Sample records for hollow cathode lamp

  1. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  2. Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.

    PubMed

    Rossi, G; Omenetto, N

    1969-02-01

    A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.

  3. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  4. Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps

    NASA Astrophysics Data System (ADS)

    Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.

    2017-03-01

    This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2-2p2 at 659.89 nm. The voltage-current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.

  5. Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å

    National Institute of Standards and Technology Data Gateway

    SRD 112 Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å (Web, free access)   Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 Å contains wavelengths and intensities for about 5600 lines in the region 4330 Å. An atlas plot of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed.

  6. Absolute Doppler shift calibration of laser induced fluorescence signals using optogalvanic measurements in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1992-01-01

    The paper investigates the use of optogalvanic (OG) measurements on the neutral 3P1 and 3P2 levels of argon in a hollow cathode lamp for the purpose of calibrating Doppler shifts of laser-induced fluorescence signals from an arcjet plume. It is shown that, even with non-Doppler-free OG detection, accuracy to better than 10 MHz is possible but that, depending on the experiment geometry, corrections of 10-35 MHz may be necessary to offset small axial drift velocities of neutral atoms in the hollow cathode lamp.

  7. Polarization spectroscopy of atomic erbium in a hollow cathode lamp

    NASA Astrophysics Data System (ADS)

    Ang'ong'a, Jackson; Gadway, Bryce

    2018-02-01

    In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.

  8. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    NASA Technical Reports Server (NTRS)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  9. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  10. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    PubMed

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  11. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase massmore » spectrometry.« less

  12. Performance of the FOS and GHRS Pt/(Cr)-Ne Hollow-cathode Lamps after their Return from Space and Comparison with Archival Data

    NASA Technical Reports Server (NTRS)

    Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John

    2006-01-01

    The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.

  13. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    NASA Astrophysics Data System (ADS)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  14. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies.

    PubMed

    Saini, V K; Kumar, P; Sarangpani, K K; Dixit, S K; Nakhe, S V

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine ( 2 S 1/2 → 2 P 1/2, 3/2 ) transitions. These OG transitions allow 0.33 cm -1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  15. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, A.; Dikshit, B.; Bhatia, M. S.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean valuemore » of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.« less

  16. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  17. First results on Ge resonant laser photoionization in hollow cathode lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto; Barzakh, Anatoly

    2016-02-15

    In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as amore » proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.« less

  18. Self-induced optogalvanic effect in a segmented hollow-cathode discharge

    NASA Astrophysics Data System (ADS)

    Steflekova, V.; Zhechev, D.

    2018-03-01

    Optogalvanic (OG) interaction is simulated and studied in a segmented hollow-cathode discharge (SHCD). HCD-lamps are used to induce an OG signal by their own emission or by that of another lamp. The efficiency of the OG of a Ne/Cu HCD lamp in the range 320-380 nm is estimated theoretically. An irregular galvanic peak arising near the inflection point in the i-V curve (∂V/∂i<0) is detected. Its origin is related to Penning ionization of the sputtered cathode material.

  19. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    PubMed

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  20. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  1. Hollow cathode lamp based Faraday anomalous dispersion optical filter

    PubMed Central

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  2. Wavelengths and intensities of a platinum/neon hollow cathode lamp in the region 1100-4000 A

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Sansonetti, Jean E.

    1990-01-01

    The spectrum of a platinum hollow cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 3000 lines in the region 1100-4000 A. The uncertainty of the measured wavelengths is estimated to be + or - 0.0020 A. Ritz-type wavelengths are given for about 550 classified lines of Pt II with uncertainites varying from + or - 0.0004 A to + or - 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.

  3. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  4. A frequency-stabilized light source at 399 nm using an Yb hollow-cathode lamp

    NASA Astrophysics Data System (ADS)

    Tanabe, Takehiko; Akamatsu, Daisuke; Inaba, Hajime; Okubo, Sho; Kobayashi, Takumi; Yasuda, Masami; Hosaka, Kazumoto; Hong, Feng-Lei

    2018-06-01

    We demonstrate a diode laser system operating at 399 nm that is stabilized to the 6s2 1S0–6s6p 1P1 electric dipole transition in ytterbium (Yb) atoms in a hollow-cathode lamp. The frequency stability of the laser reached 1.1 × 10‑11 at an averaging time of τ = 1 s. We performed an absolute frequency measurement using an optical frequency comb and determined that the absolute frequency of the laser stabilized to the 1S0–1P1 transition in 174Yb was 751 526 522.26(9) MHz. We also investigated several systematic frequency shifts while changing some of the light source parameters and measured several isotope shifts. The measured laser frequency will provide useful information regarding the practical use of the frequency-stabilized light source at 399 nm.

  5. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  6. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    PubMed

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  7. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  8. [Reparative regeneration of rat skin under influence of hollow cathode lamp (HCL) with manganese and copper line spectrum emission].

    PubMed

    Mel'nikova, V I; Izvol'skaia, M S; Voronova, S N; Sharipova, M M; Rukin, E M; Zakharova, L A

    2010-01-01

    Influence of local light exposure by hollow cathode lamp with typical manganese and copper (HCL-Mn, Cu) line emission spectrum on posttraumatic regeneration rate of rat skin has been investigated. We performed the comparative analysis of the morphology and the differentiation ability of rat skin on the 15th and 24th days after full-thickness skin wound had been inflicted on rat dorsums. On the 15th day after injury, the experimental group (daily 30 s exposure for two weeks) showed scab loss, re-epithelialization, and hair regrowth, in contrast to the control rats, where scabs were still observed on the 24th day. Histological analysis revealed that in contrast to the control group the treatment with HCL-Mn, Cu resulted in the increased number of hair follicles and sebaceous glands, the decreased number of blood vessels and horizontal orientation of collagen fibers. The immunohistochemistry for OX-62 revealed that the number of dermal dendritic cells in the experimental groups was maximal on the 15th day, and then decreased to the 24th day after injury. The number of dermal dendritic cells was significantly lower in the control group. The immunohistochemistry for pan-keratins in the control animals revealed a high number of cells expressing different types of keratins, distributed in the main part of the epidermis on the 15th day after surgery, whereas in the experimental group the number of such cells was significantly lower and the cells were concentrated more close to the external part of the epidermis. The number of cells stained for keratin 19 was higher in the experimental group on the 15th day after surgery, whereas this number decreased in this group on the 24th day after surgery as compared to the control group. Thus, typical manganese and copper line spectrum emission emitted by hollow cathode lamp stimulates innate immunity, accelerates restoration of derma, skin epithelium and other skin derivates, and stimulates wound healing in general.

  9. Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 A

    NASA Technical Reports Server (NTRS)

    Sansonetti, Jean E.; Reader, Joseph; Sansonetti, Craig J.; Acquista, Nicolo

    1992-01-01

    The spectrum of a platinum hollow-cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 5600 lines in the region 1130-4330 A. An atlas of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed. Lines of impurity species are also identified. The uncertainty of the photographically measured wavelengths is estimated to be +/- 0.0020 A. The uncertainty of lines measured in the photoelectric scans is 0.01 A for wavelengths shorter than 2030 A and 0.02 A for longer wavelengths. Ritz-type wavelengths are given for many of the classified lines of Pt II with uncertainties varying from +/- 0.0004 to +/- 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.

  10. 28,000 Hour Xenon Hollow Cathode LifeTest Results

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1997-01-01

    The International Space Station Plasma Contactor System requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. Critical components of the HCA include the hollow cathode and electron emitter. A series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify the hollow cathode design and contamination control protocols. The life test accumulated 27,800 hours of operation before failing to ignite. The hollow cathode exhibited relatively small changes in operating parameters over the course of the test. This life test is the longest duration test of a high current xenon hollow cathode reported to date.

  11. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  12. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  13. Scenario for Hollow Cathode End-Of-Life

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    2000-01-01

    Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.

  14. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  15. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  16. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  17. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  18. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  19. [Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry].

    PubMed

    Zhang, Shuo

    2015-09-01

    The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.

  20. Extended test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.

  1. RHETT/EPDM Flight Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Manzella, David; Patterson, Michael; Pastel, Michael

    1997-01-01

    Under the sponsorship of the BMDO Russian Hall Electric Thruster Technology program two xenon hollow cathodes, a flight unit and a flight spare were fabricated, acceptance tested and delivered to the Naval Research Laboratory for use on the Electric Propulsion Demonstration Module. These hollow cathodes, based on the International Space Station plasma contactor design, were fabricated at the NASA Lewis Research Center for use with a D-55 anode layer thruster in the first on-orbit operational application of this technology. The 2.2 Ampere nominal emission current of this device was obtained with a xenon flow rate of 0.6 mg/s. Ignition of the cathode discharge was accomplished through preheating the active electron emitter with a resistive heating element before application of a 650 volt ignition pulse between the emitter and an external starting electrode. The successful acceptance testing of the Electric Propulsion Demonstration Module utilizing these cathodes demonstrated the suitability of cathodes based on barium impregnated inserts in an enclosed keeper configuration for use with Hall thruster propulsion systems.

  2. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  3. Long time stability of lamps with nanostructural carbon field emission cathodes

    NASA Astrophysics Data System (ADS)

    Kalenik, J.; Firek, P.; Szmidt, J.; Czerwosz, E.; Kozłowski, M.; Stepińska, I.; Wódka, T.

    2017-08-01

    A luminescent lamp with field emission cathode was constructed and tested. Phosphor excited by electrons from field emission cathode is the source of light. The cathode is covered with nickel-carbon film containing multilayer carbon nanotubes that enhance electron emission from the cathode. Results of luminance stability measurements are presented. Luminance of elaborated luminance lamp is high enough for lighting application. Long term stability (1000 hours) is satisfactory for mass lamp application. Initial short time decrease of luminance is still too high and it needs reduction.

  4. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  5. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  6. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  7. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    State University. Finally, many thanks to my wife, Kyoung -Sook and my son, Frederick Teut, for their love and being supportive for two and half years...recommended for all electron emission purposes. 46 REFERENCES 1. Kim Gunther, "Hollow Cathode Plasma Source" ( Spectra-Mat Hollow Cathode Manual...59 Dong 401 Ho Seoul, Republic of Korea 8. Maj. Kim , Jong-Ryul 1 Postal Code 500-00 Book-Gu, Du-Am Dong, 874-14 Kwang-Ju, Republic of Korea 9. Maj

  8. Understanding anode and cathode behaviour in high-pressure discharge lamps

    NASA Astrophysics Data System (ADS)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  9. Continuing life test of a xenon hollow cathode for a space plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.

  10. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  11. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  12. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  13. Optical properties of lamps with cold emission cathode

    NASA Astrophysics Data System (ADS)

    Kalenik, Jerzy; Czerwosz, ElŻbieta; Biernacki, Krzysztof; Rymarczyk, Joanna; Stepińska, Izabela

    2016-12-01

    A luminescent lamp was constructed and tested. Phosphor excited by electrons is the source of light. The source of electrons is field emission cathode. The cathode is covered with nickel-carbon layer containing carbon nanotubes that enhance electron emission from the cathode. Results of luminance measurements are presented. Luminance is high enough for lighting application.

  14. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Rand, Lauren P. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  15. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  16. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18,000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  17. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  18. Destructive Evaluation of a Xenon Hollow Cathode after a 28,000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1998-01-01

    International Space Station (ISS) plasma contactor system requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. In order to demonstrate the lifetime capability of the HCA, a series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify hollow cathode lifetime capability and contamination control protocols. This hollow cathode accumulated 27,800 hours of operation before it failed during a restart attempt. The cathode was subsequently destructively analyzed in order to determine the failure mechanism. Microscopic examination of the cathode interior determined that relatively small changes in the cathode physical geometry had occurred and barium tungstates, which are known to limit the emission process, had formed over a majority of the electron emitter surface. Because the final state of the insert was consistent with expected impregnate chemistry, the hollow cathode was believed to have reached the end of its usable life under the test conditions.

  19. 12CaO-7Al2O3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Williams, John D. (Inventor); Rand, Lauren P. (Inventor); Martinez, Rafael A. (Inventor)

    2017-01-01

    The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  20. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  1. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  2. Electron diffusion through the baffle aperture of a hollow cathode thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1979-01-01

    The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.

  3. Life test of a xenon hollow cathode for a space plasma contractor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    A plasma contacting device using a hollow cathode for plasma production has been baselined for use on the Space Station. This application will require reliable, continuous operation of the cathode at electron emission currents of between 0.75 and 10 A for two years (17,500 hours). In order to validate life-time capability, a hollow cathode, operated in a diode configuration, has been tested for more than 8600 hours of stable discharge operation as of March 30, 1994. This cathode is operated at a steady-state emission current of 12.0 and a fixed xenon flow rate of 4.5 sccm. Discharge voltage and cathode temperature have remained relatively stable at approximately 12.9 V and 1260 C during the test. The test has experienced 7 shutdowns to date. In all instances, the cathode was reignited at about 42 V and resumed stable operation. This test represents the longest demonstration of stable operation of high current (greater than 1A) xenon hollow cathodes reported to date.

  4. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new

  5. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  6. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  7. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  8. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  9. High pressure working mode of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, H.; Popovici, C.

    1985-01-01

    The behavior of high pressure cathotrons is discussed. Methods of preheating either the gas or the cathode itself are detailed together with various geometries for the hollow cathode. Three special configurations were tested, and the results are analyzed.

  10. Development of a laser ablation-hollow cathode glow discharge emission source and the application to the analysis of steel samples.

    PubMed

    Naeem, Tariq M; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-12-01

    A novel atomic emission spectrometry comprising laser ablation as a sampling source and hollow cathode plasma for the excitation of ablated sample atoms is proposed. In this arrangement, a conventional Grimm-type discharge lamp is employed, but the polarity of the power supply is reversed so that the cylindrical hollow tube acts as a cathode and the glow discharge plasma is produced within this tube. A laser is irradiated to introduce sample atoms into the discharge plasma. Ablated atoms are excited by collisions with electrons and gas species, and emit characteristic radiation upon de-excitation. The experiments were conducted only in an atmosphere of helium gas so as to avoid a rapid erosion of the cathode hollow tube. Phase-sensitive detection with a lock-in amplifier was utilized to reject the continuous background emission of the plasma gas and emissions of sputtered atoms from the tube material. The unique feature of this technique is that the sampling and excitation processes can be controlled independently. The proposed technique was employed for the determination of Cr, Mn, and Ni in low-alloyed steel samples. The obtained concentrations are in good agreement with the reported values. The relative standard deviation (RSD), a measure of the analytical precision, was estimated to be 2-9% for Cr, 3-4% for Mn, and 4-11% for Ni determination.

  11. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    NASA Astrophysics Data System (ADS)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  12. Generation of high energetic ions from hollow cathode discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta, M.; El Nadai, L.; Lie, Y.T.

    1995-12-31

    High energetic beams of ions can be produced by using the dense and highly ionized plasma that is generated by the vacuum arc. Ian G. Brown (1993) described the general features and performance characteristics of the ion sources and their use for accelerator injection and ion implantation applications. Atta, at al. (1993) found that the ratio of ion density to electron density has been decreased beside the hollow cathode at different hole diameter due to increasing the ionization degree. Here we have evaluated the ion velocity distribution F(v) = S{Upsilon}(t)/V{sup 2}, where {Upsilon}(t) is the ion flux intensity, S ismore » the distance between the hollow cathode spot and the quadrupole maps spectrometer, and V is the ion velocity. The ion energy (E=mV{sup 2}/2, in is the mass of the ion), and the ion fraction due to the total number of ions for different ion species emitted from graphite and titanium hollow cathode have been determined.« less

  13. Heaterless ignition of inert gas ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Schatz, M. F.

    1985-01-01

    Heaterless inert gas ion thruster hollow cathodes were investigated with the aim of reducing ion thruster complexity and increasing ion thruster reliability. Cathodes heated by glow discharges are evaluated for power requirements, flowrate requirements, and life limiting mechanisms. An accelerated cyclic life test is presented.

  14. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.

  15. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  16. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  17. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  18. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  19. Investigation of hollow cathode performance for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1973-01-01

    A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, the insert position, the emission current, the cathode temperature, the orifice diameter, and the mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes of interest. Also presented are the results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages.

  20. Investigation of hollow cathode performance for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1973-01-01

    A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, insert position, emission current, cathode temperature, orifice diameter, and mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes. The results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages are also presented.

  1. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  2. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  3. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  4. Requirements for long-life operation of inert gas hollow cathodes: Preliminary report

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10(exp -3)sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  5. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira

    2004-01-01

    In order to support the development of comprehensive performance and life models for future deep space missions that will utilize ion thrusters, we have undertaken a study of the plasma structure in hollow cathodes using an new pneumatic scanning probe diagnostic. This device is designed to insert a miniature probe directly into the hollow cathode orifice from either the upstream insert region in the interior of the hollow cathode, or from the downstream keeper-plasma region at the exit of the hollow cathode, to provide complete axial profiles of the discharge plasma parameters. Previous attempts to diagnose this region with probes was Limited by the melting of small probes in the intense discharge near the orifice, or caused significant perturbation of the plasma by probes large enough to survive. Our new probe is extremely compact, and when configured as a single Langmuir probe, the ceramic tube insulator is only 0.5mm in diameter and the current collecting conductor has a total area of 0.002 cm2. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage waveform to the probe as it is scanned by the pneumatic actuator into and out of the plasma region, The bellow-sealed pneumatic drive scans the probe 4 cm in the cathode insert region and 10 cm in the anode/keeper plasmas region at average speeds of about 1 mm/msec, and the residence time at the end of the insertion stroke in the densest part of the plasma near the orifice is measured to be only 10 msec. Since the voltage sweep time is fast compared to the motion of the probe, axial profiles of the plasma density, temperature and potential with reasonable spatial resolution are obtained. Measurements of the internal cathode pressures and the axial plasma-parameter profiles for a hollow cathode operating at discharge currents of up to 35 A in xenon will be presented.

  6. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  7. An experimental investigation of a hollow cathode discharge

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1971-01-01

    An experimental study of the effects of various modifications to the hollow cathode discharge region of a 20 cm electron bombardment ion thruster is presented. The introduction of electrical insulation between the main and cathode discharge regions is shown to have no significant effect on thruster performance. Adjustment of both the diameter and length of the cathode discharge region from the design condition are examined and the reduced sizes are shown to effect large improvements in propellant utilization when the thruster is operating at about 30% of the design thrust level. Performance improvements are shown to be less significant at higher thrust levels. The feasibility of using a high voltage tickler electrode to initiate the cathode-keeper discharge is considered and results obtained suggest this mode of startup is unsatisfactory.

  8. 75 FR 36119 - In the Matter of Certain Cold Cathode Fluorescent Lamp (“CCFL”) Inverter Circuits and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing the Same; Notice of... States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., and the sale within the United States after importation of CCFL inverter circuits and products...

  9. Process for testing a xenon gas feed system of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  10. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    NASA Astrophysics Data System (ADS)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  11. Energetic ion production in high current hollow cathodes

    NASA Astrophysics Data System (ADS)

    Foster, John; Kovach, Yao; Arthur, Neil; Viges, Eric; Davis, Chris

    2015-09-01

    High power Hall and gridded ion thrusters are being considered as a propulsion option supporting human operations (cargo or tug) to Mars. These engines utilize hollow cathodes for plasma production and beam neutralization. It has now been well documented that these cathodes produce energetic ions when operated at high current densities. Such ions are observed with peak energies approaching 100 eV. Because these ions can drive erosion of the cathode assembly, they represent a credible failure mode. An understanding of energetic ion production and approaches to mitigation is therefore desired. Presented here are data documenting the presence of energetic ions for both a barium oxide and a lanthanum hexaboride cathode as measured using a retarding potential analyzer. Also presented are energetic ion mitigation approaches, which are designed to eliminate the ion energy transfer mechanism. NASA SBIR Contract NNX15CP62P.

  12. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  13. A Particle and Energy Balance Model of the Orificed Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.

    2002-01-01

    A particle and energy balance model of orificed hollow cathodes was developed to assist in cathode design. The model presented here is an ensemble of original work by the author and previous work by others. The processes in the orifice region are considered to be one of the primary drivers in determining cathode performance, since the current density was greatest in this volume (up to 1.6 x 10(exp 8) A/m2). The orifice model contains comparatively few free parameters, and its results are used to bound the free parameters for the insert model. Next, the insert region model is presented. The sensitivity of the results to the free parameters is assessed, and variation of the free parameters in the orifice dominates the calculated power consumption and plasma properties. The model predictions are compared to data from a low-current orificed hollow cathode. The predicted power consumption exceeds the experimental results. Estimates of the plasma properties in the insert region overlap Langmuir probe data, and the predicted orifice plasma suggests the presence of one or more double layers. Finally, the model is used to examine the operation of higher current cathodes.

  14. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  15. Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters

    NASA Technical Reports Server (NTRS)

    Rehn, L. A.

    1976-01-01

    An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.

  16. Excitation mechanism in a hollow cathode He-Kr ion laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazama, J.; Arai, T.; Goto, M.

    1995-12-31

    Pulsed laser operation in the afterglow of a positive column He-Kr discharge on the 469.4 nm (6s{sup 4}P{sub 5/2} {yields} 5p{sup 4}P{sub 5/2}) transition of Kr(II) was observed for the first time by Dana and Laure`s. It appears that the upper level of Kr(II) laser line is populated by the second kind collisions between He 2{sup 3}S metastable atoms and ground state Kr ions. CW oscillations on Kr(II) transitions have been obtained in a hollow cathode discharge. In this work, we have estimated the excitation mechanism for the upper state of 469.4 nm laser line from the measurements of themore » decay of endlight intensity in the hollow cathode He-Kr discharge.« less

  17. Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2000-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  18. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  19. On a focal point instability in (B3Πg - C3Πu)N2 optogalvanic circuit with hollow cathode

    NASA Astrophysics Data System (ADS)

    Gencheva, V.

    2016-03-01

    The (B3Πg, v = 0 - C3 Πu, v = 0) N2 dynamic optogalvanic signals have been registered illuminating an Al hollow cathode lamp with a pulsed N2 laser generating at the wavelength of 337.1nm. The dynamic optogalvanic signal (DOGS) at certain discharge current of 8 mA is a harmonic oscillator due to a focal point instability produced by our optogalvanic circuit. This damped harmonic oscillator can be described as a solution of linear second order homogeneous differential equation. The oscillation frequency is estimated from the registered DOGS using Fourier synthesis. The analytical description of the damped harmonic DOGS is obtained.

  20. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less

  1. Modification of W surfaces by exposure to hollow cathode plasmas

    NASA Astrophysics Data System (ADS)

    Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.

    2017-10-01

    In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.

  2. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  3. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  4. A 13000-hour test of a mercury hollow cathode

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    A mercury-fed hollow cathode was tested for 12,979 hours in a bell jar at SERT 2 neutralizer operating conditions. The net electron current drawn to a collector was 0.25 ampere at average collector voltages between 21.8 and 36.7 volts. The mercury flow rate was varied from 5.6 to 30.8 equivalent milliamperes to give stable operation at the desired electrode voltages and currents. Variations with time in the neutralizer discharge characteristics were observed and hypothesized to be related to changes in the cathode orifice dimensions and the availability of electron emissive material. A facility failure caused abnormal test conditions for the last 876 hours and led to the cathode heater failure which concluded the test.

  5. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  6. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    DOEpatents

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  7. Low-Current, Xenon Orificed Hollow Cathode Performance for In-Space Applications

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Gallimore, Alec D.

    2002-01-01

    An experimental investigation of the operating characteristics of 3.2-mm diameter orificed hollow cathodes was conducted to examine low current and low flow rate operation. Cathode power was minimized with an orifice aspect ratio of approximately one and the use of an enclosed keeper. Cathode flow rate requirements were proportional to orifice diameter and the inverse of the orifice length. The minimum power consumption in diode mode was 10-W, and the minimum mass flow rate required for spot-mode emission was approximately 0.08-mg/s. Cathode temperature profiles were obtained using an imaging radiometer and conduction was found to be the dominant heat transfer mechanism from the cathode tube. Orifice plate temperatures were found to be weakly dependent upon the flow rate and strongly dependent upon the current.

  8. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  9. Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.

  10. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  11. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  12. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.

    PubMed

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2014-07-01

    The optogalvanic (OG) effect has been observed in a Eu/Ne hollow cathode discharge lamp using pulsed laser irradiation. An OG spectrum is recorded in dye laser wavelength region 574–602 nm using a boxcar-averager. In total 41 atomic lines are observed. Of these, 38 lines are assigned to neon transitions. Two lines observed corresponding to wavelengths 576.519 and 601.815 nm are assigned to europium transitions; (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 6 7/2 ) and (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 8 9/2 ), respectively, and the remaining line at 582.475 nm could not be assigned. The effect of the discharge current on europium as well as neon OG signals is also studied. At moderate discharge current values, an extra positive peak is observed in neon OG signal for the transition (1s 5 →2p 2 ) at 588.189 nm, which is explained by Penning-ionization process using the quasi-resonant energy transfer interactions between excited neon and europium atoms lying in 2p 2 and D 10 9/2 states, respectively.

  13. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  14. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  15. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  16. Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Xing, Yi; Zeng, Xiaoqiao

    2016-08-31

    One of the formidable challenges facing aprotic lithium-oxygen (Li-O-2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt-coated hollow graphene nano cages as cathode in Li-O-2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g(-1), even maintain below 3.5 V when the current density increased to 500 mA g(-1). The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri-phase regions as active sites for efficient oxygen reduction, but alsomore » offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic-level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene-metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt-decorated graphene nanocage cathode exhibits enhanced electrochemical performances.« less

  17. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  18. SPECTROSOCPIC STUDIES OF IONIZATION IN A HOLLOW-CATHODE DISCHARGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, K.B.

    1961-08-01

    The influence of carrier gas, carrier gas pressure, cathode geometry, and discharge current on the ionization of metal atoms in a hollow-cathode discharge was studied in some detail. Most of these studies were raade with an iron hollowcathode discharge. A measure of ionization was obtained from the intensity ratio of a line of the second to a line of the first spectrum. In general, this ratio was found to increase with carrier gas pressure and discharge current. This ratio also increased with increasing cathode bcre diameter but decreased with increasing bcre length. This ratio for iron was greatly affected bymore » the use of different inert carrier gases. Of the five common inert gases used, xenon produced the largest value for this ratio and argon produced the smallest. The results of these studies indicated this may be a new method for distinguishing between lines emitted by the neutral atom and lines of the singly ionized atom. (auth)« less

  19. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  20. Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma

    NASA Astrophysics Data System (ADS)

    Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf

    2017-05-01

    Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.

  1. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    PubMed

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  2. Experimental characterization of hollow-cathode plasma sources at Frascati

    NASA Technical Reports Server (NTRS)

    Vannaroni, G.; Cosmovici, C. B.; Bonifazi, C.; Mccoy, J.

    1988-01-01

    An experimental characterization has been conducted for hollow cathodes applicable as plasma contactors on Space Shuttle-based experiments. The diagnostics tests were conducted in an 0.5 cu m vacuum chamber by means of Langmuir probes at various distances from the source. Two electron populations are noted, one in the 0.3-1 eV and the other in the 7-11 eV temperature range. Current developments in the design of plasma chambers incorporating magnetic field compensation are noted.

  3. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  4. Propagation of ion acoustic wave energy in the plume of a high-current LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Dodson, Christoper; Goebel, Dan M.; Wirz, Richard

    2017-08-01

    A frequency-averaged quasilinear model is derived and experimentally validated for the evolution of ion acoustic turbulence (IAT) along the centerline of a 100-A class, LaB6 hollow cathode. Probe-based diagnostics and a laser induced fluorescence system are employed to measure the properties of both the turbulence and the background plasma parameters as they vary spatially in the cathode plume. It is shown that for the three discharge currents investigated, 100 A, 130 A, and 160 A, the spatial growth of the total energy density of the IAT in the near field of the cathode plume is exponential and agrees quantitatively with the predicted growth rates from the quasilinear formulation. However, in the downstream region of the cathode plume, the growth of IAT energy saturates at a level that is commensurate with the Sagdeev limit. The experimental validation of the quasilinear model for IAT growth and its limitations are discussed in the context of numerical efforts to describe self-consistently the plasma processes in the hollow cathode plume.

  5. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  6. Characterization of the NEXT Hollow Cathode Inserts After Long-Duration Testing

    NASA Technical Reports Server (NTRS)

    Mackey, J.; Shastry, R.; Soulas, G.

    2017-01-01

    Hollow dispenser cathode inserts are a critical element of electric propulsion systems, and should therefore be well understood during long term operation to ensure reliable system performance. This work destructively investigated cathode inserts from the NEXT long-duration test which demonstrated 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The characterization methods used include scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Microscopy analysis has been performed on fractured surfaces, emission surfaces, and metallographically polished cross-sections of post-test inserts and unused inserts. Impregnate distribution, etch region thickness, impregnate chemical content, emission surface topography, and emission surface phase identification are the primary factors investigated.

  7. Gas temperature measurements in deuterium hollow cathode glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majstorović, Gordana, E-mail: gordana.majstorovic@va.mod.gov.rs; Šišović, Nikola, E-mail: nikolas@ff.bg.ac.rs

    2016-03-25

    We report results of optical emission spectroscopy measurements of rotational T{sub rot} and translational (gas) temperature of deuterium molecules in a hollow cathode (HC) glow discharge. The rotational temperature of excited electronic state of D{sub 2} was determined from the intensity distribution in the rotational structure of Q branch of the two Fulcher-α diagonal bands: (ν’=ν”=2) and (ν’=ν”=3). The population of excited energy levels, determined from relative line intensities, was used to derive radial rotational temperature distributions as well as gas temperature distribution of deuterium molecule.

  8. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry.

    PubMed

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB 6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10 -6 -10 -3 ) products. Boron (B), tantalum (Ta), and tungsten (W)-originating from the emitter, keeper, and orifice of the hollow cathode-are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  9. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  10. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  11. Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyan; Sun, Yan; Li, Chunsheng; Ci, Lijie

    2013-11-01

    In this paper, Cu3V2O8 hollow spheres have been successfully synthesized via a liquid precipitation method with colloidal carbon spheres as template followed by a subsequent heat treatment process. On the basis of XRD analysis, SEM observation, and TG-DSC analysis of the precursor and products, the formation mechanism of Cu3V2O8 hollow spheres was proposed. UV-vis diffuse reflectance spectra showed that the Cu3V2O8 hollow spheres exhibit strong absorption in a wide wavelength range from UV to visible light. The photocatalytic activity experiment indicated that the as-prepared Cu3V2O8 hollow spheres exhibited good photocatalytic activity in degradation of methyl orange (MO) under 150-W xenon arc lamp light irradiation. Furthermore, electrochemical measurements showed that the Cu3V2O8 hollow spheres exhibited high discharge capacity and excellent high-rate capability, indicating potential cathode candidates for primary lithium batteries used in long-term implantable cardiac defibrillators (ICDs).

  12. Steady and oscillatory plasma properties in the near-field plume of a hollow cathode

    NASA Astrophysics Data System (ADS)

    Zun, ZHANG; Kan, XIE; Jiting, OUYANG; Ning, GUO; Yu, QIN; Qimeng, XIA; Song, BAI; Xianming, WU; Zengjie, GU

    2018-02-01

    Hollow cathodes serve as electron sources in Hall thrusters, ion thrusters and other electric propulsion systems. One of the vital problems in their application is the cathode erosion. However, the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood. In this paper, both potential measurements and simulation analyses were performed to explain the formation of high-energy ions. A high-speed camera, a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode. The temporal structure, electron temperature, electron density, and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above. The experimental results show that there exists a potential hill (about 30 V) and also severe potential oscillations in the near-plume region. Moreover, a simple 2D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions. The simulation results show that the energy of ions gained from the static potential background is about 20 eV, but it could reach to 60 eV when the plasma oscillates.

  13. Experimental investigation of a throttlable 15 cm hollow cathode ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1972-01-01

    The use of dished high perveance grids on a 15 cm modified SERT 2 thruster is shown to facilitate throttled operation over a beam current range from 60 to 600 mA. Effects of increasing the radial component of the magnetic field in the main discharge chamber and decreasing the dimensions of the cathode discharge region are examined and found to degrade performance to the extent that primary electrons are forced in toward the center-line of the thruster. Studies of the baffle aperture region of two thrusters indicate that the electric potential gradient vector is perpendicular to the local magnetic field lines when the thruster is operating properly. The correlation between the shape of the ion beam current density and that of the ion density at the screen grid within the thruster is shown to be 94%. Additional experimental studies on maximum propellant utilization, plasma ion production cost, neutral density in the cathode discharge region, double ion production in hollow cathode thrusters and thermal flow meter performance are discussed.

  14. Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang

    2018-03-01

    Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.

  15. An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1991-01-01

    Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.

  16. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  17. Absolute continuum intensity diagnostics of a novel large coaxial gridded hollow cathode argon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu

    2016-08-15

    This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less

  18. A Review of Testing of Hollow Cathodes for the International Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Patterson, M. J.; Soulas, G. C.; Sarver-Verhey, T. R.

    2001-01-01

    Since October 2000, two plasma contactors have been providing charge control on the International Space Station (ISS). At the heart of each of the two plasma contactors is a hollow cathode assembly (HCA) that produces the contacting xenon plasma. The HCA is the result of 9 years of design and testing at the NASA Glenn Research Center. This paper summarizes HCA testing that has been performed to date. As of this time, one cathode has demonstrated approximately 28,000 hr of lifetime during constant, high current use. Another cathode, HCA.014. has demonstrated 42,000 ignitions before cathode heater failure. In addition to these cathodes, four cathodes. HCA.006, HCA.003, HCA.010, and HCA.013 have undergone cyclic testing to simulate the variable current demand expected on the ISS. HCA.006 accumulated 8,000 hr of life test operation prior to being voluntarily stopped for analysis before the flight units were fabricated. HCA.010 has accumulated 15,876 hr of life testing, and 4,424 ignitions during ignition testing. HCA.003 and HCA.0 13 have accumulated 12,415 and 18,823 hr of life testing respectively.

  19. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  20. A high pressure hollow cathode ionization source for in-situ detection of organic molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kanik, Isik

    2001-01-01

    We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDSj that can be utilized as an ionizer in a wide variety of mass analyzers. It is able to function under ambient Martian atmospheric conditions without modification.

  1. A survey of Kaufman thruster cathodes

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of the various cathodes which were developed and used in the Kaufman ion thruster. The electron bombardment type ion source is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given, including starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours.

  2. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  3. Ion acoustic turbulence in a 100-A LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  4. Correlation of Hollow Cathode Assembly and Plasma Contactor Data from Ground Testing and In-Space Operation on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kovalkeski, Scott D.; Patterson, Michael J.; Soulas, George C.

    2001-01-01

    Charge control on the International Space Station (ISS) is currently being provided by two plasma contactor units (PCUs). The plasma contactor includes a hollow cathode assembly (HCA), power processing unit and Xe gas feed system. The hollow cathode assemblies in use in the ISS plasma contactors were designed and fabricated at the NASA Glenn Research Center. Prequalification testing of development HCAs as well as acceptance testing of the flight HCAs is presented. Integration of the HCAs into the Boeing North America built PCU and acceptance testing of the PCU are summarized in this paper. Finally, data from the two on-orbit PCUs is presented.

  5. A survey of Kaufman thruster cathodes.

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of various cathodes which have been developed and used in the Kaufman ion thruster. The electron-bombardment type ion source used in the thruster is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given describing starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours and should offer further performance and life improvements.

  6. Neutralizer Hollow Cathode Simulations and Comparisons with Ground Test Data

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Snyder, John S.; Goebel, Dan M.; Katz, Ira; Herman, Daniel A.

    2009-01-01

    The fidelity of electric propulsion physics-based models depends largely on the validity of their predictions over a range of operating conditions and geometries. In general, increased complexity of the physics requires more extensive comparisons with laboratory data to identify the region(s) that lie outside the validity of the model assumptions and to quantify the uncertainties within its range of application. This paper presents numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes. The simulations were performed using a two-dimensional axisymmetric model that solves numerically a relatively extensive system of conservation laws for the partially ionized gas in these devices. A summary of the comparisons between simulation results and Langmuir probe measurements is provided. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NEXT. It is found that a likely cause of the observed keeper voltage drop is cathode orifice erosion. However, due to the small magnitude of this change, is approx. 0.5 V (less than 5% of the beginning-of-life value) over 10 khrs, and in light of the large uncertainties of the cathode material sputtering yield at low ion energies, other causes cannot be excluded. Preliminary simulations to understand transition to plume mode suggest that in the range of 3-5 sccm the existing 2-D model reproduces fairly well the rise of the keeper voltage in the NEXT neutralizer as observed in the laboratory. At lower flow rates the simulation produces oscillations in the keeper current and voltage that require prohibitively small time-steps to resolve with the existing algorithms.

  7. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  8. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.

    PubMed

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2015-02-01

    Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848  cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.

  9. Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture

    NASA Astrophysics Data System (ADS)

    Ahmed Rudwan, M.; Gabriel, S. B.

    2002-01-01

    Investigation of the discharge characteristics of the T6 hollow cathode operating on several inert Xenon is currently the propellant of choice for gridded ion thrusters. But in order to make deep space missions feasible, an increase in the Specific Impulse (SI) that these thrusters can achieve is necessary. One method of achieving this is to use a propellant with a lower atomic mass (e.g. argon), as the propellant exhaust velocity is inversely proportional to the square root of the propellant mass. However, the feasibility of operating the hollow cathode using these alternative propellants has to be demonstrated. Moreover, interest in decreasing the propellant cost in missions and ground testing (especially life tests) have led to the comprehensive discharge characterisation of several gases that will be presented in this paper. A Kr/Xe mixture in the naturally occurring ratio, for example, could offer a 15 times cost saving when compared to pure xenon and 2-3 times cost saving when compared to pure krypton. The T6 hollow cathode discharge behaviour as well as its initiation characteristics have been studied. The tests were carried out in diode configuration using a T6 hollow cathode with an enclosed keeper design employing xenon, krypton, argon and a Kr/Xe mix. The discharge initiation tests were undertaken with a view to investigate some of the factors thought to influence the starting potential such as mass flow rate and tip temperature. It was found that, for mass flow rates ranging from 0.2-1.1 mg/s and cathode tip temperatures ranging from 900-1300oC, the breakdown potential was less than 50V for argon, less than 25V for krypton, less than 21V for xenon and less than 35V for the Kr/Xe mix. The discharge initiation results were then compared to those obtained by Fearn et al. with a T5 cathode operating on mercury and with a T6 cathode utilising an open keeper design using xenon propellant. The xenon breakdown potentials were found to be lower than those

  10. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    PubMed

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  11. Experimental study of the electric field in a hollow cathode discharge in hydrogen: influence of sputtering

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, V.; Grützmacher, K.; Pérez, C.; de la Rosa, M. I.

    2017-11-01

    Doppler-free two photon optogalvanic spectroscopy was employed in extensive studies to measure the electric field strength in the cathode fall region of a hollow cathode discharge (HCD), operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The high quality measurements, based on an improved cathode design and laser spectroscopic set-up, reveal clear differences in the recorded spectra obtained for different cathode material (stainless steel and tungsten) at otherwise identical discharge conditions. It is well known, that the sputtering rate of tungsten is about four orders of magnitude less compared to stainless steel; hence the hydrogen plasma in front of the stainless steel cathode is much more contaminated by iron compared to tungsten. This study is focussed on analyzing the distortion of the spectra, i.e. the corresponding local electric field strength, depending on cathode material and laser power. We refer the more pronounced distortion of the spectra in case of a stainless steel cathode to the related large contamination of the hydrogen plasma due to atomic iron which is also expanding into the central discharge. Spectra recorded for different laser power, i.e. different spectral irradiance, allow verifying spectroscopic conditions, where the distortion of the spectra becomes quite negligible even for stainless steel cathode.

  12. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie

    2018-01-01

    Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.

  13. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  14. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  15. A new Cassegrain calibration lamp unit for the Blanco Telescope

    NASA Astrophysics Data System (ADS)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  16. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  17. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  18. A High-Pressure Hollow Cathode Discharge Source for Ion Mobility Spectrometers for In-Situ Detection of Organic Molecules on Mars

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Noren, C.; Kanik, I.

    2000-01-01

    We have designed, constructed and begun testing of a new high-pressure (5-10 Torr) hollow cathode discharge source (HCDS) that can be utilized as an ionizer for ion mobility spectrometers as well as in a wide variety of mass analyzers.

  19. Endurance testing of downstream cathodes on a low-power MPD thruster

    NASA Technical Reports Server (NTRS)

    Burkhart, J. A.; Rose, J. R.

    1974-01-01

    A low-power MPD thruster with downstream cathode was tested for endurance with a series of hollow cathode designs. Failure modes and failure mechanisms were identified. A new hollow cathode (with rod inserts) has emerged which shows promise for long life. The downstream positioning of the cathode was also changed from an on-axis location to an off-axis location. Data are presented for a 1332-hour life test of this new hollow cathode located at the new off-axis location. Xenon propellant was used.

  20. Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries.

    PubMed

    Duan, Lianfeng; Zhang, Xueyu; Yue, Kaiqiang; Wu, Yue; Zhuang, Jian; Lü, Wei

    2017-12-01

    The LiMn 2 O 4 hollow nanofibers with a porous structure have been synthesized by modified electrospinning techniques and subsequent thermal treatment. The precursors were electrospun directly onto the fluorine-doped tin oxide (FTO) glass. The heating rate and FTO as substrate play key roles on preparing porous hollow nanofiber. As cathode materials for lithium-ion batteries (LIBs), LiMn 2 O 4 hollow nanofibers showed the high specific capacity of 125.9 mAh/g at 0.1 C and a stable cycling performance, 105.2 mAh/g after 400 cycles. This unique structure could relieve the structure expansion effectively and provide more reaction sites as well as shorten the diffusion path for Li + for improving electrochemical performance for LIBs.

  1. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.

    PubMed

    Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung

    2009-03-07

    Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.

  2. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows

    NASA Astrophysics Data System (ADS)

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-01

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ˜4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ˜1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O--Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  3. Improved xenon lamp for solar simulators: A concept

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1974-01-01

    Short-arc xenon lamp proposes to produce more uniform solar output. With this lamp, both axes of sensors can be tested with same setup. Lamp includes cathode with conical tip and annular anode. Annulus is supported by angled projection to avoid interference with passage of light generated by arc.

  4. Process for Testing Compaction of a Swaged Heater for an Anode Sub-Assembly of a Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2003-01-01

    A process for testing compaction of a swaged heater for an anode sub-assembly of a Hollow Cathode Assembly (HCA), in which a test sample is cleaned, its mass measured before and after immersion in kerosene for 24 hours, and a compaction percentage calculated. A swaged heater is rejected if the compaction percentage exceeds 84%, plus or minus 4%.

  5. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  6. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  7. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixon, Sam; Charles, Christine; Dedrick, James; Gans, Timo; O'Connell, Deborah; Boswell, Rod

    2014-07-01

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H2 gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  8. Electrochemical system and method for electropolishing hollow metal bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    A method and system for electrochemically machining a hollow body of a metal or a metal alloy. An electrode is positioned within a hollow body including a metal or metal alloy, where the hollow body has a variable internal diameter. The hollow body is oriented vertically, with the electrode oriented vertically therein. The hollow body is at least partially filled with an aqueous, acidic electrolyte solution, the electrolyte solution being devoid of hydrofluoric acid and having a viscosity less than 15 cP. An electric current is passed between the hollow body and the electrode, where the electric current includes amore » plurality of anodic pulses and a plurality of cathodic pulses, and where the cathodic pulses are interposed between at least some of the anodic pulses.« less

  9. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source.

    PubMed

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  10. Max Tech and Beyond: Fluorescent Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicatedmore » that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5

  11. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  12. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  13. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    NASA Astrophysics Data System (ADS)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  14. Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Bo; Li, Qiufeng; Liu, Baodong; Zhang, Sen; Deng, Chao

    2016-04-01

    Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of biological systems to guide molecule self-assembling facilitates the construction of distinctive architectures with desirable physicochemical characteristics. Herein, we report a biochemistry-directed ``bottom-up'' approach to construct hollow porous microspheres of polyanion materials for sodium ion batteries. Two kinds of polyanions, i.e. Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2, are employed as cases in this study. The microalgae cell realizes the formation of a spherical ``bottom'' bio-precursor. Its tiny core is subjected to destruction and its tough shell tends to carbonize upon calcination, resulting in the hollow porous microspheres for the ``top'' product. The nanoscale crystals of the polyanion materials are tightly enwrapped by the highly-conductive framework in the hollow microsphere, resulting in the hierarchical nano-microstructure. The whole formation process is disclosed as a ``bottom-up'' mechanism. Moreover, the biochemistry-directed self-assembly process is confirmed to play a crucial role in the construction of the final architecture. Taking advantage of the well-defined hollow-microsphere architecture, the abundant interior voids and the highly-conductive framework, polyanion materials show favourable sodium-intercalation kinetics. Both materials are capable of high-rate long-term cycling. After five hundred cycles at 20 C and 10 C, Na3V2(PO4)3 and Na3.12Fe2.44(P2O7)2 retain 96.2% and 93.1% of the initial capacity, respectively. Therefore, the biochemistry-directed technique provides a low-cost, highly-efficient and widely applicable strategy to produce high-performance polyanion-based cathodes for sodium ion batteries.Biochemistry-directed synthesis of functional nanomaterials has attracted great interest in energy storage, catalysis and other applications. The unique ability of

  15. Comparative studies on dimming capabilities of retrofit LED lamps

    NASA Astrophysics Data System (ADS)

    Ionescu, Ciprian; Vasile, Alexandru; Codreanu, Norocel; Negroiu, Rodica

    2016-12-01

    These days many variants for lighting systems are available on the market, and new solutions are about to emerge. Most of the new lamps are offered in form to be retrofitted to existing sockets and luminaires. In this paper, are presented some systematically investigations on different lamps as LEDs, Compact Fluorescent Lamps (CFLs), tungsten, and new available Cold Cathode Fluorescent Lamps (CCFLs), regarding the light level, dimming performances and also the resulting flicker and power distortion performances. The light level was expressed by the illuminance level, measured for all lamps in the same conditions, at the same distance and on the same surface represented by the photometer probe.

  16. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  17. Assessments of Hollow Cathode Wear in the Xenon Ion Propulsion System (XIPs(c)) by Numerical Analyses and Wear Tests

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2008-01-01

    The standard approach presently followed by NASA to qualify electric propulsion for the required mission throughput has been based largely on life tests, which can be costly and time consuming. Revised electric propulsion lifequalification approaches are being formulated that combine analytical and/or computational methods with (shorter-duration) wear tests. As a model case, a wear test is being performed at JPL to assess the lifetime of the discharge hollow cathode in the Xenon Ion Propulsion System (XIPS(c)), a 25-cm ion engine developed by L-3 Communications Electron Technologies, Inc. for commercial applications. Wear and plasma data accumulated throughout this life-assessment program are being used to validate the existing 2-D hollow cathode code OrCa2D. We find that the OrCa2D steady-state solution predicts very well the time-averaged plasma data and the keeper voltage after 5500 hrs of operation in high-power mode. When the wave motion that occurs naturally in these devices is accounted for, based on an estimate of the maximum wave amplitude, the molybdenum-keeper erosion profile observed in the XIPS(c) discharge cathode is also reproduced within a factor of two of the observation. When the same model is applied to predict the erosion of a tantalum keeper we find that erosion is reduced by more than two orders of magnitude compared to the molybdenum keeper due the significantly lower sputtering yield of tantalum. A tantalum keeper would therefore allow keeper lifetimes that greatly exceed the present requirements for deep-space robotic missions considered by NASA. Moreover, such large reduction of the erosion renders the largest uncertainties in the models, which are associated with the wave amplitude estimates and the electron transport model, negligible.

  18. Advanced Cathodes for Next Generation Electric Propulsion Technology

    DTIC Science & Technology

    2008-03-01

    learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in

  19. Improving the Ar I and II branching ratio calibration method: Monte Carlo simulations of effects from photon scattering/reflecting in hollow cathodes

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Den Hartog, E. A.

    2018-03-01

    The Ar I and II branching ratio calibration method is discussed with the goal of improving the technique. This method of establishing a relative radiometric calibration is important in ongoing research to improve atomic transition probabilities for quantitative spectroscopy in astrophysics and other fields. Specific suggestions are presented along with Monte Carlo simulations of wavelength dependent effects from scattering/reflecting of photons in a hollow cathode.

  20. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung; Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the workingmore » gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.« less

  1. Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Delahoy, A. E.; Guo, S. Y.

    2005-07-01

    Highly transparent and conductive In2O3 and ZnO films containing different doping elements such as Ti, Mo, Zr, Nb, Ta, W (for In2O3), and B (for ZnO) have been prepared by reactive-environment, hollow cathode sputtering (RE-HCS). The use of Nb and W as effective dopants is reported for the first time. Metallic targets were used exclusively, and the dopant concentration was easily controlled using a second sputtering power supply. As a result of the cathode and gas flow geometry, the sputtering is conducted in metal mode, and the target and doping materials are free from oxidation during the deposition process. Film resistivities achieved with the various dopants are reported. For In2O3:Mo (IMO), a resistivity of 1.6×10-4Ω cm and a mobility of 80 cm2/Vs were achieved for Mo concentrations in the range 0.5-5.0% as measured by inductively coupled plasma (ICP). X-ray photoelectron spectroscopy (XPS) analysis indicates Mo with a +6 valence state and that the film is stoichiometric. For In2O3:Ti (ITiO), a superior optical transmission is achieved relative to IMO, while carrier mobility and conductivity were similar. Remarkably, semitransparent films of InN:O having sheet resistances of 9.5 Ω/square have also been prepared. ZnO:B films deposited by RE-HCS exhibit superior optical properties relative to ZnO:Al, and when applied as a window layer to CIGS solar cells yield higher quantum efficiencies.

  2. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  3. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. SERT 2 hollow cathode multiple restarts in space

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Finke, R. C.

    1973-01-01

    Future missions, both station keeping and primary electric propulsion, will require multiple thrust restarts after periods of inactivity from a few hours to over one year. Although not a part of the original SERT 2 (Space Electric Rocket Test) flight objective, the opportunity to demonstrate multiple cathode restarts in space became available following completion of thruster running. Both neutralizer and main cathodes of each flight thruster were restarted repeatedly following storage periods up to 490 days. No deterioration of cathode heaters was noted nor was any change required in starting voltages or currents.

  5. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    PubMed

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  6. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    PubMed Central

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al2O3 were constructed and exhibited reasonable durability. PMID:27877401

  7. Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30,000 hr life test

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita

    2005-01-01

    Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.

  8. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    PubMed Central

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  9. Ignition and extinction phenomena in helium micro hollow cathode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atomsmore » density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.« less

  10. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  11. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  12. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    PubMed

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  13. Baffle aperture design study of hollow cathode equipped ion thrusters. M.S. Thesis Technical Report, 1 Dec. 1979 - 1 Oct. 1980

    NASA Technical Reports Server (NTRS)

    Brophy, J. R., Jr.; Wilbur, P. J.

    1980-01-01

    A simple theoretical model which can be used as an aid in the design of the baffle aperture region of a hollow cathode equipped ion thruster was developed. An analysis of the ion and electron currents in both the main and cathode discharge chambers is presented. From this analysis a model of current flow through the aperture, which is required as an input to the design model, was developed. This model was verified experimentally. The dominant force driving electrons through the aperture was the force due to the electrical potential gradient. The diffusion process was modeled according to the Bolm diffusion theory. A number of simplifications were made to limit the amount of detailed plasma information required as input to the model to facilitate the use of the model in thruster design. This simplified model gave remarkably consistant results with experimental results obtained with a given thruster geometry over substantial changes in operating conditions. The model was uncertain to about a factor of two for different thruster cathode region geometries. The design usefulness was limited by this factor of two uncertainty and by the accuracy to which the plasma parameters required as inputs to the model were specified.

  14. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries.

    PubMed

    Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie

    2017-09-20

    Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.

  15. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  16. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  17. Excited argon 1s5 production in micro-hollow cathode discharges for use as potential rare gas laser sources

    NASA Astrophysics Data System (ADS)

    Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.

  18. Fundamental studies on a heat driven lamp

    NASA Technical Reports Server (NTRS)

    Lawless, J. L.

    1985-01-01

    A detailed theoretical study of a heat-driven lamp has been performed. This lamp uses a plasma produced in a thermionic diode. The light is produced by the resonance transition of cesium. An important result of this study is that up to 30% of the input heat is predicted to be converted to light in this device. This is a major improvement over ordinary thermionic energy converters in which only approx. 1% is converted to resonance radiation. Efficiencies and optimum inter-electrode spacings have been found as a function of cathode temperature and the radiative escape factor. The theory developed explains the operating limits of the device.

  19. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Astrophysics Data System (ADS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-07-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  20. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-01-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  1. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  2. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  3. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  4. Trial Burn Plan for a Transportable Incineration System (TIS) at the Savanna Army Depot Activity (SADA) Washout Lagoon Area

    DTIC Science & Technology

    1991-11-27

    the methylene chloride/methanol mix. All test train components will be composited and explosives will be analyzed and reported on a total test train...check ute volume metering system nicked. dented. or cored . they Shall be note the barometric preure. nd the ulibration values ax the field test site...antimony, arsenic, cadmium, lead, selenium, thallium hollow cathode lamps (HCLs) or electrodeless discharge lamps (EDLs). [Same as EPA SW-846 Methods 7041

  5. Design and construction of a home-made and cheaper argon arc lamp

    NASA Astrophysics Data System (ADS)

    Sabaeian, Mohammad; Nazari-Tarkarani, Zeinab; Ebrahimzadeh, Azadeh

    2018-05-01

    The authors report on the design and construction of an argon arc lamp which provides noticeably a cheaper instrument for laser and medical applications. Cesium-doped tungsten and pure tungsten rods were used, respectively, for the lamp cathode and anode. To seal the glassy tube, a 50-50 Fe-Ni alloy was successfully used as a medium to attach the tungsten electrodes to the borosilicate glass tube. Starting voltage of the lamp versus the gas pressure, operation voltage-current diagram at various gas pressures, and lamp spectrum in the various pressures were measured. A comparison was made with krypton arc lamp. The lamp operation was satisfactory without any crack or fracture during lightening operation. The results showed that the lamp-lightening threshold voltage depends linearly on the pressure and arc length in such a way that there is an increase in the voltage by raising these two parameters. We have also observed that by increasing the argon pressure, there is a shifting in emission spectrum from the ultraviolet to the visible region. Comparison with krypton arc lamp indicated that argon lamp needs a higher threshold lightening voltage.

  6. 10 CFR Appendix Q1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Fluorescent Lamp Ballasts Q1 Appendix Q1 to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY... of Fluorescent Lamp Ballasts 1. Definitions 1.1. AC control signal means an alternating current (AC... functions. 1.3. Cathode heating refers to power delivered to the lamp by the ballast for the purpose of...

  7. Laser induced fluorescence spectroscopy used for the investigation of Landé gJ- factors of praseodymium energy levels

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-06-01

    Laser induced fluorescence (LIF) spectroscopy was used for the investigation of structures of 52 spectral lines of Pr I in the wavelength range 561.3 - 613.9 nm. As a source of free Pr atoms a hollow cathode discharge lamp was used. We monitored selected LIF signals appearing when the laser beam excites the hollow cathode plasma. LIF spectra were recorded in the presence of a magnetic field of about 800 G produced by a permanent magnet for two linear polarizations of the exciting laser beam. We have determined for the first time Landé gJ- factors for 71 levels of neutral Pr and reinvestigated data for several other levels.

  8. Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhu, Tianjiao; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan

    2017-11-01

    Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g-1 at 28 mA g-1 with coulombic efficiency of 80%. Even at high current density of 560 mA g-1, the sample also shows a stable discharge capacity of 215 mAh g-1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics. [Figure not available: see fulltext.

  9. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Farnell, Casey C.; Williams, John D.

    2014-08-01

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10-5 Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  10. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Gunnarsson, Rickard; Pilch, Iris; Boyd, Robert D.; Brenning, Nils; Helmersson, Ulf

    2016-07-01

    Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure affects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 ≤ p ≤ 143 Pa), the nanoparticle size decreases with increasing gas flow; however, at high pressure (p = 215 Pa), the trend is reversed. For low pressures and high gas flows, it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic, and cauliflower can be obtained.

  11. Local Neutral Density and Plasma Parameter Measurements in a Hollow Cathode Plume

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; MiKellides, Joannis; Watkins, Ron M.

    2006-01-01

    In order to understand the cathode and keeper wear observed during the Extended Life Test (ELT) of the DS1 flight spare NSTAR thruster and provide benchmarking data for a 2D cathode/cathode-plume model, a basic understanding of the plasma and neutral gas parameters in the cathode orifice and keeper region of the cathode plume must be obtained. The JPL cathode facility is instrumented with an array of Langmuir probe diagnostics along with an optical diagnostic to measure line intensity of xenon neutrals. In order to make direct comparisons with the present model, a flat plate anode arrangement was installed for these tests. Neutral density is deduced from the scanning probe data of the plasma parameters and the measured xenon line intensity in the optical regime. The Langmuir probes are scanned both axially, out to 7.0 cm downstream of the keeper, and radially to obtain 2D profile of the plasma parameters. The optical fiber is housed in a collimating stainless steel tube, and is scanned to view across the cathode plume along cuts in front of the keeper with a resolution of 1.5 mm. The radial intensities are unfolded using the Abel inversion technique that produces radial profiles of local neutral density. In this paper, detailed measurements of the plasma parameters and the local neutral densities will be presented in the cathode/keeper plume region for a 1.5 cm diameter NEXIS cathode at 25A of discharge current at several different strengths of applied magnetic field.

  12. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  13. Rapid start of oscillations in a magnetron with a "transparent" cathode.

    PubMed

    Fuks, Mikhail; Schamiloglu, Edl

    2005-11-11

    We report on the improvement of conditions for the rapid start of oscillations in magnetrons by increasing the amplitude of the operating wave that is responsible for the capture of electrons into spokes. This amplitude increase is achieved by using a hollow cathode with longitudinal strips removed, thereby making the cathode transparent to the wave electric field with azimuthal polarization. In addition, an optimal choice of the number and position of cathode strips provide favorable prebunching of the electron flow over the cathode for fast excitation of the operating mode. Particle-in-cell simulations of the A6 magnetron demonstrate these advantages of this novel cathode.

  14. Charging Characteristics of an Insulating Hollow Cylinder in Vacuum

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu

    This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.

  15. Hollow Cathode Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using Pentachlorodisilane.

    PubMed

    Meng, Xin; Kim, Harrison Sejoon; Lucero, Antonio T; Hwang, Su Min; Lee, Joy S; Byun, Young-Chul; Kim, Jiyoung; Hwang, Byung Keun; Zhou, Xiaobing; Young, Jeanette; Telgenhoff, Michael

    2018-04-25

    In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSi 2 Cl 5 ), was investigated for the growth of silicon nitride (SiN x ) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (Si 2 Cl 6 ), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN x films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN x films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN x using PCDS on the surface terminated with amine groups (-NH 2 and -NH-) are proposed. The PEALD SiN x films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm 2 at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.

  16. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  17. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  18. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  19. Hollow-cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  20. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less

  1. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  2. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.

    PubMed

    Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan; Seh, Zhi Wei; Yao, Hongbin; Cui, Yi

    2013-01-01

    Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer-sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), were coated, respectively, onto monodisperse hollow sulfur nanopsheres through a facile, versatile, and scalable polymerization process. The sulfur cathodes made from these well-defined sulfur nanoparticles act as ideal platforms to study and compare how coating thickness, chemical bonding, and the conductivity of the polymers affected the sulfur cathode performances from both experimental observations and theoretical simulations. We found that the capability of these three polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI. High specific capacities and excellent cycle life were demonstrated for sulfur cathodes made from these conductive polymer-coated hollow sulfur nanospheres.

  3. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less

  4. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    PubMed

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  5. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pulmonary Effects of Pyrotechnically Disseminated Titanium Dioxide Smoke in Rats

    DTIC Science & Technology

    2007-05-01

    Series Perkin Elmer AA (Boston, MA) with a nitrous oxide/acetylene burner head. Hollow cathode lamp elements specific for each metal were used. The primary...supematant was removed from the cell pellet . The pellet was resuspended in 1 mL of 50% bovine serum albumin and total cell counts were taken on a ZBI

  7. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  8. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  9. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  10. The Experimental Study of Novel Pseudospark Hollow Cathode Plasma Electron Gun

    NASA Astrophysics Data System (ADS)

    Gu, Xiaowei; Meng, Lin; Sun, Yiqin; Yu, Xinhua

    2008-11-01

    The high-power microwave devices with plasma-filled have unique properties. One of the major problems associated with plasma-filled microwave sources is that ions from the plasma drift toward the gun regions of the tube. This bombardment is particularly dangerous for the gun, where high-energy ion impacts can damage the cathode surface and degrade its electron emission capabilities. One of the techniques investigated to mitigate this issue is to replace the material cathode with plasma cathode. Now, we study the novel electron gun (E-gun) that can be suitable for high power microwave device applications, adopting two forms of discharge channel, 1: a single hole channel, the structure can produce a solid electron beam; 2: porous holes channel, the structure can generate multiple electronic injection which is similar to the annular electron beam.

  11. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  12. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  13. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar

    2009-10-15

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed tomore » become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.« less

  14. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  15. Casting copper to tungsten for high-power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1974-01-01

    Voids forming at interface when copper is cast onto tungsten can be eliminated by adding wetting agent during casting process. Small amount of copper and nickel are cast onto thoriated tungsten insert, insert is recast with more copper to form electrode. Good thermal conductance results in long-lived cathode.

  16. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  17. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{supmore » 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.« less

  18. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Mizutani, K.; Iwakawa, A.

    2017-06-01

    Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called "swirl acceleration," in which F ≅JdB Ra /√{2 }, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  19. The fate and management of high mercury-containing lamps from high technology industry.

    PubMed

    Chang, T C; You, S J; Yu, B S; Kong, H W

    2007-03-22

    This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.

  20. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    PubMed

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  1. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    DOE PAGES

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; ...

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) withmore » highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li 2S 2/Li 2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.« less

  2. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  3. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Requirements for head lamps, auxiliary driving lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective...

  4. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Requirements for head lamps, auxiliary driving lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective...

  5. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Requirements for head lamps, auxiliary driving lamps and front fog lamps. 393.24 Section 393.24 Transportation Other Regulations Relating to... MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective...

  6. Verification of high efficient broad beam cold cathode ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less

  7. Experimental radiative lifetimes, branching fractions, and oscillator strengths of some levels in Tm III

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Wang, Xinghao; Li, Qiu; Gong, Yimin; Dai, Zhenwen

    2018-06-01

    Natural radiative lifetimes for five even-parity levels of Tm III were measured by time-resolved laser-induced fluorescence method. The branching fraction measurements were performed based on the emission spectra of a hollow cathode lamp. By combining the measured branching fractions and the lifetime values reported in this work and in literature, experimental transition probabilities and oscillator strengths for 11 transitions were derived for the first time.

  8. A hollow cathode neutralizer for a 30-cm diameter bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.

    1973-01-01

    Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.

  9. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.

    2006-01-01

    The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.

  10. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    PubMed

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  11. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this paragraph. (b) Auxiliary driving lamps and front fog lamps. Commercial motor vehicles may be... Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective...

  12. Zeeman effect of weak La I lines investigated by the use of optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-03-01

    New Landé- gJ factors of 35 energy levels of La I, found from investigations of 40 spectral lines in the wavelength range 562.959÷609.537 nm, were determined. As a source of free La atoms a hollow cathode discharge lamp was used. We monitored the signal of the optogalvanic effect appearing when a laser beam is passing through the hollow cathode. Spectra were recorded in the presence of a magnetic field of about 800 G produced by a permanent magnet, for two linear polarizations of the exciting laser light. Optogalvanic spectroscopy is a very sensitive method, so we were able to observe the Zeeman effect of very weak atomic lines. In this way we have determined for the first time the Landé-gJ factors for 35 recently found levels of neutral La. The Landé gJ- factors for several other levels were reinvestigated.

  13. Isotope Analysis of Uranium by Optical Spectroscopy; ANALYSE ISOTOPIQUE DE L'URANIUM PAR SPECTROSCOPIE OPTIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenkorn, S.

    1958-06-01

    Isotopic analysis of urarium is made by means of hollow cathode lamp and a Fabry-Perot photoelectric spectrometer. The line U/sup 235/, 5027 A is used. This method allows a deterraination of the isotopic concentrations in U /sup 235/ down to 0.1%. The relative precision is about 2% for amounts of U/sup 235/ over 1%. For weaker amounts this line allows relative measurements of better precision when using standard mixtures. (auth)

  14. Pulse ignition characterization of mercury ion thruster hollow cathode using an improved pulse ignitor

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Gruber, R. P.

    1978-01-01

    An investigation of the high voltage pulse ignition characteristics of the 8 cm mercury ion thruster neutralizer cathode identified a low rate of voltage rise and long pulse duration as desirable factors for reliable cathode starting. Cathode starting breakdown voltages were measured over a range of mercury flow rates and tip heater powers for pulses with five different rates of voltage rise. Breakdown voltage requirements for the fastest rising pulse (2.5 to 3.0 kV/micro sec) were substantially higher (2 kV or more) than for the slowest rising pulse (0.3 to 0.5 kV/micro sec) for the same starting conditions. Also described is an improved, low impedance pulse ignitor circuit which reduces power losses and eliminates problems with control and packaging associated with earlier designs.

  15. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. Whenmore » the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)« less

  16. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Saloum, S.; Hamadeh, H.

    2007-07-01

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 °C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups.

  17. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes.

    PubMed

    Wang, Xinran; Bi, Xuanxuan; Wang, Shaona; Zhang, Yi; Du, Hao; Lu, Jun

    2018-05-16

    The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.

  18. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis.

    PubMed

    Wu, Dandan; Kang, Jiwen; Li, Baosheng; Sun, Dianxing

    2018-05-01

    The current methods for detecting Mycobacterium tuberculosis (Mtb) are not clinically optimal. Standard culture methods (SCMs) are slow, costly, or unreliable, and loop-mediated isothermal amplification (LAMP) cannot differentiate live Mtb. This study compared reverse transcription (RT)-LAMP, LAMP, and an SCM for detecting Mtb. A first experiment tested the sensitivity and specificity of primers for 9 species of Mycobacterium (H37Rv, M. intracellulare, M. marinum, M. kansasii, M. avium, M. flavescens, M. smegmatis, M. fortuitum, and M. chelonae); and 3 non-Mycobacterium species (Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae). A second experiment tested sputum specimens for the presence of Mtb, from 100 patients with tuberculosis (clinical) and 22 from patients without tuberculosis (control), using Roche solid culture (SCM), LAMP, and RT-LAMP. In the clinical samples. The rates of positivity for Mtb of the SCM, LAMP, and RT-LAMP methods were 88%, 92%, and 100%, respectively. The difference in detection rate was significant between RT-LAMP and SCM, but RT-LAMP and LAMP were comparable. In the control group, the detection rates were nil for all three methods. The specificities of the methods were similar. The sensitivity of RT-LAMP was ~10-fold higher than that of LAMP for detecting Mtb. Unlike LAMP, RT-LAMP could identify viable bacteria, and was able to detect a single copy of Mtb. Among SCM, LAMP, and RT-LAMP, the latter is the most suitable for wide use in the lower-level hospitals and clinics of China for detecting Mtb in sputum samples. © 2017 Wiley Periodicals, Inc.

  19. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  20. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  1. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  2. Interpretation of digital chest radiographs: comparison of light emitting diode versus cold cathode fluorescent lamp backlit monitors.

    PubMed

    Lim, Hyun-ju; Chung, Myung Jin; Lee, Geewon; Yie, Miyeon; Shin, Kyung Eun; Moon, Jung Won; Lee, Kyung Soo

    2013-01-01

    To compare the diagnostic performance of light emitting diode (LED) backlight monitors and cold cathode fluorescent lamp (CCFL) monitors for the interpretation of digital chest radiographs. We selected 130 chest radiographs from health screening patients. The soft copy image data were randomly sorted and displayed on a 3.5 M LED (2560 × 1440 pixels) monitor and a 3 M CCFL (2048 × 1536 pixels) monitor. Eight radiologists rated their confidence in detecting nodules and abnormal interstitial lung markings (ILD). Low dose chest CT images were used as a reference standard. The performance of the monitor systems was assessed by analyzing 2080 observations and comparing them by multi-reader, multi-case receiver operating characteristic analysis. The observers reported visual fatigue and a sense of heat. Radiant heat and brightness of the monitors were measured. Measured brightness was 291 cd/m(2) for the LED and 354 cd/m(2) for the CCFL monitor. Area under curves for nodule detection were 0.721 ± 0.072 and 0.764 ± 0.098 for LED and CCFL (p = 0.173), whereas those for ILD were 0.871 ± 0.073 and 0.844 ± 0.068 (p = 0.145), respectively. There were no significant differences in interpretation time (p = 0.446) or fatigue score (p = 0.102) between the two monitors. Sense of heat was lower for the LED monitor (p = 0.024). The temperature elevation was 6.7℃ for LED and 12.4℃ for the CCFL monitor. Although the LED monitor had lower maximum brightness compared with the CCFL monitor, soft copy reading of the digital chest radiographs on LED and CCFL showed no difference in terms of diagnostic performance. In addition, LED emitted less heat.

  3. International Space Station Cathode Life Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Sarver-Verhey, Timothy R.

    1997-01-01

    Four hollow cathode assembly (HCA) life tests were initiated at operating conditions simulating on-orbit operation of the International Space Station plasma contactor. The objective of these tests is to demonstrate the mission-required 18,000 hour lifetime with high-fidelity development model HCAS. HCAs are operated with a continuous 6 sccm xenon flow rate and 3 A anode current. On-orbit emission current requirements are simulated with a square waveform consisting of 50 minutes at a 2.5 A emission current and 40 minutes with no emission current. One HCA test was terminated after approximately 8,000 hours so that a destructive analysis could be performed. The analysis revealed no life-limiting processes and the ultimate lifetime was projected to be greater than the mission requirement. Testing continues for the remaining three HCAs which have accumulated approximately 8,000 hours, 10,000 hours, and 11,000 hours, respectively, as of June 1997. Anode and bias voltages, strong indicators of cathode electron emitter condition, are within acceptable ranges and have exhibited no life- or performance-limiting phenomena to date.

  4. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    PubMed

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Candelabra base incandescent lamps and intermediate base incandescent lamps. 429.40 Section 429.40 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for...

  6. Driving lamps by induction

    NASA Technical Reports Server (NTRS)

    Laue, H. H.; Clough, L. G. (Inventor)

    1973-01-01

    An electrodeless lamp circuit with a coil surrounding a krypton lamp is driven by an RF input source. A coil surrounding a mercury lamp is tapped across the connection of the input central to the krypton-lamp coil. Each coil is connected in parallel with separate capacitors which form resonant circuits at the input frequency.

  7. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  8. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  9. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  10. 10 CFR 429.27 - General service fluorescent lamps, general service incandescent lamps, and incandescent reflector...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false General service fluorescent lamps, general service incandescent lamps, and incandescent reflector lamps. 429.27 Section 429.27 Energy DEPARTMENT OF ENERGY ENERGY... EQUIPMENT Certification § 429.27 General service fluorescent lamps, general service incandescent lamps, and...

  11. Lithiation-Assisted Strengthening Effect and Reactive Flow in Bulk and Nano-Confined Sulfur Cathodes of Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Mingchao; Yu, Jingui; Lin, Shangchao

    Sulfur (S) serves as a promising cathode material in Li-ion batteries owing to its abundance on earth, low cost and high theoretical specific capacity 1670 mAhg-1, which is 3-5 times higher than that of current commercial Li-ion batteries. Nowadays, the most popular strategies of using S cathode are based on producing nanostructured carbon matrices (i.e. hollow carbon nanospheres and nanofibers) to sustain S cathode loading. However, the possible stress evolution and mechanical degradation of the confined S cathode in those carbon matrices have never been explored before. In addition, the associated structural and conductivity changes of the confined S cathode during the lithiation/delithiation process plays a significant role in the battery performance. With the above in mind, here we conduct reactive molecular dynamics simulations to investigate the microstructural and stress evolution of the confined S cathode during lithiation/delithiation process. Simulation results indicate an unusual stress relaxation state in LixS compounds at lower Li concentrations (x >0.7). The strength of corresponding Li-S compounds also increases with respect to the Li concentration.

  12. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  13. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the driver's will and be steady-burning. The headlamps shall be marked in accordance with FMVSS No... this paragraph. (b) Auxiliary driving lamps and front fog lamps. Commercial motor vehicles may be... aim of the lighting device from being disturbed while the vehicle is operating on public roads. (d...

  14. Discharge lamp technologies

    NASA Technical Reports Server (NTRS)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  15. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emittermore » effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.« less

  16. Dimming of metal halide lamps

    NASA Astrophysics Data System (ADS)

    Schurer, Kees

    1994-03-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  17. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  18. Efficient sulfur host based on NiCo2O4 hollow microtubes for advanced Li-S batteries

    NASA Astrophysics Data System (ADS)

    Iqbal, Azhar; Ali Ghazi, Zahid; Muqsit Khattak, Abdul; Ahmad, Aziz

    2017-12-01

    High energy density and cost effectiveness make lithium-sulfur battery a promising candidate for next-generation electrochemical energy storage technology. Here, we have synthesized a highly efficient sulfur host namely NiCo2O4 hollow microtubes/sulfur composite (NiCo2O4/S). The hollow interior cavity providing structural integrity while sufficient self-functionalized surfaces of NiCo2O4 chemically bind polysulfides to prevent their dissolution in the organic electrolyte. When used in lithium-sulfur batteries, the synthesized NiCo2O4/S cathode delivers high specific capacity (1274 mAh g-1 at 0.2 C), long cycling performance at 0.5 C, and good rate capability at high current rates.

  19. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  20. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  1. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  2. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  3. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and...

  4. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and...

  5. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and...

  6. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Lamps operable, prohibition of obstructions of lamps and reflectors. 393.9 Section 393.9 Transportation Other Regulations Relating to Transportation... SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and...

  7. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  8. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  9. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  10. Physics of Incandescent Lamp Burnout

    ERIC Educational Resources Information Center

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called "lamps" in what follows) burn out after a lifetime that depends mostly on the temperature…

  11. Cluster generator

    DOEpatents

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  12. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra base...

  13. 10 CFR 429.40 - Candelabra base incandescent lamps and intermediate base incandescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Candelabra base incandescent lamps and intermediate base....40 Candelabra base incandescent lamps and intermediate base incandescent lamps. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to candelabra base...

  14. 49 CFR 393.9 - Lamps operable, prohibition of obstructions of lamps and reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER... Electrical Wiring § 393.9 Lamps operable, prohibition of obstructions of lamps and reflectors. (a) All lamps... any part of the load, or its covering by dirt, or other added vehicle or work equipment, or otherwise...

  15. Physics of Incandescent Lamp Burnout

    NASA Astrophysics Data System (ADS)

    Gluck, Paul; King, John

    2008-01-01

    Incandescent lamps with tungsten filaments have been in use for about a century while being gradually replaced by fluorescent lamps; in another generation both will quite probably be largely replaced by light-emitting diodes. Incandescent lamps (simply called lamps in what follows) burn out after a lifetime that depends mostly on the temperature of the filament and hence the applied voltage. A full-term project (about 100 hours) on lamp burnout was carried out by two students in 1965 and has been briefly described. Many aspects of the physics of lamps have been dealt with in articles that have appeared in this journal, in the American Journal of Physics, and in Physics Education.2,3

  16. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-01-01

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  17. Rapid flash lamp

    DOEpatents

    Gavenonis, Thomas L.; Hewitt, William H.

    1989-06-06

    A method and apparatus for providing low peak time and pulse width actinic energy from a lamp by varying the input energy of a capacitive ignition circuit having relatively high voltage to the lamp. The lamp comprises a pair of electrodes disposed within a light transparent envelope in which a combustible and an oxidizing gas reaction combination is located. The combustible is preferably shredded zirconium which is in contact with and provides an electrical discharge path between the electrodes. The gas is preferably pressurized oxygen.

  18. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light outputmore » compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably

  19. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    NASA Astrophysics Data System (ADS)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego; Stancari, Giulio

    2017-07-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  20. Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Capece, Angela M.

    2015-05-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.

  1. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    PubMed

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  2. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-10-01

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  3. Evaluation of GOES encoder lamps

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Helmold, N.

    1983-01-01

    Aging characteristics and life expectancies of flight quality, tungsten filament, encoder lamps are similar to those of 'commercial' grade gas filled lamps of similar construction, filament material and filament temperature. The aging and final failure by filament burnout are caused by single crystal growth over large portions of the filament with the concomitant development of facets and notches resulting in reduction of cross section and mechanical weakening of the filament. The life expectancy of presently produced lamps is about one year at their nominal operating voltage of five volts dc. At 4.5 volts, it is about two years. These life times are considerably shorter, and the degradation rates of lamp current and light flux are considerably higher, than were observed in the laboratory and in orbit on lamps of the same type manufactured more than a decade ago. It is speculated that the filaments of these earlier lamps contained a crystallization retarding dopant, possibly thorium oxide. To obtain the desired life expectancy of or = to four years in present lamps, operating voltages of or = to four volts dc would be required.

  4. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp, an auxiliary... SAE J845—Optical Warning Devices for Authorized Emergency, Maintenance and Service Vehicles, May 1997... Authorized Emergency, Maintenance and Service Vehicles, January 2005. Amber gaseous discharge warning lamps...

  5. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp, an auxiliary... SAE J845—Optical Warning Devices for Authorized Emergency, Maintenance and Service Vehicles, May 1997... Authorized Emergency, Maintenance and Service Vehicles, January 2005. Amber gaseous discharge warning lamps...

  6. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp, an auxiliary... SAE J845—Optical Warning Devices for Authorized Emergency, Maintenance and Service Vehicles, May 1997... Authorized Emergency, Maintenance and Service Vehicles, January 2005. Amber gaseous discharge warning lamps...

  7. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp, an auxiliary... SAE J845—Optical Warning Devices for Authorized Emergency, Maintenance and Service Vehicles, May 1997... Authorized Emergency, Maintenance and Service Vehicles, January 2005. Amber gaseous discharge warning lamps...

  8. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... booms, backhoes, and winches) prevents compliance with this paragraph by any required lamp, an auxiliary... SAE J845—Optical Warning Devices for Authorized Emergency, Maintenance and Service Vehicles, May 1997... Authorized Emergency, Maintenance and Service Vehicles, January 2005. Amber gaseous discharge warning lamps...

  9. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be maintained at not less than 85 percent of the prescribed rating for the lamp. ...

  10. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lamp voltage. 234.221 Section 234.221..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be maintained at not less than 85 percent of the prescribed rating for the lamp. ...

  11. Advanced electrorefiner design

    DOEpatents

    Miller, W.E.; Gay, E.C.; Tomczuk, Z.

    1996-07-02

    A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode. 6 figs.

  12. Advanced electrorefiner design

    DOEpatents

    Miller, William E.; Gay, Eddie C.; Tomczuk, Zygmunt

    1996-01-01

    A combination anode and cathode for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl.sub.3 to UCl.sub.3 ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.

  13. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-lamps. 273.5 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under this part 273. The requirements of this part apply to persons managing lamps as described in § 273.9, except...

  14. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-lamps. 273.5 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under this part 273. The requirements of this part apply to persons managing lamps as described in § 273.9, except...

  15. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-lamps. 273.5 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under this part 273. The requirements of this part apply to persons managing lamps as described in § 273.9, except...

  16. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-lamps. 273.5 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under this part 273. The requirements of this part apply to persons managing lamps as described in § 273.9, except...

  17. 40 CFR 273.5 - Applicability-lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-lamps. 273.5 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.5 Applicability—lamps. (a) Lamps covered under this part 273. The requirements of this part apply to persons managing lamps as described in § 273.9, except...

  18. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  19. Experimental radiative lifetimes, branching fractions, and oscillator strengths of some levels in Co I

    NASA Astrophysics Data System (ADS)

    Wang, Xinghao; Yu, Qi; Li, Qiu; Gao, Yang; Dai, Zhenwen

    2018-04-01

    The radiative lifetime measurements by the time-resolved laser-induced fluorescence technique are reported for 24 levels of Co I with the energy range of 283 45.86-55 922.3 cm-1, amongst which the lifetimes of 20 levels are reported for the first time. The branching fraction measurements by the emission spectrum of a hollow cathode lamp were performed for 11 levels of them together with other two levels reported in the literature, and branching fractions of 39 transitions were obtained. By combining them with lifetime values, the transition probabilities and absolute oscillator strengths of these lines were determined.

  20. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries

    PubMed Central

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-01-01

    Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles. PMID:27762261

  1. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  2. Space Station Cathode Design, Performance, and Operating Specifications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.; Soulas, George; Zakany, James

    1998-01-01

    A plasma contactor system was baselined for the International Space Station (ISS) to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development efforts on ion thruster systems. The plasma contactor includes a hollow cathode assembly (HCA), a power electronics unit, and a xenon gas feed system. Under a pre-flight development program, these subsystems were taken to the level of maturity appropriate for transfer to U.S. industry for final development. NASA's Lewis Research Center was subsequently requested by ISS to manufacture and deliver the engineering model, qualification model, and flight HCA units. To date, multiple units have been built. One cathode has demonstrated approximately 28,000 hours lifetime, two development unit HCAs have demonstrated over 10,000 hours lifetime, and one development unit HCA has demonstrated more than 32,000 ignitions. All 8 flight HCAs have been manufactured, acceptance tested, and are ready for delivery to the flight contractor. This paper discusses the requirements, mechanical design, performance, operating specifications, and schedule for the plasma contactor flight HCAs.

  3. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  4. Slit-lamp exam (image)

    MedlinePlus

    A slit-lamp, which is a specialized magnifying microscope, is used to examine the structures of the eye (including the cornea, iris, vitreous, and retina). The slit-lamp is used to examine, treat (with a laser), ...

  5. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  6. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influencemore » of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.« less

  7. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  8. Turning on LAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, Christoph

    2014-06-30

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  9. Turning on LAMP

    ScienceCinema

    Bostedt, Christoph

    2018-01-16

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  10. Integration issues of a plasma contactor Power Electronics Unit

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  11. Cathodes Delivered for Space Station Plasma Contactor System

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1999-01-01

    The International Space Station's (ISS) power system is designed with high-voltage solar arrays that typically operate at output voltages of 140 to 160 volts (V). The ISS grounding scheme electrically ties the habitat modules, structure, and radiators to the negative tap of the solar arrays. Without some active charge control method, this electrical configuration and the plasma current balance would cause the habitat modules, structure, and radiators to float to voltages as large as -120 V with respect to the ambient space plasma. With such large negative floating potentials, the ISS could have deleterious interactions with the space plasma. These interactions could include arcing through insulating surfaces and sputtering of conductive surfaces as ions are accelerated by the spacecraft plasma sheath. A plasma contactor system was baselined on the ISS to prevent arcing and sputtering. The sole requirement for the system is contained within a single directive (SSP 30000, paragraph 3.1.3.2.1.8): "The Space Station structure floating potential at all points on the Space Station shall be controlled to within 40 V of the ionospheric plasma potential using a plasma contactor." NASA is developing this plasma contactor as part of the ISS electrical power system. For ISS, efficient and rapid emission of high electron currents is required from the plasma contactor system under conditions of variable and uncertain current demand. A hollow cathode plasma source is well suited for this application and was, therefore, selected as the design approach for the station plasma contactor system. In addition to the plasma source, which is referred to as a hollow cathode assembly, or HCA, the plasma contactor system includes two other subsystems. These are the power electronics unit and the xenon gas feed system. The Rocketdyne Division of Boeing North American is responsible for the design, fabrication, assembly, test, and integration of the plasma contactor system. Because of

  12. How do Colluvial Hollows Fill?

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.

    2016-12-01

    In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.

  13. Vibration-Resistant Support for Halide Lamps

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1987-01-01

    Lamp envelope protected against breakage. Old and new mounts for halide arc lamp sealed in housing with parabolic refector and quartz window. New version supports lamp with compliant garters instead of rigid brazed joint at top and dimensionally unstable finger stock at bottom.

  14. 47 CFR 17.54 - Rated lamp voltage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Rated lamp voltage. 17.54 Section 17.54... STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.54 Rated lamp... lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  15. 47 CFR 17.54 - Rated lamp voltage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Rated lamp voltage. 17.54 Section 17.54... STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.54 Rated lamp... lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  16. 47 CFR 17.54 - Rated lamp voltage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rated lamp voltage. 17.54 Section 17.54... STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.54 Rated lamp... lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  17. 47 CFR 17.54 - Rated lamp voltage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Rated lamp voltage. 17.54 Section 17.54... STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.54 Rated lamp... lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  18. 47 CFR 17.54 - Rated lamp voltage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Rated lamp voltage. 17.54 Section 17.54... STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.54 Rated lamp... lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  19. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  20. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Lamps and reflective devices. 393.11 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.11 Lamps and reflective devices. (a)(1) Lamps and reflex reflectors. Table 1 specifies the requirements for lamps...

  1. 49 CFR 393.11 - Lamps and reflective devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Lamps and reflective devices. 393.11 Section 393... ACCESSORIES NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.11 Lamps and reflective devices. (a)(1) Lamps and reflex reflectors. Table 1 specifies the requirements for lamps...

  2. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Class 2 lamps. 20.9 Section 20.9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.9 Class 2 lamps. (a) Safety. (1...

  3. 46 CFR 167.40-25 - Signaling lamp.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Signaling lamp. 167.40-25 Section 167.40-25 Shipping... Certain Equipment Requirements § 167.40-25 Signaling lamp. Nautical school ships of over 150 gross tons shall be equipped with an efficient signaling lamp. This lamp shall be permanently fixed above the...

  4. 46 CFR 167.40-25 - Signaling lamp.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Signaling lamp. 167.40-25 Section 167.40-25 Shipping... Certain Equipment Requirements § 167.40-25 Signaling lamp. Nautical school ships of over 150 gross tons shall be equipped with an efficient signaling lamp. This lamp shall be permanently fixed above the...

  5. 46 CFR 167.40-25 - Signaling lamp.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Signaling lamp. 167.40-25 Section 167.40-25 Shipping... Certain Equipment Requirements § 167.40-25 Signaling lamp. Nautical school ships of over 150 gross tons shall be equipped with an efficient signaling lamp. This lamp shall be permanently fixed above the...

  6. 46 CFR 167.40-25 - Signaling lamp.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Signaling lamp. 167.40-25 Section 167.40-25 Shipping... Certain Equipment Requirements § 167.40-25 Signaling lamp. Nautical school ships of over 150 gross tons shall be equipped with an efficient signaling lamp. This lamp shall be permanently fixed above the...

  7. 46 CFR 167.40-25 - Signaling lamp.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Signaling lamp. 167.40-25 Section 167.40-25 Shipping... Certain Equipment Requirements § 167.40-25 Signaling lamp. Nautical school ships of over 150 gross tons shall be equipped with an efficient signaling lamp. This lamp shall be permanently fixed above the...

  8. LAMPS software

    NASA Technical Reports Server (NTRS)

    Perkey, D. J.; Kreitzberg, C. W.

    1984-01-01

    The dynamic prediction model along with its macro-processor capability and data flow system from the Drexel Limited-Area and Mesoscale Prediction System (LAMPS) were converted and recorded for the Perkin-Elmer 3220. The previous version of this model was written for Control Data Corporation 7600 and CRAY-1a computer environment which existed until recently at the National Center for Atmospheric Research. The purpose of this conversion was to prepare LAMPS for porting to computer environments other than that encountered at NCAR. The emphasis was shifted from programming tasks to model simulation and evaluation tests.

  9. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  10. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  11. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  12. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  13. 30 CFR 57.17010 - Electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  14. Max Tech and Beyond: High-Intensity Discharge Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholand, Michael

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. Withmore » the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating

  15. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps... this chapter (Bureau of Mines Schedule 6D and Schedule 10C) are approved lamps for the purposes of § 75...

  16. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps... this chapter (Bureau of Mines Schedule 6D and Schedule 10C) are approved lamps for the purposes of § 75...

  17. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps... this chapter (Bureau of Mines Schedule 6D and Schedule 10C) are approved lamps for the purposes of § 75...

  18. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps... this chapter (Bureau of Mines Schedule 6D and Schedule 10C) are approved lamps for the purposes of § 75...

  19. 30 CFR 75.1703-1 - Permissible lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible lamps. 75.1703-1 Section 75.1703-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703-1 Permissible lamps. Lamps... this chapter (Bureau of Mines Schedule 6D and Schedule 10C) are approved lamps for the purposes of § 75...

  20. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lamp voltage. 234.221 Section 234.221... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be maintained at not less than 85 percent of the prescribed rating...

  1. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lamp voltage. 234.221 Section 234.221... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be maintained at not less than 85 percent of the prescribed rating...

  2. 49 CFR 234.221 - Lamp voltage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lamp voltage. 234.221 Section 234.221... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be maintained at not less than 85 percent of the prescribed rating...

  3. Investigation of Passive Filter for LED Lamp

    NASA Astrophysics Data System (ADS)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2017-04-01

    Light Emitting Diode lamp or LED lamp is one of the energy saving lamps nowadays widely used by consumers. However, LED lamp has contained harmonics caused by the rectifier circuit inside the lamp. Harmonics cause a quality problem in power system. As the harmonics present in current or voltage, the waveforms are distorted. Harmonics can lead to overheating in magnetic core of electrical equipments. In this paper, several tests are carried out to investigate the harmonic content of voltage and currents, and also the level of light intensity of the two brands of LED lamps. Measurements in this study are conducted by using HIOKI Power Quality Analyzer 3197. The test results show that the total harmonic distortion or THD of voltage on various brands of LED lamps did not exceed 5% as in compliance to the limit of IEEE standard 519-1992. The largest harmonic voltage is 2.9%, while maximum harmonic current for tested brands of LED lamp is 170.6%. The use of low pass filter in the form of LC filter was proposed. Based on experimental results, the application of LC filter at input side of LED lamp has successfully reduced THD current in the range of 85%-88%.

  4. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  5. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  6. Investigation of plasma contactors for use with orbiting wires

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.; Hohlfeld, Robert

    1987-01-01

    The proposed Shuttle-based short tether experiments with hollow cathodes have the potential for providing important data that will not be obtained in long tether experiments. A critical property for hollow cathode effectiveness as a plasma contactor is the cross magnetic field conductivity of the emitted plasma. The different effects of hollow cathode cloud overlap in the cases of motion-driven and battery-driven operation are emphasized. The calculations presented on the size and shape of the hollow cathode cloud improve the qualitative picture of hollow cathodes in low Earth orbit and provide estimates of time constants for establishing the fully-expanded cloud. The magnetic boundary value problem calculations indicate the way in which the magnetic field will effect the shape of the cloud by resisting expansion in the direction perpendicular to the field. The large-scale interactions of the system were also considered. It was concluded that recent plasma chamber experiments by Stenzel and Urrutia do not model an electrodynamic tether well enough to apply the results to tethered system behavior. Orbiting short tether experiments on hollow cathodes will provide critical information on hollow cathode performance and the underlying physics that cannot be obtained any other way. Experiments should be conducted as soon as funding and a suitable space vehicle are available.

  7. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  8. CALiPER Retail Lamps Study 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.; Beeson, Tracy A.

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvementmore » was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications

  9. A Field of Hollows

    NASA Image and Video Library

    2015-04-01

    Mercury's hollows are among its most distinctive -- and unusual -- surface features. In this stunning view, we see a field of hollows in the western portion of the floor of Zeami impact basin. Hollows populate much of the rest of the basin's interior, with large concentrations several kilometers across occurring in the north and northeast parts of the floor. Individual hollows, however, can be as small as a couple of hundred meters in width. http://photojournal.jpl.nasa.gov/catalog/PIA19267

  10. Inductive tuners for microwave driven discharge lamps

    DOEpatents

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  11. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  12. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.

  13. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-05-01

    Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  14. The fundus slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2015-01-01

    Fundus biomicroscopy with the slit lamp as it is practiced widely nowadays was not established until the 1980-es with the introduction of the Volk lenses +90 and +60D. Thereafter little progress has been made in retinal imaging with the slit lamp. It is the aim of this paper to fully exploit the potential of a video slit lamp for fundus documentation by using easily accessible additions. Suitable still images are easily retrieved from videorecordings of slit lamp examinations. The effects of changements in the slit lamp itself (slit beam and apertures) and its examination equipment (converging lenses from +40 to +90D) on quality and spectrum of fundus images are demonstrated. Imaging software is applied for reconstruction of larger fundus areas in a mosaic pattern (Hugin®) and to perform the flicker test in order to visualize changes in the same fundus area at different points of time (Power Point®). The three lenses +90/+60/+40D are a good choice for imaging the whole spectrum of retinal diseases. Displacement of the oblique slit light can be used to assess changes in the surface profile of the inner retina which occurs e.g. in macular holes or pigment epithelial detachment. The mosaic function in its easiest form (one strip macula adapted to one strip with the optic disc) provides an overview of the posterior pole comparable to a fundus camera's image. A reconstruction of larger fundus areas is feasible for imaging in vitreoretinal surgery or occlusive vessel disease. The flicker test is a fine tool for monitoring progressive glaucoma by changes in the optic disc, and it is also a valuable diagnostic tool in macular disease. Nearly all retinal diseases can be imaged with the slit lamp - irrespective whether they affect the posterior pole, mainly the optic nerve or the macula, the whole retina or only its periphery. Even a basic fundus controlled perimetry is possible. Therefore fundus videography with the slit lamp is a worthwhile approach especially for the

  15. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  16. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    NASA Astrophysics Data System (ADS)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J.; Dussart, Rémi

    2016-04-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I-V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3-10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I-V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime.

  17. Lines in the spectrum of /sup 6/LiD (3086--5156 A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.C.

    1976-01-01

    The emission spectra of A/sup 1/..sigma../sup +/--X/sup 1/..sigma../sup +/ bands of /sup 6/LiD were photographed in the 3086 A - 5156 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm/sup -1/. High-purity /sup 6/LiD crystals were obtained from Oak Ridge National Laboratory. The atomic percent of /sup 6/Li in /sup 6/LiD was 95.58 percent. The discharge source is a demountable stainless steel hollow cathode lamp. The lithium deuteride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of D/sub 2/. The discharge was run at aboutmore » 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of /sup 6/LiD are given in this report (COO-2326-18). Similar spectra for /sup 6/LiH and /sup 7/LiH are given in companion reports (COO-2326-17) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum.« less

  18. Lines in the spectrum of /sup 6/LiH (2985--5158 A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.C.

    1976-01-01

    The emission spectra of the A/sup 1/..sigma../sup +/--X/sup 1/..sigma../sup +/ bands of /sup 6/LiH were photographed in the 2985 - 5158 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm/sup -1/. High-purity /sup 6/LiH crystals were obtained from Oak Ridge National Laboratory. The atomic percent of /sup 6/Li in /sup 6/LiH was 95.58 percent. The discharge source was a demountable stainless steel hollow cathode lamp. The lithium hydride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of H/sub 2/. The disharge was run at aboutmore » 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of /sup 6/LiH are given in this report (COO-2326-17). Similar spectra for /sup 6/LiD and /sup 7/LiH are given in companion reports (COO-2326-18) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum.« less

  19. Exposure reductions associated with introduction of solar lamps to kerosene lamp-using households in Busia County, Kenya.

    PubMed

    Lam, N L; Muhwezi, G; Isabirye, F; Harrison, K; Ruiz-Mercado, I; Amukoye, E; Mokaya, T; Wambua, M; Bates, M N

    2018-03-01

    Solar lamps are a clean and potentially cost-effective alternative to polluting kerosene lamps used by millions of families in developing countries. By how much solar lamps actually reduce exposure to pollutants, however, has not been examined. Twenty households using mainly kerosene for lighting were enrolled through a secondary school in Busia County, Kenya. Personal PM 2.5 and CO concentrations were measured on a school pupil and an adult in each household, before and after provision of 3 solar lamps. PM 2.5 concentrations were measured in main living areas, pupils' bedrooms, and kitchens. Usage sensors measured use of kerosene and solar lighting devices. Ninety percent of baseline kerosene lamp use was displaced at 1-month follow-up, corresponding to average PM 2.5 reductions of 61% and 79% in main living areas and pupils' bedrooms, respectively. Average 48-h exposure to PM 2.5 fell from 210 to 104 μg/m 3 (-50%) among adults, and from 132 to 35 μg/m 3 (-73%) among pupils. Solar lamps displaced most kerosene lamp use in at least the short term. If sustained, this could mitigate health impacts of household air pollution in some contexts. Achieving safe levels of exposure for all family members would likely require also addressing use of solid-fuel stoves. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  1. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  2. Characterization and recovery of mercury from spent fluorescent lamps.

    PubMed

    Jang, Min; Hong, Seung Mo; Park, Jae K

    2005-01-01

    Fluorescent lamps rely on mercury as the source of ultraviolet radiation for the production of visible light. Partitioning of mercury among vapor phase, loose phosphor powders produced during breaking and washing steps, glass matrices, phosphor powders attached on the glass and aluminum end caps was examined from simulated laboratory lamp recycling tests for different types of spent and new fluorescent lamps. Mercury concentrations in lamp glasses taken from commercial lamp recyclers were also analyzed for comparison with the simulated results of spent and new lamps of different types. The mercury content of the glass from spent lamps was highly variable depending on the lamp type and manufacturer; the median values of the mercury concentration in glasses for spent 26- (T8) and 38-mm (T12) diameter fluorescent lamps were approximately 30 and 45 microg/g, respectively. The average mercury concentration of samples taken from recycler A was 29.6 microg/g, which was about 64% of median value measured from the spent T12 lamps. Over 94% of total mercury in lamps remained either as a component of phosphor powders attached inside the lamp or in glass matrices. New T12 lamps had a higher partitioning percentage of elemental mercury in the vapor phase (0.17%) than spent T12 lamps (0.04%), while spent lamps had higher partitioning percentages of mercury resided on end-caps and phosphor powders detached from the breaking and washing steps. The TCLP values of simulated all lamp-glasses and samples obtained from recyclers were higher than the limit of LDR standard (0.025 mg/L). After investigating acid treatment and high temperature treatment as mercury reclamation techniques, it was found that heating provided the most effective mercury capture. Although the initial mercury concentrations of individual sample were different, the mercury concentrations after 1 h exposure at 100 degrees C were below 4 mug/g for all samples (i.e., <1% remaining). Therefore, it is recommended that

  3. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  4. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  5. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  6. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  7. 30 CFR 75.1703 - Portable electric lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  8. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Power supply for lamps. 393.23 Section 393.23... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with the...

  9. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Power supply for lamps. 393.23 Section 393.23... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with the...

  10. Fluorescent discharge lamp

    NASA Technical Reports Server (NTRS)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  11. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  12. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  13. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  14. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  15. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  16. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  17. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  18. Portable lamp with dynamically controlled lighting distribution

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2001-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  19. Lamp with a truncated reflector cup

    DOEpatents

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  20. Controlling the vapor pressure of a mercury lamp

    DOEpatents

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  1. Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes.

    PubMed

    Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Yang, Lichun; Zhu, Min

    2017-01-25

    The MOFs (metal-organic frameworks) have been extensively used for electrode materials due to their high surface area, permanent porosity, and hollow structure, but the role of antimony on the MOFs is unclear. In this work, we design the hollow spheres Ni-MOFs with SbCl 3 to synthesize NiSb⊂CHSs (NiSb-embedded carbon hollow spheres) via simple annealing and galvanic replacement reactions. The NiSb⊂CHSs inherited the advantages of Ni-MOFs with hollow structure, high surface area, and permanent porosity, and the NiSb nanoparticles are coated by the formed carbon particles which could effectively solve the problem of vigorous volume changes during the Li + insertion/extraction process. The porous and network structure could well provide an extremely reduced pathway for fast Li + diffusion and electron transport and provide extra free space for alleviating the structural strain. The NiSb⊂CHSs with these features were used as Li-ion batteries for the first time and exhibited excellent cycling performance, high specific capacity, and great rate capability. When coupled with a nanostructure LiMn 2 O 4 cathode, the NiSb⊂CHSs//LiMn 2 O 4 full cell also characterized a high voltage operation of ≈3.5 V, high rate capability (210 mA h g -1 at a current density of 2000 mA g -1 ), and high Coulombic efficiency of approximate 99%, meeting the requirement for the increasing demand for improved energy devices.

  2. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp ballasts...

  3. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp ballasts...

  4. 10 CFR 429.26 - Fluorescent lamp ballasts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Fluorescent lamp ballasts. 429.26 Section 429.26 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to fluorescent lamp ballasts...

  5. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, C.

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  6. Structural analysis of hollow blades: Torsional stress analysis of hollow fan blades for aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Ogawa, A.; Sofue, Y.; Isobe, T.

    1979-01-01

    A torsional stress analysis of hollow fans blades by the finite element method is presented. The fans are considered to be double circular arc blades, hollowed 30 percent, and twisted by a component of the centrifugal force by the rated revolution. The effects of blade hollowing on strength and rigidity are discussed. The effects of reinforcing webs, placed in the hollowed section in varying numbers and locations, on torsional rigidity and the convergence of stresses, are reported. A forecast of the 30 percent hollowing against torsional loadings is discussed.

  7. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    NASA Astrophysics Data System (ADS)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  8. 49 CFR 393.23 - Power supply for lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.23 Power supply for lamps. All required lamps must be powered by the electrical system of the motor vehicle with the...

  9. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  10. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass. Injectors...

  11. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass. Injectors...

  12. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass. Injectors...

  13. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass. Injectors...

  14. 49 CFR 230.56 - Water glass lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Water glass lamps. 230.56 Section 230.56... Water Glasses and Gauge Cocks § 230.56 Water glass lamps. All water glasses must be supplied with a suitable lamp properly located to enable the engine crew to easily see the water in the glass. Injectors...

  15. Current Regulator For Sodium-Vapor Lamps

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1989-01-01

    Regulating circuit maintains nearly-constant alternating current in sodium-vapor lamp. Regulator part of dc-to-ac inverter circuit used to supply power to street lamp from battery charged by solar-cell array.

  16. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  17. Sintered wire cathode

    DOEpatents

    Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  18. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  19. Frequency Domain Fluorimetry Using a Mercury Vapor Lamp

    DTIC Science & Technology

    2009-04-07

    independence from light scatter and excitation/emission intensity variations in order to extract the sample’s fluorescent lifetime. Mercury vapor lamps ...the modulation amplitude of the lamp , An, via: max 0 1 ( ) sin(2 ) n fluorescence n n n I t B nf tπ θ = ∝ +∑ (8... lamp is estimated by assuming the lamp is emitting as a point source of uniform intensity into the lower hemisphere and has a reflector collecting

  20. Lamp reliability studies for improved satellite rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  1. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open crosscut, incandescent lamps may be used to illuminate underground areas. When incandescent lamps are used...

  2. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open crosscut, incandescent lamps may be used to illuminate underground areas. When incandescent lamps are used...

  3. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open crosscut, incandescent lamps may be used to illuminate underground areas. When incandescent lamps are used...

  4. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open crosscut, incandescent lamps may be used to illuminate underground areas. When incandescent lamps are used...

  5. 30 CFR 75.522-1 - Incandescent and fluorescent lamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Incandescent and fluorescent lamps. 75.522-1...-1 Incandescent and fluorescent lamps. (a) Except for areas of a coal mine inby the last open crosscut, incandescent lamps may be used to illuminate underground areas. When incandescent lamps are used...

  6. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice

    1998-01-01

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  7. Application Summary Report 22: LED MR16 Lamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products stillmore » do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800

  8. Toward laser cooling and trapping lanthanum ions

    NASA Astrophysics Data System (ADS)

    Olmschenk, Steven; Banner, Patrick; Hankes, Jessie; Nelson, Amanda

    2017-04-01

    Trapped atomic ions are a leading candidate for applications in quantum information. For scalability and applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress toward laser cooling doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Since the hyperfine structure of this ion has not been measured, we are using optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of transitions in lanthanum. Using laser ablation to directly produce ions from a solid target, we laser cool and trap barium ions, and explore extending this technique to lanthanum ions. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  9. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er, A.; Güzelçimen, F.; Başar, Gö.

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the firstmore » time.« less

  10. VizieR Online Data Catalog: HD147379 b velocity curve (Reiners+, 2018)

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Bejar, V. J. S.; Guardia, J.; Guenther, E. W.; Hagen, H.-J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortes-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escude, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helml!, Ing J.; H Enning, Th.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Kuerster, M.; Labarga, F.; Lamert, A.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, M. J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; ! Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schoefer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stuermer, J.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2017-11-01

    We analyzed data from the CARMENES VIS channel and HIRES/Keck. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B). (1 data file).

  11. Lande gJ factors for even-parity electronic levels in the holmium atom

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.

    2018-05-01

    In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.

  12. Optimized positioning of autonomous surgical lamps

    NASA Astrophysics Data System (ADS)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  13. Acute And Long-Term Bioeffects And Lamp Safety

    NASA Astrophysics Data System (ADS)

    Andersen, F. Alan

    1980-10-01

    Knowledge of both acute and chronic biological effects is currently used to evaluate lamp safety. In some cases, a quantitative basis for avoiding exposures greater than a certain value can be stated. In other cases, however, only a qualitative estimate of the hazard is available. In a discussion that uses mercury vapor lamps, tanning booths, and sodium vapor lamps as examples, the interplay between the two types of data leading to an evaluation of lamp safety is described.

  14. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  15. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  16. Fireman's lamp

    NASA Technical Reports Server (NTRS)

    Britz, W. J.; Varnedoe, W. W., Jr.

    1977-01-01

    Rugged lamp used by miners is adapted for firefighters by utilization of smaller, rechargeable 3-hour-life gel-cell battery. Lighter, maintenance free unit can be clipped to outer clothing for convenience. Small monitor circuit indicates need to recharge battery.

  17. Investigations of HID Lamp Electrodes under HF Operation

    NASA Astrophysics Data System (ADS)

    Reinelt, Jens; Langenscheidt, Oliver; Westermeier, Michael; Mentel, Juergen; Awakowicz, Peter

    2007-10-01

    Low pressure lamps are operated many years at high frequencies to improve the efficiency of these lamps and drivers. For high pressure discharge lamps this operation mode has not been installed yet. Generally it can be assumed that there are changes in the electrode physics which may lead to an undesired lamp behavior if HID lamps are operated at a high frequency. To gain insights into these fundamental changes the so called Bochum Model Lamp is used. It is an easy system which allows a fundamental research on HID electrode behavior and the near electrode region without the occurrence of acoustic resonances. For the investigation phase resolved photography, pyrometry and spectrometry is used. The presented results describe changes in the electrode temperature and changes in the kind of arc attachment on the electrodes (diffuse and spot mode) depending on frequency. Also measurements of the Electrode-Sheath-Voltage (ESV), depending on frequency, are presented.

  18. Integrity Monitoring of Mercury Discharge Lamps

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  19. 30 CFR 20.10 - Tests (class 1 and 2 lamps).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests (class 1 and 2 lamps). 20.10 Section 20..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.10 Tests (class 1 and 2 lamps). Such tests will be made as are necessary to prove the adequacy of a lamp or any of...

  20. 30 CFR 20.10 - Tests (class 1 and 2 lamps).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests (class 1 and 2 lamps). 20.10 Section 20..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.10 Tests (class 1 and 2 lamps). Such tests will be made as are necessary to prove the adequacy of a lamp or any of...

  1. 30 CFR 20.10 - Tests (class 1 and 2 lamps).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests (class 1 and 2 lamps). 20.10 Section 20..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MINE LAMPS OTHER THAN STANDARD CAP LAMPS § 20.10 Tests (class 1 and 2 lamps). Such tests will be made as are necessary to prove the adequacy of a lamp or any of...

  2. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  3. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  4. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  5. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  6. 46 CFR 92.05-10 - Lamp room construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lamp room construction. 92.05-10 Section 92.05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 92.05-10 Lamp room construction. (a) Lamp, paint, and...

  7. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  8. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  9. Lamp modulator provides signal magnitude indication

    NASA Technical Reports Server (NTRS)

    Zeman, J. R.

    1970-01-01

    Lamp modulator provides visible indication of presence and magnitude of an audio signal carrying voice or data. It can be made to reflect signal variations of up to 32 decibels. Lamp life is increased by use of a bypass resistor to prevent filament failure.

  10. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOEpatents

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  11. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  12. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  13. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  14. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  15. 46 CFR 72.03-15 - Lamp room construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Lamp room construction. 72.03-15 Section 72.03-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT General Fire Protection § 72.03-15 Lamp room construction. (a) Lamp, paint, and oil lockers and...

  16. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  17. Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries.

    PubMed

    Wu, Yu; Cao, Chuanbao; Zhang, Junting; Wang, Lin; Ma, Xilan; Xu, Xingyan

    2016-08-03

    Hierarchical LiMn2O4 hollow cubes with exposed {111} planes have been synthesized using cube-shaped MnCO3 precursors, which are fabricated through a facile co-precipitation reaction. Without surface modification, the as-prepared LiMn2O4 exhibits excellent cyclability and superior rate capability. Surprisingly, even over 70% of primal discharge capacity can be maintained for up to 1000 cycles at 50 C, and with only about 72 s of discharge time the as-prepared materials can deliver initial discharge capacity of 96.5 mA h g(-1). What is more, the materials have 98.4% and 90.7% capacity retentions for up to 100 cycles at 5 C under the temperatures of 25 and 60 °C, respectively. The superior electrochemical performance can be attributed to the unique hierarchical and interior hollow structure, exposed {111} planes, and high-quality crystallinity.

  18. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.

  19. Fluorescent lamp unit with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-08-08

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  20. Highly Efficient Small Form Factor LED Retrofit Lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent powermore » quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.« less

  1. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haider, Ali; Kayaci, Fatma; Uyar, Tamer

    2014-09-01

    Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructuremore » using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.« less

  2. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  3. LED solution for E14 candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Ye; Boonekamp, Erik P.; Shi, Lei; Mei, Yi; Jiang, Tan; Guo, Qing; Wu, Huarong

    2009-08-01

    On a short to medium term, energy efficient retrofit LED products can offer an attractive solution for traditional lamps replacement in existing fixtures. To comply with user expectations, LED retrofit lamps should not only have the same mechanical interface to fit (socket and shape), but also have the similar light effect as the lamps they replace. The decorative lighting segment shows the best conditions to meet these requirements on short term. In 2008, Philips Lighting Shanghai started with the development of an LED candle lamp for the replacement of a 15W Candle shape (B35 E14) incandescent bulb, which is used in e.g. chandeliers. In this decorative application the main objective is not to generate as much light as possible, but the application requires the lamp to have a comparable look and, primarily, the same light effect as the incandescent candle lamp. This effect can be described as sparkling light, and it has to be directed sufficiently downwards (i.e., in the direction of the base of the lamp). These requirements leave very limited room for optics, electronics, mechanics and thermal design to play with in the small outline of this lamp. The main voltage AC LED concept is chosen to save the space for driver electronics. However the size of the AC LED is relatively big, which makes the optical design challenging. Several optical solutions to achieve the required light effect, to improve the optical efficiency, and to simplify the system are discussed. A novel prismatic lens has been developed which is capable of transforming the Lambertian light emission from typical high power LEDs into a butter-fly intensity distribution with the desired sparkling light effect. Thanks to this lens no reflecting chamber is needed, which improves the optical efficiency up to 70%, while maintaining the compact feature of the original optics. Together with advanced driver solution and thermal solution, the resulting LED candle lamp operates at 230V, consumes 1.8W, and

  4. Slit-lamp photography and videography with high magnifications

    PubMed Central

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P < 0.05). Conclusions We demonstrated that the slit-lamp photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  5. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  6. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp. (a...

  7. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp. (a...

  8. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp. (a...

  9. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp. (a...

  10. 21 CFR 890.5500 - Infrared lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infrared lamp. 890.5500 Section 890.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5500 Infrared lamp. (a...

  11. Naïve Chicks Prefer Hollow Objects

    PubMed Central

    Schill, Jana; Nencini, Andrea Maria; Vallortigara, Giorgio

    2016-01-01

    Biological predispositions influence approach and avoid responses from the time of birth or hatching. Neonates of species that require parental care (e.g. human babies and chicks of the domestic fowl) are attracted by stimuli associated with animate social partners, such as face-like configurations, biological motion and self-propulsion. The property of being filled is used as a cue of animacy by 8-month-old human infants but it is not known whether this reflects the effect of previous experience. We used chicks of the domestic fowl (Gallus gallus) to investigate whether the property of being filled vs. hollow elicits spontaneous or learned preferences. To this aim we tested preferences of naïve and imprinted chicks for hollow and closed cylinders. Contrary to our expectations, we documented an unlearned attraction for hollow stimuli. The preference for hollow stimuli decreased when chicks were imprinted on filled stimuli but did not increase when chicks were imprinted on hollow stimuli, suggesting that hollowness is not crucial to determine affiliative responses for imprinting objects. When chicks were imprinted on occluded stimuli that could be either filled or hollow, the preference for hollow stimuli emerged again, showing that imprinting does not disrupt the spontaneous preference for hollow objects. Further experiments revealed that hollow objects were mainly attractive by means of depth cues such as darker innards, more than as places to hide or as objects with high contrast. Our findings point to predisposed preferences for hollow objects, and suggest that early predispositions might be driven by factors different from animacy cues. PMID:27851773

  12. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  13. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification. A...

  14. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification. A...

  15. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification. A...

  16. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification. A...

  17. 21 CFR 878.4580 - Surgical lamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical lamp. 878.4580 Section 878.4580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4580 Surgical lamp. (a) Identification. A...

  18. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  19. Lamp system for uniform semiconductor wafer heating

    DOEpatents

    Zapata, Luis E.; Hackel, Lloyd

    2001-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  20. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  1. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  2. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  3. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  4. 30 CFR 20.10 - Tests (class 1 and 2 lamps).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests (class 1 and 2 lamps). 20.10 Section 20... 1 and 2 lamps). Such tests will be made as are necessary to prove the adequacy of a lamp or any of... (storage-battery lamps of class 1). (e) Temperature tests. ...

  5. Circular, explosion-proof lamp provides uniform illumination

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  6. Planar-focusing cathodes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient onmore » the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.« less

  7. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    DTIC Science & Technology

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  8. An ion quencher operated lamp for multiplexed fluorescent bioassays.

    PubMed

    Qing, Taiping; Sun, Huanhuan; He, Xiaoxiao; Huang, Xiaoqin; He, Dinggeng; Bu, Hongchang; Qiao, Zhenzhen; Wang, Kemin

    2018-02-01

    A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg 2+ and Fe 3+ , were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.

  9. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells.

    PubMed

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-08-25

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased

  10. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells

    PubMed Central

    Tan, Keng-Poo; Ho, Ming-Yi; Cho, Huan-Chieh; Yu, John; Hung, Jung-Tung; Yu, Alice Lin-Tsing

    2016-01-01

    Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS3 and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER− breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome–lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with

  11. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav

    2011-10-20

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rbmore » lamp under various operating conditions are reported in the paper.« less

  12. LED traffic signal lamp characteristics : executive summary.

    DOT National Transportation Integrated Search

    2002-05-01

    LED traffic signal lamps are being used to replace incandescent traffic signal lamps because of the long-term cost saving associated with reduced energy consumption and longer service life. The are reasons to believe that the use of LED traffic signa...

  13. LED traffic signal lamp characteristics : final report.

    DOT National Transportation Integrated Search

    2002-05-01

    LED traffic signal lamps are being used to replace incandescent traffic signal lamps because of : the long-term cost saving associated with reduced energy consumption and longer service life. The are reasons to believe that the use of LED traffic sig...

  14. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  15. Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.

  16. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  17. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    NASA Astrophysics Data System (ADS)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  18. Electrodeless discharge lamp is easily started, has high stability

    NASA Technical Reports Server (NTRS)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  19. LED lamp power management system and method

    DOEpatents

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  20. Experimental Study of Hollow Formation

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Orlando, T. M.; Milliken, R. E.; Head, J. W.; Jones, B. M.; Anzures, B. A.

    2018-05-01

    Hollows are enigmatic features on the surface of Mercury caused by sublimation and/or space weathering. Here we propose a comprehensive experimental study in which candidate hollows materials are exposed to a range of relevant conditions.