules are found to be more promising HEDM than FOX-7 molecule, and are proposed to be candidate for synthetic purpose.

  14. High-Contrast Gratings based Spoof Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-02-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics.

  15. High-Contrast Gratings based Spoof Surface Plasmons

    PubMed Central

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-01-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics. PMID:26879637

  16. Building high dimensional imaging database for content based image search

    NASA Astrophysics Data System (ADS)

    Sun, Qinpei; Sun, Jianyong; Ling, Tonghui; Wang, Mingqing; Yang, Yuanyuan; Zhang, Jianguo

    2016-03-01

    In medical imaging informatics, content-based image retrieval (CBIR) techniques are employed to aid radiologists in the retrieval of images with similar image contents. CBIR uses visual contents, normally called as image features, to search images from large scale image databases according to users' requests in the form of a query image. However, most of current CBIR systems require a distance computation of image character feature vectors to perform query, and the distance computations can be time consuming when the number of image character features grows large, and thus this limits the usability of the systems. In this presentation, we propose a novel framework which uses a high dimensional database to index the image character features to improve the accuracy and retrieval speed of a CBIR in integrated RIS/PACS.

  17. Piezo-based miniature high resolution stabilized gimbal

    NASA Astrophysics Data System (ADS)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Yetkariov, Rita

    2016-05-01

    Piezo motors are characterized by higher mechanical power density, fast response and direct drive. These features are beneficial for miniature gimbals. A gimbal based on such motors was developed. Diameter is 58 mm, weight is 190 grams. The gimbal carries two cameras: a Flir Quark and an HD day camera. The dynamic performance is as high as 3 rad/sec velocity and 100 rad/secΛ2 acceleration. A two axes stabilization algorithm was developed, yielding 80 micro radian stabilization. Further, a panoramic image capture, at a rate of six stabilized field of views per second, was developed. The manuscript reviews the gimbal structure and open architecture, allowing adaptation to other cameras (SWIR etc.), the control algorithm and presents experimental results of stabilization and of panoramic views taken on a vibration platform and on a UAV.

  18. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  19. High-Contrast Gratings based Spoof Surface Plasmons.

    PubMed

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-01-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics. PMID:26879637

  20. High Temperature Photonegative Resists Based On Styrylpyridinium Units

    NASA Astrophysics Data System (ADS)

    Li, MinYu; Pearce, Eli M.; Narang, S.

    1987-08-01

    Four types of condensation linear polymers containing styrylpyridine units were prepared as high temperature stable photoresists: polyester and polyurethane derived from 2,6-bis(p-hydroxystyryl) pyridine, and polyamide and polyimide derived from 2,6-bis(paminostyryl)py-ridine or 2,6-bis(p-carboxystyryl)pyridine. The polymers are thermally stable in the temperature range between 360 to 500°C except for the polyurethane. The decomposition temperature is higher for the aromatic polymers, lower for their aliphatic analogs. The polymers are photoreactive and crosslink based on the 2+2 cycloaddition mechanism under UV irradiation. The highest photosensitivity of these polymers, as measured by gel dose, is in the region of 10-40 mJ/cm2. The quantum yield of the photoreaction and the relationship of the photosensitivity with the morphology in the polymer systems were studied.

  1. High-dynamic range DMD-based IR scene projector

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.

    2013-03-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  2. High-dynamic range DMD-based infrared scene projector

    NASA Astrophysics Data System (ADS)

    Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Rentz Dupuis, Julia

    2013-05-01

    OPTRA is developing a next-generation digital micromirror device (DMD) based two-band infrared scene projector (IRSP) with infinite bit-depth independent of frame rate and an order of magnitude improvement in contrast over the state of the art. Traditionally DMD-based IRSPs have offered larger format and superior uniformity and pixel operability relative to resistive and diode arrays, however, they have been limited in contrast and also by the inherent bitdepth / frame rate tradeoff imposed by pulse width modulation (PWM). OPTRA's high dynamic range IRSP (HIDRA SP) has broken this dependency with a dynamic structured illumination solution. The HIDRA SP uses a source conditioning DMD to impose the structured illumination on two projector DMDs - one for each spectral band. The source conditioning DMD is operated in binary mode, and the relay optics which form the structured illumination act as a low pass spatial filter. The structured illumination is therefore spatially grayscaled and more importantly is analog with no PWM. In addition, the structured illumination concentrates energy where bright object will be projected and extinguishes energy in dark regions; the result is a significant improvement in contrast. The projector DMDs are operated with 8-bit PWM, however the total projected image is analog with no bit-depth / frame rate dependency. In this paper we describe our progress towards the development, build, and test of a prototype HIDRA SP.

  3. Development of High Resolution Scintillator Systems Based on Photocell Technology

    SciTech Connect

    W.J. Kernan; L.A. Franks; M. Groza; A. Burger

    2006-01-01

    Inorganic scintillator/photomultiplier-based spectrometers are the systems of choice for a multitude of X-ray and gamma radiation measurement applications. Despite widespread use, they have numerous shortcomings. The most serious shortcoming is the relatively poor energy resolution that makes isotope identification problematic, particularly in the case of trace quantities. Energy resolution in scintillator/photomultiplier tube (PMT) spectrometers is governed by a combination of the crystal intrinsic resolution that includes non-linearity effects, photomultiplier statistics, and the variability in the probability of a scintillation photon generating a photoelectron at the photocathode. It is evident that energy resolution in these systems is linked to both the physics of light generation in the scintillator and the characteristics of the PMT. PMTs also present design problems, especially in the case of handheld and portable instruments, due to their considerable weight and volume. Additionally, PMTs require well-regulated high voltage, and are vulnerable to magnetic fields. The objective of this work is to provide instrument designers of scintillation-based gamma-ray spectrometers with superior energy resolution and greatly reduced weight and volume. It is planned to achieve this advancement by optimizing the performance of a new class of inorganic scintillators by matching their emission spectra with the enhanced quantum efficiency of certain photocells.

  4. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  5. Ultra High-Speed Radio Frequency Switch Based on Photonics

    PubMed Central

    Ge, Jia; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches. PMID:26608349

  6. Ultra High-Speed Radio Frequency Switch Based on Photonics

    NASA Astrophysics Data System (ADS)

    Ge, Jia; Fok, Mable P.

    2015-11-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  7. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  8. High-performance 193nm photoresists based on fluorosulfonamide

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Chen, Kuang-Jung; Kwong, Ranee; Lawson, Margaret C.; Khojasteh, Mahmoud; Popova, Irene; Varanasi, P. Rao; Shimokawa, Tsutomu; Yamaguchi, Yoshikazu; Kusumoto, Shiro; Sugiura, Makoto; Kawakami, Takanori; Slezak, Mark; Dabbagh, Gary; Liu, Zhi

    2007-03-01

    The combination of immersion lithography and reticle enhancement techniques (RETs) has extended 193nm lithography into the 45nm node and possibly beyond. In order to fulfill the tight pitch and small critical dimension requirements of these future technology nodes, the performance of 193nm resist materials needs to further improve. In this paper, a high performance 193nm photoresist system based on fluorosulfonamide (FSM) is designed and developed. The FSM group has good transparency at 193nm. Compared to the commonly used hexafluoroalcohol (HFA) group, the trifluoromethyl sulfonamide (TFSM) functionality has a lower pKa value and contains less fluorine atoms. Polymers containing the TFSM functionality have exhibited improved dissolution properties and better etch resistance than their HFA counterparts. Resists based on the FSM-containing polymers have shown superior lithographic performance for line, trench and contact hole levels under the 45nm node exposure conditions. In addition, FSM resists have also demonstrated excellent bright field and dark field compatibility and thereby make it possible to use one resist for both bright field and dark field level applications. The structure, property and lithographic performance of the FSM resist system are reported.

  9. Disintegration of rocks based on magnetically isolated high voltage discharge.

    PubMed

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper. PMID:23464235

  10. High reliability outdoor sonar prototype based on efficient signal coding.

    PubMed

    Alvarez, Fernando J; Ureña, Jesús; Mazo, Manuel; Hernández, Alvaro; García, Juan J; de Marziani, Carlos

    2006-10-01

    Many mobile robots and autonomous vehicles designed for outdoor operation have incorporated ultrasonic sensors in their navigation systems, whose function is mainly to avoid possible collisions with very close obstacles. The use of these systems in more precise tasks requires signal encoding and the incorporation of pulse compression techniques that have already been used with success in the design of high-performance indoor sonars. However, the transmission of ultrasonic encoded signals outdoors entails a new challenge because of the effects of atmospheric turbulence. This phenomenon causes random fluctuations in the phase and amplitude of traveling acoustic waves, a fact that can make the encoded signal completely unrecognizable by its matched receiver. Atmospheric turbulence is investigated in this work, with the aim of determining the conditions under which it is possible to assure the reliable outdoor operation of an ultrasonic pulse compression system. As a result of this analysis, a novel sonar prototype based on complementary sequences coding is developed and experimentally tested. This encoding scheme provides the system with very useful additional features, namely, high robustness to noise, multi-mode operation capability (simultaneous emissions with minimum cross talk interference), and the possibility of applying an efficient detection algorithm that notably decreases the hardware resource requirements. PMID:17036794

  11. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. High Performance Phototransistor based on Nanostructured Regioregular Poly (3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Pal, Tanusri; Arif, M.; Khondaker, Saiful I.

    2010-03-01

    We have demonstrated high performance phototransistors based on regioregular poly 3-hexylthiophene (rr-P3HT) by tuning the nanomorphology of the P3HT thin film. The morphology of the solution processing polymer has been controlled by the selection of organic solvents (p-xylene, dichlorobenzene and chloroform). Under illumination of light drain current increased significantly and threshold voltage shifted towards positive direction whereas mobility remains unaffected. Change in threshold voltage corresponds to change in carrier density due to illumination. Conversely the field-effect mobility is relatively unaffected, indicates that the electronic structure of the polymer is not affected by the illumination. Devices made from p-xylene and dichlorobenzene solution show responsivity (Photocurrent/Optical power) of 16 A/W and 21A/W respectively at VG=0V. The responsivity further increased up to one order of magnitude high by tuning the gate bias. While devices made from chloroform solvent show maximum responsivity of up to 2A/W. The maximum photosensitivity (Photocurrent/ Dark current) of our device is 3.8X10^3.

  13. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    NASA Astrophysics Data System (ADS)

    Palagin, Dennis; Doye, Jonathan P. K.

    2014-12-01

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni-Al clusters, Ni-Ag clusters preserve high spin states (up to 8 μB in case of Ni13Ag32 cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni7Ag27 cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni13Ag38 clusters adsorbed on the Si(111)-(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  14. LSD-based analysis of high-resolution stellar spectra

    NASA Astrophysics Data System (ADS)

    Tsymbal, V.; Tkachenko, A.; Van, Reeth T.

    2014-11-01

    We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.

  15. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1994-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  16. High level language-based robotic control system

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)

    1996-01-01

    This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.

  17. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    SciTech Connect

    Palagin, Dennis Doye, Jonathan P. K.

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  18. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  19. High-precision ground-based photometry of exoplanets

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Jayawardhana, Ray

    2013-04-01

    High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level), this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time) as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  20. Silicon Framework-Based Lithium Silicides at High Pressures.

    PubMed

    Zhang, Shoutao; Wang, Yanchao; Yang, Guochun; Ma, Yanming

    2016-07-01

    The bandgap and optical properties of diamond silicon (Si) are not suitable for many advanced applications such as thin-film photovoltaic devices and light-emitting diodes. Thus, finding new Si allotropes with better bandgap and optical properties is desirable. Recently, a Si allotrope with a desirable bandgap of ∼1.3 eV was obtained by leaching Na from NaSi6 that was synthesized under high pressure [Nat. Mater. 2015, 14, 169], paving the way to finding new Si allotropes. Li is isoelectronic with Na, with a smaller atomic core and comparable electronegativity. It is unknown whether Li silicides share similar properties, but it is of considerable interest. Here, a swarm intelligence-based structural prediction is used in combination with first-principles calculations to investigate the chemical reactions between Si and Li at high pressures, where seven new compositions (LiSi4, LiSi3, LiSi2, Li2Si3, Li2Si, Li3Si, and Li4Si) become stable above 8.4 GPa. The Si-Si bonding patterns in these compounds evolve with increasing Li content sequentially from frameworks to layers, linear chains, and eventually isolated Si ions. Nearest-neighbor Si atoms, in Cmmm-structured LiSi4, form covalent open channels hosting one-dimensional Li atom chains, which have similar structural features to NaSi6. The analysis of integrated crystal orbital Hamilton populations reveals that the Si-Si interactions are mainly responsible for the structural stability. Moreover, this structure is dynamically stable even at ambient pressure. Our results are also important for understanding the structures and electronic properties of Li-Si binary compounds at high pressures. PMID:27302244

  1. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  2. High efficiency THz-wave modulators based on conjugated polymer-based organic films

    NASA Astrophysics Data System (ADS)

    He, Ting; Zhang, Bo; Wang, Guo-cui; Zang, Meng-di; Hou, Yan-bing; Shen, Jing-ling

    2016-02-01

    A study of the modulation mechanisms of conjugated polymer-based organic films and high-efficiency, broadband and all-optically controlled terahertz modulators based on these films is presented in this paper. Under very low-level external laser excitation, modulation efficiency of more than 99% is achieved using MEH-PPV/Si, PFO/Si and F8BT/Si bilayers. By analyzing the changes in the photo-excited carrier density and photoconductivity with changes in the external laser intensity, we introduce a nonlinear photo-induced absorption process to explain the strong attenuation mechanism for the transmitted terahertz waves. Finally, a simple THz communication test is carried out to demonstrate the potential future applications of the high-efficiency all-optically controlled terahertz modulator.

  3. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Bueley, Christopher; Wild, Peter M.

    2013-09-01

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated.

  4. Thermal and Mechanical Response of PBX 9501 and Simulants Under High Frequency Contact Excitation

    NASA Astrophysics Data System (ADS)

    Mares, Jesus Ortega, Jr.

    Stand-off detection of explosives through trace vapor detection remains a distinct challenge due to the low vapor pressures of these materials. However, it is known that the vapor concentration of these explosives may be significantly increased by elevating the temperature of the material. It is plausible that improvements in the detection of explosives might be realized through the use of mechanical excitation. In this work PBX 9501 (an HMX-based explosive), two mechanical mock materials 900-21, and PBS 9501 were insulted with contact mechanical excitation in the frequency range of 50 kHz to 40 MHz. The mechanical response of each sample was measured via ultrasound transducers and was confirmed via laser Doppler vibrometry up to a frequency of 1 MHz. Steady-state thermal responses were observed via infrared thermography at discrete frequencies spanning the full frequency range of interest. Temperature excursions of approximately 15 K were observed in PBX 9501 and similar results were observed from the mock materials. The mechanisms for heat generation within these materials were found to be highly dependent on the frequency range of excitation. Heat generation at lower frequencies corresponding to structural resonances is likely driven by bulk motion of the sample. Above these frequencies, wavelength-scale interactions of the particles and binder are proposed to be the main contributor to heating. The observed phenomenon may prove useful in the aid of current trace vapor detection methods for explosives.

  5. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white

  6. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold

    NASA Astrophysics Data System (ADS)

    Barua, A.; Kim, S.; Horie, Y.; Zhou, M.

    2013-02-01

    A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits

  7. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  8. High-resolution optical signatures of fresh and aged explosives in the 420nm to 620nm illumination range

    NASA Astrophysics Data System (ADS)

    Lunsford, Robert; Grun, Jacob; Gump, Jared

    2012-06-01

    Optical signatures of fresh and aged explosives are measured and compared to determine whether there exist differences in the signatures that can be exploited for detection. The explosives examined are RDX, TNT, and HMX, which have been heated for two weeks at 75 degrees centigrade or irradiated for two weeks with a 15-Watt ultraviolet lamp (254nm). The optical signatures are obtained by illuminating the samples with a sequence of laser wavelengths between 420nm and 620nm in 10 nm steps and measuring the spectra of light scattered from the sample at each laser wavelength. The measurements are performed on the Naval Research Laboratory's SWOrRD instrument. SWOrRD is capable of illuminating a sample with laser wavelength between 210nm and 2000nm, in steps of 0.1nm, and measuring the spectrum of light scattered from the sample at each wavelength. SWOrRD's broad tuning range, high average power (1- 300mW), narrow line width (< 4cm-1), and rapid wavelength tunability enable these measurements. Results, based on more than 80 measurements - each at 21 sequential laser wavelengths, indicate that the variation in spectral line amplitude observed when altering laser illumination wavelength differs between fresh and aged explosives. Thus, an instrument for rapid and reagent-less differentiation between aged and fresh explosives, based on illumination with a few appropriately chosen laser wavelengths appears feasible.

  9. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  10. High energy sodium based room temperature flow batteries

    NASA Astrophysics Data System (ADS)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  11. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/. PMID:20385580

  12. Inverse field-based approach for simultaneous B₁ mapping at high fields - a phantom based study.

    PubMed

    Jin, Jin; Liu, Feng; Zuo, Zhentao; Xue, Rong; Li, Mingyan; Li, Yu; Weber, Ewald; Crozier, Stuart

    2012-04-01

    Based on computational electromagnetics and multi-level optimization, an inverse approach of attaining accurate mapping of both transmit and receive sensitivity of radiofrequency coils is presented. This paper extends our previous study of inverse methods of receptivity mapping at low fields, to allow accurate mapping of RF magnetic fields (B(1)) for high-field applications. Accurate receive sensitivity mapping is essential to image domain parallel imaging methods, such as sensitivity encoding (SENSE), to reconstruct high quality images. Accurate transmit sensitivity mapping will facilitate RF-shimming and parallel transmission techniques that directly address the RF inhomogeneity issue, arguably the most challenging issue of high-field magnetic resonance imaging (MRI). The inverse field-based approach proposed herein is based on computational electromagnetics and iterative optimization. It fits an experimental image to the numerically calculated signal intensity by iteratively optimizing the coil-subject geometry to better resemble the experiments. Accurate transmit and receive sensitivities are derived as intermediate results of the optimization process. The method is validated by imaging studies using homogeneous saline phantom at 7T. A simulation study at 300MHz demonstrates that the proposed method is able to obtain receptivity mapping with errors an order of magnitude less than that of the conventional method. The more accurate receptivity mapping and simultaneously obtained transmit sensitivity mapping could enable artefact-reduced and intensity-corrected image reconstructions. It is hoped that by providing an approach to the accurate mapping of both transmit and receive sensitivity, the proposed method will facilitate a range of applications in high-field MRI and parallel imaging. PMID:22391489

  13. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  14. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures.

    PubMed

    Si, Peng; Kannan, Palanisamy; Guo, Longhua; Son, Hungsun; Kim, Dong-Hwan

    2011-05-15

    We describe the development of a highly stable and sensitive glucose biosensor based on the nanohybrid materials derived from gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWCNT). The biosensing platform was developed by using layer-by-layer (LBL) self-assembly of the nanohybrid materials and the enzyme glucose oxidase (GOx). A high density of AuNPs and MWCNT nanocomposite materials were constructed by alternate self assembly of thiol functionalized MWCNTs and AuNPs, followed by chemisoption of GOx. The surface morphology of multilayered AuNPs/MWCNT structure was characterized by field emission-scanning electron microscope (FE-SEM), and the surface coverage of AuNPs was investigated by cyclic voltammetry (CV), showing that 5 layers of assembly achieves the maximum particle density on electrode. The immobilization of GOx was monitored by electrochemical impedance spectroscopy (EIS). CV and amperometry methods were used to study the electrochemical oxidation of glucose at physiological pH 7.4. The Au electrode modified with five layers of AuNPs/MWCNT composites and GOx exhibited an excellent electrocatalytic activity towards oxidation of glucose, which presents a wide liner range from 20 μM to 10 mM, with a sensitivity of 19.27 μA mM(-1) cm(-2). The detection limit of present modified electrode was found to be 2.3 μM (S/N=3). In addition, the resulting biosensor showed a faster amperometric current response (within 3 s) and low apparent Michaelis-Menten constant (K(m)(app)). Our present study shows that the high density of AuNPs decorated MWCNT is a promising nanohybrid material for the construction of enzyme based electrochemical biosensors. PMID:21454070

  15. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  16. High temperature probe sensor with high sensitivity based on Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Fu, Haiwei; Shao, Min; Yan, Xu; Li, Huidong; Liu, Qinpeng; Gao, Hong; Liu, Yinggang; Qiao, Xueguang

    2015-05-01

    A novel Michelson interferometer based on a bi-taper is achieved. Such a device is fabricated by splicing a section of thin core fiber (TCF) at one end of single-mode fiber (SMF). Due to the fiber bi-taper at the splicing point of SMF and TCF, the light is coupled into the fiber core and cladding from lead in fiber core. The light will be reflected at the end of the fiber and then will be recoupled back into the lead out fiber core by the fiber bi-taper. While the light returns back to the lead out fiber, the intermodal interference will occur for the optical path difference between core mode and cladding mode. A high temperature sensitivity of 0.140 nm/°C is achieved from 30 to 800 °C, and the linearity is 99.9%. The configuration features the advantages of easy fabrication, a compact size, high sensitivity, wide sensing range and high mechanical strength, making it a good candidate for distant temperature sensing and oil prospecting.

  17. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  18. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  19. Automated Filtration-Based High-Throughput Plasmid Preparation System

    PubMed Central

    Itoh, Masayoshi; Kitsunai, Tokuji; Akiyama, Junichi; Shibata, Kazuhiro; Izawa, Masaki; Kawai, Jun; Tomaru, Yasuhiro; Carninci, Piero; Shibata, Yuko; Ozawa, Yasuhiro; Muramatsu, Masami; Okazaki, Yasushi; Hayashizaki, Yoshihide

    1999-01-01

    Current methods of plasmid preparation do not allow for large capacity automated processing. We have developed an automated high-throughput system that prepares plasmid DNA for large-scale sequencing. This system is based on our previously reported filtration method. In this method, cell harvesting, alkaline lysis, and plasmid purification occur in a single 96-well microtiter plate from which sequence-ready DNA samples are collected. The plates are designed to allow all reagents to be injected from above the wells and the spent reagents to be aspirated from below. This design has enabled us to build a linear process plasmid preparation system consisting of an automated filter plate stacker and a 21-stage automated plasmid preparator. The 96-well plates used are outfitted with glass-filters that trap Escherichia coli before the plates are stacked in the automated stacker. The plates move from the stacker to each of the 21 stages of the preparator. At specific stages, various reagents or chemicals are injected into the wells from above. Finally, the plates are collected in the second stacker. The optimal throughput of the preparator is 40,000 samples in 17.5 hr. Here, we describe a pilot experiment preparing 15,360 templates in 160 specially designed 96-well glass-filter plates. The prepared plasmids were subjected to restriction digestion, DNA sequencing, and transcriptional sequencing. PMID:10330126

  20. High Frequency Supercapacitors for Piezo-based Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard

    2013-03-01

    Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.

  1. High temporal resolution OCT using image-based retrospective gating

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Wilson, David L.; Rollins, Andrew M.

    2009-01-01

    High temporal resolution OCT imaging is very advantageous for analyzing cardiac mechanics in the developing embryonic heart of small animals. An image-based retrospective gating technique is presented to increase the effective temporal resolution of an OCT system and to allow visualization of systolic dynamics in 3D. The gating technique employs image similarity measures for rearranging asynchronously acquired input data consisting of a time series of 2D images at each z position along the heart volume, to produce a time sequence of 3D volumes of the beating heart. The study includes a novel robust validation technique, which quantitatively evaluates the accuracy of the gating technique, in addition to visual evaluations by 2D multiplanar reformatting (MPR) and 3D volume rendering. The retrospective gating and validation is demonstrated on a stage 14 embryonic quail heart data set. Using the validation scheme, it is shown that the gating is accurate within a standard deviation of 4.7 ms, which is an order of magnitude shorter than the time interval during which systolic contraction (∼50 ms) occurs in the developing embryo. This gating method has allowed, for the first time, clear visualization of systolic dynamics of the looping embryonic heart in 3D. PMID:19550478

  2. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  3. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    SciTech Connect

    Williams, Stuart S; Samulski, Edward; Lopez, Renee; Ruiz, Ricardo; DeSimone, Joseph; Retterer, Scott T

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determine the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.

  4. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  5. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity

    SciTech Connect

    Clevenson, Hannah Desjardins, Pierre; Gan, Xuetao; Englund, Dirk

    2014-06-16

    We present high-sensitivity, multi-use optical gas sensors based on a one-dimensional photonic crystal cavity. These devices are implemented in versatile, flexible polymer materials which swell when in contact with a target gas, causing a measurable cavity length change. This change causes a shift in the cavity resonance, allowing precision measurements of gas concentration. We demonstrate suspended polymer nanocavity sensors and the recovery of sensors after the removal of stimulant gas from the system. With a measured quality factor exceeding 10{sup 4}, we show measurements of gas concentration as low as 600 parts per million (ppm) and an experimental sensitivity of 10 ppm; furthermore, we predict detection levels in the parts-per-billion range for a variety of gases.

  6. An Internal ALD-Based High Voltage Divider and Signal Circuit for MCP-based Photodetectors

    SciTech Connect

    Adams, Bernhard W.; Elagin, Andrey; Elam, Jeffrey W.; Frisch, Henry J.; Genat, Jean-Francois; Gregar, Joseph S.; Mane, Anil U.; Minot, Michael J.; Northrup, Richard; Obaid, Razib; Oberla, Eric; Alexander, Vostrikov; Wetstein, Matthew

    2015-04-21

    We describe a pin-less design for the high voltage (HV) resistive divider of the all-glass LAPPD (TM) 8 in,square thin photodetector module. The divider, which distributes high voltage applied to the photocathode to the two micro-channel plates (MCPs) that constitute the amplification stage, is comprised of the two MCPs and three glass mechanical spacers, each of which is coated with a resistive layer using atomic layer deposition (ALD). The three glass grid spacers and the two MCPs form a continuous resistive path between cathode and anode, with the voltages across the MCPs and the spacers determined by the resistance of each. High voltage is applied on an external tab on the top glass window that connects to the photocathode through the metal seal. The DC ground is supplied by microstrips on the bottom glass plate that form the high-bandwidth anode. The microstrips exit the package through the glass-frit seal of the anode base-plate and the package sidewall. The divider is thus completely internal, with no HV pins penetrating the low-profile flat glass package. Measurements of the performance of the divider are presented for the 8 in.-square MCP and spacer package in a custom test fixture and for an assembled externally pumped LAPPD (TM) prototype with an aluminum photocathode. (C) 2015 Elsevier B.V. All rights reserved.

  7. An internal ALD-based high voltage divider and signal circuit for MCP-based photodetectors

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Elagin, Andrey; Elam, Jeffrey W.; Frisch, Henry J.; Genat, Jean-Francois; Gregar, Joseph S.; Mane, Anil U.; Minot, Michael J.; Northrop, Richard; Obaid, Razib; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew

    2015-04-01

    We describe a pin-less design for the high voltage (HV) resistive divider of the all-glass LAPPDTM 8 in.-square thin photodetector module. The divider, which distributes high voltage applied to the photocathode to the two micro-channel plates (MCPs) that constitute the amplification stage, is comprised of the two MCPs and three glass mechanical spacers, each of which is coated with a resistive layer using atomic layer deposition (ALD). The three glass grid spacers and the two MCPs form a continuous resistive path between cathode and anode, with the voltages across the MCPs and the spacers determined by the resistance of each. High voltage is applied on an external tab on the top glass window that connects to the photocathode through the metal seal. The DC ground is supplied by microstrips on the bottom glass plate that form the high-bandwidth anode. The microstrips exit the package through the glass-frit seal of the anode base-plate and the package sidewall. The divider is thus completely internal, with no HV pins penetrating the low-profile flat glass package. Measurements of the performance of the divider are presented for the 8 in.-square MCP and spacer package in a custom test fixture and for an assembled externally pumped LAPPDTM prototype with an aluminum photocathode.

  8. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  9. Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies

    SciTech Connect

    Morley, M.C.; Speitel, G.E. Jr.

    1999-03-01

    Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

  10. Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping

    2015-03-01

    Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.

  11. New applications for helicopter based high impact weight drops

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P. G.; Chardot, L.; Fournier, N.; Scott, B.; Sherburn, S.

    2012-12-01

    A high impact weight drop method has been successfully completed at White Island volcano, New Zealand, yielding new estimates for the shallow seismic velocity and attenuation. Such estimates are useful for many practical applications including refinement of earthquake locations and understanding variations of sub-surface structural relationships. Beyond these important sub-surface parameters, the method has the potential for understanding the dynamics of surface and near surface source processes including hazardous eruptive impulses through volcanic lakes, pyroclastic flows, lahars and rockfalls. We conducted the initial mass drop experiment at White Island volcano on 23 September 2011, during the final stage of a 6 month deployment of 14 broadband seismometers. Three drops were carried out, two at either end of a 6 station linear array within the crater floor, and the third within the volcano's shallow active acid crater lake. Bags were dropped from ~400 m height and contained ~700 kg of fine beach sand held within tarpaulin sacks having a volume capacity of ~2.0 m3. The impact velocity was estimated at ~70 m/s yielding a kinetic energy of about 106 to 107 Nm. The source position was established by GPS on the resulting impact crater and was accurate to within ~10 m. The lake drop position was estimated from video footage relative to known ground features and was accurate to ~30 m. Impact timing was achieved by drop placement close to, but not on, the nearby seismometer recording systems. For the crater floor drops the timing was constrained to within ~0.05 s based on distance from the closest stations. The kinetic energy allowed strong first-P arrivals to penetrate beyond ~1 km of the impact position. We obtained a rough velocity estimate of about 1.0-1.5 km/s for the unconsolidated crater floor and a velocity of ~1.5-2.0 km/s for P-waves traversing mostly through the consolidated rocks comprising the crater walls. Attenuation was found to be generally very strong

  12. Nonideal thermoequilibrium calculations using a large product species data base

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.

    1992-06-01

    Thermochemical data fits for approximately 900 gaseous and 600 condensed species found in the JANAF tables (Chase et al., 1985) have been completed for use with the TIGER nonideal thermoequilibrium code (Cowperthwaite and Zwisler, 1973). The TIGER code has been modified to allow systems containing up to 400 gaseous and 100 condensed constituents composed of up to 50 elements. Gaseous covolumes have been estimated following the procedure outlined by Mader (1979) using estimates of van der Waals radii for 48 elements and three-dimensional molecular mechanics. Molecular structures for all gaseous components were explicitly defined in terms of atomic coordinates in {Angstrom}. The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated near C-J states using detonation temperatures measured in liquid and solid explosives and a large product species data base. Detonation temperatures for liquid and solid explosives were predicted adequately with a single set of BKW parameters. Values for the empirical BKW constants {alpha}, {beta}, k, and {theta} were 0.5, 0.174, 11.85, and 5160, respectively. Values for the covolume factors, k{sub i}, were assumed to be invariant. The liquid explosives included mixtures of hydrazine nitrate with hydrazine, hydrazine hydrate, and water; mixtures of tetranitromethane with nitromethane; liquid isomers ethyl nitrate and 2-nitroethanol; and nitroglycerine. The solid explosives included HMX, RDX, PETN, Tetryl, and TNT. Color contour plots of HMX equilibrium products as well as thermodynamic variables are shown in pressure and temperature space. Similar plots for a pyrotechnic reaction composed of TiH{sub 2} and KC1O{sub 4} are also reported. Calculations for a typical HMX-based propellant are also discussed.

  13. Project-Based Learning: Rigor and Relevance in High Schools

    ERIC Educational Resources Information Center

    Harada, Violet H.; Kirio, Carolyn; Yamamoto, Sandy

    2008-01-01

    High schools are under tremendous pressure to increase graduation rates and lower dropout numbers. A survey conducted for the Bill and Melinda Gates Foundation indicated that over a third of students entering high school never graduate on time. Students who drop out claim that the curriculum is disconnected from real life and that their schools…

  14. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    SciTech Connect

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  15. Estimator Based Controller for High Speed Flywheel Magnetic Bearing System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.

    2002-01-01

    A flywheel system and its operator interface are described. Measurements of magnetic bearing negative stiffness are performed. Two digital magnetic bearing control algorithms (PD and estimator based) are defined and their implementations are described. Tuning of each controller is discussed. Comparison of the two controllers' stability, damping noise, and operating current are described. Results describing the superiority of the estimator-based controller are presented and discussed.

  16. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  17. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    SciTech Connect

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, Na

  18. Development and application of high strength ternary boride base cermets

    SciTech Connect

    Takagi, Ken-ichi . E-mail: u4381@toyokohan.co.jp

    2006-09-15

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo{sub 2}FeB{sub 2}, Mo{sub 2}NiB{sub 2} and WCoB base ones. In these cermets Mo{sub 2}FeB{sub 2} and Mo{sub 2}NiB{sub 2} base ones consist of a tetragonal M {sub 3}B{sub 2} (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  19. Microcellular Foams Based on High Performance Thermoplastic Nanocomposites

    SciTech Connect

    Sorrentino, Luigi; Iannace, Salvatore; Gargiulo, Marcella; Pezzullo, Giuseppe

    2010-06-02

    Foams from engineering thermoplastics nanocomposites based on Polyethersulphone and Polyethylene-2,6-naphthalate were prepared by using two different nanofillers (Silica nanoparticles and Graphite nanosheets). The effects of the nanofiller type and content on the foaming process was investigated and related to the density and cellular morphology of foams. The nanocomposite foams based on PES matrix exhibited improved nucleated cells both with SiO{sub 2} and Graphite nanosheets, but the density increased at all temperatures. On the contrary, nanocomposite foams based on PEN matrix showed different behaviors with the filler type. In this case, in fact, silica nanoparticles allowed lower densities when compared to the unfilled polymer foams, without influencing cells density. The Graphite nanosheets extended towards higher temperatures the foaming window of PEN nanocomposites, allowing densities as low as 0.15 at 260 deg. C.

  20. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High

  1. Integrated polarizers based on tapered highly birefringent photonic crystal fibers.

    PubMed

    Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S

    2014-07-28

    This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned. PMID:25089397

  2. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  3. Highly effective metal vapor absorbents based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  4. Soloworks: Computer-Based Laboratories for High School Mathematics.

    ERIC Educational Resources Information Center

    Dwyer, Thomas A.

    1975-01-01

    The Soloworks project is based on the belief that student-controlled computing is a promising innovation in secondary mathematics instruction. The Soloworks project is following up three years of experience in the Pittsburgh public school system with a new program encorporating both student-controlled computing and modern math curricula. The work…

  5. Network based high performance concurrent computing. Progress report, [FY 1991

    SciTech Connect

    Sunderam, V.S.

    1991-12-31

    The overall objectives of this project are to investigate research issues pertaining to programming tools and efficiency issues in network based concurrent computing systems. The basis for these efforts is the PVM project that evolved during my visits to Oak Ridge Laboratories under the DOE Faculty Research Participation program; I continue to collaborate with researchers at Oak Ridge on some portions of the project.

  6. School-Based Management: Organizing for High Performance.

    ERIC Educational Resources Information Center

    Mohrman, Susan Albers, Ed.; And Others

    School-based management (SBM) has gained popularity as a method for local school participants to improve their schools. As yet, however, there is little empirical evidence supporting a link between SBM and improved school performance. This book examines the SBM strategies that hold the most promise for increasing organizational effectiveness…

  7. Informatics-based, highly accurate, noninvasive prenatal paternity testing

    PubMed Central

    Ryan, Allison; Baner, Johan; Demko, Zachary; Hill, Matthew; Sigurjonsson, Styrmir; Baird, Michael L.; Rabinowitz, Matthew

    2013-01-01

    Purpose: The aim of the study was to evaluate the diagnostic accuracy of an informatics-based, noninvasive, prenatal paternity test using array-based single-nucleotide polymorphism measurements of cell-free DNA isolated from maternal plasma. Methods: Blood samples were taken from 21 adult pregnant women (with gestational ages between 6 and 21 weeks), and a genetic sample was taken from the corresponding biological fathers. Paternity was confirmed by genetic testing of the infant, products of conception, control of fertilization, and/or preimplantation genetic diagnosis during in vitro fertilization. Parental DNA samples and maternal plasma cell-free DNA were amplified and analyzed using a HumanCytoSNP-12 array. An informatics-based method measured single-nucleotide polymorphism data, confirming or rejecting paternity. Each plasma sample with a sufficient fetal cell-free DNA fraction was independently tested against the confirmed father and 1,820 random, unrelated males. Results: One of the 21 samples had insufficient fetal cell-free DNA. The test correctly confirmed paternity for the remaining 20 samples (100%) when tested against the biological father, with P values of <10−4. For the 36,400 tests using an unrelated male as the alleged father, 99.95% (36,382) correctly excluded paternity and 0.05% (18) were indeterminate. There were no miscalls. Conclusion: A noninvasive paternity test using informatics-based analysis of single-nucleotide polymorphism array measurements accurately determined paternity early in pregnancy. PMID:23258349

  8. Opportunities for Learning-Based Conversations in High School Mathematics

    ERIC Educational Resources Information Center

    McFeetors, Janelle

    2015-01-01

    Conversations as moments for interpersonal and intimate turning round of ideas for the purpose of growth are well-defined within curriculum inquiry. Interactions among grade 12 students in this study demonstrate the possibility of learning to learn mathematics through conversation. Attending to opportunities for learning-based conversations,…

  9. TMD-Based Structural Control of High Performance Steel Bridges

    NASA Astrophysics Data System (ADS)

    Kim, Tae Min; Kim, Gun; Kyum Kim, Moon

    2012-08-01

    The purpose of this study is to investigate the effectiveness of structural control using tuned mass damper (TMD) for suppressing excessive traffic induced vibration of high performance steel bridge. The study considered 1-span steel plate girder bridge and bridge-vehicle interaction using HS-24 truck model. A numerical model of steel plate girder, traffic load, and TMD is constructed and time history analysis is performed using commercial structural analysis program ABAQUS 6.10. Results from analyses show that high performance steel bridge has dynamic serviceability problem, compared to relatively low performance steel bridge. Therefore, the structural control using TMD is implemented in order to alleviate dynamic serviceability problems. TMD is applied to the bridge with high performance steel and then vertical vibration due to dynamic behavior is assessed again. In consequent, by using TMD, it is confirmed that the residual amplitude is appreciably reduced by 85% in steady-state vibration. Moreover, vibration serviceability assessment using 'Reiher-Meister Curve' is also remarkably improved. As a result, this paper provides the guideline for economical design of I-girder using high performance steel and evaluates the effectiveness of structural control using TMD, simultaneously.

  10. High Temperature coatings based on β-NiAI

    SciTech Connect

    Severs, Kevin

    2012-01-01

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB2 composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  11. High-energy astronomy from a lunar base

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1988-01-01

    A discussion is presented of the advantages of the Moon for X-ray astronomy. It is concluded that large area detectors connected to long focal length telescopes will provide superior signal to noise ratios and resolution compared to any high energy photon observatories that can be practically placed in Earth orbit.

  12. Content Based Language Instruction at Ylojarvi High School.

    ERIC Educational Resources Information Center

    Karvonen, Raimo

    An innovative high school curriculum in Finland is designed so that the year is divided into six 6-week periods. In an experiment begun in fall 1989, English second language instruction was provided to second-year students in the form of content-area instruction in computer science, chemistry, and physics at one of two levels. Each course lasted…

  13. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  14. High energy density battery based on complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  15. Achieving High Performance with FPGA-Based Computing

    PubMed Central

    Herbordt, Martin C.; VanCourt, Tom; Gu, Yongfeng; Sukhwani, Bharat; Conti, Al; Model, Josh; DiSabello, Doug

    2011-01-01

    Numerous application areas, including bioinformatics and computational biology, demand increasing amounts of processing capability. In many cases, the computation cores and data types are suited to field-programmable gate arrays. The challenge is identifying the design techniques that can extract high performance potential from the FPGA fabric. PMID:21603088

  16. Satellite-based Wetland Mapping in High Latitudes

    NASA Astrophysics Data System (ADS)

    Shah, C. A.; Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E.; Hinkel, K. M.; Winston, B.

    2008-12-01

    The flat terrain with poor drainage in high-latitude regions yields excessive wetlands characterized by saturated soil and riparian vegetation. These wetlands have long been recognized for their importance in the global carbon and hydrological cycles and continue to receive substantial attention. As a part of our NASA THP (Terrestrial Hydrology Program) project to assess recent terrestrial water storage change in Arctic lakes and wetlands, this paper addresses wetland mapping using remote sensing. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) have been widely used in wetland mapping to quantify vegetation and underlying surface water. However, the performance of such indices is limited by the "mixed pixel" effect due to the fact that a wetland pixel comprises of mixed spectral responses of water and vegetation. Hence, we propose to estimate the abundance of each of these surface materials within a pixel through a spectral unmixing approach. The general assumption in spectral unmixing is that the observed pixel spectrum is a linear combination of several endmembers denoting pure material spectra available in existing spectral libraries. The limited and poor availability of ground truth in regional-scale research however prohibits the use of library spectra, necessitating the use of unsupervised spectral unmixing techniques. The proposed research applies independent component analysis (ICA) to perform a non-orthogonal linear transformation of the multi-spectral Landsat images for an unsupervised spectral unmixing to obtain water and vegetation abundances, which are crucial to wetland mapping. The method is highly efficient with a high-level of replicability and automation. Performance of the proposed approach is evaluated quantitatively, and a high accuracy is achieved in high-latitude wetland mapping.

  17. Niobium Oxide-Metal Based Seals for High Temperature Applications

    SciTech Connect

    Ivar Reimanis

    2006-08-14

    The present final report describes technical progress made in regards to evaluating niobium oxide/alumina as a high temperature seal material. Fabrication and characterization of specimens comprising niobium oxide and alumina composites of various compositions was performed. The goal was to identify regions where a glass formed. There were no experimental conditions where a glassy phase was unequivocally identified. However, the results led to the formation of an interesting class of fibrous composites which may have applications where high compliance and high toughness are needed. It is clear that vapor phase sintering is an active mass transport mechanism in Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composites (Figure 1), and it may be possible to design porous materials by utilizing vapor phase sintering. The compositions evaluated in the present work are 52, 60, 73, 82 and 95 mol. % Nb{sub 2}O{sub 5} with the remainder Al{sub 2}O{sub 3}. These were chosen so that some eutectic composition was present during cooling, in an attempt to encourage glass formation. However, the presence of large, elongated crystals, both in the slow cool and the quench experiments indicates that the driving force for crystallization is very high. Several joints were formed between high purity alumina with two compositions (60 and 82 mol. %) forming the joint. These were created by grinding and polishing alumina surfaces and stacking them end-to-end with the powdered Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} material in between. Joining was accomplished in air at temperatures between 1400 C and 1450 C. The joints failed during subsequent machining for strength bars, indicating low strength. It may be possible to use the compositions evaluated here as a joint material, but it seems unlikely that a glassy phase could be produced while joining.

  18. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Ben-Zvi, I.; Dowell, D.H.; Feng, J.; Rao, T.; Smedley, J.; Wan, W.; Padmore, H.A.

    2011-07-21

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  19. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Feng, J.; Wan, W.; Padmore, H. A.; Ben-Zvi, I.; Dowell, D. H.; Rao, T.; Smedley, J.

    2011-07-18

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  20. A high-speed transputer-based data acquisition system

    NASA Astrophysics Data System (ADS)

    Loureiro, C. F. M.; Santos, J. M. G. B.; Simões, J. B.; Correia, C. M. B. A.; Zilker, M.

    1996-01-01

    A 250 MHz 8-bit transputer-based data acquisition VME bus module is described. This module has been designed as the acquisition node of a transputer-based real-time processing and data reduction system for the reflectometry diagnostic in the ASDEX Upgrade tokamak experiment. The architecture of the board is detailed, emphasizing the advantages of using recently delivered devices, like fast synchronous FIFOs, in a mixed ECL/TTL data acquisition architecture. It is shown that the implemented architecture leads naturally to the implementation of hardware triggers that allow the acquisition channels to operate as stand-alone modules in a self-triggered, self-timed, data acquisition mode. The advantages of using transputers as local control and processing units are discussed. The use of the board in the reflectometry diagnostic and the general processing goals of the system are presented together with data characterizing the performance of the acquisition channels.

  1. Transformer winding defects identification based on a high frequency method

    NASA Astrophysics Data System (ADS)

    Florkowski, Marek; Furgał, Jakub

    2007-09-01

    The transformer diagnostic methods are systematically being improved and extended due to growing requirements for reliability of power systems in terms of uninterrupted power supply and avoidance of blackouts. Those methods are also driven by longer lifetime of transformers and demand for reduction of transmission and distribution costs. Hence, the detection of winding faults in transformers, both in exploitation or during transportation is an important aspect of power transformer failure prevention. The frequency response analysis method (FRA), more and more frequently used in electric power engineering, has been applied for investigations and signature analysis based on the admittance and transfer function. The paper presents a novel approach to the identification of typical transformer winding problems such as axial or radial movements or turn-to-turn faults. The proposed transfer function discrimination (TFD) criteria are based on the derived transfer function ratios, manifesting higher sensitivity.

  2. Highly efficient and stable ultraviolet photocathode based on nanodiamond particles

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Valentini, A.; Cicala, G.

    2016-02-01

    Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.

  3. A High Performance Content Based Recommender System Using Hypernym Expansion

    Energy Science and Technology Software Center (ESTSC)

    2015-10-20

    There are two major limitations in content-based recommender systems, the first is accurately measuring the similarity of preferred documents to a large set of general documents, and the second is over-specialization which limits the "interesting" documents recommended from a general document set. To address these issues, we propose combining linguistic methods and term frequency methods to improve overall performance and recommendation.

  4. Luminex-Based Methods in High-Resolution HLA Typing.

    PubMed

    Testi, Manuela; Andreani, Marco

    2015-01-01

    Luminex-based technology has been applied to discriminate between the different Human Leukocyte Antigens (HLA) alleles. The typing method consists in a reverse-SSO assay: Target DNA is PCR-amplified using biotinylated group-specific primers. A single PCR reaction is used for each HLA locus. The biotinylated PCR product is chemically denatured using a pH change and allowed to rehybridize to complementary DNA probes conjugated to microspheres. These beads are characterized by two internal fluorescent dyes that create a unique combination of color, make them identifiable. Washes are performed to eliminate any additional PCR product that does not exactly match the sequence detected by the probe. The biotinylated PCR product bound to the microsphere is labelled with streptavidin conjugated with R-phycoerythrin (SAPE). A flow analyzer identifies the fluorescent intensity SAPE on each microsphere. Software is used to assign positive or negative reactions based on the strength of the fluorescent signal. The assignment of the HLA typing is based on positive and negative probe reactions compared with published HLA gene sequences. Recently kits characterized by an extensive number of probes/beads designed to potentially reduce the number of ambiguities or to directly lead to an allele level typing, have been made available. PMID:26024639

  5. High removal rate laser-based coating removal system

    SciTech Connect

    Matthews, D.L.; Celliers, P.M.; Hackel, L.; Da Silva, L.B.; Dane, C.B.; Mrowka, S.

    1999-11-16

    A compact laser system is disclosed that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1,000 ft{sup 2}/hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  6. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  7. High-power thermoelectric generators based on nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Pennelli, G.; Macucci, M.

    2016-05-01

    The low thermal conductivity of silicon nanowires and nanostructures opens interesting opportunities for energy harvesting through the direct, high-efficiency, conversion of waste heat into electrical power. We present solutions for the fabrication and interconnection of a high number of suspended silicon nanostructures, within CMOS compatible top-down processes. Mechanical stability and thermoelectric properties of these devices will be analysed by means of finite element simulations, and opportunities for practical applications will be discussed. It will be shown that, despite the reduced dimensions needed for a strong suppression of thermal conductivity, a considerable amount of electrical power can be delivered to the load as a result of the presence of many interconnected devices on the same chip.

  8. High performance supercapacitor from chromium oxide-nanotubes based electrodes

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Frackowiak, Elzbieta; Mittal, Jagjiwan; Monthioux, Marc

    2007-01-01

    Single wall carbon nanotubes (SWNTs) filled and doped with chromium oxide have been used as attractive electrodes for supercapacitors. Pseudocapacitance effects related to the presence of nanosized chromium oxide finely dispersed at the nanoscale together with high conducting properties of SWNTs allow building efficient electrodes from this hybrid material. Even if capacitance values are not very high (ca. 60 F g -1), however, extremely quick charge propagation was observed, doubtless due to the overall physical and textural properties of SWNT material. The positive effect - with respect to empty-SWNTs - brought by the presence of chromium oxide in and probably in-between the SWNTs indicates that chromium oxide is accessible to the electrolyte in spite of its encapsulated location, because of the numerous side entries created all along the SWNT walls during the filling step.

  9. Antimony-based superlattices for high-performance infrared imagers

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Ziegler, Johann

    2008-04-01

    InAs/GaSb short-period superlattices (SL) for the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) have been optimized in order to increase the spectral response of the imaging systems. The responsivity in monospectral InAs/GaSb short-period superlattices increases with the number of periods in the intrinsic region of the diode and does not show a diffusion limited behavior for detector structures with up to 1000 periods. This allows the fabrication of InAs/GaSb SL camera systems with high responsivity. Dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels have been realized.

  10. High resolution imaging with impulse based thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2011-07-01

    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  11. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.

  12. Study of high explosives in soil for holding determination

    SciTech Connect

    Tappan, B.C.; Campbell, M.S.

    1997-12-31

    A holding time is a regulated amount of time that a sample can be stored before analysis. The holding times that are now used for high explosives (HE) in soil and extracts are the EPA holding times set for semi-volatile organics. These holding times are 14 days at 4 C before sample extraction and 40 days before extract analysis. A previous study on Eastern U.S. soils found that actual decomposition in storage varies for different compounds and different soils, however, no studies prior to this have been performed on Los Alamos soils. The soil samples were spiked with an HE solution of HMX, RDX, TNT, TNB, 2,4-DNT, 2,6-DNT, 4-Am-2,6-DNT, 2-Am-4,6-DNT, Tetryl, NB, 1,3-DNB, 2-NT, 3-NT, and 4-NT, plus two surrogates 3,4-DNT and MNA. A total of five soil types were studied, four uncontaminated and one field contaminated. From the results of the study, it is clear that the EPA holding time now assigned to soils containing high explosives is much too long when analyzing for nitroaromatics, but sufficient when analyzing for HMX and RDX.

  13. Agent based modeling of blood coagulation system: implementation using a GPU based high speed framework.

    PubMed

    Chen, Wenan; Ward, Kevin; Li, Qi; Kecman, Vojislav; Najarian, Kayvan; Menke, Nathan

    2011-01-01

    The coagulation and fibrinolytic systems are complex, inter-connected biological systems with major physiological roles. The complex, nonlinear multi-point relationships between the molecular and cellular constituents of two systems render a comprehensive and simultaneous study of the system at the microscopic and macroscopic level a significant challenge. We have created an Agent Based Modeling and Simulation (ABMS) approach for simulating these complex interactions. As the scale of agents increase, the time complexity and cost of the resulting simulations presents a significant challenge. As such, in this paper, we also present a high-speed framework for the coagulation simulation utilizing the computing power of graphics processing units (GPU). For comparison, we also implemented the simulations in NetLogo, Repast, and a direct C version. As our experiments demonstrate, the computational speed of the GPU implementation of the million-level scale of agents is over 10 times faster versus the C version, over 100 times faster versus the Repast version and over 300 times faster versus the NetLogo simulation. PMID:22254271

  14. Heterostructure-based high-speed/high-frequency electronic circuit applications

    NASA Astrophysics Data System (ADS)

    Zampardi, P. J.; Runge, K.; Pierson, R. L.; Higgins, J. A.; Yu, R.; McDermott, B. T.; Pan, N.

    1999-08-01

    With the growth of wireless and lightwave technologies, heterostructure electronic devices are commodity items in the commercial marketplace [Browne J. Power-amplifier MMICs drive commercial circuits. Microwaves & RF, 1998. p. 116-24.]. In particular, HBTs are an attractive device for handset power amplifiers at 900 MHz and 1.9 GHz for CDMA applications [Lum E. GaAs technology rides the wireless wave. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 11-13; "Rockwell Ramps Up". Compound Semiconductor, May/June 1997.]. At higher frequencies, both HBTs and p-HEMTs are expected to dominate the marketplace. For high-speed lightwave circuit applications, heterostructure based products on the market for OC-48 (2.5 Gb/s) and OC-192 (10 Gb/s) are emerging [http://www.nb.rockwell.com/platforms/network_access/nahome.html#5.; http://www.nortel.com/technology/opto/receivers/ptav2.html.]. Chips that operate at 40 Gb/ have been demonstrated in a number of research laboratories [Zampardi PJ, Pierson RL, Runge K, Yu R, Beccue SM, Yu J, Wang KC. hybrid digital/microwave HBTs for >30 Gb/s optical communications. IEDM Technical Digest, 1995. p. 803-6; Swahn T, Lewin T, Mokhtari M, Tenhunen H, Walden R, Stanchina W. 40 Gb/s 3 Volt InP HBT ICs for a fiber optic demonstrator system. Proceedings of the 1996 GaAs IC Symposium, 1996. p. 125-8; Suzuki H, Watanabe K, Ishikawa K, Masuda H, Ouchi K, Tanoue T, Takeyari R. InP/InGaAs HBT ICs for 40 Gbit/s optical transmission systems. Proceedings of the 1997 GaAs IC Symposium, 1997. p. 215-8]. In addition to these two markets, another area where heterostructure devices are having significant impact is for data conversion [Walden RH. Analog-to digital convertor technology comparison. Proceedings of the 1994 GaAs IC Symposium, 1994. p. 217-9; Poulton K, Knudsen K, Corcoran J, Wang KC, Nubling RB, Chang M-CF, Asbeck PM, Huang RT. A 6-b, 4 GSa/s GaAs HBT ADC. IEEE J Solid-State Circuits 1995;30:1109-18; Nary K, Nubling R, Beccue S, Colleran W

  15. High-Power, High-Frequency Si-Based (SiGe) Transistors Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Future NASA, DOD, and commercial products will require electronic circuits that have greater functionality and versatility but occupy less space and cost less money to build and integrate than current products. System on a Chip (SOAC), a single semiconductor substrate containing circuits that perform many functions or containing an entire system, is widely recognized as the best technology for achieving low-cost, small-sized systems. Thus, a circuit technology is required that can gather, process, store, and transmit data or communications. Since silicon-integrated circuits are already used for data processing and storage and the infrastructure that supports silicon circuit fabrication is very large, it is sensible to develop communication circuits on silicon so that all the system functions can be integrated onto a single wafer. Until recently, silicon integrated circuits did not function well at the frequencies required for wireless or microwave communications, but with the introduction of small amounts of germanium into the silicon to make silicon-germanium (SiGe) transistors, silicon-based communication circuits are possible. Although microwavefrequency SiGe circuits have been demonstrated, there has been difficulty in obtaining the high power from their transistors that is required for the amplifiers of a transmitter, and many researchers have thought that this could not be done. The NASA Glenn Research Center and collaborators at the University of Michigan have developed SiGe transistors and amplifiers with state-of-the-art output power at microwave frequencies from 8 to 20 GHz. These transistors are fabricated using standard silicon processing and may be integrated with CMOS integrated circuits on a single chip. A scanning electron microscope image of a typical SiGe heterojunction bipolar transistor is shown in the preceding photomicrograph. This transistor achieved a record output power of 550 mW and an associated power-added efficiency of 33 percent at 8

  16. Active Physics Problem Based Learning for High Schools

    NASA Astrophysics Data System (ADS)

    Eisenkraft, Arthur

    2006-12-01

    Active Physics bridges research and practice. This NSF supported curriculum project uses a 7E instructional model and a problem based learning approach. Students learn physics on a need to know basis as they construct solutions to challenges such as developing a sport that can be played on the moon, creating an appliance package for developing countries, designing a light and sound show, or building a museum exhibit. In addition to meeting the content requirements of an introductory physics course, there is also an emphasis on engineering design principles and on essential questions. The excitement and frustration of trying to bridge research and practice will be discussed.

  17. Heuristic-based scheduling algorithm for high level synthesis

    NASA Technical Reports Server (NTRS)

    Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye

    1992-01-01

    A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.

  18. Space R/T base: Propulsion (high thrust chemical)

    NASA Technical Reports Server (NTRS)

    Gorland, S.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to provide a technology base and maintain an institutional capability for continued advances in the development of advanced space propulsion systems to support launch, upper stage, orbit transfer and ascent/descent engines. The technical objectives are to study: (1) validated design and analytical codes for cryogenic turbopump bearings and seals; (2) design methodologies and diagnostic capabilities for combustion stability; and (3) reduced operations cost, increase life, safety, higher energy density propellants, and in-situ engine concepts.

  19. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  20. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  1. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-01

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive. PMID:24353390

  2. Voice pathology classification based on High-Speed Videoendoscopy.

    PubMed

    Panek, D; Skalski, A; Zielinski, T; Deliyski, D D

    2015-08-01

    This work presents a method for automatical and objective classification of patients with healthy and pathological vocal fold vibration impairments using High-Speed Videoendoscopy of the larynx. We used an image segmentation and extraction of a novel set of numerical parameters describing the spatio-temporal dynamics of vocal folds to classification according to the normal and pathological cases and achieved 73,3% cross-validation classification accuracy. This approach is promising to develop an automatic diagnosis tool of voice disorders. PMID:26736367

  3. Highly Active Multidentate Ligand-Based Alkyne Metathesis Catalysts.

    PubMed

    Du, Ya; Yang, Haishen; Zhu, Chengpu; Ortiz, Michael; Okochi, Kenji D; Shoemaker, Richard; Jin, Yinghua; Zhang, Wei

    2016-06-01

    Alkyne metathesis catalysts composed of molybdenum(VI) propylidyne and multidentate tris(2-hydroxylbenzyl)methane ligands have been developed, which exhibit excellent stability (remains active in solution for months at room temperature), high activity, and broad functional-group tolerance. The homodimerization and cyclooligomerization of monopropynyl or dipropynyl substrates, including challenging heterocycle substrates (e.g., pyridine), proceed efficiently at 40-55 °C in a closed system. The ligand structure and catalytic activity relationship has been investigated, which shows that the ortho groups of the multidentate phenol ligands are critical to the stability and activity of such a catalyst system. PMID:27113640

  4. High speed mask inspection data prep flow based on pipelining

    NASA Astrophysics Data System (ADS)

    Hung, Dan; Morales, Domingo; Canepa, Juan Pablo; Kim, Stephen; Liu, Po; Sier, Jean-Paul; LoPresti, Patrick

    2011-11-01

    Mask manufacturers are continuously challenged as a result of the explosive growth in mask pattern data volume. This paper presents a new pipelined approach to mask data preparation for inspection that significantly reduces the data preparation times compared to the conventional flows used today. The focus of this approach minimizes I/O bottlenecks and allows for higher throughput on computer clusters. This solution is optimized for the industry standard OASIS.MASK format. These enhancements in the data processing flow, along with optimizations in the data preparation system architecture, offer a more efficient and highly scalable solution for mask inspection data preparation.

  5. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  6. High-Throughput Screening Based Identification of Paramyxovirus Inhibitors

    PubMed Central

    Yoon, Jeong-Jeong; Chawla, Dhruv; Paal, Tanja; Ndungu, Maina; Du, Yuhong; Kurtkaya, Serdar; Sun, Aiming; Snyder, James P; Plemper, Richard K

    2008-01-01

    Paramyxoviruses are negative strand non-segmented RNA viruses. Several members of this family constitute major human pathogens that, collectively, are responsible for major morbidity and mortality worldwide. In an effort to ultimately develop novel therapeutics against measles virus (MV), a prominent member of the paramyxovirus family, we report a high-throughput screening protocol that allows hit identification using non-recombinant primary MV strains as targets. Implementation of the assay has yielded 60 hit candidates from a 137,500-entry library. Counterscreening and generation of dose-response curves narrows this pool to 35 compounds with active concentrations ≤15.3 μM against the MV-Alaska strain and specificity indices ranging from 36 to >500. Library mining for structural analogs of several confirmed hits combined with re-testing of identified candidates reveals a low false-negative rate and, thus, a high accuracy of primary hit identification. Eleven of the confirmed hits were found to interfere with the viral entry machinery, while the remaining 24 compounds target post-entry steps of the viral life cycle. Activity testing against selected members of the paramyxovirus family reveals three patterns of activity: 1) exclusively MV-specific blockers; 2) inhibitors of MV and related viruses of the same genus; 3) broader-range inhibitors with activity against a different paramyxovirinae genus. Representatives of the last class may open avenues for the development of broad-range paramyxovirus inhibitors through hit-to-lead chemistry. PMID:18626114

  7. High precision measurement system based on coplanar XY-stage

    NASA Astrophysics Data System (ADS)

    Fan, Kuang-Chao; Miao, Jin-Wei; Gong, Wei; Zhang, You-Liang; Cheng, Fang

    2011-12-01

    A coplanar XY-stage, together with a high precise measurement system, is presented in this paper. The proposed coplanar XY-stage fully conforms to the Abbe principle. The symmetric structural design is considered to eliminate the structure deformation due to force and temperature changes. For consisting of a high precise measurement system, a linear diffraction grating interferometer(LDGI) is employed as the position feedback sensor with the resolution to 1 nm after the waveform interpolation, an ultrasonic motor HR4 is used to generate both the long stroke motion and the nano positioning on the same stage. Three modes of HR4 are used for positioning control: the AC mode in continuous motion control for the long stroke; the gate mode to drive the motor in low velocity for the short stroke; and the DC mode in which the motor works as a piezo actuator, enabling accurate positioning of a few nanometers. The stage calibration is carried out by comparing the readings of LDGI with a Renishaw laser interferometer and repeated 5 times. Experimental results show the XY-stage has achieved positioning accuracy in less than 20nm after the compensation of systematic errors, and standard deviation is within 20 nm for travels up to 20 mm.

  8. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  9. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  10. Viscosity-based high temperature waste form compositions

    SciTech Connect

    Reimann, G.A.

    1994-12-31

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO{sub 2} + Al{sub 2}O{sub 3} producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing.

  11. High-performance nanopapers based on benzenesulfonic functionalized graphenes.

    PubMed

    Huang, Wenyi; Ouyang, Xilian; Lee, L James

    2012-11-27

    High-performance graphene nanopapers are prepared from an aqueous solution of functional graphenes with benzenesulfonic acid groups via covalent bonds. The formed hydrophobic graphene nanopapers showed the highest tensile strength of 360 MPa and Young's modulus of 102 GPa for samples with 13.7 wt % functional group and annealed at 150 °C. These samples showed a high electrical conductivity of 4.45 × 10(4) S/m after being annealed at 250 °C. The aforementioned properties of graphene nanopapers are much higher than any previously reported data. The properties of nanopapers depend on the degree of functionality on graphenes and the annealing temperatures, which are further evidenced by X-ray photoelectron spectroscopy, FTIR, and X-ray diffraction patterns. Such unique nanopapers can be easily bounded and sandwiched onto any solid surface to give rise to great potentials in many applications such as gas diffusion barriers, EMI shielding, thermal management, and anticorrosion. PMID:23098084

  12. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    PubMed

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed. PMID:19441298

  13. Thermal management of high power space based systems

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Mcever, W. S.

    1985-01-01

    Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.

  14. Development of an optical feedback based high accuracy beam transmissometer

    NASA Astrophysics Data System (ADS)

    Bartz, Robert

    1987-11-01

    The Phase I research has addressed the need for spectral light transmission data. Over the years the oceanographic community has repeatedly asked for a transmissometer operating at other wavelengths, specifically blue and green. The existing Sea Tech transmissometer is only available with a red LED, (light emitting diode) light source, mainly because LED's at shorter wavelengths have much lower power output. The primary objective of Phase I research was to determine if the transmissometer could be redesigned using LED's of other wavelengths. Constraints imposed on the new design was to achieve the same high performance inherent in the existing red transmissometer that has served the oceanic community so well for over 10 years. During the research performed in Phase I of this project a methodology and technique has been successfully developed for the stabilization of low power LED light sources to be used in the transmissometer. During the Phase I research, both red and blue LED's were evaluated in a optical bridge configuration allowing stabilization of the LED's using optical feedback. The LED's were installed in a collimator having a spatial filter 0.25 mm in diameter and a lens with a focal length of 60 mm resulting in a collimation angle of 4.16 milliradians in air. This same high degree of collimation is used in the existing Sea Tech red transmissometer.

  15. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  16. Highly stable atomic vector magnetometer based on free spin precession.

    PubMed

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Grujić, Z D; Hayen, L; Hélaine, V; Kasprzak, M; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Naviliat-Cuncic, O; Piegsa, F M; Prashanth, P N; Quéméner, G; Rawlik, M; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severjins, N; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zsigmond, G

    2015-08-24

    We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μrad for integration times from 10 s up to 2000 s. PMID:26368184

  17. Highly sensitive DNA sensor based on polypyrrole nanowire

    NASA Astrophysics Data System (ADS)

    Mai, Anh Tuan; Duc, Thanh Pham; Thi, Xuan Chu; Nguyen, Minh Hieu; Nguyen, Hoang Hai

    2014-08-01

    This paper describes the development of a DNA sensor based on polypyrrole nanowire. By using potentiostatic technique, in the presence of gelatin as the soft mold, the polypyrrole nanowires were synthesized on the surface of the micro-sensor. The surface enhanced Raman spectroscopy shows that the Nsbnd H ends of the polypyrrole nanowires orientate upward from the surface facilitating the DNA probe immobilization through the simple linkage with the phosphate groups of the probe DNA. The label-free signal readout was carried out by lock-in amplifier technique. The response time of the DNA sensor is 10 s and the measurement time was 5 min. The lowest detectable concentration of Escherichia coli DNA was 0.1 nM.

  18. GaAs-based high temperature electrically pumped polariton laser

    SciTech Connect

    Baten, Md Zunaid; Bhattacharya, Pallab Frost, Thomas; Deshpande, Saniya; Das, Ayan; Lubyshev, Dimitri; Fastenau, Joel M.; Liu, Amy W. K.

    2014-06-09

    Strong coupling effects and polariton lasing are observed at 155 K with an edge-emitting GaAs-based microcavity diode with a single Al{sub 0.31}Ga{sub 0.69}As/Al{sub 0.41}Ga{sub 0.59}As quantum well as the emitter. The threshold for polariton lasing is observed at 90 A/cm{sup 2}, accompanied by a reduction of the emission linewidth to 0.85 meV and a blueshift of the emission wavelength by 0.89 meV. Polariton lasing is confirmed by the observation of a polariton population redistribution in momentum space and spatial coherence. Conventional photon lasing is recorded in the same device at higher pump powers.

  19. High-performance multimedia encryption system based on chaos.

    PubMed

    Hasimoto-Beltrán, Rogelio

    2008-06-01

    Current chaotic encryption systems in the literature do not fulfill security and performance demands for real-time multimedia communications. To satisfy these demands, we propose a generalized symmetric cryptosystem based on N independently iterated chaotic maps (N-map array) periodically perturbed with a three-level perturbation scheme and a double feedback (global and local) to increase the system's robustness to attacks. The first- and second-level perturbations make cryptosystem extremely sensitive to changes in the plaintext data since the system's output itself (ciphertext global feedback) is used in the perturbation process. Third-level perturbation is a system reset, in which the system-key and chaotic maps are replaced for totally new values. An analysis of the proposed scheme regarding its vulnerability to attacks, statistical properties, and implementation performance is presented. To the best of our knowledge we provide a secure cryptosystem with one of the highest levels of performance for real-time multimedia communications. PMID:18601477

  20. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related

  1. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  2. Zigzag-shaped piezoelectric based high performance magnetoelectric laminate composite

    NASA Astrophysics Data System (ADS)

    Cho, Kyung-Hoon; Yan, Yongke; Folgar, Christian; Priya, Shashank

    2014-06-01

    We demonstrate a 33-mode piezoelectric structure with zigzag shape for high sensitivity magnetoelectric laminates. In contrast to the 33-mode macro fiber composite (MFC), this zigzag shape piezoelectric layer excludes epoxy bonding layer between the electrode and piezoelectric materials, thereby, significantly improving the polarization degree, electromechanical coupling, and the stability of loss characteristics. The polarization degree was monitored from the change in phase angle near resonance, and the loss stability was determined from the changes in dielectric loss and rate of capacitance variation defined by (C - Cf)/Cf, where C is capacitance at a given frequency and Cf is capacitance at 100 Hz. Magnetoelectric composite with zigzag patterned piezoelectric layer was found to exhibit giant magnetoelectric response both in low frequency off-resonance region (6.75 V cm-1 Oe-1 at 1 kHz) and at anti-resonance frequency (357 V cm-1 Oe-1).

  3. A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu

    2014-08-31

    Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to today’s power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

  4. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  5. High sensitivity carbon nanotube based electrochemiluminescence sensor array

    PubMed Central

    Venkatanarayanan, Anita; Crowley, Karl; Lestini, Elena; Keyes, Tia E.; Rusling, James F.; Forster, Robert J.

    2012-01-01

    Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)2 PICH2]2+], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2′-bipyridyl and PICH2 is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)2 PICH2]2+ (fluorescence lifetime ≈682 ± 5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (106 to 1012 spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1 ± 0.1 pM IgG is obtained under optimal conditions. PMID:22137061

  6. Ultra-High Temperature Sensors Based on Optical Property

    SciTech Connect

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  7. OWLViper: Semantic Based Application for High Level Query and Analysis

    NASA Astrophysics Data System (ADS)

    Shaya, Edward J.; Thomas, B.; Huang, Z.; Teuben, P.

    2007-05-01

    Our team of astronomers and programmers at U. of Maryland is creating an application that relies on W3C semantics language OWL to assist scientists to pose complex scientific questions. They will interact with a special graphical user interface to query distributed databases and to analyse resulting datasets. The ontology includes mathematical relationships between concepts that can be applied to user datasets without programming. It allows scientists to graphically represent their goals by selecting objects from hierarchical menus and then to restrict the properties of the objects. The user is presented with various routes of transformions to attain their goal. Pathways developed by users can be saved, reused and made publicly available to others. We are prototyping this system with astronomical methods for obtaining distances to galaxies. Presently, we are experimenting with a simple OWL-S based work flow manager to execute transformation and logically search the registry and datacenters for appropriate data. The Astronomical Data Center (http://archive.astro.umd.edu/archive) is being retrofitted with RDF (Resource Description Format) files to semantically describe the data. These make use of our Science.owl ontology (http://arhive.astro.umd.edu/ont/index.html).

  8. Thermotunneling Based Cooling Systems for High Efficiency Buildings

    SciTech Connect

    Aimi, Marco; Arik, Mehmet; Bray, James; Gorczyca, Thomas; Michael, Darryl; Weaver, Stan

    2007-09-30

    GE Global Research's overall objective was to develop a novel thermotunneling-cooling device. The end use for these devices is the replacement of vapor cycle compression (VCC) units in residential and commercial cooling and refrigeration systems. Thermotunneling devices offer many advantages over vapor cycle compression cooling units. These include quiet, reliable, non-moving parts operation without refrigerant gases. Additionally theoretical calculations suggest that the efficiency of thermotunneling devices can be 1.5-2x that of VCC units. Given these attributes it can be seen that thermotunneling devices have the potential for dramatic energy savings and are environmentally friendly. A thermotunneling device consists of two low work function electrodes separated by a sub 10 nanometer-sized gap. Cooling by thermotunneling refers to the transport of hot electrons across the gap, from the object to be cooled (cathode) to the heat rejection electrode (anode), by an applied potential. GE Global Research's goal was to model, design, fabricate devices and demonstrate cooling base on the thermotunneling technology.

  9. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    NASA Astrophysics Data System (ADS)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  10. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  11. Molecular design of aminopolynitroazole-based high-energy materials.

    PubMed

    Ghule, Vikas D; Srinivas, Dharavath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2012-07-01

    The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs). PMID:22160794

  12. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework.

    PubMed

    Feng, Chao; Ma, Yu-Heng; Zhang, Duo; Li, Xue-Jing; Zhao, Hong

    2016-03-15

    A series of transition metal complexes with the ligands 3-pyrazoledicarboxylic acid (H2L(1)) and ethyl 1-(2-ethoxy-2-oxoethyl)-1H-pyrazole-3-carboxylate (epzc) have been synthesized. The epzc generated 1-(carboxymethyl)-1H-pyrazole-3-carboxylic acid (H2L(2)) by an in situ hydrothermal hydrolysis reaction, using a one-pot method. Simple mononuclear [Co(HL(1))2(H2O)2] () and [Ni(L(2))(H2O)4] (), dinuclear [Ni2(L(1))2(H2O)6]·H2O () and [Cu2(L(2))2(H2O)4] () and 2D frameworks [Cu2(L(1))2]n (), [Co2(L(2))2(H2O)4]n () have been isolated. The structures have been established by single-crystal X-ray diffraction, and the complexes characterized by FT-IR, thermogravimetric analysis (TGA), PRXD, UV-Vis spectroscopy, and fluorescent spectroscopy. , , and were further assembled to form a supramolecular structure by hydrogen-bonding interactions and/or ππ stacking. and both possess a 2D network structure that is further interlinked via intermolecular hydrogen-bonding interactions. Most importantly, the complexes demonstrated highly intense electrochemiluminescence (ECL) in DMF solution. PMID:26883832

  13. Scalable, high performance, enzymatic cathodes based on nanoimprint lithography.

    PubMed

    Pankratov, Dmitry; Sundberg, Richard; Sotres, Javier; Suyatin, Dmitry B; Maximov, Ivan; Shleev, Sergey; Montelius, Lars

    2015-01-01

    Here we detail high performance, enzymatic electrodes for oxygen bio-electroreduction, which can be easily and reproducibly fabricated with industry-scale throughput. Planar and nanostructured electrodes were built on biocompatible, flexible polymer sheets, while nanoimprint lithography was used for electrode nanostructuring. To the best of our knowledge, this is one of the first reports concerning the usage of nanoimprint lithography for amperometric bioelectronic devices. The enzyme (Myrothecium verrucaria bilirubin oxidase) was immobilised on planar (control) and artificially nanostructured, gold electrodes by direct physical adsorption. The detailed electrochemical investigation of bioelectrodes was performed and the following parameters were obtained: open circuit voltage of approximately 0.75 V, and maximum bio-electrocatalytic current densities of 18 µA/cm(2) and 58 µA/cm(2) in air-saturated buffers versus 48 µA/cm(2) and 186 µA/cm(2) in oxygen-saturated buffers for planar and nanostructured electrodes, respectively. The half-deactivation times of planar and nanostructured biocathodes were measured to be 2 h and 14 h, respectively. The comparison of standard heterogeneous and bio-electrocatalytic rate constants showed that the improved bio-electrocatalytic performance of the nanostructured biocathodes compared to planar biodevices is due to the increased surface area of the nanostructured electrodes, whereas their improved operational stability is attributed to stabilisation of the enzyme inside nanocavities. PMID:26199841

  14. Volume Based DTM Generation from Very High Resolution Photogrammetric Dsms

    NASA Astrophysics Data System (ADS)

    Piltz, B.; Bayer, S.; Poznanska, A. M.

    2016-06-01

    In this paper we propose a new algorithm for digital terrain (DTM) model reconstruction from very high spatial resolution digital surface models (DSMs). It represents a combination of multi-directional filtering with a new metric which we call normalized volume above ground to create an above-ground mask containing buildings and elevated vegetation. This mask can be used to interpolate a ground-only DTM. The presented algorithm works fully automatically, requiring only the processing parameters minimum height and maximum width in metric units. Since slope and breaklines are not decisive criteria, low and smooth and even very extensive flat objects are recognized and masked. The algorithm was developed with the goal to generate the normalized DSM for automatic 3D building reconstruction and works reliably also in environments with distinct hillsides or terrace-shaped terrain where conventional methods would fail. A quantitative comparison with the ISPRS data sets Potsdam and Vaihingen show that 98-99% of all building data points are identified and can be removed, while enough ground data points (~66%) are kept to be able to reconstruct the ground surface. Additionally, we discuss the concept of size dependent height thresholds and present an efficient scheme for pyramidal processing of data sets reducing time complexity to linear to the number of pixels, O(WH).

  15. Highly sensitive hot electron bolometer based on disordered graphene.

    PubMed

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 10(6) V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 10(5) V/W. The deduced electrical noise equivalent power is 1.2 fW/√Hz, corresponding to the optical noise equivalent power of 44 fW/√Hz. The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  16. Highly sensitive hot electron bolometer based on disordered graphene

    PubMed Central

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 106 V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 105 V/W. The deduced electrical noise equivalent power is 1.2 , corresponding to the optical noise equivalent power of 44 . The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  17. High Performance GPU-Based Fourier Volume Rendering.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures. PMID:25866499

  18. High-accuracy simulation-based optical proximity correction

    NASA Astrophysics Data System (ADS)

    Keck, Martin C.; Henkel, Thomas; Ziebold, Ralf; Crell, Christian; Thiele, J.÷rg

    2003-12-01

    In times of continuing aggressive shrinking of chip layouts a thorough understanding of the pattern transfer process from layout to silicon is indispensable. We analyzed the most prominent effects limiting the control of this process for a contact layer like process, printing 140nm features of variable length and different proximity using 248nm lithography. Deviations of the photo mask from the ideal layout, in particular mask off-target and corner rounding have been identified as clearly contributing to the printing behavior. In the next step, these deviations from ideal behavior have been incorporated into the optical proximity correction (OPC) modeling process. The degree of accuracy for describing experimental data by simulation, using an OPC model modified in that manner could be increased significantly. Further improvement in modeling the optical imaging process could be accomplished by taking into account lens aberrations of the exposure tool. This suggests a high potential to improve OPC by considering the effects mentioned, delivering a significant contribution to extending the application of OPC techniques beyond current limits.

  19. Growth & Impact: The Expansion of High School Based Dual Credit in Stark County, Ohio

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.

    2010-01-01

    High school based dual credit (HSBDC) is a course offered through a collaborative agreement between an institution of higher education and a school district. A student may earn both high school and college credit in an HSBDC course taught by a high school teacher who qualifies to become a college adjunct on a high school campus. The growth of…

  20. High School 21+: A Competency-Based Diploma for Adults. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2013

    2013-01-01

    Adults who lack a high school diploma now have a new way to get a second chance. It's called "High School 21+," a competency-based high school diploma offered at Washington's community and technical colleges. Adults 21 years old and older can go to participating colleges to earn a high school diploma. An advisor will look at transcripts…

  1. High sensitivity carbon nanotube based electrochemiluminescence sensor array.

    PubMed

    Venkatanarayanan, Anita; Crowley, Karl; Lestini, Elena; Keyes, Tia E; Rusling, James F; Forster, Robert J

    2012-01-15

    Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)(2)PICH(2)](2+)], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2'-bipyridyl and PICH(2) is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)(2)PICH(2)](2+) (fluorescence lifetime ≈ 682±5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (10(6) to 10(12) spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1±0.1 pM IgG is obtained under optimal conditions. PMID:22137061

  2. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  3. Polyester-based thin films with high photosensitivity

    SciTech Connect

    POTTER,KELLY SIMMONS; POTTER JR.,BARRETT G.; WHEELER,DAVID R.; JAMISON,GREGORY M.

    2000-02-29

    A great deal of research has been done to understand the photosensitive optical response of inorganic glasses, which exhibit a permanent, photo-induced refractive index change due to the presence of optically active point defects in the glass structure. In the present work, the authors have performed a preliminary study of the intrinsic photosensitivity of a polyester containing a cinnamylindene malonate group (CPE, a photo- and thermal-crosslinkable group) for use in photonic waveguide devices. Thin films of CPE (approximately 0.5 microns thick) were spun onto fused silica substrates. Optical absorption in the thin films was evaluated both before and after exposure to UV radiation sources. It was found that the polyester exhibits two dominant UV absorption bands centered about 240 nm and 330 nm. Under exposure to 337 nm radiation (nitrogen laser) a marked bleaching of the 330 nm band was observed. This band bleaching is a direct result of the photo-induced crosslinking in the cinnamylindene malonate group. Exposure to 248 nm radiation (excimer laser), conversely, resulted in similar bleaching of the 330 nm band but was accompanied by nearly complete bleaching of the higher energy 240 nm band. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of {minus}10{sup {minus}2} are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates a refractive index change at 632 nm of {minus}0.061 {+-} 0.002. Thus, the results of this investigation confirm the photosensitive potential of this type of material.

  4. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    SciTech Connect

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-02-15

    Structural changes occurring within non-conventional Dawson-type [{alpha}/{beta}-Mo{sub 18}O{sub 54}(SO{sub 3}){sub 2}]{sup 4-} polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [{alpha}/{beta}-Mo{sub 18}O{sub 54}(SO{sub 3}){sub 2}]{sup 4-} polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: Black-Right-Pointing-Pointer Spectroscopy studies of non-conventional Wells-Dawson polyoxometalates (POMs) at high temperature and high pressure. Black-Right-Pointing-Pointer Discussion on the stability of two POM isomers. Black-Right-Pointing-Pointer Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  5. High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking

    NASA Astrophysics Data System (ADS)

    Gifford, Dawn K.; Froggatt, Mark E.; Kreger, Stephen T.

    2011-05-01

    Optical Frequency Domain Reflectometry is used to measure distributed displacement and temperature change with very high sensitivity and precision by measuring the phase change of an optical fiber sensor as a function of distance with high spatial resolution and accuracy. A fiber containing semi-continuous Bragg gratings was used as the sensor. The effective length change, or displacement, in the fiber caused by small temperature changes was measured as a function of distance with a precision of 2.4 nm and a spatial resolution of 1.5 mm. The temperature changes calculated from this displacement were measured with precision of 0.001 C with an effective sensor gauge length of 12 cm. These results demonstrate that the method employed of continuously tracking the phase change along the length of the fiber sensor enables high resolution distributed measurements that can be used to detect very small displacements, temperature changes, or strains.

  6. Compact and High Performance Spectrometers based on Novel Transmission Gratings with High Dispersion.

    PubMed

    Rasmussen, Thomas Peter

    2016-05-01

    In this article we outline how ultra-compact, yet high performance spectrometers can be designed and built with highly dispersive transmission gratings. By using fused silica as the grating material, and by careful design of the detailed grating structure, we demonstrate an ultraviolet spectrometer with a high and nearly flat efficiency from 178 to 409 nm, a resolution of 0.2 nm, and dimensions of only 61 mm × 64 mm × 19 mm. We tested this spectrometer in a laser-induced breakdown spectroscopy experiment and showed that the spectral information gathered with the spectrometer can be used to obtain quantitative results for sulfur. PMID:27002126

  7. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-02-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo18O54(SO3)2]4- polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties.

  8. Fabrication of High-Pressure Cold-Sprayed Coating on Ni-Based Superalloy for High-Temperature Corrosive Conditions

    NASA Astrophysics Data System (ADS)

    Singh, Harminder

    2015-11-01

    The surface behavior of the Ni-based superalloy (composition similar to UNS N06075) is altered in this study by depositing a 298- µm-thick coating for various erosive-corrosive and wear applications at a high temperature. The 50%Ni-50%Cr coating was developed by a high-pressure cold-spraying method. The coating microstructure was studied by various characterization techniques. The unmelted solid particles formed the coating structure, which is homogeneous, dense, hard, and free from cracks, oxides, and other defects. The coating composition and microstructure is suitable for providing protection to the substrate under high-temperature corrosive conditions. The developed coating performed well, with degradation rate of 0.47 mm/year, in the chlorine-based highly corrosive conditions of actual waste incinerator at 900°C.

  9. Guidelines for Preparing High School Psychology Teachers: Course-Based and Standards-Based Approaches

    ERIC Educational Resources Information Center

    American Psychologist, 2013

    2013-01-01

    Psychology is one of the most popular elective high school courses. The high school psychology course provides the foundation for students to benefit from psychological perspectives on personal and contemporary issues and learn the rules of evidence and theoretical frameworks of the discipline. The guidelines presented here constitute the second…

  10. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining

    SciTech Connect

    Yang, Ying-Ying E-mail: yangyy@semi.ac.cn; Zhao, Ya-Ping; Wang, Li-Rong; Zhang, Ling; Lin, Xue-Chun E-mail: yangyy@semi.ac.cn

    2015-03-14

    A highly efficient nano-periodical grating is theoretically investigated for spectral beam combining (SBC) and is experimentally implemented for attaining high-brightness laser from a diode laser array. The rigorous coupled-wave analysis with the S matrix method is employed to optimize the parameters of the grating. According the optimized parameters, the grating is fabricated and plays a key role in SBC cavity. The diffraction efficiency of this grating is optimized to 95% for the output laser which is emitted from the diode laser array. The beam parameter product of 3.8 mm mrad of the diode laser array after SBC is achieved at the output power of 46.3 W. The optical-to-optical efficiency of SBC cavity is measured to be 93.5% at the maximum operating current in the experiment.

  11. Inquiry-Based Science Instruction in High School Biology Courses: A Multiple Case Study

    ERIC Educational Resources Information Center

    Aso, Eze

    2014-01-01

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's…

  12. The PLATO Simulator: modelling of high-precision high-cadence space-based imaging

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

    2014-06-01

    Context. Many aspects of the design trade-off of a space-based instrument and its performance can best be tackled through simulations of the expected observations. The complex interplay of various noise sources in the course of the observations make such simulations an indispensable part of the assessment and design study of any space-based mission. Aims: We present a formalism to model and simulate photometric time series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all of the important natural noise sources. Methods: This formalism has been implemented in a versatile end-to-end simulation software tool, specifically designed for the PLATO (Planetary Transists and Oscillations of Stars) space mission to be operated from L2, but easily adaptable to similar types of missions. We call this tool Plato Simulator. Results: We provide a detailed description of several noise sources and discuss their properties in connection with the optical design, the allowable level of jitter, the quantum efficiency of the detectors, etc. The expected overall noise budget of generated light curves is computed, as a function of the stellar magnitude, for different sets of input parameters describing the instrument properties. The simulator is offered to the scientific community for future use. Software package available at the Plato Simulator web site (http://https://fys.kuleuven.be/ster/Software/PlatoSimulator/).

  13. Rheologically stable, nontoxic, high-temperature, water-based drilling fluid

    SciTech Connect

    Elward-Berry, J.; Darby, J.B.

    1997-09-01

    An exceptionally stable, high-temperature, water-based drilling fluid has been developed based on a fundamental redesign of drilling fluid components and functions, while still using commercially available materials. Rheological stability was characterized by extensive Fann 50C low-shear-rate viscosity vs. temperature studies and supporting viscoelastic rheological data. The fluid has been used in offshore and land applications, at temperatures as high as 420 F and densities as high as 15.5 lbm/gal.

  14. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  15. Team-Based Learning for Students with High-Incidence Disabilities in High School Social Studies Classrooms

    ERIC Educational Resources Information Center

    Kent, Shawn; Wanzek, Jeanne; Swanson, Elizabeth A.; Vaughn, Sharon

    2015-01-01

    We examined the effectiveness of implementing team-based learning (TBL) practices on content acquisition for 11th grade students with high-incidence disabilities enrolled in general education social studies courses. TBL components focus on collaborative discourse within heterogeneous teams. TBL, which requires critical thinking and the application…

  16. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  17. Problem-Based Learning: Modifying the Medical School Model for Teaching High School Economics.

    ERIC Educational Resources Information Center

    Maxwell, Nan L.; Bellisimo, Yolanda; Mergendoller, John

    2001-01-01

    Provides background information on the problem-based learning (PBL) model used in medical education that was adapted for high school economics. Describes the high school economics curriculum and outline the stages of the PBL model using examples from a unit called "The High School Food Court." Discusses the design considerations. (CMK)

  18. Inquiry-Based Laboratory Activities in Electrochemistry: High School Students' Achievements and Attitudes

    ERIC Educational Resources Information Center

    Sesen, Burcin Acar; Tarhan, Leman

    2013-01-01

    This study aimed to investigate the effects of inquiry-based laboratory activities on high school students' understanding of electrochemistry and attitudes towards chemistry and laboratory work. The participants were 62 high school students (average age 17 years) in an urban public high school in Turkey. Students were assigned to experimental (N =…

  19. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F.; Forrest, Stephen R.

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  20. Using a Web-based GIS to Teach Problem-based Science in High School and College

    NASA Astrophysics Data System (ADS)

    Metzger, E.; Lenkeit Meezan, , K. A.; Schmidt, C.; Taketa, R.; Carter, J.; Iverson, R.

    2008-12-01

    Foothill College has partnered with San Jose State University to bring GIS web mapping technology to the high school and college classroom. The project consists of two parts. In the first part, Foothill and San Jose State University have teamed up to offer classes on building and maintaining Web based Geographic Information Systems (GIS). Web-based GIS such as Google Maps, MapQuest and Yahoo Maps have become ubiquitous, and the skills to build and maintain these systems are in high demand from many employers. In the second part of the project, high school students will be able to learn about Web GIS as a real world tool used by scientists. The students in the Foothill College/San Jose State class will build their Web GIS using scientific data related to the San Francisco/San Joaquin Delta region, with a focus on watersheds, biodiversity and earthquake hazards. This project includes high school level curriculum development that will tie in to No Child Left Behind and National Curriculum Standards in both Science and Geography, and provide workshops for both pre-and in- service teachers in the use of Web GIS-driven course material in the high school classroom. The project will bring the work of professional scientists into any high school classroom with an internet connection; while simultaneously providing workforce training in high demand technology based jobs.