Homogeneous-heterogeneous reactions in peristaltic flow with convective conditions.
Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed
2014-01-01
This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608
Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions
Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed
2014-01-01
This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608
NASA Astrophysics Data System (ADS)
Bendaoud, Adlane Larbi
Les evaporateurs de refrigeration sont surtout du type tube a ailettes, appeles serpentins, et fonctionnent dans l'une des conditions suivantes: seche, humide ou avec formation de givre. Il a ete demontre que la formation du givre sur la paroi exterieure de l'echangeur engendre une surconsommation energetique a cause des operations de degivrage puisque 15 a 20% seulement de la chaleur produite sert au degivrage tandis que le reste est dissipee dans l'environnement [1]. Avec l'avenement des nouveaux refrigerants, moins nocifs envers l'environnement, l'industrie du froid se trouve penalisee du fait que peu ou pas de composantes mecaniques (compresseur, pompe, echangeur...etc.) adaptees sont disponibles [3]. Il s'agit pour la communaute des frigoristes de combler ce retard technologique en redeveloppant ces composantes mecaniques afin qu'elles soient adaptees aux nouveaux refrigerants. Dans cette optique, et afin de mieux comprendre le comportement thermique des evaporateurs au CO2 fonctionnant dans des conditions seches, qu'un groupe de chercheurs du CanmetENERGIE avaient lance, en 2000, un programme de R & D. Dans le cadre de programme un outil de simulation des evaporateurs au CO2 a ete developpe et un banc d'essai contenant une boucle secondaire de refrigeration utilisant le CO2 comme refrigerant a ete construit. Comme continuite de ce travail de recherche, en 2006 ce meme groupe de recherche a lance un nouveau projet qui consiste a faire une etude theorique et experimentale des evaporateurs au CO2 operants dans des conditions de givrage. Et, c'est exactement dans le cadre de ce projet que se positionne ce travail de these. Ce travail de recherche a ete entrepris pour mieux comprendre le comportement thermique et hydrodynamique des serpentins fonctionnant dans des conditions de givrage, l'effet des circuits de refrigerant ainsi que celui des parametres geometriques et d'operation. Pour cela, un travail theorique supporte par une etude experimentale a ete effectue
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Functions with constant Laplacian satisfying homogeneous Robin boundary conditions
NASA Astrophysics Data System (ADS)
Keady, Grant; McNabb, Alex
1993-01-01
The authors study properties of real-valued functions u defined over {Omega}, a simply-connected domain in RN for which the Laplacian of u is constant in {Omega}, and which satisfy, on the boundary of {Omega}, the Robin boundary condition u+{beta}({partial}u/{partial}n)=0. Here n is the outward normal and {beta}[≥]0. When N=2 and {beta}=0, this is the classical St Venant torsion problem, but the concern in this paper is with N[≥]2 and {beta}[≥]0. Results concerning the magnitude um and location zm of the maximum value of u, and estimates for the functional S{beta}={int}{Omega}u, and the maxima pm and qm of |{nabla}u| and |{partial}u/{partial}n|, respectively, are established using comparison theorems and variational arguments.
Research of a boundary condition quantifiable correction method in the assembly homogenization
Peng, L. H.; Liu, Z. H.; Zhao, J.; Li, W. H.
2012-07-01
The methods and codes currently used in assembly homogenization calculation mostly adopt the reflection boundary conditions. The influences of real boundary conditions on the assembly homogenized parameters were analyzed. They were summarized into four quantifiable effects, and then the mathematical expressions could be got by linearization hypothesis. Through the calculation of a test model, it had been found that the result was close to transport calculation result when considering four boundary quantifiable effects. This method would greatly improve the precision of a core design code which using the assembly homogenization methods, but without much increase of the computing time. (authors)
Sharapov, T F
2014-10-31
We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.
NASA Technical Reports Server (NTRS)
Chiavassa, G.; Liandrat, J.
1996-01-01
We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.
NASA Astrophysics Data System (ADS)
Rudakov, I. A.
2015-10-01
We prove the existence of a countable family of time-periodic solutions of the quasilinear equation of beam vibrations with homogeneous boundary conditions and time-periodic right-hand side in the case when the non-linear term has power growth.
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Yoshida, Haruo
2012-02-01
We consider a natural Hamiltonian system of n degrees of freedom with a homogeneous potential. We assume that the system admits 1 <= m < n independent and commuting first integrals F1, ... Fm. We give easily computable and effective necessary conditions for the existence of one additional first integral Fm+1 such that all integrals F1, ...Fm+1 are independent, pairwise commute and are meromorphic in a connected neighbourhood of a certain phase curve. These conditions are obtained from an analysis of the differential Galois group of variational equations along a particular solution of the system. We apply our result analysing the problem of the existence of one additional first integral for a homogeneous nonlinear lattice on a line.
Massive star evolution in close binaries. Conditions for homogeneous chemical evolution
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.
2016-01-01
Aims: We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow (RLOF) during the main-sequence phase. By homogeneous evolution, we mean stars evolving with a nearly uniform chemical composition from the centre to the surface. Methods: We consider the case of rotating stars computed with a strong core-envelope coupling mediated by an interior magnetic field. Models with initial masses between 15 and 60 M⊙, for metallicities between 0.002 and 0.014 and with initial rotation equal to 30% and 66% the critical rotation on the zero age main sequence, are computed for single stars and for stars in close binary systems. We consider close binary systems with initial orbital periods equal to 1.4, 1.6, and 1.8 days and a mass ratio equal to 3/2. Results: In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realised: the initial rotation must be high enough, and the loss of angular momentum by stellar winds should be modest. This last point favours metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronisation is high enough (typically a time-averaged surface velocities during the main-sequence phase above 250 km s-1), whatever the mass losses. We present plots that indicate for which masses of the primary and for which initial periods the conditions for the homogenous evolution and avoidance of the RLOF are met, for various initial metallicities and rotations. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favoured at higher metallicities. RLOF avoidance is favoured at lower metallicities because stars with less metals remain more
NASA Astrophysics Data System (ADS)
Degraeve, S.; Granger, C.; Dubus, B.; Vasseur, J. O.; Pham Thi, M.; Hladky-Hennion, A.-C.
2014-05-01
An homogeneous piezoelectric rod is shown to exhibit Bragg band gaps when an electrical boundary condition is applied periodically with the help of metallic electrodes. An analytical model is developed which formulation depends on the applied electric boundary condition and reveals that Bragg band gaps occurring in this very peculiar phononic crystal are related to the electric charge located on the electrodes. Moreover, via an accurate boundary condition (electrodes connected in short circuit, in open circuit, or through an external capacitance), full tunability of the Bragg band gaps can be achieved. Measurements of ultrasonic transmission present an overall excellent agreement with the theoretical results. This phononic crystal can be easily manufactured and presents many potential applications as frequency filters especially for radio frequency telecommunications.
Kovalevskaya exponents and the space of initial conditions of a quasi-homogeneous vector field
NASA Astrophysics Data System (ADS)
Chiba, Hayato
2015-12-01
Formal series solutions and the Kovalevskaya exponents of a quasi-homogeneous polynomial system of differential equations are studied by means of a weighted projective space and dynamical systems theory. A necessary and sufficient condition for the series solution to be a convergent Laurent series is given, which improves the well-known Painlevé test. In particular, if a given system has the Painlevé property, an algorithm to construct Okamoto's space of initial conditions is given. The space of initial conditions is obtained by weighted blow-ups of the weighted projective space, where the weights for the blow-ups are determined by the Kovalevskaya exponents. The results are applied to the first Painlevé hierarchy (2m-th order first Painlevé equation).
NASA Astrophysics Data System (ADS)
Yu, Dong; Yang, Hong; Luo, Dong-Mei
2011-06-01
Periodical boundary conditions (PBC) are important for the prediction of effective elastic stiffness of composites by applying the macro-microscopic asymptotic expansion homogenization method (HM). In this paper, two kinds of homogeneous periodical boundary conditions are proposed to satisfy the improved expression for the homogenized effective stiffness with the homogeneous characteristic function, and one is the relaxed periodical boundary condition, and the other is a precise polynomial derived from the first one. A typical example of the off-axis short-fiber reinforced composites is analyzed by the described procedure. The results show that the periodical boundary condition is not unique, and the relaxed periodic boundary condition is the simplest and most convenient method to guarantee periodical displacement and anti-periodical traction boundary conditions simultaneously in a widespread field with a unified form.
Mixed boundary conditions for FFT-based homogenization at finite strains
NASA Astrophysics Data System (ADS)
Kabel, Matthias; Fliegener, Sascha; Schneider, Matti
2016-02-01
In this article we introduce a Lippmann-Schwinger formulation for the unit cell problem of periodic homogenization of elasticity at finite strains incorporating arbitrary mixed boundary conditions. Such problems occur frequently, for instance when validating computational results with tensile tests, where the deformation gradient in loading direction is fixed, as is the stress in the corresponding orthogonal plane. Previous Lippmann-Schwinger formulations involving mixed boundary can only describe tensile tests where the vector of applied force is proportional to a coordinate direction. Utilizing suitable orthogonal projectors we develop a Lippmann-Schwinger framework for arbitrary mixed boundary conditions. The resulting fixed point and Newton-Krylov algorithms preserve the positive characteristics of existing FFT-algorithms. We demonstrate the power of the proposed methods with a series of numerical examples, including continuous fiber reinforced laminates and a complex nonwoven structure of a long fiber reinforced thermoplastic, resulting in a speed-up of some computations by a factor of 1000.
Smith, Brian J; Dichtel, William R
2014-06-18
Covalent organic frameworks (COFs) are periodic two- and three-dimensional (2D and 3D) polymer networks with high surface areas, low densities, and designed structures. Despite intense interest in framework materials, the nucleation and growth processes of COFs, and even of more established metal-organic frameworks (MOFs), are poorly understood. The kinetics of COF growth under varied reaction conditions provides mechanistic insight needed to improve their crystallinity and rationally synthesize new materials. Such kinetic measurements are unprecedented and difficult to perform on typical heterogeneous COF reaction mixtures. Here we synthesize 2D boronate ester-linked COF-5 under conditions in which the monomers are fully soluble. These homogeneous growth conditions provide equal or better material quality compared to any previous report and enable the first rigorous studies of the early stages of COF growth. COF-5 forms within minutes, and the precipitation rate is readily quantified from optical turbidity measurements. COF-5 formation follows an Arrhenius temperature dependence between 60-90 °C with an activation energy of 22-27 kcal/mol. The measured rate law includes a second order in both boronic acid and catechol moieties, and inverse second order in MeOH concentration. A competitive monofunctional catechol slows COF-5 formation but does not redissolve already precipitated COF, indicating both dynamic covalent bond formation and irreversible precipitation. Finally, stoichiometric H2O provides a 4-fold increase in crystallite domain areas, representing the first rational link between reaction conditions and material quality. PMID:24892961
Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham
2006-05-15
This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.
Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi
2013-08-19
Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions. PMID:23895380
Filippini, G; Bonal, C; Malfreyt, P
2014-05-14
In this study, the thermodynamic properties of association of some inorganic ions (ClO4(-) and SO4(2-)) with β-cyclodextrins (β-CD) in aqueous solution are determined under both free β-CD and surface confined β-CD conditions using atomistic simulations. The potential of mean force (PMF) is calculated as a function of the environment and the thermodynamic properties of association are deduced by integrating the free energy profiles. No inclusion complex between SO4(2-) and β-CD is detected. Nevertheless, the PMF curve obtained for gold-confined CD seems to evidence a small minimum at a larger separation distance that shows specific interactions such as hydrogen bonding outside the cavity. As concerns ClO4(-), our simulations reveal the formation of an inclusion complex with free β-CD in perfect agreement with the available experimental results. Nevertheless, we do not detect any formation of the host-guest inclusion complex under heterogeneous conditions. Finally, the differences observed as a function of the anions are interpreted through an atomistic description. The general trend of weaker complex stabilities with the increasing free energy of hydration of the anions is found in homogeneous systems. PMID:24676343
NASA Astrophysics Data System (ADS)
Jie, Renlong; Qiao, Jian; Xu, Genjiu; Meng, Yingying
2016-07-01
The propagating dynamics of more than one rumor has received a substantial amount of attention in recent years. To investigate the effects of interactions between two rumors under symmetric conditions, we built a model based on an ordinary differential equation system while assuming that each individual's spreading rate after receiving one rumor depends on whether he/she knows the other rumor. In certain cases, two rumors accelerate the spread of each other, while in a portion of the other cases they impede or decelerate the spread of each other. We discuss these effects by dividing the total population into nine groups that correspond to nine states, and we subsequently build the mean-field equations for the two-rumor interaction based on the SIR model in a homogeneous complex network, and we find their numerical solution with varying interaction factors for the rates of spreading and becoming disinterested. The results show that when we change these interaction factors, the density curves of the nine states and their maximum values will change accordingly by a series of rules, which demonstrates the corresponding effects when there is a positive or negative interaction between the two rumors. Our work could establish a foundation for further study of this issue.
Shestakov, Aleksei I.
2013-06-15
We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.
Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea
2016-10-20
Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. PMID:27474568
NASA Astrophysics Data System (ADS)
Ulerich, Rhys; Moser, Robert
2014-11-01
Turbulent boundary layers approximating those found on the NASA Orion Multi-Purpose Crew Vehicle thermal protection system during atmospheric reentry from the International Space Station have been studied by direct numerical simulation using a ``slow growth'' spatiotemporal homogenization approach recently developed by Topalian et al. The two data sets generated were Mae ~ 0 . 9 and 1 . 15 homogenized boundary layers possessing Reθ ~ 382 and 531, respectively. Edge-to-wall temperature ratios were approximately 4.15 and wall blowing velocities, vw+ =vw /uτ , were roughly 8 ×10-3 . The favorable pressure gradients had Pohlhausen parameters between 25 and 42. Nusselt numbers under 22 were observed. Small or negative displacement effects are evident. Near-wall vorticity fluctuations show qualitatively different profiles than observed by Spalart [J. Fluid Mech. 187 (1988)] or Guarini et al. [J. Fluid Mech. 414 (2000)] suggesting that the simulations have atypical structures perhaps as a consequence of wall blowing or the homogenization. This material is based in part upon work supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo
2012-06-20
Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties. PMID:24750773
Struecker, Benjamin; Hillebrandt, Karl Herbert; Voitl, Robert; Butter, Antje; Schmuck, Rosa B; Reutzel-Selke, Anja; Geisel, Dominik; Joehrens, Korinna; Pickerodt, Philipp A; Raschzok, Nathanael; Puhl, Gero; Neuhaus, Peter; Pratschke, Johann; Sauer, Igor M
2015-03-01
Decellularization and recellularization of parenchymal organs may facilitate the generation of autologous functional liver organoids by repopulation of decellularized porcine liver matrices with induced liver cells. We present an accelerated (7 h overall perfusion time) and effective protocol for human-scale liver decellularization by pressure-controlled perfusion with 1% Triton X-100 and 1% sodium dodecyl sulfate via the hepatic artery (120 mmHg) and portal vein (60 mmHg). In addition, we analyzed the effect of oscillating pressure conditions on pig liver decellularization (n=19). The proprietary perfusion device used to generate these pressure conditions mimics intra-abdominal conditions during respiration to optimize microperfusion within livers and thus optimize the homogeneity of the decellularization process. The efficiency of perfusion decellularization was analyzed by macroscopic observation, histological staining (hematoxylin and eosin [H&E], Sirius red, and alcian blue), immunohistochemical staining (collagen IV, laminin, and fibronectin), and biochemical assessment (DNA, collagen, and glycosaminoglycans) of decellularized liver matrices. The integrity of the extracellular matrix (ECM) postdecellularization was visualized by corrosion casting and three-dimensional computed tomography scanning. We found that livers perfused under oscillating pressure conditions (P(+)) showed a more homogenous course of decellularization and contained less DNA compared with livers perfused without oscillating pressure conditions (P(-)). Microscopically, livers from the (P(-)) group showed remnant cell clusters, while no cells were found in livers from the (P(+)) group. The grade of disruption of the ECM was higher in livers from the (P(-)) group, although the perfusion rates and pressure did not significantly differ. Immunohistochemical staining revealed that important matrix components were still present after decellularization. Corrosion casting showed an intact
NASA Astrophysics Data System (ADS)
Tullos, D. D.; Penrose, D. L.; Jennings, G. D.; Wentworth, T. R.
2005-05-01
Stream ecosystems, as described through benthic communities and twenty environmental variables, exhibited decreased variances and reduced ordinal dimensionality in restored streams when compared to associated upstream reaches in this upstream-downstream investigation of stream restoration in the North Carolina Piedmont. Through paired t-tests of the environmental variables and several descriptions of community structure and function, the variance for restored stream reaches was lower than the upstream reaches for 70% of environmental characteristics, for 75% of Functional Feeding and Habitat Groups, and for all of the community descriptions, including the Q statistic, Shannon Index, Simpson Index, EPT taxa richness, and NCBI. Further, Nonmetric Multidimensional Scaling of the sites best expressed the upstream reaches on three axes, while the restored stream reaches required only one axis to effectively describe variation in the benthic communities. These results suggest that simplification of the biota may occur following steam restoration activities, indicating the biological losses associated with early recovery in these streams. While the science of stream restoration has advanced since the early construction and implementation at these sites, the consequential homogenization demonstrated by these biotic and abiotic stream corridor features emphasizes the importance of a concentrated effort to re-establish heterogeneity in restoration designs.
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto
By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.
NASA Astrophysics Data System (ADS)
Li, Jia; Wu, Pinghui; Chang, Liping
2016-02-01
Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.
NASA Astrophysics Data System (ADS)
Hansen, Aviaja A.; Jenson, Lars L.; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W.; Lomstein, Bente Aa.
2009-03-01
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
Weber, Daniela; Davies, Michael J.; Grune, Tilman
2015-01-01
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921
NASA Astrophysics Data System (ADS)
Nguyen van yen, Romain; Farge, Marie; Schneider, Kai
2012-02-01
Classical statistical theories of turbulence have shown their limitations, in that they cannot predict much more than the energy spectrum in an idealized setting of statistical homogeneity and stationarity. We explore the applicability of a conditional statistical modeling approach: can we sort out what part of the information should be kept, and what part should be modeled statistically, or, in other words, “dissipated”? Our mathematical framework is the initial value problem for the two-dimensional (2D) Euler equations, which we approximate numerically by solving the 2D Navier-Stokes equations in the vanishing viscosity limit. In order to obtain a good approximation of the inviscid dynamics, we use a spectral method and a resolution going up to 8192 2. We introduce a macroscopic concept of dissipation, relying on a split of the flow between coherent and incoherent contributions: the coherent flow is constructed from the large wavelet coefficients of the vorticity field, and the incoherent flow from the small ones. In previous work, a unique threshold was applied to all wavelet coefficients, while here we also consider the effect of a scale by scale thresholding algorithm, called scale-wise coherent vorticity extraction. We study the statistical properties of the coherent and incoherent vorticity fields, and the transfers of enstrophy between them, and then use these results to propose, within a maximum entropy framework, a simple model for the incoherent vorticity. In the framework of this model, we show that the flow velocity can be predicted accurately in the L2 norm for about 10 eddy turnover times.
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1986-01-01
The results of an experimental study of the flow in the vicinity of the slotted wall of a transonic wind tunnel are presented. A general description of the test setup and the wall configurations studied are given as are examples of the pressure data measured on the airfoil and the walls of the tunnel. The flow angles measured in the vicinity of the slot are examined with implications as to their use in the theory of homogeneous slotted walls. Preliminary values of the classical, homogeneous, slotted-wall boundary-condition coefficient are given and compared with theory.
NASA Astrophysics Data System (ADS)
RamReddy, Chetteti; Pradeepa, Teegala
2016-05-01
Based on the nonlinear variation of density with temperature (NDT) in the buoyancy term, the mixed convection flow along a vertical plate of a micropolar fluid saturated porous medium is considered. In addition, the effect of homogeneous-heterogeneous reaction and convective boundary condition has been taken into account. Using lie scaling group transformations, the similarity representation is attained for the system of partial differential equations, prior to being solved by a spectral quasilinearization method. The results show that in the presence of aiding and opposing flow situations, both the species concentration and mass transfer rate decreases when the strength of homogeneous and heterogeneous reaction parameters are enhanced.
NASA Astrophysics Data System (ADS)
Kayıkcı, R.; Kocaman, E.; Şirin, S.; ćolak, M.
2015-03-01
In order to investigate the effect of late homogenization conditions on the Mg2Si precipitation of 6063 grade extrusion billets are slow pre-heated to intentionally have large Mg2Si particle precipitation. Then the billets are water quenched to preserve this microstructure for late homogenizations. Finally billets are re-heated using two different furnace temperature as 450°C and 500°C at which temperatures the billet are held for 0.5 h, 1 h, 1.5 h, 2 h and 2.5 h periods and water quenched before being taken to metallographic examinations.
Cantarella, M; Remy, M H; Scardi, V; Alfani, F; Iorio, G; Greco, G
1979-01-01
1. An analysis of the kinetic behaviour of immobilized acid phosphatase (EC 3.1.3.2) layers, gelled on the active surface of an ultrafiltration membrane, was carried out. 2. Two possible forms of such immobilized-enzyme systems were dealt with, namely enzyme-polyalbumin co-gelation through an ultrafiltration process, and enzyme co-polymerization to the same albumin polymers and subsequent gelation. 3. A preliminary analysis was also performed on both the corresponding homogeneous-phase (soluble systems to provide reference kinetics. 4. The main conclusions drawn are: (i) the enzyme-albumin co-polymers show a decrease in specific activity compared with the corresponding free enzyme in both soluble and immobilized forms; (ii) in the homogeneous phase a slight increase in the apparent Michaelis constant was measured for the co-polymerized enzyme compared with the free one, which suggests a decrease in affinity towards substrate; (iii) the activation energy in the immobilized phase is halved, compared with that in the homogeneous phase, which indicates that the combined mass-transfer/reaction step is rate-controlling. PMID:475752
Ke, Tracy; Fan, Jianqing; Wu, Yichao
2014-01-01
This paper explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation (CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established, which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also shed lights on the properties of the fussed Lasso. The newly developed method is further illustrated by simulation studies and applications to real data. Supplementary materials for this article are available online. PMID:26085701
NASA Astrophysics Data System (ADS)
Kavian, M.; Slob, E. C.; Mulder, W. A.
2011-08-01
We measured the electric parameters for four different configurations of unconsolidated homogeneous and layered sands as a function of frequency, water saturation, and salinity under fluid flow conditions. Our objective is to determine if the effect of heterogeneities at scales much smaller than the skin depth can be captured by introducing effective frequency-dependent electrical values whose behavior can be described by simple functions. We employed the parallel plate capacitor technique to measure the complex impedance over a broad frequency range, from 100 kHz up to 3 MHz. We conducted main drainage and secondary imbibition cycles at atmospheric pressure and temperatures between 21°C and 22°C. The hysteretic effect in the real part of the effective complex permittivity at higher concentrations of NaCl is more pronounced for the homogeneous configurations than for the heterogeneous samples. Effective medium theory works well for dry and saturated layered sand, when the NaCl solution concentration is 1 mmol/l. It fails for fully saturated layered sands at salinities of 10 mmol/l or more. It also does not work for partially saturated sands, independent of salinity. A description of the electric properties of a layered sand at all saturation levels by means of an effective homogeneous medium will therefore require a dependence on frequency, saturation level, and salinity of the pore fluid. An extended version of the Cole-Cole model fits the nonmonotonic behavior of the real part of permittivity versus saturation.
NASA Astrophysics Data System (ADS)
Toth, Elena
2010-05-01
For many hydrological applications, and in particular for regionalisation procedures, it is needed to identify catchments that are sufficiently similar to the target catchment to provide a basis for information transfer. The choice of the similar catchments is based on some similarity measure, which may be based on geographical proximity but also on other attributes representing the variables that dominate the main hydrological processes. This work presents the results of the implementation of unsupervised neural networks of the Self Organising Maps (SOM) type (or Kohonen networks) for the identification of hydrologically similar watersheds, on the basis of the homogeneity of some attributes characterising the streamflow generation processes. An extended data base of information on the principal Italian watersheds, from Sicily and Sardinia up to the Alps, is available for the analysis. The data base is formed by attributes describing the watersheds from the geographical, physiographic, climatic and soil use/type points of view: such attributes are independent from the availability of hydrometric measures in the closure section of the catchments and may therefore be used for characterising also ungauged catchments. In addition, the data base includes also hydrometric measures, that may be used to verify if the ungauged characterisation of the watersheds is well-founded also when considering the actual measures of streamflow. A SOM network is implemented with the objective to get a set of disjoint clusters containing all the case study watersheds: each cluster is formed by similar catchments, according to the available descriptors, but the topology of the SOM output layer allows also the identification of the similarity among the classes, so that larger regions may be obtained by merging the most similar classes. The possibility to identify such larger regions may be extremely useful especially in the cases in which the small dimension of the original classes does
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.
2011-01-01
Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.
Östman, Elin; Forslund, Anna; Tareke, Eden; Björck, Inger
2016-01-01
The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (-47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents. PMID:27271662
Östman, Elin; Forslund, Anna; Tareke, Eden; Björck, Inger
2016-01-01
The nutritional quality of infant food is an important consideration in the effort to prevent a further increase in the rate of childhood obesity. We hypothesized that the canning of composite infant meals would lead to elevated contents of carboxymethyl-lysine (CML) and favor high glycemic and insulinemic responses compared with milder heat treatment conditions. We have compared composite infant pasta Bolognese meals that were either conventionally canned (CANPBol), or prepared by microwave cooking (MWPBol). A meal where the pasta and Bolognese sauce were separate during microwave cooking (MWP_CANBol) was also included. The infant meals were tested at breakfast in healthy adults using white wheat bread (WWB) as reference. A standardized lunch meal was served at 240 min and blood was collected from fasting to 360 min after breakfast. The 2-h glucose response (iAUC) was lower following the test meals than with WWB. The insulin response was lower after the MWP_CANBol (−47%, p = 0.0000) but markedly higher after CANPBol (+40%, p = 0.0019), compared with WWB. A combined measure of the glucose and insulin responses (ISIcomposite) revealed that MWP_CANBol resulted in 94% better insulin sensitivity than CANPBol. Additionally, the separate processing of the meal components in MWP_CANBol resulted in 39% lower CML levels than the CANPBol. It was therefore concluded that intake of commercially canned composite infant meals leads to reduced postprandial insulin sensitivity and increased exposure to oxidative stress promoting agents. PMID:27271662
ETUDE - European Trade Union Distance Education.
ERIC Educational Resources Information Center
Creanor, Linda; Walker, Steve
2000-01-01
Describes transnational distance learning activities among European trade union educators carried out as part of the European Trade Union Distance Education (ETUDE) project, supported by the European Commission. Highlights include the context of international trade union distance education; tutor training course; tutors' experiences; and…
Homogeneous and inhomogeneous eddies
Pavia, E.G.
1994-12-31
This work deals with mesoscale warm oceanic eddies; i.e., self-contained bodies of water which transport heat, among other things, for several months and for several hundreds of kilometers. This heat transport is believed to play an important role in the atmospheric and oceanic conditions of the region where it is being transported. Here the author examines the difference in evolution between eddies modeled as blobs of homogeneous water and eddies in which density varies in the horizontal. Preliminary results suggest that instability is enhanced by inhomogeneities, which would imply that traditional modeling studies, based on homogeneous vortices have underestimated the rate of heat-release from oceanic eddies to the surroundings. The approach is modeling in the simplest form; i.e., one single active layer. Although previous studies have shown the drastic effect on stability brought by two or more dynamically-relevant homogeneous layers, the author believes the single-layer eddy-model has not been investigated thoroughly.
HOMOGENEOUS NUCLEAR POWER REACTOR
King, L.D.P.
1959-09-01
A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.
Mechanical homogenization increases bacterial homogeneity in sputum.
Stokell, Joshua R; Khan, Ammad; Steck, Todd R
2014-07-01
Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710
Maartens, Roy
2011-12-28
The standard model of cosmology is based on the existence of homogeneous surfaces as the background arena for structure formation. Homogeneity underpins both general relativistic and modified gravity models and is central to the way in which we interpret observations of the cosmic microwave background (CMB) and the galaxy distribution. However, homogeneity cannot be directly observed in the galaxy distribution or CMB, even with perfect observations, since we observe on the past light cone and not on spatial surfaces. We can directly observe and test for isotropy, but to link this to homogeneity we need to assume the Copernican principle (CP). First, we discuss the link between isotropic observations on the past light cone and isotropic space-time geometry: what observations do we need to be isotropic in order to deduce space-time isotropy? Second, we discuss what we can say with the Copernican assumption. The most powerful result is based on the CMB: the vanishing of the dipole, quadrupole and octupole of the CMB is sufficient to impose homogeneity. Real observations lead to near-isotropy on large scales--does this lead to near-homogeneity? There are important partial results, and we discuss why this remains a difficult open question. Thus, we are currently unable to prove homogeneity of the Universe on large scales, even with the CP. However, we can use observations of the cosmic microwave background, galaxies and clusters to test homogeneity itself. PMID:22084298
NASA Technical Reports Server (NTRS)
Bahn, G. S.
1974-01-01
A reaction package of 100 chemical reactions and attendant reaction rate constants defined for the autoignition and combustion of four carbonaceous fuels, CH4, CH3OH, C2H6, and C2H5OH. Definition of the package was made primarily by means of comparison between trial calculations and experimental data for the autoignition of CH4. Autoignition and combustion of each of these four fuels was calculated under three sets of conditions realistic for hypersonic flight applications, for comparison to hydrogen fuel, particularly with respect to formation of nitric oxide. Results show that, for all of the fuels including hydrogen, if NO production is a significant problem, compromise must be made between approaching equilibrium heat release and approaching equilibrium NO concentration.
Nonstationary homogeneous nucleation
NASA Technical Reports Server (NTRS)
Harstad, K. G.
1974-01-01
The theory of homogeneous condensation is reviewed and equations describing this process are presented. Numerical computer solutions to transient problems in nucleation (relaxation to steady state) are presented and compared to a prior computation.
On homogeneous Einstein (α , β) -metrics
NASA Astrophysics Data System (ADS)
Yan, Zaili; Deng, Shaoqiang
2016-05-01
In this paper, we study homogeneous Einstein (α , β) -metrics. First, we deduce a formula for Ricci curvature of a homogeneous (α , β) -metric. Based on this formula, we obtain a sufficient and necessary condition for a compact homogeneous (α , β) -metric to be Einstein and with vanishing S-curvature. Moreover, we prove that any homogeneous Ricci flat (α , β) space with vanishing S-curvature must be a Minkowski space. Finally, we consider left invariant Einstein (α , β) -metrics on Lie groups with negative Ricci constant. Under some appropriate conditions, we show that the underlying Lie groups must be two step solvable. We also present a more convenient sufficient and necessary condition for the metric to be Einstein in this special case.
NASA Astrophysics Data System (ADS)
Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.
1990-11-01
RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS
Noncommutative complex structures on quantum homogeneous spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2016-01-01
A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.
Strictly homogeneous laterally complete modules
NASA Astrophysics Data System (ADS)
Chilin, V. I.; Karimov, J. A.
2016-03-01
Let A be a laterally complete commutative regular algebra and X be a laterally complete A-module. In this paper we introduce a notion of homogeneous and strictly homogeneous A-modules. It is proved that any homogeneous A-module is strictly homogeneous A-module, if the Boolean algebra of all idempotents in A is multi-σ-finite.
Homogenization method based on the inverse problem
Tota, A.; Makai, M.
2013-07-01
We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous region's multi-group cross sections; providing that the fluxes and the currents on the external boundary, and the region averaged fluxes are preserved. The method is developed using diffusion approximation to the neutron transport equation in a symmetrical slab geometry. Assuming that the boundary fluxes are given, two response matrices (RMs) can be defined. The first derives the boundary current from the boundary flux, the second derives the flux integral over the region from the boundary flux. Assuming that these RMs are known, we present a formula which reconstructs the multi-group cross-section matrix and the diffusion coefficients from the RMs of a homogeneous slab. Applying this formula to the RMs of a slab with multiple homogeneous regions yields a homogenization method; which produce such homogenized multi-group cross sections and homogenized diffusion coefficients, that the fluxes and the currents on the external boundary, and the region averaged fluxes are preserved. The method is based on the determination of the eigenvalues and the eigenvectors of the RMs. We reproduce the four-group cross section matrix and the diffusion constants from the RMs in numerical examples. We give conditions for replacing a heterogeneous region by a homogeneous one so that the boundary current and the region-averaged flux are preserved for a given boundary flux. (authors)
Heterogeneous nucleation or homogeneous nucleation?
NASA Astrophysics Data System (ADS)
Liu, X. Y.
2000-06-01
The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
Hammond, R.P.; Busey, H.M.
1959-02-17
Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.
Homogeneous quantum electrodynamic turbulence
Shebalin, J.V.
1992-10-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
A non-asymptotic homogenization theory for periodic electromagnetic structures
Tsukerman, Igor; Markel, Vadim A.
2014-01-01
Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912
Homogeneous spaces of Dirac groupoids
NASA Astrophysics Data System (ADS)
Jotz Lean, Madeleine
2016-06-01
A Poisson structure on a homogeneous space of a Poisson groupoid is homogeneous if the action of the Lie groupoid on the homogeneous space is compatible with the Poisson structures. According to a result of Liu, Weinstein and Xu, Poisson homogeneous spaces of a Poisson groupoid are in correspondence with suitable Dirac structures in the Courant algebroid defined by the Lie bialgebroid of the Poisson groupoid. We show that this correspondence result fits into a more natural context: the one of Dirac groupoids, which are objects generalizing Poisson groupoids and multiplicative closed 2-forms on groupoids.
ERIC Educational Resources Information Center
Canadian Child Care Federation, Ottawa (Ontario).
Between November 1990 and August 1992, a study examined wages and working conditions of child care staff in both licensed group centers and family day care homes in Canada. Three instruments were developed for the study, a short telephone interview for center directors, a follow-up director's questionnaire, and a staff questionnaire. The study…
NASA Astrophysics Data System (ADS)
Ho Thi, Thu Nga
L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.
Homogeneous freezing nucleation of stratospheric solution droplets
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Hamill, Patrick
1991-01-01
The classical theory of homogeneous nucleation was used to calculate the freezing rate of sulfuric acid solution aerosols under stratospheric conditions. The freezing of stratospheric aerosols would be important for the nucleation of nitric acid trihydrate particles in the Arctic and Antarctic stratospheres. In addition, the rate of heterogeneous chemical reactions on stratospheric aerosols may be very sensitive to their state. The calculations indicate that homogeneous freezing nucleation of pure water ice in the stratospheric solution droplets would occur at temperatures below about 192 K. However, the physical properties of H2SO4 solution at such low temperatures are not well known, and it is possible that sulfuric acid aerosols will freeze out at temperatures ranging from about 180 to 195 K. It is also shown that the temperature at which the aerosols freeze is nearly independent of their size.
Strongly Interacting Homogeneous Fermi Gases
NASA Astrophysics Data System (ADS)
Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Struck, Julian; Zwierlein, Martin
2016-05-01
We present a homogeneous box potential for strongly interacting Fermi gases. The local density approximation (LDA) allows measurements on traditional inhomogeneous traps to observe a continuous distribution of Fermi gases in a single shot, but also suffer from a broadened response due to line-of-sight averaging over varying densities. We trap ultracold Fermionic (6 Li) in an optical homogeneous potential and characterize its flatness through in-situ tomography. A hybrid approach combining a cylindrical optical potential with a harmonic magnetic trap allows us to exploit the LDA and measure local RF spectra without requiring significant image reconstruction. We extract various quantities from the RF spectra such as the Tan's contact, and discuss further measurements of homogeneous Fermi systems under spin imbalance and finite temperature.
Analysis of homogeneous turbulent reacting flows
NASA Technical Reports Server (NTRS)
Leonard, A. D.; Hill, J. C.; Mahalingam, S.; Ferziger, J. H.
1988-01-01
Full turbulence simulations at low Reynolds numbers were made for the single-step, irreversible, bimolecular reaction between non-premixed reactants in isochoric, decaying homogeneous turbulence. Various initial conditions for the scalar field were used in the simulations to control the initial scalar dissipation length scale, and simulations were also made for temperature-dependent reaction rates and for non-stoichiometric and unequal diffusivity conditions. Joint probability density functions (pdf's), conditional pdf's, and various statistical quantities appearing in the moment equations were computed. Preliminary analysis of the results indicates that compressive strain-rate correlates better than other dynamical quantities with local reaction rate, and the locations of peak reaction rates seem to be insensitive to the scalar field initial conditions.
Homogenizing Developmental Studies and ESL.
ERIC Educational Resources Information Center
Weaver, Margaret E.
A discussion of pragmatic issues in both developmental studies (DS) and English-as-a-second-language (ESL) instruction at the college level argues that because the two fields have common problems, challenges, and objectives, they have become homogenized as one in many institutions. Because full-time college faculty avoid teaching developmental…
A Locally-Exact Homogenization Approach for Periodic Heterogeneous Materials
Drago, Anthony S.; Pindera, Marek-Jerzy
2008-02-15
Elements of the homogenization theory are utilized to develop a new micromechanics approach for unit cells of periodic heterogeneous materials based on locally-exact elasticity solutions. Closed-form expressions for the homogenized moduli of unidirectionally-reinforced heterogeneous materials are obtained in terms of Hill's strain concentration matrices valid under arbitrary combined loading, which yield the homogenized Hooke's law. Results for simple unit cells with off-set fibers, which require the use of periodic boundary conditions, are compared with corresponding finite-element results demonstrating excellent correlation.
Einstein billiards and spatially homogeneous cosmological models
NASA Astrophysics Data System (ADS)
de Buyl, Sophie; Pinardi, Gaïa; Schomblond, Christiane
2003-12-01
In this paper, we analyse the Einstein and Einstein Maxwell billiards for all spatially homogeneous cosmological models corresponding to three- and four-dimensional real unimodular Lie algebras and provide a list of those models which are chaotic in the Belinskii, Khalatnikov and Lifschitz (BKL) limit. Through the billiard picture, we confirm that, in D = 5 spacetime dimensions, chaos is present if off-diagonal metric elements are kept: the finite volume billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac Moody algebras. The most generic cases bring in the same algebras as in the inhomogeneous case, but other algebras appear through special initial conditions.
Isotropic homogeneous universe with viscous fluid
Santos, N.O.; Dias, R.S.; Banerjee, A.
1985-04-01
Exact solutions are obtained for the isotropic homogeneous cosmological model with viscous fluid. The fluid has only bulk viscosity and the viscosity coefficient is taken to be a power function of the mass density. The equation of state assumed obeys a linear relation between mass density and pressure. The models satisfying Hawking's energy conditions are discussed. Murphy's model is only a special case of this general set of solutions and it is shown that Murphy's conclusion that the introduciton of bulk viscosity can avoid the occurrence of space-time singularity at finite past is not, in general, valid.
Carbon dioxide in the ocean surface: The homogeneous buffer factor
Sundquist, E.T.; Plummer, L.N.; Wigley, T.M.L.
1979-01-01
The amount of carbon dioxide that can be dissolved in surface seawater depends at least partially on the homogeneous buffer factor, which is a mathematical function of the chemical equilibrium conditions among the various dissolved inorganic species. Because these equilibria are well known, the homogeneous buffer factor is well known. Natural spatial variations depend very systematically on sea surface temperatures, and do not contribute significantly to uncertainties in the present or future carbon dioxide budget. Copyright ?? 1979 AAAS.
Homogenization models for thin rigid structured surfaces and films.
Marigo, Jean-Jacques; Maurel, Agnès
2016-07-01
A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles. PMID:27475151
Homogeneous Pt-bimetallic Electrocatalysts
Wang, Chao; Chi, Miaofang; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav
2011-01-01
Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.
Homogeneous enzyme immunoassay for netilmicin.
Wenk, M; Hemmann, R; Follath, F
1982-01-01
A newly developed homogeneous enzyme immunoassay for the determination of netilmicin in serum was evaluated and compared with a radioenzymatic assay. A total of 102 serum samples from patients treated with netilmicin were measured by both methods. This comparison showed an excellent correlation (r = 0.993). The enzyme immunoassay has proved to be precise, accurate, and specific. Because of its rapidity and the ease of performance, this method is a useful alternative to current assays for monitoring serum netilmicin concentrations. PMID:6760807
Homogenization in micro-magneto-mechanics
NASA Astrophysics Data System (ADS)
Sridhar, A.; Keip, M.-A.; Miehe, C.
2016-07-01
Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill-Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.
Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth
NASA Astrophysics Data System (ADS)
Duerinckx, Mitia; Gloria, Antoine
2016-03-01
We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.
Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth
NASA Astrophysics Data System (ADS)
Duerinckx, Mitia; Gloria, Antoine
2016-09-01
We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.
ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.
BULLOCK,R.M.; BENDER,B.R.
2000-12-01
The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.
Invariant distributions on compact homogeneous spaces
Gorbatsevich, V V
2013-12-31
In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Orthogonality Measurement for Homogenous Projects-Bases
ERIC Educational Resources Information Center
Ivan, Ion; Sandu, Andrei; Popa, Marius
2009-01-01
The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…
Etude de la resistance en fatigue des materiaux bitumineux
NASA Astrophysics Data System (ADS)
Touhara, Radouen
The goal of this research program is to evaluate and characterize the fatigue behaviour of two GB20 hot mix asphalt made with two different bitumen. One of them is made in laboratory with a straight-run PG58-28 bitumen, while the second mix was made in an asphalt plant with a PG64-28 bitumen. Two characterization tests, in homogeneous conditions, done in traction/compression on cylindrical specimens are used in this study. First, a complex modulus test performed in the linear viscoelasticity (LVE) domain is used to characterize the mixes and second, a fatigue test is done to evaluate the mixes performances. The fatigue tests were done in strain controlled at different amplitude. All fatigue tests were performed at 10Hz, but at different temperatures (10, 20 and 30°C) in order to evaluate the effect of the temperature on the fatigue behaviour of those mixes. In this document, the results are presented, and the analysis of the results as a function of the grade of bitumen, the tests’ temperature and the dispersion of the results is performed. Also, the DGCB method is applied to the fatigue results to calculate the rate of damage per cycle followed by a study of the different failure criteria (
Numerical experiments in homogeneous turbulence
NASA Technical Reports Server (NTRS)
Rogallo, R. S.
1981-01-01
The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.
Challenges of daily data homogenization
NASA Astrophysics Data System (ADS)
Gruber, C.; Auer, I.; Mestre, O.
2009-04-01
In recent years the growing demand of extreme value studies has led to the development of methods for the homogenisation of daily data. The behaviour of some of these methods has been investigated: Two methods (HOM: Della-Marta and Wanner, 2006 and SPLIDHOM: Mestre et al., submitted) which adjust the whole distribution of the climate element (especially minimum and maximum temperature) have been compared to the simpler Vincent's method (Vincent et al., 2002) which interpolates monthly adjustment factors onto daily data. The results indicate that the behaviour of the methods HOM and SPLIDHOM is very similar, although the complexity of these methods is different. They can improve the results compared to the Vincent's method when inhomogeneities in higher order moments occur. However, their applicability is limited since highly correlated neighbour series are required. More over, more data in the intervals before and after breaks is needed if the whole distribution shall be adjusted instead of the mean only. Due to these limitations a combination of distribution dependent adjustment methods and the Vincent method seems to be necessary for the homogenization of many time series. A dataset of Austrian daily maximum and minimum temperature data is used to illustrate the challenges of distribution dependent homogenization methods. Emphasis is placed on the estimation of the (sampling) uncertainty of these methods. Therefore a bootstrap approach is used. The accuracy of the calculated adjustments varies mainly between about 0.5°C for mean temperatures and more than one degree Celsius for the margins of the distribution. These uncertainty estimates can be valuable for extreme value studies.
Polyurethane phantoms with homogeneous and nearly homogeneous optical properties
NASA Astrophysics Data System (ADS)
Keränen, Ville T.; Mäkynen, Anssi J.; Dayton, Amanda L.; Prahl, Scott A.
2010-02-01
Phantoms with controlled optical properties are often used for calibration and standardization. The phantoms are typically prepared by adding absorbers and scatterers to a clear host material. It is usually assumed that the scatterers and absorbers are uniformly dispersed within the medium. To explore the effects of this assumption, we prepared paired sets of polyurethane phantoms (both with identical masses of absorber, India ink and scatterer, titanium dioxide). Polyurethane phantoms were made by mixing two polyurethane parts (a and b) together and letting them cure in a polypropylene container. The mixture was degassed before curing to ensure a sample without bubbles. The optical properties were controlled by mixing titanium dioxide or India ink into polyurethane part (a or b) before blending the parts together. By changing the mixing sequence, we could change the aggregation of the scattering and absorbing particles. Each set had one sample with homogeneously dispersed scatterers and absorbers, and a second sample with slightly aggregated scatterers or absorbers. We found that the measured transmittance could easily vary by a factor of twenty. The estimated optical properties (using the inverse adding-doubling method) indicate that when aggregation is present, the optical properties are no longer proportional to the concentrations of absorbers or scatterers.
Theoretical studies of homogeneous catalysts mimicking nitrogenase.
Sgrignani, Jacopo; Franco, Duvan; Magistrato, Alessandra
2011-01-01
The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen 'fixation' via an iron molybdenum cofactor (FeMo-co) under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N₂ to various degrees. However, to date Mo(N₂)(HIPTN)₃N with (HIPTN)₃N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N₂. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds. PMID:21221062
Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite
NASA Astrophysics Data System (ADS)
Dumoulin, Benoit
Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l
Central Andean temperature and precipitation measurements and its homogenization
NASA Astrophysics Data System (ADS)
Hunziker, Stefan; Gubler, Stefanie
2015-04-01
Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.
Pyroxene Homogenization and the Isotopic Systematics of Eucrites
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Bogard, D. D.
1996-01-01
The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.
Quantum homogenization for continuous variables: Realization with linear optical elements
NASA Astrophysics Data System (ADS)
Nagaj, Daniel; Štelmachovič, Peter; Bužek, Vladimír; Kim, Myungshik
2002-12-01
Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state ρ and a set of N reservoir qubits initially prepared in the state ξ. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state ξ irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.
Turbulence in homogeneous shear flows
NASA Astrophysics Data System (ADS)
Pumir, Alain
1996-11-01
Homogeneous shear flows with an imposed mean velocity U=Syx̂ are studied in a period box of size Lx×Ly×Lz, in the statistically stationary turbulent state. In contrast with unbounded shear flows, the finite size of the system constrains the large-scale dynamics. The Reynolds number, defined by Re≡SL2y/ν varies in the range 2600⩽Re⩽11300. The total kinetic energy and enstrophy in the volume of numerical integration have large peaks, resulting in fluctuations of kinetic energy of order 30%-50%. The mechanism leading to these fluctuations is very reminiscent of the ``streaks'' responsible for the violent bursts observed in turbulent boundary layers. The large scale anisotropy of the flow, characterized by the two-point correlation tensor
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Homogeneous catalysts in hypersonic combustion
Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.
1989-01-01
Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.
AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT
Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.
2010-12-03
Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.
Spatially homogeneous rotating world models.
NASA Technical Reports Server (NTRS)
Ozsvath, I.
1971-01-01
The mathematical problem encountered when looking for the simplest expanding and rotating model of the universe without the compactness condition for the space sections is formulated. The Lagrangian function is derived for four different rotating universes simultaneously. These models correspond in a certain sense to Godel's (1950) ?symmetric case.'
Ecological and evolutionary consequences of biotic homogenization.
Olden, Julian D; Leroy Poff, N; Douglas, Marlis R; Douglas, Michael E; Fausch, Kurt D
2004-01-01
Biotic homogenization, the gradual replacement of native biotas by locally expanding non-natives, is a global process that diminishes floral and faunal distinctions among regions. Although patterns of homogenization have been well studied, their specific ecological and evolutionary consequences remain unexplored. We argue that our current perspective on biotic homogenization should be expanded beyond a simple recognition of species diversity loss, towards a synthesis of higher order effects. Here, we explore three distinct forms of homogenization (genetic, taxonomic and functional), and discuss their immediate and future impacts on ecological and evolutionary processes. Our goal is to initiate future research that investigates the broader conservation implications of homogenization and to promote a proactive style of adaptive management that engages the human component of the anthropogenic blender that is currently mixing the biota on Earth. PMID:16701221
Deforestation homogenizes tropical parasitoid-host networks.
Laliberté, Etienne; Tylianakis, Jason M
2010-06-01
Human activities drive biotic homogenization (loss of regional diversity) of many taxa. However, whether species interaction networks (e.g., food webs) can also become homogenized remains largely unexplored. Using 48 quantitative parasitoid-host networks replicated through space and time across five tropical habitats, we show that deforestation greatly homogenized network structure at a regional level, such that interaction composition became more similar across rice and pasture sites compared with forested habitats. This was not simply caused by altered consumer and resource community composition, but was associated with altered consumer foraging success, such that parasitoids were more likely to locate their hosts in deforested habitats. Furthermore, deforestation indirectly homogenized networks in time through altered mean consumer and prey body size, which decreased in deforested habitats. Similar patterns were obtained with binary networks, suggesting that interaction (link) presence-absence data may be sufficient to detect network homogenization effects. Our results show that tropical agroforestry systems can support regionally diverse parasitoid-host networks, but that removal of canopy cover greatly homogenizes the structure of these networks in space, and to a lesser degree in time. Spatiotemporal homogenization of interaction networks may alter coevolutionary outcomes and reduce ecological resilience at regional scales, but may not necessarily be predictable from community changes observed within individual trophic levels. PMID:20583715
Homogenization of precipitation time series with ACMANT
NASA Astrophysics Data System (ADS)
Domonkos, Peter
2015-10-01
New method for the time series homogenization of observed precipitation (PP) totals is presented; this method is a unit of the ACMANT software package. ACMANT is a relative homogenization method; minimum four time series with adequate spatial correlations are necessary for its use. The detection of inhomogeneities (IHs) is performed with fitting optimal step function, while the calculation of adjustment terms is based on the minimization of the residual variance in homogenized datasets. Together with the presentation of PP homogenization with ACMANT, some peculiarities of PP homogenization as, for instance, the frequency and seasonal variation of IHs in observed PP data and their relation to the performance of homogenization methods are discussed. In climatic regions of snowy winters, ACMANT distinguishes two seasons, namely, rainy season and snowy season, and the seasonal IHs are searched with bivariate detection. ACMANT is a fully automatic method, is freely downloadable from internet and treats either daily or monthly input. Series of observed data in the input dataset may cover different periods, and the occurrence of data gaps is allowed. False zero values instead of missing data code or physical outliers should be corrected before running ACMANT. Efficiency tests indicate that ACMANT belongs to the best performing methods, although further comparative tests of automatic homogenization methods are needed to confirm or reject this finding.
String pair production in non homogeneous backgrounds
NASA Astrophysics Data System (ADS)
Bolognesi, S.; Rabinovici, E.; Tallarita, G.
2016-04-01
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Higher Order Macro Coefficients in Periodic Homogenization
NASA Astrophysics Data System (ADS)
Conca, Carlos; San Martin, Jorge; Smaranda, Loredana; Vanninathan, Muthusamy
2011-09-01
A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.
Comparison of homogenized and enhanced diffusion solutions of model PWR problems
Lewis, E. E.; Smith, M. A.
2012-07-01
Model problem comparisons in slab geometry are made between two forms of homogenized diffusion theory and enhanced diffusion theory. The pin-cell discontinuity factors for homogenized diffusion calculations are derived from homogenized variational nodal P1 response matrices and from standard finite differencing. Enhanced diffusion theory consists of applying quasi-reflected interface conditions to reduce variational nodal Pn response matrices to one degree of freedom per interface, without homogenization within the cell. As expected both homogenized diffusion methods preserve reaction rates exactly if the discontinuity factors are derived from the P 11 reference solutions. If no reference lattice solution is available, discontinuity factors may be approximated from single cells with reflected boundary conditions; the computational effort is then comparable to calculating the enhanced diffusion response matrices. In this situation enhanced diffusion theory gives the most accurate results and finite difference discontinuity factors the least accurate. (authors)
Non-Homogeneous Fractal Hierarchical Weighted Networks
Dong, Yujuan; Dai, Meifeng; Ye, Dandan
2015-01-01
A model of fractal hierarchical structures that share the property of non-homogeneous weighted networks is introduced. These networks can be completely and analytically characterized in terms of the involved parameters, i.e., the size of the original graph Nk and the non-homogeneous weight scaling factors r1, r2, · · · rM. We also study the average weighted shortest path (AWSP), the average degree and the average node strength, taking place on the non-homogeneous hierarchical weighted networks. Moreover the AWSP is scrupulously calculated. We show that the AWSP depends on the number of copies and the sum of all non-homogeneous weight scaling factors in the infinite network order limit. PMID:25849619
Producing tritium in a homogenous reactor
Cawley, William E.
1985-01-01
A method and apparatus are described for the joint production and separation of tritium. Tritium is produced in an aqueous homogenous reactor and heat from the nuclear reaction is used to distill tritium from the lower isotopes of hydrogen.
Homogeneous cosmological models in Yang's gravitation theory
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Pavelle, R.
1979-01-01
We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.
Layout optimization using the homogenization method
NASA Technical Reports Server (NTRS)
Suzuki, Katsuyuki; Kikuchi, Noboru
1993-01-01
A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.
Layout optimization using the homogenization method
NASA Astrophysics Data System (ADS)
Suzuki, Katsuyuki; Kikuchi, Noboru
A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.
Li, Yong; Zhao, Xiuhua; Zu, Yuangang; Zhang, Yin
2015-07-25
The aim of this study was to develop an alternative, more bio-available, better tolerated paclitaxel nanosuspension (PTXNS) for intravenous injection in comparison with commercially available Taxol(®) formulation. In this study, PTXNS was prepared by emulsification method through combination of high speed homogenizer and high pressure homogenization, followed by lyophilization process for intravenous administration. The main production parameters including volume ratio of organic phase in water and organic phase (Vo:Vw+o), concentration of PTX, content of PTX and emulsification time (Et), homogenization pressure (HP) and passes (Ps) for high pressure homogenization were optimized and their effects on mean particle size (MPS) and particle size distribution (PSD) of PTXNS were investigated. The characteristics of PTXNS, such as, surface morphology, physical status of paclitaxel (PTX) in PTXNS, redispersibility of PTXNS in purified water, in vitro dissolution study and bioavailability in vivo were all investigated. The PTXNS obtained under optimum conditions had an MPS of 186.8 nm and a zeta potential (ZP) of -6.87 mV. The PTX content in PTXNS was approximately 3.42%. Moreover, the residual amount of chloroform was lower than the International Conference on Harmonization limit (60 ppm) for solvents. The dissolution study indicated PTXNS had merits including effect to fast at the side of raw PTX and sustained-dissolution character compared with Taxol(®) formulation. Moreover, the bioavailability of PTXNS increased 14.38 and 3.51 times respectively compared with raw PTX and Taxol(®) formulation. PMID:26027492
Recent advances in the understanding of homogeneous dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Massines, F.; Gherardi, N.; Naudé, N.; Ségur, P.
2009-08-01
This paper is a state of the art of the understanding on the physics of homogeneous dielectric barrier discharges at atmospheric pressure. It is based on the analysis of present and previous work about the behavior of these discharges and the conditions to get them. Mechanisms controlling the homogeneity during gas breakdown and discharge development are successively discussed. The breakdown has to be a Townsend one, the ionization has to be slow enough to avoid a large avalanche development. During the breakdown, the discharge homogeneity is related to the ratio of the secondary emission at the cathode (γ coefficient) on the ionization in the gas bulk (α coefficient). Higher is this ratio, higher is the pressure × gas gap product (Pd) value for which a Townsend breakdown is obtained. Among the phenomena enhancing the secondary emission there is the negative charge of the dielectric on the cathode surface, the trapping of ions in the gas and the existence of excited state having a long lifetime compared to the time between two consecutive discharges. The first phenomenon is always present when the electrodes are covered by a solid dielectric, the second one is related to the formation of a positive column and the third one is specific of the gas. During the discharge development, the homogeneity is mainly controlled by the voltage or the current imposed by the electrical circuit/electrode configuration and by the gas ability to be slowly ionized. Larger is the contribution of a multiple step ionization process like Penning ionization, higher will be the working domain of the discharge. A decrease of the gas voltage during the discharge development is a solution to enhance the contribution of this process. After 20 years of research a lot of mechanisms have been understood however there is still open questions like the nature of the Inhibited homogeneous DBD, surface energy transfers, role of attachment and detachment...
Damping the neutrino flavor pendulum by breaking homogeneity
NASA Astrophysics Data System (ADS)
Mangano, Gianpiero; Mirizzi, Alessandro; Saviano, Ninetta
2014-04-01
The most general case of self-induced neutrino flavor evolution is described by a set of kinetic equations for a dense neutrino gas evolving in both space and time. Solutions of these equations have been typically worked out assuming that either the time (in the core-collapse supernova environment) or space (in the early Universe) homogeneity in the initial conditions is preserved through the evolution. In these cases, one can gauge away the homogeneous variable and reduce the dimensionality of the problem. In this paper, we investigate whether small deviations from an initial postulated homogeneity can be amplified by the interacting neutrino gas, leading to a new flavor instability. To this end, we consider a simple two-flavor isotropic neutrino gas evolving in time, and initially composed by only νe and ν ¯e with equal densities. In the homogeneous case, this system shows a bimodal instability in the inverted mass hierarchy scheme, leading to the well-studied flavor pendulum behavior. This would lead to periodic pair conversions νeν ¯e↔νxν ¯x. To break space homogeneity, we introduce small amplitude space-dependent perturbations in the matter potential. By Fourier transforming the equations of motion with respect to the space coordinate, we then numerically solve a set of coupled equations for the different Fourier modes. We find that even for arbitrarily tiny inhomogeneities, the system evolution runs away from the stable pendulum behavior: the different modes are excited and the space-averaged ensemble evolves towards flavor equilibrium. We finally comment on the role of a time decaying neutrino background density in weakening these results.
Homogeneous and heterogenized iridium water oxidation catalysts
NASA Astrophysics Data System (ADS)
Macchioni, Alceo
2014-10-01
The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.
Accurate evaluation of homogenous and nonhomogeneous gas emissivities
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Lee, K. P.
1984-01-01
Spectral transmittance and total band adsorptance of selected infrared bands of carbon dioxide and water vapor are calculated by using the line-by-line and quasi-random band models and these are compared with available experimental results to establish the validity of the quasi-random band model. Various wide-band model correlations are employed to calculate the total band absorptance and total emissivity of these two gases under homogeneous and nonhomogeneous conditions. These results are compared with available experimental results under identical conditions. From these comparisons, it is found that the quasi-random band model can provide quite accurate results and is quite suitable for most atmospheric applications.
Asymptotic homogenization of three-dimensional thermoelectric composites
NASA Astrophysics Data System (ADS)
Yang, Yang; Lei, Chihou; Gao, Cun-Fa; Li, Jiangyu
2015-03-01
Thermoelectric composites are promising for high efficiency energy conversion between thermal flows and electric conduction, though their effective behaviors remain poorly understood due to nonlinear thermoelectric coupling. In this paper, we develop an asymptotic homogenization theory to analyze the effective behavior of three-dimensional (3D) thermoelectric composites, built on the observation that the equations governing microscopic field fluctuations in the composite are actually linear instead of nonlinear after separation of length scales. A set of solutions similar to Green's function method are used to construct the unit cell problem, and appropriate interfacial continuity conditions and boundary conditions are derived. The homogenized governing equations are then developed for thermoelectric composites, and they are further reduced for a special case wherein the heat flow and electric conduction in the composite remains one-dimensional (1D) at macroscopic scale, even though the composite itself is 3D in general. The general homogenization theory is implemented using finite element method, and a key constant in the constructed solutions is determined using the reformulated eigenvalue problem. The algorithm is validated, and is applied for a number of case studies for the effective behavior of thermoelectric composites.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation
Zografos, K.; Oliveira, M. S. N.
2016-01-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.
Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N
2016-07-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523
Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles
Gu, Shuo; He, Weidong; Zhang, Ming; Zhuang, Taisen; Jin, Yi; ElBidweihy, Hatem; Mao, Yiwu; Dickerson, James H.; Wagner, Michael J.; Torre, Edward Della; Bennett, Lawrence H.
2014-01-01
The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations. PMID:25183061
An asymptotic homogenized neutron diffusion approximation. I. Theory
Trahan, T. J.; Larsen, E. W.
2012-07-01
A monoenergetic, homogenized, anisotropic diffusion equation is derived asymptotically for large, 3-D, multiplying systems with a periodic lattice structure. The primary assumption is that the system is slightly perturbed from an infinite, periodic lattice, and that the length scale of a lattice element is small relative to the total system size. The perturbed flux is slightly buckled, and the leading order term is the product of a slowly varying amplitude component, and a rapidly varying periodic component. The amplitude function is the solution to the homogenized diffusion equation, while the periodic component is the solution to the unperturbed, infinite system, and can be found using any high-order transport method. The first order term acts as a correction term, and makes it possible to obtain a zero flux extrapolation distance for the diffusion equation by applying the Marshak boundary condition. (authors)
NASA Astrophysics Data System (ADS)
Ahmad, R.
2016-07-01
This article reports an unbiased analysis for the water based rod shaped alumina nanoparticles by considering both the homogeneous and non-homogeneous nanofluid models over the coupled nanofluid-surface interface. The mechanics of the surface are found for both the homogeneous and non-homogeneous models, which were ignored in previous studies. The viscosity and thermal conductivity data are implemented from the international nanofluid property benchmark exercise. All the simulations are being done by using the experimentally verified results. By considering the homogeneous and non-homogeneous models, the precise movement of the alumina nanoparticles over the surface has been observed by solving the corresponding system of differential equations. For the non-homogeneous model, a uniform temperature and nanofluid volume fraction are assumed at the surface, and the flux of the alumina nanoparticle is taken as zero. The assumption of zero nanoparticle flux at the surface makes the non-homogeneous model physically more realistic. The differences of all profiles for both the homogeneous and nonhomogeneous models are insignificant, and this is due to small deviations in the values of the Brownian motion and thermophoresis parameters.
Desertification, salinization, and biotic homogenization in a dryland river ecosystem
Miyazono, S.; Patino, Reynaldo; Taylor, C.M.
2015-01-01
This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and
Desertification, salinization, and biotic homogenization in a dryland river ecosystem.
Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M
2015-04-01
This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and
Spatial homogenization methods for pin-by-pin neutron transport calculations
NASA Astrophysics Data System (ADS)
Kozlowski, Tomasz
For practical reactor core applications low-order transport approximations such as SP3 have been shown to provide sufficient accuracy for both static and transient calculations with considerably less computational expense than the discrete ordinate or the full spherical harmonics methods. These methods have been applied in several core simulators where homogenization was performed at the level of the pin cell. One of the principal problems has been to recover the error introduced by pin-cell homogenization. Two basic approaches to treat pin-cell homogenization error have been proposed: Superhomogenization (SPH) factors and Pin-Cell Discontinuity Factors (PDF). These methods are based on well established Equivalence Theory and Generalized Equivalence Theory to generate appropriate group constants. These methods are able to treat all sources of error together, allowing even few-group diffusion with one mesh per cell to reproduce the reference solution. A detailed investigation and consistent comparison of both homogenization techniques showed potential of PDF approach to improve accuracy of core calculation, but also reveal its limitation. In principle, the method is applicable only for the boundary conditions at which it was created, i.e. for boundary conditions considered during the homogenization process---normally zero current. Therefore, there exists a need to improve this method, making it more general and environment independent. The goal of proposed general homogenization technique is to create a function that is able to correctly predict the appropriate correction factor with only homogeneous information available, i.e. a function based on heterogeneous solution that could approximate PDFs using homogeneous solution. It has been shown that the PDF can be well approximated by least-square polynomial fit of non-dimensional heterogeneous solution and later used for PDF prediction using homogeneous solution. This shows a promise for PDF prediction for off
Rapid biotic homogenization of marine fish assemblages.
Magurran, Anne E; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J; McGill, Brian
2015-01-01
The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102
Method of Mapping Anomalies in Homogenous Material
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2016-01-01
An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
Homogenization of Periodic Systems with Large Potentials
NASA Astrophysics Data System (ADS)
Allaire, Grégoire; Capdeboscq, Yves; Piatnitski, Andrey; Siess, Vincent; Vanninathan, M.
2004-11-01
We consider the homogenization of a system of second-order equations with a large potential in a periodic medium. Denoting by ɛ the period, the potential is scaled as ɛ-2. Under a generic assumption on the spectral properties of the associated cell problem, we prove that the solution can be approximately factorized as the product of a fast oscillating cell eigenfunction and of a slowly varying solution of a scalar second-order equation. This result applies to various types of equations such as parabolic, hyperbolic or eigenvalue problems, as well as fourth-order plate equation. We also prove that, for well-prepared initial data concentrating at the bottom of a Bloch band, the resulting homogenized tensor depends on the chosen Bloch band. Our method is based on a combination of classical homogenization techniques (two-scale convergence and suitable oscillating test functions) and of Bloch waves decomposition.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Commensurability effects in holographic homogeneous lattices
NASA Astrophysics Data System (ADS)
Andrade, Tomas; Krikun, Alexander
2016-05-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities.
NASA Astrophysics Data System (ADS)
Bourque, Claude Julie
Le champ de la recherche scientifique et de la formation a la recherche est traverse depuis quelques dizaines d'annees par plusieurs courants et discours associes au changement, mais peu de travaux empiriques permettent de comprendre ce qui change concretement. C'est la contribution originale de cette these au champ de l'education, plus specifiquement a l'etude sociologique de l'enseignement superieur ou sont concentrees les activites liees a la triade thematique du programme doctoral dans lequel elle a ete produite : recherche, formation et pratique. L'enquete-terrain a ete realisee en 2009 et 2010 aupres de 808 repondants affilies a 60 etablissements au Quebec et a produit un vaste materiau de nature mixte (donnees quantitatives et qualitatives). Un portrait de la nebuleuse biotechnologique qui touche les secteurs des sciences de la sante, des sciences naturelles et du genie a ete realise. Ce domaine concerne des dizaines de disciplines et se revele de nature transdisciplinaire, mais les pratiques n'y sont pas davantage marquees par le changement que celles d'autres domaines connexes. Les dynamiques sociales ont fait l'objet d'analyses comparatives dans quatre contextes: le choix des programmes, des objets et des methodes, le financement, la diffusion et la planification de la carriere. Les resultats indiquent que les echanges entre les agents traditionnellement situes au coeur des activites de recherche dominent ces dynamiques dans tous les contextes etudies. L'etude des representations au fondement des pratiques a revele l'existence de trois ecoles de pensee qui coexistent dans le champ scientifique: academique, pragmatique et economiste. Ces ecoles permettent de categoriser les agents en fonction des zones de fractures qui marquent leurs oppositions tout en identifiant ce qu'ils ont en commun. Les representations et les pratiques liees a la formation temoignent d'un habitus plutot homogene, alors que les contradictions semblent plus souvent ancrees dans des
Taxonomic homogenization of woodland plant communities over 70 years
Keith, Sally A.; Newton, Adrian C.; Morecroft, Michael D.; Bealey, Clive E.; Bullock, James M.
2009-01-01
Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss. PMID:19625318
Homogeneous Catalysis by Transition Metal Compounds.
ERIC Educational Resources Information Center
Mawby, Roger
1988-01-01
Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…
General Theorems about Homogeneous Ellipsoidal Inclusions
ERIC Educational Resources Information Center
Korringa, J.; And Others
1978-01-01
Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)
Homogeneous Immunoassays: Historical Perspective and Future Promise
NASA Astrophysics Data System (ADS)
Ullman, Edwin F.
1999-06-01
The founding and growth of Syva Company is examined in the context of its leadership role in the development of homogeneous immunoassays. The simple mix and read protocols of these methods offer advantages in routine analytical and clinical applications. Early homogeneous methods were based on insensitive detection of immunoprecipitation during antigen/antibody binding. The advent of reporter groups in biology provided a means of quantitating immunochemical binding by labeling antibody or antigen and physically separating label incorporated into immune complexes from free label. Although high sensitivity was achieved, quantitative separations were experimentally demanding. Only when it became apparent that reporter groups could provide information, not only about the location of a molecule but also about its microscopic environment, was it possible to design practical non-separation methods. The evolution of early homogenous immunoassays was driven largely by the development of improved detection strategies. The first commercial spin immunoassays, developed by Syva for drug abuse testing during the Vietnam war, were followed by increasingly powerful methods such as immunochemical modulation of enzyme activity, fluorescence, and photo-induced chemiluminescence. Homogeneous methods that quantify analytes at femtomolar concentrations within a few minutes now offer important new opportunities in clinical diagnostics, nucleic acid detection and drug discovery.
Extension theorems for homogenization on lattice structures
NASA Technical Reports Server (NTRS)
Miller, Robert E.
1992-01-01
When applying homogenization techniques to problems involving lattice structures, it is necessary to extend certain functions defined on a perforated domain to a simply connected domain. This paper provides general extension operators which preserve bounds on derivatives of order l. Only the special case of honeycomb structures is considered.
RELIABLE COMPUTATION OF HOMOGENEOUS AZEOTROPES. (R824731)
It is important to determine the existence and composition of homogeneous azeotropes in the analysis of phase behavior and in the synthesis and design of separation systems, from both theoretical and practical standpoints. A new method for reliably locating an...
Homogeneity analysis of precipitation series in Iran
NASA Astrophysics Data System (ADS)
Hosseinzadeh Talaee, P.; Kouchakzadeh, Mahdi; Shifteh Some'e, B.
2014-10-01
Assessment of the reliability and quality of historical precipitation data is required in the modeling of hydrology and water resource processes and for climate change studies. The homogeneity of the annual and monthly precipitation data sets throughout Iran was tested using the Bayesian, Cumulative Deviations, and von Neumann tests at a significance level of 0.05. The precipitation records from 41 meteorological stations covering the years between 1966 and 2005 were considered. The annual series of Iranian precipitation were found to be homogeneous by applying the Bayesian and Cumulative Deviations tests, while the von Neumann test detected inhomogeneities at seven stations. Almost all the monthly precipitation data sets are homogeneous and considered as "useful." The outputs of the statistical tests for the homogeneity analysis of the precipitation time series had discrepancies in some cases which are related to different sensitivities of the tests to break in the time series. It was found that the von Neumann test is more sensitive than the Bayesian and Cumulative Deviations tests in the determination of inhomogeneity in the precipitation series.
Can spherical eukaryotic microalgae cells be treated as optically homogeneous?
Bhowmik, Arka; Pilon, Laurent
2016-08-01
This study aims to answer the question of whether spherical unicellular photoautotrophic eukaryotic microalgae cells, consisting of various intracellular compartments with their respective optical properties, can be modeled as homogeneous spheres with some effective complex index of refraction. The spectral radiation characteristics in the photosynthetically active region of a spherical heterogeneous microalgae cell, representative of Chlamydomonas reinhardtii and consisting of spherical compartments corresponding to the cell wall, cytoplasm, chloroplast, nucleus, and mitochondria, were estimated using the superposition T-matrix method. The effects of the presence of intracellular lipids and/or starch accumulation caused by stresses, such as nitrogen limitation, were explored. Predictions by the T-matrix method were qualitatively and quantitatively consistent with experimental measurements for various microalgae species. The volume-equivalent homogeneous sphere approximation with volume-averaged effective complex index of refraction gave accurate estimates of the spectral (i) absorption and (ii) scattering cross sections of the heterogeneous cells under both nitrogen-replete and nitrogen-limited conditions. In addition, the effect of a strongly refracting cell wall, representative of Chlorella vulgaris, was investigated. In this case, for the purpose of predicting their integral radiation characteristics, the microalgae should be represented as a coated sphere with a coating corresponding to the cell wall and a homogeneous core with volume-averaged complex index of refraction for the rest of the cell. However, both homogeneous sphere and coated sphere approximations predicted strong resonances in the scattering phase function and spectral backscattering cross section that were not observed in that of the heterogeneous cells. PMID:27505647
NASA Astrophysics Data System (ADS)
Hamamuki, Nao; Nakayasu, Atsushi; Namba, Tokinaga
2015-12-01
We study a cell problem arising in homogenization for a Hamilton-Jacobi equation whose Hamiltonian is not coercive. We introduce a generalized notion of effective Hamiltonians by approximating the equation and characterize the solvability of the cell problem in terms of the generalized effective Hamiltonian. Under some sufficient conditions, the result is applied to the associated homogenization problem. We also show that homogenization for non-coercive equations fails in general.
Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.
Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas
2015-10-16
The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. PMID:26472903
Exhaust gas recirculation in a homogeneous charge compression ignition engine
Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.
2008-05-27
A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, marco
2010-01-01
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.
Kwiatkowski, M.; Wurlitzer, M.; Krutilin, A.; Kiani, P.; Nimer, R.; Omidi, M.; Mannaa, A.; Bussmann, T.; Bartkowiak, K.; Kruber, S.; Uschold, S.; Steffen, P.; Lübberstedt, J.; Küpker, N.; Petersen, H.; Knecht, R.; Hansen, N.O.; Zarrine-Afsar, A.; Robertson, W.D.; Miller, R.J.D.; Schlüter, H.
2016-01-01
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Biological significance Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. PMID:26778141
Beyond relationships between homogeneous and heterogeneous catalysis
Dixon, David A.; Katz, Alexander; Arslan, Ilke; Gates, Bruce C.
2014-08-13
Scientists who regard catalysis as a coherent field have been striving for decades to articulate the fundamental unifying principles. But because these principles seem to be broader than chemistry, chemical engineering, and materials science combined, catalytic scientists commonly interact within the sub-domains of homogeneous, heterogeneous, and bio-catalysis, and increasingly within even narrower domains such as organocatalysis, phase-transfer catalysis, acid-base catalysis, zeolite catalysis, etc. Attempts to unify catalysis have motivated researchers to find relationships between homogeneous and heterogeneous catalysis and to mimic enzymes. These themes have inspired vibrant international meetings and workshops, and we have benefited from the idea exchanges and have some thoughts about a path forward.
Homogeneous Superpixels from Markov Random Walks
NASA Astrophysics Data System (ADS)
Perbet, Frank; Stenger, Björn; Maki, Atsuto
This paper presents a novel algorithm to generate homogeneous superpixels from Markov random walks. We exploit Markov clustering (MCL) as the methodology, a generic graph clustering method based on stochastic flow circulation. In particular, we introduce a graph pruning strategy called compact pruning in order to capture intrinsic local image structure. The resulting superpixels are homogeneous, i.e. uniform in size and compact in shape. The original MCL algorithm does not scale well to a graph of an image due to the square computation of the Markov matrix which is necessary for circulating the flow. The proposed pruning scheme has the advantages of faster computation, smaller memory footprint, and straightforward parallel implementation. Through comparisons with other recent techniques, we show that the proposed algorithm achieves state-of-the-art performance.
Detonation in shocked homogeneous high explosives
Yoo, C.S.; Holmes, N.C.; Souers, P.C.
1995-11-01
We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are (1) the initiation of shock compressed high explosives after an induction period, (2) thermal explosion of shock-compressed and/or reacting materials, and (3) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.
Homogeneous crystal nucleation in binary metallic melts
NASA Technical Reports Server (NTRS)
Thompson, C. V.; Spaepen, F.
1983-01-01
A method for calculating the homogeneous crystal nucleation frequency in binary metallic melts is developed. The free energy of crystallization is derived from regular solution models for the liquid and solid and is used, together with model-based estimates of the interfacial tension, to calculate the nucleation frequency from the classical theory. The method can account for the composition dependence of the maximum undercooling observed in a number of experiments on small droplet dispersions. It can also be used to calculate the driving force for crystal growth and to obtain more precise estimates of the homogeneous crystal nucleation frequency in glass-forming alloys. This method, although approximate, is simple to apply, and requires only knowledge of the phase diagram and a few readily available thermodynamic quantities as input data.
Homogeneity of kappa statistics in multiple samples.
Reed, J F
2000-08-01
The measurement of intra-observer agreement when the data are categorical has been the subject of several investigators since Cohen first proposed the kappa (kappa) as a chance-corrected coefficient of agreement for nominal scales. Subsequent procedures have been developed to assess the agreement of several raters using a dichotomous classification scheme, assess majority agreement among several raters using a polytomous classification scheme, and the use of kappa as an indicator of the quality of a measurement. Further developments include inference procedures for testing the homogeneity of k>/=2 independent kappa statistics. An executable FORTRAN code for testing the homogeneity of kappa statistics (kappa(h)) across multiple sites or studies is given. The FORTRAN program listing and/or executable programs are available from the author on request. PMID:10927153
Resonant ultrasound spectroscopy and homogeneity in polycrystals.
Kaplan, Gunes; Darling, T W; McCall, K R
2009-01-01
Resonant ultrasound spectroscopy (RUS) is capable of determining the bulk elastic properties of a solid from its characteristic vibration frequencies, given the dimensions, density and shape of the sample. The model used for extracting values of the elastic constants assumes perfect homogeneity, which can be approximated by average-isotropic polycrystals. This approximation is excellent in the small grain regime assumed for most averaging procedures, but for real samples with indeterminate grain size distributions, it is not clear where the approximation breaks down. RUS measurements were made on pure copper samples where the grain size distribution was changed by progressive heat treatments in order to find a quantitative limit for the loss of homogeneity. It is found that when a measure of the largest grains is 15% of the sample's smallest dimension, the deviation in RUS fits indicates elastic inhomogeneity. PMID:18804831
Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence
NASA Technical Reports Server (NTRS)
Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor
2010-01-01
We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.
CUDA Simulation of Homogeneous, Incompressible Turbulence
NASA Technical Reports Server (NTRS)
Morin, Lee; Shebalin, John V.; Shum, Victor; Fu, Terry
2011-01-01
We discuss very fast Compute Unified Device Architecture (CUDA) simulations of ideal homogeneous incompressible turbulence based on Fourier models. These models have associated statistical theories that predict that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. Prior numerical simulations have shown that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We review the theoretical basis of this "broken ergodicity" as applied to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence. Our new simulations examine the phenomenon of broken ergodicity through very long time and large grid size runs performed on a state-of-the-art CUDA platform. Results comparing various CUDA hardware configurations and grid sizes are discussed. NS and MHD results are compared.
The Architecture of a Homogeneous Vector Supercomputer
NASA Astrophysics Data System (ADS)
Gustafson, J. L.; Hawkinson, S.; Scott, K.
A new homogeneous computer architecture combines two fundamental techniques for high-speed computing: parallelism based on the binary n-cube interconnect, and pipelined vector arithmetic. The design makes extensive use of VLSI technology, resulting in a processing node that can be economically replicated. The new system achieves a careful balance between high-speed communication and floating-point computation. This paper describes the new architecture in detail and explores some of the issues in developing effective software.
A homogenization model of the annulus fibrosus.
Yin, Luzhong; Elliott, Dawn M
2005-08-01
The objective of this study was to use a homogenization model of the anisotropic mechanical behavior of annulus fibrosus (AF) to address some of the issues raised in structural finite element and fiber-reinforced strain energy models. Homogenization theory describes the effect of microstructure on macroscopic material properties by assuming the material is composed of repeating representative volume elements. We first developed the general homogenization model and then specifically prescribed the model to in-plane single lamella and multi-lamellae AF properties. We compared model predictions to experimentally measured AF properties and performed parametric studies. The predicted tensile moduli (E theta and E z) and their dependence on fiber volume fraction and fiber angle were consistent with measured values. However, the model prediction for shear modulus (G thetaz) was two orders of magnitude larger than directly measured values. The values of E theta and E z were strongly dependent on the model input for matrix modulus, much more so than the fiber modulus. These parametric analyses demonstrated the contribution of the matrix in AF load support, which may play a role when protoeglycans are decreased in disc degeneration, and will also be an important design factor in tissue engineering. We next compared the homogenization model to a 3-D structural finite element model and fiber-reinforced energy models. Similarities between the three model types provided confidence in the ability of these models to predict AF tissue mechanics. This study provides a direct comparison between the several types of AF models and will be useful for interpreting previous studies and elucidating AF structure-function relationships in disc degeneration and for functional tissue engineering. PMID:15958225
Spherical cloaking with homogeneous isotropic multilayered structures.
Qiu, Cheng-Wei; Hu, Li; Xu, Xiaofei; Feng, Yijun
2009-04-01
We propose a practical realization of electromagnetic spherical cloaking by layered structure of homogeneous isotropic materials. By mimicking the classic anisotropic cloak by many alternating thin layers of isotropic dielectrics, the permittivity and permeability in each isotropic layer can be properly determined by effective medium theory in order to achieve invisibility. The model greatly facilitates modeling by Mie theory and realization by multilayer coating of dielectrics. Eigenmode analysis is also presented to provide insights of the discretization in multilayers. PMID:19518392
Homogeneous cooling state of frictionless rod particles
NASA Astrophysics Data System (ADS)
Rubio-Largo, S. M.; Alonso-Marroquin, F.; Weinhart, T.; Luding, S.; Hidalgo, R. C.
2016-02-01
In this work, we report some theoretical results on granular gases consisting of frictionless 3D rods with low energy dissipation. We performed simulations on the temporal evolution of soft spherocylinders, using a molecular dynamics algorithm implemented on GPU architecture. A homogeneous cooling state for rods, where the time dependence of the system's intensive variables occurs only through a global granular temperature, has been identified. We have found a homogeneous cooling process, which is in excellent agreement with Haff's law, when using an adequate rescaling time τ(ξ), the value of which depends on the particle elongation ξ and the restitution coefficient. It was further found that scaled particle velocity distributions remain approximately Gaussian regardless of the particle shape. Similarly to a system of ellipsoids, energy equipartition between rotational and translational degrees of freedom was better satisfied as one gets closer to the elastic limit. Taking advantage of scaling properties, we have numerically determined the general functionality of the magnitude Dc(ξ), which describes the efficiency of the energy interchange between rotational and translational degrees of freedom, as well as its dependence on particle shape. We have detected a range of particle elongations (1.5 < ξ < 4.0), where the average energy transfer between the rotational and translational degrees of freedom results greater for spherocylinders than for homogeneous ellipsoids with the same aspect ratio.
MULTIGRID HOMOGENIZATION OF HETEROGENEOUS POROUS MEDIA
Dendy, J.E.; Moulton, J.D.
2000-10-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL); this report, however, reports on only two years research, since this project was terminated at the end of two years in response to the reduction in funding for the LDRD Program at LANL. The numerical simulation of flow through heterogeneous porous media has become a vital tool in forecasting reservoir performance, analyzing groundwater supply and predicting the subsurface flow of contaminants. Consequently, the computational efficiency and accuracy of these simulations is paramount. However, the parameters of the underlying mathematical models (e.g., permeability, conductivity) typically exhibit severe variations over a range of significantly different length scales. Thus the numerical treatment of these problems relies on a homogenization or upscaling procedure to define an approximate coarse-scale problem that adequately captures the influence of the fine-scale structure, with a resultant compromise between the competing objectives of computational efficiency and numerical accuracy. For homogenization in models of flow through heterogeneous porous media, We have developed new, efficient, numerical, multilevel methods, that offer a significant improvement in the compromise between accuracy and efficiency. We recently combined this approach with the work of Dvorak to compute bounded estimates of the homogenized permeability for such flows and demonstrated the effectiveness of this new algorithm with numerical examples.
Homogeneous Biosensing Based on Magnetic Particle Labels
Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg
2016-01-01
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824
Homogeneous Biosensing Based on Magnetic Particle Labels.
Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg
2016-01-01
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824
TESTING HOMOGENEITY WITH GALAXY STAR FORMATION HISTORIES
Hoyle, Ben; Jimenez, Raul; Tojeiro, Rita; Maartens, Roy; Heavens, Alan; Clarkson, Chris
2013-01-01
Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past light cone, while observations take place on the light cone. The star formation history (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked luminous red galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal-area contiguous sky patches and 10 redshift slices (0.2 < z < 0.5), which correspond to 120 blocks of volume {approx}0.04 Gpc{sup 3}. Using the SFH in a time period that samples the history of the universe between look-back times 11.5 and 13.4 Gyr as a proxy for homogeneity, we calculate the posterior distribution for the excess large-scale variance due to inhomogeneity, and find that the most likely solution is no extra variance at all. At 95% credibility, there is no evidence of deviations larger than 5.8%.
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
Elastostatics of a spherical inclusion in homogeneous biological media.
Bilgen, M; Insana, M F
1998-01-01
A three-dimensional spherical inclusion model that approximates a lesion bonded to a tissue matrix is proposed for biomedical elastography. Analytical formulae describing spatial strain and stress distributions generated in infinite media by uniform loading are given under a linear, homogeneous, isotropic elasticity assumption. Strain and stress distributions are also calculated using finite-element analysis (FEA) for a variety of cases to determine the effects of shear modulus distribution, external loading conditions (uniform stress versus uniform displacement), compressor size and matrix dimensions on the elastostatics of the tissue. Analytical strain and stress predictions are shown to agree with the FEA results to within 10% accuracy provided that the matrix dimensions are at least ten times that of the inclusion. Also for these cases, uniform-stress boundary conditions can be equivalently represented by uniform displacement of the boundary. Spherical inclusions exhibit a lower efficiency for transferring elastic shear modulus contrast into strain contrast than cylindrical or planar inclusions. Additional compression will increase the strain contrast. However, large compressions also lead to increases in ultrasonic signal decorrelation and strain and stress concentrations in the homogeneous matrix around the inclusion. Although strain concentrations may help describe the boundaries of the inclusion more clearly, they also increase the risk of damaging the tissue. Understanding the strain and stress distributions in a biological tissue containing a lesion is necessary for optimizing the experimental configurations and consequently improving the diagnostic values of elasticity imaging. PMID:9483620
All-sky homogeneity of precipitable water vapour over Paranal
NASA Astrophysics Data System (ADS)
Querel, Richard R.; Kerber, Florian
2014-08-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be
Dark energy homogeneity in general relativity: Are we applying it correctly?
NASA Astrophysics Data System (ADS)
Duniya, Didam G. A.
2016-04-01
Thus far, there does not appear to be an agreed (or adequate) definition of homogeneous dark energy (DE). This paper seeks to define a valid, adequate homogeneity condition for DE. Firstly, it is shown that as long as w_x ≠ -1, DE must have perturbations. It is then argued, independent of w_x, that a correct definition of homogeneous DE is one whose density perturbation vanishes in comoving gauge: and hence, in the DE rest frame. Using phenomenological DE, the consequence of this approach is then investigated in the observed galaxy power spectrum—with the power spectrum being normalized on small scales, at the present epoch z=0. It is found that for high magnification bias, relativistic corrections in the galaxy power spectrum are able to distinguish the concordance model from both a homogeneous DE and a clustering DE—on super-horizon scales.
Microphysical Modelling of the 1999-2000 Arctic Winter. 3; Impact of Homogeneous Freezing on PSCs
NASA Technical Reports Server (NTRS)
Drdla, K.
2003-01-01
Simulations of the 1999-2000 winter have tested the effect on polar stratospheric clouds (PSCs) of the homogeneous freezing of liquid ternary solutions into nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD). Proposed laboratory-derived volume-based and surface-based homogeneous freezing rates have both been examined, including different assumptions about the extrapolation of laboratory measurements to atmospheric conditions. Widespread PSC formation and denitrification are possible in several of the scenarios examined. However, the simulations are all unable to explain the solid-phase PSCs observed early in the 1999-2000 winter, and are unable to reproduce the measured extent of vortex denitrification. These problems can both be attributed to the relatively cold temperatures, more than 5 K below the NAT condensation point, necessary for effective homogeneous freezing. Therefore synoptic-scale homogeneous freezing appears unlikely to be the primary mechanism responsible for solid-phase PSC formation.
The Chemical Homogeneity of Open Clusters
NASA Astrophysics Data System (ADS)
Bovy, Jo
2016-01-01
Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as is traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forward modeling of the spectra and Approximate Bayesian Computation, I derive strong limits on the initial abundance spread of 15 elements: <0.01 (0.02) {dex} for C and Fe, ≲0.015 (0.03) {dex} for N, O, Mg, Si, and Ni, ≲0.02 (0.03) {dex} for Al, Ca, and Mn, and ≲0.03 (0.05) {dex} for Na, S, K, Ti, and V (at 68% and 95% confidence, respectively). The strong limits on C and O imply that no pollution by massive core-collapse supernovae occurred during star formation in open clusters, which, thus, need to form within ≲6 {Myr}. Further development of this and related techniques will bring the power of differential abundances to stars other than solar twins in large spectroscopic surveys and will help unravel the history of star formation and chemical enrichment in the Milky Way through chemical tagging.
Sulfur isotope homogeneity of lunar mare basalts
NASA Astrophysics Data System (ADS)
Wing, Boswell A.; Farquhar, James
2015-12-01
We present a new set of high precision measurements of relative 33S/32S, 34S/32S, and 36S/32S values in lunar mare basalts. The measurements are referenced to the Vienna-Canyon Diablo Troilite (V-CDT) scale, on which the international reference material, IAEA-S-1, is characterized by δ33S = -0.061‰, δ34S ≡ -0.3‰ and δ36S = -1.27‰. The present dataset confirms that lunar mare basalts are characterized by a remarkable degree of sulfur isotopic homogeneity, with most new and published SF6-based sulfur isotope measurements consistent with a single mass-dependent mean isotopic composition of δ34S = 0.58 ± 0.05‰, Δ33S = 0.008 ± 0.006‰, and Δ36S = 0.2 ± 0.2‰, relative to V-CDT, where the uncertainties are quoted as 99% confidence intervals on the mean. This homogeneity allows identification of a single sample (12022, 281) with an apparent 33S enrichment, possibly reflecting cosmic-ray-induced spallation reactions. It also reveals that some mare basalts have slightly lower δ34S values than the population mean, which is consistent with sulfur loss from a reduced basaltic melt prior to eruption at the lunar surface. Both the sulfur isotope homogeneity of the lunar mare basalts and the predicted sensitivity of sulfur isotopes to vaporization-driven fractionation suggest that less than ≈1-10% of lunar sulfur was lost after a potential moon-forming impact event.
Mirror Symmetry for Quasi-Homogeneous Singularities
NASA Astrophysics Data System (ADS)
Rathnakumara, Himal; Jarvis, Tyler
2008-10-01
I will present an introduction to mirror symmetry in the context of string theory. Then I will describe an instance of mirror symmetry for singularties defined by quasi-homogeneous polynomials in weighted projective spaces. Milnor rings and the FJRW (Fan-Jarvis-Ruan-Witten) rings associated with these singularities and their relation to the Landua-Ginzburg A model and the Landua-Ginzburg B model will be explained. Results of the calculations for certain singularities for which the mirror symmetry conjecture has been verified will be presented.
Heterogeneity versus homogeneity of multiple sclerosis
Sato, Fumitaka; Martinez, Nicholas E; Omura, Seiichi; Tsunoda, Ikuo
2011-01-01
The 10th International Congress of Neuroimmunology, including the 10th European School of Neuroimmunology Course, was held by the International Society of Neuroimmunology in Sitges (Barcelona, Spain) on 26–30 October 2010. The conference covered a wide spectrum of issues and challenges in both basic science and clinical aspects of neuroimmunology. Data and ideas were shared through a variety of programs, including review talks and poster sessions. One of the topics of the congress was whether multiple sclerosis is a homogenous or heterogenous disease, clinically and pathologically, throughout its course. PMID:21426254
Compressible homogeneous shear: Simulation and modeling
NASA Technical Reports Server (NTRS)
Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.
1992-01-01
Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.
Multifractal spectra in homogeneous shear flow
NASA Technical Reports Server (NTRS)
Deane, A. E.; Keefe, L. R.
1988-01-01
Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.
Homogeneous system UTBLI for 1964 - 1986.
NASA Astrophysics Data System (ADS)
Jovanović, B.; Durović, L.; Jovanović, M.
1993-09-01
Homogeneous results of universal time determinations derived from the observations by the Transit Instrument of Belgrade Astronomical Observatory (BLI) for the interval 1964 - 1986 are presented. They were prepared in accordance with IERS standards and listed in a table. In addition, using the smoothed values of monthly averaged UT1BLI-UT1BIH, an analysis on the variation of the local system UT1BLI is carried out, and also, systematic deviations after the adopted BIH model are shown. Undoubtedly, there exists a significant 11 - 14 year periodic change of UT1BLI system.
Local structures of homogeneous Hall MHD turbulence
NASA Astrophysics Data System (ADS)
Miura, H.; Araki, K.
2011-12-01
Local structures of decaying homogeneous and isotropic Hall MHD turbulence are studied by means of direct numerical simulations. Regions of strong vorticity and strong current density in Hall MHD turbulence are compared to those of single-fluid MHD turbulence. An analysis by the use of a low-pass filter reveals that the introduction of the Hall term can modify not only small-scale structures of the current density but also structures of the vorticity field, especially at the scales smaller than the ion skin depth.
Homogeneous and hypersurface-homogeneous shear-free perfect fluids ingeneral relativity.
NASA Astrophysics Data System (ADS)
Collins, C. B.
1988-08-01
Shear-free, general-relativistic perfect fluids are investigated in the case where they are either homogeneous or hypersurface-homogeneous (and, in particular, spatially homogeneous). It is assumed that the energy density μ and the presurep of the fluid are related by a barotropic equation of statep = p(μ), where μ +p ≠ 0. Under such circumstances, it follows that either the fluid's volume expansion rate θ or the fluid's vorticity (i.e., rotation) ω must vanish. In the homogeneous case, this leads to only two possibilities: either ω = θ = 0 (the Einstein static solution), or ω ≠ 0,θ = 0 (the Gödel solution). In the hypersurface-homogeneous case, the situation is more complicated: either ω = 0, θ≠ 0 (as exemplified,inter alia, by the Friedmann-Robertson-Walker models), or ω ≠ 0, θ = 0 (which pertains, for example, in general stationary cylindrically symmetric fluids with rigid rotation, or ω = θ = 0 (as occurs for static spherically symmetric solutions). Each possibility is further subdivided in an invariant way, and related to the studies of other authors, thereby unifying and extending these earlier works.
Homogeneous cooling of mixtures of particle shapes
NASA Astrophysics Data System (ADS)
Hidalgo, R. C.; Serero, D.; Pöschel, T.
2016-07-01
In this work, we examine theoretically the cooling dynamics of binary mixtures of spheres and rods. To this end, we introduce a generalized mean field analytical theory, which describes the free cooling behavior of the mixture. The relevant characteristic time scale for the cooling process is derived, depending on the mixture composition and the aspect ratio of the rods. We simulate mixtures of spherocylinders and spheres using a molecular dynamics algorithm implemented on graphics processing unit (GPU) architecture. We systematically study mixtures composed of spheres and rods with several aspect ratios and varying the mixture composition. A homogeneous cooling state, where the time dependence of the system's intensive variables occurs only through a global granular temperature, is identified. We find cooling dynamics in excellent agreement with Haff's law, when using an adequate time scale. Using the scaling properties of the homogeneous cooling dynamics, we estimated numerically the efficiency of the energy interchange between rotational and translational degrees of freedom for collisions between spheres and rods.
Emergence of Leadership within a Homogeneous Group
Eskridge, Brent E.; Valle, Elizabeth; Schlupp, Ingo
2015-01-01
Large scale coordination without dominant, consistent leadership is frequent in nature. How individuals emerge from within the group as leaders, however transitory this position may be, has become an increasingly common question asked. This question is further complicated by the fact that in many of these aggregations, differences between individuals are minor and the group is largely considered to be homogeneous. In the simulations presented here, we investigate the emergence of leadership in the extreme situation in which all individuals are initially identical. Using a mathematical model developed using observations of natural systems, we show that the addition of a simple concept of leadership tendencies which is inspired by observations of natural systems and is affected by experience can produce distinct leaders and followers using a nonlinear feedback loop. Most importantly, our results show that small differences in experience can promote the rapid emergence of stable roles for leaders and followers. Our findings have implications for our understanding of adaptive behaviors in initially homogeneous groups, the role experience can play in shaping leadership tendencies, and the use of self-assessment in adapting behavior and, ultimately, self-role-assignment. PMID:26226381
The Statistical Mechanics of Ideal Homogeneous Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2002-01-01
Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.
On shearing fluids with homogeneous densities
NASA Astrophysics Data System (ADS)
Srivastava, D. C.; Srivastava, V. C.; Kumar, Rajesh
2016-06-01
In this paper, we study shearing spherically symmetric homogeneous density fluids in comoving coordinates. It is found that the expansion of the four-velocity of a perfect fluid is homogeneous, whereas its shear is generated by an arbitrary function of time M( t), related to the mass function of the distribution. This function is found to bear a functional relationship with density. The field equations are reduced to two coupled first order ordinary differential equations for the metric coefficients g_{11} and g_{22}. We have explored a class of solutions assuming that M is a linear function of the density. This class embodies, as a subcase, the complete class of shear-free solutions. We have discussed the off quoted work of Kustaanheimo (Comment Phys Math XIII:12, 1, 1947) and have noted that it deals with shear-free fluids having anisotropic pressure. It is shown that the anisotropy of the fluid is characterized by an arbitrary function of time. We have discussed some issues of historical priorities and credentials related to shear-free solutions. Recent controversial claims by Mitra (Astrophys Space Sci 333:351, 2011 and Gravit Cosmol 18:17, 2012) have also been addressed. We found that the singularity and the shearing motion of the fluid are closely related. Hence, there is a need for fresh look to the solutions obtained earlier in comoving coordinates.
Si isotope homogeneity of the solar nebula
Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric; Jackson, Matthew G.; Barrat, Jean-Alix E-mail: savage@levee.wustl.edu E-mail: moynier@ipgp.fr E-mail: Jean-Alix.Barrat@univ-brest.fr
2013-12-20
The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.
Emergence of Leadership within a Homogeneous Group.
Eskridge, Brent E; Valle, Elizabeth; Schlupp, Ingo
2015-01-01
Large scale coordination without dominant, consistent leadership is frequent in nature. How individuals emerge from within the group as leaders, however transitory this position may be, has become an increasingly common question asked. This question is further complicated by the fact that in many of these aggregations, differences between individuals are minor and the group is largely considered to be homogeneous. In the simulations presented here, we investigate the emergence of leadership in the extreme situation in which all individuals are initially identical. Using a mathematical model developed using observations of natural systems, we show that the addition of a simple concept of leadership tendencies which is inspired by observations of natural systems and is affected by experience can produce distinct leaders and followers using a nonlinear feedback loop. Most importantly, our results show that small differences in experience can promote the rapid emergence of stable roles for leaders and followers. Our findings have implications for our understanding of adaptive behaviors in initially homogeneous groups, the role experience can play in shaping leadership tendencies, and the use of self-assessment in adapting behavior and, ultimately, self-role-assignment. PMID:26226381
Ketone-body utilization by homogenates of adult rat brain
Lopes-Cardozo, M.; Klein, W.
1982-06-01
The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.
Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes.
Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Altantzis, Thomas; Bals, Sara; Schotter, Joerg
2016-04-13
Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions. PMID:27023370
Confocal detection of planar homogeneous and heterogeneous immunosorbent assays
NASA Astrophysics Data System (ADS)
Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.
2009-11-01
Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.
Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment
NASA Astrophysics Data System (ADS)
Ko, Wonlyul; Ryu, Kimun
2007-03-01
In this paper, we investigate the existence and non-existence of non-constant positive steady-states of a diffusive predator-prey interaction system under homogeneous Neumann boundary condition. In homogeneous environment, we show that the predator-prey model with Leslie-Gower functional response has no non-constant positive solution, but the system with a general functional response may have at least one non-constant positive steady-state under some conditions.
Plante, Ianik
2011-08-01
The importance of the radiolysis of water in the initial events following irradiation of biological systems has motivated considerable theoretical and experimental work in the field of radiation chemistry of water and aqueous systems. These studies include Monte-Carlo simulations of the radiation track structure and of the non-homogeneous chemical stage, which have been successfully used to calculate the yields of radiolytic species (H(·), (·)OH, H(2), H(2)O(2), e (aq) (-) , …). Most techniques used for the simulation of the non-homogeneous chemical stage such as the independent reaction time (IRT) technique and diffusion kinetics methods do not calculate the time evolution of the positions of the radiolytic species. This is a major limitation to their extension to the simulation of the irradiation of radiobiological systems. Step-by-step (SBS) simulation programs provide such information, but they are very demanding in term of computer power and storage capacity. Recent improvements in computer performance now allow the regular use of the SBS method in radiation chemistry simulations. In the first of a series of two papers, the SBS method has been reviewed in details and the implementation of a SBS code has been discussed. In this second paper, the results of several studies are presented: (1) the time evolution of the radiolytic yields from the formation of the radiation track to 10(-6) s; (2) the effect of pH on yields (pH ~ 0.4-7.0); (3) the effect of proton energy (and LET) on yields (300 MeV-0.1 MeV), and iv) the effect of the ion type ((1)H(+), (4)He(2+), (12)C(6+)) on yields. Nonbiological applications, i.e., the study of the temperature on the yields (about 25-300°C) and the simulation of the time evolution of G(Fe(3+)) in the Fricke dosimeter are also discussed. PMID:21594646
Etude analytique d'interface dynamique aeronef-navire
NASA Astrophysics Data System (ADS)
Ferrier, Bernard
This report introduces an approach for the solution of real-time aircraft/ship dynamic interface problems using ship motion filtered by helicopter stability limits. The Landing Period Designator (LPD) calculates quiescent periods using the Energy Index scale. A test plan was developed in three phases. The purpose of the first phase was to demonstrate the proof-of-concept. During the second phase, a prototype was developed and tested without the pilot in the loop at-sea. In the third phase, a full-scale system was developed and tested with the pilot in the loop at-sea. The first phase was composed of simulation, assembly and test of a pre-prototype system. This report concentrates on this phase. The simulation test program was based on three hypothesis regarding the reliability of the energy index. The energy index must distinguish between various helicopter models for the same sea and ship conditions. The rise-time must always respect an inertial delay between excitation and ship displacement. Finally, the characteristics of the index using synthetic (simulated) time history must resemble a similar result using recorded time histories (for similar conditions). Aircraft-ship rise-times vary, depending the ship characteristics, between 4 to 5.5 seconds (corvette to destroyer class ships). With more than 6,200 simulation runs of the LPD, the rise-time delays were always respected. The LPD calculated with simulated data always resembled similar conditions calculated with recorded ship motion data. A strong correlation between the LPD value and its physical significance was established early in phase 1. This prompted the US Government to award a grant for the assembly of a ship motion instrumentation system which was connected to the LPD through a signal conditioning unit. The US Government furnished the means by which the pre-prototype system could be tested at-sea. By the end of phase one, the pre-prototype system was tested on three frigates (US and German) at
Homogeneous liquid-liquid solvent extraction. [Propylene carbonate-water system
Ting, C.S.; Williams, E.T.; Finston, H.L.
1980-01-01
This investigation was undertaken to extend the technique of homogeneous liquid-liquid solvent extraction into propylene carbonate. The mutual solubilities of propylene carbonate in water and vice-versa are shown in the phase diagram. The extraction of a variety of monodentate and bidentate ligand complexes with Fe(III) as a function of ligand concentration and pH were investigated. The monodentate ligands studied include, thiocyanate, chloride, bromide, benzoate, and bathophenanthrolines. The bidentate ligands studied include the various ..beta..-diketones, 8-quinolinol, and also cupferron which was studied under normal conditions, i.e., not under conditions of homogeneous extraction. The homogeneous extraction proved effective for a variety of chelate complexes and ion association complexes of iron giving, in all cases, very rapid extraction as compared with the slow rate of conventional extraction methods.
Zhu, Xingyi; Mang, Yili; Shen, Fengqiong; Xie, Jie; Su, Weike
2014-08-01
Homogenate extraction technology was developed for extraction of gardenia yellow pigment from Gardenia jasminoides Ellis fruit. The operating parameters affecting the color value of gardenia yellow pigment were studied on the basis of a Box-Behnken design and response surface methodology. Results showed that the optimum extraction conditions were as follows: extraction time 41 s, ethanol concentration 50 %, ratio of liquid to material 15:1 (mL:g) and particle size 1.7 mm. Under the optimum condition, the experimental color value was 52.37 g(-1), which was in keeping with the predicted one. Compared with the heat extraction method, the color value of gardenia yellow pigment of homogenate extraction was higher and the extraction time was shorter. Homogenate extraction method is an ideal means for extraction of gardenia yellow pigment from Gardenia jasminoides Ellis fruit. PMID:25114350
Numerical Simulation of Turbulent Propane-Air Combustion with Non-Homogeneous Reactants
NASA Astrophysics Data System (ADS)
Haworth, D.; Cuenot, B.; Poinsot, T.; Blint, R.
1998-11-01
Two-dimensional numerical simulations of turbulent propane-air combustion have been performed including complex chemistry and realistic molecular transport. The aerothermochemical conditions simulated (reactant temperature and pressure, turbulence rms velocity and integral length scale) correspond to conditions at the time of ignition in an automotive gasoline direct-injection reciprocating IC engine at low speed and light load. Both stoichiometric homogeneous reactants and non-homogeneous reactants with fuel-based equivalence ratios ranging from zero to four have been simulated. In the case of non-homogeneous reactants, a primary premixed flame (defined based on disappearance of the propane fuel) is followed by a secondary heat-release zone that is dominated by CO kinetics and turbulent mixing. Beyond a few flame thicknesses behind the primary flame, any remaining fuel has been broken down into carbon monoxide and hydrogen. Quantitative information relevant for modeling turbulent flame propagation through nonhomogeneous reactants has been extracted.
Rampon, V; Riaublanc, A; Anton, M; Genot, C; McClements, D J
2003-09-24
The structural modification of globular proteins (bovine serum albumin, BSA) in the aqueous phase of emulsions produced by homogenization was studied using front-face fluorescence spectroscopy (FFFS). A series of hydrocarbon oil-in-water emulsions (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7.0) were homogenized to differing degrees with a high-speed blender and a high-pressure valve homogenizer. The wavelength of the maximum in the tryptophan emission spectrum (lambda(max)) of serum phases collected from the emulsions by centrifugation was measured and compared to lambda(max) values of BSA solutions subjected to the same homogenization conditions. There was no significant (p < 0.05) change in lambda(max) with homogenization conditions for BSA solutions. In contrast, lambda(max) of serum phases from emulsions blended for 2 min in a high-speed blender was significantly smaller (p < 0.05) than nontreated BSA solutions (Deltalambda(max) = 2 nm). In addition, there was a further significant decrease in lambda(max) of the serum phases with an increasing number of passes of the emulsion through the high-pressure valve homogenizer (e.g., Deltalambda(max) = 4 nm for 12 passes). This study shows that globular proteins present in the aqueous phase of a hexadecane-in-water emulsion after homogenization could be altered, which is probably caused by surface modification of the protein structure during temporary adsorption to emulsion droplet surfaces during homogenization. PMID:13129292
NASA Astrophysics Data System (ADS)
Mercer, C. N.; Roberge, J.; Todorov, T. I.; Hofstra, A. H.
2013-12-01
Melt inclusions hosted in quartz can provide the only direct information about the pressure, temperature, and melt composition of pre-eruptive rhyolitic magmas, many of which are the precursors to mineralizing aqueous fluids [1]. With ideal, rapidly-quenched pumice samples, analysis of glassy quartz-hosted melt inclusions is relatively straightforward. These data can be directly interpreted to represent snapshots of metal and volatile concentrations during magma crystallization and degassing. However, most ore deposit-related igneous samples are non-ideal; being older, potentially hydrothermally altered, and often crystallized due to slow cooling in subvolcanic regions (e.g., porphyry-type deposits). In this case, analysis of crystalline melt inclusions in quartz is not straightforward and resulting data must be meticulously examined before interpretation. Many melt inclusions may have experienced post-entrapment modifications [1] such as diffusion of elements (e.g., H, Li, Na, Ag, Cu) [2], which may lead to changes in measured oxygen fugacity. Slowly cooled inclusions may crystallize, producing a heterogeneous "micro-rock" that cannot be analyzed by spectroscopic methods or electron microprobe. While crystallized inclusions can be homogenized in a high-temperature furnace, many new problems may arise such as inclusion decrepitation [3], diffusion of elements [2], and incorporation of too little or too much Si from the inclusion rim or host crystal. However, if unwanted homogenization effects are minimized by choosing ideal experimental conditions, then these homogenized inclusions can be analyzed by traditional FTIR and electron microprobe methods. The electron microprobe data from homogenized inclusions can be used as accurate internal standards for laser ablation-ICP-MS data reduction. Alternatively, crystalline inclusions can be directly analyzed for major and trace elements by laser ablation-ICP-MS [4], which considerably reduces sample preparation time, but
Extended narrow escape problem: Boundary homogenization-based analysis
Berezhkovskii, A. M.; Barzykin, A. V.
2016-01-01
Diffusion of particles in confined domains with absorbing spots on the otherwise reflecting boundaries is ubiquitous in nature and technology. Because of nonuniform boundary conditions, the problem of finding the mean first passage time (MFPT) of the particle to one of the spots is extremely complicated. We show how the difficulties can be overcome by means of boundary homogenization when the domain is a circular disk whose boundary contains n nonoverlapping identical absorbing arcs, which may occupy an arbitrary fraction of the boundary. We find the MFPT as a function of the fraction of the boundary occupied by the arcs (i) for n evenly spaced arcs and (ii) for two arcs arbitrarily located on the boundary. As the arc length tends to zero, our approximate solution reduces to the known asymptotic formula for the MFPT rigorously derived in studies devoted of the narrow escape problem. PMID:20866572
Dense and homogenous silicon nitride composites containing carbon nanotubes.
Osendi, M I; Gautheron, F; Miranzo, P; Belmonte, M
2009-10-01
Silicon nitride (Si3N4) materials with 1.8 and 5.3 vol.% of multi-walled carbon nanotubes (MWCNTs) were densified using 7 wt% of sintering additives (Y2O3 +Al2O3). The mixing and sintering procedures produced quite homogenous and dense MWCNT/Si3N4 composites. The nanotubes condition was followed by micro-Raman spectroscopy and no alteration was observed in spite of the relatively high sintering temperatures (approximately 1600 degrees C). Mechanical parameters (hardness, elastic modulus and fracture toughness) of the composites and comparative blank specimens were measured by instrumented indentation and discussed in parallel. Thermal conductivity was also estimated for these specimens. The nanotube orientation effect inherent to pressure assisted sintering methods and the weak interfacial bond between nanotubes and Si3N4 are important factors to explain the mechanical and thermal behaviours of these composites. PMID:19908514
[Type IIb primary hyperlipoproteinemia. An homogenous series of 412 cases].
Rouffy, J; Loeper, J; Dreux, C; Lemogne, M; Loeper, J; Pestel, M; Dakkak, R
1976-03-20
On the basis of a homogeneous series of 412 cases of type IIb primary hyperlipoproteinaemia, the authors compare their experience with findings in the literature. The prevalence of this type of hyperlipoproteinaemia in the general population has been underestimated at 3%. Biological diagnosis remains simple (identification of a double and distinct excess in beta and pre beta lipoproteins). Extravascular lipid deposits (gerontoxon, xanthelasma, tendon xanthomata) are not type specific. Hyperlipidaemic syndrome is rare. Above all, the importance of type IIb in atheromatous disease in the young subject now seems obvious. The mode of hereditary transmission of the familial anomaly is not certain but would appear to be often associated with a double heterozygote condition. PMID:1264609
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
Nanodosimetric track structure in homogeneous extended beams.
Conte, V; Moro, D; Colautti, P; Grosswendt, B
2015-09-01
Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields. PMID:25848108
Homogeneously dispersed multimetal oxygen-evolving catalysts.
Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; García-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; García de Arquer, F Pelayo; Dinh, Cao Thang; Fan, Fengjia; Yuan, Mingjian; Yassitepe, Emre; Chen, Ning; Regier, Tom; Liu, Pengfei; Li, Yuhang; De Luna, Phil; Janmohamed, Alyf; Xin, Huolin L; Yang, Huagui; Vojvodic, Aleksandra; Sargent, Edward H
2016-04-15
Earth-abundant first-row (3d) transition metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER. PMID:27013427
The homogeneity conjecture for supergravity backgrounds
NASA Astrophysics Data System (ADS)
Figueroa-O'Farrill, José Miguel
2009-06-01
These notes record three lectures given at the workshop "Higher symmetries in Physics", held at the Universidad Complutense de Madrid in November 2008. In them we explain how to construct a Lie (super)algebra associated to a spin manifold, perhaps with extra geometric data, and a notion of privileged spinors. The typical examples are supersymmetric supergravity backgrounds; although there are more classical instances of this construction. We focus on two results: the geometric constructions of compact real forms of the simple Lie algebras of type B4, F4 and E8 from S7, S8 and S15, respectively; and the construction of the Killing superalgebra of eleven-dimensional supergravity backgrounds. As an application of this latter construction we show that supersymmetric supergravity backgrounds with enough supersymmetry are necessarily locally homogeneous.
Homogeneous catalyst formulations for methanol production
Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.
1991-02-12
There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.
Homogeneous catalyst formulations for methanol production
Mahajan, Devinder; Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.
1990-01-01
There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.
Soliton production with nonlinear homogeneous lines
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.
2015-11-24
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated output voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.
Soliton production with nonlinear homogeneous lines
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; Petney, Sharon Joy Victor; Dudley, Evan C.; Youngman, Kevin; Penner, Tim Dwight; Fang, Lu; Myers, Katherine M.
2015-11-24
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less
RF Spectroscopy on a Homogeneous Fermi Gas
NASA Astrophysics Data System (ADS)
Yan, Zhenjie; Mukherjee, Biswaroop; Patel, Parth; Struck, Julian; Zwierlein, Martin
2016-05-01
Over the last two decades RF spectroscopy has been established as an indispensable tool to probe a large variety of fundamental properties of strongly interacting Fermi gases. This ranges from measurement of the pairing gap over tan's contact to the quasi-particle weight of Fermi polarons. So far, most RF spectroscopy experiments have been performed in harmonic traps, resulting in an averaged response over different densities. We have realized an optical uniform potential for ultracold Fermi gases of 6 Li atoms, which allows us to avoid the usual problems connected to inhomogeneous systems. Here we present recent results on RF spectroscopy of these homogeneous samples with a high signal to noise ratio. In addition, we report progress on measuring the contact of a unitary Fermi gas across the normal to superfluid transition.
High frequency homogenization for structural mechanics
NASA Astrophysics Data System (ADS)
Nolde, E.; Craster, R. V.; Kaplunov, J.
2011-03-01
We consider a net created from elastic strings as a model structure to investigate the propagation of waves through semi-discrete media. We are particularly interested in the development of continuum models, valid at high frequencies, when the wavelength and each cell of the net are of similar order. Net structures are chosen as these form a general two-dimensional example, encapsulating the essential physics involved in the two-dimensional excitation of a lattice structure whilst retaining the simplicity of dealing with elastic strings. Homogenization techniques are developed here for wavelengths commensurate with the cellular scale. Unlike previous theories, these techniques are not limited to low frequency or static regimes, and lead to effective continuum equations valid on a macroscale with the details of the cellular structure encapsulated only through integrated quantities. The asymptotic procedure is based upon a two-scale approach and the physical observation that there are frequencies that give standing waves, periodic with the period or double-period of the cell. A specific example of a net created by a lattice of elastic strings is constructed, the theory is general and not reliant upon the net being infinite, none the less the infinite net is a useful special case for which Bloch theory can be applied. This special case is explored in detail allowing for verification of the theory, and highlights the importance of degenerate cases; the specific example of a square net is treated in detail. An additional illustration of the versatility of the method is the response to point forcing which provides a stringent test of the homogenized equations; an exact Green's function for the net is deduced and compared to the asymptotics.
Homogenization of global radiosonde humidity data
NASA Astrophysics Data System (ADS)
Blaschek, Michael; Haimberger, Leopold
2016-04-01
The global radiosonde network is an important source of upper-air measurements and is strongly connected to reanalysis efforts of the 20th century. However, measurements are strongly affected by changes in the observing system and require a homogenization before they can be considered useful in climate studies. In particular humidity measurements are known to show spurious trends and biases induced by many sources, e.g. reporting practices or freezing of the sensor. We propose to detect and correct these biases in an automated way, as has been done with temperature and winds. We detect breakpoints in dew point depression (DPD) time series by employing a standard normal homogeneity test (SNHT) on DPD-departures from ERA-Interim. In a next step, we calculate quantile departures between the latter and the earlier part near the breakpoints of the time series, going back in time. These departures adjust the earlier distribution of DPD to the latter distribution, called quantile matching, thus removing for example a non climatic shift. We employ this approach to the existing radiosonde network. In a first step to verify our approach we compare our results with ERA-Interim data and brightness temperatures of humidity-sensitive channels of microwave measuring radiometers (SSMIS) onboard DMSP F16. The results show that some of the biases can be detected and corrected in an automated way, however large biases that impact the distribution of DPD values originating from known reporting practices (e.g. 30 DPD on US stations) remain. These biases can be removed but not corrected. The comparison of brightness temperatures from satellite and radiosondes proofs to be difficult as large differences result from for example representative errors.
Transitory versus Persistent Effects of Connectivity in Environmentally Homogeneous Metacommunities
Limberger, Romana; Wickham, Stephen A.
2012-01-01
While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium
Homogeneity study of candidate reference material in fish matrix
NASA Astrophysics Data System (ADS)
Ulrich, J. C.; Sarkis, J. E. S.; Hortellani, M. A.
2015-01-01
A material is perfectly homogeneous with respect to a given characteristic, or composition, if there is no difference between the values obtained from one part to another. Homogeneity is usually evaluated using analysis of variance (ANOVA). However, the requirement that populations of data to be processed must have a normal distribution and equal variances greatly limits the use of this statistical tool. A more suitable test for assessing the homogeneity of RMs, known as "sufficient homogeneity", was proposed by Fearn and Thompson. In this work, we evaluate the performance of the two statistical treatments for assessing homogeneity of methylmercury (MeHg) in candidate reference material of fish tissue.
Effects of sample homogenization on solid phase sediment toxicity
Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.
1995-12-31
Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.
Power and Reliability: The Case of Homogeneous True Score Regression across Treatments.
ERIC Educational Resources Information Center
Fisicaro, Sebastiano A.; Lautenschlager, Gary J.
1992-01-01
An equation derived by W. A. Nicewander and J. M. Price relating statistical power to reliability of dependent variable measures when true score regression is homogeneous across treatment conditions is enhanced through overcoming the problem of directly estimating the squared linear correlation between true scores for X and Y. (SLD)
Stability of vitamin C in frozen raw fruit and vegetable homogenates
Technology Transfer Automated Retrieval System (TEKTRAN)
Retention of vitamin C in homogenized raw fruits and vegetables stored under laboratory conditions prior to analysis was investigated. Raw collard greens, clementines, and potatoes were chosen, to be representative of food matrices to be sampled in USDA’s National Food and Nutrient Analysis Program...
Contributions a L'etude de la Dynamique des Lasers a Modes Synchronises
NASA Astrophysics Data System (ADS)
Morin, Michel
Cette these examine theoriquement deux aspects de la synchronisation des modes d'un laser. D'une part, on etudie l'influence de la desyntonisation de la frequence de modulation sur la stabilite des impulsions produites par la synchronisation modale AM. On montre que la desyntonisation provoque une perte de convergence intrinseque du processus de synchronisation active independante de la presence de bruit dans la cavite. La plage de convergence est d'autant plus etroite que le nombre de modes sous la courbe de gain est eleve. En pratique, elle est considerablement reduite par le bruit present dans la cavite. La synchronisation interferentielle, realisee a l'aide d'une cavite couplee contenant un element non-lineaire, est aussi etudiee. On decrit les principes generaux de la compression resultant de l'interference de deux impulsions. On evalue les performances realisables en fonction du taux de compression et de modulation de phase de l'element non-lineaire. Une etude detaillee du laser a interferometre de Michelson non-lineaire et non dispersif est presentee.
Liu, Hai-feng; Yao, Ming-fa; Jin, Chao; Zhang, Peng; Li, Zhe-ming; Zheng, Zun-qing
2010-10-01
To study the combustion reaction kinetics of homogeneous charge compression ignition (HCCI) under different port injection strategies and intake temperature conditions, the tests were carried out on a modified single-cylinder optical engine using chemiluminescence spectroscopic analysis. The experimental conditions are keeping the fuel mass constant; fueling the n-heptane; controlling speed at 600 r x min(-1) and inlet pressure at 0.1 MPa; controlling inlet temperature at 95 degrees C and 125 degrees C, respectively. The results of chemiluminescence spectrum show that the chemiluminescence is quite faint during low temperature heat release (LTHR), and these bands spectrum originates from formaldehyde (CH2O) chemiluminescence. During the phase of later LTHR-negative temperature coefficient (NTC)-early high temperature heat release (HTHR), these bands spectrum also originates from formaldehyde (CH2O) chemiluminescence. The CO--O* continuum is strong during HTHR, and radicals such as OH, HCO, CH and CH2O appear superimposed on this CO--O* continuum. After the HTHR, the chemiluminescence intensity is quite faint. In comparison to the start of injection (SOI) of -30 degrees ATDC, the chemiluminescence intensity is higher under the SOI = -300 degrees ATDC condition due to the more intense emissions of CO--O* continuum. And more radicals of HCO and OH are formed, which also indicates a more intense combustion reaction. Similarly, more intense CO--O* continuum and more radicals of HCO and OH are emitted under higher intake temperature case. PMID:21137383
Turbulence generation in homogeneous dilute particle- laden flows
NASA Astrophysics Data System (ADS)
Chen, Jeng-Horng
Homogeneous turbulence generated by the motion of particles in dispersed multiphase flows was studied both theoretically and experimentally, motivated by applications to sprays, particle-laden jets, bubble plumes and rainstorms, among others. The experiments involved uniform fluxes of monodisperse spherical particles falling through a slow upflow of air. Particle fluxes and phase velocities were measured by sampling and phase-discriminating laser Doppler velocimetry (LDV), respectively. Measured particle velocities included mean and fluctuating streamwise and cross-stream velocities and probability density functions (PDF's). Measured continuous-phase velocities included mean and fluctuating streamwise and cross-stream velocities, PDF's and the higher moments of velocity fluctuations such as skewness and kurtosis, energy spectra of velocity fluctuations and integral length scales based on streamwise velocity fluctuations. Continuous-phase velocity measurements included conditional averages for particle wake disturbances and the turbulent inter-wake region surrounding these disturbances as well as overall flow properties. Present and earlier results in the literature provided particle Reynolds numbers of 38-990, particle volume fractions less than 0.01% and turbulence intensities (normalized by mean particle relative velocities) of 0.1-10.0%. Theory included characterization of particle wake disturbances as laminar-like turbulent wakes observed for intermediate particle Reynolds numbers in turbulent environments, characterization of the turbulent inter-wake region by analogy to grid-generated isotropic turbulence, and estimation of overall flow properties by conditional averaging of the properties of the wake disturbances and the turbulent inter-wake region. Present measurements showed that particle wake disturbances during turbulence generation were properly characterized by the properties of laminar-like turbulent wakes. The turbulent inter-wake region was
Etudes physiques des mélanges eau-cryoprotecteurs
NASA Astrophysics Data System (ADS)
Vassoille, R.; Perez, J.
The aim of the following review is to present the most important studies concerning the physical properties of water-solutes mixtures used in cryobiology. Cryobiology is a branch of biology which deals with the very low temperature behaviour of cells. This technique is developed today in several directions. The creation of banks of cells and perhaps in a short time of small organs, is the purpose of much research in this domain. Before freezing, living cells are generally put in a solution containing one or more solutes. The role of these solutes is to protect the cells against damage due to crystallization of water (cryoprotectors). The mechanisms of cryoprotection are not well known ; nevertheless the vitreous state formation during cooling is often invoked. So, it is possible to avoid crystallization damage such as mechanical strain (due to an increase of volume of about 10 %) and salt effects (due to osmotic pressure). The conditions in which the vitreous state is obtained, maintained during cooling, storage at low temperature and rewarming can be defined by physical studies presented in the following review. Le présent travail est essentiellement une revue bibliographique des principales études physiques qui ont été réalisées avec des solutions de composés habituellement employés en cryobiologie. La cryobiologie est une branche de la biologie qui s'intéresse au comportement des cellules à basse température. Cette discipline est actuellement en plein développement dans des domaines très divers. Son principal but est la création de banques de cellules de plus en plus complexes avec comme perspective la conservation des organes. Les cellules vivantes sont généralement placées avant congélation dans une solution contenant divers composés dont le rôle est de protéger les cellules contre les effets de la cristallisation de l'eau. L'action protectrice de ces cryoprotecteurs est encore mal connue; cependant, la formation d'un état vitreux lors du
Etude numerique des mecanismes d'autodiffusion dans les semiconducteurs
NASA Astrophysics Data System (ADS)
El-Mellouhi, Fedwa
The most promising and most natural physical process for the formation of elementary structures in nanotechnology such as quantum dots and nanocrystals remains self-assembly. Self-assembly is governed by the atomic diffusion which is the fundamental process of mass transport due to defects (vacancies, interstitials, impurities, etc.). This work exploits recent developments in ab-initio methods based on density functional theory in order to give a reliable description of the electronic structure and migration mechanisms of vacancy type defects in semiconductors. Four main achievements in this direction are covered by this thesis. First, frequent and rare events connected to the neutral Si vacancy in silicon are identified. The calculated migration barrier to the first neighbor agrees with the experimental results obtained by Watkins et al. [1]. Second, a detailed study focuses on the stability and the charge state of As and Ga vacancies in the binary semiconducting compound GaAs with respect to experimental preparation conditions (doping, stoichiometry). Next, activated events associated to Ga vacancies are studied together with the effect of charge states on the path and the migration barrier. Gallium vacancy can migrate by jumps to the second, first and fourth neighbors with an increasing barrier for more negatively charged vacancies. In addition, a new mechanism for migration to the second neighbor have been found for negatively charged vacancies. Finally, the debate about the stability of charged Ga vacancies in GaAs at elevated temperature is analyzed. Gibbs free energy of formation is calculated by adding entropic effects. The thermal dependence of the Fermi level and of the ionization levels lead to a reversal of the preferred charge state as the temperature increases. This single set of calculated energies is suitable to fit at the same time experimental concentration profiles from positron annihilation experiments and diffusion profiles obtained from
Simulation and modeling of homogeneous, compressed turbulence
NASA Astrophysics Data System (ADS)
Wu, C. T.; Ferziger, J. H.; Chapman, D. R.
1985-05-01
Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.
Nearsightedness of Finite Homogeneous Model Systems
NASA Astrophysics Data System (ADS)
Mitsuta, Yuki; Yamanaka, Shusuke; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi; Nakamura, Haruki
On the basis of linear response function (LRF) analysis, nearsightedness of finite systems is examined for nearly homogeneous molecular systems. We first treated with Hn (n = 2-100) to inspect the local or nonlocal responses of these systems, which are, in other words, the magnitudes of nearsightedness of the finite systems. Further, the LRFs of H100n+ (n = 0-98) have been examined in order to clarify whether the magnitude of nearsightedness depends either the size of systems or the number of electrons in systems. From our calculations, we conjectured that the number of electrons are essential for nearsightedness of electronic matter (NEM) of this type of systems. This conjecture has been confirmed from the fact that the LRFs of H100n+ (n = 0-98) are similar to those of N electrons (N = 2-100) in a square well potential, showing that attractive potentials of H100n+ (n = 0-98) do not change significantly the dependence of the magnitudes of NEM on the number of electrons.
Simulation and modeling of homogeneous, compressed turbulence
NASA Technical Reports Server (NTRS)
Wu, C. T.; Ferziger, J. H.; Chapman, D. R.
1985-01-01
Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.
Numerical study of homogeneous nanodroplet growth.
Quang, Tran Si Bui; Leong, Fong Yew; Mirsaidov, Utkur M
2015-01-15
We investigate the axisymmetric homogeneous growth of 10-100 nm water nanodroplets on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young-Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion. Our numerical results show that the initial droplet growth is dominated by monomer diffusion, and the steady late growth rate of droplet radius follows a power law of 1/3, which is unaffected by the substrate disjoining pressure. Instead, the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally. This work has further implications on the growth kinetics, transport and phase transition of liquids at the nanoscale. PMID:25454424
Redatuming Operators Analysis in Homogeneous Media
NASA Astrophysics Data System (ADS)
Oliveira, Fransisco de Souza; Figueiredo, Jose J. S. de; Freitas, Lucas
2015-04-01
A redatuming operation is used to simulate the acquisition of data in new levels, avoiding distortions produced by near-surface irregularities related to either geometric or material property heterogeneities. In this work, the application of the true-amplitude Kirchhoff redatuming (TAKR) operator on homogeneous media is compared with conventional Kirchhoff redatuming (KR) operator restricted to the zero-offset case. The TAKR and the KR operators are analytically and numerically compared in order to verify their impacts on the data at a new level. Analyses of amplitude and velocity sensitivity of the TAKR and KR were performed: one concerning the difference between the weight functions and the other related to the velocity variation. The comparisons between operators were performed using numerical examples. The feasibility of the KR and TAKR operators was demonstrated not only kinematically but also dynamically for their purposes. In other words, one preserves amplitude (KR), and the other corrects the amplitude (TAKR). In the end, we applied the operators to a GPR data set.
Numerical computation of homogeneous slope stability.
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927
Homogenization models for 2-D grid structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Cioranescu, D.; Rebnord, D. A.
1992-01-01
In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.
Foam Generation in Homogeneous Porous Media
Gauglitz, Phillip A.; Friedman, F.; Kam, S. I.; Rossen, W. R.
2002-10-01
In steady gas-liquid flow in homogeneous porous media with surfactant present, there is often observed a critical injection velocity or pressure gradient ?grad p min? at which ?weak? or ?coarse? foam is abruptly converted into ?strong foam,? with reduction of one to two orders of magnitude in total mobility: i.e., ?foam generation.? Earlier research on foam generation is extended here with extensive data for a variety of porous media, permeabilities, gases (N2 and C02), surfactants, and temperatures. For bead and sandpacks, ?grad p min? scales like (1/k), where k is permeability, over 2 1/2 orders of magnitude in k; for consolidated media the relation is more complex. For dense C02 foam, ?grad p min? exists but can be less than 1 psi/ft. If pressure drop, rather than flow rates, is fixed, one observes and unstable regime between stable ?strong? and ?coarse? foam regimes; in the unstable regime ?grad p? is nonuniform in space or variable in time.
Homogeneously dispersed, multimetal oxygen-evolving catalysts
Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; Garcia-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; et al
2016-03-24
Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computationalmore » studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.« less
Dynamic contact angle cycling homogenizes heterogeneous surfaces.
Belibel, R; Barbaud, C; Mora, L
2016-12-01
In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. PMID:27612817
Homogeneous assay technology based on upconverting phosphors.
Kuningas, Katri; Rantanen, Terhi; Ukonaho, Telle; Lövgren, Timo; Soukka, Tero
2005-11-15
Upconversion photoluminescence can eliminate problems associated with autofluorescence and scattered excitation light in homogeneous luminescence-based assays without need for temporal resolution. We have demonstrated a luminescence resonance energy-transfer-based assay utilizing inorganic upconverting (UPC) lanthanide phosphor as a donor and fluorescent protein as an acceptor. UPC phosphors are excited at near-infrared and they have narrow-banded anti-Stokes emission at visible wavelengths enabling measurement of the proximity-dependent sensitized emission with minimal background. The acceptor alone does not generate any direct emission at shorter wavelengths under near-infrared excitation. A competitive model assay for biotin was constructed using streptavidin-conjugated Er3+,Yb3+-doped UPC phosphor as a donor and biotinylated phycobiliprotein as an acceptor. UPC phosphor was excited at near-infrared (980 nm) and sensitized acceptor emission was measured at red wavelength (600 nm) by using a microtitration plate fluorometer equipped with an infrared laser diode and suitable excitation and emission filters. Lower limit of detection was in the subnanomolar concentration range. Compared to time-resolved fluorometry, the developed assay technology enabled simplified instrumentation. Excitation at near-infrared and emission at red wavelengths render the technology also suitable to analysis of strongly colored and fluorescent samples, which are often of concern in clinical immunoassays and in high-throughput screening. PMID:16285685
Inhomogeneous radiative forcing of homogeneous greenhouse gases
NASA Astrophysics Data System (ADS)
Huang, Yi; Tan, Xiaoxiao; Xia, Yan
2016-03-01
Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (-2.5-5.1 W m-2) being more than 3 times the magnitude of the global mean value (2.3 W m-2). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.
Fluorescent homogeneous immunosensors for detecting pathogenic bacteria.
Heyduk, Ewa; Heyduk, Tomasz
2010-01-15
We developed a straightforward antibody-based assay for rapid homogeneous detection of bacteria. Our sensors utilize antibody recognizing cell-surface epitopes of the target cell. Two samples of the antibody are prepared, each labeled via nanometer size flexible linkers with short complementary oligonucleotides that are modified with fluorochromes that could participate in fluorescence resonance energy transfer (FRET). The length of the complementary oligonucleotide sequences was designed such that very little annealing occurred in the absence of the target cells. In the presence of the target cells the two labeled antibodies bind to the surface of the cell resulting in a large local concentration of the complementary oligonucleotides that are attached to the antibody. This in turn drives the annealing of the complementary oligonucleotides which brings the fluorescence probes to close proximity producing large FRET signals proportional to the amount of target cells. Long flexible linkers used to attach the oligonucleotides to the antibody enable target-induced oligonucleotide annealing even if the density of surface antigens is only modest. We used Escherichia coli 0157:H7 and Salmonella typhimurium to demonstrate that this design produced sensors exhibiting rapid response time, high specificity, and sensitivity in detecting the target bacteria. PMID:19782039
Homogeneous cosmology with aggressively expanding civilizations
NASA Astrophysics Data System (ADS)
Olson, S. Jay
2015-11-01
In the context of a homogeneous Universe, we note that the appearance of aggressively expanding advanced life is geometrically similar to the process of nucleation and bubble growth in a first-order cosmological phase transition. We exploit this similarity to describe the dynamics of life saturating the Universe on a cosmic scale, adapting the phase transition model to incorporate probability distributions of expansion and resource consumption strategies. Through a series of numerical solutions spanning several orders of magnitude in the input assumption parameters, the resulting cosmological model is used to address basic questions related to the intergalactic spreading of life, dealing with issues such as timescales, observability, competition between strategies, and first-mover advantage. Finally, we examine physical effects on the Universe itself, such as reheating and the backreaction on the evolution of the scale factor, if such life is able to control and convert a significant fraction of the available pressureless matter into radiation. We conclude that the existence of life, if certain advanced technologies are practical, could have a significant influence on the future large-scale evolution of the Universe.
Homogeneity of Antibody Responses in Tuberculosis Patients
Samanich, K.; Belisle, J. T.; Laal, S.
2001-01-01
The goals of the present study were twofold: (i) to compare the repertoires of antigens in culture filtrates of in vitro-grown Mycobacterium tuberculosis that are recognized by antibodies from noncavitary and cavitary tuberculosis (TB) patients and (ii) to determine the extent of variation that exists between the antigen profiles recognized by individual TB patients. Lipoarabinomannan-free culture filtrate proteins of M. tuberculosis were fractionated by one-dimensional (1-D) and 2-D polyacrylamide gel electrophoresis, and the Western blots were probed with sera from non-human immunodeficiency virus (non-HIV)-infected cavitary and noncavitary TB patients and from HIV-infected, noncavitary TB patients. In contrast to earlier studies based on recombinant antigens of M. tuberculosis which suggested that antibody responses in TB patients were heterogeneous (K. Lyashchenko et al., 1998, Infect. Immun. 66:3936–3940, 1998), our studies with native culture filtrate proteins show that the antibody responses in TB patients show significant homogeneity in being directed against a well-defined subset of antigens. Thus, there is a well-defined subset of culture filtrate antigens that elicits antibodies during noncavitary and cavitary disease. In addition, another set of antigens is recognized primarily by cavitary TB patients. The mapping with individual patient sera presented here suggests that serodiagnostic tests based on the subset of antigens recognized during both noncavitary and cavitary TB will enhance the sensitivity of antibody detection in TB patients, especially in difficult-to-diagnose, smear-negative, noncavitary TB patients. PMID:11402004
BenAbdallah, Abdallah; Hammami, Mohamed Ali; Kallel, Jalel
2009-03-05
In this paper we present some sufficient conditions for the robust stability and stabilization of time invariant uncertain piecewise linear system using homogenous piecewise polynomial Lyapunov function. The proposed conditions are given in terms of linear matrix inequalities which can be numerically solved. An application of the obtained result is given. It consists in resolving the stabilization of piecewise uncertain linear control systems by using a state piecewise linear feedback.
Microscopic investigations of homogeneous nucleation in charged sphere suspensions.
Wette, Patrick; Schöpe, Hans Joachim; Palberg, Thomas
2005-11-01
We studied the homogeneous nucleation kinetics of an aqueous suspension of charged colloidal spheres under de-ionized conditions. Samples of equilibrium crystalline structure were shear molten and the metastable melt left to solidify after cessation of shear. At low particle number densities n, corresponding to low metastability of the melt, nucleation was monitored directly via video microscopy. We determined the nucleation rates gamma(t) by counting the number of newly appearing crystals in the observation volume per unit time. Using a suitable discrete adaptation of Avrami's [J. Chem. Phys. 7, 1003 (1939); ibid.8, 212 (1940); ibid.9, 177 (1941)] model for solidification via homogeneous nucleation and subsequent growth, we calculate the remaining free volume VF(t) to obtain the rate densities J(t) = gamma(t)/VF(t). We observe J(t) to rise steeply, display a plateau at a maximum rate density Jmax, and to decrease again. With increased n the plateau duration shrinks while Jmax increases. At low to moderate number densities fully solidified samples were analyzed by microscopy to obtain the grain-size distribution and the average crystallite size angle brackets(L). Under the assumption of stationarity, we obtained the nucleation rate density J(Avr), which increased strongly with increasing n. Interestingly, J(Avr) agrees quantitatively to Jmax and to J(Avr) as obtained previously from scattering data taken on the same sample at large n. Thus, by combination of different methods, reliable nucleation rate densities are now available over roughly one order of magnitude in n and eight orders of magnitude in J. PMID:16375564
Advances in the homogenization of monthly and daily climate surface data in Switzerland
NASA Astrophysics Data System (ADS)
Füllemann, C.; Begert, M.; Z'graggen, L.; Croci-Maspoli, M.
2009-04-01
Homogenization of surface climate data is essential for the accurate monitoring of climate variability, climate extremes and climate change. The intention of MeteoSwiss by providing long term series of surface climate data in Switzerland is to a) systematically preserve historical climate data in respect to national and international guidelines and b) to homogenize these data on monthly and daily time scales. The former aspect has been considered by the definition of the Swiss National Basic Climatological Network (Swiss NBCN). This network defines the most valuable climatological surface stations in Switzerland and provides a basis to ensure a long-term perspective of their operation. For the latter aspect well established monthly homogenization methods are applied to the Swiss surface climate data. In addition, a spline method is used to derive daily adjustment values from monthly adjustments for temperature and precipitation. In line with the COST Action "Advances in homogenization methods of climate series: an integrated approach (HOME)" which dedicates a main focus on the comparison and development of daily homogenization methods we present first results of the comparison of the spline method with a labour intensive semi-objective homogenization procedure using long-term temperature series. The semi-objective method is based upon physical dependences of the inhomogenities on radiation and wind conditions and is believed to produce the most accurate daily adjustments. In this presentation results will be presented of the comparison of homogenization techniques for daily mean and extreme values of the temperature during the period 1901 until 2003 for 6 Swiss surface stations.
Homogeneity of lithium distribution in cylinder-type Li-ion batteries.
Senyshyn, A; Mühlbauer, M J; Dolotko, O; Hofmann, M; Ehrenberg, H
2015-01-01
Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm(3) has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110
Homogeneity of lithium distribution in cylinder-type Li-ion batteries
NASA Astrophysics Data System (ADS)
Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.
2015-12-01
Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.
Homogeneity of lithium distribution in cylinder-type Li-ion batteries
Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.
2015-01-01
Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110
The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.
McClatchey, P Mason; Schafer, Michal; Hunter, Kendall S; Reusch, Jane E B
2016-07-01
Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases. PMID:27199117
Exploring an approximation for the homogeneous freezing temperature of water droplets
NASA Astrophysics Data System (ADS)
O, Kuan-Ting; Wood, Robert
2016-06-01
In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived from the Boltzmann distribution function and explored as an approximation for homogeneous freezing temperature of water droplets. Without including the information of the applied cooling rate γcooling and the number of observed droplets Ntotal_droplets in the calculation, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size V and water activity aw of aqueous drops observed in a wide range of experimental studies for droplet diameter > 10 µm and aw > 0.85, suggesting the effect of γcooling and Ntotal_droplets may be secondary compared to the effect of V and aw on homogeneous freezing temperatures in these size and water activity ranges under realistic atmospheric conditions. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may be partly explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that the simplicity of this approximation makes it potentially useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.
NORDHOM - a Nordic collaboration to homogenize long-term climate data
NASA Astrophysics Data System (ADS)
Engström, Erik; Carlund, Thomas; Laapas, Mikko; Aalto, Juha; Drebs, Achim; Lundstad, Elin; Motrøen Gjelte, Herdis; Vint, Kairi
2015-04-01
High-quality instrumental climate records are crucial for analysis of climate variability. Long-term climate series are however often affected by inhomogeneities (artificial shifts) due to changes in measurement conditions (relocations, instrumentation, change in environment, etc.). To deal with this problem homogenization procedures have been developed for detecting and adjusting inhomogeneities. The climate services at the Nordic NMHSs have a long profound tradition in cooperation on activities of common interest. One successful activity within this collaboration was establishing the North Atlantic Climatological Dataset (NACD) in the 1990s. The NACD data set (1890-) was later continued as the Nordic Climate Dataset (NkDS). Since the mid-1990s there have been little systematic homogenization efforts at the Nordic NMHSs. It was agreed at an expert meeting within the "Nordic Framework for Climate services (NFCS)" in 2012, to establish a NFCS-project NORDHOM: "Nordic collaboration on long-term homogeneous climate data records". The ongoing activities in NORDHOM are to establish common methods for homogeneity testing and adjustment for inhomogeneities, homogenize long Nordic temperature and precipitation series, and update the Nordic Climate Dataset. We are now summarizing what we have achieved during the first phase (2013-2014) of the project and have an outlook what will follow during the second phase (2015-2016). There will also be some examples from each participating country in the collaboration.
NASA Astrophysics Data System (ADS)
Fleischhauer, Robert; Božić, Marko; Kaliske, Michael
2016-07-01
The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
Simulation and Modeling of Homogeneous, Compressed Turbulence.
NASA Astrophysics Data System (ADS)
Wu, Chung-Teh
Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression has been simulated by numerically solving the Navier-Stokes equations. The numerical simulations were carried out on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second -order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one -dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. It was found that the ratio of the turbulence time scale to the mean-flow time scale is an important parameter in these flows. When this ratio is large, the flow is immediately affected by the mean strain in a manner similar to that predicted by rapid distortion theory. When this ratio is small, the flow retains the character of decaying isotropic turbulence initially; only after the strain has been applied for a long period does the flow accumulate a significant reflection of the effect of mean strain. In these flows, the Kolmogorov length scale decreases rapidly with increasing total strain, due to the density increase that accompanies compression. Results from the simulated flow fields were used to test one-point-closure, two-equation turbulence models. The two-equation models perform well only when the compression rate is small compared to the eddy turn-over rate. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.
Evaluation of a locally homogeneous model of spray evaporation
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.; Tamura, H.
1978-01-01
Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.
Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan; Mathai, Varghese
2011-09-01
In this paper, we quantize universal gauge groups such as SU(∞), as well as their homogeneous spaces, in the σ- C*-algebra setting. More precisely, we propose concise definitions of σ- C*-quantum groups and σ- C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute these groups for the quantum homogeneous spaces associated to the quantum version of the universal gauge group SU(∞).
Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.
Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis
2015-05-29
Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this. PMID:25889471
Feeding premature infants banked human milk homogenized by ultrasonic treatment.
Rayol, M R; Martinez, F E; Jorge, S M; Gonçalves, A L; Desai, I D
1993-12-01
Premature neonates fed ultrasonically homogenized human milk had better weight gain and triceps skin-fold thickness than did a control group given untreated human milk (p < 0.01) and also had lower fat loss during tube feeding (p < 0.01). Ultrasonic homogenization of human milk appears to minimize loss of fat and thus allows better growth of premature infants. PMID:8229535
Sensitivity of liquid clouds to homogenous freezing parameterizations
Herbert, Ross J; Murray, Benjamin J; Dobbie, Steven J; Koop, Thomas
2015-01-01
Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at −40°C. However, laboratory measurements show that there is a finite rate of nucleation at warmer temperatures. In this study we use a parcel model with detailed microphysics to show that cloud properties can be sensitive to homogeneous ice nucleation as warm as −30°C. Thus, homogeneous ice nucleation may be more important for cloud development, precipitation rates, and key cloud radiative parameters than is often assumed. Furthermore, we show that cloud development is particularly sensitive to the temperature dependence of the nucleation rate. In order to better constrain the parameterization of homogeneous ice nucleation laboratory measurements are needed at both high (>−35°C) and low (<−38°C) temperatures. Key Points Homogeneous freezing may be significant as warm as −30°C Homogeneous freezing should not be represented by a threshold approximation There is a need for an improved parameterization of homogeneous ice nucleation PMID:26074652
Bounded Correctors in Almost Periodic Homogenization
NASA Astrophysics Data System (ADS)
Armstrong, Scott; Gloria, Antoine; Kuusi, Tuomo
2016-05-01
We show that certain linear elliptic equations (and systems) in divergence form with almost periodic coefficients have bounded, almost periodic correctors. This is proved under a new condition we introduce which quantifies the almost periodic assumption and includes (but is not restricted to) the class of smooth, quasiperiodic coefficient fields which satisfy a Diophantine-type condition previously considered by uc(Kozlov) (Mat Sb (N.S), 107(149):199-217, 1978). The proof is based on a quantitative ergodic theorem for almost periodic functions combined with the new regularity theory recently introduced by uc(Armstrong) and uc(Shen) (Pure Appl Math, 2016) for equations with almost periodic coefficients. This yields control on spatial averages of the gradient of the corrector, which is converted into estimates on the size of the corrector itself via a multiscale Poincaré-type inequality.
Turbulent Diffusion in Non-Homogeneous Environments
NASA Astrophysics Data System (ADS)
Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.
2012-04-01
Many experimental studies have been devoted to the understanding of non-homogeneous turbulent dynamics. Activity in this area intensified when the basic Kolmogorov self-similar theory was extended to two-dimensional or quasi 2D turbulent flows such as those appearing in the environment, that seem to control mixing [1,2]. The statistical description and the dynamics of these geophysical flows depend strongly on the distribution of long lived organized (coherent) structures. These flows show a complex topology, but may be subdivided in terms of strongly elliptical domains (high vorticity regions), strong hyperbolic domains (deformation cells with high energy condensations) and the background turbulent field of moderate elliptic and hyperbolic characteristics. It is of fundamental importance to investigate the different influence of these topological diverse regions. Relevant geometrical information of different areas is also given by the maximum fractal dimension, which is related to the energy spectrum of the flow. Using all the available information it is possible to investigate the spatial variability of the horizontal eddy diffusivity K(x,y). This information would be very important when trying to model numerically the behaviour in time of the oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with the Wave Reynolds number as well as with the wind stress measured as the friction velocity from wind profiles measured at the coastline. Natural sea surface oily slicks of diverse origin (plankton, algae or natural emissions and seeps of oil) form complicated structures in the sea surface due to the effects of both multiscale turbulence and Langmuir circulation. It is then possible to use the topological and scaling analysis to discriminate the different physical sea surface processes. We can relate higher orden moments of the Lagrangian velocity to effective diffusivity in spite of the need to calibrate the different regions determining the
NASA Technical Reports Server (NTRS)
Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.
1986-01-01
The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.
NASA Astrophysics Data System (ADS)
Nakamura, Yasunori; Tam, Nguyen Ngoc; Ohata, Tomiso; Morita, Kiminori; Nakamachi, Eiji
2004-06-01
The crystallographic texture evolution induced by plastic deformation in the sheet metal forming process has a great influence on its formability. In the present study, a dynamic explicit finite element (FE) analysis code is newly developed by introducing a crystallographic homogenization method to estimate the polycrystalline sheet metal formability, such as the extreme thinning and "earing." This code can predict the plastic deformation induced texture evolution at the micro scale and the plastic anisotropy at the macro scale, simultaneously. This multi-scale analysis can couple the microscopic crystal plasticity inhomogeneous deformation with the macroscopic continuum deformation. In this homogenization process, the stress at the macro scale is defined by the volume average of those of the corresponding microscopic crystal aggregations in satisfying the equation of motion and compatibility condition in the micro scale "unit cell," where the periodicity of deformation is satisfied. This homogenization algorithm is implemented in the conventional dynamic explicit finite element code by employing the updated Lagrangian formulation and the rate type elastic/viscoplastic constitutive equation. At first, it has been confirmed through a texture evolution analyses in cases of typical deformation modes that Taylor's "constant strain homogenization algorithm" yields extreme concentration toward the preferred crystal orientations compared with our homogenization one. Second, we study the plastic anisotropy effects on "earing" in the hemispherical cup deep drawing process of pure ferrite phase sheet metal. By the comparison of analytical results with those of Taylor's assumption, conclusions are drawn that the present newly developed dynamic explicit crystallographic homogenization FEM shows more reasonable prediction of plastic deformation induced texture evolution and plastic anisotropy at the macro scale.
Multimode instabilities in a homogeneously broadened ring laser
Lugiato, L.A.; Narducci, L.M.; Eschenazi, E.V.; Bandy, D.K.; Abraham, N.B.
1985-09-01
This paper contains a description of the behavior of a multimode unidirectional ring laser with a homogeneously broadened active medium. Our formulation is based on the conventional Maxwell-Bloch (MB) equations, but is distinguished from other treatments by the inclusion of a finite mirror reflectivity and an arbitrary value of the gain parameter. We review the steady-state behavior of the system and analyze the longitudinal profile of the field and of the atomic variables. With an appropriate transformation of variables, we transform the boundary conditions of the ring cavity into standard periodicity type, even in the presence of a finite reflectivity, and derive an infinite hierarchy of coupled mode equations. We analyze exactly the linear stability of the system, and investigate the dependence of the instability domain on the reflectivity and gain parameters. A numerical study of the full MB equations for a parameter range of the type explored in the recent experiments by Hillman et al. (Phys. Rev. Lett. 52, 1605 (1984)) reveals similarities, but also considerable differences between the results of the theory and the main experimental signatures of their instability. However, the injection of numerical noise shows the presence of numerous coexisting basins of attraction which are likely to play a significant role in the dynamics of a noisy laser.
Microstructurally-based homogenization of electromagnetic properties of periodic media
NASA Astrophysics Data System (ADS)
Amirkhizi, Alireza V.; Nemat-Nasser, Sia
2008-01-01
A general method for homogenization of the electromagnetic properties of a heterogeneous periodic medium is developed, based on its microstructure. This method is inspired by micromechanics (Nemat-Nasser and Hori, 1999). Contrary to other conventional techniques, commonly used in electromagnetism to calculate the overall properties of composites, this microstructurally-based method does not require an explicit numerical solution of the Maxwell equations. We define the macroscopic field quantities as volume averages of the spatially variable fields, taken over a representative volume element (RVE), consisting of a unit cell of the periodic medium (Hill, 1963; Willis, 1981; Hashin, 1983; Nemat-Nasser, 1986). The boundary conditions are based on the Bloch representation of wave propagation in the heterogeneous media. Instead of explicitly solving the Maxwell equations, these equations are directly used in the averaging scheme. This distinguishes our method from others, where usually a known point-wise solution is used to obtain the average field quantities. The resulting constitutive relations therefore may be used to directly estimate the response of any heterogeneous periodic assembly of material constituents of given geometry and properties. To cite this article: A.V. Amirkhizi, S. Nemat-Nasser, C. R. Mecanique 336 (2008).
Homogenization techniques for the analysis of porous SMA
NASA Astrophysics Data System (ADS)
Sepe, V.; Auricchio, F.; Marfia, S.; Sacco, E.
2016-05-01
In this paper the mechanical response of porous Shape Memory Alloy (SMA) is modeled. The porous SMA is considered as a composite medium made of a dense SMA matrix with voids treated as inclusions. The overall response of this very special composite is deduced performing a micromechanical and homogenization analysis. In particular, the incremental Mori-Tanaka averaging scheme is provided; then, the Transformation Field Analysis procedure in its uniform and nonuniform approaches, UTFA and NUTFA respectively, are presented. In particular, the extension of the NUTFA technique proposed by Sepe et al. (Int J Solids Struct 50:725-742, 2013) is presented to investigate the response of porous SMA characterized by closed and open porosity. A detailed comparison between the outcomes provided by the Mori-Tanaka, the UTFA and the proposed NUTFA procedures for porous SMA is presented, through numerical examples for two- and three-dimensional problems. In particular, several values of porosity and different loading conditions, inducing pseudoelastic effect in the SMA matrix, are investigated. The predictions assessed by the Mori-Tanaka, the UTFA and the NUTFA techniques are compared with the results obtained by nonlinear finite element analyses. A comparison with experimental data available in literature is also presented.
Biotic homogenization can decrease landscape-scale forest multifunctionality.
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-03-29
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952