Science.gov

Sample records for homeotic gene sex

  1. The gap gene Krüppel of Rhodnius prolixus is required for segmentation and for repression of the homeotic gene sex comb-reduced.

    PubMed

    Lavore, Andrés; Esponda-Behrens, Natalia; Pagola, Lucía; Rivera-Pomar, Rolando

    2014-03-01

    The establishment of the anterior-posterior segmentation in insects requires the concerted action of a hierarchical gene network. Here, we study the orthologue of Krüppel gap gene in the hemipteran Rhodnius prolixus (Rp-Kr). We characterized its structure, expression pattern and function. The genomic sequence upstream of the Rp-Kr transcriptional unit shows a putative regulatory region conserved in the orthologue genes from Drosophila melanogaster and Tribolium castaneum. Rp-Kr expression is zygotic and it is expressed in the anterior half of the embryo (the posterior half of the egg) during the blastoderm stage and germ band formation; later, during germ band extension, it is expressed in a central domain, from T2 to A3. The Rp-Kr loss of function phenotypes shows disrupted thoracic and abdominal segmentation. Embryos with weak segmentation phenotypes show homeotic transformations, in which an ectopic tibial comb, typical of T1 leg, appears in T2, which correlates with the ectopic expression of Rp-sex-comb reduced in this leg. PMID:24406318

  2. The Homeotic Gene Sex Combs Reduced of Drosophila Melanogaster Is Differentially Regulated in the Embryonic and Imaginal Stages of Development

    PubMed Central

    Pattatucci, A. M.; Kaufman, T. C.

    1991-01-01

    The Sex combs reduced (Scr) locus is unique among the genes contained within the Antennapedia complex (ANT-C) of Drosophila melanogaster in that it directs functions that are required for both cephalic and thoracic development in the embryo and the adult. Antibodies raised against protein encoded by Scr were used to follow the distribution of this gene product in embryos and imaginal discs of third instar larvae. Analysis of Scr protein accumulation in embryos hemizygous for breakpoint lesions mapping throughout the locus has allowed us to determine that sequences required for establishment of the Scr embryonic pattern are contained within a region of DNA that overlaps with the identified upstream regulatory region of the segmentation gene fushi tarazu (ftz). Gain-of-function mutations in Scr result in the presence of ectopic sex comb teeth on the first tarsal segment of mesothoracic and metathoracic legs of adult males. Heterozygous combinations of gain-of-function alleles with a wild-type Scr gene exhibit no evidence of ectopic protein localization in the second and third thoracic segments of embryos. However, mesothoracic and metathoracic leg imaginal discs can be shown to accumulate ectopically expressed Scr protein, implying a differential regulation of the Scr gene during these two periods of development. Additionally, we have found that the spatial pattern of Scr gene expression in imaginal tissues involved in the development of the adult thorax is governed in part by synapsis of homologous chromosomes in this region of the ANT-C. However, those imaginal discs that arise anteriorly to the prothorax do not appear to be sensitive to this form of gene regulation. Finally, we have demonstrated that the extent of Scr expression is influenced by mutations at the Polycomb (Pc) locus but not by mutant alleles of the zeste (z) gene. Taken together, our data suggests that Scr gene expression is differentially regulated both temporally and spatially in a manner that is

  3. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax. PMID:20336613

  4. The Tribolium homeotic gene Abdominal is homologous to abdominal-A of the Drosophila bithorax complex

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The Abdominal gene is a member of the single homeotic complex of the beetle, Tribolium castaneum. An integrated developmental genetic and molecular analysis shows that Abdominal is homologous to the abdominal-A gene of the bithorax complex of Drosophila. abdominal-A mutant embryos display strong homeotic transformations of the anterior abdomen (parasegments 7-9) to PS6, whereas developmental commitments in the posterior abdomen depend primarily on Abdominal-B. In beetle embryos lacking Abdominal function, parasegments throughout the abdomen are transformed to PS6. This observation demonstrates the general functional significance of parasegmental expression among insects and shows that the control of determinative decisions in the posterior abdomen by homeotic selector genes has undergone considerable evolutionary modification.

  5. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.

    PubMed

    Lamb, Rebecca S; Hill, Theresa A; Tan, Queenie K-G; Irish, Vivian F

    2002-05-01

    The Arabidopsis APETALA3 (AP3) floral homeotic gene is required for specifying petal and stamen identities, and is expressed in a spatially limited domain of cells in the floral meristem that will give rise to these organs. Here we show that the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are required for the activation of AP3. The LFY transcription factor binds to a sequence, with dyad symmetry, that lies within a region of the AP3 promoter required for early expression of AP3. Mutation of this region abolishes LFY binding in vitro and in yeast one hybrid assays, but has no obvious effect on AP3 expression in planta. Experiments using a steroid-inducible form of LFY show that, in contrast to its direct transcriptional activation of other floral homeotic genes, LFY acts in both a direct and an indirect manner to regulate AP3 expression. This LFY-induced expression of AP3 depends in part on the function of the APETALA1 (AP1) floral homeotic gene, since mutations in AP1 reduce LFY-dependent induction of AP3 expression. LFY therefore appears to act through several pathways, one of which is dependent on AP1 activity, to regulate AP3 expression. PMID:11959818

  6. Regulation of proboscipedia in Drosophila by homeotic selector genes.

    PubMed Central

    Rusch, D B; Kaufman, T C

    2000-01-01

    The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct. PMID:10978284

  7. Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes.

    PubMed Central

    Breen, T R

    1999-01-01

    trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription. PMID:10224264

  8. Ras1-Mediated Modulation of Drosophila Homeotic Function in Cell and Segment Identity

    PubMed Central

    Boube, M.; Benassayag, C.; Seroude, L.; Cribbs, D. L.

    1997-01-01

    Mutations of the Drosophila homeotic proboscipedia gene (pb; the Hox-A2/B2 homologue) provoke dose-sensitive defects. These were used to search for dose-sensitive dominant modifiers of pb function. Two identified interacting genes were the proto-oncogene Ras1 and its functional antagonist Gap1, prominent intermediaries in known signal transduction pathways. Ras1(+) is a positive modifier of pb activity both in normal and ectopic cell contexts, while the Ras1-antagonist Gap1 has an opposite effect. A general role for Ras1 in homeotic function is likely, since Ras1(+) activity also modulates functions of the homeotic loci Sex combs reduced and Ultrabithorax. Our data suggest that the modulation occurs by a mechanism independent of transcriptional control of the homeotic loci themselves, or of the Ras1/Gap1 genes. Taken together our data support a role for Ras1-mediated cell signaling in the homeotic control of segmental differentiation. PMID:9178011

  9. Downstream of homeotic genes: in the heart of Hox function.

    PubMed

    Monier, Bruno; Tevy, Maria Florencia; Perrin, Laurent; Capovilla, Maria; Sémériva, Michel

    2007-01-01

    A functional organ is constituted of diverse cell types. Each one occupies a distinct position and is associated to specific morphological and physiological functions. The identification of the genetic programs controlling these elaborated and highly precise features of organogenesis is crucial to understand how a mature organ works under normal conditions, and how pathologies can develop. Recently, a number of studies have reported a critical role for Hox genes in one example of organogenesis: cardiogenesis in Drosophila. Beyond the interest in understanding the molecular basis of functional cardiogenesis, this system might provide a model for proposing new paradigms of how Hox genes achieve their action throughout development. PMID:18820463

  10. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.

    PubMed

    Sundström, Jens F; Nakayama, Naomi; Glimelius, Kristina; Irish, Vivian F

    2006-05-01

    The floral homeotic gene APETALA1 (AP1) specifies floral meristem identity and sepal and petal identity in Arabidopsis. Consistent with its multiple roles during floral development, AP1 is initially expressed throughout the floral meristem, and later its expression becomes restricted to sepal and petal primordia. Using chromatin immunoprecipitation, we show that the floral homeotic PISTILLATA (PI) protein, required for petal and stamen development, has the ability to bind directly to the promoter region of AP1. In support of the hypothesis that PI, and its interacting partner APETALA3 (AP3), regulates the transcription of AP1, we show that AP1 transcript levels are elevated in strong ap3-3 mutant plants. Kinetic studies, using transgenic Arabidopsis plants in which both AP3 and PI are under post-translational control, show that AP1 transcript levels are down regulated within 2 h of AP3/PI activation. This implies that the reduction in AP1 transcripts is an early event in the cascade following AP3/PI induction and provides independent support for the hypothesis that AP1 is a direct target of the AP3/PI heterodimer. Together these results suggest a model whereby AP3/PI directly acts, in combination with other factors, to restrict the expression of AP1 during early stages of floral development. PMID:16640596

  11. Identification of planarian homeobox sequences indicates the antiquity of most Hox/homeotic gene subclasses.

    PubMed Central

    Balavoine, G; Telford, M J

    1995-01-01

    The homeotic gene complex (HOM-C) is a cluster of genes involved in the anteroposterior axial patterning of animal embryos. It is composed of homeobox genes belonging to the Hox/HOM superclass. Originally discovered in Drosophila, Hox/HOM genes have been identified in organisms as distantly related as arthropods, vertebrates, nematodes, and cnidarians. Data obtained in parallel from the organization of the complex, the domains of gene expression during embryogenesis, and phylogenetic relationships allow the subdivision of the Hox/HOM superclass into five classes (lab, pb/Hox3, Dfd, Antp, and Abd-B) that appeared early during metazoan evolution. We describe a search for homologues of these genes in platyhelminths, triploblast metazoans emerging as an outgroup to the great coelomate ensemble. A degenerate PCR screening for Hox/HOM homeoboxes in three species of triclad planarians has revealed 10 types of Antennapedia-like genes. The homeobox-containing sequences of these PCR fragments allowed the amplification of the homeobox-coding exons for five of these genes in the species Polycelis nigra. A phylogenetic analysis shows that two genes are clear orthologues of Drosophila labial, four others are members of a Dfd/Antp superclass, and a seventh gene, although more difficult to classify with certainty, may be related to the pb/Hox3 class. Together with previously identified Hox/HOM genes in other flatworms, our analyses demonstrate the existence of an elaborate family of Hox/HOM genes in the ancestor of all triploblast animals. Images Fig. 4 PMID:7638172

  12. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    SciTech Connect

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  13. Regulatory Elements of the Floral Homeotic Gene AGAMOUS Identified by Phylogenetic Footprinting and ShadowingW⃞

    PubMed Central

    Hong, Ray L.; Hamaguchi, Lynn; Busch, Maximilian A.; Weigel, Detlef

    2003-01-01

    In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3-kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae species, several other motifs, but not the LFY and WUS binding sites identified previously, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for the activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection but also demonstrate that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites. PMID:12782724

  14. Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis.

    PubMed

    Efremova, N; Perbal, M C; Yephremov, A; Hofmann, W A; Saedler, H; Schwarz-Sommer, Z

    2001-07-01

    To assess the contribution of the epidermis to the control of petal and stamen organ identity, we have used transgenic Antirrhinum and Arabidopsis plants that expressed the Antirrhinum class B homeotic transcription factors DEFICIENS (DEF) and GLOBOSA (GLO) in the epidermis. Transgene expression was controlled by the ANTIRRHINUM FIDDLEHEAD (AFI) promoter, which directs gene expression to the L1 meristematic layer and, later, to the epidermis of differentiating organs. Transgenic epidermal DEF and GLO chimeras display similar phenotypes, suggesting similar epidermal contributions by the two class B genes in ANTIRRHINUM: Epidermal B function autonomously controls the differentiation of Antirrhinum petal epidermal cell types, but cannot fully control the pattern of cell divisions and the specification of sub-epidermal petal cell-identity by epidermal signalling. This non-autonomous control is enhanced if the endogenous class B genes can be activated from the epidermis. The developmental influence of epidermal B function in Antirrhinum stamen development is very limited. In contrast, epidermal B function in Arabidopsis can control most if not all epidermal and sub-epidermal differentiation events in petals and stamens, without any contribution from the endogenous class B genes. Possible reasons for differences in the efficacy of B-function-mediated cell communication between the two species are discussed. Interestingly, our experiments uncovered partial incompatibility between class B functional homologues. Although the DEFICIENS/PISTILLATA heterodimer is functional in transgenic Arabidopsis plants, the APETALA3/GLOBOSA heterodimer is not. PMID:11526073

  15. A Cucumber DELLA Homolog CsGAIP May Inhibit Staminate Development through Transcriptional Repression of B Class Floral Homeotic Genes

    PubMed Central

    Zhang, Yan; Liu, Bin; Yang, Sen; An, Jingbo; Chen, Chunhua; Zhang, Xiaolan; Ren, Huazhong

    2014-01-01

    In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucumber, and we found that CsGAIP is highly expressed in stem and male flower buds. In situ hybridization showed that CsGAIP is greatly enriched in the stamen primordia, especially during the hermaphrodite stage of flower development. Further, CsGAIP protein is located in nucleus. CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6 mutant, and ectopic expression of CsGAIP in wide-type Arabidopsis results in reduced number of stamens and decreased transcription of B class floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI). Our data suggest that monoecious CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes in Arabidopsis. PMID:24632777

  16. Functional Evolution of cis-Regulatory Modules at a Homeotic Gene in Drosophila

    PubMed Central

    Schiller, Benjamin J.; Bae, Esther; Tran, Diana A.; Shur, Andrey S.; Allen, John M.; Rau, Christoph; Bender, Welcome; Fisher, William W.; Celniker, Susan E.; Drewell, Robert A.

    2009-01-01

    It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules. PMID:19893611

  17. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.

    PubMed

    Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou

    2011-09-01

    Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. PMID:21605209

  18. Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.).

    PubMed

    Shulga, O A; Neskorodov, Ya B; Shchennikova, A V; Gaponenko, A K; Skryabin, K G

    2015-01-01

    The function of the HAM59 MADS-box gene in sunflower (Helianthus annuus L.) was studied to clarify homeotic C activity in the Asteraceae plant family. For the first time, transgenic sunflower plants with a modified pattern of HAM59 expression were obtained. It was shown that the HAM59 MADS-box transcription factor did mediate C activity in sunflower. In particular, it participated in termination of the floral meristem, repression of the cadastral function of A-activity, and together with other C-type sunflower protein HAM45-in the specification of the identity of stamens and pistils. PMID:25937227

  19. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.

    PubMed

    Hill, T A; Day, C D; Zondlo, S C; Thackeray, A G; Irish, V F

    1998-05-01

    The APETALA3 floral homeotic gene is required for petal and stamen development in Arabidopsis. APETALA3 transcripts are first detected in a meristematic region that will give rise to the petal and stamen primordia, and expression is maintained in this region during subsequent development of these organs. To dissect how the APETALA3 gene is expressed in this spatially and temporally restricted domain, various APETALA3 promoter fragments were fused to the uidA reporter gene encoding beta-glucuronidase and assayed for the resulting patterns of expression in transgenic Arabidopsis plants. Based on these promoter analyses, we defined cis-acting elements required for distinct phases of APETALA3 expression, as well as for petal-specific and stamen-specific expression. By crossing the petal-specific construct into different mutant backgrounds, we have shown that several floral genes, including APETALA3, PISTILLATA, UNUSUAL FLORAL ORGANS, and APETALA1, encode trans-acting factors required for second-whorl-specific APETALA3 expression. We have also shown that the products of the APETALA1, APETALA3, PISTILLATA and AGAMOUS genes bind to several conserved sequence motifs within the APETALA3 promoter. We present a model whereby spatially and temporally restricted APETALA3 transcription is controlled via interactions between proteins binding to different domains of the APETALA3 promoter. PMID:9521909

  20. Isolation and Functional Analyses of a Putative Floral Homeotic C-Function Gene in a Basal Eudicot London Plane Tree (Platanus acerifolia)

    PubMed Central

    Liu, Guofeng; Bao, Manzhu

    2013-01-01

    The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species. PMID:23691041

  1. Isolation and functional analyses of a putative floral homeotic C-function gene in a basal eudicot London plane tree (Platanus acerifolia).

    PubMed

    Zhang, Jiaqi; Li, Zhineng; Guo, Cong; Liu, Guofeng; Bao, Manzhu

    2013-01-01

    The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species. PMID:23691041

  2. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS.

    PubMed Central

    Huang, H; Mizukami, Y; Hu, Y; Ma, H

    1993-01-01

    The Arabidopsis floral homeotic gene AGAMOUS (AG) is required for normal flower development. The deduced AG protein contains a region which shares substantial sequence similarity with the DNA-binding domains of known transcription factors, SRF (human) and MCM1 (yeast). Therefore, it is likely that AG is also a DNA-binding protein regulating transcription of floral genes. We describe here several experiments to characterize AG-DNA binding in vitro. We show that AG indeed binds a DNA sequence matching the consensus of SRF targets. Further, we have selected the AG-binding sequences from a pool of random oligonucleotides, and deduced an AG-binding consensus sequence of TT(A/T)CC(A/T)(A/t)2(T/A)NNGG(-G)(A/t)2. We have demonstrated that AG binds to the consensus region of three of the oligonucleotides by footprinting analysis. Finally, we have examined AG's relative binding affinity for different sequences, as compared to SRF, by gel mobility shift analysis. Our results indicate that AG is a sequence-specific DNA-binding protein, and that the AG-binding consensus sequence is similar to those of MCM1 and SRF. Images PMID:7901838

  3. Determination of Flower Structure in Elaeis guineensis: Do Palms use the Same Homeotic Genes as Other Species?

    PubMed Central

    Adam, Helene; Jouannic, Stefan; Morcillo, Fabienne; Verdeil, Jean-Luc; Duval, Yves; Tregear, James W.

    2007-01-01

    Aims In this article a review is made of data recently obtained on the structural diversity and possible functions of MADS box genes in the determination of flower structure in the African oil palm (Elaeis guineensis). MADS box genes play a dominant role in the ABC model established to explain how floral organ identity is determined in model dicotyledon species such as Arabidopsis thaliana and Antirrhinum majus. In the monocotyledons, although there appears to be a broad general conservation of ABC gene functions, the model itself needs to be adapted in some cases, notably for certain species which produce flowers with sepals and petals of similar appearance. For the moment, ABC genes remain unstudied in a number of key monocot clades, so only a partial picture is available for the Liliopsida as a whole. The aim of this article is to summarize data recently obtained for the African oil palm Elaeis guineensis, a member of the family Arecaceae (Arecales), and to discuss their significance with respect to knowledge gained from other Angiosperm groups, particularly within the monocotyledons. Scope The essential details of reproductive development in oil palm are discussed and an overview is provided of the structural and functional characterization of MADS box genes likely to play a homeotic role in flower development in this species. Conclusions The structural and functional data provide evidence for a general conservation of the generic ‘ABC’ model in oil palm, rather than the ‘modified ABC model’ proposed for some other monocot species which produce homochlamydeous flowers (i.e. with morphologically similar organs in both perianth whorls), such as members of the Liliales. Our oil palm data therefore follow a similar pattern to those obtained for other Commelinid species in the orders Commelinales and Poales. The significance of these findings is discussed. PMID:17355996

  4. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes

    PubMed Central

    Mondragón-Palomino, Mariana; Theißen, Günter

    2009-01-01

    Background The nearly 30 000 species of orchids produce flowers of unprecedented diversity. However, whether specific genetic mechanisms contributed to this diversity is a neglected topic and remains speculative. We recently published a theory, the ‘orchid code’, maintaining that the identity of the different perianth organs is specified by the combinatorial interaction of four DEF-like MADS-box genes with other floral homeotic genes. Scope Here the developmental and evolutionary implications of our theory are explored. Specifically, it is shown that all frequent floral terata, including all peloric types, can be explained by monogenic gain- or-loss-of-function mutants, changing either expression of a DEF-like or CYC-like gene. Supposed dominance or recessiveness of mutant alleles is correlated with the frequency of terata in both cultivation and nature. Our findings suggest that changes in DEF- and CYC-like genes not only underlie terata but also the natural diversity of orchid species. We argue, however, that true changes in organ identity are rare events in the evolution of orchid flowers, even though we review some likely cases. Conclusions The four DEF paralogues shaped floral diversity in orchids in a dramatic way by modularizing the floral perianth based on a complex series of sub- and neo-functionalization events. These genes may have eliminated constraints, so that different kinds of perianth organs could then evolve individually and thus often in dramatically different ways in response to selection by pollinators or by genetic drift. We therefore argue that floral diversity in orchids may be the result of an unprecedented developmental genetic predisposition that originated early in orchid evolution. PMID:19141602

  5. In vivo mutagenesis of the Hoxb8 hexapeptide domain leads to dominant homeotic transformations that mimic the loss-of-function mutations in genes of the Hoxb cluster.

    PubMed

    Medina-Martínez, Olga; Ramírez-Solis, Ramiro

    2003-12-01

    Hox proteins are transcription factors that control developmental pathways along the anteroposterior axis of vertebrates. On their own, Hox proteins bind DNA weakly, but they gain specificity and affinity by interaction with members of the PBC subfamily of homeobox proteins. In vitro studies indicate that most of these interactions are mediated by the conserved hexapeptide motif of the Hox proteins. To study the significance of these interactions in vivo, we have generated mice that carry mutations in the Hoxb8 hexapeptide motif. Analysis of skeletal features of these mice reveals the presence of a dominant phenotype consisting of homeotic transformations, similar to those observed in mice with a loss-of-function of Hox genes, such as Hoxa7, Hoxb7, and Hoxb9. Genetic tests demonstrate that the mutations in the Hoxb8 hexapeptide motif are affecting the function of other genes located in the Hoxb cluster. The expression pattern of these genes is not affected; rather it appears that the mutant Hoxb8 protein interferes with the function of other Hox genes by binding to their targets. Our findings suggest that the homeotic transformations result from altered DNA binding specificity of the mutant Hoxb8 protein, implicating the cooperative binding between Hoxb8 hexapeptide motif and cofactors as a critical element in the fine-tuning of Hoxb8 protein target specificity. This is the first time the function of the hexapeptide domain has been evaluated in vivo in mouse development. PMID:14623233

  6. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum.

    PubMed

    Winter, Kai-Uwe; Saedler, Heinz; Theissen, Günter

    2002-08-01

    Class B floral homeotic genes are involved in specifying stamen and petal identity in angiosperms (flowering plants). Here we report that gymnosperms, the closest relatives of the angiosperms, contain at least two different clades representing putative orthologues of class B genes, termed GGM2-like and DAL12-like genes. To obtain information about the functional conservation of the class B genes in seed plants, the representative of one of these clades from Gnetum, termed GGM2, was expressed under the control of the CaMV 35S promoter in Arabidopsis wild-type plants and in different class B mutants. In wild-type plants and in a conditional mutant grown at a permissive temperature, gain-of-function phenotypes were obtained in whorls 1 and 4, where class B genes are usually not expressed. In contrast, loss-of-function phenotypes were observed in whorls 2 and 3, where class B genes are expressed. In different class B gene null mutants of Arabidopsis, and in the conditional B mutant grown at the non-permissive temperature, a partial complementation of the mutant phenotype was obtained. In situ hybridization studies and class B gene promoter test fusion experiments demonstrated that the gain-of-function phenotypes are not due to an upregulation of the endogenous B genes from Arabidopsis, and hence probably involve interactions between GGM2 protein homodimers and class B protein target genes other than the Arabidopsis class B genes itself. To our knowledge, this is the first time that partial complementation of a homeotic mutant by an orthologous gene from a distantly related species has been reported. These data suggest that GGM2 has a function in the gymnosperm Gnetum which is related to that of class B floral organ identity genes of angiosperms. That function may be in the specification of male reproductive organ identity, and in distinguishing male from female reproductive organs. PMID:12182704

  7. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.

    PubMed

    Mara, Chloe D; Irish, Vivian F

    2008-06-01

    Floral organogenesis is dependent on the combinatorial action of MADS-box transcription factors, which in turn control the expression of suites of genes required for growth, patterning, and differentiation. In Arabidopsis (Arabidopsis thaliana), the specification of petal and stamen identity depends on the action of two MADS-box gene products, APETALA3 (AP3) and PISTILLATA (PI). In a screen for genes whose expression was altered in response to the induction of AP3 activity, we identified GNC (GATA, nitrate-inducible, carbon-metabolism-involved) as being negatively regulated by AP3 and PI. The GNC gene encodes a member of the Arabidopsis GATA transcription factor family and has been implicated in the regulation of chlorophyll biosynthesis as well as carbon and nitrogen metabolism. In addition, we found that the GNC paralog, GNL (GNC-like), is also negatively regulated by AP3 and PI. Using chromatin immunoprecipitation, we showed that promoter sequences of both GNC and GNL are bound by PI protein, suggesting a direct regulatory interaction. Analyses of single and double gnc and gnl mutants indicated that the two genes share redundant roles in promoting chlorophyll biosynthesis, suggesting that in repressing GNC and GNL, AP3/PI have roles in negatively regulating this biosynthetic pathway in flowers. In addition, coexpression analyses of genes regulated by AP3, PI, GNC, and GNL indicate a complex regulatory interplay between these transcription factors in regulating a variety of light and nutrient responsive genes. Together, these results provide new insights into the transcriptional cascades controlling the specification of floral organ identities. PMID:18417639

  8. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants

    PubMed Central

    Münster, Thomas; Pahnke, Jens; Di Rosa, Alexandra; Kim, Jan T.; Martin, William; Saedler, Heinz; Theissen, Günter

    1997-01-01

    Flowers sensu lato are short, specialized axes bearing closely aggregated sporophylls. They are typical for seed plants (spermatophytes) and are prominent in flowering plants sensu stricto (angiosperms), where they often comprise an attractive perianth. There is evidence that spermatophytes evolved from gymnosperm-like plants with a fern-like mode of reproduction called progymnosperms. It seems plausible, therefore, that the stamens/carpels and pollen sacs/nucelli of spermatophytes are homologous to fern sporophylls and sporangia, respectively. However, the exact mode and molecular basis of early seed and flower evolution is not yet known. Comparing flower developmental control genes to their homologs from lower plants that do not flower may help to clarify the issue. We have isolated and characterized MADS-box genes expressed in gametophytes and sporophytes of the fern Ceratopteris. The data indicate that at least two different MADS-box genes homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants, some descendants of which underwent multiple duplications and diversifications and were recruited into novel developmental networks during the evolution of floral organs. PMID:9122209

  9. Structure and function of the homeotic gene complex (HOM-C) in the beetle, Tribolium castaneum

    NASA Technical Reports Server (NTRS)

    Beeman, R. W.; Stuart, J. J.; Brown, S. J.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The powerful combination of genetic, developmental and molecular approaches possible with the fruit fly, Drosophila melanogaster, has led to a profound understanding of the genetic control of early developmental events. However, Drosophila is a highly specialized long germ insect, and the mechanisms controlling its early development may not be typical of insects or Arthropods in general. The beetle, Tribolium castaneum, offers a similar opportunity to integrate high resolution genetic analysis with the developmental/molecular approaches currently used in other organisms. Early results document significant differences between insect orders in the functions of genes responsible for establishing developmental commitments.

  10. Activation of the Arabidopsis B class homeotic genes by APETALA1.

    PubMed

    Ng, M; Yanofsky, M F

    2001-04-01

    Proper development of petals and stamens in Arabidopsis flowers requires the activities of APETALA3 (AP3) and PISTILLATA (PI), whose transcripts can be detected in the petal and stamen primordia. Localized expression of AP3 and PI requires the activities of at least three genes: APETALA1 (AP1), LEAFY (LFY), and UNUSUAL FLORAL ORGANS (UFO). It has been proposed that UFO provides spatial cues and that LFY specifies competence for AP3 and PI expression in the developing flower. To understand the epistatic relationship among AP1, LFY, and UFO in regulating AP3 and PI expression, we generated two versions of AP1 that have strong transcriptional activation potential. Genetic and molecular analyses of transgenic plants expressing these activated AP1 proteins show that the endogenous AP1 protein acts largely as a transcriptional activator in vivo and that AP1 specifies petals by regulating the spatial domains of AP3 and PI expression through UFO. PMID:11283333

  11. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2.

    PubMed Central

    Klucher, K M; Chow, H; Reiser, L; Fischer, R L

    1996-01-01

    Ovules play a central role in plant reproduction, generating the female gametophyte within sporophytic integuments. When fertilized, the integuments differentiate into the seed coat and support the development of the embryo and endosperm. Mutations in the AINTEGUMENTA (ANT) locus of Arabidopsis have a profound effect on ovule development. Strong ant mutants have ovules that fail to form integuments or a female gametophyte. Flower development is also altered, with a random reduction of organs in the outer three whorls. In addition, organs present in the outer three floral whorls often have abnormal morphology. Ovules from a weak ant mutant contain both inner and outer integuments but generally fail to produce a functional female gametophyte. We isolated the ANT gene by using a mutation derived by T-DNA insertional mutagenesis. ANT is a member of a gene family that includes the floral homeotic gene APETALA2 (AP2). Like AP2, ANT contains two AP2 domains homologous with the DNA binding domain of ethylene response element binding proteins. ANT is expressed most highly in developing flowers but is also expressed in vegetative tissue. Taken together, these results suggest that ANT is a transcription factor that plays a critical role in regulating ovule and female gametophyte development. PMID:8742706

  12. The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development.

    PubMed

    Guo, Xuhu; Hu, Zongli; Yin, Wencheng; Yu, Xiaohui; Zhu, Zhiguo; Zhang, Jianling; Chen, Guoping

    2016-01-01

    MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato. PMID:26842499

  13. The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development

    PubMed Central

    Guo, Xuhu; Hu, Zongli; Yin, Wencheng; Yu, Xiaohui; Zhu, Zhiguo; Zhang, Jianling; Chen, Guoping

    2016-01-01

    MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato. PMID:26842499

  14. Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast

    SciTech Connect

    Mastick, G.S.; McKay, R.; Oligino, T.

    1995-01-01

    A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressed in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.

  15. Homeotic function of Drosophila Bithorax-Complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the central nervous system

    PubMed Central

    Garaulet, Daniel L.; Castellanos, Monica; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M.; Allan, Douglas W.; Sánchez-Herrero, Ernesto; Lai, Eric C.

    2014-01-01

    The Drosophila Bithorax-Complex (BX-C) Hox cluster contains a bidirectionally-transcribed miRNA locus, and a deletion mutant (∆mir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the central nervous system. ∆mir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, since sterility of ∆mir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in ∆mir females, and substantially rescued by heterozygosity of ∆mir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation, and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. PMID:24909902

  16. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo.

    PubMed Central

    Kühnlein, R P; Frommer, G; Friedrich, M; Gonzalez-Gaitan, M; Weber, A; Wagner-Bernholz, J F; Gehring, W J; Jäckle, H; Schuh, R

    1994-01-01

    The region specific homeotic gene spalt (sal) of Drosophila melanogaster promotes the specification of terminal pattern elements as opposed to segments in the trunk. Our results show that the previously reported sal transcription unit was misidentified. Based on P-element mediated germ line transformation and DNA sequence analysis of sal mutant alleles, we identified the transcription unit that carries sal function. sal is located close to the misidentified transcription unit, and it is expressed in similar temporal and spatial patterns during embryogenesis. The sal gene encodes a zinc finger protein of novel structure composed of three widely spaced 'double zinc finger' motifs of internally conserved sequences and a single zinc finger motif of different sequence. Antibodies produced against the sal protein show that sal is first expressed at the blastoderm stage and later in restricted areas of the embryonic nervous system as well as in the developing trachea. The antibodies detect sal homologous proteins in corresponding spatial and temporal patterns in the embryos of related insect species. Sequence analysis of the sal gene of Drosophila virilis, a species which is phylogenetically separated by approximately 60 million years, suggests that the sal function is conserved during evolution, consistent with its proposed role in head formation during arthropod evolution. Images PMID:7905822

  17. Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.

    PubMed

    Teixeira, Rita Teresa; Farbos, Isabelle; Glimelius, Kristina

    2005-06-01

    Homeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation. PMID:15918886

  18. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.

    PubMed

    Honma, T; Goto, K

    2000-05-01

    PISTILLATA is a B-class floral organ identity gene required for the normal development of petals and stamens in Arabidopsis. PISTILLATA expression is induced in the stage 3 flowers (early expression) and is maintained until anthesis (late expression). To explore in more detail the developmentally regulated gene expression of PISTILLATA, we have analyzed the PISTILLATA promoter using uidA (beta)-glucuronidase gene) fusion constructs (PI::GUS) in transgenic Arabidopsis. Promoter deletion analyses suggest that early PISTILLATA expression is mediated by the distal region and that late expression is mediated by the proximal region. Based on the PI::GUS expression patterns in the loss- and gain-of-function alleles of meristem or organ identity genes, we have shown that LEAFY and UNUSUAL FLORAL ORGANS induce PISTILLATA expression in a flower-independent manner via a distal promoter, and that PISTILLATA and APETALA3 maintain PISTILLATA expression (autoregulation) in the later stages of flower development via a proximal promoter. In addition, we have demonstrated that de novo protein synthesis is required for the PISTILLATA autoregulatory circuit. PMID:10769227

  19. Sex Determination in the Monoecious Species Cucumber Is Confined to Specific Floral Whorls

    PubMed Central

    Kater, Martin M.; Franken, John; Carney, Kim J.; Colombo, Lucia; Angenent, Gerco C.

    2001-01-01

    In unisexual flowers, sex is determined by the selective repression of growth or the abortion of either male or female reproductive organs. The mechanism by which this process is controlled in plants is still poorly understood. Because it is known that the identity of reproductive organs in plants is controlled by homeotic genes belonging to the MADS box gene family, we analyzed floral homeotic mutants from cucumber, a species that bears both male and female flowers on the same individual. To study the characteristics of sex determination in more detail, we produced mutants similar to class A and C homeotic mutants from well-characterized hermaphrodite species such as Arabidopsis by ectopically expressing and suppressing the cucumber gene CUCUMBER MADS1 (CUM1). The cucumber mutant green petals (gp) corresponds to the previously characterized B mutants from several species and appeared to be caused by a deletion of 15 amino acid residues in the coding region of the class B MADS box gene CUM26. These homeotic mutants reveal two important concepts that govern sex determination in cucumber. First, the arrest of either male or female organ development is dependent on their positions in the flower and is not associated with their sexual identity. Second, the data presented here strongly suggest that the class C homeotic function is required for the position-dependent arrest of reproductive organs. PMID:11251091

  20. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.

    PubMed

    Krizek, B A; Meyerowitz, E M

    1996-01-01

    The class B organ identity genes, APETALA3 and PISTILLATA, are required to specify petal and stamen identity in the Arabidopsis flower. We show here that the activities of these two genes are sufficient to specify petals and stamens in flowers, in combination with the class A and C genes, respectively. Flowers of plants constitutively expressing both PISTILLATA and APETALA3 under the control of the 35S promoter from cauliflower mosaic virus consist of two outer whorls of petals and inner whorls of stamens. These plants also exhibit vegetative phenotypes that are not present in either of the singly (APETALA3 or PISTILLATA) overexpressing lines. These phenotypes include leaf curling and the partial conversion of later-arising cauline leaves to petals. The presence of additional floral whorls in flowers ectopically expressing APETALA3 and PISTILLATA and the rescue of missing organs in class A mutants by ectopic B function suggest that APETALA3 and PISTILLATA play an additional role in proliferation of the floral meristem. PMID:8565821

  1. The hierarchical relation between X-chromosomes and autosomal sex determining genes in Drosophila

    PubMed Central

    Steinmann-Zwicky, Monica; Nöthiger, Rolf

    1985-01-01

    The classical balance concept of sex determination in Drosophila states that the X-chromosome carries dispersed female-determining factors. Besides, a number of autosomal genes are known that, when mutant, transform chromosomal females (XX) into pseudomales (tra), or intersexes (ix, dsx, dsxD). To test whether large duplications of the X-chromosome have a feminizing effect on the sexual phenotype of these mutants, we constructed flies that were mutant for ix, dsx, dsxD or tra and had two X-chromosomes plus either a distal or a proximal half of an X-chromosome. These or even smaller X-chromosomal fragments had a strong feminizing effect when added to triploid intersexes (XX; AAA). In the mutants, however, no shift towards femaleness was apparent. We conclude that enhancing the female determining signal is ineffective in flies that are mutant for an autosomal sex determining gene, and therefore, that these genes are under hierarchical control of the signal given by the X:A ratio. Parallels between sex-determining and homeotic genes are drawn. ImagesFig. 3. PMID:16453598

  2. Characterization of Sex Determination and Sex Differentiation Genes in Latimeria

    PubMed Central

    Forconi, Mariko; Canapa, Adriana; Barucca, Marco; Biscotti, Maria A.; Capriglione, Teresa; Buonocore, Francesco; Fausto, Anna M.; Makapedua, Daisy M.; Pallavicini, Alberto; Gerdol, Marco; De Moro, Gianluca; Scapigliati, Giuseppe

    2013-01-01

    Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique “living fossils”, could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development. PMID:23634199

  3. Cell-specific regulation of a Brassica napus CMS-associated gene by a nuclear restorer with related effects on a floral homeotic gene promoter.

    PubMed

    Geddy, Rachel; Mahé, Laetitia; Brown, Gregory G

    2005-02-01

    Cytoplasmic male sterility (CMS) is a maternally inherited defect in pollen production specified by novel mitochondrial genes. It can be suppressed by nuclear restorer (Rf) genes which normally downregulate expression of a CMS-associated novel mitochondrial gene. Two forms of Brassica napus CMS, nap and pol, are associated with related chimeric genes, orf222 and orf224, respectively. We show that in pol and nap CMS, anther locule development is asynchronous and asymmetric, that one or more locules within each anther may fail to develop entirely and that CMS anthers display polarity in locule development. We show, by in situ hybridization, that orf222 transcripts accumulate in sterile anthers prior to development of morphological differences between CMS and restored stamens, and remain preferentially localized to microsporangia. In fertility-restored anthers, however, orf222 transcript levels remain low throughout development. Some sporogenous and meiotic cells differentiate within CMS anthers and form functional pollen despite retaining high orf222 transcript levels, suggesting that the effect of orf222 expression in blocking pollen development is limited to an early and specific stage. Transcripts of other mitochondrial genes, exemplified by atp6 and cob, and of the nuclear-encoded ATP synthase gamma subunit, accumulate preferentially in the microsporangia of both sterile and fertile anthers. Thus nuclear fertility restoration reduces orf222 transcript levels in a gene and tissue-specific manner. We observe differences between CMS and fertile plants in the timing and patterning of APETALA3 promoter activity that suggest a possible basis for the developmental abnormalities of CMS flowers. PMID:15659093

  4. A deficiency of the homeotic complex of the beetle Tribolium

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  5. Homeotic Evolution in the Mammalia: Diversification of Therian Axial Seriation and the Morphogenetic Basis of Human Origins

    PubMed Central

    Filler, Aaron G.

    2007-01-01

    Background Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale. Methodology/Principal Findings This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1)–quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2)–frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3)–duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4)–emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5)–inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems. Conclusion/Significance Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new “hominiform” clade and suggests a homeotic

  6. Isolation and phylogenetic footprinting analysis of the 5'-regulatory region of the floral homeotic gene OrcPI from Orchis italica (Orchidaceae).

    PubMed

    Aceto, Serena; Cantone, Carmela; Chiaiese, Pasquale; Ruotolo, Gianluca; Sica, Maria; Gaudio, Luciano

    2010-01-01

    The nucleotide sequences of regulatory elements from homologous genes can be strongly divergent. Phylogenetic footprinting, a comparative analysis of noncoding regions, can detect putative transcription factor binding sites (TFBSs) shared among the regulatory regions of 2 or more homologous genes. These conserved motifs have the potential to serve the same regulatory function in distantly related taxa. We isolated the 5'-noncoding region of the OrcPI gene, a MADS-box transcription factor involved in flower development in Orchis italica, using the thermal asymmetric interlaced polymerase chain reaction technique. This region (comprising 1352 bp) induced transient beta-glucuronidase expression in the petal tissue of white Rosa hybrida flowers and represents the 5'-regulatory sequence of the OrcPI gene. Phylogenetic footprinting analysis detected conserved regions within the 5'-regulatory sequence of OrcPI and the homologous regions of Oryza sativa, Lilium regale, and Arabidopsis thaliana. Some of these sequences are known TFBSs described in databases of plant regulatory elements. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the following accession numbers: AF198055 promoter region of the PISTILLATA (PI) gene of A. thaliana; AB094985 cDNA of OrcPI (PI/GLOBOSA [PI/GLO] homologue) of O. italica; AB378089 5'-regulatory region of the OrcPI gene of O. italica; AP008211 putative promoter region of OSMADS2 (PI/GLO homologue) of O. sativa; AP008207 putative promoter region of OSMADS4 (PI/GLO homologue) of O. sativa; and AB158292 putative promoter region of the PI/GLO homologue of L. regale. PMID:19861638

  7. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution

    PubMed Central

    Vicoso, Beatriz; Kaiser, Vera B.; Bachtrog, Doris

    2013-01-01

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes. PMID:23547111

  8. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution.

    PubMed

    Vicoso, Beatriz; Kaiser, Vera B; Bachtrog, Doris

    2013-04-16

    Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes. PMID:23547111

  9. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).

    PubMed

    Huang, Yuping; Chen, Yazhou; Zeng, Baosheng; Wang, Yajun; James, Anthony A; Gurr, Geoff M; Yang, Guang; Lin, Xijian; Huang, Yongping; You, Minsheng

    2016-08-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools. PMID:27318252

  10. A competition mechanism for a homeotic neuron identity transformation in C. elegans.

    PubMed

    Gordon, Patricia M; Hobert, Oliver

    2015-07-27

    Neuron identity transformations occur upon removal of specific regulatory factors in many different cellular contexts, thereby revealing the fundamental principle of alternative cell identity choices made during nervous system development. One common molecular interpretation of such homeotic cell identity transformations is that a regulatory factor has a dual function in activating genes defining one cellular identity and repressing genes that define an alternative identity. We provide evidence for an alternative, competition-based mechanism. We show that the MEC-3 LIM homeodomain protein can outcompete the execution of a neuropeptidergic differentiation program by direct interaction with the UNC-86/Brn3 POU homeodomain protein. MEC-3 thereby prevents UNC-86 from collaborating with the Zn finger transcription factor PAG-3/Gfi to induce peptidergic neuron identity and directs UNC-86 to induce an alternative differentiation program toward a glutamatergic neuronal identity. Homeotic control of neuronal identity programs has implications for the evolution of neuronal cell types. PMID:26096732

  11. Sex chromosome complement regulates expression of mood-related genes

    PubMed Central

    2013-01-01

    Background Studies on major depressive and anxiety disorders suggest dysfunctions in brain corticolimbic circuits, including altered gamma-aminobutyric acid (GABA) and modulatory (serotonin and dopamine) neurotransmission. Interestingly, sexual dimorphisms in GABA, serotonin, and dopamine systems are also reported. Understanding the mechanisms behind these sexual dimorphisms may help unravel the biological bases of the heightened female vulnerability to mood disorders. Here, we investigate the contribution of sex-related factors (sex chromosome complement, developmental gonadal sex, or adult circulating hormones) to frontal cortex expression of selected GABA-, serotonin-, and dopamine-related genes. Methods As gonadal sex is determined by sex chromosome complement, the role of sex chromosomes cannot be investigated individually in humans. Therefore, we used the Four Core Genotypes (FCG) mouse model, in which sex chromosome complement and gonadal sex are artificially decoupled, to examine the expression of 13 GABA-related genes, 6 serotonin- and dopamine-related genes, and 8 associated signal transduction genes under chronic stress conditions. Results were analyzed by three-way ANOVA (sex chromosome complement × gonadal sex × circulating testosterone). A global perspective of gene expression changes was provided by heatmap representation and gene co-expression networks to identify patterns of transcriptional activities related to each main factor. Results We show that under chronic stress conditions, sex chromosome complement influenced GABA/serotonin/dopamine-related gene expression in the frontal cortex, with XY mice consistently having lower gene expression compared to XX mice. Gonadal sex and circulating testosterone exhibited less pronounced, more complex, and variable control over gene expression. Across factors, male conditions were associated with a tightly co-expressed set of signal transduction genes. Conclusions Under chronic stress conditions

  12. Expression profiles for six zebrafish genes during gonadal sex differentiation

    PubMed Central

    Jørgensen, Anne; Morthorst, Jane E; Andersen, Ole; Rasmussen, Lene J; Bjerregaard, Poul

    2008-01-01

    Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high in females (fig alpha and cyp19a1a) was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph) was dmrt1 at 10 dph which indicates involvement of this gene in the early gonadal sex

  13. Vertebrate sex-determining genes play musical chairs.

    PubMed

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. PMID:27291506

  14. Invasion and fixation of sex-reversal genes.

    PubMed

    Vuilleumier, S; Lande, R; VAN Alphen, J J M; Seehausen, O

    2007-05-01

    We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation. PMID:17465902

  15. Novel sex-determining genes in fish and sex chromosome evolution.

    PubMed

    Kikuchi, Kiyoshi; Hamaguchi, Satoshi

    2013-04-01

    Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes. PMID:23335327

  16. Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations

    PubMed Central

    2011-01-01

    Background Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. Results We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. Conclusions We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent. PMID:21548920

  17. Vital Genes That Flank Sex-Lethal, an X-Linked Sex-Determining Gene of DROSOPHILA MELANOGASTER

    PubMed Central

    Nicklas, Janice A.; Cline, Thomas W.

    1983-01-01

    The X-chromosome:autosome balance in D. melanogaster appears to control both sex determination and dosage compensation through effects on a maternally influenced sex-linked gene called Sex-lethal (Sxl; 1-19.2). To facilitate molecular and genetic analysis of Sxl, we attempted to determine the locations of all ethyl methanesulfonate (EMS)-mutable genes vital to both sexes in the region between 6E1 and 7B1. This area includes approximately 1 cM of the genetic map on each side of Sxl and was reported by C. B. Bridges to contain 26 salivary gland polytene chromosome bands. The region appears rather sparsely populated with genes vital to both sexes, since the 122 recessive lethal mutations we recovered fell into only nine complementation groups. From one to 38 alleles of each gene were recovered. There was a preponderance of embryonic lethals in this area, although the lethal periods of loss-of-function mutations included larval, pupal and adult stages as well. Since the screen required that mutations be recessive and lethal to males, our failure to recover new Sxl alleles was the result expected for a gene with a female-specific function. An attempt was made to identify recessive male-specific lethals in this region, but none were found. Precise map positions were determined for eight of the nine vital genes. An interesting feature of the map is the location of Sxl in the middle of a 0.6- to 0.7-cM interval that appears to be devoid of genes vital to both sexes. The genetic location was determined of breakpoints near Sxl for all available chromosome rearrangements. Sxl is most likely located just to the left of band 7A1. We determined the relationship of our EMS-induced mutations in these nine genes to alleles induced by others. From this we conclude that the various genes appear to differ significantly from each other in their relative sensitivity to mutation by EMS vs. X rays. PMID:17246118

  18. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    PubMed

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  19. Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission

    PubMed Central

    Godar, Sean C.; Bortolato, Marco

    2014-01-01

    Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis. PMID:24639636

  20. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes

    PubMed Central

    Müller, Johannes; Scheyer, Torsten M.; Head, Jason J.; Barrett, Paul M.; Werneburg, Ingmar; Ericson, Per G. P.; Pol, Diego; Sánchez-Villagra, Marcelo R.

    2010-01-01

    The development of distinct regions in the amniote vertebral column results from somite formation and Hox gene expression, with the adult morphology displaying remarkable variation among lineages. Mammalian regionalization is reportedly very conservative or even constrained, but there has been no study investigating vertebral count variation across Amniota as a whole, undermining attempts to understand the phylogenetic, ecological, and developmental factors affecting vertebral column variation. Here, we show that the mammalian (synapsid) and reptilian lineages show early in their evolutionary histories clear divergences in axial developmental plasticity, in terms of both regionalization and meristic change, with basal synapsids sharing the conserved axial configuration of crown mammals, and basal reptiles demonstrating the plasticity of extant taxa. We conducted a comprehensive survey of presacral vertebral counts across 436 recent and extinct amniote taxa. Vertebral counts were mapped onto a generalized amniote phylogeny as well as individual ingroup trees, and ancestral states were reconstructed by using squared-change parsimony. We also calculated the relationship between presacral and cervical numbers to infer the relative influence of homeotic effects and meristic changes and found no correlation between somitogenesis and Hox-mediated regionalization. Although conservatism in presacral numbers characterized early synapsid lineages, in some cases reptiles and synapsids exhibit the same developmental innovations in response to similar selective pressures. Conversely, increases in body mass are not coupled with meristic or homeotic changes, but mostly occur in concert with postembryonic somatic growth. Our study highlights the importance of fossils in large-scale investigations of evolutionary developmental processes. PMID:20080660

  1. Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression.

    PubMed

    Dean, Rebecca; Mank, Judith E

    2016-09-01

    Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome. PMID:27501094

  2. On the Effective Size of Populations with Separate Sexes, with Particular Reference to Sex-Linked Genes

    PubMed Central

    Caballero, A.

    1995-01-01

    Inconsistencies between equations for the effective population size of populations with separate sexes obtained by two different approaches are explained. One approach, which is the most common in the literature, is based on the assumption that the sex of the progeny cannot be identified. The second approach incorporates identification of the sexes of both parents and offspring. The approaches lead to identical expressions for effective size under some situations, such as Poisson distributions of offspring numbers. In general, however, the first approach gives incorrect answers, which become particularly severe for sex-linked genes, because then only numbers of daughters of males are relevant. Predictions of the effective size for sex-linked genes are illustrated for different systems of mating. PMID:7713404

  3. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus.

    PubMed

    Lipinska, Agnieszka; Cormier, Alexandre; Luthringer, Rémy; Peters, Akira F; Corre, Erwan; Gachon, Claire M M; Cock, J Mark; Coelho, Susana M

    2015-06-01

    Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology. PMID:25725430

  4. Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus).

    PubMed

    Viñas, Ana; Taboada, Xoana; Vale, Luis; Robledo, Diego; Hermida, Miguel; Vera, Manel; Martínez, Paulino

    2012-10-01

    Production of all-female populations in turbot can increase farmer's benefits since sexual dimorphism in growth in this species is among the highest within marine fish, turbot females reaching commercial size 3-6 months earlier than males. Puberty in males occurs earlier than in females, which additionally slows their growth. Thus, elucidating the mechanisms of sex determination and gonad differentiation is a relevant goal for turbot production. A ZZ/ZW sex determination mechanism has been suggested for this species, and four sex-related quantitative trait loci (QTL) were detected, the major one located in linkage group (LG) 5 and the three minor ones in LG6, LG8, and LG21. In the present work, we carried out a linkage analysis for several sex-related markers: (1) three anonymous sex-associated RAPD and (2) several candidate genes related to sex determination and gonad differentiation in other species (Sox3, Sox6, Sox8, Sox9, Sox17, Sox19, Amh, Dmrta2, Cyp19a, Cyp19b). We focused our attention on their co-localization with the major and minor sex-related QTL trying to approach to the master sex-determining gene of this species. Previously described growth-related QTL were also considered since the association observed between growth and sex determination in fish. Amh, Dmrta2, and one RAPD were located in LG5, while Sox9 and Sox17 (LG21), Cyp19b (LG6), and a second RAPD (LG8) co-mapped with suggestive sex-related QTL, thus supporting further analyses on these genes to elucidate the genetic basis of this relevant trait for turbot farming. PMID:22552957

  5. Sex-specific gonadal and gene expression changes throughout development in fathead minnow

    EPA Science Inventory

    Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, none have characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker t...

  6. The Ontogeny and Evolution of Sex-Biased Gene Expression in Drosophila melanogaster

    PubMed Central

    Perry, Jennifer C.; Harrison, Peter W.; Mank, Judith E.

    2014-01-01

    Sexually dimorphic phenotypes are thought to largely result from sex differences in gene expression, and genes with sex-biased expression have been well characterized in adults of many species. Although most sexual dimorphisms manifest in adults, many result from sex-specific developmental trajectories, implying that juveniles may exhibit significant levels of sex-biased expression. However, it is unclear how much sex-biased expression occurs before reproductive maturity and whether preadult sex-biased genes should exhibit the same evolutionary dynamics observed for adult sex-biased genes. In order to understand the continuity, or lack thereof, and evolutionary dynamics of sex-biased expression throughout the life cycle, we examined sex-biased genes in pre-gonad tissue of two preadult stages and compared them with the adult gonad of Drosophila melanogaster. We found that the majority of the genome is sex-biased at some point in the life cycle, with some genes exhibiting conserved sex-biased expression and others displaying stage-specific sex bias. Our results also reveal a far more complex pattern of evolution for sex-biased genes throughout development. The most rapid evolutionary divergence occurred in genes expressed only in larvae within each sex, compared with continuously expressed genes. In females—but not males—this pattern appeared to be due to relaxed purifying selection in larva-limited genes. Furthermore, genes that retained male bias throughout life evolved more rapidly than stage-specific male-biased genes, due to stronger purifying selection in stage-specific genes. However, female-biased genes that were specific to larvae evolved most rapidly, a pattern that could not be definitively attributed to differences in adaptive evolution or purifying selection, suggesting that pleiotropic constraints on protein-coding sequences can arise when genes are broadly expressed across developmental stages. These results indicate that the signature of sex

  7. Progress Report for DOE DE-FG03-98ER20317 ''Regulation of the floral homeotic gene AGAMOUS'' Current and Final Funding Period: September 1, 2002, to December 31, 2002

    SciTech Connect

    Weigel, D.

    2003-03-11

    OAK-B135 Results obtained during this funding period: (1) Phylogenetic footprinting of AG regulatory sequences Sequences necessary and sufficient for AGAMOUS (AG) expression in the center of Arabidopsis flowers are located in the second intron, which is about 3 kb in size. This intron contains binding sites for two transcription factors, LEAFY (LFY) and WUSCHEL (WUS), which are direct activators of AG. We used the new method of phylogenetic shadowing to identify new regulatory elements. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. (2) Repression of AG by MADS box genes A candidate for repressing AG in the shoot apical meristem has been the MADS box gene FUL, since it is expressed in the shoot apical meristem and since an activated version (FUL:VP16) leads to ectopic AG expression in the shoot apical meristem. However, there is no ectopic AG expression in full single mutants. We therefore started to generate VP16 fusions of several other MADS box genes expressed in the shoot apical meristem, to determine which of these might be candidates for FUL redundant genes. We found that AGL6:VP16 has a similar phenotype as FUL:VP16, suggesting that AGL6 and FUL interact. We are now testing this hypothesis. (3) Two candidate AG regulators, WOW and ULA Because the phylogenetic footprinting project has identified several new candidate regulatory motifs, of which at least one (the CCAATCA motif) has rather strong effects, we had decided to put the analysis of WOW and ULA on hold, and to focus on using the newly identified motifs as tools. We conduct ed yeast one-hybrid screen with two of the conserved motifs, and identified several classes of transcription factors that can interact with them. One of these is encoded by the PAN gene

  8. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    PubMed Central

    Arbeitman, Michelle N.; New, Felicia N.; Fear, Justin M.; Howard, Tiffany S.; Dalton, Justin E.; Graze, Rita M.

    2016-01-01

    Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation. PMID:27172187

  9. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex.

    PubMed

    Arbeitman, Michelle N; New, Felicia N; Fear, Justin M; Howard, Tiffany S; Dalton, Justin E; Graze, Rita M

    2016-01-01

    Sex differences in gene expression have been widely studied in Drosophila melanogaster Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation. PMID:27172187

  10. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1

    PubMed Central

    2013-01-01

    Background Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species. Results We report a 352 kb of contiguous sequence from the sex chromosome of a squamate reptile, Pogona vitticeps, with a ZZ/ZW sex microchromosome system. This contig contains five protein coding genes (oprd1, rcc1, znf91, znf131, znf180), and major families of repetitive sequences with a high number of copies of LTR and non-LTR retrotransposons, including the CR1 and Bov-B LINEs. The two genes, oprd1 and rcc1 are part of a homologous syntenic block, which is conserved among amniotes. While oprd1 and rcc1 have no known function in sex determination or differentiation in amniotes, this homologous syntenic block in mammals and chicken also contains R-spondin 1 (rspo1), the ovarian differentiating gene in mammals. In order to explore the probability that rspo1 is sex determining in dragon lizards, genomic BAC and cDNA clones were mapped using fluorescence in situ hybridisation. Their location on an autosomal microchromosome pair, not on the ZW sex microchromosomes, eliminates rspo1 as a candidate sex determining gene in P. vitticeps. Conclusion Our study has characterized the largest contiguous stretch of physically mapped sex chromosome sequence (352 kb) from a ZZ/ZW lizard species. Although this region represents only a small fraction of the sex chromosomes of P. vitticeps, it has revealed several features typically associated with sex chromosomes including the accumulation of large blocks of repetitive sequences. PMID:24344927

  11. Comparative Transcriptome Analysis Reveals Sex-Biased Gene Expression in Juvenile Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Liu, Yuan; Hui, Min; Cui, Zhaoxia; Luo, Danli; Song, Chengwen; Li, Yingdong; Liu, Lei

    2015-01-01

    Sex-biased genes are considered to account for most of phenotypic differences between males and females. In order to explore the sex-biased gene expression in crab, we performed the whole-body transcriptome analysis in male and female juveniles of the Chinese mitten crab Eriocheir sinensis using next-generation sequencing technology. Of the 23,349 annotated unigenes, 148 were identified as sex-related genes. A total of 29 candidate genes involved in primary sex determination pathways were detected, indicating the sex determination cascade of the mitten crab might be more complex than previously supposed. Differential expression analysis showed 448 differentially expressed genes (DEGs) between the two transcriptomes. Most of DEGs were involved in processes such as metabolism and immunity, and not associated with obvious sexual function. The pathway predominantly enriched for DEGs were related to lysosome, which might reflect the differences in metabolism between males and females. Of the immune DGEs, 18 up-regulated genes in females were humoral immune factors, and eight up-regulated genes in males were pattern recognition receptors, suggesting sex differences of immune defense might exist in the mitten crab. In addition, two reproduction-related genes, vitellogenin and insulin-like androgenic gland factor, were identified to express in both sexes but with significantly higher level in males. Our research provides the first whole-body RNA sequencing of sex-specific transcriptomes for juvenile E. sinensis and will facilitate further studies on molecular mechanisms of crab sexual dimorphism. PMID:26193085

  12. The autoregulatory loop: A common mechanism of regulation of key sex determining genes in insects.

    PubMed

    Sawanth, Suresh Kumar; Gopinath, Gajula; Sambrani, Nagraj; Arunkumar, Kallare P

    2016-06-01

    Sex determination in most insects is structured as a gene cascade, wherein a primary signal is passed through a series of sex-determining genes, culminating in a downstream double-switch known as doublesex that decides the sexual fate of the embryo. From the literature available on sex determination cascades, it becomes apparent that sex determination mechanisms have evolved rapidly. The primary signal that provides the cue to determine the sex of the embryo varies remarkably, not only among taxa, but also within taxa. Furthermore, the upstream key gene in the cascade also varies between species and even among closely related species. The order Insecta alone provides examples of astoundingly complex diversity of upstream key genes in sex determination mechanisms. Besides, unlike key upstream genes, the downstream double-switch gene is alternatively spliced to form functional sex-specific isoforms. This sex-specific splicing is conserved across insect taxa. The genes involved in the sex determination cascade such as Sex-lethal (Sxl) in Drosophila melanogaster, transformer (tra) in many other dipterans, coleopterans and hymenopterans, Feminizer (fem) in Apis mellifera, and IGF-II mRNA-binding protein (Bmimp) in Bombyx mori are reported to be regulated by an autoregulatory positive feedback loop. In this review, by taking examples from various insects, we propose the hypothesis that autoregulatory loop mechanisms of sex determination might be a general strategy. We also discuss the possible reasons for the evolution of autoregulatory loops in sex determination cascades and their impact on binary developmental choices. PMID:27240989

  13. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages.

    PubMed

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer's disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  14. Sex Biased Gene Expression Profiling of Human Brains at Major Developmental Stages

    PubMed Central

    Shi, Lei; Zhang, Zhe; Su, Bing

    2016-01-01

    There are many differences in brain structure and function between males and females. However, how these differences were manifested during development and maintained through adulthood are still unclear. Here we present a time series analyses of genome-wide transcription profiles of the human brain, and we identified genes showing sex biased expression at major developmental stages (prenatal time, early childhood, puberty time and adulthood). We observed a great number of genes (>2,000 genes) showing between-sex expression divergence at all developmental stages with the greatest number (4,164 genes) at puberty time. However, there are little overlap of sex-biased genes among the major developmental stages, an indication of dynamic expression regulation of the sex-biased genes in the brain during development. Notably, the male biased genes are highly enriched for genes involved in neurological and psychiatric disorders like schizophrenia, bipolar disorder, Alzheimer’s disease and autism, while no such pattern was seen for the female-biased genes, suggesting that the differences in brain disorder susceptibility between males and females are likely rooted from the sex-biased gene expression regulation during brain development. Collectively, these analyses reveal an important role of sex biased genes in brain development and neurodevelopmental disorders. PMID:26880485

  15. B-Function Expression in the Flower Center Underlies the Homeotic Phenotype of Lacandonia schismatica (Triuridaceae)[C][W][OA

    PubMed Central

    Álvarez-Buylla, Elena R.; Ambrose, Barbara A.; Flores-Sandoval, Eduardo; Englund, Marie; Garay-Arroyo, Adriana; García-Ponce, Berenice; de la Torre-Bárcena, Eduardo; Espinosa-Matías, Silvia; Martínez, Esteban; Piñeyro-Nelson, Alma; Engström, Peter; Meyerowitz, Elliot M.

    2010-01-01

    Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa. PMID:21119062

  16. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus

    PubMed Central

    McDaniel, Stuart F.; Neubig, Kurt M.; Payton, Adam C.; Quatrano, Ralph S.; Cove, David J.

    2013-01-01

    Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the non-recombining portions of the U and V-chromosomes expanded in at least two events (~0.6 – 1.3 MYA and ~2.8 – 3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on non-recombining portions of the U and V sex chromosomes. PMID:24094335

  17. The seirena B Class Floral Homeotic Mutant of California Poppy (Eschscholzia californica) Reveals a Function of the Enigmatic PI Motif in the Formation of Specific Multimeric MADS Domain Protein Complexes[C][W][OA

    PubMed Central

    Lange, Matthias; Orashakova, Svetlana; Lange, Sabrina; Melzer, Rainer; Theißen, Günter; Smyth, David R.; Becker, Annette

    2013-01-01

    The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class–related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences. PMID:23444328

  18. Sex-Biased Temporal Gene Expression in Male and Female Floral Buds of Seabuckthorn (Hippophae rhamnoides)

    PubMed Central

    Chawla, Aseem; Stobdan, Tsering; Srivastava, Ravi B.; Jaiswal, Varun; Chauhan, Rajinder S.; Kant, Anil

    2015-01-01

    Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn. PMID:25915052

  19. Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless.

    PubMed Central

    Anand, A; Villella, A; Ryner, L C; Carlo, T; Goodwin, S F; Song, H J; Gailey, D A; Morales, A; Hall, J C; Baker, B S; Taylor, B J

    2001-01-01

    A multibranched hierarchy of regulatory genes controls all aspects of somatic sexual development in Drosophila melanogaster. One branch of this hierarchy is headed by the fruitless (fru) gene and functions in the central nervous system, where it is necessary for male courtship behavior as well as the differentiation of a male-specific abdominal structure, the muscle of Lawrence (MOL). A preliminary investigation of several of the mutations described here showed that the fru gene also has a sex-nonspecific vital function. The fru gene produces a complex set of transcripts through the use of four promoters and alternative splicing. Only the primary transcripts produced from the most distal (P1) promoter are sex-specifically spliced under direction of the sex-determination hierarchy. We have analyzed eight new fru mutations, created by X-ray mutagenesis and P-element excision, to try to gain insight into the relationship of specific transcript classes to specific fru functions. Males that lack the P1-derived fru transcripts show a complete absence of sexual behavior, but no other defects besides the loss of the MOL. Both males and females that have reduced levels of transcripts from the P3 promoter develop into adults but frequently die after failing to eclose. Analysis of the morphology and behavior of adult escapers showed that P3-encoded functions are required for the proper differentiation and eversion of imaginal discs. Furthermore, the reduction in the size of the neuromuscular junctions on abdominal muscles in these animals suggests that one of fru's sex-nonspecific functions involves general aspects of neuronal differentiation. In mutants that lack all fru transcripts as well as a small number of adjacent genes, animals die at an early pupal stage, indicating that fru's function is required only during late development. Thus, fru functions both in the sex-determination regulatory hierarchy to control male sexual behavior through sex-specific transcripts and

  20. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    PubMed

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  1. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra

    PubMed Central

    Glauber, Kristine M.; Dana, Catherine E.; Park, Steve S.; Colby, David A.; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A. Richard; Steele, Robert E.

    2013-01-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  2. Sex-Biased Gene Expression during Head Development in a Sexually Dimorphic Stalk-Eyed Fly

    PubMed Central

    Wilkinson, Gerald S.; Johns, Philip M.; Metheny, Jackie D.; Baker, Richard H.

    2013-01-01

    Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually

  3. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    PubMed

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis. PMID:25817071

  4. Assessment of Gene-by-Sex Interaction Effect on Bone Mineral Density

    PubMed Central

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M.; Amin, Najaf; Evangelou, Evangelos; Li, Guo; Minster, Ryan L.; Carless, Melanie A.; Kammerer, Candace M.; Oei, Ling; Zhou, Yanhua; Alonso, Nerea; Dailiana, Zoe; Eriksson, Joel; García-Giralt, Natalia; Giroux, Sylvie; Husted, Lise Bjerre; Khusainova, Rita I.; Koromila, Theodora; Kung, Annie WaiChee; Lewis, Joshua R.; Masi, Laura; Mencej-Bedrac, Simona; Nogues, Xavier; Patel, Millan S.; Prezelj, Janez; Richards, J Brent; Sham, Pak Chung; Spector, Timothy; Vandenput, Liesbeth; Xiao, Su-Mei; Zheng, Hou-Feng; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Frost, Morten; Goltzman, David; González-Macías, Jesús; Karlsson, Magnus; Khusnutdinova, Elza K.; Kollia, Panagoula; Langdahl, Bente Lomholt; Ljunggren, Östen; Lorentzon, Mattias; Marc, Janja; Mellström, Dan; Ohlsson, Claes; Olmos, José M.; Ralston, Stuart H.; Riancho, José A.; Rousseau, François; Urreizti, Roser; Van Hul, Wim; Zarrabeitia, María T.; Castano-Betancourt, Martha; Demissie, Serkalem; Grundberg, Elin; Herrera, Lizbeth; Kwan, Tony; Medina-Gómez, Carolina; Pastinen, Tomi; Sigurdsson, Gunnar; Thorleifsson, Gudmar; vanMeurs, Joyce B.J.; Blangero, John; Hofman, Albert; Liu, Yongmei; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Oostra, Ben A.; Rotter, Jerome I; Stefansson, Kari; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Thorsteinsdottir, Unnur; Tylavsky, Frances A.; Uitterlinden, Andre; Cauley, Jane A.; Harris, Tamara B.; Ioannidis, John P.A.; Psaty, Bruce M.; Robbins, John A; Zillikens, M. Carola; vanDuijn, Cornelia M.; Prince, Richard L.; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P.; Cupples, L. Adrienne; Hsu, Yi-Hsiang

    2012-01-01

    Background Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed eQTL analysis and bioinformatics network analysis. Methods We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS-) and femoral neck (FN-) BMD, in 25,353 individuals from eight cohorts. In a second stage, we followed up the 12 top SNPs (P<1×10−5) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. Results We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 & p-value = 3.0×10−5; female effect = −0.007 & p-value=3.3×10−2) and eleven suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (P<5×10−8) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Conclusion Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found influencing BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. PMID:22692763

  5. Function and evolution of sex determination mechanisms, genes and pathways in insects

    PubMed Central

    Gempe, Tanja; Beye, Martin

    2011-01-01

    Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes – their history and function – in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development. Only a few small-scale changes in existing and duplicated genes are sufficient to generate large differences in sex determination systems. This review summarises recent findings in insects, surveys evidence of how and why sex determination mechanisms can change rapidly and suggests fruitful areas of future research. PMID:21110346

  6. Homologies and homeotic transformation of the theropod 'semilunate' carpal.

    PubMed

    Xu, Xing; Han, Fenglu; Zhao, Qi

    2014-01-01

    The homology of the 'semilunate' carpal, an important structure linking non-avian and avian dinosaurs, has been controversial. Here we describe the morphology of some theropod wrists, demonstrating that the 'semilunate' carpal is not formed by the same carpal elements in all theropods possessing this feature and that the involvement of the lateralmost distal carpal in forming the 'semilunate' carpal of birds is an inheritance from their non-avian theropod ancestors. Optimization of relevant morphological features indicates that these features evolved in an incremental way and the 'semilunate' structure underwent a lateral shift in position during theropod evolution, possibly as a result of selection for foldable wings in birds and their close theropod relatives. We propose that homeotic transformation was involved in the evolution of the 'semilunate' carpal. In combination with developmental data on avian wing digits, this suggests that homeosis played a significant role in theropod hand evolution in general. PMID:25116378

  7. Dominant-and-recessive epistasis in a homeotic mosquito mutant.

    PubMed

    Bhalla, S C

    1976-12-01

    Following selection for 15 generations a pure strain of a homeotic mutant spur was isolated from a Brazilian population of the mosquito Culex pipiens fatigans. Monohybrid crosses showed a 13:3 segregation indicating dominant-and-recessive epistasis for wild-type vs. spur. This implies that a dominant allele at one locus and a recessive at the other interact to produce the mutant phenotype. Dihybrid crosses with linkage group II markers yellow and ruby gave 39:13:9:3 ratios indicating independent segregation. However, the dihybrid cross with linkage group I marker maroon showed a highly significant departure from 39:13:9:3 ratio. Data available indicate that the phenotype spur is controlled by a dominant epistat in linkage group III and a recessive epistat (approximately 31.9 crossover units from maroon) in linkage group I. PMID:1022329

  8. Functional reconstruction of trans regulation of the ultrabithorax promoter by the products of two antagonistic genes, trithorax and polycomb

    SciTech Connect

    Chang, Yuh-Long; King, B.O.; Huang, Der-Hwa

    1995-12-01

    This study examined the expression patterns of several transgenes to identify cis-acting sequences that participate in the regulation of Drosophila homeotic genes. The specification of body segments of Drosophila melanogaster requires the activities of at least eight homeotic genes. 88 refs., 9 figs.

  9. Influence of sex on gene expression in the mouse lacrimal gland.

    PubMed

    Richards, Stephen M; Jensen, Roderick V; Liu, Meng; Sullivan, Benjamin D; Lombardi, Michael J; Rowley, Patricia; Schirra, Frank; Treister, Nathaniel S; Suzuki, Tomo; Steagall, Rebecca J; Yamagami, Hiroko; Sullivan, David A

    2006-01-01

    Significant, sex-associated differences exist in the physiology and pathophysiology of the lacrimal gland. We hypothesize that many of these differences are due to fundamental variations in gene expression. The purpose of this study was to determine the extent to which sex-related differences in gene expression are present in the lacrimal gland. Lacrimal glands were obtained from adult male and female BALB/c mice (n=5-10mice/sex/experiment), pooled according to sex and processed for the isolation of RNA. Samples were analyzed for differentially expressed mRNAs by using Atlas Mouse cDNA Expression Arrays, cDNA amplification techniques, GEM 1 and 2 gene chips, CodeLink bioarrays and quantitative real-time PCR (qPCR) procedures. Quantitative evaluation of Atlas Array gene expression was performed with an image analysis system developed in our laboratory, whereas gene chip data were analyzed with Rosetta Resolver and GeneSifter.Net software. Statistical significance was determined by using Student's t-test. Our results with CodeLink bioarrays show that sex has a significant influence on the expression of over 490 genes in the mouse lacrimal gland. These genes are involved in a wide range of biological processes, molecular functions and cellular components, including such activities as development, growth, transcription, metabolism, signal transduction, transport, receptor activity and protein and nucleic acid binding. The expression of selected genes was confirmed by the use of GEM gene chips and qPCR. Our findings also demonstrate that certain methodological approaches are less useful in attempting to assess the magnitude of sex-associated differences in the lacrimal gland. These results support our hypothesis that sex-related differences in gene expression play a role in the sexual dimorphism of the lacrimal gland. PMID:15979613

  10. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura.

    PubMed

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  11. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura

    PubMed Central

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  12. Genes and sex hormones interaction in neurodevelopmental disorders.

    PubMed

    Romano, Emilia; Cosentino, Livia; Laviola, Giovanni; De Filippis, Bianca

    2016-08-01

    The prevalence, age of onset and symptomatology of many neurodevelopmental disorders strongly differ between genders. This review examines sex biases in human neurodevelopmental disorders and in validated animal models. A focus is made on disorders of well-established genetic origin, such as Rett syndrome, CDKL5-associated disorders, Fragile X and Down syndrome. Autism is also addressed, given its paradigmatic role as a sex-biased neurodevelopmental disorder. Reviewed literature confirms that a complex interaction between genetic factors and sex hormones may underlie the differential susceptibility of genders and may impact the severity of symptoms in most of the analyzed neurodevelopmental disorders. Even though further studies addressing the advantages and disadvantages conferred by biological sex in this class of disorders are needed to disentangle the underlying mechanisms, present findings suggest that modulation of sex steroid-related pathways may represent an innovative approach for these diseases. Much effort is now expected to unravel the potential therapeutic efficacy of drugs targeting sex hormones-related signaling pathways in neurodevelopmental disorders of well-established genetic origin. PMID:26952805

  13. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transformer (tra) is a double-switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and trans...

  14. Meta-analysis of sex differences in gene expression in schizophrenia.

    PubMed

    Qin, Wenyi; Liu, Cong; Sodhi, Monsheel; Lu, Hui

    2016-01-01

    Schizophrenia is a severe psychiatric disorder which influences around 1% of the worldwide population. Differences between male and female patients with schizophrenia have been noted. There is an earlier age of onset in males compared with females with this diagnosis, and in addition, there are differences in symptom profiles between the sexes. The underlying molecular mechanism of sex difference remains unclear. Here we present a comprehensive analysis to reveal the sex differences in gene expression in schizophrenia with stringent statistics criteria. We compiled a data set consisting of 89 male controls, 90 male schizophrenia patients, 35 female controls and 32 female schizophrenia patients from six independent studies of the prefrontal cortex (PFC) in postmortem brain. When we tested for a sex by diagnosis interaction on gene expression, 23 genes were up-regulated and 23 genes were down-regulated in the male group (q-value < 0.05), several genes are related to energy metabolism, while 4 genes are located on sex chromosome. No genes were statistically significant in the female group when multiple testing correction were conducted (q-value <0.05), most likely due to the small sample size. Our protocol and results from the male group provide a starting point for identifying the underlying different mechanism between male and female schizophrenia patients. PMID:26818902

  15. Inter- and intraspecific variation in Drosophila genes with sex-biased expression.

    PubMed

    Müller, Lena; Grath, Sonja; von Heckel, Korbinian; Parsch, John

    2012-01-01

    Genes with sexually dimorphic expression (sex-biased genes) often evolve rapidly and are thought to make an important contribution to reproductive isolation between species. We examined the molecular evolution of sex-biased genes in Drosophila melanogaster and D. ananassae, which represent two independent lineages within the melanogaster group. We find that strong purifying selection limits protein sequence variation within species, but that a considerable fraction of divergence between species can be attributed to positive selection. In D. melanogaster, the proportion of adaptive substitutions between species is greatest for male-biased genes and is especially high for those on the X chromosome. In contrast, male-biased genes do not show unusually high variation within or between populations. A similar pattern is seen at the level of gene expression, where sex-biased genes show high expression divergence between species, but low divergence between populations. In D. ananassae, there is no increased rate of adaptation of male-biased genes, suggesting that the type or strength of selection acting on sex-biased genes differs between lineages. PMID:22315698

  16. Inter- and Intraspecific Variation in Drosophila Genes with Sex-Biased Expression

    PubMed Central

    Müller, Lena; Grath, Sonja; von Heckel, Korbinian; Parsch, John

    2012-01-01

    Genes with sexually dimorphic expression (sex-biased genes) often evolve rapidly and are thought to make an important contribution to reproductive isolation between species. We examined the molecular evolution of sex-biased genes in Drosophila melanogaster and D. ananassae, which represent two independent lineages within the melanogaster group. We find that strong purifying selection limits protein sequence variation within species, but that a considerable fraction of divergence between species can be attributed to positive selection. In D. melanogaster, the proportion of adaptive substitutions between species is greatest for male-biased genes and is especially high for those on the X chromosome. In contrast, male-biased genes do not show unusually high variation within or between populations. A similar pattern is seen at the level of gene expression, where sex-biased genes show high expression divergence between species, but low divergence between populations. In D. ananassae, there is no increased rate of adaptation of male-biased genes, suggesting that the type or strength of selection acting on sex-biased genes differs between lineages. PMID:22315698

  17. Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes.

    PubMed Central

    Gaudet, J; VanderElst, I; Spence, A M

    1996-01-01

    The fem-1 gene of C. elegans is one of three genes required for all aspects of male development in the nematode. Current models of sex determination propose that the products of the fem genes act in a novel signal-transduction pathway and that their activity is regulated primarily at the post-translational level in somatic tissues. We analyzed the expression of fem-1 to determine whether it revealed any additional levels of regulation. Both XX hermaphrodites and XO males express fem-1 at approximately constant levels throughout development. Somatic tissues in hermaphrodites adopt female fates, but they nonetheless express fem-1 mRNA and FEM-1 protein, suggesting that the regulation of fem-1 activity is post-transcriptional and probably post-translational. A compact promoter directs functional expression of fem-1 transgenes, as assayed by their masculinizing activity in fem-1 mutants. Activity also requires any two or more introns, suggesting that splicing may enhance fem-1 expression. The minimal noncoding sequences required for activity of fem-1 transgenes suffice to direct expression of a fem-1::lacZ reporter gene in all somatic tissues in both sexes. Many fem-1 transgenes, including those that rescue male somatic development in fem-1 mutants, paradoxically feminize the germline. We suggest that they do so by interfering with the germline expression of the endogenous fem-1 gene. Images PMID:8862524

  18. Cell-Autonomous Sex Differences in Gene Expression in Chicken Bone Marrow–Derived Macrophages

    PubMed Central

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A.; Vervelde, Lonneke; McBride, Derek; Sang, Helen M.; Clinton, Mike

    2015-01-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome–specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN–responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes. PMID:25637020

  19. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages.

    PubMed

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A; Vervelde, Lonneke; McBride, Derek; Sang, Helen M; Clinton, Mike; Hume, David A

    2015-03-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome-specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN-responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes. PMID:25637020

  20. Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila.

    PubMed Central

    Bhadra, U; Pal-Bhadra, M; Birchler, J A

    2000-01-01

    The evolution of sex determination mechanisms is often accompanied by reduction in dosage of genes on a whole chromosome. Under these circumstances, negatively acting regulatory genes would tend to double the expression of the genome, which produces compensation of the single-sex chromosome and increases autosomal gene expression. Previous work has suggested that to reduce the autosomal expression to the female level, these dosage effects are modified by a chromatin complex specific to males, which sequesters a histone acetylase to the X. The reduced autosomal histone 4 lysine 16 (H4Lys16) acetylation results in lowered autosomal expression, while the higher acetylation on the X is mitigated by the male-specific lethal complex, preventing overexpression. In this report, we examine how mutations in the principal sex determination gene, Sex lethal (Sxl), impact the H4 acetylation and gene expression on both the X and autosomes. When Sxl expression is missing in females, we find that the sequestration occurs concordantly with reductions in autosomal H4Lys16 acetylation and gene expression on the whole. When Sxl is ectopically expressed in Sxl(M) mutant males, the sequestration is disrupted, leading to an increase in autosomal H4Lys16 acetylation and overall gene expression. In both cases we find relatively little effect upon X chromosomal gene expression. PMID:10835396

  1. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    PubMed Central

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  2. Associations between Serum Sex Hormone Concentrations and Whole Blood Gene Expression Profiles in the General Population

    PubMed Central

    Homuth, Georg; Steil, Leif; Völker, Uwe; Völzke, Henry; Keevil, Brian G.; Nauck, Matthias; Wallaschofski, Henri

    2015-01-01

    Background Despite observational evidence from epidemiological and clinical studies associating sex hormones with various cardiometabolic risk factors or diseases, pathophysiological explanations are sparse to date. To reveal putative functional insights, we analyzed associations between sex hormone levels and whole blood gene expression profiles. Methods We used data of 991 individuals from the population-based Study of Health in Pomerania (SHIP-TREND) with whole blood gene expression levels determined by array-based transcriptional profiling and serum concentrations of total testosterone (TT), sex hormone-binding globulin (SHBG), free testosterone (free T), dehydroepiandrosterone sulfate (DHEAS), androstenedione (AD), estradiol (E2), and estrone (E1) measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay. Associations between sex hormone concentrations and gene expression profiles were analyzed using sex-specific regression models adjusted for age, body mass index, and technical covariables. Results In men, positive correlations were detected between AD and DDIT4 mRNA levels, as well as between SHBG and the mRNA levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B. No additional significant associations were observed. Conclusions Besides the associations between AD and DDIT4 expression and SHBG and the transcript levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B, the present study did not indicate any association between sex hormone concentrations and whole blood gene expression profiles in men and women from the general population. PMID:26001193

  3. Evolution in the Fast Lane: Rapidly Evolving Sex-Related Genes in Drosophila

    PubMed Central

    Haerty, Wilfried; Jagadeeshan, Santosh; Kulathinal, Rob J.; Wong, Alex; Ravi Ram, Kristipati; Sirot, Laura K.; Levesque, Lisa; Artieri, Carlo G.; Wolfner, Mariana F.; Civetta, Alberto; Singh, Rama S.

    2007-01-01

    A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence. PMID:18039869

  4. Gene-gene and gene-sex epistatic interactions of MiR146a, IRF5, IKZF1, ETS1 and IL21 in systemic lupus erythematosus.

    PubMed

    Leng, Rui-Xue; Wang, Wei; Cen, Han; Zhou, Mo; Feng, Chen-Chen; Zhu, Yan; Yang, Xiao-Ke; Yang, Mei; Zhai, Yu; Li, Bao-Zhu; Wang, Xiao-Song; Li, Rui; Chen, Gui-Mei; Chen, Hong; Pan, Hai-Feng; Ye, Dong-Qing

    2012-01-01

    Several confirmed genetic susceptibility loci involved in the interferon signaling and Th17/B cell response for SLE in Chinese Han populations have been described. Available data also indicate that sex-specific genetic differences contribute to SLE susceptibility. The aim of this study was to test for gene-gene/gene-sex epistasis (interactions) in these known lupus susceptibility loci. Six single-nucleotide polymorphisms (SNPs) in MiR146a, IRF5, IKZF1, ETS1 and IL21 were genotyped by Sequenom MassArray system. A total of 1,825 subjects (858 SLE patients and 967 controls) were included in the final analysis. Epistasis was tested by additive model, multiplicative model and multifactor dimensionality reduction (MDR) method. Additive interaction analysis revealed interactions between IRF5 and IKZF1 (OR 2.26, 95% CI 1.48-3.44 [P = 1.21×10(4)]). A similar tendency was also observed between IL21 and ETS1 by parametric methods. In addition, multiple high dimensional gene-gene or gene-sex interactions (three-and four-way) were identified by MDR analysis. Our study identified novel gene-gene/gene-sex interactions in lupus. Furthermore, these findings highlight sex, interferon pathway, and Th17/B cells as important contributors to the pathogenesis of SLE. PMID:23236436

  5. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  6. Sex-based differences in gene expression in hippocampus following postnatal lead exposure

    SciTech Connect

    Schneider, J.S. Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-10-15

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning.Blood lead levels were 26.7 {+-} 2.1 {mu}g/dl and 27.1 {+-} 1.7 {mu}g/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression of a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. - Highlights: > Postnatal lead exposure has a significant effect on hippocampal gene expression patterns. > At least one set of genes was affected in opposite directions in males and females. > Differentially expressed genes were associated with diverse biological pathways.

  7. Disentangling the relationship between sex-biased gene expression and X-linkage.

    PubMed

    Meisel, Richard P; Malone, John H; Clark, Andrew G

    2012-07-01

    X chromosomes are preferentially transmitted through females, which may favor the accumulation of X-linked alleles/genes with female-beneficial effects. Numerous studies have shown that genes with sex-biased expression are under- or over-represented on the X chromosomes of a wide variety of organisms. The patterns, however, vary between different animal species, and the causes of these differences are unresolved. Additionally, genes with sex-biased expression tend to be narrowly expressed in a limited number of tissues, and narrowly expressed genes are also non-randomly X-linked in a taxon-specific manner. It is therefore unclear whether the unique gene content of the X chromosome is the result of selection on genes with sex-biased expression, narrowly expressed genes, or some combination of the two. To address this problem, we measured sex-biased expression in multiple Drosophila species and at different developmental time points. These data were combined with available expression measurements from Drosophila melanogaster and mouse to reconcile the inconsistencies in X-chromosome content among taxa. Our results suggest that most of the differences between Drosophila and mammals are confounded by disparate data collection/analysis approaches as well as the correlation between sex bias and expression breadth. Both the Drosophila and mouse X chromosomes harbor an excess of genes with female-biased expression after controlling for the confounding factors, suggesting that the asymmetrical transmission of the X chromosome favors the accumulation of female-beneficial mutations in X-linked genes. However, some taxon-specific patterns remain, and we provide evidence that these are in part a consequence of constraints imposed by the dosage compensation mechanism in Drosophila. PMID:22499666

  8. Sex-biased gene flow among elk in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    , Brian K. Hand; , Shanyuan Chen; , N. Anderson; , A. Beja-Pereira; Cross, Paul C.; , M. Ebinger; , H. Edwards; , R.A. Garrott; , M.D. Kardos; Kauffman, Matthew J.; , E.L. Landguth; , A. Middleton; , B. Scurlock; , P.J. White; , P. Zager; , M.K. Schwartz; , G. Luikart

    2014-01-01

    We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel’s r = 0.274, P = 0.168). Large mitochondrial DNA genetic distances (e.g., FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species

  9. Complete Dosage Compensation and Sex-Biased Gene Expression in the Moth Manduca sexta

    PubMed Central

    Smith, Gilbert; Chen, Yun-Ru; Blissard, Gary W.; Briscoe, Adriana D.

    2014-01-01

    Sex chromosome dosage compensation balances homogametic sex chromosome expression with autosomal expression in the heterogametic sex, leading to sex chromosome expression parity between the sexes. If compensation is incomplete, this can lead to expression imbalance and sex-biased gene expression. Recent work has uncovered an intriguing and variable pattern of dosage compensation across species that includes a lack of complete dosage compensation in ZW species compared with XY species. This has led to the hypothesis that ZW species do not require complete compensation or that complete compensation would negatively affect their fitness. To date, only one study, a study of the moth Bombyx mori, has discovered evidence for complete dosage compensation in a ZW species. We examined another moth species, Manduca sexta, using high-throughput sequencing to survey gene expression in the head tissue of males and females. We found dosage compensation to be complete in M. sexta with average expression between the Z chromosome in males and females being equal. When genes expressed at very low levels are removed by filtering, we found that average autosome expression was highly similar to average Z expression, suggesting that the majority of genes in M. sexta are completely dosage compensated. Further, this compensation was accompanied by sex-specific gene expression associated with important sexually dimorphic traits. We suggest that complete dosage compensation in ZW species might be more common than previously appreciated and linked to additional selective processes, such as sexual selection. More ZW and lepidopteran species should now be examined in a phylogenetic framework, to understand the evolution of dosage compensation. PMID:24558255

  10. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss).

    PubMed

    Xu, Gefeng; Huang, Tianqing; Jin, Xian; Cui, Cunhe; Li, Depeng; Sun, Cong; Han, Ying; Mu, Zhenbo

    2016-02-01

    In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal. PMID:26373423

  11. Sex-biased gene expression and evolution of the x chromosome in nematodes.

    PubMed

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-07-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  12. Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes

    PubMed Central

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-01-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno’s hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  13. Prenatal sex determination in suspicious cases of X-linked recessive diseases by the amelogenin gene

    PubMed Central

    Rahimi, Amir Abbas; Shahhosseiny, Mohammad Hassan; Ahangari, Ghasem; Izadi Mobarakeh, Jalal

    2014-01-01

    Objective(s): To determine the fetal discernment in suspected cases of sex linked recessive disease in the first trimester of pregnancy. Materials and Methods: After collection of 100 Chorionic Villi samples, the DNAs were extracted and baby gender was determined. Meanwhile, after increasing the sensitivity, the system was able to detect the sex of each cell which was obtained by biopsy. Results: Early fetal gender of 100 Chorionic Villi samples were assessed by PCR. After increasing sensitivity of the assay, the sexes in 13 fetuses that were in different cellular stages were detected. Morover, sexes were detected in two unfertilized and one fertilized ovum but without any division. Conclusion: Sex detection of fetus before delivery in the first trimester of pregnancy, will prevent babies with abnormalities being born. It can also be used in detection of recessive sex related diseases in In Vitro Fertilization cases for sex detection and to transfer female fetus to the mother. Our optimized molecular detection system was designed on the basis of amelogenin gene, which can determine the sex in blood, chorionic villi, and single cell in vitro fertilization with high sensitivity and specificity. PMID:24711898

  14. Gene-gene and gene-sex epistatic interactions of DNMT1, DNMT3A and DNMT3B in autoimmune thyroid disease.

    PubMed

    Cai, Tian-Tian; Zhang, Jian; Wang, Xuan; Song, Rong-Hua; Qin, Qiu; Muhali, Fatuma-Said; Zhou, Jiao-Zhen; Xu, Jian; Zhang, Jin-An

    2016-07-30

    The aim of this study was to investigate the associations of DNA methyltransferases (DNMTs) polymorphisms with susceptibility to autoimmune thyroid diseases (AITDs) and to test gene-gene/gene-sex epistasis interactions. Eight single-nucleotide polymorphisms (SNPs) in DNMT1, DNMT3A and DNMT3B were selected and genotyped by multiplex polymerase chain reaction combined with ligase detection reaction method (PCR-LDR). A total of 685 Graves' disease (GD) patients, 353 Hashimoto's thyroiditis (HT) patients and 909 healthy controls were included in the final analysis. Epistasis was tested by additive model, multiplicative model and general multifactor dimensionality reduction (general MDR). Rs2424913 (DNMT3B) and rs2228611 (DNMT1) were associated with susceptibility to AITD and GD in the dominant and overdominant model, respectively (rs2424913: P=0.009 for AITD, P=0.0041 for GD; rs2228611: P=0.035 for AITD, P=0.043 for GD). Multiplicative and multiple high dimensional gene-gene or gene-sex interactions were also observed in this study. We have found evidence for a potential role of rs2424913 (DNMT3B) and rs2228611 (DNMT1) in AITD susceptibility and identified novel gene-gene/gene-sex interactions in AITD. Our study may highlight sex and genes of DNMTs family as contributors to the pathogenesis of AITD. PMID:27237591

  15. Targeted Deletion of Btg1 and Btg2 Results in Homeotic Transformation of the Axial Skeleton

    PubMed Central

    van Opzeeland, Fred; Tirone, Felice; Hoogerbrugge, Peter M.; Van Leeuwen, Frank N.; Scheijen, Blanca

    2015-01-01

    Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have been shown to modulate the function of different transcriptional regulators, including Hox and Smad transcription factors. In this study, we examined the in vivo role of the mouse Btg1 and Btg2 genes in specifying the regional identity of the axial skeleton. Therefore, we examined the phenotype of Btg1 and Btg2 single knockout mice, as well as novel generated Btg1-/-;Btg2-/- double knockout mice, which were viable, but displayed a non-mendelian inheritance and smaller litter size. We observed both unique and overlapping phenotypes reminiscent of homeotic transformation along the anterior-posterior axis in the single and combined Btg1 and Btg2 knockout animals. Both Btg1-/- and Btg2-/- mice displayed partial posterior transformation of the seventh cervical vertebra, which was more pronounced in Btg1-/-;Btg2-/- mice, demonstrating that Btg1 and Btg2 act in synergy. Loss of Btg2, but not Btg1, was sufficient for complete posterior transformation of the thirteenth thoracic vertebra to the first lumbar vertebra. Moreover, Btg2-/- animals displayed complete posterior transformation of the sixth lumbar vertebra to the first sacral vertebra, which was only partially present at a low frequency in Btg1-/- mice. The Btg1-/-;Btg2-/- animals showed an even stronger phenotype, with L5 to S1 transformation. Together, these data show that both Btg1 and Btg2 are required for normal vertebral patterning of the axial skeleton, but each gene contributes differently in specifying the identity along the anterior-posterior axis of the skeleton. PMID:26218146

  16. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish.

    PubMed

    Sharma, Prakash; Tang, Song; Mayer, Gregory D; Patiño, Reynaldo

    2016-09-01

    Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2nM), goitrogen [methimazole (MZ), 0.15mM], MZ (0.15mM) and T4 (2nM) (rescue treatment), or reconstituted water (control) from 3 to 33days postfertilization (dpf) and maintained in control water until 45dpf. Whole fish were collected during early (25dpf) and late (45dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45dpf and, unexpectedly, reduced expression of dmrt1 at 45dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its "feminizing" activity on gonadal sex is not permanent. PMID:27255368

  17. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish

    USGS Publications Warehouse

    Sharma, Prakash; Tang, Song; Mayer, Gregory D.; Patino, Reynaldo

    2016-01-01

    Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2 nM), goitrogen [methimazole (MZ), 0.15 mM], MZ (0.15 mM) and T4 (2 nM) (rescue treatment), or reconstituted water (control) from 3 to 33 days postfertilization (dpf) and maintained in control water until 45 dpf. Whole fish were collected during early (25 dpf) and late (45 dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45 dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45 dpf and, unexpectedly, reduced expression of dmrt1 at 45 dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45 dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25 dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its “feminizing” activity on gonadal

  18. Imperfect Genes, Fisherian Mutation and the Evolution of Sex

    PubMed Central

    Peck, J. R.; Barreau, G.; Heath, S. C.

    1997-01-01

    In this paper we present a mathematical model of mutation and selection that allows for the coexistence of multiple alleles at a locus with very small selective differences between alleles. The model also allows for the determination of fitness by multiple loci. Models of this sort are biologically plausible. However, some previous attempts to construct similar models have assumed that all mutations produce a decrease in fitness, and this has led to a tendency for the average fitness of population members to decline when population numbers are finite. In our model we incorporate some of the ideas of R. A. FISHER, so that both deleterious and beneficial mutations are possible. As a result, average fitness tends to approach a stationary distribution. We have used computer simulation methods to apply the Fisherian mutation model to the problem of the evolution of sex and recombination. The results suggest that sex and recombination can provide very large benefits in terms of average fitness. The results also suggest that obligately sexual species will win ecological competitions with species that produce a substantial fraction of their offspring asexually, so long as the number of sites under selection within the genomes of the competing species is not too small and the population sizes are not too large. Our model focuses on fertility selection in an hermaphroditic plant. However, the results are likely to generalize to a wide variety of other situations as well. PMID:9093868

  19. An apparent excess of sex- and reproduction-related genes on the human X chromosome.

    PubMed Central

    Saifi, G M; Chandra, H S

    1999-01-01

    We describe here the results of a search of Mendelian inheritance in man, GENDIAG and other sources which suggest that, in comparison with autosomes 1, 2, 3, 4 and 11, the X chromosome may contain a significantly higher number of sex- and reproduction-related (SRR) genes. A similar comparison between X-linked entries and a subset of randomly chosen entries from the remaining autosomes also indicates an excess of genes on the X chromosome with one or more mutations affecting sex determination (e.g. DAX1), sexual differentiation (e.g. androgen receptor) or reproduction (e.g. POF1). A possible reason for disproportionate occurrence of such genes on the X chromosome could be that, during evolution, the 'choice' of a particular pair of homomorphic chromosomes for specialization as sex chromosomes may be related to the number of such genes initially present in it or, since sex determination and sexual dimorphism are often gene dose-dependent processes, the number of such genes necessary to be regulated in a dose-dependent manner. Further analysis of these data shows that XAR, the region which has been added on to the short arm of the X chromosome subsequent to eutherian-marsupial divergence, has nearly as high a proportion of SRR genes as XCR, the conserved region of the X chromosome. These observations are consistent with current hypotheses on the evolution of sexually antagonistic traits on sex chromosomes and suggest that both XCR and XAR may have accumulated SRR traits relatively rapidly because of X linkage. PMID:10097393

  20. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia.

    PubMed

    Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan

    2014-01-01

    Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. PMID:25199961

  1. Sex-Based Differences in Gene Expression in Hippocampus Following Postnatal Lead Exposure

    PubMed Central

    Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R.

    2011-01-01

    The influence of sex as an effect modifier of childhood lead poisoning has received little systematic attention. Considering the paucity of information available concerning the interactive effects of lead and sex on the brain, the current study examined the interactive effects of lead and sex on gene expression patterns in the hippocampus, a structure involved in learning and memory. Male or female rats were fed either 1500 ppm lead-containing chow or control chow for 30 days beginning at weaning. Blood lead levels were 26.7 ± 2.1 μg/dl and 27.1 ± 1.7 μg/dl for females and males, respectively. The expression of 175 unique genes was differentially regulated between control male and female rats. A total of 167 unique genes were differentially expressed in response to lead in either males or females. Lead exposure had a significant effect without a significant difference between male and female responses in 77 of these genes. In another set of 71 genes, there were significant differences in male vs. female response. A third set of 30 genes was differentially expressed in opposite directions in males vs. females, with the majority of genes expressed at a lower level in females than in males. Highly differentially expressed genes in males and females following lead exposure were associated with diverse biological pathways and functions. These results show that a brief exposure to lead produced significant changes in expression a variety of genes in the hippocampus and that the response of the brain to a given lead exposure may vary depending on sex. PMID:21864555

  2. Sex Differences in Spatial Ability: The X-Linked Gene Theory.

    ERIC Educational Resources Information Center

    Blatter, Patricia

    1982-01-01

    Among the many theories attempting to explain sex differences in spatial ability, one of the most highly researched is the X-linked recessive gene theory. This is a review of the major research done on that theory and shows the conflicting nature of the results. (Author)

  3. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    PubMed

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  4. Influence of Sex on Basal and Dickkopf-1 Regulated Gene Expression in the Bovine Morula

    PubMed Central

    Denicol, Anna C.; Leão, Beatriz C. S.; Dobbs, Kyle B.; Mingoti, Gisele Z.; Hansen, Peter J.

    2015-01-01

    Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression

  5. Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes

    PubMed Central

    Jiang, Xiaofang; Biedler, James K.; Qi, Yumin; Hall, Andrew Brantley; Tu, Zhijian

    2015-01-01

    Complete dosage compensation refers to hyperexpression of the entire X or Z chromosome in organisms with heterogametic sex chromosomes (XY male or ZW female) in order to compensate for having only one copy of the X or Z chromosome. Recent analyses suggest that complete dosage compensation, as in Drosophila melanogaster, may not be the norm. There has been no systematic study focusing on dosage compensation in mosquitoes. However, analysis of dosage compensation in Anopheles mosquitoes provides opportunities for evolutionary insights, as the X chromosome of Anopheles and that of its Dipteran relative, D. melanogaster formed independently from the same ancestral chromosome. Furthermore, Culicinae mosquitoes, including the Aedes genus, have homomorphic sex-determining chromosomes, negating the need for dosage compensation. Thus, Culicinae genes provide a rare phylogenetic context to investigate dosage compensation in Anopheles mosquitoes. Here, we performed RNA-seq analysis of male and female samples of the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Autosomal and X-linked genes in An. stephensi showed very similar levels of expression in both males and females, indicating complete dosage compensation. The uniformity of average expression levels of autosomal and X-linked genes remained when An. stephensi gene expression was normalized by that of their Ae. aegypti orthologs, strengthening the finding of complete dosage compensation in Anopheles. In addition, we comparatively analyzed the differentially expressed genes between adult males and adult females in both species, investigated sex-biased gene chromosomal distribution patterns in An. stephensi and provided three examples where gene duplications may have enabled the acquisition of sex-specific expression during mosquito evolution. PMID:26078263

  6. Sex Bias and Maternal Contribution to Gene Expression Divergence in Drosophila Blastoderm Embryos

    PubMed Central

    Paris, Mathilde; Villalta, Jacqueline E.; Eisen, Michael B.; Lott, Susan E.

    2015-01-01

    Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no “faster-X” effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates. PMID:26485701

  7. The candidate sex-reversing DAX1 gene is autosomal in marsupials: Implications for the evolution of sex determination in mammals

    SciTech Connect

    Pask, A.; Toder, R.; Wilcox, S.A.

    1997-05-01

    The human X-linked DAX1 gene was cloned from the region of the short arm of the human X found in duplicate in sex-reversed X{sub dup}Y females. DAX1 is suggested to be required for ovarian differentiation and to play an important role in mammalian sex determination or differentiation pathways. Its proposed dose-dependent effect on sexual development suggests that DAX1 could represent an evolutionary link with an ancestral sex-determining mechanism that depended on the dosage of an X-linked gene. Furthermore, DAX1 could also represent the putative X-linked switch gene, which independently controls sexual dimorphisms in marsupial mammals in an X-dose-dependent manner. If DAX1 has a present role in marsupial sexual differentiation or had an ancestral role in mammalian sex determination, it would be expected to lie on the marsupial X chromosome, despite the autosomal localization of other human Xp genes. We therefore cloned and mapped the DAX1 gene in the tammar wallaby (Macropus eugenii). DAX1 was located on wallaby chromosome 5p near other human Xp genes, indicating that it was originally autosomal and that it is not involved in X-linked dose-dependent sex determination in an ancestral mammal nor in marsupial sexual differentiation. 28 refs., 4 figs.

  8. Differential Gene Expression across Breed and Sex in Commercial Pigs Administered Fenbendazole and Flunixin Meglumine

    PubMed Central

    Howard, Jeremy T.; O’Nan, Audrey T.; Maltecca, Christian; Baynes, Ronald E.; Ashwell, Melissa S.

    2015-01-01

    Characterizing the variability in transcript levels across breeds and sex in swine for genes that play a role in drug metabolism may shed light on breed and sex differences in drug metabolism. The objective of the study is to determine if there is heterogeneity between swine breeds and sex in transcript levels for genes previously shown to play a role in drug metabolism for animals administered flunixin meglumine or fenbendazole. Crossbred nursery female and castrated male pigs (n = 169) spread across 5 groups were utilized. Sires (n = 15) of the pigs were purebred Duroc, Landrace, Yorkshire or Hampshire boars mated to a common sow population. Animals were randomly placed into the following treatments: no drug (control), flunixin meglumine, or fenbendazole. One hour after the second dosing, animals were sacrificed and liver samples collected. Quantitative Real-Time PCR was used to measure liver gene expression of the following genes: SULT1A1, ABCB1, CYP1A2, CYP2E1, CYP3A22 and CYP3A29. The control animals were used to investigate baseline transcript level differences across breed and sex. Post drug administration transcript differences across breed and sex were investigated by comparing animals administered the drug to the controls. Contrasts to determine fold change were constructed from a model that included fixed and random effects within each drug. Significant (P-value <0.007) basal transcript differences were found across breeds for SULT1A1, CYP3A29 and CYP3A22. Across drugs, significant (P-value <0.0038) transcript differences existed between animals given a drug and controls across breeds and sex for ABCB1, PS and CYP1A2. Significant (P <0.0038) transcript differences across breeds were found for CYP2E1 and SULT1A1 for flunixin meglumine and fenbendazole, respectively. The current analysis found transcript level differences across swine breeds and sex for multiple genes, which provides greater insight into the relationship between flunixin meglumine and

  9. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes

    PubMed Central

    Roelofs, Wendell; Glover, Thomas; Tang, Xian-Han; Sreng, Isabelle; Robbins, Paul; Eckenrode, Charles; Löfstedt, Christer; Hansson, Bill S.; Bengtsson, Bengt O.

    1987-01-01

    Inheritance patterns for sex pheromone production in females, pheromone detection on male antennal olfactory receptor cells, and male pheromone behavioral responses were studied in pheromonally distinct populations of European corn borers from New York State. Gas chromatographic analyses of pheromone glands, single sensillum recordings, and flight tunnel behavioral analyses were carried out on progeny from reciprocal crosses, as well as on progeny from subsequent F2 and maternal and paternal backcrosses. The data show that the production of the female pheromone blend primarily is controlled by a single autosomal factor, that pheromone-responding olfactory cells are controlled by another autosomal factor, and that behavioral response to pheromone is controlled by a sex-linked gene. F1 males were found to possess olfactory receptor cells that give spike amplitudes to the two pheromone isomers that are intermediate to those of the high and low amplitude cells of the parent populations. Fifty-five percent of the F1 males tested responded fully to pheromone sources ranging from the hybrid (E)-11-tetradecenyl acetate/(Z)-11-tetradecenyl acetate (E/Z) molar blend of 65:35 to the E/Z molar blend of 3:97 for the Z morph parents, but very few responded to the E/Z molar blend of 99:1 for the E morph parents. Data on the inheritance patterns support speculation that the Z morph is the ancestral and that the E morph is the derived European corn borer population. PMID:16593886

  10. Breed, sex and anatomical location-specific gene expression profiling of the porcine skeletal muscles

    PubMed Central

    2013-01-01

    Background Skeletal muscle is one of the most important economic traits in agricultural animals, especially in pigs. In the modern pig industry, lean type pigs have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with fatty type pigs, making these different breeds an ideal model for comparative studies. Results Here, we present comprehensive gene expression profiling for the white (longissimus dorsi muscle) and the red (psoas major muscle) skeletal muscles among male and female fatty Rongchang, feral Tibetan and lean Landrace pigs, using a microarray approach. We identified differentially expressed genes that may be associated the phenotypic differences of porcine muscles among the breeds, between the sexes and the anatomical locations. We also used a clustering method to identify sets of functionally coexpressed genes that are linked to different muscle phenotypes. We showed that, compared with the white muscles, which primarily modulate metabolic processes, the red muscles show a tendency to be a risk factor for inflammation and immune-related disorders. Conclusions This analysis presents breed-, sex- and anatomical location-specific gene expression profiles and further identified genes that may be associated with the phenotypic differences in porcine muscles among breeds, between the sexes and the anatomical locations. PMID:23768211

  11. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes

    PubMed Central

    Soh, Y.Q. Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G.; Graves, Tina; Minx, Patrick J.; Fulton, Robert S.; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L.; Rozen, Steve; Hughes, Jennifer F.; Owens, Elaine; Womack, James E.; Murphy, William J.; Cao, Qing; de Jong, Pieter; Warren, Wesley C.; Wilson, Richard K.; Skaletsky, Helen; Page, David C.

    2014-01-01

    Summary We sequenced the MSY (Male-Specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only two percent of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 50 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs, but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  12. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes.

    PubMed

    Soh, Y Q Shirleen; Alföldi, Jessica; Pyntikova, Tatyana; Brown, Laura G; Graves, Tina; Minx, Patrick J; Fulton, Robert S; Kremitzki, Colin; Koutseva, Natalia; Mueller, Jacob L; Rozen, Steve; Hughes, Jennifer F; Owens, Elaine; Womack, James E; Murphy, William J; Cao, Qing; de Jong, Pieter; Warren, Wesley C; Wilson, Richard K; Skaletsky, Helen; Page, David C

    2014-11-01

    We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism. PMID:25417157

  13. Sex matters! Interactions of sex and polymorphisms of a cholinergic receptor gene (CHRNA5) modulate response speed.

    PubMed

    Schneider, Katja K; Hüle, Lilian; Schote, Andrea B; Meyer, Jobst; Frings, Christian

    2015-03-01

    Acetylcholine influences the speed of information processing. We examined the effect of the rs3841324 polymorphism (L/S) and the rs16969968 (G/A) polymorphism on response speed in the Stroop task and the Negative priming task. These polymorphisms are located in the gene that encodes the nicotinic acetylcholine receptor α5-subunit (CHRNA5). Male carriers of the rs3841324 S/S genotype and the rs16969968 G/G genotype were faster than male carriers of at least one L allele or one A allele. In contrast, female carriers of the rs3841324 S/S genotype and the rs16969968 G/G genotype were slower than female carriers of at least one L allele or one A allele. These results indicate that the minor alleles of both polymorphisms modulate response speed in a sex-dependent, diametrically opposed manner. PMID:25674902

  14. Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley.

    PubMed

    Ma, Jian; Gao, Shang; Jiang, Qian-Tao; Yang, Qiang; Sun, Min; Wang, Ji-Rui; Qi, Peng-Fei; Liu, Ya-Xi; Li, Wei; Pu, Zhi-En; Lan, Xiu-Jin; Wei, Yu-Ming; Liu, Chunji; Zheng, You-Liang

    2016-06-01

    Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development. PMID:27154345

  15. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.

    PubMed

    Bermejo-Alvarez, P; Rizos, D; Rath, D; Lonergan, P; Gutierrez-Adan, A

    2010-02-23

    Although genetically identical for autosomal Chrs (Chr), male and female preimplantation embryos could display sex-specific transcriptional regulation. To illustrate sex-specific differences at the mRNA level, we compared gene-expression patterns between male and female blastocysts by DNA microarray comparison of nine groups of 60 bovine in vitro-produced blastocysts of each sex. Almost one-third of the transcripts detected showed sexual dimorphism (2,921 transcripts; false-discovery rate, P < 0.05), suggesting that in the absence of hormonal influences, the sex Chrs impose an extensive transcriptional regulation upon autosomal genes. Six genes were analyzed by qPCR in in vivo-derived embryos, which displayed similar sexual dimorphism. Ontology analysis suggested a higher global transcriptional level in females and a more active protein metabolism in males. A gene homolog to an X-linked gene involved in network interactions during spliceosome assembly was found in the Y-Chr. Most of the X-linked-expressed transcripts (88.5%) were up-regulated in females, but most of them (70%) exhibited fold-changes lower than 1.6, suggesting that X-Chr inactivation is partially achieved at the blastocyst stage. Almost half of the transcripts up-regulated in female embryos exhibiting more than 1.6-fold change were present in the X-Chr and eight of them were selected to determine a putative paternal imprinting by gene expression comparison with parthenogenetic embryos. Five (BEX, CAPN6, BEX2, SRPX2, and UBE2A) exhibited a higher expression in females than in parthenotes, suggesting that they are predominantly expressed by the paternal inherited X-Chr and that imprinting may increase the transcriptional skew caused by double X-Chr dosage. PMID:20133684

  16. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts

    PubMed Central

    Bermejo-Alvarez, P.; Rizos, D.; Rath, D.; Lonergan, P.; Gutierrez-Adan, A.

    2010-01-01

    Although genetically identical for autosomal Chrs (Chr), male and female preimplantation embryos could display sex-specific transcriptional regulation. To illustrate sex-specific differences at the mRNA level, we compared gene-expression patterns between male and female blastocysts by DNA microarray comparison of nine groups of 60 bovine in vitro-produced blastocysts of each sex. Almost one-third of the transcripts detected showed sexual dimorphism (2,921 transcripts; false-discovery rate, P < 0.05), suggesting that in the absence of hormonal influences, the sex Chrs impose an extensive transcriptional regulation upon autosomal genes. Six genes were analyzed by qPCR in in vivo-derived embryos, which displayed similar sexual dimorphism. Ontology analysis suggested a higher global transcriptional level in females and a more active protein metabolism in males. A gene homolog to an X-linked gene involved in network interactions during spliceosome assembly was found in the Y-Chr. Most of the X-linked-expressed transcripts (88.5%) were up-regulated in females, but most of them (70%) exhibited fold-changes lower than 1.6, suggesting that X-Chr inactivation is partially achieved at the blastocyst stage. Almost half of the transcripts up-regulated in female embryos exhibiting more than 1.6-fold change were present in the X-Chr and eight of them were selected to determine a putative paternal imprinting by gene expression comparison with parthenogenetic embryos. Five (BEX, CAPN6, BEX2, SRPX2, and UBE2A) exhibited a higher expression in females than in parthenotes, suggesting that they are predominantly expressed by the paternal inherited X-Chr and that imprinting may increase the transcriptional skew caused by double X-Chr dosage. PMID:20133684

  17. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads.

    PubMed

    Chen, Yadong; Xia, Yongtao; Shao, Changwei; Han, Lei; Chen, Xuejie; Yu, Mengjun; Sha, Zhenxia

    2016-07-01

    As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads. PMID:27199458

  18. Sex steroids stimulate leptin gene expression in Atlantic salmon parr hepatocytes in vitro.

    PubMed

    Trombley, Susanne; Rocha, Ana; Schmitz, Monika

    2015-09-15

    In mammals, leptin plays an important role in puberty and reproduction and leptin is regulated by sex steroids. Elevated leptin levels have been associated with sexual maturation in some teleosts such as Atlantic salmon. In the present study, primary cultures of Atlantic salmon hepatocytes were used to investigate the direct effects of different sex steroids on expression of the two salmon leptin-a genes, lepa1 and lepa2. Testosterone (T) stimulated both lepa1 and lepa2 in a dose dependent manner after four days of incubation. The stimulatory effect of T on leptin expression was not prevented by co-incubation with the aromatase inhibitor fadrozole, indicating a direct androgen effect on transcription. The non-aromatizable androgen 11-ketotestosterone (11-KT), which is the main androgen in fish, was generally slightly less potent than T in stimulating lepa1 and lepa2. The strongest stimulatory response was seen for 17β-estradiol (E2). E2 treatment significantly up-regulated lepa1 and lepa2 gene expression at doses of 10nM and 1nM for each gene, respectively. Lepa1, but not lepa2, was stimulated by T and 11-KT in immature male and immature female parr, while E2 stimulated expression of both genes. The sensitivity to sex steroid stimulation differed in maturing males compared to immature. In maturing males, the androgens and E2 stimulated lepa2 but not lepa1, while in immature males, the androgens and E2 stimulated lepa1, but only E2 stimulated lepa2. The differential response of the two leptin paralogues to the sex steroids suggests differences in regulation of the two leptin genes during maturation. Altogether, these results indicate that leptin expression in Atlantic salmon hepatocytes is directly regulated at the transcriptional level by the main teleost androgens and an estrogen, and that the response might depend on the developmental stage of the fish. PMID:25644210

  19. Sex-Related Differences in Gene Expression in Human Skeletal Muscle

    PubMed Central

    Welle, Stephen; Tawil, Rabi; Thornton, Charles A.

    2008-01-01

    There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001) of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10) and activin A receptor IIB (ACVR2B). GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1) signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001) and ACVR2B (1.7-fold, P<0.03). If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size. PMID:18167544

  20. In Situ Gene Mapping of Two Genes Supports Independent Evolution of Sex Chromosomes in Cold-Adapted Antarctic Fish

    PubMed Central

    Ghigliotti, Laura; Cheng, C.-H. Christina; Bonillo, Céline; Coutanceau, Jean-Pierre; Pisano, Eva

    2013-01-01

    Two genes, that is, 5S ribosomal sequences and antifreeze glycoprotein (AFGP) genes, were mapped onto chromosomes of eight Antarctic notothenioid fish possessing a X1X1X2X2/X1X2Y sex chromosome system, namely, Chionodraco hamatus and Pagetopsis macropterus (family Channichthyidae), Trematomus hansoni, T. newnesi, T. nicolai, T. lepidorhinus, and Pagothenia borchgrevinki (family Nototheniidae), and Artedidraco skottsbergi (family Artedidraconidae). Through fluorescence in situ hybridization (FISH), we uncovered distinct differences in the gene content of the Y chromosomes in the eight species, with C. hamatus and P. macropterus standing out among others in bearing 5S rDNA and AFGP sequences on their Y chromosomes, respectively. Both genes were absent from the Y chromosomes of any analyzed species. The distinct patterns of Y and non-Y chromosome association of the 5S rDNA and AFGP genes in species representing different Antarctic fish families support an independent origin of the sex heterochromosomes in notothenioids with interesting implications for the evolutionary/adaptational history of these fishes living in a cold-stable environment. PMID:23509694

  1. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    PubMed Central

    Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  2. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  3. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size

    PubMed Central

    Rideout, Elizabeth J.; Narsaiya, Marcus S.; Grewal, Savraj S.

    2015-01-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  4. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    PubMed

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway. PMID:26710087

  5. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  6. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  7. Differential association between the norepinephrine transporter gene and ADHD: role of sex and subtype

    PubMed Central

    Sengupta, Sarojini M.; Grizenko, Natalie; Thakur, Geeta A.; Bellingham, Johanne; DeGuzman, Rosherrie; Robinson, Sandra; TerStepanian, Marina; Poloskia, Anna; Shaheen, S.M.; Fortier, Marie-Eve; Choudhry, Zia; Joober, Ridha

    2012-01-01

    Background Pharmacologic and animal studies have strongly implicated the norepinephrine transporter (NET) in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). We conducted a family-based study, with stratification based on sex and subtype, to test the association between 30 tag single-nucleotide polymorphisms (SNPs) within the gene encoding NET (SLC6A2) and ADHD. Methods Family-based association tests were conducted with the categorical diagnosis of ADHD, as well as quantitative phenotypes of clinical relevance (Conners Global Index for Teachers and Parents, and Child Behavior Checklist measures). Sliding window haplotype analysis was conducted with screening based on conditional power using PBAT. Results A previously reported association with rs3785143 was confirmed in this study. Further, extensive association was observed with haplotype blocks, with a differential pattern observed based on sex and subtype. The 5′ region of the gene (encompassing haplotype block 1 and including a functional promoter SNP, rs28386840) showed an association with ADHD in girls (irrespective of subtype). A different region of the gene (distributed around haplotype block 2) was associated with distinct behavioural phenotypes in boys. These findings are correlated with previously reported functional studies of gene variants in SLC6A2. Limitations The most important limitation of the study is the small size of the groups resulting from the stratification based on sex followed by subtype. Conclusion The results obtained in this family-based study suggest that haplotype blocks within different regions of SLC6A2 show differential association with the disorder based on sex and subtype. These associations may have been masked in previous studies when tests were conducted with pooled samples. PMID:22297068

  8. Sex-biased gene expression in the brown alga Fucus vesiculosus

    PubMed Central

    2013-01-01

    Background The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious – hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. Results Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. Conclusions Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant

  9. Sex-specific gene interactions in the patterning of insect genitalia.

    PubMed

    Aspiras, Ariel C; Smith, Frank W; Angelini, David R

    2011-12-15

    Genitalia play an important role in the life histories of insects, as in other animals. These sexually dimorphic structures evolve rapidly and derive from multiple body segments. Despite the importance of insect genitalia, descriptions of their genetic patterning have been limited to fruit flies. In this study, we report the functions, interactions and regulation of appendage patterning genes (e.g. homothorax, dachshund, and Distal-less) in two insects: the milkweed bug Oncopeltus fasciatus, and the red flour beetle Tribolium castaneum. These species differ in the anatomical complexity of their genitalia. Females of T. castaneum have a terminal ovipositor ending in short styli, while O. fasciatus have a multi-jointed subterminal ovipositor. Male O. fasciatus have a genital capsule consisting of large gonocoxopodites and claspers; T. castaneum males have relatively simple genitalia. The requirement of appendage-patterning genes in males differed between the two species: No defects were observed in T. castaneum male genitalia, and while the male claspers of O. fasciatus were affected by depletion of appendage-patterning genes, the proximal gonocoxopodite was not, suggesting a non-appendicular origin for this structure. Only the styli of the T. castaneum ovipositor were affected by RNAi depletion of appendage-patterning genes (14 genes in all). The posterior Hox genes (abdominal-A and Abdominal-B) were required for proper genital development in O. fasciatus and regulated Distal-less and homothorax similarly in both sexes. Distal-less and dachshund were regulated differently in male and female O. fasciatus. Knockdown of the sex determination gene intersex produced a partial female-to-male transformation of abdominal and genital anatomy and also resulted in abrogation of female-specific regulation of these genes. These results provide developmental genetic support for specific anatomical hypotheses of serial homology. Importantly, these gene functions and interactions

  10. Isolation of differentially expressed sex genes in garden asparagus using suppression subtractive hybridization.

    PubMed

    Deng, Chuan-liang; Wang, Ning-na; Li, Shu-fen; Dong, Tian-yu; Zhao, Xin-peng; Wang, Shao-jing; Gao, Wu-jun; Lu, Long-dou

    2015-09-01

    Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus. PMID:26038270

  11. Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of female moth sex pheromone blends is controlled by a number of different enzymes, many of which are encoded by members of multigene families. One such multigene family, the acyl-CoA desaturases, is comprised of certain genes that function as key players in moth sex pheromone bios...

  12. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle.

    PubMed

    Schroeder, Anthony L; Metzger, Kelsey J; Miller, Alexandra; Rhen, Turk

    2016-05-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926

  13. The Sex Determination Gene Shows No Founder Effect in the Giant Honey Bee, Apis dorsata

    PubMed Central

    Yan, Wei Yu; Wu, Xiao Bo; Zeng, Zhi Jiang; Huang, Zachary Y.

    2012-01-01

    Background All honey bee species (Apis spp) share the same sex determination mechanism using the complementary sex determination (csd) gene. Only individuals heterogeneous at the csd allele develop into females, and the homozygous develop into diploid males, which do not survive. The honeybees are therefore under selection pressure to generate new csd alleles. Previous studies have shown that the csd gene is under balancing selection. We hypothesize that due to the long separation from the mainland of Hainan Island, China, that the giant honey bees (Apis dorsata) should show a founder effect for the csd gene, with many different alleles clustered together, and these would be absent on the mainland. Methodology/Principal Findings We sampled A. dorsata workers from both Hainan and Guangxi Provinces and then cloned and sequenced region 3 of the csd gene and constructed phylogenetic trees. We failed to find any clustering of the csd alleles according to their geographical origin, i.e. the Hainan and Guangxi samples did not form separate clades. Further analysis by including previously published csd sequences also failed to show any clade-forming in both the Philippines and Malaysia. Conclusions/Significance Results from this study and those from previous studies did not support the expectations of a founder effect. We conclude that because of the extremely high mating frequency of A. dorsata queens, a founder effect does not apply in this species. PMID:22511940

  14. Estimating the sex-specific effects of genes on facial attractiveness and sexual dimorphism.

    PubMed

    Mitchem, Dorian G; Purkey, Alicia M; Grebe, Nicholas M; Carey, Gregory; Garver-Apgar, Christine E; Bates, Timothy C; Arden, Rosalind; Hewitt, John K; Medland, Sarah E; Martin, Nicholas G; Zietsch, Brendan P; Keller, Matthew C

    2014-05-01

    Human facial attractiveness and facial sexual dimorphism (masculinity-femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity-femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity-femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50-0.70 for attractiveness and ~0.40-0.50 for facial masculinity-femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons. PMID:24213680

  15. Maternal Diets Trigger Sex-Specific Divergent Trajectories of Gene Expression and Epigenetic Systems in Mouse Placenta

    PubMed Central

    Gabory, Anne; Ferry, Laure; Fajardy, Isabelle; Jouneau, Luc; Gothié, Jean-David; Vigé, Alexandre; Fleur, Cécile; Mayeur, Sylvain; Gallou-Kabani, Catherine; Gross, Marie-Sylvie; Attig, Linda; Vambergue, Anne; Lesage, Jean; Reusens, Brigitte; Vieau, Didier; Remacle, Claude; Jais, Jean-Philippe; Junien, Claudine

    2012-01-01

    Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols. PMID:23144842

  16. Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive.

    PubMed

    Adelman, Zach N; Tu, Zhijian

    2016-03-01

    Sterile male releases have successfully reduced local populations of the dengue vector, Aedes aegypti, but challenges remain in scale and in separating sexes before release. The recent discovery of the first mosquito male determining factor (M factor) will facilitate our understanding of the genetic programs that initiate sexual development in mosquitoes. Manipulation of the M factor and possible intermediary factors may result in female-to-male conversion or female killing, enabling efficient sex separation and effective reduction of target mosquito populations. Given recent breakthroughs in the development of CRISPR-Cas9 reagents as a source of gene drive, more advanced technologies at driving maleness, the ultimate disease refractory phenotype, become possible and may represent efficient and self-limiting methods to control mosquito populations. PMID:26897660

  17. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  18. The C. elegans sex-determining gene fem-2 encodes a putative protein phosphatase.

    PubMed Central

    Pilgrim, D; McGregor, A; Jäckle, P; Johnson, T; Hansen, D

    1995-01-01

    The genetic and molecular analysis of genes involved in the regulation of sex determination in Caenorhabditis elegans suggests that the gene fem-2 plays an important role in regulating a pathway transducing a non-cell-autonomous signal to a nuclear transcription factor. The wild-type fem-2 gene was cloned by identifying sequences from the C. elegans physical map that could restore normal Fem-2 function to homozygous mutant fem-2 transgenic animals. cDNA sequences mapping to the minimal rescuing region correspond to an open reading frame with a sequence similar to protein phosphatase 2C enzymes from systems as diverse as yeast, humans, and plants, but the alignments suggest that FEM-2 falls into a separate class of proteins than the canonical homologues. Several fem-2 mutant alleles were sequenced, and the mutations are predicted to cause protein changes consistent with their observed phenotypes, such as missense mutations in conditional alleles, and a nonsense mutation in a predicted null allele. This is the first evidence implicating phosphorylation and/or dephosphorylation as a control mechanism in C. elegans sex determination. Images PMID:8534913

  19. Strong Constraint on Human Genes Escaping X-Inactivation Is Modulated by their Expression Level and Breadth in Both Sexes.

    PubMed

    Slavney, Andrea; Arbiza, Leonardo; Clark, Andrew G; Keinan, Alon

    2016-02-01

    In eutherian mammals, X-linked gene expression is normalized between XX females and XY males through the process of X chromosome inactivation (XCI). XCI results in silencing of transcription from one ChrX homolog per female cell. However, approximately 25% of human ChrX genes escape XCI to some extent and exhibit biallelic expression in females. The evolutionary basis of this phenomenon is not entirely clear, but high sequence conservation of XCI escapers suggests that purifying selection may directly or indirectly drive XCI escape at these loci. One hypothesis is that this signal results from contributions to developmental and physiological sex differences, but presently there is limited evidence supporting this model in humans. Another potential driver of this signal is selection for high and/or broad gene expression in both sexes, which are strong predictors of reduced nucleotide substitution rates in mammalian genes. Here, we compared purifying selection and gene expression patterns of human XCI escapers with those of X-inactivated genes in both sexes. When we accounted for the functional status of each ChrX gene's Y-linked homolog (or "gametolog"), we observed that XCI escapers exhibit greater degrees of purifying selection in the human lineage than X-inactivated genes, as well as higher and broader gene expression than X-inactivated genes across tissues in both sexes. These results highlight a significant role for gene expression in both sexes in driving purifying selection on XCI escapers, and emphasize these genes' potential importance in human disease. PMID:26494842

  20. The AKR gene family and modifying sex ratios in palms through abiotic stress responsiveness.

    PubMed

    Somyong, Suthasinee; Poopear, Supannee; Jomchai, Nukoon; Uthaipaisanwong, Pichahpuk; Ruang-Areerate, Panthita; Sangsrakru, Duangjai; Sonthirod, Chutima; Ukoskit, Kittipat; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2015-05-01

    Sex ratio (SR), the ratio of female inflorescences to total inflorescences, is one of the main yield components of oil palm (Elaeis guineensis Jacq). The SR quantitative trait locus (QTL) was recently identified on linkage (LG) 8 with a phenotype variance explained (PVE) of 11.3 %. The use of both genetic and physical mapping is one strategy for uncovering the genetic basis of the traits. Here, we report the construction of bacterial artificial chromosome (BAC) and fosmid libraries, and their use for physical mapping in oil palm. Combined, the libraries consist of more than 200,000 clones, representing 6.35 genome equivalents. Physical mapping at the SR locus was implemented by incorporating the published oil palm genome sequence and positive BAC/fosmid clones as identified by colony PCR screening. Based on the previously published sequences, the interval (about 184 kb) was comprised of 19 contigs of the known sequences (~117 kb, 64 %). After, combining the 454 pyrosequences of 15 positive clones and the previously published sequences, the known sequences were revealed to cover about 82 % of the interval (~150 kb), and were used for identifying the new markers by designing 35 gene-based and 23 simple sequence repeat (SSR)-amplified primers. As a result, a putative aldo-keto reductase gene (named EgAKR1) was revealed to be a promising candidate for sex ratio determination, via controlling female inflorescence number (11 % of PVE). This was predicted from the two newly identified polymorphic marker loci (mEgSSRsr8-21LB and mEgAKR1-9) designing from EgAKR1. The functions of AKR gene families in other plant species and our promoter analysis suggested that EgAKR1 may contribute to the sex ratio through abiotic stress responsiveness. PMID:25504196

  1. Fast-X on the Z: Rapid evolution of sex-linked genes in birds

    PubMed Central

    Mank, Judith E.; Axelsson, Erik; Ellegren, Hans

    2007-01-01

    Theoretical work predicts natural selection to be more efficient in the fixation of beneficial mutations in X-linked genes than in autosomal genes. This “fast-X effect” should be evident by an increased ratio of nonsynonymous to synonymous substitutions (dN/dS) for sex-linked genes; however, recent studies have produced mixed support for this expectation. To make an independent test of the idea of fast-X evolution, we focused on birds, which have female heterogamety (males ZZ, females ZW), where analogous arguments would predict a fast-Z effect. We aligned 2.8 Mb of orthologous protein-coding sequence of zebra finch and chicken from 172 Z-linked and 4848 autosomal genes. Zebra finch data were in the form of EST sequences from brain cDNA libraries, while chicken genes were from the draft genome sequence. The dN/dS ratio was significantly higher for Z-linked (0.110) than for all autosomal genes (0.085; P = 0.002), as well as for genes linked to similarly sized autosomes 1–10 (0.0948; P = 0.04). This pattern of fast-Z was evident even after we accounted for the nonrandom distribution of male-biased genes. We also examined the nature of standing variation in the chicken protein-coding regions. The ratio of nonsynonymous to synonymous polymorphism (pN/pS) did not differ significantly between genes on the Z chromosome (0.104) and on the autosomes (0.0908). In conjunction, these results suggest that evolution proceeds more quickly on the Z chromosome, where hemizygous exposure of beneficial nondominant mutations increases the rate of fixation. PMID:17416747

  2. Environmental Sex Determination in the Branchiopod Crustacean Daphnia magna: Deep Conservation of a Doublesex Gene in the Sex-Determining Pathway

    PubMed Central

    Kato, Yasuhiko; Kobayashi, Kaoru; Watanabe, Hajime; Iguchi, Taisen

    2011-01-01

    Sex-determining mechanisms are diverse among animal lineages and can be broadly divided into two major categories: genetic and environmental. In contrast to genetic sex determination (GSD), little is known about the molecular mechanisms underlying environmental sex determination (ESD). The Doublesex (Dsx) genes play an important role in controlling sexual dimorphism in genetic sex-determining organisms such as nematodes, insects, and vertebrates. Here we report the identification of two Dsx genes from Daphnia magna, a freshwater branchiopod crustacean that parthenogenetically produces males in response to environmental cues. One of these genes, designated DapmaDsx1, is responsible for the male trait development when expressed during environmental sex determination. The domain organization of DapmaDsx1 was similar to that of Dsx from insects, which are thought to be the sister group of branchiopod crustaceans. Intriguingly, the molecular basis for sexually dimorphic expression of DapmaDsx1 is different from that of insects. Rather than being regulated sex-specifically at the level of pre–mRNA splicing in the coding region, DapmaDsx1 exhibits sexually dimorphic differences in the abundance of its transcripts. During embryogenesis, expression of DapmaDsx1 was increased only in males and its transcripts were primarily detected in male-specific structures. Knock-down of DapmaDsx1 in male embryos resulted in the production of female traits including ovarian maturation, whereas ectopic expression of DapmaDsx1 in female embryos resulted in the development of male-like phenotypes. Expression patterns of another D. magna Dsx gene, DapmaDsx2, were similar to those of DapmaDsx1, but silencing and overexpression of this gene did not induce any clear phenotypic changes. These results establish DapmaDsx1 as a key regulator of the male phenotype. Our findings reveal how ESD is implemented by selective expression of a fundamental genetic component that is functionally conserved

  3. Developmental analysis of a hybrid gene composed of parts of the Ubx and abd-A genes of Drosophila

    PubMed Central

    Casanova, Jordi; Sánchez-Herrero, Ernesto; Morata, Ginés

    1988-01-01

    C1 is a mutation in the bithorax complex (BX-C) of Drosophila resulting from the deletion of parts of the Ubx and abd-A genes. We show that the `hybrid' gene formed by the fusion of the remaining parts of Ubx and abd-A (5'abd-A/Ubx3') is functional and developmentally active. It specifies parasegment patterns with a mixture of thoracic and abdominal identities. The hybrid gene also has other properties typical of conventional bithorax genes: it can be spatially derepressed in the absence of trans-acting genes like extra Sex combs or Polycomb and in turn represses other homeotics like Sex combs reduced. The comparison of embryos containing exclusively hybrid gene activity with others having no BX-C function indicates that the hybrid gene is active in the body region defined by PS5 to PS14. The expression in PS5 and PS6 suggests that one control region (abx) of Ubx can regulate the transcription of the abd-A promoter. Images PMID:16453832

  4. The maintenance of sex in bacteria is ensured by its potential to reload genes.

    PubMed

    Szöllosi, Gergely J; Derényi, Imre; Vellai, Tibor

    2006-12-01

    Why sex is maintained in nature is a fundamental question in biology. Natural genetic transformation (NGT) is a sexual process by which bacteria actively take up exogenous DNA and use it to replace homologous chromosomal sequences. As it has been demonstrated, the role of NGT in repairing deleterious mutations under constant selection is insufficient for its survival, and the lack of other viable explanations have left no alternative except that DNA uptake provides nucleotides for food. Here we develop a novel simulation approach for the long-term dynamics of genome organization (involving the loss and acquisition of genes) in a bacterial species consisting of a large number of spatially distinct populations subject to independently fluctuating ecological conditions. Our results show that in the presence of weak interpopulation migration NGT is able to subsist as a mechanism to reload locally lost, intermittently selected genes from the collective gene pool of the species through DNA uptake from migrants. Reloading genes and combining them with those in locally adapted genomes allow individual cells to readapt faster to environmental changes. The machinery of transformation survives under a wide range of model parameters readily encompassing real-world biological conditions. These findings imply that the primary role of NGT is not to serve the cell with food, but to provide homologous sequences for restoring genes that have disappeared from or become degraded in the local population. PMID:17028325

  5. Sex-dependent association of common variants of microcephaly genes with brain structure.

    PubMed

    Rimol, Lars M; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A; Roddey, J Cooper; Kähler, Anna K; Mattingsdal, Morten; Athanasiu, Lavinia; Joyner, Alexander H; Schork, Nicholas J; Halgren, Eric; Sundet, Kjetil; Melle, Ingrid; Dale, Anders M; Andreassen, Ole A

    2010-01-01

    Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637-644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2, MCPH1, and ASPM, with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample (n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample (n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions. PMID:20080800

  6. The Amylase gene cluster on the evolving sex chromosomes of Drosophila miranda.

    PubMed

    Steinemann, S; Steinemann, M

    1999-01-01

    On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly suggest that the Amy gene cluster has been lost already from the evolving neo-Y chromosome. This finding shows that a relatively new neo-Y chromosome can start to lose genes and hence gradually lose homology with the neo-X. The X2-chromosomal Amy1 is intact and Amy2 contains a complete coding sequence, but has a deletion in the 3'-flanking region. Amy3 is structurally eroded and hampered by missing regulatory motifs. Functional analysis of the X2-chromosomal Amy1 and Amy2 regions from D. miranda in transgenic D. melanogaster flies reveals ectopic AMY1 expression. AMY1 shows the same electrophoretic mobility as the single amylase band in D. miranda, while ectopic AMY2 expression is characterized by a different mobility. Therefore, only the Amy1 gene of the resident Amy cluster remains functional and hence Amy1 is the dosage compensated gene. PMID:9872956

  7. Regulation of the Gene Sex-Lethal: A Comparative Analysis of Drosophila Melanogaster and Drosophila Subobscura

    PubMed Central

    Penalva, LOF.; Sakamoto, H.; Navarro-Sabate, A.; Sakashita, E.; Granadino, B.; Segarra, C.; Sanchez, L.

    1996-01-01

    The Drosophila gene Sex-lethal (Sxl) controls the processes of sex determination and dosage compensation. A Drosophila subobscura genomic fragment containing all the exons and the late and early promotors in the Sxl gene of D. melanogaster was isolated. Early Sxl expression in D. subobscura seems to be controlled at the transcriptional level, possibly by the X:A signal. In the region upstream of the early Sxl transcription initiation site are two conserved regions suggested to be involved in the early activation of Sxl. Late Sxl expression in D. subobscura produces four transcripts in adult females and males. In males, the transcripts have an additional exon which contains three translational stop codons so that a truncated, presumably nonfunctional Sxl protein is produced. The Sxl pre-mRNA of D. subobscura lacks the poly-U sequence presented at the polypirimidine tract of the 3' splice site of the male-specific exon present in D. melanogaster. Introns 2 and 3 contain the Sxl-binding poly-U stretches, whose localization in intron 2 varies but in intron 3 is conserved. The Sxl protein is fully conserved at the amino acid level in both species. PMID:8978052

  8. Prohibitin-2 gene reveals sex-related differences in the salmon louse Caligus rogercresseyi.

    PubMed

    Farlora, Rodolfo; Nuñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2015-06-10

    Prohibitins are evolutionarily conserved proteins present in multiple cellular compartments, and are involved in diverse cellular processes, including steroid hormone transcription and gametogenesis. In the present study, we report for the first time the characterization of the prohibitin-2 (Phb2) gene in the sea lice Caligus rogercresseyi. The CrPhb2 cDNA showed a total length of 1406 bp, which contained a predicted open reading frame (ORF) of 894 base pairs (bp) encoding for 298 amino acids. Multiple sequence alignments of prohibitin proteins from other arthropods revealed a high degree of amino acid sequence conservation. In silico Illumina read counts and RT-qPCR analyses showed a sex-dependent differential expression, with mRNA levels exhibiting a 1.7-fold (RT-qPCR) increase in adult females compared with adult males. A total of nine single nucleotide polymorphisms (SNPs) were identified, three were located in the 5' UTR of the Phb2 messenger and six in the ORF, but no mutations associated with sex were found. These results contribute to expand the present knowledge of the reproduction-related genes in C. rogercresseyi, and may be useful in future experiments aimed at controlling the impacts of sea lice in fish farming. PMID:25813873

  9. Gametogenesis in the Pacific Oyster Crassostrea gigas: A Microarrays-Based Analysis Identifies Sex and Stage Specific Genes

    PubMed Central

    Dheilly, Nolwenn M.; Lelong, Christophe; Huvet, Arnaud; Kellner, Kristell; Dubos, Marie-Pierre; Riviere, Guillaume; Boudry, Pierre; Favrel, Pascal

    2012-01-01

    Background The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa) is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011) representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. Methodology/Principal Findings Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters. Conclusions

  10. Genome Wide Analysis of Sex Difference in Gene Expression Profiles of Bone Formations Using sfx Mice and BXD RI Strains

    PubMed Central

    Huang, Yue; Zhu, Xiaodong; Wang, Lishi; Liu, Xiaoyun; Lu, Lu; Jiao, Yan

    2014-01-01

    The objective of this study is to identify sex differentially expressed genes in bone using a mouse model of spontaneous fracture, sfx, which lacks the gene for L-gulonolactone oxidase (Gulo), a key enzyme in the ascorbic acid (AA) synthesis pathway. We first identified the genes that are differentially expressed in the femur between female and male in sfx mice. We then analyzed the potential gene network among those differentially expressed genes with whole genome expression profiles generated using spleens of female and male mice of a total of 67 BXD (C57BL/6J X DBA/2J) recombinant inbred (RI) and other strains. Our result indicated that there was a sex difference in the whole genome profiles in sfx mice as measured by the proportion of up- and downregulated genes. Several genes in the pathway of bone development are differentially expressed between the male and female of sfx mice. Comparison of gene network of up- and downregulated bone relevant genes also suggests a sex difference. PMID:25133246

  11. Conflict between feminizing sex ratio distorters and an autosomal masculinizing gene in the terrestrial isopod Armadillidium vulgare Latr.

    PubMed

    Rigaud, T; Juchault, P

    1993-02-01

    Female sex determination in the pill bug Armadillidium vulgare is frequently under the control of feminizing parasitic sex factors (PSF). One of these PSF is an intracytoplasmic Wolbachia-like bacterium (F), while the other (f) is suspected of being an F-bacterial DNA sequence unstably integrated into the host genome. In most wild populations harboring PSF, all individuals are genetic males (ZZ), and female phenotypes occur only due to the presence of PSF which overrides the male determinant carried by the Z chromosome (females are thus ZZ +F or ZZ +f neo-females). Here we report the effects of the conflict between these PSF and a dominant autosomal masculinizing gene (M) on phenotypes. The M gene is able to override the feminizing effect of the f sex factor and, consequently, male sex may be restored. However, M is unable to restore male sex when competing with the F bacteria. It seems that the main effect of M is to delay the expression of F bacteria slightly, inducing intersex phenotypes. Most of these intersexes are functional females, able to transmit the masculinizing gene. The frequency of M and its effects on the sex ratio in wild populations are discussed. PMID:8436273

  12. Conflict between Feminizing Sex Ratio Distorters and an Autosomal Masculinizing Gene in the Terrestrial Isopod Armadillidium Vulgare Latr

    PubMed Central

    Rigaud, T.; Juchault, P.

    1993-01-01

    Female sex determination in the pill bug Armadillidium vulgare is frequently under the control of feminizing parasitic sex factors (PSF). One of these PSF is an intracytoplasmic Wolbachia-like bacterium (F), while the other (f) is suspected of being an F-bacterial DNA sequence unstably integrated into the host genome. In most wild populations harboring PSF, all individuals are genetic males (ZZ), and female phenotypes occur only due to the presence of PSF which overrides the male determinant carried by the Z chromosome (females are thus ZZ +F or ZZ +f neo-females). Here we report the effects of the conflict between these PSF and a dominant autosomal masculinizing gene (M) on phenotypes. The M gene is able to override the feminizing effect of the f sex factor and, consequently, male sex may be restored. However, M is unable to restore male sex when competing with the F bacteria. It seems that the main effect of M is to delay the expression of F bacteria slightly, inducing intersex phenotypes. Most of these intersexes are functional females, able to transmit the masculinizing gene. The frequency of M and its effects on the sex ratio in wild populations are discussed. PMID:8436273

  13. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal–maternal interface

    PubMed Central

    Buckberry, Sam; Bianco-Miotto, Tina; Bent, Stephen J.; Dekker, Gustaaf A.; Roberts, Claire T.

    2014-01-01

    As males and females share highly similar genomes, the regulation of many sexually dimorphic traits is constrained to occur through sex-biased gene regulation. There is strong evidence that human males and females differ in terms of growth and development in utero and that these divergent growth strategies appear to place males at increased risk when in sub-optimal conditions. Since the placenta is the interface of maternal–fetal exchange throughout pregnancy, these developmental differences are most likely orchestrated by differential placental function. To date, progress in this field has been hampered by a lack of genome-wide information on sex differences in placental gene expression. Therefore, our motivation in this study was to characterize sex-biased gene expression in the human placenta. We obtained gene expression data for >300 non-pathological placenta samples from 11 microarray datasets and applied mapping-based array probe re-annotation and inverse-variance meta-analysis methods which showed that >140 genes (false discovery rate (FDR) <0.05) are differentially expressed between male and female placentae. A majority of these genes (>60%) are autosomal, many of which are involved in high-level regulatory processes such as gene transcription, cell growth and proliferation and hormonal function. Of particular interest, we detected higher female expression from all seven genes in the LHB-CGB cluster, which includes genes involved in placental development, the maintenance of pregnancy and maternal immune tolerance of the conceptus. These results demonstrate that sex-biased gene expression in the normal human placenta occurs across the genome and includes genes that are central to growth, development and the maintenance of pregnancy. PMID:24867328

  14. Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth

    PubMed Central

    Sakurai, Takeshi; Mitsuno, Hidefumi; Mikami, Akihisa; Uchino, Keiro; Tabuchi, Masashi; Zhang, Feng; Sezutsu, Hideki; Kanzaki, Ryohei

    2015-01-01

    Male moths use species-specific sex pheromones to identify and orientate toward conspecific females. Odorant receptors (ORs) for sex pheromone substances have been identified as sex pheromone receptors in various moth species. However, direct in vivo evidence linking the functional role of these ORs with behavioural responses is lacking. In the silkmoth, Bombyx mori, female moths emit two sex pheromone components, bombykol and bombykal, but only bombykol elicits sexual behaviour in male moths. A sex pheromone receptor BmOR1 is specifically tuned to bombykol and is expressed in specialized olfactory receptor neurons (ORNs) in the pheromone sensitive long sensilla trichodea of male silkmoth antennae. Here, we show that disruption of the BmOR1 gene, mediated by transcription activator-like effector nucleases (TALENs), completely removes ORN sensitivity to bombykol and corresponding pheromone-source searching behaviour in male moths. Furthermore, transgenic rescue of BmOR1 restored normal behavioural responses to bombykol. Our results demonstrate that BmOR1 is required for the physiological and behavioural response to bombykol, demonstrating that it is the receptor that mediates sex pheromone responses in male silkmoths. This study provides the first direct evidence that a member of the sex pheromone receptor family in moth species mediates conspecific sex pheromone information for sexual behaviour. PMID:26047360

  15. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.)

    PubMed Central

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  16. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.).

    PubMed

    Ma, Keyi; Liao, Minghui; Liu, Feng; Ye, Baoqing; Sun, Fei; Yue, Gen Hua

    2016-01-01

    Zinc finger AN1-type domain 3 (ZFAND3) is essential for spermatogenesis in mice. However, its function in teleosts remains unclear. In this study, we characterized the ZFAND3 gene (termed as OsZFAND3) in an important food fish, tilapia. The OsZFAND3 cDNA sequence is 1,050 bp in length, containing an ORF of 615 bp, which encodes a putative peptide of 204 amino acid residues. Quantitative real-time PCR revealed that the OsZFAND3 transcripts were exclusively expressed in the testis and ovary. In situ hybridization showed that the high expression of OsZFAND3 transcripts was predominantly localized in the spermatocyte and spermatid. These results suggest that OsZFAND3 is involved in male germ cell maturation. Three single nucleotide polymorphisms (SNPs) were detected in the introns of OsZFAND3. The OsZFAND3 gene was mapped in the sex-determining locus on linkage group 1 (LG1). The three SNPs in the OsZFAND3 gene were strictly associated with sex phenotype, suggesting that the OsZFAND3 gene is tightly linked to the sex-determining locus. Our study provides new insights into the functions of the OsZFAND3 gene in tilapia and a foundation for further detailed analysis of the OsZFAND3 gene in sex determination and differentiation. PMID:27137111

  17. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera

    PubMed Central

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  18. Hypospadias and variants in genes related to sex hormone biosynthesis and metabolism

    PubMed Central

    Carmichael, SL; Witte, JS; Ma, C; Lammer, EJ; Shaw, GM

    2013-01-01

    We examined whether variants in genes related to sex hormone biosynthesis and metabolism were associated with hypospadias in humans. We examined 332 relatively common tagSNPs in 20 genes. Analyses included 633 cases (84 mild, 322 moderate, 212 severe, 15 undetermined severity) and 855 population-based non-malformed male controls born in California from 1990–2003. We used logistic regression models to estimate odds ratios (OR) and 95 percent confidence intervals (CI) for each SNP. Several of the 332 studied SNPs had p<0.01: one in CYP3A4, four in HSD17B3, one in HSD3B1, 2 in STARD3 10 in SRD5A2 and seven in STS. In addition, haplotype analyses gave several associations with p<0.01. For HSD17B3, 14-SNP and 5-SNP blocks had ORs of 1.5 (95% CI 1.1, 2.0, p<0.001) and 2.8 (95% CI 1.6, 4.8, p<0.001), respectively. For SRD5A2, 9-SNP, 3-SNP and 8-SNP blocks had ORs of 1.7 (95% CI 1.3, 2.2, p<0.001), 1.4 (95% CI 1.1, 1.8, p=0.008) and 1.5 (95% CI 1.2, 1.9, p=0.002), respectively. Our study indicates that several genes that contribute to sex hormone biosynthesis and metabolism are associated with hypospadias risk. PMID:24281767

  19. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy

    PubMed Central

    2014-01-01

    Background The relationship between genetic factors and the development of cerebral palsy (CP) has recently attracted much attention. Polymorphisms in the genes encoding proinflammatory cytokines have been shown to be associated with susceptibility to perinatal brain injury and development of CP. Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a pivotal role in neonatal brain injury, but conflicting results have been reported regarding the association between IL-6 single nucleotide polymorphisms (SNPs) and CP. The purpose of this study was to analyze IL-6 gene polymorphisms and protein expression and to explore the role of IL-6 in the Chinese CP population. Methods A total of 753 healthy controls and 713 CP patients were studied to detect the presence of five SNPs (rs1800796, rs2069837, rs2066992, rs2069840, and rs10242595) in the IL-6 locus. Of these, 77 healthy controls and 87 CP patients were selected for measurement of plasma IL-6 by Luminex assay. The SHEsis program was used to analyze the genotyping data. For all comparisons; multiple testing on each individual SNP was corrected by the SNPSpD program. Results There were no differences in allele or genotype frequencies between the overall CP patients and controls among the five genetic polymorphisms. However, subgroup analysis found significant sex-related differences in allele and genotype frequencies. Differences were found between spastic CP and controls in males for rs2069837; between CP with periventricular leukomalacia and controls in males for rs1800796 and rs2066992; and between term CP and controls in males for rs2069837. Plasma IL-6 levels were higher in CP patients than in the controls, and this difference was more robust in full-term male spastic CP patients. Furthermore, the genotype has an effect on IL-6 synthesis. Conclusions The influence of IL-6 gene polymorphisms on IL-6 synthesis and the susceptibility to CP is related to sex and gestational age. PMID:24903966

  20. The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera.

    PubMed

    Boualem, Adnane; Lemhemdi, Afef; Sari, Marie-Agnes; Pignoly, Sarah; Troadec, Christelle; Abou Choucha, Fadi; Solmaz, Ilknur; Sari, Nebahat; Dogimont, Catherine; Bendahmane, Abdelhafid

    2016-01-01

    Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera. PMID:27171236

  1. Prenatal exposure to dexamethasone disturbs sex-determining gene expression and fetal testosterone production in male embryos.

    PubMed

    Yun, Hyo Jung; Lee, Ji-Yeon; Kim, Myoung Hee

    2016-02-26

    Prenatal stress is known to cause intrauterine fetal growth retardation, and is also associated with various long-term effects in the form of metabolic and neurodevelopmental diseases in adults. Many of the diseases associated with prenatal stress exhibit a sex bias. Perturbations and vulnerability to prenatal stress are often more profound in males, but the mechanisms responsible for this relationship are not clear. We have previously shown that administration of the synthetic glucocorticoid, dexamethasone (Dex), at embryonic days 7.5, 8.5, and 9.5, induces embryonic growth restriction in a sex-dependent manner in a mouse model. Here we examined the effect of prenatal exposure to Dex on gonadal development. During male gonadal development, sex-determining genes, such as Sry, Sox9, and other downstream genes, were found to be dysregulated in response to prenatal Dex, whereas the genes for the ovarian pathway were affected to a lesser degree in females. In addition, fetal testosterone concentrations were decreased by prenatal exposure to Dex, in parallel with reduced numbers of 3β-hydroxysteroid dehydrogenase (3β-HSD)-positive cells in the embryonic testis. These results show that prenatal exposure to Dex differentially influences male versus female on the gene expression and hormone production during sex determination. We believe these studies provide valuable insights into possible mechanisms responsible for sex-specific responses to prenatal stress. PMID:26827828

  2. Evolutionary Strata on the X Chromosomes of the Dioecious Plant Silene latifolia: Evidence From New Sex-Linked Genes

    PubMed Central

    Bergero, Roberta; Forrest, Alan; Kamau, Esther; Charlesworth, Deborah

    2007-01-01

    Despite its recent evolutionary origin, the sex chromosome system of the plant Silene latifolia shows signs of progressive suppression of recombination having created evolutionary strata of different X–Y divergence on sex chromosomes. However, even after 8 years of effort, this result is based on analyses of five sex-linked gene sequences, and the maximum divergence (and thus the age of this plant's sex chromosome system) has remained uncertain. More genes are therefore needed. Here, by segregation analysis of intron size variants (ISVS) and single nucleotide polymorphisms (SNPs), we identify three new Y-linked genes, one being duplicated on the Y chromosome, and test for evolutionary strata. All the new genes have homologs on the X and Y chromosomes. Synonymous divergence estimated between the X and Y homolog pairs is within the range of those already reported. Genetic mapping of the new X-linked loci shows that the map is the same in all three families that have been studied so far and that X–Y divergence increases with genetic distance from the pseudoautosomal region. We can now conclude that the divergence value is saturated, confirming the cessation of X–Y recombination in the evolution of the sex chromosomes at ∼10–20 MYA. PMID:17287532

  3. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation.

    PubMed

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  4. Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation

    PubMed Central

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  5. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence.

    PubMed

    Jost, Matthias; Taketa, Shin; Mascher, Martin; Himmelbach, Axel; Yuo, Takahisa; Shahinnia, Fahimeh; Rutten, Twan; Druka, Arnis; Schmutzer, Thomas; Steuernagel, Burkhard; Beier, Sebastian; Taudien, Stefan; Scholz, Uwe; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2016-06-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  6. A Homolog of Blade-On-Petiole 1 and 2 (BOP1/2) Controls Internode Length and Homeotic Changes of the Barley Inflorescence1[OPEN

    PubMed Central

    Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele

    2016-01-01

    Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226

  7. Analysis of HLA and disease susceptibility: Chromosome 6 genes and sex influence long-QT phenotype

    SciTech Connect

    Weitkamp, L.R.; Moss, A.J.; Hall, W.J.; Robinson, J.L.; Guttormsen, S.A.; Lewis, R.A.; MacCluer, J.W.; Schwartz, P.J.; Locati, E.H.; Tzivoni, D.

    1994-12-01

    The long-QT (LQT) syndrome is a genetically complex disorder that is characterized by syncope and fatal ventricular arrhythmias. LQT syndrome, as defined by a prolonged electrocardiographic QT interval, has a higher incidence in females than in males and does not exhibit Mendelian transmission patterns in all families. Among those families that are nearly consistent with Mendelian transmission, linkage between a locus for LQT syndrome and the H-ras-1 locus on the short arm of chromosome 11 has been reported in some families but not in others. Earlier analyses suggesting that LQT syndrome might be caused by a gene in the HLA region of chromosome 6 were not confirmed by standard linkage analyses. Here, we present an analysis of HLA haplotype sharing among affected pedigree members, showing an excess of haplotype sharing in a previously published Japanese pedigree and possibly also in 15 families of European descent. The haplotypes shared by affected individuals derive from both affected and unaffected parents. In an analysis of independent (unrelated) HLA haplotypes, we also found a nonrandom distribution of HLA-DR genes in LQT syndrome patients compared with controls, suggesting an association between the LQT phenotype and specific HLA-DR genes. Our data indicate that DR2 has a protective effect and, particularly in males, that DR7 may increase susceptibility to the LQT syndrome. Thus, LQT syndrome may be influenced by genes on chromosomes 11 and 6, possibly with a sex-specific effect. These results provide a model for an effect of HLA-region genes inherited from either parent on the expression of an illness that may be determined principally by alleles at loci not linked to HLA.

  8. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. PMID:24943593

  9. Drosophila Hox and Sex-Determination Genes Control Segment Elimination through EGFR and extramacrochetae Activity

    PubMed Central

    Foronda, David; Martín, Paloma; Sánchez-Herrero, Ernesto

    2012-01-01

    The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change. PMID:22912593

  10. Drosophila Hox and sex-determination genes control segment elimination through EGFR and extramacrochetae activity.

    PubMed

    Foronda, David; Martín, Paloma; Sánchez-Herrero, Ernesto

    2012-01-01

    The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change. PMID:22912593

  11. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster.

    PubMed Central

    Gibson, G; Wemple, M; van Helden, S

    1999-01-01

    Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence. PMID:10049924

  12. A theoretical model for the regulation of Sex-lethal, a gene that controls sex determination and dosage compensation in Drosophila melanogaster.

    PubMed Central

    Louis, Matthieu; Holm, Liisa; Sánchez, Lucas; Kaufman, Marcelle

    2003-01-01

    Cell fate commitment relies upon making a choice between different developmental pathways and subsequently remembering that choice. Experimental studies have thoroughly investigated this central theme in biology for sex determination. In the somatic cells of Drosophila melanogaster, Sex-lethal (Sxl) is the master regulatory gene that specifies sexual identity. We have developed a theoretical model for the initial sex-specific regulation of Sxl expression. The model is based on the well-documented molecular details of the system and uses a stochastic formulation of transcription. Numerical simulations allow quantitative assessment of the role of different regulatory mechanisms in achieving a robust switch. We establish on a formal basis that the autoregulatory loop involved in the alternative splicing of Sxl primary transcripts generates an all-or-none bistable behavior and constitutes an efficient stabilization and memorization device. The model indicates that production of a small amount of early Sxl proteins leaves the autoregulatory loop in its off state. Numerical simulations of mutant genotypes enable us to reproduce and explain the phenotypic effects of perturbations induced in the dosage of genes whose products participate in the early Sxl promoter activation. PMID:14668388

  13. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans

    SciTech Connect

    Barton, M.K.; Schedl, T.B.; Kimble, J.

    1987-01-01

    The authors have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3 (gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3 (gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3 (gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3 (gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.

  14. A quantitative real-time PCR method using an X-linked gene for sex typing in pigs.

    PubMed

    Ballester, Maria; Castelló, Anna; Ramayo-Caldas, Yuliaxis; Folch, Josep M

    2013-06-01

    At present, a wide range of molecular sex-typing protocols in wild and domestic animals are available. In pigs, most of these methods are based on PCR amplification of X-Y homologous genes followed by gel electrophoresis which is time-consuming and in some cases expensive. In this paper, we describe, for the first time, a SYBR green-based quantitative real-time PCR (qPCR) assay using an X-linked gene, the glycoprotein M6B, for genetic sexing of pigs. Taking into account the differences in the glycoprotein M6B gene copy number between genders, we determine the correct sex of 54 pig samples from either diaphragm or hair follicle from different breeds using the 2(-ΔΔCT) method for relative quantification. Our qPCR assay represents a quick, inexpensive, and reliable tool for sex determination in pigs. This new protocol could be easily adapted to other species in which the sex determination was required. PMID:22843326

  15. A genetic method for sex identification of raccoons (Procyon lotor) with using the ZFX and ZFY genes.

    PubMed

    Okuyama, Minami W; Shimozuru, Michito; Tsubota, Toshio

    2014-05-01

    A genetic method for sex determination in raccoons was developed based on nucleotide differences of the zinc finger protein genes ZFX and ZFY. Four novel internal primers specific for ZFX or ZFY were designed. PCR amplification using two primer sets followed by agarose gel electrophoresis enabled sex determination. 141-bp and 447-bp bands were in both sex, and 346-bp band was specific only in male with primer set I. 345-bp and 447-bp bands were in both sex, and 141-bp band was specific only in male with primer set II, which could distinguish raccoon's electrophoresis pattern from three native carnivores in Hokkaido. This method will be useful for conservation genetics studies or biological analyses of raccoons. PMID:24451927

  16. Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences

    PubMed Central

    Cao, J; Wang, J; Dwyer, J B; Gautier, N M; Wang, S; Leslie, F M; Li, M D

    2013-01-01

    Myelination defects in the central nervous system (CNS) are associated with various psychiatric disorders, including drug addiction. As these disorders are often observed in individuals prenatally exposed to cigarette smoking, we tested the hypothesis that such exposure impairs central myelination in adolescence, an important period of brain development and the peak age of onset of psychiatric disorders. Pregnant Sprague Dawley rats were treated with nicotine (3 mg kg−1 per day; gestational nicotine (GN)) or gestational saline via osmotic mini pumps from gestational days 4–18. Both male and female offsprings were killed on postnatal day 35 or 36, and three limbic brain regions, the prefrontal cortex (PFC), caudate putamen and nucleus accumbens, were removed for measurement of gene expression and determination of morphological changes using quantitative real-time PCR (qRT-PCR) array, western blotting and immunohistochemical staining. GN altered myelin gene expression at both the mRNA and protein levels, with striking sex differences. Aberrant expression of myelin-related transcription and trophic factors was seen in GN animals, which correlated highly with the alterations in the myelin gene expression. These correlations suggest that these factors contribute to GN-induced alterations in myelin gene expression and also indicate abnormal function of oligodendrocytes (OLGs), the myelin-producing cells in the CNS. It is unlikely that these changes are attributable solely to an alteration in the number of OLGs, as the cell number was changed only in the PFC of GN males. Together, our findings suggest that abnormal brain myelination underlies various psychiatric disorders and drug abuse associated with prenatal exposure to cigarette smoke. PMID:23591971

  17. Gestational nicotine exposure modifies myelin gene expression in the brains of adolescent rats with sex differences.

    PubMed

    Cao, J; Wang, J; Dwyer, J B; Gautier, N M; Wang, S; Leslie, F M; Li, M D

    2013-01-01

    Myelination defects in the central nervous system (CNS) are associated with various psychiatric disorders, including drug addiction. As these disorders are often observed in individuals prenatally exposed to cigarette smoking, we tested the hypothesis that such exposure impairs central myelination in adolescence, an important period of brain development and the peak age of onset of psychiatric disorders. Pregnant Sprague Dawley rats were treated with nicotine (3 mg kg(-1) per day; gestational nicotine (GN)) or gestational saline via osmotic mini pumps from gestational days 4-18. Both male and female offsprings were killed on postnatal day 35 or 36, and three limbic brain regions, the prefrontal cortex (PFC), caudate putamen and nucleus accumbens, were removed for measurement of gene expression and determination of morphological changes using quantitative real-time PCR (qRT-PCR) array, western blotting and immunohistochemical staining. GN altered myelin gene expression at both the mRNA and protein levels, with striking sex differences. Aberrant expression of myelin-related transcription and trophic factors was seen in GN animals, which correlated highly with the alterations in the myelin gene expression. These correlations suggest that these factors contribute to GN-induced alterations in myelin gene expression and also indicate abnormal function of oligodendrocytes (OLGs), the myelin-producing cells in the CNS. It is unlikely that these changes are attributable solely to an alteration in the number of OLGs, as the cell number was changed only in the PFC of GN males. Together, our findings suggest that abnormal brain myelination underlies various psychiatric disorders and drug abuse associated with prenatal exposure to cigarette smoke. PMID:23591971

  18. The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel).

    PubMed

    Peng, Wei; Zheng, Wenping; Handler, Alfred M; Zhang, Hongyu

    2015-12-01

    Transformer (tra) is a switch gene in the somatic sex-determination hierarchy that regulates sexual dimorphism based on RNA splicing in many insects. In tephritids, a Y-linked male determining gene (M) controls sex in the sex-determination pathway. Here, homologues of Drosophila tra and transformer-2 (tra-2) genes were isolated and characterized in Bactrocera dorsalis (Hendel), one of the most destructive agricultural insect pests in many Asian countries. Two male-specific and one female-specific isoforms of B. dorsalis transformer (Bdtra) were identified. The presence of multiple TRA/TRA-2 binding sites in Bdtra suggests that the TRA/TRA-2 proteins are splicing regulators promoting and maintaining, epigenetically, female sex determination by a tra positive feedback loop in XX individuals during development. The expression patterns of female-specific Bdtra transcripts during early embryogenesis shows that a peak appears at 15 h after egg laying. Using dsRNA to knock-down Bdtra expression in the embryo and adult stages, we showed that sexual formation is determined early in the embryo stage and that parental RNAi does not lead to the production of all male progeny as in Tribolium castaneum. RNAi results from adult abdominal dsRNA injections show that Bdtra has a positive influence on female yolk protein gene (Bdyp1) expression and fecundity. PMID:26481008

  19. Effects of ploidy and sex-locus genotype on gene expression patterns in the fire ant Solenopsis invicta

    PubMed Central

    Nipitwattanaphon, Mingkwan; Wang, John; Ross, Kenneth G.; Riba-Grognuz, Oksana; Wurm, Yannick; Khurewathanakul, Chitsanu; Keller, Laurent

    2014-01-01

    Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development. PMID:25355475

  20. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.

    PubMed

    Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902

  1. A gene-based evolutionary explanation for the association between criminal involvement and number of sex partners.

    PubMed

    Beaver, Kevin M; Wright, John Paul; Walsh, Anthony

    2008-01-01

    Empirical research has revealed a positive relationship between number of sex partners and involvement in antisocial behaviors. Most attempts to explain this association have taken an evolutionary perspective and argued that the same traits (e.g., impulsiveness, shortsightedness, and aggressiveness) that are related to a large number of sex partners are also related to criminal involvement. However, there is also reason to believe that the covariation between sex partners and crime behaviors can be partially explained by a common genetic pathway, where genes that are related to sex partners are also related to antisocial conduct. We test this possibility by using data from the National Longitudinal Study of Adolescent Health (Add Health). Specifically, we examine whether variants of the dopamine transporter gene (DAT1) are associated with number of sexual partners and with adult criminal behavior. The results of our analyses reveal two broad findings. First, and in line with prior research, we find that there is a strong positive association between sex partners and antisocial behavior. Second, DAT1 explains variation in both number of sexual partners and in criminal conduct for males. We speak to the implications of our findings. PMID:19350760

  2. The Drosophila melanogaster sex determination gene sisA is required in yolk nuclei for midgut formation.

    PubMed Central

    Walker, J J; Lee, K K; Desai, R N; Erickson, J W

    2000-01-01

    During sex determination, the sisterlessA (sisA) gene functions as one of four X:A numerator elements that set the alternative male or female regulatory states of the switch gene Sex-lethal. In somatic cells, sisA functions specifically in sex determination, but its expression pattern also hints at a role in the yolk cell, a syncytial structure believed to provide energy and nutrients to the developing embryo. Previous studies of sisA have been limited by the lack of a null allele, leaving open the possibility that sisA has additional functions. Here we report the isolation and molecular characterization of four new sisA alleles including two null mutations. Our findings highlight key aspects of sisA structure-function and reveal important qualitative differences between the effects of sisA and the other strong X:A numerator element, sisterlessB, on Sex-lethal expression. We use genetic, expression, clonal, and phenotypic analyses to demonstrate that sisA has an essential function in the yolk nuclei of both sexes. In the absence of sisA, endoderm migration and midgut formation are blocked, suggesting that the yolk cell may have a direct role in larval gut development. To our knowledge, this is the first report of a requirement for the yolk nuclei in Drosophila development. PMID:10790394

  3. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex.

    PubMed

    Harris, Erin P; Abel, Jean M; Tejada, Lucia D; Rissman, Emilie F

    2016-05-01

    Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior. PMID:27010449

  4. Sex Pheromone Evolution Is Associated with Differential Regulation of the Same Desaturase Gene in Two Genera of Leafroller Moths

    PubMed Central

    Albre, Jérôme; Liénard, Marjorie A.; Sirey, Tamara M.; Schmidt, Silvia; Tooman, Leah K.; Carraher, Colm; Greenwood, David R.; Löfstedt, Christer; Newcomb, Richard D.

    2012-01-01

    Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in

  5. Familial 46,XY sex reversal without campomelic dysplasia caused by a deletion upstream of the SOX9 gene

    PubMed Central

    Layman, Lawrence C.; Ullmann, Reinhard; Shen, Yiping; Ha, Kyungsoo; Rehman, Khurram; Looney, Stephen; McDonough, Paul G.; Kim, Hyung-Goo; Carr, Bruce R.

    2014-01-01

    Background 46,XY sex reversal is a rare disorder and familial cases are even more rare. The purpose of the present study was to determine the molecular basis for a family with three affected siblings who had 46,XY sex reversal. Methods DNA was extracted from three females with 46,XY sex reversal, two normal sisters, and both unaffected parents. All protein coding exons of the SRY and NR5A1 genes were subjected to PCR-based DNA sequencing. In addition, array comparative genomic hybridization was performed on DNA from all seven family members. A deletion was confirmed using quantitative polymerase chain reaction. Expression of SOX9 gene was quantified using reverse transcriptase polymerase chain reaction. Results A 349kb heterozygous deletion located 353kb upstream of the SOX9 gene on the long arm of chromosome 17 was discovered in the father and three affected siblings, but not in the mother. The expression of SOX9 was significantly decreased in the affected siblings. Two of three affected sisters had gonadoblastomas. Conclusion This is the first report of 46,XY sex reversal in three siblings who have a paternally inherited deletion upstream of SOX9 associated with reduced SOX9 mRNA expression. PMID:24907458

  6. Mating Type Gene Homologues and Putative Sex Pheromone-Sensing Pathway in Arbuscular Mycorrhizal Fungi, a Presumably Asexual Plant Root Symbiont

    PubMed Central

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle. PMID:24260466

  7. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae)

    PubMed Central

    2014-01-01

    Background The chemical senses of insects mediate behaviors that are closely linked to survival and reproduction. The order Diptera contains two model organisms, the vinegar fly Drosophila melanogaster and the mosquito Anopheles gambiae, whose chemosensory genes have been extensively studied. Representing a third dipteran lineage with an interesting phylogenetic position, and being ecologically distinct by feeding on plants, the Hessian fly (Mayetiola destructor Say, Diptera: Cecidomyiidae) genome sequence has recently become available. Among plant-feeding insects, the Hessian fly is unusual in ‘reprogramming’ the plant to create a superior food and in being the target of plant resistance genes, a feature shared by plant pathogens. Chemoreception is essential for reproductive success, including detection of sex pheromone and plant-produced chemicals by males and females, respectively. Results We identified genes encoding 122 odorant receptors (OR), 28 gustatory receptors (GR), 39 ionotropic receptors (IR), 32 odorant binding proteins, and 7 sensory neuron membrane proteins in the Hessian fly genome. We then mapped Illumina-sequenced transcriptome reads to the genome to explore gene expression in male and female antennae and terminal abdominal segments. Our results reveal that a large number of chemosensory genes have up-regulated expression in the antennae, and the expression is in many cases sex-specific. Sex-specific expression is particularly evident among the Or genes, consistent with the sex-divergent olfactory-mediated behaviors of the adults. In addition, the large number of Ors in the genome but the reduced set of Grs and divergent Irs suggest that the short-lived adults rely more on long-range olfaction than on short-range gustation. We also report up-regulated expression of some genes from all chemosensory gene families in the terminal segments of the abdomen, which play important roles in reproduction. Conclusions We show that a large number of the

  8. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  9. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri.

    PubMed

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui; Zhang, Ya-Nan

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  10. Fog-2, a Germ-Line-Specific Sex Determination Gene Required for Hermaphrodite Spermatogenesis in Caenorhabditis Elegans

    PubMed Central

    Schedl, T.; Kimble, J.

    1988-01-01

    This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3. PMID:3396865

  11. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination.

    PubMed

    Shirak, Andrey; Seroussi, Eyal; Cnaani, Avner; Howe, Aimee E; Domokhovsky, Raisa; Zilberman, Noam; Kocher, Thomas D; Hulata, Gideon; Ron, Micha

    2006-11-01

    Recent studies have revealed that the major genes of the mammalian sex determination pathway are also involved in sex determination of fish. Several studies have reported QTL in various species and strains of tilapia, regions contributing to sex determination have been identified on linkage groups 1, 3, and 23. Genes contributing to sex-specific mortality have been detected on linkage groups 2, 6, and 23. To test whether the same genes might control sex determination in mammals and fishes, we mapped 11 genes that are considered putative master key regulators of sex determination: Amh, Cyp19, Dax1, Dmrt2, Dmrta2, Fhl3l, Foxl2, Ixl, Lhx9, Sf1, and Sox8. We identified polymorphisms in noncoding regions of these genes and genotyped these sites for 90 individuals of an F2 mapping family. Mapping of Dax1 joined LG16 and LG21 into a single linkage group. The Amh and Dmrta2 genes were mapped to two distinct regions of LG23. The Amh gene was mapped 5 cM from UNH879 within a QTL region for sex determination and 2 cM from UNH216 within a QTL region for sex-specific mortality. Dmrta2 was mapped 4 cM from UNH848 within another QTL region for sex determination. Cyp19 was mapped to LG1 far from a previously reported QTL region for sex determination on this chromosome. Seven other candidate genes mapped to LG4, -11, -12, -14, and -17. PMID:16951079

  12. Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms.

    PubMed

    Blum, Kenneth; Werner, Tonia; Carnes, Stefanie; Carnes, Patrick; Bowirrat, Abdalla; Giordano, John; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors. PMID:22641964

  13. Sex, Drugs, and Rock ‘N’ Roll: Hypothesizing Common Mesolimbic Activation as a Function of Reward Gene Polymorphisms

    PubMed Central

    Blum, Kenneth; Werner, Tonia; Carnes, Stefanie; Carnes, Patrick; Bowirrat, Abdalla; Giordano, John; Marlene-Oscar-Berman; Gold, Mark

    2014-01-01

    The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors. PMID:22641964

  14. Expression profile of the sex determination gene doublesex in a gynandromorph of bumblebee, Bombus ignitus.

    PubMed

    Ugajin, Atsushi; Matsuo, Koshiro; Kubo, Ryohei; Sasaki, Tetsuhiko; Ono, Masato

    2016-04-01

    Gynandromorphy that has both male and female features is known in many insect orders, including Hymenoptera. In most cases, however, only external morphology and behavioral aspects have been studied. We found a gynandromorph of bumblebee, Bombus ignitus, that showed almost bilateral distribution of external sexual traits, with male characters observed on the left side and female characters on the right side. This individual never exhibited sexual behavior toward new queens. The dissection of the head part showed that it had bilaterally dimorphic labial glands, only the left of which was well developed and synthesized male-specific pheromone components. In contrast, the gynandromorph possessed an ovipositor and a pair of ovaries in the abdominal part, suggesting that it had a uniformly female reproductive system. Furthermore, we characterized several internal organs of the gynandromorph by a molecular biological approach. The expression analyses of a sex determination gene, doublesex, in the brain, the fat bodies, the hindgut, and the ovaries of the gynandromorph revealed a male-type expression pattern exclusively in the left brain hemisphere and consistent female-type expression in other tissues. These findings clearly indicate the sexual discordance between external traits and internal organs in the gynandromorph. The results of genetic analyses using microsatellite markers suggested that this individual consisted of both genetically male- and female-type tissues. PMID:26868001

  15. Expression profile of the sex determination gene doublesex in a gynandromorph of bumblebee, Bombus ignitus

    NASA Astrophysics Data System (ADS)

    Ugajin, Atsushi; Matsuo, Koshiro; Kubo, Ryohei; Sasaki, Tetsuhiko; Ono, Masato

    2016-04-01

    Gynandromorphy that has both male and female features is known in many insect orders, including Hymenoptera. In most cases, however, only external morphology and behavioral aspects have been studied. We found a gynandromorph of bumblebee, Bombus ignitus, that showed almost bilateral distribution of external sexual traits, with male characters observed on the left side and female characters on the right side. This individual never exhibited sexual behavior toward new queens. The dissection of the head part showed that it had bilaterally dimorphic labial glands, only the left of which was well developed and synthesized male-specific pheromone components. In contrast, the gynandromorph possessed an ovipositor and a pair of ovaries in the abdominal part, suggesting that it had a uniformly female reproductive system. Furthermore, we characterized several internal organs of the gynandromorph by a molecular biological approach. The expression analyses of a sex determination gene, doublesex, in the brain, the fat bodies, the hindgut, and the ovaries of the gynandromorph revealed a male-type expression pattern exclusively in the left brain hemisphere and consistent female-type expression in other tissues. These findings clearly indicate the sexual discordance between external traits and internal organs in the gynandromorph. The results of genetic analyses using microsatellite markers suggested that this individual consisted of both genetically male- and female-type tissues.

  16. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis

    PubMed Central

    TREJTER, MARCIN; HOCHOL, ANNA; TYCZEWSKA, MARIANNA; ZIOLKOWSKA, AGNIESZKA; JOPEK, KAROL; SZYSZKA, MARTA; MALENDOWICZ, LUDWIK K; RUCINSKI, MARCIN

    2015-01-01

    Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix® Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower

  17. Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis.

    PubMed

    Trejter, Marcin; Hochol, Anna; Tyczewska, Marianna; Ziolkowska, Agnieszka; Jopek, Karol; Szyszka, Marta; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-03-01

    Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix(®) Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower

  18. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves. PMID:26358957

  19. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    PubMed Central

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map. PMID:26742857

  20. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    NASA Astrophysics Data System (ADS)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  1. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    PubMed Central

    2011-01-01

    Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes. PMID:21542906

  2. Microglial P2 Purinergic Receptor and Immunomodulatory Gene Transcripts Vary By Region, Sex, and Age in the Healthy Mouse CNS

    PubMed Central

    Crain, Jessica M.; Watters, Jyoti J.

    2016-01-01

    Inflammatory damage in many neurodegenerative diseases is restricted to certain regions of the CNS, and while microglia have long been implicated in the pathology of many of these disorders, information comparing their gene expression in different CNS regions is lacking. Here we tested the hypothesis that the expression of purinergic receptors, estrogen receptors and other neuroprotective and pro-inflammatory genes differed among CNS regions in healthy mice. Because neurodegenerative diseases vary in incidence by sex and age, we also examined the regional distribution of these genes in male and female mice of four different ages between 21 days and 12 months. We postulated that pro-inflammatory gene expression would be higher in older animals, and lower in young adult females. We found that microglial gene expression differed across the CNS. Estrogen receptor alpha (Esr1) mRNA levels were often lower in microglia from the brainstem/spinal cord than from the cortex, whereas tumor necrosis factor alpha (Tnfα) expression was several times higher. In addition, the regional pattern of gene expression often changed with animal age; for example, no regional differences in P2X7 mRNA levels were detected in 21 day-old animals, but at 7 weeks and older, expression was highest in cerebellar microglia. Lastly, the expression of some genes was sexually dimorphic. In microglia from 12 month-old animals, mRNA levels of inducible nitric oxide synthase, but not Tnfα, were higher in females than males. These data suggest that microglial gene expression is not uniformly more pro-inflammatory in males or older animals. Moreover, microglia from CNS regions in which neuronal damage predominates in neurodegenerative disease do not generally express more pro-inflammatory genes than microglia from regions less frequently affected. This study provides an in-depth assessment of regional-, sex- and age-dependent differences in key microglial transcripts from the healthy mouse CNS. PMID

  3. Speciation in Passerina buntings: introgression patterns of sex-linked loci identify a candidate gene region for reproductive isolation.

    PubMed

    Carling, Matthew D; Brumfield, Robb T

    2009-03-01

    Sex-chromosomes are thought to play an important role in speciation, but few studies of non-model organisms have investigated the relative influence of multiple sex-linked markers on reproductive isolation. We collected 222 individuals along a geographical transect spanning the hybrid zone between Passerina amoena and P. cyanea (Aves: Cardinalidae). Using maximum-likelihood cline fitting methods, we estimated locus-specific introgression rates for 10 z-linked markers. Although the cline width estimates ranged from 2.8 to 584 km, eight of 10 loci had cline widths between 224 and 271 km. We also used coalescent-based estimates of locus-specific divergence times between P. amoena and P. cyanea to test a recently proposed hypothesis of an inverse relationship between divergence time and cline width but did not find a significant association. The narrow width (2.8 km) of the cline estimated from the VLDLR9 locus indicates strong selection retarding introgression of alleles at this locus across the hybrid zone. Interestingly, a mutation in the very low density lipoprotein receptor (VLDLR) gene, in which VLDLR9 is an intron, is known to reduce the egg-laying ability of some chickens, suggesting a possible link between this gene region and reproductive isolation between P. amoena and P. cyanea. These results underscore the importance of sampling multiple loci to investigate introgression patterns across a chromosome or genome and support previous findings of the importance of sex-linked genes in speciation. PMID:19207259

  4. Floral visitation and reproductive traits of Stamenoid petals, a naturally occurring floral homeotic variant of Capsella bursa-pastoris (Brassicaceae).

    PubMed

    Ziermann, Janine; Ritz, Markus S; Hameister, Steffen; Abel, Christian; Hoffmann, Matthias H; Neuffer, Barbara; Theissen, Günter

    2009-11-01

    Homeotic changes played a considerable role during the evolution of flowers, but how floral homeotic mutants initially survive in nature has remained enigmatic. To better understand the evolutionary potential of floral homeotic mutants, we established as a model system Stamenoid petals (Spe), a natural variant of Capsella bursa-pastoris (Brassicaceae). In the flowers of Spe plants, petals are transformed into stamens, whereas all other floral organs are unaffected. In contrast with most other homeotic mutants, the Spe variant occurs in relatively stable populations in the wild. In order to determine how the profound change in floral architecture influences plant performance in the wild, we performed common garden experiments running over 3 years. Here, we show that Spe and wild-type plants attract the same assemblage of floral visitors: mainly hoverflies, wild bees and thrips. However, floral visitation is about twice as frequent in wild-type plants as in Spe plants. Nevertheless, the numbers of seeds per fruit were about the same in both variants. Wild-type plants produced more flowers, fruits and seeds per plant than Spe plants, whereas the germination capacity of Spe seeds was higher than that of the wild-type. Determination of volatile composition revealed monoterpenes and 3,4-dimethylbenzaldehyde, which were detected only in wild-type flowers, presumably because they are produced only by petals. Our data indicate that the similar fitness of Spe and wild-type C. bursa-pastoris in the field results from complex compensation between plant architecture and germination capacity. In contrast, flower structure and floral visitation are only of minor importance, possibly because C. bursa-pastoris is mainly self-pollinating. PMID:19784670

  5. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  6. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    PubMed

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  7. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus.

    PubMed

    Wang, Dan-Dan; Zhang, Gui-Rong; Wei, Kai-Jian; Ji, Wei; Gardner, Jonathan P A; Yang, Rui-Bin; Chen, Kun-Ci

    2015-12-01

    Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes. PMID:26159319

  8. The transformer genes in the fig wasp Ceratosolen solmsi provide new evidence for duplications independent of complementary sex determination.

    PubMed

    Jia, L-Y; Xiao, J-H; Xiong, T-L; Niu, L-M; Huang, D-W

    2016-06-01

    Transformer (tra) is the key gene that turns on the sex-determination cascade in Drosophila melanogaster and in some other insects. The honeybee Apis mellifera has two duplicates of tra, one of which (complementary sex determiner, csd) is the primary signal for complementary sex-determination (CSD), regulating the other duplicate (feminizer). Two tra duplicates have been found in some other hymenopteran species, resulting in the assumption that a single ancestral duplication of tra took place in the Hymenoptera. Here, we searched for tra homologues and pseudogenes in the Hymenoptera, focusing on five newly published hymenopteran genomes. We found three tra copies in the fig wasp Ceratosolen solmsi. Further evolutionary and expression analyses also showed that the two duplicates (Csoltra-B and Csoltra-C) are under positive selection, and have female-specific expression, suggesting possible sex-related functions. Moreover, Aculeata species exhibit many pseudogenes generated by lineage-specific duplications. We conclude that phylogenetic reconstruction and pseudogene screening provide novel evidence supporting the hypothesis of independent duplications rather an ancestral origin of multiple tra paralogues in the Hymenoptera. The case of C. solmsi is the first example of a non-CSD species with duplicated tra, contrary to the previous assumption that derived tra paralogues function as the CSD locus. PMID:26748889

  9. Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution.

    PubMed

    Waters, Paul D; Delbridge, Margaret L; Deakin, Janine E; El-Mogharbel, Nisrine; Kirby, Patrick J; Carvalho-Silva, Denise R; Graves, Jennifer A Marshall

    2005-01-01

    Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X. PMID:15973504

  10. Stand Still, a Drosophila Gene Involved in the Female Germline for Proper Survival, Sex Determination and Differentiation

    PubMed Central

    Pennetta, G.; Pauli, D.

    1997-01-01

    We identified a new gene, stand still (stil), required in the female germline for proper survival, sex determination and differentiation. Three strong loss-of-function alleles were isolated. The strongest phenotype exhibited by ovaries dissected from adult females is the complete absence of germ cells. In other ovaries, the few surviving germ cells frequently show a morphology typical of primary spermatocytes. still is not required either for fly viability or for male germline development. The gene was cloned and found to encode a novel protein. still is strongly expressed in the female germ cells. Using P[stil(+)] transgenes, we show that stil and a closely localized gene are involved in the modification of the ovarian phenotypes of the dominant alleles of ovo caused by heterozygosity of region 49 A-D. The similarity of the mutant phenotypes of stil to that of otu and ovo suggests that the three genes function in a common or in parallel pathways necessary in the female germline for its survival, sex determination and differentiation. PMID:9093851

  11. Identification of Novel Candidate Gene Loci and Increased Sex Chromosome Aneuploidy among Infants with Conotruncal Heart Defects

    PubMed Central

    Osoegawa, Kazutoyo; Iovannisci, David M.; Lin, Bin; Parodi, Christina; Schultz, Kathleen; Shaw, Gary M.; Lammer, Edward J.

    2013-01-01

    Congenital heart defects are common malformations, affecting 4–8 per 1,000 total births. Conotruncal defects are an important pathogenetic subset of congenital heart defects, comprising nearly 20 percent of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999–2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a seven-fold increased frequency (relative risk = 7.0; 95% confidence interval 2.9–16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2 and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2 and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to nonsyndromic common malformations. PMID:24127225

  12. RNAi-Mediated Gene Silencing in a Gonad Organ Culture to Study Sex Determination Mechanisms in Sea Turtle

    PubMed Central

    Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Milton, Sarah L.; Moreno-Mendoza, Norma; Díaz-Hernández, Verónica; García-Gasca, Alejandra

    2013-01-01

    The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP) at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination. PMID:24705165

  13. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  14. Sex-Related Differences in Gene Expression Following Coxiella burnetii Infection in Mice: Potential Role of Circadian Rhythm

    PubMed Central

    Textoris, Julien; Ban, Leang Heng; Capo, Christian; Raoult, Didier; Leone, Marc; Mege, Jean-Louis

    2010-01-01

    Background Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles. Methodology/Principal Findings Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl) and negative (Per) limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent. Conclusion This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections. PMID:20730052

  15. Homologies and homeotic transformation of the theropod ‘semilunate' carpal

    PubMed Central

    Xu, Xing; Han, Fenglu; Zhao, Qi

    2014-01-01

    The homology of the ‘semilunate' carpal, an important structure linking non-avian and avian dinosaurs, has been controversial. Here we describe the morphology of some theropod wrists, demonstrating that the ‘semilunate' carpal is not formed by the same carpal elements in all theropods possessing this feature and that the involvement of the lateralmost distal carpal in forming the ‘semilunate' carpal of birds is an inheritance from their non-avian theropod ancestors. Optimization of relevant morphological features indicates that these features evolved in an incremental way and the ‘semilunate' structure underwent a lateral shift in position during theropod evolution, possibly as a result of selection for foldable wings in birds and their close theropod relatives. We propose that homeotic transformation was involved in the evolution of the ‘semilunate' carpal. In combination with developmental data on avian wing digits, this suggests that homeosis played a significant role in theropod hand evolution in general. PMID:25116378

  16. Gain of function mutation in tobacco MADS box promoter switch on the expression of flowering class B genes converting sepals to petals.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-02-01

    One mutant transgenic line displaying homeotic conversion of sepals to petals with other phenotypic aberrations was selected and characterized at molecular level. The increased transcript level of gene encoding anthocyanidin synthase and petal specific class B genes, GLOBOSA and DEFECIENS in sepals of mutant line may be responsible for its homeotic conversion to petaloid organs. While characterizing this mutant line for locus identification, T-DNA was found to be inserted in 3' untranslated region of promoter of class B MADS box gene, GLOBOSA. Here, CaMV 35S promoter of T-DNA might be deriving the expression of class B genes. PMID:24362510

  17. Subchronic effects of cadmium on the gonads, expressions of steroid hormones and sex-related genes in tilapia Oreochromis niloticus.

    PubMed

    Luo, Yongju; Shan, Dan; Zhong, Huan; Zhou, Yi; Chen, Wenzhi; Cao, Jinling; Guo, Zhongbao; Xiao, Jun; He, Fulin; Huang, Yifan; Li, Jian; Huang, Heming; Xu, Pao

    2015-12-01

    Cadmium (Cd) is one of the most toxic heavy metals in aquatic ecosystem which affects fish health and aquaculture. In the present study, we examined the bioaccumulation of Cd in the gonads of tilapia via dissolved and dietary routes. We evaluated the subchronic effects of Cd on the histology of gonads, steroid hormone levels and sex-related gene expressions in tilapia. In addition, we also studied maternal transfer of Cd. Our results indicated that Cd was accumulated significantly in both ovary and testis from both exposure routes. Histopathological analysis showed that Cd induced ovary and testis injuries. Estradiol levels were significantly increased in dissolved Cd exposed female fish. In addition, the Cd exposure displayed different effects on gene expressions in gonads. In females, the estrogen receptor (ERα) was stimulated in dissolved Cd-exposed fish at 70.32 and 143.78 μg/L for 30 days and in fish at 143.78 μg/L for 60 days. Vitellogenin expression was significantly down-regulated in the ovary of dissolved Cd-exposed fish. In testis, GR expression was elevated after 60 days of dissolved Cd and dietary exposure. Furthermore, Cd level was significantly higher in the eggs than that in the fry. Our results demonstrated that both dissolved and dietary Cd exposures affected gonad development by altering steroid hormone levels and sex-related gene expressions in tilapia. PMID:26471182

  18. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  19. Gene Conversion and DNA Sequence Polymorphism in the Sex-Determination Gene fog-2 and Its Paralog ftr-1 in Caenorhabditis elegans

    PubMed Central

    Rane, Hallie S.; Smith, Jessica M.; Bergthorsson, Ulfar; Katju, Vaishali

    2010-01-01

    Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male–female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations. PMID:20133352

  20. Recruitment of the proneural gene scute to the Drosophila sex-determination pathway.

    PubMed Central

    Wrischnik, Lisa A; Timmer, John R; Megna, Lisa A; Cline, Thomas W

    2003-01-01

    In flies, scute (sc) works with its paralogs in the achaete-scute-complex (ASC) to direct neuronal development. However, in the family Drosophilidae, sc also acquired a role in the primary event of sex determination, X chromosome counting, by becoming an X chromosome signal element (XSE)-an evolutionary step shown here to have occurred after sc diverged from its closest paralog, achaete (ac). Two temperature-sensitive alleles, sc(sisB2) and sc(sisB3), which disrupt only sex determination, were recovered in a powerful F1 genetic selection and used to investigate how sc was recruited to the sex-determination pathway. sc(sisB2) revealed 3' nontranscribed regulatory sequences likely to be involved. The sc(sisB2) lesion abolished XSE activity when combined with mutations engineered in a sequence upstream of all XSEs. In contrast, changes in Sc protein sequence seem not to have been important for recruitment. The observation that the other new allele, sc(sisB3), eliminates the C-terminal half of Sc without affecting neurogenesis and that sc(sisB1), the most XSE-specific allele previously available, is a nonsense mutant, would seem to suggest the opposite, but we show that housefly Sc can substitute for fruit fly Sc in sex determination, despite lacking Drosophilidae-specific conserved residues in its C-terminal half. Lack of synergistic lethality among mutations in sc, twist, and dorsal argue against a proposed role for sc in mesoderm formation that had seemed potentially relevant to sex-pathway recruitment. The screen that yielded new sc alleles also generated autosomal duplications that argue against the textbook view that fruit fly sex signal evolution recruited a set of autosomal signal elements comparable to the XSEs. PMID:14704182

  1. Association of polymorphism harbored by tumor necrosis factor alpha gene and sex of calf with lactation performance in cattle.

    PubMed

    Yudin, N S; Aitnazarov, R B; Voevoda, M I; Gerlinskaya, L A; Moshkin, M P

    2013-10-01

    In a majority of mammals, male infants have heavier body mass and grow faster than female infants. Accordingly, male offspring nursing requires a much greater maternal energy contribution to lactation. It is possible that the maternal-fetal immunoendocrine dialog plays an important role in female preparation for lactation during pregnancy. Immune system genes are an integral part of gene regulatory networks in lactation and tumor necrosis factor alpha (TNFα) is a proinflammatory cytokine that also plays an important role in normal mammary gland development. The aim of this study was to evaluate the influence of the sex of calf and/or the -824A/G polymorphism in the promoter region of TNFα gene on milk performance traits in Black Pied cattle over the course of lactation. We also studied the allele frequency differences of -824A/G variants across several cattle breeds, which were bred in different climatic conditions. The G allele frequency decreased gradually over the course of lactation events in the Black Pied dairy cattle because of a higher culling rate of cows with the G/G genotype (p<0.001). In contrast to the genotypes A/A and A/G, cows with G/G genotype showed significant variability of milk and milk fat yield subject to sex of delivered calf. Milk yield and milk fat yield were significantly higher in the case of birth of a bull calf than with a heifer calf (p<0.03). The G allele frequency varies from 48% to 58% in Grey Ukrainian and Black Pied cattle to 77% in aboriginal Yakut cattle. Our results suggest that the TNFα -824A/G gene polymorphism may have an influence on the reproductive efforts of cows over the course of lactation events depending on the sex of progeny. Allocation of resources according to sex of the calf allows optimizing the energy cost of lactation. This may be a probable reason for high G allele frequency in Yakut cattle breeding in extreme environmental conditions. Similarly, the dramatic fall in milk production after birth of a

  2. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods. PMID:25077523

  3. Construction of an in vivo system for functional analysis of the genes involved in sex pheromone production in the silkmoth, Bombyx mori.

    PubMed

    Moto, Ken-Ichi; Matsumoto, Shogo

    2012-01-01

    Moths produce species-specific sex pheromones to attract conspecific mates. The biochemical processes that comprise sex pheromone biosynthesis are precisely regulated and a number of gene products are involved in this biosynthesis and regulation. In recent years, at least 300 EST clones have been isolated from Bombyx mori pheromone gland (PG) specific cDNA libraries with some of those clones [i.e., B. mori PG-specific desaturase 1 (Bmpgdesat1), PG-specific fatty acyl reductase, PG-specific acyl-CoA-binding protein, B. mori fatty acid transport protein, B. mori lipid storage droplet protein-1] characterized and demonstrated to play a role in sex pheromone production. However, most of the EST clones have yet to be fully characterized and identified. To develop an efficient system for analyzing sex pheromone production-related genes, we investigated the feasibility of a novel gene analysis system using the upstream region of Bmpgdesat1 that should contain a PG-specific gene promoter in conjunction with piggyBac vector-mediated germ line transformation. As a result, we have been able to obtain expression of our reporter gene (enhanced green fluorescent protein) in the PG but not in other tissues of transgenic B. mori. Current results indicate that we have successfully constructed a novel in vivo gene analysis system for sex pheromone production in B. mori. PMID:22649415

  4. mgm 1, the earliest sex-specific germline marker in Drosophila, reflects expression of the gene esg in male stem cells.

    PubMed

    Streit, Adrian; Bernasconi, Luca; Sergeev, Pavel; Cruz, Alex; Steinmann-Zwicky, Monica

    2002-01-01

    The pathway that controls sex in Drosophila has been well characterized. The elements of this genetic hierarchy act cell-autonomously in somatic cells. We have previously shown that the sex of germ cells is determined by a different mechanism and that somatic and autonomously acting elements interact to control the choice between spermatogenesis and oogenesis. A target for both types of signals is the enhancer-trap mgm1, which monitors male-specific gene expression in germ cells. Here we report that mgm1 reflects the expression of escargot (esg), a member of the snail gene family, which are transcription factors with zink finger motifs. Genes of this family partially redundantly control a number of processes involving cell fate choices. The regulation of gene expression in germ cells by sex-specific esg enhancers is already seen in embryos. Therefore, autonomous and non-autonomous sex-specific factors that participate in germline sex determination are already present at this early stage. esg is expressed in the male gonad, both in somatic cells and in germline stem cells. We show that esg expression in the male germline is not required for proper sex determination and spermatogenesis, as functional sperm is differentiated by mutant germ cells in wild type hosts. However, somatic esg expression is required for the maintenance of male germline stem cells. PMID:11902678

  5. Sex-Specific Association of Depression and a Haplotype in Leukotriene A4 Hydrolase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depression is genetically determined and inflammation has been implicated. Women are twice as likely to develop depression as men. Whether genetic variants involved in inflammation play a role in the sex difference in depression is unclear. We examined the association, separately in men and women, ...

  6. Does polyandry control population sex ratio via regulation of a selfish gene?

    PubMed Central

    Price, Tom A. R.; Bretman, Amanda; Gradilla, Ana C.; Reger, Julia; Taylor, Michelle L.; Giraldo-Perez, Paulina; Campbell, Amy; Hurst, Gregory D. D.; Wedell, Nina

    2014-01-01

    The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread. PMID:24695427

  7. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: Role of obesity and sex.

    PubMed

    Mina, Theresia H; Räikkönen, Katri; Riley, Simon C; Norman, Jane E; Reynolds, Rebecca M

    2015-09-01

    Maternal emotional distress symptoms, including life satisfaction, anxiety and depressed mood, are worse in Severely Obese (SO) than lean pregnancy and may alter placental genes regulating fetal glucocorticoid exposure and placental growth. We hypothesised that the associations between increased maternal distress symptoms and changes in placental gene expression including IGF2 and genes regulating fetal glucocorticoid exposure are more pronounced in SO pregnancy. We also considered whether there were sex-specific effects. Placental mRNA levels of 11β-HSDs, NR3C1-α, NR3C2, ABC transporters, mTOR and the IGF2 family were measured in term placental samples from 43 lean (BMI≤25kg/m(2)) and 50 SO (BMI≥40kg/m(2)) women, in whom distress symptoms were prospectively evaluated during pregnancy. The mRNA levels of genes with a similar role in regulating fetal glucocorticoid exposure were strongly inter-correlated. Increased maternal distress symptoms associated with increased NR3C2 and IGF2 isoform 1(IGF2-1) in both lean and SO group (p≤0.05). Increased distress was associated with higher ABCB1 and ABCG2 mRNA levels in SO but lower ABCB1 and higher 11β-HSD1 mRNA levels in lean (p≤0.05) suggesting a protective adaptive response in SO placentas. Increased maternal distress associated with reduced mRNA levels of ABCB1, ABCG2, 11β-HSD2, NR3C1-α and IGF2-1 in placentas of female but not male offspring. The observed sex differences in placental responses suggest greater vulnerability of female fetuses to maternal distress with potentially greater fetal glucocorticoid exposure and excess IGF2. Further studies are needed to replicate these findings and to test whether this translates to potentially greater negative outcomes of maternal distress in female offspring in early childhood. PMID:26056743

  8. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing

    PubMed Central

    2014-01-01

    Background The homology of the digits in the bird wing is a high-profile controversy in developmental and evolutionary biology. The embryonic position of the digits cartilages with respect to the primary axis (ulnare and ulna) corresponds to 2, 3, 4, but comparative-evolutionary morphology supports 1, 2, 3. A homeotic frameshift of digit identity in evolution could explain how cells in embryonic positions 2, 3, 4 began developing morphologies 1, 2, 3. Another alternative is that no re-patterning of cell fates occurred, and the primary axis shifted its position by some other mechanism. In the wing, only the anterior digit lacks expression of HoxD10 and HoxD12, resembling digit 1 of other limbs, as predicted by 1, 2, 3. However, upon loss of digit 1 in evolution, the most anterior digit 2 could have lost their expression, deceitfully resembling a digit 1. To test this notion, we observed HoxD10 and HoxD12 in a limb where digit 2 is the most anterior digit: The rabbit foot. We also explored whether early inhibition of Shh signalling in the embryonic wing bud induces an experimental homeotic frameshift, or an experimental axis shift. We tested these hypotheses using DiI injections to study the fate of cells in these experimental wings. Results We found strong transcription of HoxD10 and HoxD12 was present in the most anterior digit 2 of the rabbit foot. Thus, we found no evidence to question the use of HoxD expression as support for 1, 2, 3. When Shh signalling in early wing buds is inhibited, our fate maps demonstrate that an experimental homeotic frameshift is induced. Conclusion Along with comparative morphology, HoxD expression provides strong support for 1, 2, 3 identity of wing digits. As an explanation for the offset 2, 3, 4 embryological position, the homeotic frameshift hypothesis is consistent with known mechanisms of limb development, and further proven to be experimentally possible. In contrast, the underlying mechanisms and experimental plausibility of an

  9. A novel mutation (296 del G) of the SOX90 gene in a patient with campomelic syndrome and sex reversal.

    PubMed

    Ninomiya, S; Yokoyama, Y; Teraoka, M; Mori, R; Inoue, C; Yamashita, S; Tamai, H; Funato, M; Seino, Y

    2000-09-01

    The human SOX9 gene is responsible for the campomelic syndrome (CMPS) and sex reversal. This gene encodes a transcription factor containing a DNA binding domain homologous to the SRY high mobility group (HMG) domain. A novel mutation of SOX9, i.e. a single G deletion in one allele at nt 296 from A of the first ATG in the open reading frame, was identified in a patient with CMPS with sex reversal. The deletion resulted in a frameshift mutation upstream of the HMG box and a stop codon 30 bp downstream of the HMG box. The predicted truncated SOX9 protein contained 108 amino acids instead of the 509 amino acids of the normal SOX9 protein, removing nearly 80% of the SOX9 protein, including the HMG and the C-terminal transactivation domain. Most patients with CMPS reported previously died within the neonatal period. Our findings that the patient has survived, although has been in daily need of mechanical ventilation support for 5 years and 3 months despite a severely impaired SOX9 protein, do not support a linear relationship between the type of mutation and severity of the clinical outcome. PMID:11076045

  10. Sex Differences in Variability for Cognitive Measures: Do the Ends Justify the Genes? (Commentary on Johnson et al., 2009).

    PubMed

    Turkheimer, Eric; Halpern, Diane F

    2009-11-01

    Theories about the origin of cognitive sex differences must address differences in three portions of ability distributions: low-tail variability, high-tail variability, and mean values. In addition, genetic theories must provide evidence that these three types of differences are (at least in large part) caused by alleles that are located on the X chromosome. It is well established that there are more mentally retarded males than females, and this disparity is attributable to genes located on the X chromosome. By contrast, there are no known "intelligence genes" that can provide a parallel explanation for differences in variability in the high ability tail of distributions. Mean differences between males and females also defy any X-linked hypothesis about average intelligence because females and males excel on different cognitive measures. Thus, we conclude that X-linked genetic explanations of cognitive sex differences can only be substantiated as a causal explanation for the excess of males diagnosed with mental retardation. PMID:26161736