Science.gov

Sample records for hoko simulation model

  1. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  2. Modeling and simulation

    SciTech Connect

    Hanham, R.; Vogt, W.G.; Mickle, M.H.

    1986-01-01

    This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.

  3. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  4. Theory Modeling and Simulation

    SciTech Connect

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  5. AGRICULTURAL SIMULATION MODEL (AGSIM)

    EPA Science Inventory

    AGSIM is a large-scale econometric simulation model of regional crop and national livestock production in the United States. The model was initially developed to analyze the aggregate economic impacts of a wide variety issues facing agriculture, such as technological change, pest...

  6. Gyrokinetic particle simulation model

    SciTech Connect

    Lee, W.W.

    1986-07-01

    A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.

  7. Electricity Portfolio Simulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomore » 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy’s (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.« less

  8. SSPX simulation model

    SciTech Connect

    Fowler, T K

    1999-09-20

    An analytical approximation to an R-L-C circuit representing SSPX is shown to reproduce the observed capacitor bank efficiency and gun optimization data. As in the SPICE code, the spheromak gun is represented by a fixed resistance chosen to balance energy transfer to the gun. A revised estimate of the magnetic decay time in SSPX Shot 1822 then brings our estimate of the gun efficiency itself in line with the observed spheromak magnetic field for this shot. Prompted by these successes, we present a turbulence-based theoretical model for the spheromak resistance that can be implemented in the SPICE code, of the form: R{sub s} = {kappa}I (1-I{sub 0}/I){sup 2} where I is the gun current, I{sub 0} = ({Lambda}{sub 0}/{mu}{sub 0}){Phi} with bias flux and Taylor eigenvalue {lambda}{sub 0}, and {kappa} is a coefficient based on the magnetic turbulence model employed in Dan Hua's spheromak simulation code. The value of {kappa} giving a good energy balance (around 0.1 m{Omega}/KA) implies substantial turbulence levels. Implementing our model in SPICE would provide a calibration for theoretical calculations of the turbulence. Our analytic approximation to the SPICE code provides guidance to optimize future performance in SSPX, the greatest benefit appearing to come from reducing or eliminating the protective resistor to increase bank efficiency. Eliminating the resistor altogether doubles the bank efficiency and the spheromak magnetic energy.

  9. Contrail Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Shariff, Karim

    2016-01-01

    There is large uncertainty in the radiative forcing induced by aircraft contrails, particularly after they transform to cirrus. It has recently become possible to simulate contrail evolution for long periods after their formation. We review the main physical processes and simulation efforts in the four phases of contrail evolution, namely the jet, vortex, vortex dissipation, and diffusion phases. Recommendations for further work are given.

  10. Numerical wind speed simulation model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  11. Simulation Models in Higher Education.

    ERIC Educational Resources Information Center

    Morrisseau, James J.

    1973-01-01

    This paper, adapted from a Society for College and University Planning conference, discusses cost simulation models in higher education. Emphasis is placed on the art of management, mini-models vs. maxi-models, the useful model, the reporting problem, anatomy of failure, information vs. action, and words of caution. (MJM)

  12. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1988-01-01

    The objective of automatic programming is to improve the overall environment for describing the program. This improved environment is realized by a reduction in the amount of detail that the programmer needs to know and is exposed to. Furthermore, this improved environment is achieved by a specification language that is more natural to the user's problem domain and to the user's way of thinking and looking at the problem. The goal of this research is to apply the concepts of automatic programming (AP) to modeling discrete event simulation system. Specific emphasis is on the design and development of simulation tools to assist the modeler define or construct a model of the system and to then automatically write the corresponding simulation code in the target simulation language, GPSS/PC. A related goal is to evaluate the feasibility of various languages for constructing automatic programming simulation tools.

  13. Simulation modeling of estuarine ecosystems

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1980-01-01

    A simulation model has been developed of Galveston Bay, Texas ecosystem. Secondary productivity measured by harvestable species (such as shrimp and fish) is evaluated in terms of man-related and controllable factors, such as quantity and quality of inlet fresh-water and pollutants. This simulation model used information from an existing physical parameters model as well as pertinent biological measurements obtained by conventional sampling techniques. Predicted results from the model compared favorably with those from comparable investigations. In addition, this paper will discuss remotely sensed and conventional measurements in the framework of prospective models that may be used to study estuarine processes and ecosystem productivity.

  14. TREAT Modeling and Simulation Strategy

    SciTech Connect

    DeHart, Mark David

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  15. Modeling and Simulation at NASA

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  16. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  17. Infrared simulation model SENSAT-2.

    PubMed

    Richter, R

    1987-06-15

    The computer model SENSAT-2 has been developed for remote sensing uses of passive sensors in the 1-28-, microm infrared spectral region. The model calculates the IR signature of up to three homogeneous objects in the instantaneous field of view of the sensor. For the atmospheric part, model LOWTRAN-6 is used within SENSAT-2. Model SENSAT-2 can be used for mission analysis of sensors on different platforms like groundbased, aircraft, or satellite. It is a useful design tool for simulating and assessing the radiometric relations that are indispensable in designing sensors. Further uses include the comparison of measurements with simulation results and the radiometric correction of measurements. PMID:20489878

  18. Stochastic models: theory and simulation.

    SciTech Connect

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  19. Tree Modeling and Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Tian-shuang, Fu; Yi-bing, Li; Dong-xu, Shen

    This paper introduces the theory about tree modeling and dynamic movements simulation in computer graphics. By comparing many methods we choose Geometry-based rendering as our method. The tree is decomposed into branches and leaves, under the rotation and quaternion methods we realize the tree animation and avoid the Gimbals Lock in Euler rotation. We take Orge 3D as render engine, which has good graphics programming ability. By the end we realize the tree modeling and dynamic movements simulation, achieve realistic visual quality with little computation cost.

  20. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  1. Economic Analysis. Computer Simulation Models.

    ERIC Educational Resources Information Center

    Sterling Inst., Washington, DC. Educational Technology Center.

    A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…

  2. University Macro Analytic Simulation Model.

    ERIC Educational Resources Information Center

    Baron, Robert; Gulko, Warren

    The University Macro Analytic Simulation System (UMASS) has been designed as a forecasting tool to help university administrators budgeting decisions. Alternative budgeting strategies can be tested on a computer model and then an operational alternative can be selected on the basis of the most desirable projected outcome. UMASS uses readily…

  3. Modeling and Simulation for Safeguards

    SciTech Connect

    Swinhoe, Martyn T.

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  4. The HWVP availability simulation model

    SciTech Connect

    Reisdorf, J.; Sienko, F.; Melville, D.; Gogg, T.

    1994-12-31

    This report described the hanford Waste Vitrification Plant simualtion model (HWVP).The model was utilized to simulate the performance and repair of remote handling equipment utilizied at the vitrification plant. The simulation model demonstrates that the HWVP has an availability of {approx} 85%. It also shows that both the MC and CDC cranes have a high utilization factor of {approx} 70%. This means that the crane`s idle time of {approx} 30% may not be sufficient to meet off-normal events such as canister rework. A study is recommended to optimize the crane operations in these areas. The ST/ET crane`s utilization factor is 16%, indicating that it can meet upset conditions. The analysis also shows that the canyon crane has a utilization factor of 29%, or it is idle 61% of the time. This large amount of inactive time demonstrates that the crane can service failed equipment without affecting production.

  5. Multiscale Stochastic Simulation and Modeling

    SciTech Connect

    James Glimm; Xiaolin Li

    2006-01-10

    Acceleration driven instabilities of fluid mixing layers include the classical cases of Rayleigh-Taylor instability, driven by a steady acceleration and Richtmyer-Meshkov instability, driven by an impulsive acceleration. Our program starts with high resolution methods of numerical simulation of two (or more) distinct fluids, continues with analytic analysis of these solutions, and the derivation of averaged equations. A striking achievement has been the systematic agreement we obtained between simulation and experiment by using a high resolution numerical method and improved physical modeling, with surface tension. Our study is accompanies by analysis using stochastic modeling and averaged equations for the multiphase problem. We have quantified the error and uncertainty using statistical modeling methods.

  6. Assessment of Molecular Modeling & Simulation

    SciTech Connect

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  7. Simulation Framework for Teaching in Modeling and Simulation Areas

    ERIC Educational Resources Information Center

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  8. Standard for Models and Simulations

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  9. Simulating spin models on GPU

    NASA Astrophysics Data System (ADS)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  10. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  11. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (ESTSC)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  12. Electricity Generation Cost Simulation Model

    SciTech Connect

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit

  13. SEMI Modeling and Simulation Roadmap

    SciTech Connect

    Hermina, W.L.

    2000-10-02

    With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

  14. Simulated annealing model of acupuncture

    NASA Astrophysics Data System (ADS)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  15. Modelling and simulation of radiotherapy

    NASA Astrophysics Data System (ADS)

    Kirkby, Norman F.

    2007-02-01

    In this paper, models are described which have been developed to model both the way in which a population of cells respond to radiation and the way in which a population of patients respond to radiotherapy to assist the conduct of clinical trials in silico. Population balance techniques have been used to simulate the age distribution of tumour cells in the cell cycle. Sensitivity to radiation is not constant round the cell cycle and a single fraction of radiation changes the age distribution. Careful timing of further fractions of radiation can be used to maximize the damage delivered to the tumour while minimizing damage to normal tissue. However, tumour modelling does not necessarily predict patient outcome. A separate model has been established to predict the course of a brain cancer called glioblastoma multiforme (GBM). The model considers the growth of the tumour and its effect on the normal brain. A simple representation is included of the health status of the patient and hence the type of treatment offered. It is concluded that although these and similar models have a long way yet to be developed, they are beginning to have an impact on the development of clinical practice.

  16. Uterine Contraction Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Liu, Miao; Belfore, Lee A.; Shen, Yuzhong; Scerbo, Mark W.

    2010-01-01

    Building a training system for medical personnel to properly interpret fetal heart rate tracing requires developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and provides indications of maternal and fetal status should also be considered. In this work, we have developed a group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real patient records, we propose to model uterine contraction signals by three major components: regular contractions, impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function based on uterine contractions of real patients. Regular contractions are detected based on thresholding and derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise, respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions realistically, demonstrating the effectiveness of the proposed algorithm.

  17. Plasma disruption modeling and simulation

    SciTech Connect

    Hassanein, A.

    1994-07-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and a reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor.Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments. Differences between various simulation experiments and reactor conditions are discussed. A two-dimensional radiation transport model has been developed to particularly simulate the effect of small test samples used in laboratory disruption experiments.

  18. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  19. Ubiquitin: molecular modeling and simulations.

    PubMed

    Ganoth, Assaf; Tsfadia, Yossi; Wiener, Reuven

    2013-11-01

    The synthesis and destruction of proteins are imperative for maintaining their cellular homeostasis. In the 1970s, Aaron Ciechanover, Avram Hershko, and Irwin Rose discovered that certain proteins are tagged by ubiquitin before degradation, a discovery that awarded them the 2004 Nobel Prize in Chemistry. Compelling data gathered during the last several decades show that ubiquitin plays a vital role not only in protein degradation but also in many cellular functions including DNA repair processes, cell cycle regulation, cell growth, immune system functionality, hormone-mediated signaling in plants, vesicular trafficking pathways, regulation of histone modification and viral budding. Due to the involvement of ubiquitin in such a large number of diverse cellular processes, flaws and impairments in the ubiquitin system were found to be linked to cancer, neurodegenerative diseases, genetic disorders, and immunological disorders. Hence, deciphering the dynamics and complexity of the ubiquitin system is of significant importance. In addition to experimental techniques, computational methodologies have been gaining increasing influence in protein research and are used to uncover the structure, stability, folding, mechanism of action and interactions of proteins. Notably, molecular modeling and molecular dynamics simulations have become powerful tools that bridge the gap between structure and function while providing dynamic insights and illustrating essential mechanistic characteristics. In this study, we present an overview of molecular modeling and simulations of ubiquitin and the ubiquitin system, evaluate the status of the field, and offer our perspective on future progress in this area of research. PMID:24113788

  20. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  1. An approximate model for pulsar navigation simulation

    NASA Astrophysics Data System (ADS)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.

  2. Aeroacoustic simulation for phonation modeling

    NASA Astrophysics Data System (ADS)

    Irwin, Jeffrey; Hanford, Amanda; Craven, Brent; Krane, Michael

    2011-11-01

    The phonation process occurs as air expelled from the lungs creates a pressure drop and a subsequent air flow across the larynx. The fluid-structure interaction between the turbulent air flow and oscillating vocal folds, combined with additional resonance in the oral and nasal cavities, creates much of what we hear in the human voice. As many voice-related disorders can be traced to irregular vocal tract shape or motion, it is important to understand in detail the physics involved in the phonation process. To numerically compute the physics of phonation, a solver must be able to accurately model acoustic airflow through a moving domain. The open-source CFD package OpenFOAM is currently being used to evaluate existing solvers against simple acoustic test cases, including an open-ended resonator and an expansion chamber, both of which utilize boundary conditions simulating acoustic sources as well as anechoic termination. Results of these test cases will be presented and compared with theory, and the future development of a three-dimensional vocal tract model and custom-mode acoustic solver will be discussed. Acknowledge support of NIH grant 5R01DC005642 and ARL E&F program.

  3. An introduction to enterprise modeling and simulation

    SciTech Connect

    Ostic, J.K.; Cannon, C.E.

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  4. Structured building model reduction toward parallel simulation

    SciTech Connect

    Dobbs, Justin R.; Hencey, Brondon M.

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  5. Space station models, mockups and simulators

    NASA Technical Reports Server (NTRS)

    Miller, K. H.; Osgood, A.

    1985-01-01

    Schematic outlines for space station models, mockups, and simulators are presented. The types of Boeing models, mockups, and simulators are given along with the classes and characteristics. The use of models in the 767 program is briefly given. Computerized human factors tools are outlined. The use of computer aided design and computer aided manufacturing in the approach for the space station is advocated.

  6. Survey of models/simulations at RADC

    NASA Astrophysics Data System (ADS)

    Denz, M. L.

    1982-11-01

    A survey was conducted to evaluate the current state of the art and technology of model/simulation capabilities at Rome Air Development Center, Griffiss AFB, NY. This memo presents a tabulation of 28 such models/simulations. These models/simulations are being used within RADC in the development and evaluations of Command, Control, Communications and Intelligence (C3I) technology. The results of this survey are incorporated in this memo.

  7. Theory, Modeling, and Simulation of Semiconductor Lasers

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Saini, Subbash (Technical Monitor)

    1998-01-01

    Semiconductor lasers play very important roles in many areas of information technology. In this talk, I will first give an overview of semiconductor laser theory. This will be followed by a description of different models and their shortcomings in modeling and simulation. Our recent efforts in constructing a fully space and time resolved simulation model will then be described. Simulation results based on our model will be presented. Finally the effort towards a self-consistent and comprehensive simulation capability for the opto-electronics integrated circuits (OEICs) will be briefly reviewed.

  8. Evaluating uncertainty in stochastic simulation models

    SciTech Connect

    McKay, M.D.

    1998-02-01

    This paper discusses fundamental concepts of uncertainty analysis relevant to both stochastic simulation models and deterministic models. A stochastic simulation model, called a simulation model, is a stochastic mathematical model that incorporates random numbers in the calculation of the model prediction. Queuing models are familiar simulation models in which random numbers are used for sampling interarrival and service times. Another example of simulation models is found in probabilistic risk assessments where atmospheric dispersion submodels are used to calculate movement of material. For these models, randomness comes not from the sampling of times but from the sampling of weather conditions, which are described by a frequency distribution of atmospheric variables like wind speed and direction as a function of height above ground. A common characteristic of simulation models is that single predictions, based on one interarrival time or one weather condition, for example, are not nearly as informative as the probability distribution of possible predictions induced by sampling the simulation variables like time and weather condition. The language of model analysis is often general and vague, with terms having mostly intuitive meaning. The definition and motivations for some of the commonly used terms and phrases offered in this paper lead to an analysis procedure based on prediction variance. In the following mathematical abstraction the authors present a setting for model analysis, relate practical objectives to mathematical terms, and show how two reasonable premises lead to a viable analysis strategy.

  9. A Generic Multibody Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Neuhaus, Jason Richard; Kenney, Patrick Sean

    2006-01-01

    Flight simulation of dynamic atmospheric vehicles with parachute systems is a complex task that is not easily modeled in many simulation frameworks. In the past, the performance of vehicles with parachutes was analyzed by simulations dedicated to parachute operations and were generally not used for any other portion of the vehicle flight trajectory. This approach required multiple simulation resources to completely analyze the performance of the vehicle. Recently, improved software engineering practices and increased computational power have allowed a single simulation to model the entire flight profile of a vehicle employing a parachute.

  10. SSA Modeling and Simulation with DIRSIG

    NASA Astrophysics Data System (ADS)

    Bennett, D.; Allen, D.; Dank, J.; Gartley, M.; Tyler, D.

    2014-09-01

    We describe and demonstrate a robust, physics-based modeling system to simulate ground and space-based observations of both LEO and GEO objects. With the DIRSIG radiometry engine at its core, our system exploits STK, adaptive optics modeling, and detector effects to produce high fidelity simulated images and radiometry. Key to generating quantitative simulations is our ability to attribute engineering-quality, faceted CAD models with reflective and emissive properties derived from laboratory measurements, including the spatial structure of such difficult materials as MLI. In addition to simulated video imagery, we will demonstrate a computational procedure implementing a position-based dynamics approach to shrink wrap MLI around space components.

  11. VHDL simulation with access to transistor models

    NASA Technical Reports Server (NTRS)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  12. Crop Simulation Models and Decision Support Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first computer simulation models for agricultural systems were developed in the 1970s. These early models simulated potential production for major crops as a function of weather conditions, especially temperature and solar radiation. At a later stage, the water component was added to be able to ...

  13. Resist profile simulation with fast lithography model

    NASA Astrophysics Data System (ADS)

    He, Yan-Ying; Chou, Chih-Shiang; Tang, Yu-Po; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2014-03-01

    A traditional approach to construct a fast lithographic model is to match wafer top-down SEM images, contours and/or gauge CDs with a TCC model plus some simple resist representation. This modeling method has been proven and is extensively used for OPC modeling. As the technology moves forward, this traditional approach has become insufficient in regard to lithography weak point detection, etching bias prediction, etc. The drawback of this approach is from metrology and simulation. First, top-down SEM is only good for acquiring planar CD information. Some 3D metrology such as cross-section SEM or AFM is necessary to obtain the true resist profile. Second, the TCC modeling approach is only suitable for planar image simulation. In order to model the resist profile, full 3D image simulation is needed. Even though there are many rigorous simulators capable of catching the resist profile very well, none of them is feasible for full-chip application due to the tremendous consumption of computational resource. The authors have proposed a quasi-3D image simulation method in the previous study [1], which is suitable for full-chip simulation with the consideration of sidewall angles, to improve the model accuracy of planar models. In this paper, the quasi-3D image simulation is extended to directly model the resist profile with AFM and/or cross-section SEM data. Resist weak points detected by the model generated with this 3D approach are verified on the wafer.

  14. Protein Simulation Data in the Relational Model.

    PubMed

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646

  15. Protein Simulation Data in the Relational Model

    PubMed Central

    Simms, Andrew M.; Daggett, Valerie

    2011-01-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost—significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646

  16. Simulation modeling for the health care manager.

    PubMed

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement. PMID:19668066

  17. SIMULATION MODELING OF GASTROINTESTINAL ABSORPTION

    EPA Science Inventory

    Mathematical dosimetry models incorporate mechanistic determinants of chemical disposition in a living organism to describe relationships between exposure concentration and the internal dose needed for PBPK models and human health risk assessment. Because they rely on determini...

  18. An Extensible Reduced Order Model Builder for Simulation and Modeling

    SciTech Connect

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The software is generic and can easily be extended to incorporate new methods, simulators.

  19. An Extensible Reduced Order Model Builder for Simulation and Modeling

    Energy Science and Technology Software Center (ESTSC)

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The softwaremore » is generic and can easily be extended to incorporate new methods, simulators.« less

  20. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  1. Simulation modeling and analysis with Arena

    SciTech Connect

    Tayfur Altiok; Benjamin Melamed

    2007-06-15

    The textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment. It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings. Chapter 13.3.3 is on coal loading operations on barges/tugboats.

  2. Rabi multi-sector reservoir simulation model

    SciTech Connect

    Bruijnzeels, C.; O`Halloran, C.

    1995-12-31

    To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

  3. Structural model uncertainty in stochastic simulation

    SciTech Connect

    McKay, M.D.; Morrison, J.D.

    1997-09-01

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  4. Theory, modeling, and simulation annual report, 1992

    SciTech Connect

    Not Available

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  5. MODELING CONCEPTS FOR BMP/LID SIMULATION

    EPA Science Inventory

    Enhancement of simulation options for stormwater best management practices (BMPs) and hydrologic source control is discussed in the context of the EPA Storm Water Management Model (SWMM). Options for improvement of various BMP representations are presented, with emphasis on inco...

  6. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  7. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  8. Mathematical Model Development and Simulation Support

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Tobbe, Patrick A.

    2000-01-01

    This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.

  9. LAKE WATER TEMPERATURE SIMULATION MODEL

    EPA Science Inventory

    Functional relationships to describe surface wind mixing, vertical turbulent diffusion, convective heat transfer, and radiation penetration based on data from lakes in Minnesota have been developed. hese relationships have been introduced by regressing model parameters found eith...

  10. Minimum-complexity helicopter simulation math model

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  11. Modeling: The Role of Atomistic Simulations

    SciTech Connect

    Aga, Rachel S; Morris, James R

    2007-01-01

    A major advantage of atomistic simulations is that a detailed picture of the model under investigation is available, and so they have been very instrumental in explaining the connection of macroscopic properties to the atomic scale. Simulations play a significant role in the development and testing of theories. For example, simulations have been extensively used to test the mode-coupling theory (MCT). The theory predicts that at some critical temperature Tc, known as the mode-coupling temperature, the supercooled liquid undergoes a structural arrest, prohibiting the system from accessing all possible states, thus, essentially undergoing an ergodic to nonergodic transition. It gives definite predictions on various correlation functions that can be calculated directly in simulations. Simulations and MCT have played a tremendous role in elucidating a majority of what we now understand about the dynamics of glass-forming systems. Simulations can also be used to compare with experimental results to validate the model, so that one can use simulation results to measure properties not accessible to experiments. In many cases, as will be illustrated in the next sections, results of simulations motivate experimental investigations. Part of the goal of this chapter is to examine the contributions of atomic simulations to the current state of understanding of metallic glasses.

  12. Modeling of transformers using circuit simulators

    SciTech Connect

    Archer, W.E.; Deveney, M.F.; Nagel, R.L.

    1994-07-01

    Transformers of two different designs; and unencapsulated pot core and an encapsulated toroidal core have been modeled for circuit analysis with circuit simulation tools. We selected MicroSim`s PSPICE and Anology`s SABER as the simulation tools and used experimental BH Loop and network analyzer measurements to generate the needed input data. The models are compared for accuracy and convergence using the circuit simulators. Results are presented which demonstrate the effects on circuit performance from magnetic core losses, eddy currents, and mechanical stress on the magnetic cores.

  13. Intelligent Simulation Model To Facilitate EHR Training

    PubMed Central

    Mohan, Vishnu; Scholl, Gretchen; Gold, Jeffrey A.

    2015-01-01

    Despite the rapid growth of EHR use, there are currently no standardized protocols for EHR training. A simulation EHR environment may offer significant advantages with respect to EHR training, but optimizing the training paradigm requires careful consideration of the simulation model itself, and how it is to be deployed during training. In this paper, we propose Six Principles that are EHR-agnostic and provide the framework for the development of an intelligent simulation model that can optimize EHR training by replicating real-world clinical conditions and appropriate cognitive loads. PMID:26958229

  14. Binary black hole simulations for surrogate modeling

    NASA Astrophysics Data System (ADS)

    Hemberger, Daniel; SXS Collaboration

    2016-03-01

    Analytic or data-driven models of binary black hole coalescences are used to densely cover the full parameter space, because it is computationally infeasible to do so using numerical relativity (NR). However, these models still need input from NR, either for calibration, or because the model is agnostic to the underlying physics. We use the Spectral Einstein Code (SpEC) to provide a large number of simulations to aid the construction of a NR surrogate model in a 5-dimensional subset of the parameter space. I will present an analysis of the simulations that were used to construct the surrogate model. I will also describe the infrastructure that was needed to efficiently perform a large number of simulations across many computational resources.

  15. River system environmental modeling and simulation methodology

    SciTech Connect

    Rao, N.B.

    1981-01-01

    Several computer models have been built to examine pollution in rivers. However, the current state of the art in this field emphasizes problem solving using specific programs. A general methodology for building and simulating models of river systems is lacking. Thus, the purpose of this research was to develop a methodology which can be used to conceptualize, visualize, construct and analyze using simulation, models of pollution in river systems. The conceptualization and visualization of these models was facilitated through a network representation. The implementation of the models was accomplished using the capabilities of an existing simulation language, GASP V. The methodology also provides data management facilities for model outputs through the use of the Simulation Data Language (SDL), and high quality plotting facilities through the use of the graphics package DISSPLA (Display Integrated Software System and Plotting Language). Using this methodology, a river system is modeled as consisting of certain elements, namely reaches, junctions, dams, reservoirs, withdrawals and pollutant sources. All these elements of the river system are described in a standard form which has been implemented on a computer. This model, when executed, produces spatial and temporal distributions of the pollutants in the river system. Furthermore, these outputs can be stored in a database and used to produce high quality plots. The result of this research is a methodology for building, implementing and examining the results of models of pollution in river systems.

  16. Architecting a Simulation Framework for Model Rehosting

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2004-01-01

    The utility of vehicle math models extends beyond human-in-the-loop simulation. It is desirable to deploy a given model across a multitude of applications that target design, analysis, and research. However, the vehicle model alone represents an incomplete simulation. One must also replicate the environment models (e.g., atmosphere, gravity, terrain) to achieve identical vehicle behavior across all applications. Environment models are increasing in complexity and represent a substantial investment to re-engineer for a new application. A software component that can be rehosted in each application is one solution to the deployment problem. The component must encapsulate both the vehicle and environment models. The component must have a well-defined interface that abstracts the bulk of the logic to operate the models. This paper examines the characteristics of a rehostable modeling component from the perspective of a human-in-the-loop simulation framework. The Langley Standard Real-Time Simulation in C++ (LaSRS++) is used as an example. LaSRS++ was recently redesigned to transform its modeling package into a rehostable component.

  17. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  18. Revolutions in energy through modeling and simulation

    SciTech Connect

    Tatro, M.; Woodard, J.

    1998-08-01

    The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

  19. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  20. Non-linear transformer modeling and simulation

    SciTech Connect

    Archer, W.E.; Deveney, M.F.; Nagel, R.L.

    1994-08-01

    Transformers models for simulation with Pspice and Analogy`s Saber are being developed using experimental B-H Loop and network analyzer measurements. The models are evaluated for accuracy and convergence using several test circuits. Results are presented which demonstrate the effects on circuit performance from magnetic core losses eddy currents and mechanical stress on the magnetic cores.

  1. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  2. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  3. Modeling and simulation of metal forming equipment

    NASA Astrophysics Data System (ADS)

    Frazier, W. G.; Medina, E. A.; Malas, J. C.; Irwin, R. D.

    1997-04-01

    The demand for components made from hard-to-form materials is growing, as is the need to better understand and improve the control of metal forming equipment. Techniques are presented for developing accurate models and computer simulations of metal forming equipment for the purpose of improving metal forming process design. Emphasis is placed on modeling the dynamic behavior of hydraulic vertical forge presses, although similar principles apply to other types of metal forming equipment. These principles are applied to modeling and simulation of a 1000 ton forge press in service at Wright-Patterson Air Force Base, Ohio, along with experimental verification.

  4. Molecular simulation and modeling of complex I.

    PubMed

    Hummer, Gerhard; Wikström, Mårten

    2016-07-01

    Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways. Simulations have also shed light on the coupling between electron and proton transfer, thus pointing the way in the search for the mechanistic principles underlying the proton pump. In addition to reviewing what has already been achieved in complex I modeling, we aim here to identify pressing issues and to provide guidance for future research to harness the power of modeling in the functional characterization of complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26780586

  5. A queuing model for road traffic simulation

    SciTech Connect

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-03-10

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.

  6. PIXE simulation: Models, methods and technologies

    SciTech Connect

    Batic, M.; Pia, M. G.; Saracco, P.; Weidenspointner, G.

    2013-04-19

    The simulation of PIXE (Particle Induced X-ray Emission) is discussed in the context of general-purpose Monte Carlo systems for particle transport. Dedicated PIXE codes are mainly concerned with the application of the technique to elemental analysis, but they lack the capability of dealing with complex experimental configurations. General-purpose Monte Carlo codes provide powerful tools to model the experimental environment in great detail, but so far they have provided limited functionality for PIXE simulation. This paper reviews recent developments that have endowed the Geant4 simulation toolkit with advanced capabilities for PIXE simulation, and related efforts for quantitative validation of cross sections and other physical parameters relevant to PIXE simulation.

  7. Mars Smart Lander Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Raiszadeh, Ben

    2002-01-01

    A multi-body flight simulation for the Mars Smart Lander has been developed that includes six degree-of-freedom rigid-body models for both the supersonically-deployed and subsonically-deployed parachutes. This simulation is designed to be incorporated into a larger simulation of the entire entry, descent and landing (EDL) sequence. The complete end-to-end simulation will provide attitude history predictions of all bodies throughout the flight as well as loads on each of the connecting lines. Other issues such as recontact with jettisoned elements (heat shield, back shield, parachute mortar covers, etc.), design of parachute and attachment points, and desirable line properties can also be addressed readily using this simulation.

  8. Power electronics system modeling and simulation

    SciTech Connect

    Lai, Jih-Sheng

    1994-12-31

    This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and output current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.

  9. Five forest harvesting simulation models, part 1: modeling characteristics

    SciTech Connect

    Goulet, D.V.; Iff, R.H.; Sirois, D.L.

    1980-01-01

    This paper is the first of two describing the conclusions from a study to determine the state of the art in timber harvesting computer simulation modeling. Five models were evaluated -- Forest Harvesting Simulation Model (FHSM), Full Tree Field Chipping (FTFC), Harvesting System Simulator (HSS), Simulation Applied to Logging Systems (SAPLOS), and Timber Harvesting and Transport Simulator (THATS) -- for their potential use in southern forest harvesting operations. In Part I, modeling characteristics and overall model philosophy are identified and illustrated. This includes a detailed discussion of the wood flow process in each model, accounting strategies for productive/non-productive times, performance variables, and the different types of harvesting systems modelable. In Part II we discuss user implementation problems. Those dealt with in detail are: What questions can be asked of the model. What are the modeling tradeoffs, and how do they impact on the analysis. What are the computer skills necessary to effectively work with the model. What computer support is needed. Are the models operational. The results provide a good picture of the state of the art in timber harvesting computer simulation. Much learning has occurred in the generation of these models, and many modeling and implementation problems have been uncovered, some of which remain unsolved. Hence, the user needs to examine closely the model and the intended application so that results will represent usable, valid data. It is recommended that the development of timber harvesting computer simulation modeling continue, so that existing and proposed timber harvesting strategies can be adequately evaluated. A set of design criteria are proposed. (Refs. 21).

  10. Modeling and simulation of plasma processing equipment

    NASA Astrophysics Data System (ADS)

    Kim, Heon Chang

    Currently plasma processing technology is utilized in a wide range of applications including advanced Integrated Circuit (IC) fabrication. Traditionally, plasma processing equipments have been empirically designed and optimized at great expense of development time and cost. This research proposes the development of a first principle based, multidimensional plasma process simulator with the aim of enhancing the equipment design procedure. The proposed simulator accounts for nonlinear interactions among various plasma chemistry and physics, neutral chemistry and transport, and dust transport phenomena. A three moment modeling approach is employed that shows good predictive capabilities at reasonable computational expense. For numerical efficiency, various versions of explicit and implicit Essentially Non- Oscillatory (ENO) algorithms are employed. For the rapid evaluation of time-periodic steady-state solutions, a feedback control approach is employed. Two dimensional simulation results of capacitively coupled rf plasmas show that ion bombardment uniformity can be improved through simulation based design of the plasma process. Through self-consistent simulations of an rf triode, it is also shown that effects of secondary rf voltage and frequency on ion bombardment energy can be accurately captured. These results prove that scaling relations among important process variables can be identified through the three moment modeling and simulation approach. Through coupling of the plasma model with a neutral chemistry and transport model, spatiotemporal distributions of both charged and uncharged species, including metastables, are predicted for an oxygen plasma. Furthermore, simulation results also verify the existence of a double layer in this electronegative plasma. Through Lagrangian simulation of dust in a plasma reactor, it is shown that small particles are accumulate near the center and the radial sheath boundary depending on their initial positions while large

  11. Pressurized Cadaver Model in Cardiothoracic Surgical Simulation.

    PubMed

    Greene, Christina L; Minneti, Michael; Sullivan, Maura E; Baker, Craig J

    2015-09-01

    Simulation is increasingly recognized as an integral aspect of thoracic surgery education. A number of simulators have been introduced to teach component cardiothoracic skills; however, no good model exists for numerous essential skills including redo sternotomy and internal mammary artery takedown. These procedures are often relegated to thoracic surgery residents but have significant negative implications if performed incorrectly. Fresh tissue dissection is recognized as the gold standard for surgical simulation, but the lack of circulating blood volume limits surgical realism. Our aim is to describe the technique of the pressurized cadaver for use in cardiothoracic surgical procedures, focusing on internal mammary artery takedown. PMID:26354651

  12. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  13. Incorporation of RAM techniques into simulation modeling

    NASA Astrophysics Data System (ADS)

    Nelson, S. C., Jr.; Haire, M. J.; Schryver, J. C.

    1995-01-01

    This work concludes that reliability, availability, and maintainability (RAM) analytical techniques can be incorporated into computer network simulation modeling to yield an important new analytical tool. This paper describes the incorporation of failure and repair information into network simulation to build a stochastic computer model to represent the RAM Performance of two vehicles being developed for the US Army: The Advanced Field Artillery System (AFAS) and the Future Armored Resupply Vehicle (FARV). The AFAS is the US Army's next generation self-propelled cannon artillery system. The FARV is a resupply vehicle for the AFAS. Both vehicles utilize automation technologies to improve the operational performance of the vehicles and reduce manpower. The network simulation model used in this work is task based. The model programmed in this application requirements a typical battle mission and the failures and repairs that occur during that battle. Each task that the FARV performs--upload, travel to the AFAS, refuel, perform tactical/survivability moves, return to logistic resupply, etc.--is modeled. Such a model reproduces a model reproduces operational phenomena (e.g., failures and repairs) that are likely to occur in actual performance. Simulation tasks are modeled as discrete chronological steps; after the completion of each task decisions are programmed that determine the next path to be followed. The result is a complex logic diagram or network. The network simulation model is developed within a hierarchy of vehicle systems, subsystems, and equipment and includes failure management subnetworks. RAM information and other performance measures are collected which have impact on design requirements. Design changes are evaluated through 'what if' questions, sensitivity studies, and battle scenario changes.

  14. Analyzing Strategic Business Rules through Simulation Modeling

    NASA Astrophysics Data System (ADS)

    Orta, Elena; Ruiz, Mercedes; Toro, Miguel

    Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.

  15. Distributed earth model/orbiter simulation

    NASA Technical Reports Server (NTRS)

    Geisler, Erik; Mcclanahan, Scott; Smith, Gary

    1989-01-01

    Distributed Earth Model/Orbiter Simulation (DEMOS) is a network based application developed for the UNIX environment that visually monitors or simulates the Earth and any number of orbiting vehicles. Its purpose is to provide Mission Control Center (MCC) flight controllers with a visually accurate three dimensional (3D) model of the Earth, Sun, Moon and orbiters, driven by real time or simulated data. The project incorporates a graphical user interface, 3D modelling employing state-of-the art hardware, and simulation of orbital mechanics in a networked/distributed environment. The user interface is based on the X Window System and the X Ray toolbox. The 3D modelling utilizes the Programmer's Hierarchical Interactive Graphics System (PHIGS) standard and Raster Technologies hardware for rendering/display performance. The simulation of orbiting vehicles uses two methods of vector propagation implemented with standard UNIX/C for portability. Each part is a distinct process that can run on separate nodes of a network, exploiting each node's unique hardware capabilities. The client/server communication architecture of the application can be reused for a variety of distributed applications.

  16. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  17. Battery thermal models for hybrid vehicle simulations

    NASA Astrophysics Data System (ADS)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  18. Modeling surgical skill learning with cognitive simulation.

    PubMed

    Park, Shi-Hyun; Suh, Irene H; Chien, Jung-hung; Paik, Jaehyon; Ritter, Frank E; Oleynikov, Dmitry; Siu, Ka-Chun

    2011-01-01

    We used a cognitive architecture (ACT-R) to explore the procedural learning of surgical tasks and then to understand the process of perceptual motor learning and skill decay in surgical skill performance. The ACT-R cognitive model simulates declarative memory processes during motor learning. In this ongoing study, four surgical tasks (bimanual carrying, peg transfer, needle passing, and suture tying) were performed using the da Vinci© surgical system. Preliminary results revealed that an ACT-R model produced similar learning effects. Cognitive simulation can be used to demonstrate and optimize the perceptual motor learning and skill decay in surgical skill training. PMID:21335834

  19. How well do climate models simulate precipitation?

    NASA Astrophysics Data System (ADS)

    Schaller, Nathalie; Mahlstein, Irina; Knutti, Reto; Cermak, Jan

    2010-05-01

    This study compares three different methods to evaluate the ability of Atmosphere Ocean General Circulation Models (AOGCMs) to simulate precipitation. Currently, AOGCMs are the most powerful tool to investigate the future climate but how to evaluate them is a relatively new research field. Thus, no standardized metric for defining a climate model's skill has been defined so far. The common way to proceed is to evaluate the model simulations against observations using statistical measures. However, precipitation is highly variable on both the spatial and temporal scales. We therefore suspect that metrics representing regional features of the modelled precipitation response to climate change are more suitable to identify the good models than statistical measures defined on a global scale. Here, we compare three different ways of ranking the climate models: a) biases in a broad range of climate variables, b) only biases in global precipitation and c) regional features of modelled precipitation in areas where future changes are expected to be pronounced. Surprisingly, the multimodel mean performs only average for the feature-based ranking, while it outperforms all single models in the two bias-based rankings. In the feature-based ranking, the models performing best can be different for each region or zonal band considered and identifying them each time newly depending on the purpose may allow for more reliable projections. Further, this study reveals that many models have similar biases and that the observation datasets are often located at one end of the model range. Our results suggest that weighting the models according to their ability to simulate the present climate might lead to more reliable projections than the "one model, one vote" approach that has been favored so far.

  20. Ion selective transistor modelling for behavioural simulations.

    PubMed

    Daniel, M; Janicki, M; Wroblewski, W; Dybko, A; Brzozka, Z; Napieralski, A

    2004-01-01

    Computer aided design and simulation of complex silicon microsystems oriented for environment monitoring requires efficient and accurate models of ion selective sensors, compatible with the existing behavioural simulators. This paper concerns sensors based on the back-side contact Ion Sensitive Field Effect Transistors (ISFETs). The ISFETs with silicon nitride gate are sensitive to hydrogen ion concentration. When the transistor gate is additionally covered with a special ion selective membrane, selectivity to other than hydrogen ions can be achieved. Such sensors are especially suitable for flow analysis of solutions containing various ions. The problem of ion selective sensor modelling is illustrated here on a practical example of an ammonium sensitive membrane. The membrane is investigated in the presence of some interfering ions and appropriate selectivity coefficients are determined. Then, the model of the whole sensor is created and used in subsequent electrical simulations. Providing that appropriate selectivity coefficients are known, the proposed model is applicable for any membrane, and can be straightforwardly implemented for behavioural simulation of water monitoring microsystems. The model has been already applied in a real on-line water pollution monitoring system for detection of various contaminants. PMID:15685987

  1. Damage modeling for Taylor impact simulations

    NASA Astrophysics Data System (ADS)

    Anderson, C. E., Jr.; Chocron, I. S.; Nicholls, A. E.

    2006-08-01

    G. I. Taylor showed that dynamic material properties could be deduced from the impact of a projectile against a rigid boundary. The Taylor anvil test became very useful with the advent of numerical simulations and has been used to infer and/or to validate material constitutive constants. A new experimental facility has been developed to conduct Taylor anvil impacts to support validation of constitutive constants used in simulations. Typically, numerical simulations are conducted assuming 2-D cylindrical symmetry, but such computations cannot hope to capture the damage observed in higher velocity experiments. A computational study was initiated to examine the ability to simulate damage and subsequent deformation of the Taylor specimens. Three-dimensional simulations, using the Johnson-Cook damage model, were conducted with the nonlinear Eulerian wavecode CTH. The results of the simulations are compared to experimental deformations of 6061-T6 aluminum specimens as a function of impact velocity, and conclusions regarding the ability to simulate fracture and reproduce the observed deformations are summarized.

  2. Observation simulation experiments with regional prediction models

    NASA Technical Reports Server (NTRS)

    Diak, George; Perkey, Donald J.; Kalb, Michael; Robertson, Franklin R.; Jedlovec, Gary

    1990-01-01

    Research efforts in FY 1990 included studies employing regional scale numerical models as aids in evaluating potential contributions of specific satellite observing systems (current and future) to numerical prediction. One study involves Observing System Simulation Experiments (OSSEs) which mimic operational initialization/forecast cycles but incorporate simulated Advanced Microwave Sounding Unit (AMSU) radiances as input data. The objective of this and related studies is to anticipate the potential value of data from these satellite systems, and develop applications of remotely sensed data for the benefit of short range forecasts. Techniques are also being used that rely on numerical model-based synthetic satellite radiances to interpret the information content of various types of remotely sensed image and sounding products. With this approach, evolution of simulated channel radiance image features can be directly interpreted in terms of the atmospheric dynamical processes depicted by a model. Progress is being made in a study using the internal consistency of a regional prediction model to simplify the assessment of forced diabatic heating and moisture initialization in reducing model spinup times. Techniques for model initialization are being examined, with focus on implications for potential applications of remote microwave observations, including AMSU and Special Sensor Microwave Imager (SSM/I), in shortening model spinup time for regional prediction.

  3. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  4. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  5. Models, Simulations, and Games: A Survey.

    ERIC Educational Resources Information Center

    Shubik, Martin; Brewer, Garry D.

    A Rand evaluation of activity and products of gaming, model-building, and simulation carried out under the auspices of the Defense Advanced Research Projects Agency aimed not only to assess the usefulness of gaming in military-political policymaking, but also to contribute to the definition of common standards and the refinement of objectives for…

  6. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  7. Love Kills:. Simulations in Penna Ageing Model

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Cebrat, Stanisław; Penna, T. J. P.; Sousa, A. O.

    The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.

  8. Teaching Environmental Systems Modelling Using Computer Simulation.

    ERIC Educational Resources Information Center

    Moffatt, Ian

    1986-01-01

    A computer modeling course in environmental systems and dynamics is presented. The course teaches senior undergraduates to analyze a system of interest, construct a system flow chart, and write computer programs to simulate real world environmental processes. An example is presented along with a course evaluation, figures, tables, and references.…

  9. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  10. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  11. Twitter's tweet method modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  12. Numerical simulations and modeling of turbulent combustion

    NASA Astrophysics Data System (ADS)

    Cuenot, B.

    Turbulent combustion is the basic physical phenomenon responsible for efficient energy release by any internal combustion engine. However it is accompanied by other undesirable phenomena such as noise, pollutant species emission or damaging instabilities that may even lead to the system desctruction. It is then crucial to control this phenomenon, to understand all its mecanisms and to master it in industrial systems. For long time turbulent combustion has been explored only through theory and experiment. But the rapid increase of computers power during the last years has allowed an important development of numerical simulation, that has become today an essential tool for research and technical design. Direct numerical simulation has then allowed to rapidly progress in the knowledge of turbulent flame structures, leading to new modelisations for steady averaged simulations. Recently large eddy simulation has made a new step forward by refining the description of complex and unsteady flames. The main problem that arises when performing numerical simulation of turbulent combustion is linked to the description of the flame front. Being very thin, it can not however be reduced to a simple interface as it is the location of intense chemical transformation and of strong variations of thermodynamical quantities. Capturing the internal structure of a zone with a thickness of the order of 0.1 mm in a computation with a mesh step 10 times larger being impossible, it is necessary to model the turbulent flame. Models depend on the chemical structure of the flame, on the ambiant turbulence, on the combustion regime (flamelets, distributed combustion, etc.) and on the reactants injection mode (premixed or not). One finds then a large class of models, from the most simple algebraic model with a one-step chemical kinetics, to the most complex model involving probablity density functions, cross-correlations and multiple-step or fully complex chemical kinetics.

  13. Advances in NLTE modeling for integrated simulations

    NASA Astrophysics Data System (ADS)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  14. Computational Spectrum of Agent Model Simulation

    SciTech Connect

    Perumalla, Kalyan S

    2010-01-01

    The study of human social behavioral systems is finding renewed interest in military, homeland security and other applications. Simulation is the most generally applied approach to studying complex scenarios in such systems. Here, we outline some of the important considerations that underlie the computational aspects of simulation-based study of human social systems. The fundamental imprecision underlying questions and answers in social science makes it necessary to carefully distinguish among different simulation problem classes and to identify the most pertinent set of computational dimensions associated with those classes. We identify a few such classes and present their computational implications. The focus is then shifted to the most challenging combinations in the computational spectrum, namely, large-scale entity counts at moderate to high levels of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases are outlined. A case study of large-scale agent simulation is provided in simulating large numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent computational results are identified that highlight the potential of modern high-end computing platforms to push the envelope with respect to speed, scale and fidelity of social system simulations. Finally, the problem of shielding the modeler or domain expert from the complex computational aspects is discussed and a few potential solution approaches are identified.

  15. Robust three-body water simulation model

    NASA Astrophysics Data System (ADS)

    Tainter, C. J.; Pieniazek, P. A.; Lin, Y.-S.; Skinner, J. L.

    2011-05-01

    The most common potentials used in classical simulations of liquid water assume a pairwise additive form. Although these models have been very successful in reproducing many properties of liquid water at ambient conditions, none is able to describe accurately water throughout its complicated phase diagram. The primary reason for this is the neglect of many-body interactions. To this end, a simulation model with explicit three-body interactions was introduced recently [R. Kumar and J. L. Skinner, J. Phys. Chem. B 112, 8311 (2008), 10.1021/jp8009468]. This model was parameterized to fit the experimental O-O radial distribution function and diffusion constant. Herein we reparameterize the model, fitting to a wider range of experimental properties (diffusion constant, rotational correlation time, density for the liquid, liquid/vapor surface tension, melting point, and the ice Ih density). The robustness of the model is then verified by comparing simulation to experiment for a number of other quantities (enthalpy of vaporization, dielectric constant, Debye relaxation time, temperature of maximum density, and the temperature-dependent second and third virial coefficients), with good agreement.

  16. Modeling of protein loops by simulated annealing.

    PubMed Central

    Collura, V.; Higo, J.; Garnier, J.

    1993-01-01

    A method is presented to model loops of protein to be used in homology modeling of proteins. This method employs the ESAP program of Higo et al. (Higo, J., Collura, V., & Garnier, J., 1992, Biopolymers 32, 33-43) and is based on a fast Monte Carlo simulation and a simulated annealing algorithm. The method is tested on different loops or peptide segments from immunoglobulin, bovine pancreatic trypsin inhibitor, and bovine trypsin. The predicted structure is obtained from the ensemble average of the coordinates of the Monte Carlo simulation at 300 K, which exhibits the lowest internal energy. The starting conformation of the loop prior to modeling is chosen to be completely extended, and a closing harmonic potential is applied to N, CA, C, and O atoms of the terminal residues. A rigid geometry potential of Robson and Platt (1986, J. Mol. Biol. 188, 259-281) with a united atom representation is used. This we demonstrate to yield a loop structure with good hydrogen bonding and torsion angles in the allowed regions of the Ramachandran map. The average accuracy of the modeling evaluated on the eight modeled loops is 1 A root mean square deviation (rmsd) for the backbone atoms and 2.3 A rmsd for all heavy atoms. PMID:8401234

  17. Fault diagnosis based on continuous simulation models

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  18. Electronic continuum model for molecular dynamics simulations.

    PubMed

    Leontyev, I V; Stuchebrukhov, A A

    2009-02-28

    A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed. PMID:19256627

  19. Flight Simulation Model Exchange. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.

  20. Flight Simulation Model Exchange. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.

  1. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1984-01-01

    The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.

  2. Computational model for protein unfolding simulation

    NASA Astrophysics Data System (ADS)

    Tian, Xu-Hong; Zheng, Ye-Han; Jiao, Xiong; Liu, Cai-Xing; Chang, Shan

    2011-06-01

    The protein folding problem is one of the fundamental and important questions in molecular biology. However, the all-atom molecular dynamics studies of protein folding and unfolding are still computationally expensive and severely limited by the time scale of simulation. In this paper, a simple and fast protein unfolding method is proposed based on the conformational stability analyses and structure modeling. In this method, two structure-based conditions are considered to identify the unstable regions of proteins during the unfolding processes. The protein unfolding trajectories are mimicked through iterative structure modeling according to conformational stability analyses. Two proteins, chymotrypsin inhibitor 2 (CI2) and α -spectrin SH3 domain (SH3) were simulated by this method. Their unfolding pathways are consistent with the previous molecular dynamics simulations. Furthermore, the transition states of the two proteins were identified in unfolding processes and the theoretical Φ values of these transition states showed significant correlations with the experimental data (the correlation coefficients are >0.8). The results indicate that this method is effective in studying protein unfolding. Moreover, we analyzed and discussed the influence of parameters on the unfolding simulation. This simple coarse-grained model may provide a general and fast approach for the mechanism studies of protein folding.

  3. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  4. Blast furnace on-line simulation model

    NASA Astrophysics Data System (ADS)

    Saxén, Henrik

    1990-10-01

    A mathematical model of the ironmaking blast furnace (BF) is presented. The model describes the steady-state operation of the furnace in one spatial dimension using real process data sampled at the steelworks. The measurement data are reconciled by an interface routine which yields boundary conditions obeying the conservation laws of atoms and energy. The simulation model, which provides a picture of the internal conditions of the BF, can be used to evaluate the current state of the process and to predict the effect of operating actions on the performance of the furnace.

  5. GLAST Burst Monitor Instrument Simulation and Modeling

    SciTech Connect

    Hoover, A. S.; Kippen, R. M.; Wallace, M. S.; Pendleton, G. N.; Fishman, G. J.; Meegan, C. A.; Kouveliotou, C.; Wilson-Hodge, C. A.; Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.

    2008-05-22

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset.

  6. Facebook's personal page modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  7. Optimisation Strategies for Modelling and Simulation

    NASA Astrophysics Data System (ADS)

    Louchet, Jean

    2007-12-01

    Progress in computation techniques has been dramatically reducing the gap between modeling and simulation. Simulation as the natural outcome of modeling is used both as a tool to predict the behavior of natural or artificial systems, a tool to validate modeling, and a tool to build and refine models - in particular identify model internal parameters. In this paper we will concentrate upon the latter, model building and identification, using modern optimization techniques, through application examples taken from the digital imaging field. The first example is given by Image Processing with retrieval of known patterns in an image. The second example is taken from synthetic image animation: we show how it is possible to learn the model's internal physical parameters from actual trajectory examples, using Darwin-inspired evolutionary algorithms. In the third example, we will demonstrate how it is possible, when the problem cannot easily be handled by a reasonably simple optimization technique, to split the problem into simpler elements which can be efficiently evolved by an evolutionary optimization algorithm - which is now called "Parisian Evolution". The "Fly algorithm" is a realtime stereovision algorithm which skips conventional preliminary stages of image processing, now applied into mobile robotics and medical imaging. The main question left is now, to which degree is it possible to delegate to a computer a part of the physicist's role, which is to collect examples and build general laws from these examples?

  8. Towards Better Coupling of Hydrological Simulation Models

    NASA Astrophysics Data System (ADS)

    Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.

    2012-12-01

    Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time

  9. Theory, modeling and simulation: Annual report 1993

    SciTech Connect

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  10. eShopper modeling and simulation

    NASA Astrophysics Data System (ADS)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  11. Modelling and simulation of virtual Mars scene

    NASA Astrophysics Data System (ADS)

    Sun, Si-liang; Chen, Ren; Sun, Li; Yan, Jie

    2011-08-01

    There is a limited cognition on human beings comprehend the universe. Aiming at the impending need of mars exploration in the near future, starting from the mars three-dimensional (3D) model, the mars texture which based on several reality pictures was drew and the Bump mapping technique was managed to enhance the realistic rendering. In order to improve the simulation fidelity, the composing of mars atmospheric was discussed and the reason caused atmospheric scattering was investigated, the scattering algorithm was studied and calculated as well. The reasons why "Red storm" that frequently appeared on mars were particularized, these factors inevitable brought on another celestial body appearance. To conquer this problem, two methods which depended on different position of view point (universe point and terrestrial point) were proposed: in previous way, the 3D model was divided into different meshes to simulate the storm effect and the formula algorithm that mesh could rotate with any axis was educed. From a certain extent the model guaranteed rendering result when looked at the mars (with "Red storm") in universe; in latter way, 3D mars terrain scene was build up according to the mars pictures downloaded on "Google Mars", particle system used to simulated the storm effect, then the Billboard technique was managed to finish the color emendation and rendering compensation. At the end, the star field simulation based on multiple texture blending was given. The result of experiment showed that these methods had not only given a substantial increase in fidelity, but also guaranteed real-time rendering. It can be widely used in simulation of space battlefield and exploration tasks.

  12. Simulation model of clastic sedimentary processes

    SciTech Connect

    Tetzlaff, D.M.

    1987-01-01

    This dissertation describes SEDSIM, a computer model that simulates erosion, transport, and deposition of clastic sediments by free-surface flow in natural environments. SEDSIM is deterministic and is applicable to sedimentary processes in rivers, deltas, continental shelves, submarine canyons, and turbidite fans. The model is used to perform experiments in clastic sedimentation. Computer experimentation is limited by computing power available, but is free from scaling problems associated with laboratory experiments. SEDSIM responds to information provided to it at the outset of a simulation experiment, including topography, subsurface configuration, physical parameters of fluid and sediment, and characteristics of sediment sources. Extensive computer graphics are incorporated in SEDSIM. The user can display the three-dimensional geometry of simulated deposits in the form of successions of contour maps, perspective diagrams, vector plots of current velocities, and vertical sections of any azimuth orientation. The sections show both sediment age and composition. SEDSIM works realistically with processes involving channel shifting and topographic changes. Example applications include simulation of an ancient submarine canyon carved into a Cretaceous sequence in the National Petroleum Reserve in Alaska, known mainly from seismic sections and a sequence of Tertiary age in the Golden Meadow oil field of Louisiana, known principally from well logs.

  13. Consequence modeling using the fire dynamics simulator.

    PubMed

    Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent

    2004-11-11

    The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with

  14. High-Fidelity Roadway Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  15. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  16. Model parameters for simulation of physiological lipids.

    PubMed

    Hills, Ronald D; McGlinchey, Nicholas

    2016-05-01

    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed-chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid-protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  17. Simulation of model swimmers near ciliated surfaces

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Tripathi, Anurag; Yeomans, Julia; Balazs, Anna

    2013-03-01

    Biofouling by micro-organisms is problematic on scales from microfluidic devices to the largest ships in the ocean. One solution found in nature for clearing undesired material from surfaces is to employ active cilia, for example, in the respiratory tract. It is feasible to fabricate surfaces covered with artificial cilia actuated by an externally imposed field. Using numerical simulation, we investigate the interactions between these artificial cilia and self-propelled model swimmers. One of the key aims is to explore the possibility of steering swimmers to influence their trajectories through the flow field produced by the cilia. In our simulations, the fluid dynamics is solved using the lattice Boltzmann method while the cilia and model swimmers are governed by elastic internal mechanics. We implement an immersed boundary approach to couple the solid and fluid dynamics.

  18. Refined Transistor Model For Simulation Of SEU

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Benumof, Reuben

    1988-01-01

    Equivalent base resistance added. Theoretical study develops equations for parameters of Gummel-Poon model of bipolar junction transistor: includes saturation current, amplification factors, charging times, knee currents, capacitances, and resistances. Portion of study concerned with base region goes beyond Gummel-Poon analysis to provide more complete understanding of transistor behavior. Extended theory useful in simulation of single-event upset (SEU) caused in logic circuits by cosmic rays or other ionizing radiation.

  19. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect

    Dixon, David A; Garrett, Bruce C; Straatsma, TP; Jones, Donald R; Studham, Scott; Harrison, Robert J; Nichols, Jeffrey A

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM and S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  20. Theory, Modeling and Simulation Annual Report 2000

    SciTech Connect

    Dixon, David A.; Garrett, Bruce C.; Straatsma, Tp; Jones, Donald R.; Studham, Ronald S.; Harrison, Robert J.; Nichols, Jeffrey A.

    2001-11-01

    This annual report describes the 2000 research accomplishments for the Theory, Modeling, and Simulation (TM&S) directorate, one of the six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). EMSL is a U.S. Department of Energy (DOE) national scientific user facility and is the centerpiece of the DOE commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems.

  1. Simulation and modeling of homogeneous, compressed turbulence

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.

    1985-01-01

    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.

  2. Simulation and modeling of homogeneous, compressed turbulence

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.

    1985-05-01

    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.

  3. Progress in Modeling and Simulation of Batteries

    SciTech Connect

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  4. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  5. Qualitative simulation for process modeling and control

    NASA Technical Reports Server (NTRS)

    Dalle Molle, D. T.; Edgar, T. F.

    1989-01-01

    A qualitative model is developed for a first-order system with a proportional-integral controller without precise knowledge of the process or controller parameters. Simulation of the qualitative model yields all of the solutions to the system equations. In developing the qualitative model, a necessary condition for the occurrence of oscillatory behavior is identified. Initializations that cannot exhibit oscillatory behavior produce a finite set of behaviors. When the phase-space behavior of the oscillatory behavior is properly constrained, these initializations produce an infinite but comprehensible set of asymptotically stable behaviors. While the predictions include all possible behaviors of the real system, a class of spurious behaviors has been identified. When limited numerical information is included in the model, the number of predictions is significantly reduced.

  6. Biomedical Simulation Models of Human Auditory Processes

    NASA Technical Reports Server (NTRS)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  7. Atomistic modeling and simulation of nanopolycrystalline solids

    NASA Astrophysics Data System (ADS)

    Yang, Zidong

    In the past decades, nanostructured materials have opened new and fascinating avenues for research. Nanopolycrystalline solids, which consist of nano-sized crystalline grains and significant volume fractions of amorphous grain boundaries, are believed to have substantially different response to the thermal-mechanical-electric-magnetic loads, as compared to the response of single-crystalline materials. Nanopolycrystalline materials are expected to play a key role in the next generation of smart materials. This research presents a framework (1) to generate full atomistic models, (2) to perform non-equilibrium molecular dynamics simulations, and (3) to study multi-physics phenomena of nanopolycrystalline solids. This work starts the physical model and mathematical representation with the framework of molecular dynamics. In addition to the latest theories and techniques of molecular dynamics simulations, this work implemented principle of objectivity and incorporates multi-physics features. Further, a database of empirical interatomic potentials is established and the combination scheme for potentials is revisited, which enables investigation of a broad spectrum of chemical elements (as in periodic table) and compounds (such as rocksalt, perovskite, wurtzite, diamond, etc.). The configurational model of nanopolycrystalline solids consists of two spatial components: (1) crystalline grains, which can be obtained through crystal structure optimization, and (2) amorphous grain boundaries, which can be obtained through amorphization process. Therefore, multi-grain multi-phase nanopolycrystalline material system can be constructed by partitioning the space for grains, followed by filling the inter-grain space with amorphous grain boundaries. Computational simulations are performed on several representative crystalline materials and their mixture, such as rocksalt, perovskite and diamond. Problems of relaxation, mechanical loading, thermal stability, heat conduction

  8. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  9. LISP based simulation generators for modeling complex space processes

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing

    1987-01-01

    The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.

  10. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances. PMID:27228737

  11. Best Practices for Crash Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  12. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  13. A Simple Memristor Model for Circuit Simulations

    NASA Astrophysics Data System (ADS)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  14. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  15. Application of simulation models for the optimization of business processes

    NASA Astrophysics Data System (ADS)

    Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří

    2016-06-01

    The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.

  16. Simulation and Modeling of Homogeneous, Compressed Turbulence.

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Teh

    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression has been simulated by numerically solving the Navier-Stokes equations. The numerical simulations were carried out on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second -order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one -dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. It was found that the ratio of the turbulence time scale to the mean-flow time scale is an important parameter in these flows. When this ratio is large, the flow is immediately affected by the mean strain in a manner similar to that predicted by rapid distortion theory. When this ratio is small, the flow retains the character of decaying isotropic turbulence initially; only after the strain has been applied for a long period does the flow accumulate a significant reflection of the effect of mean strain. In these flows, the Kolmogorov length scale decreases rapidly with increasing total strain, due to the density increase that accompanies compression. Results from the simulated flow fields were used to test one-point-closure, two-equation turbulence models. The two-equation models perform well only when the compression rate is small compared to the eddy turn-over rate. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.

  17. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    Energy Science and Technology Software Center (ESTSC)

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremore » typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.« less

  18. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  19. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  20. A Flexible Microarray Data Simulation Model

    PubMed Central

    Dembélé, Doulaye

    2013-01-01

    Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databases...), which are also subject to error. A good evaluation of gene selection methods is possible with data whose characteristics are known, that is to say, synthetic data. We propose a model to simulate microarray data with similar characteristics to the data commonly produced by current platforms. The parameters used in this model are described to allow the user to generate data with varying characteristics. In order to show the flexibility of the proposed model, a commented example is given and illustrated. An R package is available for immediate use.

  1. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    NASA Technical Reports Server (NTRS)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  2. Multi-formalism modelling and simulation: application to cardiac modelling

    PubMed Central

    Defontaine, Antoine; Hernández, Alfredo; Carrault, Guy

    2004-01-01

    Cardiovascular modelling has been a major research subject for the last decades. Different cardiac models have been developed at a cellular level as well as at the whole organ level. Most of these models are defined by a comprehensive cellular modelling using continuous formalisms or by a tissue-level modelling often based on discrete formalisms. Nevertheless, both views still suffer from difficulties that reduce their clinical applications: the first approach requires heavy computational resources while the second one is not able to reproduce certain pathologies. This paper presents an original methodology trying to gather advantages from both approaches, by means of an hybrid model mixing discrete and continuous formalisms. This method has been applied to define a hybrid model of cardiac action potential propagation on a 2D grid of endocardial cells, combining cellular automata and a set of cells defined by the Beeler Reuter model. For simulations under physiologic and ischemic conditions, results show that the action potential propagation as well as electrogram reconstructions are consistent with clinical diagnosis. Finally, the interest of the proposed approach is discussed within the frame of cardiac modelling and simulation. PMID:15520534

  3. Toy models for galaxy formation versus simulations

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Zolotov, A.; Tweed, D.; Cacciato, M.; Ceverino, D.; Primack, J. R.

    2013-10-01

    We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z > 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z=4-1. We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star formation rate (SFR) in the galaxy subject to mass conservation and a universal star formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q ˜ 1 violent disc instability (VDI) and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1 + z)5/2, (b) the penetration to the inner halo is ˜50 per cent at z=4-2, (c) the disc radius is ˜5 per cent of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.

  4. Modeling and simulation of electrostatically gated nanochannels.

    PubMed

    Pardon, G; van der Wijngaart, W

    2013-11-01

    Today, despite the growing interest in nanofluidics, the descriptions of the many complex physical phenomena occurring at this scale remain scattered in the literature. Due to the additional complexity encountered when considering electrostatic nanofluidic gating, it is important to regroup several relevant theories and discuss them with regard to this application. In this work, we present a theoretical study of electrostatically gated phenomena and propose a model for the electrostatic gating of ion and molecular transport in nanochannels. In addition to the classical electrokinetic equations, that are reviewed in this work, several relevant phenomena are considered and combined to describe gating effects on nanofluidic properties more accurately. Dynamic surface charging is accounted for and is shown to be an essential element for electrostatic gating. The autoprotolysis of water is also considered to allow for accurate computing of the surface charge. Modifications of the Nernst-Planck equations are considered for more accurate computing of the concentration profiles at higher surface potentials by accounting for ion crowding near charge walls. The sensitivity of several parameters to the electric field and ion crowding is also studied. Each of these models is described separately before their implementation in a finite element model. The model is verified against previous experimental work. Finally, the model is used to simulate the tuning of the ionic current through the nanochannel via electrostatic gating. The influence of the additional models on these results is discussed. Guidelines for potentially better gating efficiencies are finally proposed. PMID:23915526

  5. Coarse-grained models for biological simulations

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2011-03-01

    The large timescales and length-scales of interest in biophysics preclude atomistic study of many systems and processes. One appealing approach is to use coarse-grained (CG) models where several atoms are grouped into a single CG site. In this work we describe a new CG force field for lipids, surfactants, and amino acids. The topology of CG sites is the same as in the MARTINI force field, but the new model is compatible with a recently developed CG electrostatic water (Big Multiple Water, BMW) model. The model not only gives correct structural, elastic properties and phase behavior for lipid and surfactants, but also reproduces electrostatic properties at water-membrane interface that agree with experiment and atomistic simulations, including the potential of mean force for charged amino acid residuals at membrane. Consequently, the model predicts stable attachment of cationic peptides (i.e., poly-Arg) on lipid bilayer surface, which is not shown in previous models with non-electrostatic water.

  6. Exploring Biomolecular Recognition by Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Wade, Rebecca

    2007-12-01

    Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.

  7. Modeling and simulation technology readiness levels.

    SciTech Connect

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to

  8. Petroleum reservoir data for testing simulation models

    SciTech Connect

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  9. Modeling VOC transport in simulated waste drums

    SciTech Connect

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum.

  10. Modeling, Simulation, and Forecasting of Subseasonal Variability

    NASA Technical Reports Server (NTRS)

    Waliser, Duane; Schubert, Siegfried; Kumar, Arun; Weickmann, Klaus; Dole, Randall

    2003-01-01

    A planning workshop on "Modeling, Simulation and Forecasting of Subseasonal Variability" was held in June 2003. This workshop was the first of a number of meetings planned to follow the NASA-sponsored workshop entitled "Prospects For Improved Forecasts Of Weather And Short-Term Climate Variability On Sub-Seasonal Time Scales" that was held April 2002. The 2002 workshop highlighted a number of key sources of unrealized predictability on subseasonal time scales including tropical heating, soil wetness, the Madden Julian Oscillation (MJO) [a.k.a Intraseasonal Oscillation (ISO)], the Arctic Oscillation (AO) and the Pacific/North American (PNA) pattern. The overarching objective of the 2003 follow-up workshop was to proceed with a number of recommendations made from the 2002 workshop, as well as to set an agenda and collate efforts in the areas of modeling, simulation and forecasting intraseasonal and short-term climate variability. More specifically, the aims of the 2003 workshop were to: 1) develop a baseline of the "state of the art" in subseasonal prediction capabilities, 2) implement a program to carry out experimental subseasonal forecasts, and 3) develop strategies for tapping the above sources of predictability by focusing research, model development, and the development/acquisition of new observations on the subseasonal problem. The workshop was held over two days and was attended by over 80 scientists, modelers, forecasters and agency personnel. The agenda of the workshop focused on issues related to the MJO and tropicalextratropical interactions as they relate to the subseasonal simulation and prediction problem. This included the development of plans for a coordinated set of GCM hindcast experiments to assess current model subseasonal prediction capabilities and shortcomings, an emphasis on developing a strategy to rectify shortcomings associated with tropical intraseasonal variability, namely diabatic processes, and continuing the implementation of an

  11. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  12. Grand challenges in modeling and simulation

    NASA Astrophysics Data System (ADS)

    Gordon, Steven C.

    2002-07-01

    Few argue with the need for modeling and simulation (M&S) to better or more completely represent current and expected military operations. The challenge is to decide where to make specific improvements in M&S representation and functionality within time, funding, technology, and research limitations. So, it is natural to select key areas - Grand Challenges - for a significant evolution in M&S where a major effort of many at considerable cost is needed to deal with the critical issues ahead. This paper selects three proposed and related Grand Challenges. First, M&S Depiction of Information and Effects-Based Operations, as a Grand Challenge, will assist in creating sufficiently realistic battlespaces for M&S users. Second, M&S Support to Crisis Response and Military Operations, as a Grand Challenge, is a key area that will help the Department of Defense meet transformation goals. Third, Effective Development of Future Simulations, as a Grand Challenge, will set the standards by which future M&S improvements and new M&S programs will be acquired to ensure needed simulations are delivered on time and at desired cost.

  13. At the Biological Modeling and Simulation Frontier

    PubMed Central

    Ropella, Glen E. P.; Lam, Tai Ning; Tang, Jonathan; Kim, Sean H. J.; Engelberg, Jesse A.; Sheikh-Bahaei, Shahab

    2009-01-01

    We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine. Electronic supplementary material The online version of this article (doi:10.1007/s11095-009-9958-3) contains supplementary material, which is available to authorized users. PMID:19756975

  14. Molecular models and simulations of layered materials.

    SciTech Connect

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-11-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites.

  15. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  16. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

  17. Simulating Complex Modulated Phases Through Spin Models

    NASA Astrophysics Data System (ADS)

    Selinger, Jonathan V.; Lopatina, Lena M.; Geng, Jun; Selinger, Robin L. B.

    2009-03-01

    We extend the computational approach for studying striped phases on curved surfaces, presented in the previous talk, to two new problems involving complex modulated phases. First, we simulate a smectic liquid crystal on an arbitrary mesh by mapping the director field onto a vector spin and the density wave onto an Ising spin. We can thereby determine how the smectic phase responds to any geometrical constraints, including hybrid boundary conditions, patterned substrates, and disordered substrates. This method may provide a useful tool for designing ferroelectric liquid crystal cells. Second, we explore a model of vector spins on a flat two-dimensional (2D) lattice with long-range antiferromagnetic interactions. This model generates modulated phases with surprisingly complex structures, including 1D stripes and 2D periodic cells, which are independent of the underlying lattice. We speculate on the physical significance of these structures.

  18. Modeling and visual simulation of Microalgae photobioreactor

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  19. Advanced in turbulence physics and modeling by direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.

    1987-01-01

    The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.

  20. Dimensions of Credibility in Models and Simulations

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2008-01-01

    Based on the National Aeronautics and Space Administration's (NASA's) work in developing a standard for models and simulations (M&S), the subject of credibility in M&S became a distinct focus. This is an indirect result from the Space Shuttle Columbia Accident Investigation Board (CAIB), which eventually resulted in an action, among others, to improve the rigor in NASA's M&S practices. The focus of this action came to mean a standardized method for assessing and reporting results from any type of M&S. As is typical in the standards development process, this necessarily developed into defming a common terminology base, common documentation requirements (especially for M&S used in critical decision making), and a method for assessing the credibility of M&S results. What surfaced in the development of the NASA Standard was the various dimensions credibility to consider when accepting the results from any model or simulation analysis. The eight generally relevant factors of credibility chosen in the NASA Standard proved only one aspect in the dimensionality of M&S credibility. At the next level of detail, the full comprehension of some of the factors requires an understanding along a couple of dimensions as well. Included in this discussion are the prerequisites for the appropriate use of a given M&S, the choice of factors in credibility assessment with their inherent dimensionality, and minimum requirements for fully reporting M&S results.

  1. Simulation Modelling: Educational Development Roles for Learning Technologists.

    ERIC Educational Resources Information Center

    Riley, David

    2002-01-01

    Discusses computer assisted learning and simulation modeling from a United Kingdom perspective. Highlights include modeling with the DMS (Dynamic Modelling System); modeling with STELLA; learning and teaching simulation modeling; educational development roles for learning technologists; and a list of relevant Web sites. (Contains 52 references.)…

  2. Modeling and simulation of cascading contingencies

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  3. Modeling and simulation of a grand piano.

    PubMed

    Chabassier, Juliette; Chaigne, Antoine; Joly, Patrick

    2013-07-01

    A time-domain global modeling of a grand piano is presented. The string model includes internal losses, stiffness, and geometrical nonlinearity. The hammer-string interaction is governed by a nonlinear dissipative compression force. The soundboard is modeled as a dissipative bidimensional orthotropic Reissner-Mindlin plate where the presence of ribs and bridges is treated as local heterogeneities. The coupling between strings and soundboard at the bridge allows the transmission of both transverse and longitudinal waves to the soundboard. The soundboard is coupled to the acoustic field, whereas all other parts of the structure are supposed to be perfectly rigid. The acoustic field is bounded artificially using perfectly matched layers. The discrete form of the equations is based on original energy preserving schemes. Artificial decoupling is achieved, through the use of Schur complements and Lagrange multipliers, so that each variable of the problem can be updated separately at each time step. The capability of the model is highlighted by series of simulations in the low, medium, and high register, and through comparisons with waveforms recorded on a Steinway D piano. Its ability to account for phantom partials and precursors, consecutive to string nonlinearity and inharmonicity, is particularly emphasized. PMID:23862839

  4. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  5. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  6. LADEE Satellite Modeling and Simulation Development

    NASA Technical Reports Server (NTRS)

    Adams, Michael; Cannon, Howard; Frost, Chad

    2011-01-01

    As human activity on and around the Moon increases, so does the likelihood that our actions will have an impact on its atmosphere. The Lunar Atmosphere and Dust Environment Explorer (LADEE), a NASA satellite scheduled to launch in 2013, will orbit the Moon collecting composition, density, and time variability data to characterize the current state of the lunar atmosphere. LADEE will also test the concept of the "Modular Common Bus" spacecraft architecture, an effort to reduce both development time and cost by designing reusable, modular components for use in multiple missions with similar requirements. An important aspect of this design strategy is to both simulate the spacecraft and develop the flight code in Simulink, a block diagram-style programming language that allows easy algorithm visualization and performance testing. Before flight code can be tested, however, a realistic simulation of the satellite and its dynamics must be generated and validated. This includes all of the satellite control system components such as actuators used for force and torque generation and sensors used for inertial orientation reference. My primary responsibilities have included designing, integrating, and testing models for the LADEE thrusters, reaction wheels, star trackers, and rate gyroscopes.

  7. Prospects for composability of models and simulations

    NASA Astrophysics Data System (ADS)

    Davis, Paul K.; Anderson, Robert B.

    2004-08-01

    This paper is the summary of a recent RAND study done at the request of the U.S. Defense Modeling and Simulation Office (DMSO). Commissioned in recognition that the last decade's efforts by DoD to achieve model "composability" have had only limited success (e.g., HLA-mediated exercises), and that fundamental problems remain, the study surveyed the underlying problems that make composability difficult. It then went on to recommend a series of improvement measures for DMSO and other DoD offices to consider. One strong recommendation was that DoD back away from an earlier tendency toward overselling composability, moving instead to a more particularized approach in which composability is sought within domains where it makes most sense substantively. Another recommendation was that DoD needs to recognize the shortcomings of standard software-engineering paradigms when dealing with "models" rather than pure software. Beyond this, the study had concrete recommendations dealing with science and technology, the base of human capital, management, and infrastructure. Many recommendations involved the need to align more closely with cutting edge technology and emerging standards in the private sector.

  8. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    PubMed

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied. PMID:26220273

  9. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  10. Modeling active memory: Experiment, theory and simulation

    NASA Astrophysics Data System (ADS)

    Amit, Daniel J.

    2001-06-01

    Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron

  11. Using Computational Simulations to Confront Students' Mental Models

    ERIC Educational Resources Information Center

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  12. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  13. The modeling of miniature UAV flight visualization simulation platform

    NASA Astrophysics Data System (ADS)

    Li, Dong-hui; Li, Xin; Yang, Le-le; Li, Xiong

    2015-12-01

    This paper combines virtual technology with visualization visual simulation theory, construct the framework of visual simulation platform, apply open source software FlightGear simulator combined with GoogleEarth design a small UAV flight visual simulation platform. Using software AC3D to build 3D models of aircraft and complete the model loading based on XML configuration, the design and simulation of visualization modeling visual platform is presented. By using model-driven and data transforming in FlightGear , the design of data transmission module is realized based on Visual Studio 2010 development platform. Finally combined with GoogleEarth it can achieve the tracking and display.

  14. Modeling and simulation of the SDC data collection chip

    SciTech Connect

    Hughes, E.; Haney, M.; Golin, E.; Jones, L.; Knapp, D.; Tharakan, G.; Downing, R. )

    1992-04-01

    This paper describes modeling and simulation of the Data Collection Chip (DCC) design for the Solenoidal Detector Collaboration (SDC). Models of the DCC written in Verilog and VHDL are described, and results are presented. The models have been simulated to study queue depth requirements and to compare control feedback alternatives. Insight into the management of models and simulation tools is given. Finally, techniques useful in the design process for data acquisition systems are discussed.

  15. Modeling and simulation of the SDC Data Collection Chip

    SciTech Connect

    Hughes, E.; Tharakan, G.; Downing, R.; Haney, M.; Golin, E.; Jones, L.; Knapp, D.; Thaler, J.

    1991-01-01

    This paper describes modeling and simulation of the Data Collection Chip (DCC) design for the Solenoidal Detector Collaboration (SDC). Models of the DCC written in Verilog and VHDL are described, and results are presented. The models have been simulated to study queue depth requirements and to compare control feedback alternatives. Insight into the management of models and simulation tools is given. Finally, techniques useful in the design process for data acquisition systems are discussed.

  16. Modeling and simulation of the SDC Data Collection Chip

    SciTech Connect

    Hughes, E.; Tharakan, G.; Downing, R.; Haney, M.; Golin, E.; Jones, L.; Knapp, D.; Thaler, J.

    1991-12-31

    This paper describes modeling and simulation of the Data Collection Chip (DCC) design for the Solenoidal Detector Collaboration (SDC). Models of the DCC written in Verilog and VHDL are described, and results are presented. The models have been simulated to study queue depth requirements and to compare control feedback alternatives. Insight into the management of models and simulation tools is given. Finally, techniques useful in the design process for data acquisition systems are discussed.

  17. Modeling and Simulation at Tidewater Community College

    NASA Technical Reports Server (NTRS)

    Summers, Michael

    2008-01-01

    Investment of $1.5 million in medical simulation technology. Integration of medical simulation activities into the curriculum. Support from TCC leadership. Individual and team activities. Skill development and critical thinking/problem solving skills.

  18. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  19. Predictive Capability Maturity Model for computational modeling and simulation.

    SciTech Connect

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  20. Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review

    PubMed Central

    Speybroeck, Niko; Van Malderen, Carine; Harper, Sam; Müller, Birgit; Devleesschauwer, Brecht

    2013-01-01

    Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks. PMID:24192788

  1. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  2. Aircraft vulnerability analysis by modeling and simulation

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    guidance acceleration and seeker sensitivity. For the purpose of this investigation the aircraft is equipped with conventional pyrotechnic decoy flares and the missile has no counter-countermeasure means (security restrictions on open publication). This complete simulation is used to calculate the missile miss distance, when the missile is launched from different locations around the aircraft. The miss distance data is then graphically presented showing miss distance (aircraft vulnerability) as a function of launch direction and range. The aircraft vulnerability graph accounts for aircraft and missile characteristics, but does not account for missile deployment doctrine. A Bayesian network is constructed to fuse the doctrinal rules with the aircraft vulnerability data. The Bayesian network now provides the capability to evaluate the combined risk of missile launch and aircraft vulnerability. It is shown in this paper that it is indeed possible to predict the aircraft vulnerability to missile attack in a comprehensive modelling and a holistic process. By using the appropriate real-world models, this approach is used to evaluate the effectiveness of specific countermeasure techniques against specific missile threats. The use of a Bayesian network provides the means to fuse simulated performance data with more abstract doctrinal rules to provide a realistic assessment of the aircraft vulnerability.

  3. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    PubMed Central

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  4. Georeferenced model simulations efficiently support targeted monitoring

    NASA Astrophysics Data System (ADS)

    Berlekamp, Jürgen; Klasmeier, Jörg

    2010-05-01

    The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.

  5. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    SciTech Connect

    James Glimm

    2009-06-04

    The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.

  6. Modeling and simulation of bubbles and particles

    NASA Astrophysics Data System (ADS)

    Dorgan, Andrew James

    The interaction of particles, drops, and bubbles with a fluid (gas or liquid) is important in a number of engineering problems. The present works seeks to extend the understanding of these interactions through numerical simulation. To model many of these relevant flows, it is often important to consider finite Reynolds number effects on drag, lift, torque and history force. Thus, the present work develops an equation of motion for spherical particles with a no-slip surface based on theoretical analysis, experimental data and surface-resolved simulations which is appropriate for dispersed multiphase flows. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. Further work is needed for more quantitative assessment of the truncation terms in complex flows. The new equation of motion is then used to assess the relative importance of each force in the context of two low-density particles (an air bubble and a sand particle) in a boundary layer of water. This relative importance is measured by considering effects on particle concentration, visualization of particle-fluid interactions, diffusion rates, and Lagrangian statistics collected along the particle trajectory. Strong added mass and stress gradient effects are observed for the bubble but these were found to have little effect on a sand particle of equal diameter. Lift was shown to be important for both conditions provided the terminal velocity was aligned with the flow direction. The influence of lift was found to be

  7. Simulation modeling for long duration spacecraft control systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Bavuso, Salvatore J.

    1993-01-01

    The use of simulation is described and it is contrasted to analytical solution techniques for evaluation of analytical reliability models. The role importance sampling plays in simulation of models of this type was also discussed. The simulator tool used for our analysis is described. Finally, the use of the simulator tool was demonstrated by applying it to evaluate the reliability of a fault tolerant hypercube multiprocessor intended for spacecraft designed for long duration missions. The reliability analysis was used to highlight the advantages and disadvantages offered by simulation over analytical solution of Markovian and non-Markovian reliability models.

  8. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  9. Simulation Modeling of a Facility Layout in Operations Management Classes

    ERIC Educational Resources Information Center

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  10. Project Shuttle simulation math model coordination catalog, revision 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A catalog is presented of subsystem and environment math models used or planned for space shuttle simulations. The purpose is to facilitate sharing of similar math models between shuttle simulations. It provides information on mach model requirements, formulations, schedules, and contact persons for further information.

  11. Maneuver simulation model of an experimental hovercraft for the Antarctic

    NASA Astrophysics Data System (ADS)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  12. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  13. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1985-01-01

    A 4800 band synchronous communications link was established between the Perkin-Elmer (P-E) 3250 Atmospheric Modeling and Sensor Simulation (AMASS) system and the Cyber 205 located at the Goddard Space Flight Center. An extension study of off-the-shelf array processors offering standard interface to the Perkin-Elmer was conducted to determine which would meet computational requirements of the division. A Floating Point Systems AP-120B was borrowed from another Marshall Space Flight Center laboratory for evaluation. It was determined that available array processors did not offer significantly more capabilities than the borrowed unit, although at least three other vendors indicated that standard Perkin-Elmer interfaces would be marketed in the future. Therefore, the recommendation was made to continue to utilize the 120B ad to keep monitoring the AP market. Hardware necessary to support requirements of the ASD as well as to enhance system performance was specified and procured. Filters were implemented on the Harris/McIDAS system including two-dimensional lowpass, gradient, Laplacian, and bicubic interpolation routines.

  14. Simulation Model of Rapid TAE Chirping

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, H. L.

    2010-11-01

    Spontaneous nonlinear coherent frequency chirping structures can arise due to the resonant interaction of energetic particles with a discrete toroidal Alfven eigenmode (TAE). The initial development of a coherent structure is quantitatively described by a now standard hole-clump chirping theory. However, it is still unclear what conditions are needed for the TAE chirping frequency to deviate far from the bulk plasma eigenfrequency and enter the Alfven continuum. In our model, the linear TAE controlling equation is derived from the Berk-Mett quadratic form. The interaction is studied with the linear wave with the nonlinear response of energetic particles. For the present study we simplify the wave to a single symmetric couplet while a two-dimensional distribution is used to describe the energetic particles. In order to resolve the fine structure in the phase space, the numerical scheme integrates the Vlasov equation in the Fourier transformed phase space using a method developed by Breizman and Petviashvili. The simulation results show the saturated wave amplitude and square root law of the initial chirping are in accord with previous theory. We have found conditions where the chirping signal enters the Alfven continuum and a larger amplitude and more rapidly chirping signal then develops. Plots of the phase space structure can reproduce the shape of the separatrix structure that partitions the trapped and passing particles. We attempt to relate the portrait of the phase space structure with the measured wave amplitude and chirping frequency.

  15. Millimeter waves sensor modeling and simulation

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. One important class of sensors are millimeter waves radar systems that are very efficient for seeing through atmosphere and/or foliage for example. This type of high frequency radar can produce high quality images with very tricky features such as dihedral and trihedral bright points, shadows and lay over effect. Besides, image quality is very dependent on the carrier velocity and trajectory. Such sensors systems are so complex that they need simulation to be tested. This paper presents a state of the Art of millimeter waves sensor models. A short presentation of asymptotic methods shows that physical optics support is mandatory to reach realistic results. SE-Workbench-RF tool is presented and typical examples of results are shown both in the frame of Synthetic Aperture Radar sensors and Real Beam Ground Mapping radars. Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench-RF are showed and commented.

  16. Diversity modelling for electrical power system simulation

    NASA Astrophysics Data System (ADS)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  17. Hybrid Concurrent Constraint Simulation Models of Several Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Adam

    2003-01-01

    This distribution contains several simulation models created for the hybrid simulation language, Hybrid Concurrent Constraint (HCC). An HCC model contains the information specified in the widely-accepted academic definition of a hybrid system: this includes expressions for the modes of the systems to be simulated and the differential equations that apply in each mode. These expressions are written in the HCC syntax. The models included here were created by either applying basic physical laws or implementing equations listed in previously published papers.

  18. Modeling and Performance Simulation of the Mass Storage Network Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Sang, Janche

    2000-01-01

    This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.

  19. Theory, modeling and simulation of superconducting qubits

    SciTech Connect

    Berman, Gennady P; Kamenev, Dmitry I; Chumak, Alexander; Kinion, Carin; Tsifrinovich, Vladimir

    2011-01-13

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high

  20. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  1. On-line simulations of models for backward masking.

    PubMed

    Francis, Gregory

    2003-11-01

    Five simulations of quantitative models of visual backward masking are available on the Internet at http://www.psych.purdue.edu/-gfrancis/Publications/BackwardMasking/. The simulations can be run in a Web browser that supports the Java programming language. This article describes the motivation for making the simulations available and gives a brief introduction as to how the simulations are used. The source code is available on the Web page, and this article describes how the code is organized. PMID:14748495

  2. Medical simulation: Overview, and application to wound modelling and management

    PubMed Central

    Pai, Dinker R.; Singh, Simerjit

    2012-01-01

    Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research. PMID:23162218

  3. Modeling and simulation of cement hydration kinetics and microstructure development

    SciTech Connect

    Thomas, Jeffrey J.; Biernacki, Joseph J.; Bullard, Jeffrey W.; Bishnoi, Shashank; Dolado, Jorge S.; Scherer, George W.; Luttge, Andreas

    2011-12-15

    Efforts to model and simulate the highly complex cement hydration process over the past 40 years are reviewed, covering different modeling approaches such as single particle models, mathematical nucleation and growth models, and vector and lattice-based approaches to simulating microstructure development. Particular attention is given to promising developments that have taken place in the past few years. Recent applications of molecular-scale simulation methods to understanding the structure and formation of calcium-silicate-hydrate phases, and to understanding the process of dissolution of cement minerals in water are also discussed, as these topics are highly relevant to the future development of more complete and fundamental hydration models.

  4. A Simulation Model Articulation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Laurier, Wim; Poels, Geert

    This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.

  5. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  6. PC BEEPOP - AN ECTOXICOLOGICAL SIMULATION MODEL FOR HONEY BEE POPULATIONS

    EPA Science Inventory

    PC BEEPOP is a computer model that simulates honey bee colony population dynamics. he model consists of a feedback system of interdependent elements, including colony condition, environmental variability, and contaminant exposures. t includes a mortality module (BEEKILL) and a ch...

  7. Validation of vehicle dynamics simulation models - a review

    NASA Astrophysics Data System (ADS)

    Kutluay, Emir; Winner, Hermann

    2014-02-01

    In this work, a literature survey on the validation of vehicle dynamics simulation models is presented. Estimating the dynamic responses of existing or proposed vehicles has a wide array of applications in the development of vehicle technologies, e.g. active suspensions, controller design, driver assistance systems, etc. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. This report presents different views on the definition of validation, and its usage in vehicle dynamics simulation models.

  8. Simulating complex intracellular processes using object-oriented computational modelling.

    PubMed

    Johnson, Colin G; Goldman, Jacki P; Gullick, William J

    2004-11-01

    The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation. PMID:15302205

  9. Construction and implementation of QRST-wave simulation model.

    PubMed

    Lü, W X; Xu, Z Y; Fu, Y J

    1992-11-01

    Computer simulation study of the electrical activity of the heart is one of the frontier subjects of electrocardiogram (ECG) theory study. A new algorithm for simulating excitation propagation within the heart is presented in this paper. On the basis of this, computer simulation of QRST-wave is completed on an IBM PC microcomputer. All performance of the model is compared favourably with that of the models implemented on main frames or on high-performance work stations abroad. PMID:1298293

  10. Chronic Disease Modeling and Simulation Software

    PubMed Central

    Barhak, Jacob; Isaman, Deanna JM; Ye, Wen; Lee, Donghee

    2010-01-01

    Computers allow describing the progress of a disease using computerized models. These models allow aggregating expert and clinical information to allow researchers and decision makers to forecast disease progression. To make this forecast reliable, good models and therefore good modeling tools are required. This paper will describe a new computer tool designed for chronic disease modeling. The modeling capabilities of this tool were used to model the Michigan model for diabetes. The modeling approach and its advantages such as simplicity, availability, and transparency are discussed. PMID:20558320

  11. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  12. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  13. Calibration and Sensitivity Analyses of LEACHM Simulation Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calibration and sensitivity analyses are essential processes in evaluation and application of computer simulation models. Calibration is a process of adjusting model inputs within expected values to minimize the differences between simulated and measured data. The objective of this study was to cali...

  14. Models Robustness for Simulating Drainage and NO3-N Fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance ofhree models – LEACHM, NCSWAP, and SOIL-SOILN–for simulating drainage and NO3-N leaching fluxes in an intense p...

  15. Computer Simulation Models of Economic Systems in Higher Education.

    ERIC Educational Resources Information Center

    Smith, Lester Sanford

    The increasing complexity of educational operations make analytical tools, such as computer simulation models, especially desirable for educational administrators. This MA thesis examined the feasibility of developing computer simulation models of economic systems in higher education to assist decision makers in allocating resources. The report…

  16. Learning-Testing Process in Classroom: An Empirical Simulation Model

    ERIC Educational Resources Information Center

    Buda, Rodolphe

    2009-01-01

    This paper presents an empirical micro-simulation model of the teaching and the testing process in the classroom (Programs and sample data are available--the actual names of pupils have been hidden). It is a non-econometric micro-simulation model describing informational behaviors of the pupils, based on the observation of the pupils'…

  17. Modeling and simulation of nanoelectronics devices in cognitive nanoinformatics

    NASA Astrophysics Data System (ADS)

    Shakhnov, Vadim A.; Zinchenko, Lyudmila A.; Rezchikova, Elena V.

    2014-12-01

    In the paper, an application of cognitive nanoinformatics to advance modeling and simulation of nanoelectronics devices is discussed. The multi-scale approach to information management for nanoelectronics devices modeling and simulation has been proposed. We illustrate our approach for two case study nanoelectronics devices.

  18. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    ERIC Educational Resources Information Center

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  19. The Use of Simulation Models in Teaching Geomorphology and Hydrology.

    ERIC Educational Resources Information Center

    Kirkby, Mike; Naden, Pam

    1988-01-01

    Learning about the physical environment from computer simulation models is discussed in terms of three stages: exploration, experimentation, and calibration. Discusses the effective use of models and presents two computer simulations written in BBC BASIC, STORFLO (for catchment hydrology) and SLOPEK (for hillslope evolution). (Author/GEA)

  20. Simulation of Wave Motion Using a Lattice Gas Model

    NASA Astrophysics Data System (ADS)

    Buick, J.; Easson, W.; Greated, C.

    1996-02-01

    The lattice gas model for simulating two-phase flow, proposed by Appert and Zaleski, has been modified by the introduction of gravitational interactions and the new model has been used to simulate standing wave patterns on the free surface of a fluid. The results compare well with linear theory.

  1. WRF model performance analysis for a suite of simulation design

    NASA Astrophysics Data System (ADS)

    Mohan, Manju; Sati, Ankur Prabhat

    2016-03-01

    At present scientists are successfully using Numerical Weather Prediction (NWP) models to achieve a reliable forecast. Nested domains are preferred by the modelling community with varying grid ratios having wider applications. The impact of the nesting grid ratio (NGR) on the model performance needs systematic analysis and explored in the present study. The usage of WRF is mostly as a mesoscale model in simulating either extreme events or events of smaller duration shown with statistical model evaluation for the correspondingly similar and short period of time. Thus, influence of the simulation period on model performance has been examined for key meteorological parameters. Several works done earlier on episodes involve model implementation for longer duration and for that single simulation is performed often for a continuous stretch. This study scrutinizes the influence on model performance due to one single simulation versus several smaller simulations for the same duration; essentially splitting the run-time. In the present study, the surface wind (i.e., winds at 10 meters), temperature and Relative humidity at 2 meters as obtained from model simulations are compared with the Observations. The sensitivity study of nesting grid ratio, continuous versus smaller split simulations and realistic simulation period is done in the present study. It is found that there is no statistically significant difference in the simulated results on changing the nesting grid ratio while the smaller time split schemes (2 days and 4 days schemes on comparison with 8 days and 16 days continuous run) improve the results significantly. The impact of increasing number of observations from different sites on model performance is also scrutinised. Furthermore, conceptual framework is provided for Optimum time period for simulations to have confidence in statistical model evaluation.

  2. Simulation of hydrodynamics using large eddy simulation-second-order moment model in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu

    2013-07-01

    Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.

  3. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    SciTech Connect

    Glimm, James

    2008-06-24

    The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.

  4. A Simulation and Modeling Framework for Space Situational Awareness

    SciTech Connect

    Olivier, S S

    2008-09-15

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.

  5. [Visualization of EIM simulation data on real cardiac model].

    PubMed

    Liu, Jiquan; Duan, Huilong

    2004-06-01

    Although 3D heart and torso model with realistic geometry are the basis of simulation computation in LFX Virtual Cardiac Model, the simulation results are mostly output in 2D format. Voxel mapping method is presented to solve this problem and extend the function of LFX Virtual Cardiac Model. Excitation Isochrone Map (EIM), one of the most important simulation results, was mapped from cardiac model with realistic geometry to real Visible Man cardiac model, then the EIM simulation data before and after mapping were visualized in the 4DView which is a real-time 3D medical image visualization platform. With this method, the output format of EIM simulation data of LFX Virtual Cardiac Model was extended from 2D to 4D (time is the 4th dimension) and from cardiac model with realistic geometry to real cardiac model. According to the EIM simulation data visualization results before and after mapping, the LFX virtual cardiac model shows its characteristics with more realistic and effective simulation. PMID:15250158

  6. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  7. Simplified simulation models for control studies of turbojet engines

    NASA Technical Reports Server (NTRS)

    Brennan, T. C.; Leake, R. J.

    1975-01-01

    The essential dynamical characteristics of a simple single spool turbojet engine were determined through simulation of low order system models on an analog computer. An accurate model was studied and system complexity was reduced through various linearizations and approximations. A derivation of a seventh order simplified simulation model is presented with a derivation of an even simpler third order model, and simulation results from each. The control problem studied is one of getting from zero fuel flow equilibrium to a high thrust equilibrium while taking into account surge margin and turbine inlet temperature constraints.

  8. Simulation of Pedestrian Dynamic Using a Vector Floor Field Model

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Hou, Zhongsheng; Zhan, Minghui

    2013-04-01

    Simulation of complex scenarios and multi-direction pedestrian flow is a main challenge to microscopic model of pedestrian movement. It is an issue to simulate real pedestrian traffic with great fidelity while keeping its computational cost at an acceptable level. This paper reports on an improved floor field model called vector floor field model to simulate pedestrian flows in some basic scenarios. In this model, vectorization of static floor field and dynamic floor field are used to indicate preference directions and the pedestrian flow tendency, respectively. Pedestrian transition depends on both their preference directions and tendency. The simulations in some basic scenarios are conducted, quantitative comparison to the record of practical experiments and standard floor field model is given as well, and the results indicate the effectivity of this model. An adjusted static vector floor field is also proposed to simulate pedestrian flow in turning scenario. The vector floor field model is also sufficient to simulate some essential features in pedestrian dynamic, such as lane formation. This model can be widely used in the simulation of multi-direction pedestrian at turning, crossing and other junctions.

  9. A View on Future Building System Modeling and Simulation

    SciTech Connect

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  10. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  11. Spiral Growth in Plants: Models and Simulations

    ERIC Educational Resources Information Center

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  12. A software model for simulation in computer-based training

    SciTech Connect

    Spangenberg, L.M.; Nonno, L.M.; De Vries, J.A. II

    1988-01-01

    This paper explores the requirements for Simulation-Based Training (SBT) and describes the Los Alamos model for an SBT authoring system. Although the use of simulation as an instructional strategy provides realistic training opportunities at high cognitive levels (e.g., evaluation, synthesis, analysis), it is at the expense of complexity beyond the capabilities of available authoring systems to create. Cognitive Systems Engineering (CSE) at Los Alamos is exploring a middle ground between conventional CBT and complex simulations. The CSE model proposes the separation of simulation and courseware as the key to successful SBT development. 1 ref., 2 figs.

  13. Dynamics modeling and simulation of autonomous underwater vehicles with appendages

    NASA Astrophysics Data System (ADS)

    Su, Yumin; Zhao, Jinxin; Cao, Jian; Zhang, Guocheng

    2013-03-01

    To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.

  14. Flexing computational muscle: modeling and simulation of musculotendon dynamics.

    PubMed

    Millard, Matthew; Uchida, Thomas; Seth, Ajay; Delp, Scott L

    2013-02-01

    Muscle-driven simulations of human and animal motion are widely used to complement physical experiments for studying movement dynamics. Musculotendon models are an essential component of muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the simulated forces has been adequately evaluated. Here we compare the speed and accuracy of three musculotendon models: two with an elastic tendon (an equilibrium model and a damped equilibrium model) and one with a rigid tendon. Our simulation benchmarks demonstrate that the equilibrium and damped equilibrium models produce similar force profiles but have different computational speeds. At low activation, the damped equilibrium model is 29 times faster than the equilibrium model when using an explicit integrator and 3 times faster when using an implicit integrator; at high activation, the two models have similar simulation speeds. In the special case of simulating a muscle with a short tendon, the rigid-tendon model produces forces that match those generated by the elastic-tendon models, but simulates 2-54 times faster when an explicit integrator is used and 6-31 times faster when an implicit integrator is used. The equilibrium, damped equilibrium, and rigid-tendon models reproduce forces generated by maximally-activated biological muscle with mean absolute errors less than 8.9%, 8.9%, and 20.9% of the maximum isometric muscle force, respectively. When compared to forces generated by submaximally-activated biological muscle, the forces produced by the equilibrium, damped equilibrium, and rigid-tendon models have mean absolute errors less than 16.2%, 16.4%, and 18.5%, respectively. To encourage further development of musculotendon models, we provide implementations of each of these models in OpenSim version 3.1 and benchmark data online, enabling others to reproduce our results and test their models of musculotendon dynamics. PMID:23445050

  15. The Consistency of the Pandemic Simulations between the SEIR Model and the MAS Model

    NASA Astrophysics Data System (ADS)

    Toyosaka, Yuki; Hirose, Hideo

    There are two main methods for pandemic simulations: the SEIR model and the MAS model. The SEIR model can deal with simulations quickly for many homogeneous populations with simple ordinary differential equations; however, the model cannot accommodate many detailed conditions. The MAS model, the multi-agent simulation, can deal with detailed simulations under the many kinds of initial and boundary conditions with simple social network models. However, the computing cost will grow exponentially as the population size becomes larger. Thus, simulations in the large-scale model would hardly be realized unless supercomputers are available. By combining these two methods, we may perform the pandemic simulations in the large-scale model with lower costs. That is, the MAS model is used in the early stage of a pandemic simulation to determine the appropriate parameters to be used in the SEIR model. With these obtained parameters, the SEIR model may then be used. To investigate the validity of this combined method, we first compare the simulation results between the SEIR model and the MAS model. Simulation results of the MAS model and the SEIR model that uses the parameters obtained by the MAS model simulation are found to be close to each other.

  16. Integrated simulation and modeling capability for alternate magnetic fusion concepts

    SciTech Connect

    Cohen, B. I.; Hooper, E.B.; Jarboe, T. R.; LoDestro, L. L.; Pearlstein, L. D.; Prager, S. C.; Sarff, J. S.

    1998-11-03

    This document summarizes a strategic study addressing the development of a comprehensive modeling and simulation capability for magnetic fusion experiments with particular emphasis on devices that are alternatives to the mainline tokamak device. A code development project in this area supports two defined strategic thrust areas in the Magnetic Fusion Energy Program: (1) comprehensive simulation and modeling of magnetic fusion experiments and (2) development, operation, and modeling of magnetic fusion alternate- concept experiment

  17. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  18. Wall-Modeled Large Eddy Simulation

    NASA Video Gallery

    This animation shows a computer modeling tool that is being used to try to make an accurate prediction of the flow around high-lift aircraft wing configurations. Being able to accurately model airf...

  19. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL

    EPA Science Inventory

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest...

  20. Modeling Physics with Easy Java Simulations

    ERIC Educational Resources Information Center

    Christian, Wolfgang; Esquembre, Francisco

    2007-01-01

    Modeling has been shown to correct weaknesses of traditional instruction by engaging students in the design of physical models to describe, explain, and predict phenomena. Although the modeling method can be used without computers, the use of computers allows students to study problems that are difficult and time consuming, to visualize their…

  1. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  2. An Appraisal of Coupled Climate Model Simulations

    SciTech Connect

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  3. Modeling And Simulation Of Multimedia Communication Networks

    NASA Astrophysics Data System (ADS)

    Vallee, Richard; Orozco-Barbosa, Luis; Georganas, Nicolas D.

    1989-05-01

    In this paper, we present a simulation study of a browsing system involving radiological image servers. The proposed IEEE 802.6 DQDB MAN standard is designated as the computer network to transfer radiological images from file servers to medical workstations, and to simultaneously support real time voice communications. Storage and transmission of original raster scanned images and images compressed according to pyramid data structures are considered. Different types of browsing as well as various image sizes and bit rates in the DQDB MAN are also compared. The elapsed time, measured from the time an image request is issued until the image is displayed on the monitor, is the parameter considered to evaluate the system performance. Simulation results show that image browsing can be supported by the DQDB MAN.

  4. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  5. Statistical Modeling of Large-Scale Scientific Simulation Data

    SciTech Connect

    Eliassi-Rad, T; Baldwin, C; Abdulla, G; Critchlow, T

    2003-11-15

    With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate large-scale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an essential step in helping scientists glean new insight from their computer simulations. We define queriable statistical models to be descriptive statistics that (1) summarize and describe the data within a user-defined modeling error, and (2) are able to answer complex range-based queries over the spatiotemporal dimensions. In this chapter, we describe systems that build queriable statistical models for large-scale scientific simulation data sets. In particular, we present our Ad-hoc Queries for Simulation (AQSim) infrastructure, which reduces the data storage requirements and query access times by (1) creating and storing queriable statistical models of the data at multiple resolutions, and (2) evaluating queries on these models of the data instead of the entire data set. Within AQSim, we focus on three simple but effective statistical modeling techniques. AQSim's first modeling technique (called univariate mean modeler) computes the ''true'' (unbiased) mean of systematic partitions of the data. AQSim's second statistical modeling technique (called univariate goodness-of-fit modeler) uses the Andersen-Darling goodness-of-fit method on systematic partitions of the data. Finally, AQSim's third statistical modeling technique (called multivariate clusterer) utilizes the cosine similarity measure to cluster the data into similar groups. Our experimental evaluations on several scientific simulation data sets illustrate the value of using these statistical models on large-scale simulation data sets.

  6. ADVANCED UTILITY SIMULATION MODEL DESCRIPTION OF MODIFICATIONS TO THE STATE LEVEL MODEL (VERSION 3.0)

    EPA Science Inventory

    The report documents modifications to the state level model portion of the Advanced Utility Simulation Model (AUSM), one of four stationary source emission and control cost forecasting models developed for the National Acid Precipitation Assessment Program (NAPAP). The AUSM model...

  7. Automatic identification of model reductions for discrete stochastic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Fu, Jin; Li, Hong; Petzold, Linda

    2012-07-01

    Multiple time scales in cellular chemical reaction systems present a challenge for the efficiency of stochastic simulation. Numerous model reductions have been proposed to accelerate the simulation of chemically reacting systems by exploiting time scale separation. However, these are often identified and deployed manually, requiring expert knowledge. This is time-consuming, prone to error, and opportunities for model reduction may be missed, particularly for large models. We propose an automatic model analysis algorithm using an adaptively weighted Petri net to dynamically identify opportunities for model reductions for both the stochastic simulation algorithm and tau-leaping simulation, with no requirement of expert knowledge input. Results are presented to demonstrate the utility and effectiveness of this approach.

  8. Simulation of 3D infrared scenes using random fields model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Zhang, Jianqi

    2001-09-01

    Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.

  9. Advances in modeling and simulation of vacuum electronic devices

    SciTech Connect

    Antonsen, T.M. Jr.; Mondelli, A.A.; Levush, B.; Verboncoeur, J.P.; Birdsall, C.K.

    1999-05-01

    Recent advances in the modeling and simulation of vacuum electronic devices are reviewed. Design of these devices makes use of a variety of physical models and numerical code types. Progress in the development of these models and codes is outlined and illustrated with specific examples. The state of the art in device simulation is evolving to the point such that devices can be designed on the computer, thereby eliminating many trial and error fabrication and test steps. The role of numerical simulation in the design process can be expected to grow further in the future.

  10. Robust Design of Motor PWM Control using Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Zhan, Wei

    A robust design method is developed for Pulse Width Modulation (PWM) motor speed control. A first principle model for DC permanent magnetic motor is used to build a Simulink model for simulation and analysis. Based on the simulation result, the main factors that contributed to the average speed variation are identified using Design of Experiment (DOE). A robust solution is derived to reduce the aver age speed control variation using Response Surface Method (RSM). The robustness of the new design is verified using the simulation model.

  11. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    SciTech Connect

    Venkattraman, A.; Alexeenko, A. A.

    2011-05-20

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron-beam (e-beam) physical vapor deposition of copper thin films. A suitable molecular model for copper-copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi-symmetric DSMC simulations for analysis of a typical e-beam metal deposition system with a cup crucible. The dimensional and non-dimensional mass fluxes obtained are compared for two different deposition configurations with non-uniformity as high as 40% predicted from the simulations.

  12. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  13. A Material Model for FE-Simulation of UD Composites

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian

    2016-04-01

    Composite materials are being increasingly used for industrial applications. CFRP is particularly suitable for lightweight construction due to its high specific stiffness and strength properties. Simulation methods are needed during the development process in order to reduce the effort for prototypes and testing. This is particularly important for CFRP, as the material is costly. For accurate simulations, a realistic material model is needed. In this paper, a material model for the simulation of UD-composites including non-linear material behaviour and damage is developed and implemented in Abaqus. The material model is validated by comparison with test results on a range of test specimens.

  14. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  15. An Integrated Simulation Tool for Modeling the Human Circulatory System

    NASA Astrophysics Data System (ADS)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  16. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    SciTech Connect

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  17. An improved ARIMA model for hydrological simulations

    NASA Astrophysics Data System (ADS)

    Wang, H. R.; Wang, C.; Lin, X.; Kang, J.

    2014-04-01

    Auto Regressive Integrated Moving Average (ARIMA) model is often used to calculate time series data formed by inter-annual variations of monthly data. However, the influence brought about by inter-monthly variations within each year is ignored. Based on the monthly data classified by clustering analysis, the characteristics of time series data are extracted. An improved ARIMA model is developed accounting for both the inter-annual and inter-monthly variation. The correlation between characteristic quantity and monthly data within each year is constructed by regression analysis first. The model can be used for predicting characteristic quantity followed by the stationary treatment for characteristic quantity time series by difference. A case study is conducted to predict the precipitation in Lanzhou precipitation station, China, using the model, and the results show that the accuracy of the improved model is significantly higher than the seasonal model, with the mean residual achieving 9.41 mm and the forecast accuracy increasing by 21%.

  18. Modeling and Dynamic Simulation of a Large Scale Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Lv, C.; Qiu, T. N.; Wu, J. H.; Xie, X. J.; Li, Q.

    In order to simulate the transient behaviors of a newly developed 2 kW helium refrigerator, a numerical model of the critical equipment including a screw compressor with variable-frequency drive, plate-fin heat exchangers, a turbine expander, and pneumatic valves wasdeveloped. In the simulation,the calculation of the helium thermodynamic properties arebased on 32-parameter modified Benedict-Webb-Rubin (MBWR) state equation.The start-up process of the warm compressor station with gas management subsystem, and the cool-down process of cold box in an actual operation, were dynamically simulated. The developed model was verified by comparing the simulated results with the experimental data.Besides, system responses of increasing heat load were simulated. This model can also be used to design and optimize other large scale helium refrigerators.

  19. An improved ARIMA model for precipitation simulations

    NASA Astrophysics Data System (ADS)

    Wang, H. R.; Wang, C.; Lin, X.; Kang, J.

    2014-12-01

    Auto regressive integrated moving average (ARIMA) models have been widely used to calculate monthly time series data formed by interannual variations of monthly data or inter-monthly variation. However, the influence brought about by inter-monthly variations within each year is often ignored. An improved ARIMA model is developed in this study accounting for both the interannual and inter-monthly variation. In the present approach, clustering analysis is performed first to hydrologic variable time series. The characteristics of each class are then extracted and the correlation between the hydrologic variable quantity to be predicted and characteristic quantities constructed by linear regression analysis. ARIMA models are built for predicting these characteristics of each class and the hydrologic variable monthly values of year of interest are finally predicted using the modeled values of corresponding characteristics from ARIMA model and the linear regression model. A case study is conducted to predict the monthly precipitation at the Lanzhou precipitation station in Lanzhou, China, using the model, and the results show that the accuracy of the improved model is significantly higher than the seasonal model, with the mean residual achieving 9.41 mm and the forecast accuracy increasing by 21%.

  20. Simulation Model of A Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry W. (Technical Monitor)

    2002-01-01

    An electronic simulation model has been developed of a ferroelectric field effect transistor (FFET). This model can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The model uses a previously developed algorithm that incorporates partial polarization as a basis for the design. The model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current has values matching actual FFET's, which were measured experimentally. The input and output resistance in the model is similar to that of the FFET. The model is valid for all frequencies below RF levels. A variety of different ferroelectric material characteristics can be modeled. The model can be used to design circuits using FFET'S with standard electrical simulation packages. The circuit can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The model is a drop in library that integrates seamlessly into a SPICE simulation. A comparison is made between the model and experimental data measured from an actual FFET.

  1. Simulation Model Development for Icing Effects Flight Training

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.

    2003-01-01

    A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.

  2. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  3. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  4. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    SciTech Connect

    Zhou Jun; Chen Peihua; Liu Qingjun; Wang Ping; Yang Wei

    2009-05-23

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  5. Ground Contact Model for Mars Science Laboratory Mission Simulations

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  6. FLUID MODELING SIMULATION OF STACK-TIP DOWNWASH

    EPA Science Inventory

    Downwash of neutrally buoyant effluent on the immediate lee side of a circular stack was modeled using a wind tunnel simulation. oth subcritical and supercritical turbulent flows were simulated, where the criticality refers to Reynolds numbers below and above the critical Reynold...

  7. Design Model for Learner-Centered, Computer-Based Simulations.

    ERIC Educational Resources Information Center

    Hawley, Chandra L.; Duffy, Thomas M.

    This paper presents a model for designing computer-based simulation environments within a constructivist framework for the K-12 school setting. The following primary criteria for the development of simulations are proposed: (1) the problem needs to be authentic; (2) the cognitive demand in learning should be authentic; (3) scaffolding supports a…

  8. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    ERIC Educational Resources Information Center

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power Electronics,"…

  9. Time in Language, Situation Models, and Mental Simulations

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.

    2008-01-01

    The purpose of this article is to propose a view of language processing, and particularly the role of aspect therein, from a mental-simulation perspective. I argue that situation model theories can account for the flow between and interconnectedness of event representations but that mental simulation theories are needed to account for the internal…

  10. Simulations of Accretion Disk Wind Models

    NASA Astrophysics Data System (ADS)

    Brooks, Craig L.; Yong, Suk Yee; O'Dowd, Matthew; Webster, Rachel L.; Bate, Nicholas

    2016-01-01

    The kinematics of the broad emission line region (BELR) in quasars is largely unknown, however there is strong evidence that outflows may be a key component. For example, in approximately 15% of quasars we observe broad, blue-shifted absorption features which may be ubiquitous based on line-of-sight arguments. We use a new mathematical description of an outflowing disk-wind with an initial rotational component to predict surface brightness distributions of this wind at different orientations. These surface brightness distributions will allow us to simulate gravitational microlensing of BELR light, with a view to mapping the structure and better understanding the kinematics of these flows.

  11. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  12. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  13. Modeling and Simulation of Marine Hydrokinetic Devices

    NASA Astrophysics Data System (ADS)

    Shoele, K.; Previsic, M.

    2012-12-01

    To accurately design a wave energy conversion system, the time domain numerical model is necessary. This is due to nonlinearities in the system from different sources such as hydrodynamic forces, device dynamics, control mechanisms, and mooring lines. Combining model accuracy with efficient and fast calculation of hydrodynamic forces in time domain is challenging and time-consuming. This article describes an easy to use and unified computational framework that handles those challenges efficiently for different types of wave energy converters. The framework has been generated as a Matlab toolbox that contains the key components of a wave to wire model. It can be used for initial performance evaluation of wave energy converters as well as detailed nonlinear analysis in the time domain. The preprocessing, post-processing, and standard modeling procedure are among the unique capabilities of the toolbox that enable users to check different device concepts and optimize device performance without dealing with modeling troubles. The hydrodynamic parameters are initially computed using the three-dimensional panel method and transformed to time domain by systematic identification techniques to accelerate computation of the hydrodynamic radiation forces. The dynamics of the whole system including nonlinear viscous forces, multi-body dynamics, mooring lines, and power takeoff units is then modeled in Matlab Simulink interface. Validation of the model with experimental studies is described and the responses of different wave energy conversion systems, especially their converted power, are presented.

  14. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  15. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  16. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  17. Modeling and simulation of bulk gallium nitride power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sabui, G.; Parbrook, P. J.; Arredondo-Arechavala, M.; Shen, Z. J.

    2016-05-01

    Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  18. SYSTEMATIC SENSITIVITY ANALYSIS OF AIR QUALITY SIMULATION MODELS

    EPA Science Inventory

    This report reviews and assesses systematic sensitivity and uncertainty analysis methods for applications to air quality simulation models. The discussion of the candidate methods presents their basic variables, mathematical foundations, user motivations and preferences, computer...

  19. Using automatic programming for simulating reliability network models

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    This paper presents the development of an automatic programming system for assisting modelers of reliability networks to define problems and then automatically generate the corresponding code in the target simulation language GPSS/PC.

  20. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  1. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  2. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  3. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  4. Simulation of financial market via nonlinear Ising model

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2016-09-01

    In this research, we propose a practical method for simulating the financial return series whose distribution has a specific heaviness. We employ the Ising model for generating financial return series to be analogous to those of the real series. The similarity between real financial return series and simulated one is statistically verified based on their stylized facts including the power law behavior of tail distribution. We also suggest the scheme for setting the parameters in order to simulate the financial return series with specific tail behavior. The simulation method introduced in this paper is expected to be applied to the other financial products whose price return distribution is fat-tailed.

  5. Assessing Model Data Fit of Unidimensional Item Response Theory Models in Simulated Data

    ERIC Educational Resources Information Center

    Kose, Ibrahim Alper

    2014-01-01

    The purpose of this paper is to give an example of how to assess the model-data fit of unidimensional IRT models in simulated data. Also, the present research aims to explain the importance of fit and the consequences of misfit by using simulated data sets. Responses of 1000 examinees to a dichotomously scoring 20 item test were simulated with 25…

  6. A dynamic styrofoam-ball model for simulating molecular motion

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  7. [Research advances in soil nitrogen cycling models and their simulation].

    PubMed

    Tang, Guoyong; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Wu, Jinshui

    2005-11-01

    Nitrogen is one of the necessary nutrients for plant, and also a primary element leading to environmental pollution. Many researches have been concerned about the contribution of agricultural activities to environmental pollution by nitrogenous compounds, and the focus is how to simulate soil nitrogen cycling processes correctly. In this paper, the primary soil nitrogen cycling processes were reviewed in brief, with 13 cycling models and 6 simulated cycling processes introduced, and the parameterization of models discussed. PMID:16471369

  8. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  9. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    NASA Technical Reports Server (NTRS)

    Blattnig, St3eve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2009-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  10. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  11. Modeling and Simulation for Safeguards and Nonproliferation Workshop

    SciTech Connect

    Gilligan, Kimberly V.; Kirk, Bernadette Lugue

    2015-01-01

    The Modeling and Simulation for Safeguards and Nonproliferation Workshop was held December 15–18, 2014, at Oak Ridge National Laboratory. This workshop was made possible by the Next Generation Safeguards Initiative Human Capital Development (NGSI HCD) Program. The idea of the workshop was to move beyond the tried-and-true boot camp training of nonproliferation concepts to spend several days on the unique perspective of applying modeling and simulation (M&S) solutions to safeguards challenges.

  12. Towards a Credibility Assessment of Models and Simulations

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Green, Lawrence L.; Luckring, James M.; Morrison, Joseph H.; Tripathi, Ram K.; Zang, Thomas A.

    2008-01-01

    A scale is presented to evaluate the rigor of modeling and simulation (M&S) practices for the purpose of supporting a credibility assessment of the M&S results. The scale distinguishes required and achieved levels of rigor for a set of M&S elements that contribute to credibility including both technical and process measures. The work has its origins in an interest within NASA to include a Credibility Assessment Scale in development of a NASA standard for models and simulations.

  13. Federated Modelling and Simulation for Critical Infrastructure Protection

    NASA Astrophysics Data System (ADS)

    Rome, Erich; Langeslag, Peter; Usov, Andrij

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic models enable consequence analysis and thus may assist in what-if decision-making processes. The simulation of complex scenarios involving several different CI sectors requires the usage of heterogeneous federated simulations of CIs. However, common standards for modelling and interoperability of such federated CI simulations are missing. Also, creating the required abstract models from CIs and other data, setting up the individual federate simulators and integrating all subsystems is a time-consuming and complicated task that requires substantial know-how and resources. In this chapter, we outline applications and benefit of federated modelling, simulation and analysis (MS&A) for Critical Infrastructure Protection (CIP). We review the state of the art in federated MS&A for CIP and categorise common approaches and interoperability concepts like central and lateral coupling of simulators. As examples for the latter two concepts, we will present in more detail an interoperability standard from the military domain, HLA, and an approach developed in the DIESIS project. Special emphasis will also be put on describing the problem of synchronising systems with different time models. Also, we will briefly assess the state of transferring MS&A for CIP research results to practical application by comparing the situations in the USA and in Europe.

  14. Computer model to simulate testing at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Owens, Lewis R., Jr.; Wahls, Richard A.; Hannon, Judith A.

    1995-01-01

    A computer model has been developed to simulate the processes involved in the operation of the National Transonic Facility (NTF), a large cryogenic wind tunnel at the Langley Research Center. The simulation was verified by comparing the simulated results with previously acquired data from three experimental wind tunnel test programs in the NTF. The comparisons suggest that the computer model simulates reasonably well the processes that determine the liquid nitrogen (LN2) consumption, electrical consumption, fan-on time, and the test time required to complete a test plan at the NTF. From these limited comparisons, it appears that the results from the simulation model are generally within about 10 percent of the actual NTF test results. The use of actual data acquisition times in the simulation produced better estimates of the LN2 usage, as expected. Additional comparisons are needed to refine the model constants. The model will typically produce optimistic results since the times and rates included in the model are typically the optimum values. Any deviation from the optimum values will lead to longer times or increased LN2 and electrical consumption for the proposed test plan. Computer code operating instructions and listings of sample input and output files have been included.

  15. Simulating Timescale Dynamics of Network Traffic Using Homogeneous Modeling

    PubMed Central

    Yuan, Jian; Mills, Kevin L.

    2006-01-01

    Simulating and understanding traffic dynamics in large networks are difficult and challenging due to the complexity of such networks and the limitations inherent in simulation modeling. Typically, simulation models used to study traffic dynamics include substantial detail representing protocol mechanisms across several layers of functionality. Such models must be restricted in space and time in order to be computationally tractable. We propose an alternative simulation approach that uses homogeneous modeling with an increased level of abstraction, in order to explore networks at larger space-time scales than otherwise feasible and to develop intuition and insight about the space-time dynamics of large networks. To illustrate the utility of our approach, we examine some current understandings of the timescale dynamics of network traffic, and we discuss some speculative results obtained with homogeneous modeling. Using a wavelet-based technique, we show correlation structures, and changes in correlation structures, of network traffic under variations in traffic sources, transport mechanisms, and network structure. Our simulation results justify further investigation of our approach, which might benefit from cross-verifications against more detailed simulation models. PMID:27274931

  16. Family of systems simulation (FOSSIM): a collaborative approach to FoS modeling and simulation

    NASA Astrophysics Data System (ADS)

    Wymer, Debra; Washburn, Ray; Colvert, Phil; Cunefare, Dave

    2001-09-01

    Significant advances are being made in the application of Modeling and Simulation (M&S) technologies to support Government initiatives for Simulation Based Acquisition (SBA) and Simulation, Test and Evaluation Process (STEP) in the Army transformation. This paper describes a collaborative approach to Family of Systems (FoS) M&S in use on the FOSSIM program to evaluate critical Theater Air and Missile Defense (TAMD) integration and interoperability issues and to explore opportunities for advanced technology exploitation. This paper provides an overview of the FOSSIM concept and describes the collaborative development and utilization methodology. Key topics discussed include Systems Engineering and Design, Model Engineering and Development, Systems Analysis, and Configuration Management (CM). The paper concludes by summarizing the FOSSIM simulation environment and modeling capabilities.

  17. Development and application of an atmospheric turbulence model for use in flight simulators in flight simulators

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Joshi, D. S.

    1976-01-01

    The influence of simulated turbulence on aircraft handling qualities was investigated. Pilot opinion of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which appear to be more similar to real turbulence than the frequently-used Gaussian turbulence model. In addition, the proposed turbulence models can flexibly accommodate changes in atmospheric conditions and be easily implemented in flight simulator studies. Six turbulence time histories, including the conventional Gaussian model, were used in an IFR-tracking task. The realism of each of the turbulence models and the handling qualities of the simulated airplane were evaluated. Analysis of pilot opinions shows that at approximately the same rms intensities of turbulence, the handling quality ratings transit from the satisfactory level, for the simple Gaussian model, to an unacceptable level for more realistic and compositely structured turbulence models.

  18. Abdominal surgery process modeling framework for simulation using spreadsheets.

    PubMed

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. PMID:26004999

  19. Regional climate simulations over Vietnam using the WRF model

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2015-07-01

    We present an analysis of the present-day (1961-1990) regional climate simulations over Vietnam. The regional climate model Weather Research and Forecasting (WRF) was driven by the global reanalysis ERA40. The performance of the regional climate model in simulating the observed climate is evaluated with a main focus on precipitation and temperature. The regional climate model was able to reproduce the observed spatial patterns of the climate, although with some biases. The model also performed better in reproducing the extreme precipitation and the interannual variability. Overall, the WRF model was able to simulate the main regional signatures of climate variables, seasonal cycles, and frequency distributions. This study is an evaluation of the present-day climate simulations of a regional climate model at a resolution of 25 km. Given that dynamical downscaling has become common for studying climate change and its impacts, the study highlights that much more improvements in modeling might be necessary to yield realistic simulations of climate at high resolutions before they can be used for impact studies at a local scale. The need for a dense network of observations is also realized as observations at high resolutions are needed when it comes to evaluations and validations of models at sub-regional and local scales.

  20. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  1. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect

    Wu Dianliang; Zhu Hongmin

    2010-05-21

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  2. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  3. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  4. Modeling and simulation for space medicine operations: preliminary requirements considered.

    PubMed

    Dawson, D L; Billica, R D; McDonald, P V

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed. PMID:11317721

  5. Dynamic stall simulation including turbulence modeling

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1995-09-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.

  6. Comprehensive Mathematical Model for Simulating Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Dong, Yan-Wu; Jiang, Zhou-Hua; Fan, Jin-Xi; Cao, Yu-Long; Hou, Dong; Cao, Hai-Bo

    2016-04-01

    Droplet formation and departure from an electrode tip affect the temperature distribution in liquid slag and a molten steel pool, as well as the removal of nonmetallic inclusions in the electroslag remelting process. In this article, magneto-hydrodynamics modules coupled with a volume of fluid (VOF) model (as described in VOF model theory) for tracking phase distribution have been employed to develop the electrode fusion model and to investigate formation and departure of a droplet from the electrode tip. Subsequently, the remelting rate and molten steel pool have been achieved based on the electrode fusion model. Results indicate that a droplet can increase the flow rate of liquid slag, especially the region of droplet fall through the slag pool; yet it has little impact on the flow distribution. Asymmetric flow can take place in a slag pool due to the action of the droplet. The depth of the molten steel pool increases in the presence of droplets, but the width of the mushy zone decreases. In addition, the shape of the electrode tip is not constant but changes with its fusion. The remelting rate is calculated instead of being imposed in this work. The development of the model supports further understanding of the process and the ability to set the appropriate operating parameters, especially for expensive and easy segregation materials.

  7. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  8. Simulation model for a seven-phase BLDCM drive system

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen

    2007-12-01

    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  9. Lumped circuit model of RF amplifier for SPICE simulator

    NASA Astrophysics Data System (ADS)

    Opalska, Katarzyna

    2014-11-01

    The paper presents the lumped model of RF amplifier for the generic SPICE circuit simulator. Model is constructed on the basis of measured s-parameter data set of the amplifier. Data - transformed to admittance (y) domain - is approximated by rational functions, which later are synthesized as RLC (sub)circuits. Final amplifier model - obtained by representing Y matrix of two-port circuit by the set of passive components and controlled voltage/current sources - is shown to be equivalent to the original s-based model and may be used in any generic circuit simulator.

  10. SpaceNet: Modeling and Simulating Space Logistics

    NASA Technical Reports Server (NTRS)

    Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen

    2008-01-01

    This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.

  11. Simulating simplified versions of the IKKT matrix model

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hotta, T.; Nishimura, J.

    2001-03-01

    We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU( N) super Yang-Mills theory (a 4d counter part of the IKKT model or IIB matrix model). The eigenvalue distribution determines the space structure. The measurement of Wilson loop correlators reveals a universal large N scaling. Eguchi-Kawai equivalence may hold in a finite range of scale, which is also true for the bosonic case. We finally report on simulations of a low energy approximation of the 10d IKKT model, where we omit the phase of the Pfaffian and look for evidence for a spontaneous Lorentz symmetry breaking.

  12. Evolutionary Development of the Simulation by Logical Modeling System (SIBYL)

    NASA Technical Reports Server (NTRS)

    Wu, Helen

    1995-01-01

    Through the evolutionary development of the Simulation by Logical Modeling System (SIBYL) we have re-engineered the expensive and complex IBM mainframe based Long-term Hardware Projection Model (LHPM) to a robust cost-effective computer based mode that is easy to use. We achieved significant cost reductions and improved productivity in preparing long-term forecasts of Space Shuttle Main Engine (SSME) hardware. The LHPM for the SSME is a stochastic simulation model that projects the hardware requirements over 10 years. SIBYL is now the primary modeling tool for developing SSME logistics proposals and Program Operating Plan (POP) for NASA and divisional marketing studies.

  13. Virtual milk for modelling and simulation of dairy processes.

    PubMed

    Munir, M T; Zhang, Y; Yu, W; Wilson, D I; Young, B R

    2016-05-01

    The modeling of dairy processing using a generic process simulator suffers from shortcomings, given that many simulators do not contain milk components in their component libraries. Recently, pseudo-milk components for a commercial process simulator were proposed for simulation and the current work extends this pseudo-milk concept by studying the effect of both total milk solids and temperature on key physical properties such as thermal conductivity, density, viscosity, and heat capacity. This paper also uses expanded fluid and power law models to predict milk viscosity over the temperature range from 4 to 75°C and develops a succinct regressed model for heat capacity as a function of temperature and fat composition. The pseudo-milk was validated by comparing the simulated and actual values of the physical properties of milk. The milk thermal conductivity, density, viscosity, and heat capacity showed differences of less than 2, 4, 3, and 1.5%, respectively, between the simulated results and actual values. This work extends the capabilities of the previously proposed pseudo-milk and of a process simulator to model dairy processes, processing different types of milk (e.g., whole milk, skim milk, and concentrated milk) with different intrinsic compositions, and to predict correct material and energy balances for dairy processes. PMID:26971156

  14. Minimum-dissipation models for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Rozema, Wybe; Bae, Hyun J.; Moin, Parviz; Verstappen, Roel

    2015-08-01

    Minimum-dissipation eddy-viscosity models are a class of sub-filter models for large-eddy simulation that give the minimum eddy dissipation required to dissipate the energy of sub-filter scales. A previously derived minimum-dissipation model is the QR model. This model is based on the invariants of the resolved rate-of-strain tensor and has many desirable properties. It appropriately switches off for laminar and transitional flows, has low computational complexity, and is consistent with the exact sub-filter tensor on isotropic grids. However, the QR model proposed in the literature gives insufficient eddy dissipation. It is demonstrated that this can be corrected by increasing the model constant. The corrected QR model gives good results in simulations of decaying grid turbulence on an isotropic grid. On anisotropic grids the QR model is not consistent with the exact sub-filter tensor and requires an approximation of the filter width. It is demonstrated that the results of the QR model on anisotropic grids are primarily determined by the used filter width approximation, and that no approximation gives satisfactory results in simulations of both a temporal mixing layer and turbulent channel flow. A new minimum-dissipation model for anisotropic grids is proposed. This anisotropic minimum-dissipation (AMD) model generalizes the desirable practical and theoretical properties of the QR model to anisotropic grids and does not require an approximation of the filter width. The AMD model is successfully applied in simulations of decaying grid turbulence on an isotropic grid and in simulations of a temporal mixing layer and turbulent channel flow on anisotropic grids.

  15. A general simulation model for Stirling cycles

    SciTech Connect

    Schulz, S.; Schwendig, F.

    1996-01-01

    A mathematical model for the calculation of the Stirling cycle and of similar processes is presented. The model comprises a method to reproduce schematically any kind of process configuration, including free piston engines. The differential balance equations describing the process are solved by a stable integration algorithm. Heat transfer and pressure loss are calculated by using new correlations, which consider the special conditions of the periodic compression/expansion respectively of the oscillating flow. A comparison between experimental data achieved by means of a test apparatus and calculated data shows a good agreement.

  16. Cooperative global security programs modeling & simulation.

    SciTech Connect

    Briand, Daniel

    2010-05-01

    The national laboratories global security programs implement sustainable technical solutions for cooperative nonproliferation, arms control, and physical security systems worldwide. To help in the development and execution of these programs, a wide range of analytical tools are used to model, for example, synthetic tactical environments for assessing infrastructure protection initiatives and tactics, systematic approaches for prioritizing nuclear and biological threat reduction opportunities worldwide, and nuclear fuel cycle enrichment and spent fuel management for nuclear power countries. This presentation will describe how these models are used in analyses to support the Obama Administration's agenda and bilateral/multinational treaties, and ultimately, to reduce weapons of mass destruction and terrorism threats through international technical cooperation.

  17. Off-gas Adsorption Model and Simulation - OSPREY

    SciTech Connect

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  18. Automatic mathematical modeling for real time simulation system

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Purinton, Steve

    1988-01-01

    A methodology for automatic mathematical modeling and generating simulation models is described. The models will be verified by running in a test environment using standard profiles with the results compared against known results. The major objective is to create a user friendly environment for engineers to design, maintain, and verify their model and also automatically convert the mathematical model into conventional code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine Simulation. It is written in LISP and MACSYMA and runs on a Symbolic 3670 Lisp Machine. The program provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. It contains an initial set of component process elements for the Space Shuttle Main Engine Simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. The system is then able to automatically generate the model and FORTRAN code. The future goal which is under construction is to download the FORTRAN code to VAX/VMS system for conventional computation. The SSME mathematical model will be verified in a test environment and the solution compared with the real data profile. The use of artificial intelligence techniques has shown that the process of the simulation modeling can be simplified.

  19. Recent Advances in Underwater Acoustic Modelling and Simulation

    NASA Astrophysics Data System (ADS)

    ETTER, P. C.

    2001-02-01

    A comprehensive review of international developments in underwater acoustic modelling is used to construct an updated technology baseline containing 107 propagation models, 16 noise models, 17 reverberation models and 25 sonar performance models. This updated technology baseline represents a 30% increase over a previous baseline published in 1996. When executed in higher-level simulations, these models can generate predictive and diagnostic outputs that are useful to acoustical oceanographers or sonar technologists in the analysis of complex systems operating in the undersea environment. Recent modelling developments described in the technical literature suggest two principal areas of application: low-frequency, inverse acoustics in deep water; and high-frequency, bottom-interacting acoustics in coastal regions. Rapid changes in global geopolitics have opened new avenues for collaboration, thereby facilitating the transfer of modelling and simulation technologies among members of the international community. This accelerated technology transfer has created new imperatives for international standards in modelling and simulation architectures. National and international activities to promote interoperability among modelling and simulation efforts in government, industry and academia are reviewed and discussed.

  20. MHD-PIC interlocked simulation model in space plasma

    NASA Astrophysics Data System (ADS)

    Sugiyama, T.; Kuasano, K.

    2008-12-01

    We have developed a new type of simulation technique by directly interlocking a traditional Ion-Particle Hybrid simulation model (Hybrid) and an Energetic-Particle Hybrid simulation (EP-HYB) model. In the traditional Hybrid model, all ions are kinetically treated as particles. In the EP-HYB model, non-thermal energetic ions are kinetically treated, and the thermal component is calculated as a fluid. The interlocked model is applied to a two-dimensional collisionless shock problem. The domain for the Hybrid model is embedded in a part of the system, and the bounded data are exchanged to each other to keep the consistency between both models. It can handle the full ion kinetics to investigate the injection problem at the shock transition region, as well as the wave-particle interactions in even far upstream region. We have carried out the long-term simulation of the shock acceleration process using this interlocked model, and successfully reproduced the power-law distribution function, which is consistent with the diffusive acceleration theory. Since the calculation cost of the EP-HYB model is much smaller than that of the Hybrid model, we can considerably reduce the computational demand.

  1. Tsunami simulation using submarine displacement calculated from simulation of ground motion due to seismic source model

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Kawaji, K.; Fujihara, S.

    2013-12-01

    Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite

  2. High Spatial Variation Tropospheric Model for GPS-Data Simulation

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf; Moore, Terry; Hill, Chris J.

    2005-09-01

    Precise GPS simulated data requires accurate simulation of the two major sources of error in GPS measurements, namely the ionospheric and tropospheric delays. The ionospheric delay modelling has been handled in a previous work (Farah, 2002). In this paper the simulation of the tropospheric delay is discussed. The suggested model should be accurate in estimating the tropospheric delay as well as capable of simulating high spatial variations of the troposphere resulting in more realistic simulated GPS data. In this paper, the EGNOS tropospheric correction model is considered as a possible tool for simulating the tropospheric delay in order to obtain more realistic simulated GPS data. Comparing the total tropospheric zenith delays from the EGNOS model with the CODE-tropospheric product has allowed the quality of the EGNOS model to be assessed. Four IGS-tracking stations have been selected for this study. Data from four non-consecutive weeks in different seasons over a period of one year were tested to assess the seasonal variation of the weather conditions. It is shown that the EGNOS model agrees well with the CODE-estimations with a mean zenith delay difference of approximately 2 cm. The maximum zenith delay difference between the EGNOS model and the CODE-estimations was in the range of 5 cm to 16 cm, which agrees well with previous studies. A second study has investigated the behaviour of the EGNOS model with other established tropospheric models such as the Saastamoinen, the Hopfield, the Marini and the Magnet model for three IGS-stations. It can be concluded from this study that the EGNOS model shows better agreement with the IGS estimations than the Magnet model and compares well with other models. The major shortcoming in the EGNOS model is its inability to simulate the variations in the troposphere over small regions. This shortcoming could be overcome by using the theory of Gaussian Random Fields, which has been previously used to model real life phenomena

  3. Unit testing, model validation, and biological simulation

    PubMed Central

    Watts, Mark D.; Ghayoomie, S. Vahid; Larson, Stephen D.; Gerkin, Richard C.

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  4. Statistical physics models for nacre fracture simulation

    NASA Astrophysics Data System (ADS)

    Nukala, Phani Kumar V. V.; Šimunović, Srđan

    2005-10-01

    Natural biological materials such as nacre (or mother-of-pearl), exhibit phenomenal fracture strength and toughness properties despite the brittle nature of their constituents. For example, nacre’s work of fracture is three orders of magnitude greater than that of a single crystal of its constituent mineral. This study investigates the fracture properties of nacre using a simple discrete lattice model based on continuous damage random thresholds fuse network. The discrete lattice topology of the proposed model is based on nacre’s unique brick and mortar microarchitecture, and the mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix that includes the mineral bridges between the aragonite platelets. The analysis indicates that the excellent fracture properties of nacre are a result of their unique microarchitecture, repeated unfolding of protein molecules (modular damage evolution) in the organic polymer, and the presence of fiber bundle of mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in excellent agreement with the previously obtained experimental results, such as nacre’s stiffness, tensile strength, and work of fracture.

  5. Statistical physics models for nacre fracture simulation.

    PubMed

    Nukala, Phani Kumar V V; Simunović, Srdan

    2005-10-01

    Natural biological materials such as nacre (or mother-of-pearl), exhibit phenomenal fracture strength and toughness properties despite the brittle nature of their constituents. For example, nacre's work of fracture is three orders of magnitude greater than that of a single crystal of its constituent mineral. This study investigates the fracture properties of nacre using a simple discrete lattice model based on continuous damage random thresholds fuse network. The discrete lattice topology of the proposed model is based on nacre's unique brick and mortar microarchitecture, and the mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix that includes the mineral bridges between the aragonite platelets. The analysis indicates that the excellent fracture properties of nacre are a result of their unique microarchitecture, repeated unfolding of protein molecules (modular damage evolution) in the organic polymer, and the presence of fiber bundle of mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in excellent agreement with the previously obtained experimental results, such as nacre's stiffness, tensile strength, and work of fracture. PMID:16383432

  6. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  7. An improved human display model for occupant crash simulation programs

    NASA Technical Reports Server (NTRS)

    Willmert, K. D.; Potter, T. E.

    1975-01-01

    An improved three-dimensional display model of a human being which can be used to display the results of three-dimensional simulation programs that predict the positions of an occupant during impact of a vehicle was presented. The model allows the user to view the occupant from any orientation in any position during the crash. The display model assumes the usual break up of the body into rigid segments which is normal for occupant crash simulation programs, but the shape of the segments in the display model are not necessarily the same as those used in the crash simulation. The display model is proportioned so as to produce a realistic drawing of the human body in any position. Joints connecting the segments are also drawn to improve realism.

  8. Multibody model of the human upper extremity for fracture simulation.

    PubMed

    Milanowicz, Marcin; Kędzior, Krzysztof

    2016-09-01

    About 3.8 million people are injured in accidents at work in Europe every year. The resulting high costs are incurred by the victims themselves, their families, employers and society. We have used a numerical simulation to reconstruct accidents at work for several years. To reconstruct these accidents MADYMO R7.5 with a numerical human model (pedestrian model) is used. However, this model is dedicated to the analysis of car-to-pedestrian accidents and thus cannot be fully used for reconstructing accidents at work. Therefore, we started working on the development of a numerical model of the human body for the purpose of simulating accidents at work. Developing a new numerical model which gives an opportunity to simulate fractures of the upper extremity bones is a stage of that work. PMID:26651896

  9. Modeling and Simulation of Shuttle Launch and Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  10. A Network Contention Model for the Extreme-scale Simulator

    SciTech Connect

    Engelmann, Christian; Naughton III, Thomas J

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  11. Analytic Model For Estimation Of Cold Bulk Metal Forming Simulations

    SciTech Connect

    Skunca, Marko; Keran, Zdenka; Math, Miljenko

    2007-05-17

    Numerical simulation of bulk metal forming plays an important role in predicting a key parameters in cold forging. Comparison of numerical and experimental data is of great importance, but there is always a need of more universal analytical tools. Therefore, many papers besides experiment and simulation of a particular bulk metal forming technology, include an analytic model. In this paper an analytical model for evaluation of commercially available simulation program packages is proposed. Based on elementary theory of plasticity, being only geometry dependent, model represents a good analytical reference to estimate given modeling preferences like; element types, solver, remeshing influence and many others. Obtained, geometry dependent, stress fields compared with numerical data give a clear picture of numerical possibilities and limitations of particular modeling program package.

  12. Universal analytic model for tunnel FET circuit simulation

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Esseni, David; Seabaugh, Alan

    2015-06-01

    A simple analytic model based on the Kane-Sze formula is used to describe the current-voltage characteristics of tunnel field-effect transistors (TFETs). This model captures the unique features of the TFET including the decrease in subthreshold swing with drain current and the superlinear onset of the output characteristic. The model also captures the ambipolar current characteristic at negative gate-source bias and the negative differential resistance for negative drain-source biases. A simple empirical capacitance model is also included to enable circuit simulation. The model has fairly general validity and is not specific to a particular TFET geometry. Good agreement is shown with published atomistic simulations of an InAs double-gate TFET with gate perpendicular to the tunnel junction and with numerical simulations of a broken-gap AlGaSb/InAs TFET with gate in parallel with the tunnel junction.

  13. Multibody model of the human upper extremity for fracture simulation

    PubMed Central

    Milanowicz, Marcin; Kędzior, Krzysztof

    2016-01-01

    About 3.8 million people are injured in accidents at work in Europe every year. The resulting high costs are incurred by the victims themselves, their families, employers and society. We have used a numerical simulation to reconstruct accidents at work for several years. To reconstruct these accidents MADYMO R7.5 with a numerical human model (pedestrian model) is used. However, this model is dedicated to the analysis of car-to-pedestrian accidents and thus cannot be fully used for reconstructing accidents at work. Therefore, we started working on the development of a numerical model of the human body for the purpose of simulating accidents at work. Developing a new numerical model which gives an opportunity to simulate fractures of the upper extremity bones is a stage of that work. PMID:26651896

  14. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  15. Modeling and simulation of longwall scraper conveyor considering operational faults

    NASA Astrophysics Data System (ADS)

    Cenacewicz, Krzysztof; Katunin, Andrzej

    2016-06-01

    The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.

  16. Novel Surface Reaction Model in Dry-Etching Process Simulator

    NASA Astrophysics Data System (ADS)

    Misaka, Akio; Harafuji, Kenji; Kubota, Masafumi; Nomura, Noboru

    1992-12-01

    A new surface reaction model has been presented to simulate topological evolutions by taking into account the existence of adsorbed radicals on the substrate surface. The model treats the etching rate as a function of the coverage ratio by adsorbed radicals on the surface. Based on the model, a two-dimensional topography simulator has been developed. The simulator is applied to silicon-dioxide trench etchings made by hydrofluorocarbon gases. First, micro-loading effects in an important ion-assisted etching process are studied. It is confirmed that the micro-loading effect is due to the shortage of supplied active radicals inside the trench structure. Secondly, the competitive process between etching and deposition is examined. The side-wall protection phenomena resulting from the process are well simulated.

  17. SIRS Dynamics on Random Networks: Simulations and Analytical Models

    NASA Astrophysics Data System (ADS)

    Rozhnova, Ganna; Nunes, Ana

    The standard pair approximation equations (PA) for the Susceptible-Infective-Recovered-Susceptible (SIRS) model of infection spread on a network of homogeneous degree k predict a thin phase of sustained oscillations for parameter values that correspond to diseases that confer long lasting immunity. Here we present a study of the dependence of this oscillatory phase on the parameter k and of its relevance to understand the behaviour of simulations on networks. For k = 4, we compare the phase diagram of the PA model with the results of simulations on regular random graphs (RRG) of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. This failure of the standard PA model to capture the qualitative behaviour of the simulations on large RRGs is currently being investigated.

  18. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  19. Model for simulating rotational data for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Powell, D. C.; Connell, J. R.

    1986-04-01

    This document describes a wind simulation model to be used in relation to wind turbine operations. The model is a computer code written in FORTRAN 77. The model simulates turbulence and mean wind effects as they are experienced at a rotating point on the blade of either a horizontal-axis wind turbine (HAWT) or a vertical-axis wind turbine (VAWT). The model is fast, requiring 15 to 120 seconds of VAX execution time to produce a simulation and related statistics. The model allows the user to set a number of wind parameters so that he may evaluate the uncertainty of model results as well as their typical values. When this capability is combined with short execution time, the user can quickly produce a number of simulations based on reasonable variation of input parameters and can use these simulations to obtain a range of wind turbine responses to the turbulence. This ability is important because some of the wind parameters that cannot be precisely evaluated should be prescribed over a range of values. This document is essentially a user's guide. Its features include theoretical derivations, samples of output, comparisons of measured and modeled results, a listing of the FORTRAN code, a glossary for the code, and the input and output of a sample run.

  20. Modeling and simulation research on automobile ABS bench detection

    NASA Astrophysics Data System (ADS)

    Hao, Ruru; Zhao, Xiangmo; Hao, Dingkun; Zhou, Zhou

    2014-10-01

    Modeling and simulation research on automobile ABS bench detection is conducted in this paper. First, the vehicle model, wheel model, braking force model, and tire-road model on the bench are established according to the ABS bench detection scheme. Then, the Matlab/Simulink simulation model of a single wheel vehicle is built through combining the sub-models described above. Finally, simulation experiments on a variety of simulated road conditions are carried out. And the comparative analysis between the ABS bench detection and ABS road experiments is accomplished. The contrast results show that the simulation curves of bench detection and those of road experiment have high similarity, which verified the correctness and feasibility of the proposed bench detection scheme. At the request of the authors this article is being retracted. It was inadvertently published in AIP Conf. Proc. 1618: The authors intended to publish a different article, but the wrong one was submitted for publication. The article is retracted from the scientific record with effect from 8 July 2015.

  1. Generic Spacecraft Model for Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Kenney, Patrick S.; Ragsdale, William; Neuhaus, Jason R.

    2008-01-01

    Generic Spacecraft is the name of an evolving library of software that provides for simulation of a generic spacecraft that can orbit the Earth and land on the Moon (and, eventually, on Mars). This library is incorporated into the Langley Standard Realtime Simulation in C++ (LaSRS++) software framework. The generic-spacecraft simulation serves as a test bed for modeling spacecraft dynamics, propulsion, control systems, guidance, and displays. The Generic Spacecraft library supplements the LaSRS++ framework with an interface that facilitates the connection of new models into the LaSRS++ simulation by eliminating what would otherwise be the necessity of writing additional C++ classes to record data from the models and code to display values on graphical user interfaces (GUIs): The library includes routines for integrating new models into the LaSRS++ framework, identifying model inputs and outputs with full descriptions and units identified, recording data, and automatically generating graphical user interfaces (GUIs). The library is designed to be used in a manner similar to that of LaSRS++ software components for simulating vehicles other than the generic spacecraft. The user specifies (1) a spacecraft and individual models to be constructed and (2) connections between individual model inputs and outputs.

  2. Comparison of simulator fidelity model predictions with in-simulator evaluation data

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.

    1983-01-01

    A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.

  3. Comparison of climate model simulated and observed borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; Stevens, M. B.; Beltrami, H.; Goosse, H.; Rath, V.; Zorita, E.; Smerdon, J.

    2009-04-01

    Advances in understanding climate variability through the last millennium lean on simulation and reconstruction efforts. Progress in the integration of both approaches can potentially provide new means of assessing confidence on model projections of future climate change, of constraining the range of climate sensitivity and/or attributing past changes found in proxy evidence to external forcing. This work addresses specifically possible strategies for comparison of paleoclimate model simulations and the information recorded in borehole temperature profiles (BTPs). First efforts have allowed to design means of comparison of model simulated and observed BTPs in the context of the climate of the last millennium. This can be done by diffusing the simulated temperatures into the ground in order to produce synthetic BTPs that can be in turn assigned to collocated, real BTPs. Results suggest that there is sensitivity of borehole temperatures at large and regional scales to changes in external forcing over the last centuries. The comparison between borehole climate reconstructions and model simulations may also be subjected to non negligible uncertainties produced by the influence of past glacial and Holocene changes. While the thermal climate influence of the last deglaciation can be found well below 1000 m depth, such type of changes can potentially exert an influence on our understanding of subsurface climate in the top ca. 500 m. This issue is illustrated in control and externally forced climate simulations of the last millennium with the ECHO-G and LOVECLIM models, respectively.

  4. Turbulence modeling for Francis turbine water passages simulation

    NASA Astrophysics Data System (ADS)

    Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.

    2010-08-01

    The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.

  5. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  6. HYBRIST Mobility Model - A Novel Hybrid Mobility Model for VANET Simulations

    NASA Astrophysics Data System (ADS)

    ManfeDanquah, Wiseborn; Turgay Altilar, D.

    2014-01-01

    Simulations play a vital role in implementing, testing and validating proposed algorithms and protocols in VANET. Mobility model, defined as the movement pattern of vehicles, is one of the main factors that contribute towards the efficient implementation of VANET algorithms and protocols. Using near reality mobility models ensure that accurate results are obtained from simulations. Mobility models that have been proposed and used to implement and test VANET protocols and algorithms are either the urban mobility model or highway mobility model. Algorithms and protocols implemented using urban or highway mobility models may not produce accurate results in hybrid mobility models without enhancement due to the vast differences in mobility patterns. It is on this score the Hybrist, a novel hybrid mobility model is proposed. The realistic mobility pattern trace file of the proposed Hybrist hybrid mobility model can be imported to VANET simulators such as Veins and network simulators such as ns2 and Qualnet to simulate VANET algorithms and protocols.

  7. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  8. Sea Ice Characteristics as Simulated by CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Overland, J. E.

    2013-12-01

    One way to reduce the model spread is to select models that perform well in their historical simulations when compared with observational data. Although there is no consensus among the communities yet, and the selection methods vary for different variables, this is a necessary but not sufficient step toward reducing the large spread in model simulated present and future conditions. Sea ice extent is one of the special variables that has memory on its current status, i.e. the future trajectory is closely related to its present status. When we assessed 23 CMIP3 models, we found that only six of them simulated the monthly climatology and magnitude of seasonal cycle of sea ice extent in reasonable agreement with observations. When we repeated the exercises for 37 CMIP5 models, we found that 12 models (ACCESS1.0, ACCESS1.3, CCSM4, CESM1-Cam5, EC-EARTH, HadGEM2-AO,HadGEM2-CC, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, and MPI-ESM-MR) made satisfactory historical simulations (1980-2005). Other studies used linear trend as the selection criteria also found similar results. Further analysis reveals that the ice thickness simulation among these CMIP5 models has even larger spread than the sea ice extent, which results in a larger spread in the sea ice volume simulations. Almost all CMIP5 models show loss of sea ice due to increased anthropogenic forcing relative to preindustrial control runs, although at different rate. Most of the CMIP5 models still underestimate the recent sea ice declining trend, even the 12 better models.

  9. Rasterizing geological models for parallel finite difference simulation using seismic simulation as an example

    NASA Astrophysics Data System (ADS)

    Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan

    2016-01-01

    3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.

  10. Developing Soil Models for Dynamic Impact Simulations

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  11. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  12. Modeling of an industrial alcohol fermentation and simulation of the plant by a process simulator

    SciTech Connect

    Pascal, F.; Corriou, J.P.; Pons, M.N.; Dagot, C.; Engasser, J.M.; Pingaud, H.

    1995-05-05

    The aim of the present study was the development of a general simulation module for fermentation within the framework of existing chemical process simulators. This module has been applied to an industrial plant which produces ethanol from beet molasses and fresh beet juice by Saccharomyces cerevisiae. An unstructured mechanistic model has been developed with kinetic laws that are based on a chemically defined reaction scheme which satisfies stoichiometric constraints. This model can be applied to different culture conditions and takes into account secondary byproducts such as higher alcohols. These byproducts are of prime importance and need to be correctly estimated because a sequence of distillation columns follow the fermentor in the plant. Important measurement campaigns have been performed on the plant to validate the model. Plant operation has been successfully simulated using the same kinetic model for both continuous and fed-batch modes of production.

  13. Effect of turbulence models on the submerged hydraulic jump simulation

    NASA Astrophysics Data System (ADS)

    Shekari, Y.; Javan, M.; Eghbalzadeh, A.

    2015-05-01

    This study presents a numerical investigation and prediction of the flow field in threedimensional submerged hydraulic jumps. The volume of fluid (VOF) method is used to simulate the free surface. The turbulent structure is simulated by using different turbulence models, such as the standard k-ɛ model, RNG k-ɛ model, realizable k-ɛ model, and Reynolds-stress model (RSM) closure schemes. The capabilities of the turbulence models are investigated with the standard wall functions and enhanced wall treatment methods. A comparison between the numerical and experimental results shows that the numerical model is adequate for predicting the flow pattern and free surface of submerged hydraulic jumps. The RNG k-ɛ turbulence model with the enhanced wall treatment method ensures the highest accuracy in the water surface simulation. Near the channel bed of a fully developed region, the RSM model with the enhanced wall treatment method shows better agreement with the experimental longitudinal velocity than the other turbulence models. The standard k-ɛ model predicts the longitudinal velocity more accurately than the RNG and realizable k-ɛ models.

  14. Simulation of large-scale rule-based models

    SciTech Connect

    Hlavacek, William S; Monnie, Michael I; Colvin, Joshua; Faseder, James

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  15. Simulation model for the closed plant experiment facility of CEEF.

    PubMed

    Abe, Koichi; Ishikawa, Yoshio; Kibe, Seishiro; Nitta, Keiji

    2005-01-01

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for Controlled Ecological Life Support Systems (CELSS) investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals and crew of CEEF. Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEFs behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. For the first step of development, a flexible algorithm of the simulation program was investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experiment Facility (CPEF) that is a part of CEEF. All the parts of a real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system. PMID:16175692

  16. Simulation model for the closed plant experiment facility of CEEF

    NASA Astrophysics Data System (ADS)

    Abe, Koichi; Ishikawa, Yoshio; Kibe, Seishiro; Nitta, Keiji

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for Controlled Ecological Life Support Systems (CELSS) investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals and crew of CEEF. Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEFs behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. For the first step of development, a flexible algorithm of the simulation program was investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experiment Facility (CPEF) that is a part of CEEF. All the parts of a real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.

  17. Simulation model for the Closed Plant Experimental Facilities of CEEF

    NASA Astrophysics Data System (ADS)

    Abe, K.; Ishikawa, Y.; Kibe, S.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for CELSS investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals, humans (crew of the CEEF). Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEF's behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. A flexible algorithm for the first step of development of the simulation program was already investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experimental Facilities (CPEF) that is a part of CEEF. All the parts of real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.

  18. Statistical Modeling of Large-Scale Simulation Data

    SciTech Connect

    Eliassi-Rad, T; Critchlow, T; Abdulla, G

    2002-02-22

    With the advent of fast computer systems, Scientists are now able to generate terabytes of simulation data. Unfortunately, the shear size of these data sets has made efficient exploration of them impossible. To aid scientists in gathering knowledge from their simulation data, we have developed an ad-hoc query infrastructure. Our system, called AQSim (short for Ad-hoc Queries for Simulation) reduces the data storage requirements and access times in two stages. First, it creates and stores mathematical and statistical models of the data. Second, it evaluates queries on the models of the data instead of on the entire data set. In this paper, we present two simple but highly effective statistical modeling techniques for simulation data. Our first modeling technique computes the true mean of systematic partitions of the data. It makes no assumptions about the distribution of the data and uses a variant of the root mean square error to evaluate a model. In our second statistical modeling technique, we use the Andersen-Darling goodness-of-fit method on systematic partitions of the data. This second method evaluates a model by how well it passes the normality test on the data. Both of our statistical models summarize the data so as to answer range queries in the most effective way. We calculate precision on an answer to a query by scaling the one-sided Chebyshev Inequalities with the original mesh's topology. Our experimental evaluations on two scientific simulation data sets illustrate the value of using these statistical modeling techniques on large simulation data sets.

  19. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    NASA Technical Reports Server (NTRS)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  20. Model-referenced cardiovascular circulatory simulator: construction and control.

    PubMed

    Gwak, Kwan-Woong

    2015-04-01

    Physiological feasibility is the most important requirement for cardiovascular circulatory simulators (CCSs). However, previous simulators have been validated by a comparison with specific human data sets, which are valid only for very limited conditions, and so it is difficult to validate the fidelity of a CCS for various body conditions. To overcome this critical limitation, we propose a model-referenced CCS that reproduces the behavior of an electrical-analog model of the cardiovascular circulatory system, for which physiological fidelity is well established over a wide range. In this study, the electrical-analog reference model was realized in the hardware simulator using fluidic element modeling and by the feedback control of a mock ventricle. The proposed simulator showed a good match with the reference model behavior, and its physiological validity was thereby verified. The proposed simulator is able to show responsiveness to various body conditions as well. To the best of the author's knowledge, this is the first report of an in vitro CCS verified to be consistent with reference model behavior. PMID:25345617

  1. Development of a numerical simulation model of the cardiovascular system.

    PubMed

    Geertsema, A A; Rakhorst, G; Mihaylov, D; Blanksma, P K; Verkerke, G J

    1997-12-01

    A numerical simulation model of the cardiovascular system has been developed. It consists of a model of the left atrium, the left ventricle, the coronary vascular system, the aorta, the arterial system, and the venous system. The input of the complete model is the elastance (pressure/volume ratio) developed by the left ventricle. The shape of this elastance is constant in different circumstances. Left ventricular (LV) myocardial oxygen consumption and the amount of oxygen offered to the left ventricle can be calculated with the model. The model has been validated using data from a patient suffering from coronary artery disease. The measured clinical hemodynamical waveforms could be fitted to those generated by the model. With the numerical simulation model, it is possible to predict the functioning of the left ventricle under different circumstances. This makes it possible to study in vitro various pathological clinical situations. PMID:9423983

  2. Simulation model of a twin-tail, high performance airplane

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.

    1992-01-01

    The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.

  3. An Urban Diffusion Simulation Model for Carbon Monoxide

    ERIC Educational Resources Information Center

    Johnson, W. B.; And Others

    1973-01-01

    A relatively simple Gaussian-type diffusion simulation model for calculating urban carbon (CO) concentrations as a function of local meteorology and the distribution of traffic is described. The model can be used in two ways: in the synoptic mode and in the climatological mode. (Author/BL)

  4. A PHOTOCHEMICAL BOX MODEL FOR URBAN AIR QUALITY SIMULATION

    EPA Science Inventory

    A simple 'box-approach' to air quality simulation modeling has been developed in conjunction with a newly formulated photochemical kinetic mechanism to produce an easily applied Photochemical Box Model (PBM). This approach represents an urban area as a single cell 20 km in both l...

  5. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  6. Simulation of the 3-state Potts model with chemical potential

    SciTech Connect

    Mercado, Ydalia Delgado; Gattringer, Christof; Evertz, Hans Gerd

    2011-05-23

    The 3-state Potts model with chemical potential is mapped to a flux representation where the complex action problem is resolved. We perform a Monte Carlo simulation based on a worm algorithm to study the phase diagram of the model. Our results shed light on the role which center symmetry and its breaking play for the QCD phase diagram.

  7. Stochastic Human Exposure and Dose Simulation Model for Wood Preservatives

    EPA Science Inventory

    SHEDS-Wood (Stochastic Human Exposure and Dose Simulation Model for Wood Preservatives) is a physically-based stochastic model that was developed to quantify exposure and dose of children to wood preservatives on treated playsets and residential decks. Probabilistic inputs are co...

  8. Stochastic simulations on a model of circadian rhythm generation.

    PubMed

    Miura, Shigehiro; Shimokawa, Tetsuya; Nomura, Taishin

    2008-01-01

    Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies. PMID:18585851

  9. A Budget Simulation Model for Times of Stress.

    ERIC Educational Resources Information Center

    Miner, Alfred Norris

    The Florida Community College Inter-Institutional Research Council (IRC) has developed a computerized budget simulation model which can help administrators determine the general fiscal impact of alternate approaches to resource utilization. This model uses three basic systems and one generalized subroutine, based on the budget requirements of the…

  10. Physically-based modeling and simulation of extraocular muscles.

    PubMed

    Wei, Qi; Sueda, Shinjiro; Pai, Dinesh K

    2010-12-01

    Dynamic simulation of human eye movements, with realistic physical models of extraocular muscles (EOMs), may greatly advance our understanding of the complexities of the oculomotor system and aid in treatment of visuomotor disorders. In this paper we describe the first three dimensional (3D) biomechanical model which can simulate the dynamics of ocular motility at interactive rates. We represent EOMs using "strands", which are physical primitives that can model an EOM's complex nonlinear anatomical and physiological properties. Contact between the EOMs, the globe, and orbital structures can be explicitly modeled. Several studies were performed to assess the validity and utility of the model. EOM deformation during smooth pursuit was simulated and compared with published experimental data; the model reproduces qualitative features of the observed nonuniformity. The model is able to reproduce realistic saccadic trajectories when the lateral rectus muscle was driven by published measurements of abducens neuron discharge. Finally, acute superior oblique palsy, a pathological condition, was simulated to further evaluate the system behavior; the predicted deviation patterns agree qualitatively with experimental observations. This example also demonstrates potential clinical applications of such a model. PMID:20868704

  11. A Multidimensional Eulerian Model for Simulating Gas-Solids Flow

    Energy Science and Technology Software Center (ESTSC)

    1993-12-13

    FORCE2 is a fundamentally based three-dimensional numerical model for simulating fluid-bed hydrodynamics for a wide range of fluid beds, from laboratory to plant scale. It is based upon the ''two-fluid'' modeling approach and includes surface permeabilities, volume porosities, and distributed resistances.

  12. Rheological Models of Blood: Sensitivity Analysis and Benchmark Simulations

    NASA Astrophysics Data System (ADS)

    Szeliga, Danuta; Macioł, Piotr; Banas, Krzysztof; Kopernik, Magdalena; Pietrzyk, Maciej

    2010-06-01

    Modeling of blood flow with respect to rheological parameters of the blood is the objective of this paper. Casson type equation was selected as a blood model and the blood flow was analyzed based on Backward Facing Step benchmark. The simulations were performed using ADINA-CFD finite element code. Three output parameters were selected, which characterize the accuracy of flow simulation. Sensitivity analysis of the results with Morris Design method was performed to identify rheological parameters and the model output, which control the blood flow to significant extent. The paper is the part of the work on identification of parameters controlling process of clotting.

  13. NTP system simulation and detailed nuclear engine modeling

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  14. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  15. A versatile FACTS device model for powerflow and stability simulations

    SciTech Connect

    Arabi, S.; Kundur, P.

    1996-11-01

    While early FACTs devices consisted mainly of thyristor-controlled/switched RLC/transformer components, the newer generation is based on the self-commutated voltage-sourced converter. The variety of devices and applications, and the changing nature of the technology, call for versatile modelling capabilities at different levels of detail. This paper describes a model conceived as a coordinated and interconnected set of controllable shunt and series elements. For each device, functional characteristics, typical settings and controls, and simulation examples are presented. The model is capable of representing virtually any FACTS device for powerflow and all types of stability simulations.

  16. Thermohaline circulation and its box models simulation

    NASA Astrophysics Data System (ADS)

    Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor

    2014-05-01

    Ocean Thermochaline circulation (THC) is the part of large-scale World Ocean circulation and one of the main climate system components. It is generated by global meridional density gradients, which are controlled by surface heat and freshwater fluxes. THC regulates climate variability on different timescales (from decades to thousands years) [Stocker (2000), Clark (2002)]. Study of paleoclimatic evidences of abrupt and dramatic changes in ocean-atmosphere system in the past (such as, Dansgaard-Oeschger and Heinrich events or Younger Dryas, see e.g., [Rahmstorf (2002), Alley & Clark(1999)]) shows that these events are connected with THC regimes. At different times during last 120,000 years, three THC modes have prevailed in the Atlantic. They can be labeled as stadial, interstadial and Heinrich modes or as cold, warm and off mode. THC collapse (or thermohaline catastrophe) can be one of the consequences of global warming (including modern anthropogenic climate changes occurring at the moment). The ideas underlying different box-model studies, possibility of thermochaline catastrophe in present and past are discussed in this presentation. Response of generalized four box model of North Atlantic thermohaline circulation [developing the model of Griffies & Tzippermann (1995)] on periodic, stochastic and linear forcing is studied in details. To estimate climatic parameters of the box model we used monthly salinity and temperature data of ECMWF operational Ocean Reanalysis System 3 (ORA-S3) and data from atmospheric NCEP/NCAR reanalysis on precipitation, and heat fluxes for 1959-2011. Mean values, amplitude of seasonal cycle, amplitudes and periods of typical interdecadal oscillations, white noise level, linear trend coefficients and their significance level were estimated for every hydrophysical parameter. In response to intense freshwater or heat forcing, THC regime can change resulting in thermohaline catastrophe. We analyze relevant thresholds of external forcing in

  17. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect

    Valenzuela, J.; Thimmapuram, P.; Kim, J

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  18. Description of a tilt wing mathematical model for piloted simulation

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.

    1991-01-01

    A tilt-wing mathematical model that was used in a piloted six-deg-of-freedom flight simulation application is presented. Two types of control systems developed for the model - a conventional programmed-flap wing-tilt control system and a geared-flap wing-tilt control system - are discussed. The objective of this effort was to develop the capability to study tilt-wing aircraft. Experienced tilt-wing pilots subjectively evaluated the model using programmed-flap control to assess the quality of the simulation. The objective was met and the model was then applied to study geared-flap control to investigate the possibility of eliminating the need for auxiliary pitch control devices. This was performed in the moving-base simulation environment, and the vehicle responses with programmed-flap and geared-flap control were compared.

  19. A naturalistic decision making model for simulated human combatants

    SciTech Connect

    HUNTER,KEITH O.; HART,WILLIAM E.; FORSYTHE,JAMES C.

    2000-05-01

    The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project.

  20. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  1. RAM simulation model for SPH/RSV systems

    SciTech Connect

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion of the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.

  2. Modeling and simulation of biological systems from image data

    PubMed Central

    Sbalzarini, Ivo F

    2013-01-01

    This essay provides an introduction to the terminology, concepts, methods, and challenges of image-based modeling in biology. Image-based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image-based systems biology. The combination of image quantification, model building, and computer simulation is illustrated here using the example of diffusion in the endoplasmic reticulum. PMID:23533152

  3. Validation of medical modeling & simulation training devices and systems.

    PubMed

    Magee, J Harvey

    2003-01-01

    For almost a decade, research has been conducted in many areas of science to develop medical simulation training devices and even comprehensive training systems. To propel the field, the Telemedicine and Advanced Technology Research Center (TATRC), an agency of the United States Army Medical Research Materiel Command (USAMRMC), has been managing a portfolio of research projects in the area of Medical Modeling and Simulation (MM&S) since 1999. Significant progress has made to identify and harness enabling technologies. Generally, these developments can be categorized in four areas: (1) PC-based interactive multimedia, (2) Digitally Enhanced Mannequins, (3) Virtual Workbench, or "part-task", simulators, and (4) Total Immersion Virtual Reality (TIVR). Many medical simulation-training systems have shown great potential to improve medical training, but the potential shown has been based largely on anecdotal feedback from informal user studies. Formal assessment is needed to determine the degree to which simulator(s) train medical skills and the degree to which skills learned on a simulator transfer to the practice of care. A robust methodology is required as a basis for these assessments. Several scientific workshops sponsored in 2001 focused on algorithm and metrics development in support of surgical simulation. Also in 2001, TATRC chartered a Simulation Working Group (SWG) to develop a robust methodology upon which to base an assessment of the effectiveness of simulation training devices and systems. After the terrorist attacks of September 11, 2001, attention was redirected for a period, and progress was delayed. In the summer of 2002, TATRC chartered a follow-on group called the Validation, Metrics and Simulation (VMAS) Committee. The poster will highlight and summarize the development of the methodology and identify validation studies to be conducted (supported by various funding sources and research programs). The interaction between TATRC and the National Capital

  4. Upper Rio Grande Simulation Model (URGSIM)

    Energy Science and Technology Software Center (ESTSC)

    2010-08-05

    URGSIM estimates the location of surface water and groundwater resources in the upper Rio Grande Basin between the Colorado-New Mexico state line, and Caballo Reservoir from 1975 - 2045. It is a mass balance hydrology model of the Upper Rio Grande surface water, groundwater, and water demand systems which runs at a monthly timestep from 1975-1999 in calibration mode, 2000 – 2004 in validation mode, and 2005 – 2045 in scenario analysis mode.

  5. Mixing characteristics of sludge simulant in a model anaerobic digester.

    PubMed

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number. PMID:26739143

  6. Simulation of non-linear coregionalization models by FFTMA

    NASA Astrophysics Data System (ADS)

    Liang, Min; Marcotte, Denis; Shamsipour, Pejman

    2016-04-01

    A fast and efficient method to simulate multivariate fields with non-linear models of coregionalization (N-LMC) is described. The method generalizes FFTMA to the multivariate simulation of the N-LMC with symmetric cross-covariances, hence the name GFFTMA. It allows us for example to use an exponential model as the direct covariance for the main variable, a Cauchy model for the secondary variable and a K-Bessel model for the cross-covariance. Each covariance and cross-covariance are Fast Fourier Transformed (FFT) to get the discrete spectral densities. Then the spectral matrix is eigen-decomposed at each frequency separately to provide the square root matrix and to enforce positive-definiteness in cases where small negative eigenvalues are found. Finally the simulated spectrum is obtained as multiplication of the root matrix and the white noise coefficients. The method is particularly fast for covariances having derivatives at the origin and/or for covariances with long range. Hence, two-variables' 2D fields of 100 million pixels with all-Gaussian or all-cubic covariances and cross-covariance are both simulated in less than 200 s. The CPU-time increases only as N log(N) (N, the number of points to simulate). Additional realizations are obtained at a low marginal cost as the eigen-decomposition step needs to be done only once for the first realization. The main limitation of the approach is its rather stringent memory requirement. Synthetic examples illustrate the simulations of N-LMC with two and three variables for different combinations of the seven available models. It shows that the theoretical models are all well reproduced. An illustrative case-study on overburden thickness simulation is provided where the secondary information consists of a latent Gaussian variable identifying the geological domain.

  7. Interactive simulation of embolization coils: modeling and experimental validation.

    PubMed

    Dequidt, Jérémie; Marchal, Maud; Duriez, Christian; Kerien, Erwan; Cotin, Stéphane

    2008-01-01

    Coil embolization offers a new approach to treat aneurysms. This medical procedure is namely less invasive than an open-surgery as it relies on the deployment of very thin platinum-based wires within the aneurysm through the arteries. When performed intracranially, this procedure must be particularly accurate and therefore carefully planned and performed by experienced radiologists. A simulator of the coil deployment represents an interesting and helpful tool for the physician by providing information on the coil behavior. In this paper, an original modeling is proposed to obtain interactive and accurate simulations of coil deployment. The model takes into account geometric nonlinearities and uses a shape memory formulation to describe its complex geometry. An experimental validation is performed in a contact-free environment to identify the mechanical properties of the coil and to quantitatively compare the simulation with real data. Computational performances are also measured to insure an interactive simulation. PMID:18979807

  8. Fast micromagnetic simulations using an analytic mathematical model

    NASA Astrophysics Data System (ADS)

    Tsiantos, Vassilios; Miles, Jim

    2006-02-01

    In this paper an analytic mathematical model is presented for fast micromagnetic simulations. In dynamic micromagnetic simulations the Landau-Lifshitz-Gilbert (LLG) equation is solved for the observation of the reversal magnetisation mechanisms. In stiff micromagnetic simulations the large system of ordinary differential equations has to be solved with an appropriate method, such as the Backward Differentiation Formulas (BDF) method, which leads to the solution of a large linear system. The latter is solved efficiently employing matrix-free techniques, such as Krylov methods with preconditioning. Within the Krylov methods framework a product of a matrix times a vector is involved which is usually approximated with directional differences. This paper provides an analytic mathematical model to calculate efficiently this product, leading to more accurate calculations and consequently faster micromagnetic simulations due to better convergence properties.

  9. Physically based simulation model for acoustic sensor robot navigation.

    PubMed

    Kuc, R; Siegel, M W

    1987-06-01

    A computer model is described that combines concepts from the fields of acoustics, linear system theory, and digital signal processing to simulate an acoustic sensor navigation system using time-of-flight ranging. By separating the transmitter/receiver into separate components and assuming mirror-like reflectors, closed-form solutions for the reflections from corners, edges, and walls are determined as a function of transducer size, location, and orientation. A floor plan consisting of corners, walls, and edges is efficiently encoded to indicate which of these elements contribute to a particular pulse-echo response. Sonar maps produced by transducers having different resonant frequencies and transmitted pulse waveforms can then be simulated efficiently. Examples of simulated sonar maps of two floor plans illustrate the performance of the model. Actual sonar maps are presented to verify the simulation results. PMID:21869438

  10. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  11. An Object Model for a Rocket Engine Numerical Simulator

    NASA Technical Reports Server (NTRS)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  12. Rejection-free stochastic simulation of BNGL-encoded models

    SciTech Connect

    Hlavacek, William S; Monine, Michael I; Colvin, Joshua; Posner, Richard G; Von Hoff, Daniel D

    2009-01-01

    Formal rules encoded using the BioNetGen language (BNGL) can be used to represent the system-level dynamics of molecular interactions. Rules allow one to compactly and implicitly specify the reaction network implied by a set of molecules and their interactions. Typically, the reaction network implied by a set of rules is large, which makes generation of the underlying rule-defined network expensive. Moreover, the cost of conventional simulation methods typically depends on network size. Together these factors have limited application of the rule-based modeling approach. To overcome this limitation, several methods have recently been developed for determining the reaction dynamics implied by rules while avoiding the expensive step of network generation. The cost of these 'network-free' simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is needed for the analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey that implements a network-free stochastic simulation method for rule-based models. The method is rejection free, unlike other network-free methods that introduce null events (i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated), and the software is capable of simulating models encoded in BNGL, a general-purpose model-specification language. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant general-purpose simulator for rule-based models, as well as various problem-specific codes that implement network-free simulation methods. RuleMonkey enables the simulation of models defined by rule sets that imply large-scale reaction networks. It is faster than DYNSTOC for stiff problems, although it requires the use of more computer memory. RuleMonkey is freely available for non-commercial use as a stand-alone application

  13. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust

  14. Velo: Riding the Knowledge Management Wave for Simulation and Modeling

    SciTech Connect

    Gorton, Ian; Sivaramakrishnan, Chandrika; Black, Gary D.; White, Signe K.; Purohit, Sumit; Madison, Michael C.; Schuchardt, Karen L.

    2011-05-28

    Modern scientific enterprises are inherently knowledge-intensive. In general, scientific studies in domains such as geosciences, climate, and biology require the acquisition and manipulation of large amounts of experimental and field data in order to create inputs for large-scale computational simulations. The results of these simulations must then be analyzed, leading to refinements of inputs and models and further simulations. Further, these results must be managed and archived to provide justifications for publications and regulatory decisions that are based on these models. In this paper we describe our Velo framework that is designed as a reusable, domain independent knowledge management infrastructure for modeling and simulation. Velo leverages, integrates, and extends open source collaborative and content management technologies to create a scalable and flexible core platform that can be tailored to specific scientific domains. In this paper we describe the architecture of Velo for managing and associating the various types of data that are used and created in modeling and simulation projects, as well as the framework for integrating domain-specific tools. To demonstrate a realization of Velo, we describe the Geologic Sequestration Software Suite (GS3) that has been developed to support geologic sequestration modeling. This provides a concrete example of the inherent extensibility and utility of our approach.

  15. Velo: A Knowledge Management Framework for Modeling and Simulation

    SciTech Connect

    Gorton, Ian; Sivaramakrishnan, Chandrika; Black, Gary D.; White, Signe K.; Purohit, Sumit; Lansing, Carina S.; Madison, Michael C.; Schuchardt, Karen L.; Liu, Yan

    2012-03-01

    Modern scientific enterprises are inherently knowledge-intensive. Scientific studies in domains such as geosciences, climate, and biology require the acquisition and manipulation of large amounts of experimental and field data to create inputs for large-scale computational simulations. The results of these simulations are then analyzed, leading to refinements of inputs and models and additional simulations. The results of this process must be managed and archived to provide justifications for regulatory decisions and publications that are based on the models. In this paper we introduce our Velo framework that is designed as a reusable, domain independent knowledge management infrastructure for modeling and simulation. Velo leverages, integrates and extends open source collaborative and content management technologies to create a scalable and flexible core platform that can be tailored to specific scientific domains. We describe the architecture of Velo for managing and associating the various types of data that are used and created in modeling and simulation projects, as well as the framework for integrating domain-specific tools. To demonstrate realizations of Velo, we describe examples from two deployed sites for carbon sequestration and climate modeling. These provide concrete example of the inherent extensibility and utility of our approach.

  16. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html. PMID:16986253

  17. Modeling the simulation execution process with digital objects

    NASA Astrophysics Data System (ADS)

    Cubert, Robert M.; Fishwick, Paul A.

    1999-06-01

    Object Oriented Physical Modeling (OOPM), formerly known as MOOSE, and its implementation of behavior multimodels provide an ability to manage arbitrarily complex patterns of behavioral abstraction in web-friendly simulation modeling. In an OOPM mode, one object stands as surrogate for another object, and these surrogates cognitively map to the real world. This `physical object' principle mitigates impact of incomplete knowledge and ambiguity because its real-world metaphors enable model authors to draw on intuition, facilitating reuse and integration, as well as consistency in collaborative efforts. A 3D interface for modeling and simulation visualization, under construction to augment the existing 2D GUI, obeys the physical object principle, providing a means to create, change, reuse, and integrate digital worlds made of digital objects. Implementation includes Distributed Simulation Executive, Digital object MultiModel Language, Digital Object Warehouse, and multimodel Translator. This approach is powerful and its capabilities have steadily grown; however, it has lacked a formal basis which we now provide: we define multimodels, represent digital objects as multimodels, transform multimodels to simulations, demonstrate the correctness of execution sequence of the simulations, and closure under coupling of digital objects. These theoretical results complement and enhance the practical aspects of physical multimodeling.

  18. Simulations and model of the nonlinear Richtmyer–Meshkov instability

    SciTech Connect

    Dimonte, Guy; Ramaprabhu, P.

    2010-01-21

    The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two-dimensions (2D). The purpose of the simulations is to develop an empiricial nonlinear model of the RM instability that is applicable to inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and scaled initial amplitude kho (k ≡ wavenumber) of the perturbation. The FLASH code is first validated with a variety of RM experiments that evolve well into the nonlinear regime. They reveal that bubbles stagnate when they grow by an increment of 2/k and that spikes accelerate for A > 0.5 due to higher harmonics that focus them. These results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A < 0.9 and kho< 1, but not for the larger values that characterize ICF and ejecta formation. We thus develop a new nonlinear empirical model that captures the simulation results consistent with potential flow for a broader range of A and kho. Our hope is that such empirical models concisely capture the RM simulations and inspire more rigorous solutions.

  19. Characterisation and modelling of brain tissue for surgical simulation.

    PubMed

    Mendizabal, A; Aguinaga, I; Sánchez, E

    2015-05-01

    Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data. PMID:25676499

  20. Process Modeling and Dynamic Simulation for EAST Helium Refrigerator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing

    2016-06-01

    In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300–80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)

  1. Simulations and model of the nonlinear Richtmyer–Meshkov instability

    DOE PAGESBeta

    Dimonte, Guy; Ramaprabhu, P.

    2010-01-21

    The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two-dimensions (2D). The purpose of the simulations is to develop an empiricial nonlinear model of the RM instability that is applicable to inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and scaled initial amplitude kho (k ≡ wavenumber) of the perturbation. The FLASH code is first validated with a variety of RM experiments that evolve well into the nonlinear regime. They reveal that bubbles stagnate when they grow by an increment of 2/k and that spikes acceleratemore » for A > 0.5 due to higher harmonics that focus them. These results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A < 0.9 and kho< 1, but not for the larger values that characterize ICF and ejecta formation. We thus develop a new nonlinear empirical model that captures the simulation results consistent with potential flow for a broader range of A and kho. Our hope is that such empirical models concisely capture the RM simulations and inspire more rigorous solutions.« less

  2. Minimum-dissipation models for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Bae, Hyunji Jane; Rozema, Wybe; Moin, Parviz; Verstappen, Roel

    2015-11-01

    Minimum-dissipation eddy-viscosity models are a class of subgrid scale models for LES that give the minimum eddy dissipation required to dissipate the energy of subgrid scales. The QR minimum-dissipation model [Verstappen, J. Sci. Comp., 2011] gives good results in simulations of decaying grid turbulence carried out on an isotropic grid. In particular, due to the minimum dissipation property of the model, the predicted energy spectra are in very good agreement with the DNS results up to the cut-off wave number unlike other methods. However, its results on anisotropic grids are often unsatisfactory because the model does not properly incorporate the grid anisotropy. We propose the anisotropic minimum-dissipation (AMD) model [Rozema et al., submitted for publication, 2015], a minimum-dissipation model that generalizes the QR model to anisotropic grids. The AMD model is more cost effective than the dynamic Smagorinsky model, appropriately switches off in laminar and transitional flow on anisotropic grids, and its subgrid scale model is consistent with the theoretic subgrid tensor. Experiments show that the AMD model is as accurate as the dynamic Smagorinsky model and Vreman model in simulations of isotropic turbulence, temporal mixing layer, and turbulent channel flow. H. J. Bae acknowledges support from SGF. W. Rozema and R. Verstappen acknowledge sponsoring by NWO for the use of supercomputing facilities and the financial support to attend the CTR SP 2014.

  3. Modeling and Simulation Tools for Heavy Lift Airships

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John

    2016-01-01

    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.

  4. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  5. Simulating replica exchange simulations of protein folding with a kinetic network model

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2007-01-01

    Replica exchange (RE) is a generalized ensemble simulation method for accelerating the exploration of free-energy landscapes, which define many challenging problems in computational biophysics, including protein folding and binding. Although temperature RE (T-RE) is a parallel simulation technique whose implementation is relatively straightforward, kinetics and the approach to equilibrium in the T-RE ensemble are very complicated; there is much to learn about how to best employ T-RE to protein folding and binding problems. We have constructed a kinetic network model for RE studies of protein folding and used this reduced model to carry out “simulations of simulations” to analyze how the underlying temperature dependence of the conformational kinetics and the basic parameters of RE (e.g., the number of replicas, the RE rate, and the temperature spacing) all interact to affect the number of folding transitions observed. When protein folding follows anti-Arrhenius kinetics, we observe a speed limit for the number of folding transitions observed at the low temperature of interest, which depends on the maximum of the harmonic mean of the folding and unfolding transition rates at high temperature. The results shown here for the network RE model suggest ways to improve atomic-level RE simulations such as the use of “training” simulations to explore some aspects of the temperature dependence for folding of the atomic-level models before performing RE studies. PMID:17878309

  6. Modeling the Lyα Forest in Collisionless Simulations

    NASA Astrophysics Data System (ADS)

    Sorini, Daniele; Oñorbe, José; Lukić, Zarija; Hennawi, Joseph F.

    2016-08-01

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Lyα forest with collisionless N-body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Lyα forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N-body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Lyα forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N-body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Lyα forest surveys.

  7. Fundamental concepts of modelling; The science of simulation

    SciTech Connect

    Garland, W.J. . Dept. of Engineering Physics)

    1990-01-01

    This paper addresses the roles of simulation in science and engineering:the extended calculator, the prototyper and the intuition generation medium. Simulation has emerged as a wing of science that is orthogonal to experimentation and theory. It has the pedestrian role of the extended calculator in that simulation provides a numerical bridge between symbolic theory and hard experimental data. In this role, discovery has been assisted. But, simulation has proved to be more than a super calculator. The nuclear industry and computational fluid dynamics are but two examples of areas that use simulation to replace experimentation (prototyping) for cost and danger reasons. Further, there is an emerging role of graphics and artificial intelligence in the discovery process. Simulation is clearly becoming not only a tool that reduces the tedium, but one that enhances the creative process. The paper looks at the state of the art in thermalhydraulics and considers the emerging trends. A general modelling scheme is proposed and a system view is used to suggest the criteria for 'optimum' simulation models for the working environment.

  8. Digital quantum simulation of fermionic models with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-07-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.

  9. Digital quantum simulation of fermionic models with a superconducting circuit.

    PubMed

    Barends, R; Lamata, L; Kelly, J; García-Álvarez, L; Fowler, A G; Megrant, A; Jeffrey, E; White, T C; Sank, D; Mutus, J Y; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Hoi, I-C; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Vainsencher, A; Wenner, J; Solano, E; Martinis, John M

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  10. Computer simulation of Aphis gossypii insects using Penna aging model

    NASA Astrophysics Data System (ADS)

    Giarola, L. T. P.; Martins, S. G. F.; Toledo Costa, M. C. P.

    2006-08-01

    A computer simulation was made for the population dynamics of Aphis gossypii in laboratory and field conditions. The age structure was inserted in the dynamics through bit string model for biological aging, proposed by Penna in 1995. The influence of different host plants and of climatic factors such as temperature and precipitation was considered in the simulation starting from experimental data. The results obtained indicate that the simulation is an appropriate instrument for understanding of the population dynamics of these species and for the establishment of biological control strategies.

  11. Cellulosic ethanol: progress towards a simulation model of lignocellulosic biomass

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C

    2008-08-01

    A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials, and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. The force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work will enable full simulations of lignocellulose.

  12. Cellulosic ethanol: progress towards a simulation model of lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Petridis, L.; Smith, J. C.

    2008-07-01

    A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived by the examination of methoxybenzene: water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials, and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. The force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work will enable full simulations of lignocellulose.

  13. Brownian dynamics simulation for modeling ion permeation across bionanotubes.

    PubMed

    Krishnamurthy, Vikram; Chung, Shin-Ho

    2005-03-01

    The principles underlying Brownian dynamics (BD), its statistical consistency, and algorithms for practical implementation are outlined here. The ability to compute current flow across ion channels confers a distinct advantage to BD simulations compared to other simulation techniques. Thus, two obvious applications of BD ion channels are in calculation of the current-voltage and current-concentration curves, which can be directly compared to the physiological measurements to assess the reliability of the model and predictive power of the method. We illustrate how BD simulations are used to unravel the permeation dynamics in two biological ion channels-the KcsA K+ channel and CIC Cl- channel. PMID:15816176

  14. Network simulation using the simulation language for alternate modeling (SLAM 2)

    NASA Technical Reports Server (NTRS)

    Shen, S.; Morris, D. W.

    1983-01-01

    The simulation language for alternate modeling (SLAM 2) is a general purpose language that combines network, discrete event, and continuous modeling capabilities in a single language system. The efficacy of the system's network modeling is examined and discussed. Examples are given of the symbolism that is used, and an example problem and model are derived. The results are discussed in terms of the ease of programming, special features, and system limitations. The system offers many features which allow rapid model development and provides an informative standardized output. The system also has limitations which may cause undetected errors and misleading reports unless the user is aware of these programming characteristics.

  15. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the

  16. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  17. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  18. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  19. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    SciTech Connect

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  20. Simulation of safety: a review of the state of the art in road safety simulation modelling.

    PubMed

    Young, William; Sobhani, Amir; Lenné, Michael G; Sarvi, Majid

    2014-05-01

    Recent decades have seen considerable growth in computer capabilities, data collection technology and communication mediums. This growth has had considerable impact on our ability to replicate driver behaviour and understand the processes involved in failures in the traffic system. From time to time it is necessary to assess the level of development as a basis of determining how far we have come. This paper sets out to assess the state of the art in the use of computer models to simulate and assess the level of safety in existing and future traffic systems. It reviews developments in the area of road safety simulation models. In particular, it reviews computer models of driver and vehicle behaviour within a road context. It focuses on stochastic numerical models of traffic behaviour and how reliable these are in estimating levels of safety on the traffic network. Models of this type are commonly used in the assessment of traffic systems for capacity, delay and general performance. Adding safety to this assessment regime may allow more comprehensive assessment of future traffic systems. To date the models have focused primarily on vehicular traffic that is, cars and heavy vehicles. It has been shown that these models have potential in measuring the level of conflict on parts of the network and the measure of conflict correlated well with crash statistics. Interest in the prediction of crashes and crash severity is growing and new models are focusing on the continuum of general traffic conditions, conflict, severe conflict, crash and severe crashes. The paper also explores the general data types used to develop, calibrate and validate these models. Recent technological development in in-vehicle data collection, driver simulators and machine learning offers considerable potential for improving the behavioural base, rigour and application of road safety simulation models. The paper closes with some indication of areas of future development. PMID:24531111

  1. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as

  2. Modeling and Simulating Blast Effects on Electric Substations

    SciTech Connect

    Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

    2009-05-01

    A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

  3. Pedestrian simulations in hexagonal cell local field model

    NASA Astrophysics Data System (ADS)

    Leng, Biao; Wang, Jianyuan; Xiong, Zhang

    2015-11-01

    Pedestrian dynamics have caused wide concern over the recent years. This paper presents a local field (LF) model based on regular hexagonal cells to simulate pedestrian dynamics in scenarios such as corridors and bottlenecks. In this model, the simulation scenarios are discretized into regular hexagonal cells. The local field is a small region around pedestrian. Each pedestrian will choose his/her target cell according to the situation in his/her local field. Different walking strategies are considered in the simulation in corridor scenario and the fundamental graphs are used to verify this model. Different shapes of exit are also discussed in the bottleneck scenario. The statistics of push effect show that the smooth bottleneck exit may be more safe.

  4. A simulation model for risk assessment of turbine wheels

    NASA Astrophysics Data System (ADS)

    Safie, Fayssal M.; Hage, Richard T.

    A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.

  5. Comparison of Engineering Wake Models with CFD Simulations

    NASA Astrophysics Data System (ADS)

    Andersen, S. J.; Sørensen, J. N.; Ivanell, S.; Mikkelsen, R. F.

    2014-06-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies in the ability of the models to universally predict the wake velocities, as the expansion factor can be fitted for a given case, but with not apparent transition between the cases.

  6. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  7. Accelerating transient simulation of linear reduced order models.

    SciTech Connect

    Thornquist, Heidi K.; Mei, Ting; Keiter, Eric Richard; Bond, Brad

    2011-10-01

    Model order reduction (MOR) techniques have been used to facilitate the analysis of dynamical systems for many years. Although existing model reduction techniques are capable of providing huge speedups in the frequency domain analysis (i.e. AC response) of linear systems, such speedups are often not obtained when performing transient analysis on the systems, particularly when coupled with other circuit components. Reduced system size, which is the ostensible goal of MOR methods, is often insufficient to improve transient simulation speed on realistic circuit problems. It can be shown that making the correct reduced order model (ROM) implementation choices is crucial to the practical application of MOR methods. In this report we investigate methods for accelerating the simulation of circuits containing ROM blocks using the circuit simulator Xyce.

  8. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  9. A simulation model for risk assessment of turbine wheels

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Hage, Richard T.

    1991-01-01

    A simulation model has been successfully developed to evaluate the risk of the Space Shuttle auxiliary power unit (APU) turbine wheels for a specific inspection policy. Besides being an effective tool for risk/reliability evaluation, the simulation model also allows the analyst to study the trade-offs between wheel reliability, wheel life, inspection interval, and rejection crack size. For example, in the APU application, sensitivity analysis results showed that the wheel life limit has the least effect on wheel reliability when compared to the effect of the inspection interval and the rejection crack size. In summary, the simulation model developed represents a flexible tool to predict turbine wheel reliability and study the risk under different inspection policies.

  10. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future

  11. USING COPULAS TO MODEL DEPENDENCE IN SIMULATION RISK ASSESSMENT

    SciTech Connect

    Dana L. Kelly

    2007-11-01

    Typical engineering systems in applications with high failure consequences such as nuclear reactor plants often employ redundancy and diversity of equipment in an effort to lower the probability of failure and therefore risk. However, it has long been recognized that dependencies exist in these redundant and diverse systems. Some dependencies, such as common sources of electrical power, are typically captured in the logic structure of the risk model. Others, usually referred to as intercomponent dependencies, are treated implicitly by introducing one or more statistical parameters into the model. Such common-cause failure models have limitations in a simulation environment. In addition, substantial subjectivity is associated with parameter estimation for these models. This paper describes an approach in which system performance is simulated by drawing samples from the joint distributions of dependent variables. The approach relies on the notion of a copula distribution, a notion which has been employed by the actuarial community for ten years or more, but which has seen only limited application in technological risk assessment. The paper also illustrates how equipment failure data can be used in a Bayesian framework to estimate the parameter values in the copula model. This approach avoids much of the subjectivity required to estimate parameters in traditional common-cause failure models. Simulation examples are presented for failures in time. The open-source software package R is used to perform the simulations. The open-source software package WinBUGS is used to perform the Bayesian inference via Markov chain Monte Carlo sampling.

  12. Modeling, simulation, and experiments of coating growth on nanofibers

    SciTech Connect

    Clemons, C. B.; Hamrick, P.; Heminger, J.; Kreider, K. L.; Young, G. W.; Buldum, A.; Evans, E.; Zhang, G.

    2008-02-15

    This work is a comparison of modeling and simulation results with experiments for an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface around an isolated nanofiber. This evolution equation was previously derived and solved under conditions of a nearly circular coating, with a concentration field that was only radially dependent and that was independent of the location of the coating free surface. These assumptions permitted the development of analytical expressions for the concentration field. The present work does not impose the above-mentioned conditions and considers numerical simulations of the concentration field that couple with level set simulations of the evolution equation for the coating free surface. Further, the cases of coating an isolated fiber as well as a multiple fiber mat are considered. Simulation results are compared with experimental results as the reactor pressure and power, as well as the nanofiber mat porosity, are varied.

  13. The simulation model of teleradiology in telemedicine project.

    PubMed

    Goodini, Azadeh; Torabi, Mashallah; Goodarzi, Maryam; Safdari, Reza; Darayi, Mohamad; Tavassoli, Mahdieh; Shabani, MohammadMehdi

    2015-01-01

    Telemedicine projects are aimed at offering medical services to people who do not have access to direct diagnosis and treatment services. As a powerful tool for analyzing the performance of complex systems and taking probable events into consideration, systemic simulation can facilitate the analysis of implementation processes of telemedicine projects in real-life-like situations. The aim of the present study was to propose a model for planning resource capacities and allocating human and operational resources to promote the efficiency of telemedicine project by investigating the process of teleradiology. In this article, after verification of the conceptual model by the experts of this field, the computerized simulation model is developed using simulation software Arena. After specifying the required data, different improvement scenarios are run using the computerized model by feeding the data into the software and validation and verification of the model. Fixing input data of the system such as the number of patients, their waiting time, and process time of each function, for example, magnetic resonance imaging or scan, has been compared with the current radiology process. Implementing the teleradiology model resulted in reduction of time of patients in the system (current: 1.84 ± 0.00, tele: 0.81 ± 0.00). Furthermore, through this process, they can allocate the lower resources to perform better functions of staff. The use of computerized simulation is essential for designing processes, optimal allocation of resources, planning, and making appropriate decisions for providing timely services to patients. PMID:25627857

  14. Simulating lightning into the RAMS model: implementation and preliminary results

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Petracca, M.; Panegrossi, G.; Sanò, P.; Casella, D.; Dietrich, S.

    2014-05-01

    This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS). The method gives the flash density at the resolution of the RAMS grid-scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity. Results show that the model predicts reasonably well both cases and that the lightning activity is well reproduced especially for the most intense case. However, there are errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the intensity and the evolution of the convection. This shows the importance of the use of computationally efficient lightning schemes, such as the one described in this paper, in forecast models.

  15. Numerical simulations of altocumulus with a cloud resolving model

    SciTech Connect

    Liu, S.; Krueger, S.K.

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  16. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  17. Arctic Ocean freshwater: How robust are model simulations?

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Aksenov, Y.; de Cuevas, B. A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  18. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  19. Charging effect simulation model used in simulations of plasma etching of silicon

    NASA Astrophysics Data System (ADS)

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Cooke, Mike; Rangelow, Ivo W.

    2012-10-01

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  20. Contacts within Valve Train Simulations: a Comparison of Models

    NASA Astrophysics Data System (ADS)

    Förg, Martin; Engelhardt, Thomas; Ulbrich, Heinz

    In this work different contact models within valve train simulations are investigated. Two basic approaches are opposed, namely rigid and flexible models. The rigid model is described by a unilateral constraint, for the group of flexible models a linear spring-damper-element and different variants of HERTZIAN contacts are used. Frictional effects are considered by COULOMB's law in the original and a regularized formulation. The models are discussed in terms of their influence on the dynamics of the valve train system, especially when they are used in diverse configurations. For the numerical analysis the system size has been varied and extended to the entire valve train with all cylinders and valve mechanisms.

  1. Progress towards quantum simulating the classical O(2 ) model

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan; Liu, Yuzhi; Lai, Chen-Yen; Unmuth-Yockey, J.; Yang, Li-Ping; Bazavov, A.; Xie, Z. Y.; Xiang, T.; Chandrasekharan, S.; Tsai, S.-W.; Meurice, Y.

    2014-12-01

    We connect explicitly the classical O(2 ) model in 1 +1 dimensions, a model sharing important features with U(1 ) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization-group formulation, we take the time continuum limit and check that finite-dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite-dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87Rb and 41K Bose-Bose mixture.

  2. Simulation models for conservative and nonconservative solute transport in streams

    USGS Publications Warehouse

    Runkel, R.L.

    1995-01-01

    Solute transport in streams is governed by a suite of hydrologic and chemical processes. Interactions between hydrologic processes and chemical reactions may be quantified through a combination of field-scale experimentation and simulation modeling. Two mathematical models that simulate conservative and nonconservative solute transport in streams are presented. A model for conservative solutes that considers One Dimensional Transport with Inflow and Storage (OTIS) may be used in conjunction with tracer-dilution methods to quantify hydrologic transport processes (advection, dispersion, lateral inflow and transient storage). For nonconservative solutes, a model known as OTEQ may be used to quantify chemical processes within the context of hydrologic transport. OTEQ combines the transport mechanisms in OTIS with a chemical equilibrium sub-model that considers complexation, precipitation/dissolution and sorption. OTEQ has been used to quantify processes affecting trace metals in two streams in the Rocky Mountains of Colorado, USA.

  3. Simulation of wastewater treatment plant within integrated urban wastewater models.

    PubMed

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail. PMID:20453339

  4. a Discrete Mathematical Model to Simulate Malware Spreading

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  5. Stochastic series expansion simulation of the t -V model

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Ye-Hua; Troyer, Matthias

    2016-04-01

    We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.

  6. The ``caterpillar'' simulation model for a biological filament

    NASA Astrophysics Data System (ADS)

    Bailey, Aimee; Lowe, Christopher; Sutton, Adrian

    2009-03-01

    We present a simulation model for an elastic filament in a viscous fluid, relevant for systems ranging from suspensions of paper pulp to micro-organism motility. It incorporates the Stokeslet treatment of the hydrodynamic force. We show that a non-arbitrary choice of the hydrodynamic radius is necessary to recover known dynamic behavior of a fiber with a finite cross-section. Our simulations explore configurations inaccessible by theory. We illustrate the utility of the model by considering the simple scenario of a charged filament in an electric field. Results suggest a circularly polarized electric field is a viable means for aligning microtubules in solution.

  7. Equatorial waves simulated by the NCAR community climate model

    NASA Technical Reports Server (NTRS)

    Cheng, Xinhua; Chen, Tsing-Chang

    1988-01-01

    The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.

  8. Hybrid system modeling, simulation, and visualization: a crane system

    NASA Astrophysics Data System (ADS)

    Hiniduma Udugama Gamage, Sahan S.; Palmer, Patrick R.

    2003-08-01

    Modeling and visualization of a complex hybrid system with different domains of energy flow and signal flow are described in this paper. It is a crane system situated in a barge complete with the load, electrical power, drive and control systems. A dynamically and functionally accurate model of the crane was developed. The implementation is in the freely available software suit of Virtual Test Bed (VTB) for simulation and Visual Extension Engine (VXE) for visualization. The bidirectional interaction of simulator and visualizer is fully utilized in this application. The further challenges confronted in implementing this particular system and any other complex system are discussed and possible solutions are suggested.

  9. A Software Development Simulation Model of a Spiral Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  10. Systematic effects in CALOR simulation code to model experimental configurations

    SciTech Connect

    Job, P.K.; Proudfoot, J. ); Handler, T. . Dept. of Physics and Astronomy); Gabriel, T.A. )

    1991-03-27

    CALOR89 code system is being used to simulate test beam results and the design parameters of several calorimeter configurations. It has been bench-marked against the ZEUS, D{theta} and HELIOS data. This study identifies the systematic effects in CALOR simulation to model the experimental configurations. Five major systematic effects are identified. These are the choice of high energy nuclear collision model, material composition, scintillator saturation, shower integration time, and the shower containment. Quantitative estimates of these systematic effects are presented. 23 refs., 6 figs., 7 tabs.

  11. The MSFC UNIVAC 1108 EXEC 8 simulation model

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.

    1972-01-01

    A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.

  12. Estimation of the parameters of ETAS models by Simulated Annealing

    PubMed Central

    Lombardi, Anna Maria

    2015-01-01

    This paper proposes a new algorithm to estimate the maximum likelihood parameters of an Epidemic Type Aftershock Sequences (ETAS) model. It is based on Simulated Annealing, a versatile method that solves problems of global optimization and ensures convergence to a global optimum. The procedure is tested on both simulated and real catalogs. The main conclusion is that the method performs poorly as the size of the catalog decreases because the effect of the correlation of the ETAS parameters is more significant. These results give new insights into the ETAS model and the efficiency of the maximum-likelihood method within this context. PMID:25673036

  13. Models and Simulations as a Service: Exploring the Use of Galaxy for Delivering Computational Models.

    PubMed

    Walker, Mark A; Madduri, Ravi; Rodriguez, Alex; Greenstein, Joseph L; Winslow, Raimond L

    2016-03-01

    We describe the ways in which Galaxy, a web-based reproducible research platform, can be used for web-based sharing of complex computational models. Galaxy allows users to seamlessly customize and run simulations on cloud computing resources, a concept we refer to as Models and Simulations as a Service (MaSS). To illustrate this application of Galaxy, we have developed a tool suite for simulating a high spatial-resolution model of the cardiac Ca(2+) spark that requires supercomputing resources for execution. We also present tools for simulating models encoded in the SBML and CellML model description languages, thus demonstrating how Galaxy's reproducible research features can be leveraged by existing technologies. Finally, we demonstrate how the Galaxy workflow editor can be used to compose integrative models from constituent submodules. This work represents an important novel approach, to our knowledge, to making computational simulations more accessible to the broader scientific community. PMID:26958881

  14. Development of a Matheatical Dynamic Simulation Model for the New Motion Simulator Used for the Large Space Simulator at ESTEC

    NASA Astrophysics Data System (ADS)

    Messing, Rene

    2012-07-01

    To simulate environmental space conditions for space- craft qualification testing the European Space Agency ESA uses a Large Space Simulator (LSS) in its Test Centre in Noordwijk, the Netherlands. In the LSS a motion system is used, to provide the orientation of an up to five tons heavy spacecraft with respect to an artificial solar beam. The existing motion simulation will be replaced by a new motion system. The new motion system shall be able to orient a spacecraft, defined by its elevation and azimuth angle and provide an eclipse simulation (continuous spinning) around the spacecraft rotation axis. The development of the new motion system has been contracted to APCO Technologies in Switzerland. In addition to the design development done by the con- tractor the Engineering section of the ESTEC Test Centre is in parallel developing a mathematical model simulating the dynamic behaviour of the system. The model shall to serve, during the preliminary design, to verify the selection of the drive units and define the specimen trajectory speed and acceleration profiles. In the further design phase it shall verify the dynamic response, at the spacecraft mounting interface of the unloaded system, against the requirements. In the future it shall predict the dynamic responses of the implemented system for different spacecraft being mounted and operated onto the system. The paper shall give a brief description of the investment history and design developments of the new motion system for the LSS and then give a brief description the different developments steps which are foreseen and which have been already implemented in the mathematical simulation model.

  15. Role of modeling and simulation in pediatric investigation plans.

    PubMed

    Manolis, Efthymios; Osman, Tariq Eldirdiry; Herold, Ralf; Koenig, Franz; Tomasi, Paolo; Vamvakas, Spiros; Saint Raymond, Agnes

    2011-03-01

    Ethical and practical constraints encourage the optimal use of resources in pediatric drug development. Modeling and simulation has emerged as a promising methodology acknowledged by industry, academia, and regulators. We previously proposed a paradigm in pediatric drug development, whereby modeling and simulation is used as a decision tool, for study optimization and/or as a data analysis tool. Three and a half years since the Paediatric Regulation came into force in 2007, the European Medicines Agency has gained substantial experience in the use of modeling and simulation in pediatric drug development. In this review, we present examples on how the proposed paradigm applies in real case scenarios of planned pharmaceutical developments. We also report the results of a pediatric database search to further 'validate' the paradigm. There were 47 of 210 positive pediatric investigation plan (PIP) opinions that made reference to modeling and simulation (data included all positive opinions issued up to January 2010). This reflects a major shift in regulatory thinking. The ratio of PIPs with modeling and simulation rose to two in five based on the summary reports. Population pharmacokinetic (POP-PK) and pharmacodynamics (POP-PD) and physiologically based pharmacokinetic models are widely used by industry and endorsed or even imposed by regulators as a way to circumvent some difficulties in developing medicinal products in children. The knowledge of the effects of age and size on PK is improving, and models are widely employed to make optimal use of this knowledge but less is known about the effects of size and maturation on PD, disease progression, and safety. Extrapolation of efficacy from different age groups is often used in pediatric medicinal development as another means to alleviate the burden of clinical trials in children, and this can be aided by modeling and simulation to supplement clinical data. The regulatory assessment is finally judged on clinical grounds

  16. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  17. Benchmarking computational fluid dynamics models for lava flow simulation

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  18. In silico simulations of experimental protocols for cardiac modeling.

    PubMed

    Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther

    2014-01-01

    A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors. PMID:25571288

  19. Stochastic simulation model of oil spill fate and transfer

    SciTech Connect

    Al-Rabeh, A.H.; Cekirge, H.M.; Gunay, N. )

    1989-06-01

    Over the past few years, considerable research has been directed toward the development of mathematical models to describe the behavior of oil spills. A successful model would be of great value in selecting locations for the deployment of containment and collection systems to mitigate the effects of the pollutant on the environment. In this study, a comprehensive stochastic model is formulated to simulate the fate and transport of oil spills. The model consists of a set of algorithms describing the processes of advection, turbulent diffusion, surface spreading, vertical mechanical dispersion, emulsification, and evaporation. Each algorithm is developed separately and is linked to related processes and to environmental and other parameters. The model requires as input the velocity field of the transporting medium. This can be obtained from a three-dimensional hydrodynamic model for tidal and wind-driven currents for the region of interest. The oil spill fate and transport model is used to simulate a surface oil spill in the Abu Ali region on the western side of the Arabian Gulf. The simulation results indicate that the model can predict the fate and transport of oil slicks with reasonable accuracy. 45 refs., 10 figs.

  20. Equation-oriented specification of neural models for simulations

    PubMed Central

    Stimberg, Marcel; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain

    2013-01-01

    Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modeling software is to build network models based on a library of pre-defined components and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions. The presented approach has been implemented in the Brian2 simulator. PMID:24550820

  1. Equation-oriented specification of neural models for simulations.

    PubMed

    Stimberg, Marcel; Goodman, Dan F M; Benichoux, Victor; Brette, Romain

    2014-01-01

    Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modeling software is to build network models based on a library of pre-defined components and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions. The presented approach has been implemented in the Brian2 simulator. PMID:24550820

  2. Simulations of Aerosol Microphysics in the NASA GEOS-5 Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; Smith; Randles; daSilva

    2010-01-01

    Aerosol-cloud-chemistry interactions have potentially large but uncertain impacts on Earth's climate. One path to addressing these uncertainties is to construct models that incorporate various components of the Earth system and to test these models against data. To that end, we have previously incorporated the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module online in the NASA Goddard Earth Observing System model (GEOS-5). GEOS-5 provides a platform for Earth system modeling, incorporating atmospheric and ocean general circulation models, a land surface model, a data assimilation system, and treatments of atmospheric chemistry and hydrologic cycle. Including GOCART online in this framework has provided a path for interactive aerosol-climate studies; however, GOCART only tracks the mass of aerosols as external mixtures and does not include the detailed treatments of aerosol size distribution and composition (internal mixtures) needed for aerosol-cloud-chemistry-climate studies. To address that need we have incorporated the Community Aerosol and Radiation Model for Atmospheres (CARMA) online in GEOS-5. CARMA is a sectional aerosol-cloud microphysical model, capable of treating both aerosol size and composition explicitly be resolving the aerosol distribution into a variable number of size and composition groupings. Here we present first simulations of dust, sea salt, and smoke aerosols in GEOS-5 as treated by CARMA. These simulations are compared to available aerosol satellite, ground, and aircraft data and as well compared to the simulated distributions in our current GOCART based system.

  3. Hierarchical simulation of aquifer heterogeneity: implications of different simulation settings on solute-transport modeling

    NASA Astrophysics Data System (ADS)

    Comunian, Alessandro; De Micheli, Leonardo; Lazzati, Claudio; Felletti, Fabrizio; Giacobbo, Francesca; Giudici, Mauro; Bersezio, Riccardo

    2016-03-01

    The fine-scale heterogeneity of porous media affects the large-scale transport of solutes and contaminants in groundwater and it can be reproduced by means of several geostatistical simulation tools. However, including the available geological information in these tools is often cumbersome. A hierarchical simulation procedure based on a binary tree is proposed and tested on two real-world blocks of alluvial sediments, of a few cubic meters volume, that represent small-scale aquifer analogs. The procedure is implemented using the sequential indicator simulation, but it is so general that it can be adapted to various geostatistical simulation tools, improving their capability to incorporate geological information, i.e., the sedimentological and architectural characterization of heterogeneity. When compared with a standard sequential indicator approach on bi-dimensional simulations, in terms of proportions and connectivity indicators, the proposed procedure yields reliable results, closer to the reference observations. Different ensembles of three-dimensional simulations based on different hierarchical sequences are used to perform numerical experiments of conservative solute transport and to obtain ensembles of equivalent pore velocity and dispersion coefficient at the scale length of the blocks (meter). Their statistics are used to estimate the impact of the variability of the transport properties of the simulated blocks on contaminant transport modeled on bigger domains (hectometer). This is investigated with a one-dimensional transport modeling based on the Kolmogorov-Dmitriev theory of branching stochastic processes. Applying the proposed approach with diverse binary trees and different simulation settings provides a great flexibility, which is revealed by the differences in the breakthrough curves.

  4. Off-gas adsorption model and simulation - OSPREY

    SciTech Connect

    Rutledge, V.J.

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  5. Knowledge representation and qualitative simulation of salmon redd functioning. Part I: qualitative modeling and simulation.

    PubMed

    Guerrin, F; Dumas, J

    2001-02-01

    This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper. PMID:11267737

  6. Modeling and Simulation of Water Allocation System Based on Simulated Annealing Hybrid Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Jiulong; Wang, Shijun

    Presently water resource in most watersheds in China is distributed in terms of administrative instructions. This kind of allocation method has many disadvantages and hampers the instructional effect of market mechanism on water allocation. The paper studies South-to-North Water Transfer Project and discusses water allocation of the node lakes along the Project. Firstly, it advanced four assumptions. Secondly, it analyzed constraint conditions of water allocation in terms of present state of water allocation in China. Thirdly, it established a goal model of water allocation and set up a systematic model from the angle of comprehensive profits of water utilization and profits of the node lakes. Fourthly, it discussed calculation method of the model by means of Simulated Annealing Hybrid Genetic Algorithm (SHGA). Finally, it validated the rationality and validity of the model by a simulation testing.

  7. Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments.

    PubMed

    Jansen, H Patrick; Sotthewes, Kai; van Swigchem, Jeroen; Zandvliet, Harold J W; Kooij, E Stefan

    2013-07-01

    Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results, which have shown that water droplets on such surfaces adopt an elongated shape due to anisotropic preferential spreading. Details of the contact line motion such as advancing of the contact line in the direction perpendicular to the stripes exhibit pronounced similarities in experiments and simulations. The opposite of spreading, i.e., evaporation of water droplets, leads to a characteristic receding motion first in the direction parallel to the stripes, while the contact line remains pinned perpendicular to the stripes. Only when the aspect ratio is close to unity, the contact line also starts to recede in the perpendicular direction. Very similar behavior was observed in the LBM simulations. Finally, droplet movement can be induced by a gradient in surface wettability. LBM simulations show good semiquantitative agreement with experimental results of decanol droplets on a well-defined striped gradient, which move from high- to low-contact angle surfaces. Similarities and differences for all systems are described and discussed in terms of the predictive capabilities of LBM simulations to model direction wetting. PMID:23944550

  8. Numerical simulations and modeling for stochastic biological systems with jumps

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoling; Wang, Ke

    2014-05-01

    This paper gives a numerical method to simulate sample paths for stochastic differential equations (SDEs) driven by Poisson random measures. It provides us a new approach to simulate systems with jumps from a different angle. The driving Poisson random measures are assumed to be generated by stationary Poisson point processes instead of Lévy processes. Methods provided in this paper can be used to simulate SDEs with Lévy noise approximately. The simulation is divided into two parts: the part of jumping integration is based on definition without approximation while the continuous part is based on some classical approaches. Biological explanations for stochastic integrations with jumps are motivated by several numerical simulations. How to model biological systems with jumps is showed in this paper. Moreover, method of choosing integrands and stationary Poisson point processes in jumping integrations for biological models are obtained. In addition, results are illustrated through some examples and numerical simulations. For some examples, earthquake is chose as a jumping source which causes jumps on the size of biological population.

  9. Geostatistical modeling of uncertainty, simulation, and proposed applications in GIScience

    NASA Astrophysics Data System (ADS)

    Doucette, Peter; Dolloff, John; Lenihan, Michael

    2015-05-01

    Geostatistical modeling of spatial uncertainty has its roots in the mining, water and oil reservoir exploration communities, and has great potential for broader applications as proposed in this paper. This paper describes the underlying statistical models and their use in both the estimation of quantities of interest and the Monte-Carlo simulation of their uncertainty or errors, including their variance or expected magnitude and their spatial correlations or inter-relationships. These quantities can include 2D or 3D terrain locations, feature vertex locations, or any specified attributes whose statistical properties vary spatially. The simulation of spatial uncertainty or errors is a practical and powerful tool for understanding the effects of error propagation in complex systems. This paper describes various simulation techniques and trades-off their generality with complexity and speed. One technique recently proposed by the authors, Fast Sequential Simulation, has the ability to simulate tens of millions of errors with specifiable variance and spatial correlations in a few seconds on a lap-top computer. This ability allows for the timely evaluation of resultant output errors or the performance of a "down-stream" module or application. It also allows for near-real time evaluation when such a simulation capability is built into the application itself.

  10. Numerical simulations of Hurricane Bertha using a mesoscale atmospheric model

    SciTech Connect

    Buckley, R.L.

    1996-08-01

    The Regional Atmospheric Model System (RAMS) has been used to simulate Hurricane Bertha as it moved toward and onto shore during the period July 10--12, 1996. Using large-scale atmospheric data from 00 UTC, 11 July (Wednesday evening) to initialize the model, a 36-hour simulation was created for a domain centered over the Atlantic Ocean east of the Florida coast near Jacksonville. The simulated onshore impact time of the hurricane was much earlier than observed (due to the use of results from the large-scale model, which predicted early arrival). However, the movement of the hurricane center (eye) as it approached the North Carolina/South Carolina coast as simulated in RAMS was quite good. Observations revealed a northerly storm track off the South Carolina coast as it moved toward land. As it approached landfall, Hurricane Bertha turned to the north-northeast, roughly paralleling the North Carolina coast before moving inland near Wilmington. Large-scale model forecasts were unable to detect this change in advance and predicted landfall near Myrtle Beach, South Carolina; RAMS, however, correctly predicted the parallel coastal movement. For future hurricane activity in the southeast, RAMS is being configured to run in an operational model using input from the large-scale pressure data in hopes of providing more information on predicted hurricane movement and landfall location.

  11. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  12. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  13. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  14. Evaluating the GPSS simulation model for the Viking batch computer system. [General Purpose Simulation System

    NASA Technical Reports Server (NTRS)

    Lee, J.-J.

    1976-01-01

    In anticipation of extremely heavy loading requirements by the Viking mission during the post-landing periods, a GPSS model has been developed for the purpose of simulating these requirements on the Viking batch computer system. This paper presents the effort pursued in evaluating such a model and results thereby obtained. The evaluation effort consists of selecting the evaluation approach, collecting actual test run data, making comparisons and deriving conclusions.

  15. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  16. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    NASA Astrophysics Data System (ADS)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  17. Simulating tidal evolution and encounters with mass-spring models

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Frouard, Julien; Ebinger, Cynthia; Giannella, David; Efroimsky, Michael; Shaw, John

    2016-05-01

    We have recently found that we can directly simulate tidal spin down of viscoelastic objects using damped springs within an N-body code. But there is a 30% discrepancy between the torque analytically predicted and that numerically measured and we still have not identified the cause!Close tidal encounters among large planetesimals and moons were more common than impacts. Using a mass spring model within an N-body simulation, we simulate the deformation of the surface caused by a close tidal encounter and find tidal encounters can induce sufficient stress on the surface to cause brittle failure of an icy crust. Simulated fractures can extend a large fraction of the radius of body. Strong tidal encounters may be responsible for the formation of long graben complexes and chasmata in ancient terrain of icy moons such as Dione, Tethys, Ariel and Charon.

  18. A Statistical Comparison of PSC Model Simulations and POAM Observations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.

  19. Simulations of the Amazon basin circulation with a regional model

    SciTech Connect

    Horel, J.D.; Pechmann, J.B.; Hahmann, A.N.; Geisler, J.E. )

    1994-01-01

    Numerical simulations of the atmospheric circulation over tropical South America are performed with a regional model developed at the Pennsylvania State University and the National Center for Atmospheric Research and commonly referred to as the MM4. The authors focus on a 5-day period beginning at 1200 UTC 27 February 1990. The observed circulation is evaluated in terms of initialized analysis of standard meterological variables from the National Meteorological Center, outgoing longwave radiation from polar orbiting satellites, and surface observations. The NMC analysis are also used to specify the initial conditions, as well as provide the lateral boundary conditions, for the 5-day simulations. The impacts on the simulated circulation of major changes to the standard MM4 are assessed. When an improved treatment of radiative processes is included, excessive rainfall develops over then Andes Mountains and over the Amazon Basin. The excessive rainfall is concentrated in gridpoint' storms that are not climated when the surface physical parameterizations are improved. Modifications to the treatment of the vertical transport of moisture are required to diminish the excessive rainfall. Even with these and other changes included in the model, the simulated basin-averaged rainfall continues to exhibit unrealistic features. The improved, thought still imperfect, model simulations are used to diagnose the temporal and spatial evolution of the circulation with an emphasis on equatorial-subtropical interactions.

  20. Global Magnetospheric Simulations: coupling with ionospheric and solar wind models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Olshevskyi, Vyacheslav; Amaya, Jorge; Deca, Jan; Markidis, Stefano; Vapirev, Alexander

    2013-04-01

    We present results on the global fully kinetic model of the magnetosphere of the Earth. The simulations are based on the iPic3D code [1] that treats kinetically all plasma species solving implicitly the equations of motion for electrons and ions, coupled with the Maxwell equations. We present results of our simulations and discuss the coupling at the inner boundary near the Earth with models of the ionosphere and at the outer boundary with models of the arriving solar wind. The results are part of the activities of the Swiff FP7 project: www.swiff.eu [1] Stefano Markidis, Giovanni Lapenta, Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Mathematics and Computers in Simulation, Volume 80, Issue 7, March 2010, Pages 1509-1519, ISSN 0378-4754, 10.1016/j.matcom.2009.08.038 [2] Giovanni Lapenta, Particle simulations of space weather, Journal of Computational Physics, Volume 231, Issue 3, 1 February 2012, Pages 795-821, ISSN 0021-9991, 10.1016/j.jcp.2011.03.035.