Science.gov

Sample records for homogeneous crystal nucleation

  1. Homogeneous crystal nucleation in binary metallic melts

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Spaepen, F.

    1983-01-01

    A method for calculating the homogeneous crystal nucleation frequency in binary metallic melts is developed. The free energy of crystallization is derived from regular solution models for the liquid and solid and is used, together with model-based estimates of the interfacial tension, to calculate the nucleation frequency from the classical theory. The method can account for the composition dependence of the maximum undercooling observed in a number of experiments on small droplet dispersions. It can also be used to calculate the driving force for crystal growth and to obtain more precise estimates of the homogeneous crystal nucleation frequency in glass-forming alloys. This method, although approximate, is simple to apply, and requires only knowledge of the phase diagram and a few readily available thermodynamic quantities as input data.

  2. Homogeneous Crystal Nucleation: To Fold or Not to Fold?

    NASA Astrophysics Data System (ADS)

    Crist, Buckley

    2007-03-01

    Recent simulations and related theories have addressed interesting aspects of homogeneous nucleation of polymer crystals in very dilute solutions; embryos and very small crystals are composed of folded chains. At the same time there has been renewed activity with experimental studies of homogeneous nucleation in molten polymers, either with dispersed droplets or with microphase-separated block copolymers. Compared to dilute solutions, melts offer enhanced possibilities for nucleation by fringed micelle structures with stems from different chains. Basal or ``end'' surface energy is estimated for unfolded and folded chain nuclei and employed with classical nucleation theory to distinguish between nucleation rates in the two cases. The effect of chain length on the nucleation barrier offers a way to test model predictions.

  3. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    SciTech Connect

    E, J. C.; Wang, L.; Luo, S. N.; Cai, Y.; Wu, H. A.

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{sup −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.

  4. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth.

    PubMed

    E, J C; Wang, L; Cai, Y; Wu, H A; Luo, S N

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling. PMID:25681932

  5. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    NASA Astrophysics Data System (ADS)

    E, J. C.; Wang, L.; Cai, Y.; Wu, H. A.; Luo, S. N.

    2015-02-01

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m-3s-1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.

  6. On the location of the maximum homogeneous crystal nucleation temperature

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.

    1986-01-01

    Detailed considerations are given to the location of the temperature of maximum homogeneous nucleation as predicted by classical nucleation theory. It is shown quite generally that this maximum temperature, T-asterisk, must occur above the Kauzmann temperature and that the T-asterisk is such that T-asterisk is greater than T(m)/3, where T(m) is the melting temperature. Also, it is demonstrated tha T-asterisk may be considered to be approximately dependent upon two parameters: gamma, the ratio of the difference in specific heat between the crystal and liquid divided by the entropy of fusion, and E, a reduced activation energy for viscous flow. The variation of T-asterisk with these parameters is described. The relationship of the relative location of T-asterisk to the glass transition temperature, is discussed too. This discussion is couched within the framework of the strong and fragile liquid notion introduced by Angell (1981) and coworkers. Finally, the question of the ultimate limits to the undercooling of liquid metals is considered and its relationhsip to computations of the maximum nucleation temperature in such systems.

  7. Heterogeneous nucleation or homogeneous nucleation?

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    2000-06-01

    The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.

  8. Fractional crystallization and homogeneous nucleation of confined PEG microdomains in PBS-PEG multiblock copolymers.

    PubMed

    Huang, Cai-Li; Jiao, Ling; Zeng, Jian-Bing; Zhang, Jing-Jing; Yang, Ke-Ke; Wang, Yu-Zhong

    2013-09-12

    Fractional crystallization, homogeneous nucleation of poly(ethylene glycol) (PEG) segment, and self-nucleation behavior of PEG segment within miscible double crystalline poly(butylene succinate)-poly(ethylene glycol) (PBSEG) multiblock copolymers with different composition and segment chain length were studied by differential scanning calorimetry (DSC). Surface morphology of PBSEG10K with different PEG content was investigated by atomic force microscope (AFM). Different from di- or triblock copolymers, the microstructure and confinement of PEG dispersed phase in PBS matrix phase highly depends on chain length and sequence as well as segment content. The transition point of the PEG segment content from heterogeneous to homogeneous nucleation mechanism decreased from 50 to 39 wt % with PEG segment chain length increasing from 1000 to 2000 g/mol. When PEG segment chain length increased further to 6000 and 10000 g/mol, homogeneous nucleation phenomenon took place at much lower PEG content and fractional crystallization was observed at 29 and 24 wt %, respectively. Homogeneous nucleation mechanism of PBSEG(1K-36), PBSEG(2K-26), PBSEG(6K-19), and PBSEG(10K-12) was evidenced by the large supercoolings needed for crystallization, as well as first-order crystallization kinetics obtained. Self-nucleation behaviors of PEG segment still rely on the composition of PBSEGs. In the case of heterogeneous nucleation crystallization, self-nucleation behaviors of PEG segment showed standard self-nucleation behavior with classical three self-nucleation domains. When the crystallizable chains were confined into isolated microdomains, however, self-nucleation domain (domain II) disappeared. The absence of III(A) was observed in PBSEG(2K-39), while PBSEG(6K-29) had both III(A) and III(SA). Furthermore, AFM morphology studies still indicated the confined degree of PEG segment by previous PBS crystals was profoundly influenced by segment fraction. The confinement of the PEG segment by

  9. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory. PMID:27117814

  10. Imaging the Homogeneous Nucleation During the Melting of Superheated Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Ziren; Wang, Feng; Peng, Yi; Zheng, Zhongyu; Han, Yilong

    2012-10-01

    The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities.

  11. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    NASA Astrophysics Data System (ADS)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2015-09-01

    The homogeneous nucleation of crystals of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 1010 cm-3 s-1 was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  12. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt.

    PubMed

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim(+)][Cl(-)] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10(10) cm(-3) s(-1) was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores. PMID:26429023

  13. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt

    SciTech Connect

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2015-09-28

    The homogeneous nucleation of crystals of the ionic liquid [dmim{sup +}][Cl{sup −}] from its supercooled liquid phase in the bulk (P = 1 bar, T = 340 K, representing a supercooling of 58 K) was studied using molecular simulations. The string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] was used in combination with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589–2594 (2009)] and order parameters for molecular crystals [E. E. Santiso and B. L. Trout, J. Chem. Phys. 134, 064109 (2011)] to sketch a minimum free energy path connecting the supercooled liquid and the monoclinic crystal phases, and to determine the free energy and the rates involved in the homogeneous nucleation process. The physical significance of the configurations found along this minimum free energy path is discussed with the help of calculations based on classical nucleation theory and with additional simulation results obtained for a larger system. Our results indicate that, at a supercooling of 58 K, the liquid has to overcome a free energy barrier of the order of 60 kcal/mol and to form a critical nucleus with an average size of about 3.6 nm, before it reaches the thermodynamically stable crystal phase. A simulated homogeneous nucleation rate of 5.0 × 10{sup 10} cm{sup −3} s{sup −1} was obtained for our system, which is in reasonable agreement with experimental and simulation rates for homogeneous nucleation of ice at similar degrees of supercooling. This study represents our first step in a series of studies aimed at understanding the nucleation and growth of crystals of organic salts near surfaces and inside nanopores.

  14. Nonstationary homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1974-01-01

    The theory of homogeneous condensation is reviewed and equations describing this process are presented. Numerical computer solutions to transient problems in nucleation (relaxation to steady state) are presented and compared to a prior computation.

  15. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Jester, Shai; Qi, Tingting; Reed, Evan

    Understanding the kinetics of shock-compressed SiO2 is of great importance for mitigating optical damage for high-intensity lasers and for understanding meteoroid impacts. Experimental work has placed some thermodynamic bounds on the formation of high-pressure phases of this material, but the formation kinetics and underlying microscopic mechanisms are yet to be elucidated. Here, by employing multiscale molecular dynamics studies of shock-compressed fused silica and quartz, we find that silica transforms into a poor glass former that subsequently exhibits ultrafast crystallization within a few nanoseconds. We also find that, as a result of the formation of such an intermediate disordered phase, the transition between silica polymorphs obeys a homogeneous reconstructive nucleation and grain growth model. Moreover, we construct a quantitative model of nucleation and grain growth, and compare its predictions with stishovite grain sizes observed in laser-induced damage and meteoroid impact events.

  16. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Jester, Shai B.; Qi, Tingting; Reed, Evan J.

    2016-01-01

    Understanding the kinetics of shock-compressed SiO2 is of great importance for mitigating optical damage for high-intensity lasers and for understanding meteoroid impacts. Experimental work has placed some thermodynamic bounds on the formation of high-pressure phases of this material, but the formation kinetics and underlying microscopic mechanisms are yet to be elucidated. Here, by employing multiscale molecular dynamics studies of shock-compressed fused silica and quartz, we find that silica transforms into a poor glass former that subsequently exhibits ultrafast crystallization within a few nanoseconds. We also find that, as a result of the formation of such an intermediate disordered phase, the transition between silica polymorphs obeys a homogeneous reconstructive nucleation and grain growth model. Moreover, we construct a quantitative model of nucleation and grain growth, and compare its predictions with stishovite grain sizes observed in laser-induced damage and meteoroid impact events.

  17. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer.

    PubMed

    Yamamoto, Takashi

    2008-11-14

    Molecular mechanisms of crystal growth and homogeneous nucleation from the melt of polyethylene-like linear polymer are investigated by molecular dynamics simulations. The present paper is aimed at extending our previous work with respect to the system size and the boundary condition, thereby enabling detailed studies on the structures of sufficiently large lamellae and fully equilibrated melt. Lamellae of uniform thickness but with marked tapered edges are found to grow at constant velocity from the substrate. Three-dimensional shape of the growing lamellae exhibits peculiar undulation at the growth front, the origin of which is suggested to be the inhomogeneous thickness distribution within the lamellae. Trajectories of chains crystallizing onto the growth front reveal an unexpected pathway for chain folding, where a partially attached chain stem forms a new fold by plunging its head back into a neighboring stem position through slithering snake motions of the chain. Detailed statistics of folds and cilia show that the folds are rather neat and mostly make re-entries into the nearest or the second or third nearest neighboring stem positions, whereas the cilia are generally short but with a small number of longer cilia forming thick amorphous layers. Structure of supercooled melt investigated versus temperature reveals that, at moderate degree of supercooling, the overall chain conformation remains Gaussian random coil but the persistent length of chains increases monotonically with increasing supercooling. Exceptions are at the largest supercooling where homogeneous nucleation takes place; usual melt structure becomes rapidly unstable and emerges many crystallites of random orientations. During early 10-20 ns after the quench, density of melt, radius of gyration of chains, and fraction of kinked bonds show marked alterations. These structural changes are highly cooperative and are considered simply due to the emergence of many embryonic crystals in the melt

  18. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  19. Interplay between the Relaxation of the Glass of Random l/d-Lactide Copolymers and Homogeneous Crystal Nucleation: Evidence for Segregation of Chain Defects.

    PubMed

    Androsch, René; Schick, Christoph

    2016-05-19

    Random l-isomer rich copolymers of poly(lactic acid) containing up to 4% d-isomer co-units have been cooled from the molten state to obtain glasses free of crystals and homogeneous crystal nuclei. The kinetics of enthalpy relaxation and the formation of homogeneous crystal nuclei have then been analyzed using fast scanning chip calorimetry. It has been found that the relaxation of the glass toward the structure/enthalpy of the supercooled liquid state is independent of the presence of d-isomer co-units in the chain. Formation of homogeneous crystal nuclei in the glassy state requires the completion of the relaxation of the glass. However, nucleation is increasingly delayed in the random copolymers with increasing d-isomer chain defect concentration. The data show that the slower formation of homogeneous crystal nuclei in random l/d-lactide copolymers, compared to the homopolymer, is not caused by different chain-segment mobility in the glassy state but by the segregation of chain defects in this early stage of the crystallization process. PMID:27111149

  20. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  1. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  2. Homogeneous freezing nucleation of stratospheric solution droplets

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    The classical theory of homogeneous nucleation was used to calculate the freezing rate of sulfuric acid solution aerosols under stratospheric conditions. The freezing of stratospheric aerosols would be important for the nucleation of nitric acid trihydrate particles in the Arctic and Antarctic stratospheres. In addition, the rate of heterogeneous chemical reactions on stratospheric aerosols may be very sensitive to their state. The calculations indicate that homogeneous freezing nucleation of pure water ice in the stratospheric solution droplets would occur at temperatures below about 192 K. However, the physical properties of H2SO4 solution at such low temperatures are not well known, and it is possible that sulfuric acid aerosols will freeze out at temperatures ranging from about 180 to 195 K. It is also shown that the temperature at which the aerosols freeze is nearly independent of their size.

  3. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  4. Metadynamics studies of crystal nucleation

    PubMed Central

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  5. [Effect of nucleation modes on the induced crystallization process for copper contained wastewater treatment].

    PubMed

    Xiong, Ya; Yan, Zhong; Zhang, Guo-Chen; Zheng, Ming-Xia; Wang, Kai-Jun

    2011-10-01

    The effect of nucleation modes on the induced crystallization process for copper contained wastewater treatment was studied. Tests were undertaken to observe the difference of copper removal efficiency and the crystal growth with homogeneous and heterogeneous nucleation. When the influent copper concentration was 50 mg x L(-1), copper removal efficiency could achieve 98.0% with the heterogeneous and 26.3% with homogeneous nucleation. And the SEM-EDS showed that the growth of crystals with heterogeneous nucleation was better and the purity of the crystals was higher than that with homogeneous nucleation. It is obvious that the homogeneous nucleation was an unfavorable condition on the induced crystallization process. Then the research devoted to discuss the process of induced crystallization with the two different nucleation mode and analysis the influencing mechanism of the homogeneous nucleation on the induced crystallization. PMID:22279909

  6. Microscopic investigations of homogeneous nucleation in charged sphere suspensions.

    PubMed

    Wette, Patrick; Schöpe, Hans Joachim; Palberg, Thomas

    2005-11-01

    We studied the homogeneous nucleation kinetics of an aqueous suspension of charged colloidal spheres under de-ionized conditions. Samples of equilibrium crystalline structure were shear molten and the metastable melt left to solidify after cessation of shear. At low particle number densities n, corresponding to low metastability of the melt, nucleation was monitored directly via video microscopy. We determined the nucleation rates gamma(t) by counting the number of newly appearing crystals in the observation volume per unit time. Using a suitable discrete adaptation of Avrami's [J. Chem. Phys. 7, 1003 (1939); ibid.8, 212 (1940); ibid.9, 177 (1941)] model for solidification via homogeneous nucleation and subsequent growth, we calculate the remaining free volume VF(t) to obtain the rate densities J(t) = gamma(t)/VF(t). We observe J(t) to rise steeply, display a plateau at a maximum rate density Jmax, and to decrease again. With increased n the plateau duration shrinks while Jmax increases. At low to moderate number densities fully solidified samples were analyzed by microscopy to obtain the grain-size distribution and the average crystallite size angle brackets(L). Under the assumption of stationarity, we obtained the nucleation rate density J(Avr), which increased strongly with increasing n. Interestingly, J(Avr) agrees quantitatively to Jmax and to J(Avr) as obtained previously from scattering data taken on the same sample at large n. Thus, by combination of different methods, reliable nucleation rate densities are now available over roughly one order of magnitude in n and eight orders of magnitude in J. PMID:16375564

  7. Crystal nucleation in Pd-Si alloys. [in containerless environment

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Turnbull, D.

    1982-01-01

    A study of the crystal phase nucleation in undercooled droplets of Pd-Si alloys with composition near the Pd(84.5)Si(15.5) eutectic composition is reported. Molten droplets are released at the top of a drop tube and solidify (to either a crystalline or glassy state) during descent. This provides a containerless (and nearly gravity free) environment so that nucleation due to container walls or vibrations is eliminated. It is found that crystallization, due to homogeneous nucleation, is bypassed in droplets of 1 mm diameter when cooled at 760 K/sec. From this an upper limit of the homogeneous nucleation rate is estimated. Results are compared with a previously published study of nucleation in 0.06 mm to 0.33 mm diameter droplets, which indicated that nucleation results from heterogeneous surface nucleation and that the number of these nuclei is dependent on the atmosphere in the drop tube.

  8. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.

    2016-06-01

    Ice nucleation is a critical process for the ice crystal formation in cirrus clouds. The relative contribution of homogeneous nucleation versus heterogeneous nucleation to cirrus formation differs between measurements and predictions from general circulation models. Here we perform large-ensemble simulations of the ice nucleation process using a cloud parcel model driven by observed vertical motions and find that homogeneous nucleation occurs rather infrequently, in agreement with recent measurement findings. When the effect of observed vertical velocity fluctuations on ice nucleation is considered in the Community Atmosphere Model version 5, the relative contribution of homogeneous nucleation to cirrus cloud occurrences decreases to only a few percent. However, homogeneous nucleation still has strong impacts on the cloud radiative forcing. Hence, the importance of homogeneous nucleation for cirrus cloud formation should not be dismissed on the global scale.

  9. Crystallization of Nucleator Nanofibrils in Polypropylene Melt

    NASA Astrophysics Data System (ADS)

    Lipp, J.; Cohen, Y.; Khalfin, R. L.; Shuster, M.; Terry, A. E.

    2007-03-01

    Self-associating molecules act as nucleating agents in polypropylene (PP) in order to increase the crystallization rate and decrease the crystallite size, by forming a fine network of nanofibrils within the polymer melt. The thermodynamic and kinetic basis for formation of this structure is not clear. Current models usually invoke a spinodal decomposition mechanism, as temperature is lowered into an immiscibility gap. This presentation deals with 1,3:2,4-Di(3,4-dimethylbenzylidene)sorbitol [dMdBS] in PP. The kinetics of structure formation was evaluated using small angle x-ray scattering, including synchrotron measurements. The results indicate a crystallization process by means of a nucleation and growth mechanism, which is controlled by the rate of homogeneous nucleation. The thermodynamic temperature of this process, determined for two different dMdBS concentrations from the temperature dependence of the crystallization half-time, agrees with that obtained by group-contribution calculation of the solubility parameters. dMdBS nanofibril formation has a remarkable effect on PP crystallization in melt-spun fibers. Just 0.4% additive at a moderate spin-draw ratio yields a crystalline morphology comprised of parallel chain-folded lamellae, with the lamellar normal highly aligned along the fiber axis.

  10. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate. PMID:27410458

  11. Homogeneous nucleation rate measurements in supersaturated water vapor.

    PubMed

    Brus, David; Zdímal, Vladimír; Smolík, Jirí

    2008-11-01

    The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data. PMID:19045352

  12. Sigmoid kinetics of protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Nanev, Christo N.; Tonchev, Vesselin D.

    2015-10-01

    A non-linear differential equation expressing the new phase nucleation rate in the different steps of the process (non-stationary and stationary nucleation and in the plateau region) is derived from basic principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function describes both nucleation scenarios: the one according to the classical theory, and the other according to the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation kinetics law.

  13. Nucleation-trap crystallizer for growth of crystals from solutions

    NASA Astrophysics Data System (ADS)

    Karnal, A. K.; Saxena, A.; Ganesamoorthy, S.; Bhaumik, Indranil; Wadhawan, V. K.; Bhat, H. L.; Gupta, P. K.

    2006-12-01

    Stability of the solution against spurious nucleation plays a dominant role in the growth of crystals at high growth rates requiring high levels of supersaturation. If any spurious nucleation does occur during a growth run, it becomes practically impossible to grow a very large crystal. A novel nucleation-trap crystallizer has been developed and used for the growth of crystals from aqueous solution so as to trap any unwanted nuclei and the particles that appear and settle at the bottom of the crystallizer during the growth process. In this crystallizer, any particles and nuclei nucleating during the growth are forced into the nucleation trap (or well) and subsequently by manipulating the temperature of the well; the growth of the nuclei is arrested. DKDP and ammonium acid phthalate crystals were grown in the developed system. X-ray rocking curve measurements on DKDP and ammonium acid phthalate crystals yielded FWHM of 89.1 and 29.71 arcsec, respectively.

  14. Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.

  15. On the homogenous nucleation and propagation of dislocations under shock compression

    NASA Astrophysics Data System (ADS)

    Zbib, Hussein

    2013-06-01

    In strong shock regimes, homogenous nucleation of dislocation loops is believed to be the dominant mechanism of plastic deformation. We compare threshold stress for homogenous nucleation calculated by continuum elasticity and standards nucleation theory with multiscale dislocation dynamics plasticity (MDDP) predictions for copper single crystals. Several MDDP homogenous nucleation simulations are then carried out to investigate the state of stress and strain behind the wave front. The results show that the stress filed exhibits an elastic overshoot followed by rapid relaxation such that the1D state of strain is transformed into a 3D state of strain due to plastic flow. Based on MDDP results, we develop models for dislocation density evolution, saturated dislocation density, and stress relaxation time at different pressures. Moreover, an extension of high strain rate Orowan equation that accounts for homogenous nucleation is derived. The dependence of strain rate on the peak pressure shows good agreement with Swegle-Grady scaling law. and Mutasem A. Shehadeh, American University of Beirut.

  16. Homogeneous nucleation rate measurements in supersaturated water vapor II.

    PubMed

    Brus, David; Zdímal, Vladimír; Uchtmann, Hermann

    2009-08-21

    The homogeneous nucleation of water was studied experimentally in this work using a thermal diffusion cloud chamber; droplets were counted by the photomultiplier method and helium was used as a carrier gas. The nucleation rates range from 3x10(-2) to 3x10(1) cm(-3) s(-1) and six isotherms from 295 to 320 K with step of 5 K are measured. The experimental setup and obtained data are mutually compared to our previous publication [Brus et al., J. Chem. Phys. 129, 174501 (2008)], where the droplets were counted using digital photography and image processing. The molecular content of the critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of the nucleation rate of water on the saturation ratio were compared with previously published data of others, several theoretical predictions, and the former nucleation onset data. The aim of the present investigation was to show for the first time that nucleation results can be quantitatively reproduced with two different experimental setups operated in different ways. PMID:19708751

  17. Homogeneous Nucleation Rate for Highly Supercooled Cirrus Cloud Droplets.

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth; Dodd, Gregory C.

    1988-04-01

    A mixed-phase hydrometer growth model has been applied to determining the nucleation mode and rate responsible for the glaciation of a highly supercooled liquid cloud studied jointly by ground-based polarization lidar and aircraft in situ probes. The cloud droplets were detected at the base of an orographically induced cirrus cloud at temperatures between 34.3° and 37.3°C. The vertical distribution above cloud base of two independent data quantities, the aircraft-measured water and ice particle concentrations and the lidar linear depolarization ratio, have been compared to model predictions for both the homogeneous and heterogeneous drop-freezing. modes. It is concluded that, although activated ice nuclei may have contributed to the glaciation of the cloud, homogeneous nucleation was the dominant mode. Accordingly, a homogeneous nucleation rate 106 times greater than that predicted by classical theory, but 103 times less than laboratory measurements would suggest is found to be appropriate at the measured cloud temperatures.

  18. A compact setup to study homogeneous nucleation and condensation.

    PubMed

    Karlsson, Mattias; Alxneit, Ivo; Rütten, Frederik; Wuillemin, Daniel; Tschudi, Hans Rudolf

    2007-03-01

    An experiment is presented to study homogeneous nucleation and the subsequent droplet growth at high temperatures and high pressures in a compact setup that does not use moving parts. Nucleation and condensation are induced in an adiabatic, stationary expansion of the vapor and an inert carrier gas through a Laval nozzle. The adiabatic expansion is driven against atmospheric pressure by pressurized inert gas its mass flow carefully controlled. This allows us to avoid large pumps or vacuum storage tanks. Because we eventually want to study the homogeneous nucleation and condensation of zinc, the use of carefully chosen materials is required that can withstand pressures of up to 10(6) Pa resulting from mass flow rates of up to 600 l(N) min(-1) and temperatures up to 1200 K in the presence of highly corrosive zinc vapor. To observe the formation of droplets a laser beam propagates along the axis of the nozzle and the light scattered by the droplets is detected perpendicularly to the nozzle axis. An ICCD camera allows to record the scattered light through fused silica windows in the diverging part of the nozzle spatially resolved and to detect nucleation and condensation coherently in a single exposure. For the data analysis, a model is needed to describe the isentropic core part of the flow along the nozzle axis. The model must incorporate the laws of fluid dynamics, the nucleation and condensation process, and has to predict the size distribution of the particles created (PSD) at every position along the nozzle axis. Assuming Rayleigh scattering, the intensity of the scattered light can then be calculated from the second moment of the PSD. PMID:17411197

  19. Homogeneous ice nucleation at moderate supercooling from molecular simulation.

    PubMed

    Sanz, E; Vega, C; Espinosa, J R; Caballero-Bernal, R; Abascal, J L F; Valeriani, C

    2013-10-01

    Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model's melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice-water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous. PMID:24010583

  20. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  1. Condensation of water vapor in rarefaction waves. I - Homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.

    1976-01-01

    A detailed theoretical investigation has been made of the condensation of water vapor/carrier gas mixtures in the nonstationary rarefaction wave generated in a shock tube. It is assumed that condensation takes place by homogeneous nucleation. The equations of motion together with the nucleation rate and the droplet growth equations were solved numerically by the method of characteristics and Lax's method of implicit artificial viscosity. It is found that, for the case considered, the condensation wave formed by the collapse of the metastable nonequilibrium state is followed by a shock wave generated by the intersection of characteristics of the same family. The expansion is practically isentropic up to the onset of condensation. The condensation front accelerates in the x,t plane. The results of the computations for a chosen case of water vapor/nitrogen mixture are presented by plotting variations of pressure, nucleation rate, number density of critical clusters, and condensate mass-fraction along three particle paths. Some consideration is given to homogeneous condensation experiments conducted in a shock tube. Although a direct comparison of the present theoretical work and these experiments is not possible, several worthwhile interpretative features have resulted nevertheless.

  2. Activated instability of homogeneous droplet nucleation and growth.

    PubMed

    Uline, Mark J; Corti, David S

    2008-12-21

    For the pure-component supercooled Lennard-Jones vapor, the free energy of forming a droplet with a given particle number and volume is calculated using density-functional theory. In contrast to what was noted in previous studies, the free energy surface beyond the pseudosaddle point no longer exhibits a valley but rather channels the nuclei toward a locus of instabilities, initiating an unstable growth phase. Similar to a previous study of bubble formation in superheated liquids [M. J. Uline and D. S. Corti, Phys. Rev. Lett. 99, 076102 (2007)], a new picture of homogeneous droplet nucleation and growth emerges. PMID:19102538

  3. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

    PubMed Central

    2015-01-01

    We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103–104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water’s diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106–107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed “fragile-to-strong” transition anomaly in water. PMID:26207172

  4. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  5. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2014-02-01

    isotherms of MCM-41 show that pores with Dp = 3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHi > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are filled with water. Given the pore structure of clay minerals, PCF should be highly efficient for T < 235 K and may occur at T > 235 K in particles that exhibit active sites for immersion freezing within pores. Most ice nucleation studies on clay minerals and mineral dusts indeed show a strong increase in ice nucleation efficiency when temperature is decreased below 235 K in accordance with PCF and are not explicable by the classical view of deposition nucleation. PCF is probably also the prevailing ice nucleation mechanism below water saturation for glassy, soot, and volcanic ash aerosols. No case could be identified that gives clear evidence of ice nucleation by water vapor deposition onto a solid surface.

  6. Molecular Dynamics Simulations of Homogeneous Crystallization in Polymer Melt

    NASA Astrophysics Data System (ADS)

    Kong, Bin

    2015-03-01

    Molecular mechanisms of homogeneous nucleation and crystal growth from the melt of polyethylene-like polymer were investigated by molecular dynamics simulations. The crystallinity was determined by using the site order parameter method (SOP), which described local order degree around an atom. Snapshots of the simulations showed evolution of the nucleation and the crystal growth through SOP images clearly. The isothermal crystallization kinetics was determined at different temperatures. The rate of crystallization, Kc, and the Avrami exponents, n, were determined as a function of temperature. The forming of nucleis was traced to reveal that the nucleis were formed with more ordered cores and less ordered shells. A detailed statistical analysis of the MD snapshots and trajectories suggested conformations of the polymer chains changed smoothly from random coil to chain folded lamella in the crystallization processes.

  7. Homogeneous Dislocation Nucleation - role of geometrical parameters and interatomic potentials

    NASA Astrophysics Data System (ADS)

    Garg, Akanksha; Hasan, Asad; Maloney, Craig

    2014-03-01

    We perform atomistic simulations of dislocation nucleation in defect free crystals in 2D and 3D during indentation with circular (2D) or spherical (3D) indenters of radius R. We study realistic interatomic potentials such as embedded atom method (EAM) potentials for Al in addition to simple pair-wise interactions such as linear springs. The dislocation embryo is localized along a line (or plane in 3D) of atoms with a lateral extent, ξ, at some depth, D, below the surface. For all potentials, in 2D, the scaled critical - load, Fc / R , and contact length, Cc / R , decrease to R independent values in the limit of large R. However, despite the R independence of Fc / R and Cc / R , ξ / R and D / R display non-trivial scaling with R. Although both the interaction potential and the orientation of lattice affect the prefactors in the scaling relations (e.g. crystal with springs is much harder than EAM Aluminum), all the scaling laws are robust. Furthermore, we show that, despite the excellent prediction for the relation between F and C, Hertzian contact theory fails to correctly predict the strain underneath the indenter. This observation gives us hope that local nucleation criteria based on appropriate local strain may capture the nontrivial scaling laws. NSF-CMMI-1100245.

  8. Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Dinh, T.; Podglajen, A.; Hertzog, A.; Legras, B.; Plougonven, R.

    2016-01-01

    The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INCs.

  9. Nozzle-Free Liquid Microjetting via Homogeneous Bubble Nucleation

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Baac, Hyoung Won; Ok, Jong G.; Youn, Hong Seok; Guo, L. Jay

    2015-04-01

    We propose and demonstrate a physical mechanism for producing liquid microjets by taking an optoacoustic approach that can convert light to sound through a carbon-nanotube-coated lens, where light from a pulsed laser is converted to high momentum sound wave. The carbon-nanotube lens can focus high-amplitude sound waves to a microspot of <1 00 μ m near the air-water interface from the water side, leading to microbubbles in water and subsequent microjets into the air. Laser-flash shadowgraphy visualizes two consecutive jets closely correlated with bubble dynamics. Because of the acoustic scattering from the interface, negative pressure amplitudes are significantly increased up to 80 MPa, even allowing homogeneous bubble nucleation. As a demonstration, this nozzle-free approach is applied to inject colored liquid into a tissue-mimicking gel as well as print a material on a glass substrate.

  10. Improved Success of Sparse Matrix Protein Crystallization Screening with Heterogeneous Nucleating Agents

    PubMed Central

    Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan

    2007-01-01

    Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854

  11. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  12. In situ FT-IR study on the homogeneous nucleation of nanoparticles of titanium oxides from highly supersaturated vapor

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shinnosuke; Kimura, Yuki; Yamazaki, Tomoya

    2016-09-01

    The formation of nanoparticles of titanium oxides by homogeneous nucleation from highly supersaturated vapors was investigated by in situ Fourier transform IR spectroscopy and by observation of the resulting nanoparticles by transmission electron microscopy (TEM). Titanium metal was thermally evaporated in a specially designed chamber under a gaseous atmosphere of oxygen and argon. Nanoparticles nucleated and subsequently grew as they flew freely through the oxidizing gas atmosphere. Nascent nanoparticles of titanium oxides showed a broad IR absorption band at 10-20 μm. Subsequently, the cooled nanoparticles showed a sharp crystalline anatase feature at 12.8 μm. TEM observations showed the formation of spherical anatase nanoparticles. The IR spectral evolution showed that the titanium oxides nucleated as metastable liquid droplets, and that crystallization proceeded through secondary nucleation from the supercooled liquid droplets. This suggests that history of the titanium oxide nanoparticles, such as the temperature and oxidation that they experience after nucleation, determines their polymorphic form.

  13. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities

    NASA Astrophysics Data System (ADS)

    Marcolli, C.

    2013-06-01

    Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Supposedly, deposition nucleation is the only pathway which does not involve liquid water but occurs by direct water vapor deposition on a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact homogeneous or immersion nucleation occurring in pores and cavities that may form between aggregated primary particles and fill with water at relative humidity RHw < 100% because of the inverse Kelvin effect. Evidence for this hypothesis of pore condensation and freezing (PCF) originates from a number of only loosely connected scientific areas. The prime example for PCF is ice nucleation in clay minerals and mineral dusts, for which the data base is best. Studies on freezing in confinement carried out on mesoporous silica materials such as SBA-15, SBA-16, MCM-41, zeolites and KIT have shown that homogeneous ice nucleation occurs abruptly at T=230-235 K in pores with diameters (D) of 3.5-4 nm or larger but only gradually at T=210-230 K in pores with D=2.5-3.5 nm. Melting temperatures in pores are depressed by an amount that can be described by the Gibbs-Thomson equation. Water adsorption isotherms of MCM-41 show that pores with D=3.5-4 nm fill with water at RHw = 56-60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHw > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are

  14. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  15. Flow-Induced Crystallization and Nucleation in Isotactic Polypropylenes

    NASA Astrophysics Data System (ADS)

    Milner, Scott

    2015-03-01

    Flow-induced crystallization (FIC) occurs when a brief interval of strong flow precedes a temperature quench; many more nuclei form, resulting in a much more fine-grained solid morphology and better material properties. Common industrial polymer processing (injection molding) depends on FIC, which has been the subject of many experimental studies, most commonly on isotactic polypropylene (iPP). The prevailing hypothesis is that FIC results from flow aligning chains in the melt, increasing the melt free energy with respect to the crystal, hence acting like undercooling. Here, I combine experimental results for FIC and homogeneous nucleation with theoretical estimates for critical nuclei, to assess the prevailing hypothesis. Current best information supports the view that chain stretching (not just alignment) is necessary and sufficient to explain the observed increase in nucleation rate. Important puzzles remain: 1) shear applied at temperatures well above the equilibrium melting temperature Tm = 187 C is effective for FIC, and 2) a sheared sample may be held for hours above Tm, and still crystallize faster when quenched.

  16. Do protein crystals nucleate within dense liquid clusters?

    SciTech Connect

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  17. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  18. Do protein crystals nucleate within dense liquid clusters?

    PubMed Central

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10−3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation. PMID:26144225

  19. Determining whether metals nucleate homogeneously on graphite: A case study with copper

    DOE PAGESBeta

    Appy, David; Lei, Huaping; Han, Yong; Wang, Cai -Zhuang; Tringides, Michael C.; Shao, Dahai; Kwolek, Emma J.; Evans, J. W.; Thiel, P. A.

    2014-11-05

    In this study, we observe that Cu clusters grow on surface terraces of graphite as a result of physical vapor deposition in ultrahigh vacuum. We show that the observation is incompatible with a variety of models incorporating homogeneous nucleation and calculations of atomic-scale energetics. An alternative explanation, ion-mediated heterogeneous nucleation, is proposed and validated, both with theory and experiment. This serves as a case study in identifying when and whether the simple, common observation of metal clusters on carbon-rich surfaces can be interpreted in terms of homogeneous nucleation. We describe a general approach for making system-specific and laboratory-specific predictions.

  20. Determining whether metals nucleate homogeneously on graphite: A case study with copper

    SciTech Connect

    Appy, David; Lei, Huaping; Han, Yong; Wang, Cai-Zhuang; Tringides, Michael C; Shao, Dahai; Kwolek, Emma J; Evans, J W; Thiel, P A

    2014-11-01

    We observe that Cu clusters grow on surface terraces of graphite as a result of physical vapor deposition in ultrahigh vacuum. We show that the observation is incompatible with a variety of models incorporating homogeneous nucleation and calculations of atomic-scale energetics. An alternative explanation, ion-mediated heterogeneous nucleation, is proposed and validated, both with theory and experiment. This serves as a case study in identifying when and whether the simple, common observation of metal clusters on carbon-rich surfaces can be interpreted in terms of homogeneous nucleation. We describe a general approach for making system-specific and laboratory-specific predictions.

  1. Superheating and Homogeneous Single Bubble Nucleation in a Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Nagashima, Gaku; Levine, Edlyn V.; Hoogerheide, David P.; Burns, Michael M.; Golovchenko, Jene A.

    2014-07-01

    We demonstrate extreme superheating and single bubble nucleation in an electrolyte solution within a nanopore in a thin silicon nitride membrane. The high temperatures are achieved by Joule heating from a highly focused ionic current induced to flow through the pore by modest voltage biases. Conductance, nucleation, and bubble evolution are monitored electronically and optically. Temperatures near the thermodynamic limit of superheat are achieved just before bubble nucleation with the system at atmospheric pressure. Bubble nucleation is homogeneous and highly reproducible. This nanopore approach more generally suggests broad application to the excitation, detection, and characterization of highly metastable states of matter.

  2. Superheating and Homogeneous Single Bubble Nucleation in a Solid-State Nanopore

    PubMed Central

    Nagashima, Gaku; Levine, Edlyn V.; Hoogerheide, David P.; Burns, Michael M.; Golovchenko, Jene A.

    2014-01-01

    We demonstrate extreme superheating and single bubble nucleation in an electrolyte solution within a nanopore in a thin silicon nitride membrane. The high temperatures are achieved by Joule heating from a highly focused ionic current induced to flow through the pore by modest voltage biases. Conductance, nucleation, and bubble evolution are monitored electronically and optically. Temperatures near the thermodynamic limit of superheat are achieved just before bubble nucleation with the system at atmospheric pressure. Bubble nucleation is homogeneous and highly reproducible. This nanopore approach more generally suggests broad application to the excitation, detection, and characterization of highly metastable states of matter. PMID:25062192

  3. Homogeneous condensation - Freezing nucleation rate measurements for small water droplets in an expansion cloud chamber

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.; Anderson, R. J.; Kassner, J. L., Jr.

    1981-01-01

    Experimental data on ice nucleation, presented in an earlier paper, are analyzed to yield information about the homogeneous nucleation rate of ice from supercooled liquid and the heights of energy barriers to that nucleation. The experiment consisted of using an expansion cloud chamber to nucleate from the vapor a cloud of supercooled pure water drops and the observation of the fraction of drops which subsequently froze. The analysis employed standard classical homogeneous nucleation theory. The data are used to extract the first experimental measurement (albeit indirect) of the activation energy for the transfer of a water molecule across the liquid-ice interface at temperatures near -40 C. The results provide further evidence that the local liquid structure becomes more icelike as the temperature is lowered.

  4. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  5. Effect of an electric field on nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  6. Theory of homogeneous nucleation - A chemical kinetic view

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Qiu, H.

    1986-01-01

    A simple function with two undetermined parameters has been used in place of the Thomson-Gibbs relation to relate the activation energy of the vaporization reaction to cluster size. The parameters are iterated to assume optimum values in numerical computation so experimental data may be correlated. Calculations show this approach closely predicts and correlates available data for water, benzene, and ethanol. The nucleation formulism is redeveloped with an emphasis on the chemical kinetic view. Surface tension of the liquid and free energy of droplet formation are not used in its derivation.

  7. On the growth of homogeneously nucleated water droplets in nitrogen: an experimental study

    NASA Astrophysics Data System (ADS)

    Fransen, M. A. L. J.; Sachteleben, E.; Hrubý, J.; Smeulders, D. M. J.

    2014-07-01

    A pulse-expansion wave tube method to determine homogeneous nucleation rates of water droplets has been improved. In particular, by accounting for background scattering, the experimental light scattering can be fitted extremely well with the Mie scattering theory. This results in an accurate determination of the droplet growth curve, which is well defined owing to the sharp monodispersity of the droplet cloud generated by the nucleation pulse method. With this method, water condensation is effectively decoupled in birth (nucleation) and growth of droplets. Droplet growth curves yield information on the diffusion coefficient, which only depends on pressure and temperature and on the supersaturation of the individual experiments. Here, we propose to use this information in the interpretation of nucleation rate data. Experimental results are given for homogeneous nucleation rates of supercooled water droplets at nucleation temperature 240 K and pressure 1.0 MPa and for growth of supercooled water droplets at temperature 247 K and pressure 1.1 MPa. The supersaturation was varied between 10 and 14, resulting in nucleation rates varying between 10 m s and 10 m s. For the diffusion coefficient, a value of 1.51 0.03 mm s was found (247 K, 1.1 MPa) in agreement with previously reported results. It is discussed how the information from droplet growth data can be used to assess the quality of the individual water nucleation experiments.

  8. Effects of shear flow on phase nucleation and crystallization

    NASA Astrophysics Data System (ADS)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  9. Formation energies and concentrations of microclusters for homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Kobraei, H. R.; Anderson, B. R.

    1988-04-01

    The Gibbs free formation energies and the energies of formation for argon clusters having 3-19 atoms have been computed. These calculations have been carried out for the free cluster (atomistic) model and the model of interacting monomers and clusters (IMC). In the IMC model the interactions among background monomers and monomer-cluster interactions are considered. However, for the results presented in this work, only the effect of the interactions among background monomers has been computed. Comparison of the free cluster model with the IMC model indicates that even for argon the interactions among background monomers should not be ignored. The results of both models become almost identical at high temperatures. The depletion of monomers has also been considered. A simple relation is given which describes how background monomers are depleted in a supercooled system. The depletion of background monomers can easily be incorporated into the rate of nucleation and, when performed, this introduces a temperature-dependent correction to the nucleation rate.

  10. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  11. Kinetics of crystal nucleation and growth in Pd(40)Ni(40)P(20) glass

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Greer, A. L.

    1984-01-01

    Samples of Pd(40)Ni(40)P(20) glass, produced by cooling the melt at 1 or 800 K/s, are heated in a differential scanning calorimeter to determine the crystallization kinetics. Optical microscopy shows that eutectic crystallization proceeds both by growth from the surface of the samples and by the growth of spherical regions around preexisting nuclei in the interior. A modified Kissinger (1957) analysis is used to obtain the activation energy for crystal growth (3.49 eV). The steady state homogeneous nucleation frequency at 590 K is about 10 million/cu m per sec. This is estimated to be the maximum nucleation frequency: it is too low to account for the observed population of quenched-in nuclei, which are therefore presumed to be heterogeneous. The major practical obstacle to glass formation in this system is heterogeneous nucleation.

  12. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.

    PubMed

    Nudelman, Fabio

    2015-10-01

    The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals

  13. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    -association process is a function of the protein concentration relative to the saturation concentration, and observing it in dilute solution (conc. less than or equal to 10(exp -5)M) requires that the experiments be performed under low solubility conditions, i.e., low temperatures and high salt concentrations. Data from preliminary steady state FRET studies with N-terminal bound pyrene acetic acid (PAA-lys, donor, Ex 340 nm, Em 376 nm) and asp101 LY-lys as an acceptor showed a consistent trend of decreasing donor fluorescence intensity with increasing total protein concentration. The FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding C(sub sat) values are 0.471 and 0.362 mg/ml (approx. 3.3 and approx. 2.5 x 10(exp -5)M respectively). The donor fluorescence decrease is more pronounced at7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations as reflected in the lower solubility. Results from these and other ongoing studies will be discussed in conjunction with an emerging model for how tetragonal lysozyme crystals nucleate and the relevance of that model to other proteins.

  14. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  15. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  16. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  17. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  18. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  19. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime. PMID:25615216

  20. Bubble evolution and properties in homogeneous nucleation simulations

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50 % lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25 % below those of the surrounding bulk liquid. In the case of rapid bubble growth—typical for the cavitation regime—compression of the liquid outside the bubble leads to local temperature increases of up to 5 %, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50 % . Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  1. Crystal Nucleation in Plasma Deposited Dlc Coatings during Annealing

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Pavlidou, E.; Psyllaki, P.; Chrissafis, K.; Vourlias, G.

    2010-01-01

    Diamond-like carbon (DLC) films, hard carbon coatings, with unique physical and mechanical properties which approach those of natural diamond, such as high hardness, low coefficient of friction and chemical inertness. In several applications, heavy loads and high friction forces are generated and lead to local temperature increase. In such cases these coatings must be thermal stable and with enhanced high temperature oxidation resistance in order to be good candidates for wear protection of metallic components. In the present study a radio frequency plasma deposition system was used for the deposition of 2 μm-thick amorphous DLC coatings onto AISI D2 substrates. The as deposited DLC covered samples were dense, homogeneous and well bonded to the substrate, while no cracks were observed. In order to study the thermal stability of the coatings' DLC nature, in-situ Transmission Electron Microscopic (TEM) observations were carried out during slow annealing of the specimen in the microscope vacuum chamber, as well as thermo-gravimetric (TG) measurements in argon atmosphere, up to 800° C. The first crystallites appeared within the DLC amorphous matrix at about 450° C as surface crystallization, while the mass crystallization started at 600° C as the TG measurements indicated. Finally, the nucleation was completed at 700° C. The oxidation results, performed from ambient temperature up to 1000° C, showed that DLC covered coupons are remarkably resistant as their mass gain was significantly lower than that of the uncovered substrates.

  2. Homogeneous SPC/E water nucleation in large molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K.; Tanaka, Hidekazu

    2015-08-01

    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to ˜ 4 ṡ 106 molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to ˜ 1019 cm-3 s-1, helping close the gap between experimentally measured rates ˜ 1017 cm-3 s-1. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, ˜ 5%, than bulk liquid. We re-calibrate a Hale-type J vs. S scaling relation using both experimental and simulation data, finding remarkable consistency in over 30 orders of magnitude in the nucleation rate range and 180 K in the temperature range.

  3. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  4. Do multilayer crystals nucleate in suspensions of colloidal rods?

    PubMed

    Patti, Alessandro; Dijkstra, Marjolein

    2009-03-27

    We study the isotropic-to-crystal transformation in a mixture of colloidal hard rods and nonabsorbing polymer using computer simulations. We determine the height of the nucleation barrier and find that the critical cluster consists of a single crystalline layer growing laterally for all polymer fugacities considered. At lower supersaturation, the free energy of a single hexagonally packed layer increases monotonically with size, while the nucleation barrier of a second crystalline layer is extremely high. Hence, the nucleation of multilayer crystals is never observed. Multilayer crystals form only in the spinodal decomposition regime, either where, in an intermediate stage, single crystalline membranes coalesce into multilayer clusters or where, at higher polymer fugacity, smaller clusters of rods stack on top of each other to form long filaments. Eventually, these transient structures evolve into a thermodynamically stable bulk crystal phase. PMID:19392328

  5. Pathways to self-organization: Crystallization via nucleation and growth.

    PubMed

    Jungblut, S; Dellago, C

    2016-08-01

    Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In this article, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism. PMID:27498980

  6. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature.

    PubMed

    Sellberg, J A; Huang, C; McQueen, T A; Loh, N D; Laksmono, H; Schlesinger, D; Sierra, R G; Nordlund, D; Hampton, C Y; Starodub, D; DePonte, D P; Beye, M; Chen, C; Martin, A V; Barty, A; Wikfeldt, K T; Weiss, T M; Caronna, C; Feldkamp, J; Skinner, L B; Seibert, M M; Messerschmidt, M; Williams, G J; Boutet, S; Pettersson, L G M; Bogan, M J; Nilsson, A

    2014-06-19

    Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best

  7. Crystal nucleation in amorphous (Au/100-y/Cu/y/)77Si9Ge14 alloys

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Greer, A. L.; Spaepen, F.

    1983-01-01

    Because, unlike most metallic glasses, melt-spun alloys of the series (Au/100-y/Cu/y/)77Si9Ge14 exhibit well separated glass transition and kinetic crystallization temperatures, crystallization can be studied in the fully relaxed amorphous phase. An isothermal calorimetric analysis of the devitrification kinetics of the amorphous alloy indicates sporadic nucleation and a constant growth rate. It is found for the cases of alloys with y values lower than 25 that the classical theory of homogeneous nucleation is consistent with observations, including transient effects. An analysis of the crystallization kinetics shows that slow crystal growth rates play an important role in glass formation in these alloys. Although the reduced glass transition temperature increases with Cu content, glass formation is more difficult at high Cu contents, perhaps because of a difference in nucleus composition.

  8. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  9. Self Nucleation and Crystallization of Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Thomas, David; Cebe, Peggy

    Polyvinyl alcohol (PVA) is a hydrophilic, biodegradable, semi-crystalline polymer with uses ranging from textiles to medicine. Film samples of PVA were investigated to assess crystallization and melting behavior during self-nucleation experiments, and thermal degradation, using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis, respectively. TG results show that degradation occurred at temperatures close to the observed peak melting temperature of 223 C. Using conventional DSC, PVA was heated at a rate of 10 C/min to various self-nucleation temperatures, Ts, within its melting range, briefly annealed, cooled and reheated. Three distinct crystallization regimes were observed upon cooling, depending upon self nucleation temperature. At low values of Ts, below 227 C, PVA only partially melts; residual crystal anneals while new, less perfect crystals form during cooling. Between 228 C and 234 C, PVA was found to crystallize exclusively by self-nucleation. For Ts above 235 C the PVA melts completely. Fast scanning chip-based calorimetry was used to heat and cool at 2000 K/s, to prevent degradation. Results of self nucleation experiments using fast scanning and conventional DSC will be compared. NSF DMR-1206010.

  10. Control of crystal nucleation by patterned self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna; Black, Andrew J.; Whitesides, George M.

    1999-04-01

    An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization. In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces. But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers,, which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity-in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.

  11. Crystal nucleation mechanism in melts of short polymer chains under quiescent conditions and under shear flow

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad; Berryman, Joshua T.; Schilling, Tanja

    2014-09-01

    We present a molecular dynamics simulation study of crystal nucleation from undercooled melts of n-alkanes, and we identify the molecular mechanism of homogeneous crystal nucleation under quiescent conditions and under shear flow. We compare results for n-eicosane (C20) and n-pentacontahectane (C150), i.e., one system below the entanglement length and one above, at 20%-30% undercooling. Under quiescent conditions, we observe that entanglement does not have an effect on the nucleation mechanism. For both chain lengths, the chains first align and then straighten locally, then the local density increases and finally positional ordering sets in. At low shear rates the nucleation mechanism is the same as under quiescent conditions, while at high shear rates the chains align and straighten at the same time. We report on the effects of shear rate and temperature on the nucleation rates and estimate the critical shear rates, beyond which the nucleation rates increase with the shear rate. In agreement with previous experimental observation and theoretical work, we find that the critical shear rate corresponds to a Weissenberg number of order 1. Finally, we show that the viscosity of the system is not affected by the crystalline nuclei.

  12. Heterogeneous nucleation as the predominant mode of crystallization in natural magmas: numerical model and implications for crystal-melt interaction

    NASA Astrophysics Data System (ADS)

    Špillar, Václav; Dolejš, David

    2015-01-01

    Crystallization of natural magmas is inherently a disequilibrium process, which involves nucleation and growth kinetics, melt-crystal mechanical interactions and subsolidus modifications, which are all recorded in the resulting rock texture. We use a new high-resolution three-dimensional numerical model to address the significance and consequences of homogeneous versus heterogeneous crystal nucleation in silicate magmas. With increasing amount of heterogeneous nuclei during crystallization, initially equigranular textures evolve to porphyritic, bimodal and spherulitic types. The corresponding crystal size distributions (CSDs) become concave-up curved, the clustering index progressively decreases, and the grain contact relationships record increased clustering. Concave-up curved CSDs previously interpreted as resulting from multistage crystallization, mixing of crystal populations, grain agglomeration, or size-dependent growth are now predicted, consistently with other size, spatial and clustering parameters, to form by heterogeneous crystal nucleation. Correlation relationships between various textural parameters and the fraction of heterogeneous nuclei are calibrated and used on representative volcanic and plutonic rocks, including cumulate rocks, to deduce the fraction of heterogeneous nuclei. The results indicate that ~60 to ~99 % of all nuclei are heterogeneous. For plutonic and cumulate rocks, the estimate of the heterogeneous nuclei fraction based on the clustering index is significantly lower than other estimates. Such discrepancies, in general, point to the occurrence of other processes, and here, the results imply that crystal-mush compaction and interstitial melt extraction were involved during the magma solidification. Formation of crystals in clusters, implicit for heterogeneous nucleation, implies that greater efficiency of crystal-melt separation is expected in these situations.

  13. Surface or internal nucleation and crystallization of glass-ceramics

    NASA Astrophysics Data System (ADS)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  14. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  15. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  16. Effect of an alpha-phase nucleating agent on the crystallization kinetics of a propylene/ethylene random copolymer at largely different supercooling

    NASA Astrophysics Data System (ADS)

    Androsch, René; Monami, Andrea; Kucera, Jaroslav

    2014-12-01

    The effect of addition of 0.1 wt% phosphate-ester based alpha-phase nucleating agent on the crystallization of a random propylene-based copolymer with 3.9 mol% ethylene has been investigated by fast scanning chip calorimetry (FSC). Main purpose of the work was the evaluation of the effect of the nucleating agent on the bimodal temperature dependence of the crystallization rate of propylene-based polymers caused by a change of the nucleation mechanism from heterogeneous to homogeneous nucleation on lowering the temperature to below about 60 °C. Presence of the nucleation agent in the copolymer of the present study accelerates crystallization only in the high-temperature range of predominant heterogeneous nucleation, but does not affect the crystallization rate in the low-temperature range of homogeneous nucleation. The observed decrease of the minimum crystallization half-time due to the addition of the nucleation agent, from 0.2 s in case of the unmodified copolymer to 0.04 s in case of the copolymer containing the nucleating agent, is paralleled by an increase of the critical cooling rate required to inhibit crystallization on continuous cooling to below the glass transition temperature from 102 to 103 K s-1. The study is completed by an analysis of the effect of addition of the nucleation agent on the spherulitic superstructure.

  17. Binary homogeneous nucleation: Temperature and relative humidity fluctuations and non-linearity

    SciTech Connect

    Easter, R.C.; Peters, L.K.

    1993-01-01

    This report discusses binary homogeneous nucleation involving H{sub 2}SO{sub 4} and water vapor is thought to be the primary mechanism for new particle formation in the marine boundary layer. Temperature, relative humidity, and partial pressure of H{sub 2}SO{sub 4} vapor are the most important parameters in fixing the binary homogeneous nucleation rate in the H{sub 2}SO{sub 4}/H{sub 2}O system. The combination of thermodynamic calculations and laboratory experiments indicates that this rate varies roughly as the tenth power of the saturation ratio of H{sub 2}SO{sub 4} vapor. Furthermore, the vapor pressure of H{sub 2}SO{sub 4} is a function of temperature, and similar dependencies of the binary homogeneous nucleation rate on relative humidity can be noted as well. These factors thus introduce strong non-linearities into the system, and fluctuations of temperature, relative humidity, and H{sub 2}SO{sub 4} vapor concentrations about mean values may strongly influence the nucleation rate measured in the atmosphere.

  18. On the barrier to crystal nucleation in lunar glasses

    NASA Technical Reports Server (NTRS)

    Yinnon, H.; Roshko, A.; Uhlmann, D. R.

    1980-01-01

    The paper describes an analytical method for calculating in detail the size distributions of small crystallites and nuclei in supercooled liquids as they are being quenched to form a glass and subsequently reheated above the glass transition to produce crystallization. This method is applied to experiments performed using differential thermal analysis (DTA) to estimate the barriers to crystal nucleation and the cooling rates required to form glasses or bodies with various degrees of crystallinity. DTA data and derived nucleation barriers are reported for anorthite and for the following lunar compositions: 15498, 15418, matrix and intrusion compositions of breccia 15286, Apollo 15 green glass, Luna 24 highland basalt, and 65016.

  19. Atomistic simulations of dislocation nucleation in single crystals and grain boundaries

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A., Jr.

    The objective of this research is to use atomistic simulations to investigate dislocation nucleation from grain boundaries in face-centered cubic aluminum and copper. This research primarily focuses on asymmetric tilt grain boundaries and has three main components. First, this research uses molecular statics simulations of the structure and energy of these faceted, dissociated grain boundary structures to show that Sigma3 asymmetric boundaries can be decomposed into the structural units of the Sigma3 symmetric tilt grain boundaries, i.e., the coherent and incoherent twin boundaries. Moreover, the energy for all Sigma3 asymmetric boundaries is predicted with only the energies of the Sigma3 symmetric boundaries and the inclination angle. Understanding the structure of these boundaries provides insight into dislocation nucleation from these boundaries. Further work into the structure and energy of other low order Sigma asymmetric boundaries and the spatial distribution of free volume within the grain boundaries also provides insight into dislocation nucleation mechanisms. Second, this research uses molecular dynamics deformation simulations with uniaxial tension applied perpendicular to these boundaries to show that the dislocation nucleation mechanisms in asymmetric boundaries are highly dependent on the faceted, dissociated structure. Grain boundary dislocation sources can act as perfect sources/sinks for dislocations or may violate this premise by increasing the dislocation content of the boundary during nucleation. Furthermore, simulations under uniaxial tension and uniaxial compression show that nucleation of the second partial dislocation in copper exhibits tension-compression asymmetry. Third, this research explores the development of models that incorporate the resolved stress components on the slip system of dislocation nucleation to predict the atomic stress required for dislocation nucleation from single crystals and grain boundaries. Single crystal

  20. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    1999-01-01

    The following list summarizes the most important results that have been consistently reported for glass forming melts in microgravity: (1) Glass formation is enhanced for melts prepared in space; (2) Glasses prepared in microgravity are more chemically homogeneous and contain fewer and smaller chemically heterogeneous regions than identical glasses prepared on earth; (3) Heterogeneities that are deliberately introduced such as Pt particles are more uniformly distributed in a glass melted in space than in a glass melted on earth; (4) Glasses prepared in microgravity are more resistant to crystallization and have a higher mechanical strength and threshold energy for radiation damage; and (5) Glasses crystallized in space have a different microstructure, finer grains more uniformly distributed, than equivalent samples crystallized on earth. The preceding results are not only scientifically interesting, but they have considerable practical implications. These results suggest that the microgravity environment is advantageous for developing new and improved glasses and glass-ceramics that are difficult to prepare on earth. However, there is no suitable explanation at this time for why a glass melted in microgravity will be more chemically homogeneous and more resistant to crystallization than a glass melted on earth. A fundamental investigation of melt homogenization, nucleation, and crystal growth processes in glass forming melts in microgravity is important to understanding these consistently observed, but yet unexplained results. This is the objective of the present research. A lithium disilicate (Li2O.2SiO2) glass will be used for this investigation, since it is a well studied system, and the relevant thermodynamic and kinetic parameters for nucleation and crystal growth at 1-g are available. The results from this research are expected to improve our present understanding of the fundamental mechanism of nucleation and crystal growth in melts and liquids, and to lead

  1. Homogeneous two-dimensional nucleation of guest-free silicon clathrates

    NASA Astrophysics Data System (ADS)

    Lü, Yong jun

    2015-01-01

    The difficulty in synthesizing guest-free semiconductor clathrates complicates the process of determining how these cage-like structures form. This work studies the microscopic mechanism of the nucleation of guest-free Si136 clathrate using molecular dynamics simulations with the Stillinger-Weber potential. The homogeneous nucleation of Si136, which is realized in a narrow negative pressure range before liquid cavitation, exhibits the characteristic feature of the two-dimensional (2D) mode. The critical nucleus is composed of one to two five-membered rings, and the nucleation barrier is close to 1 kBT. According to a thermodynamic model based on atomistic nucleation theory, the effective binding energy associated with the formation of 2D critical nuclei is significantly low, which is responsible for the low nucleation barrier of Si136 clathrate. In the post-nucleation period, the critical nucleus preferentially grows into a dodecahedron, and the latter continuously grows with sharing face along <1 1 0>.

  2. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2003-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one1 of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on earth (1g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials. The classical theories for nucleation and crystal growth for a glass or melt do not contain any parameter that is directly dependent upon the g-value, so it is not readily apparent why glasses prepared in microgravity should be

  3. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  4. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander; Rutledge, Gregory

    2015-03-01

    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  5. Inducing crystallization of poly(3-hexylthiophene) nanowires by well-defined nucleation sites

    NASA Astrophysics Data System (ADS)

    Acevedo-Cartagena, Daniel; Zhang, Yue; Trabanino, Elvira; Briseno, Alejandro; Hayward, Ryan; Alejandro Briseno Collaboration; Ryan Hayward Team

    2014-03-01

    Solution crystallization of conjugated polymers promises a facile way to fabricate nano-scale structures with desirable properties for improving organic-based electronic devices. The addition of well-defined nucleation sites to a supersaturated solution can induce crystallization and allow for control over structural features. We identified conditions when homogenous nucleation of a model semicrystalline polymer, poly(3-hexylthiophene), P3HT, is suppressed, allowing for controlled crystallization into nanowires upon addition of well-defined nucleation sites. The hysteresis window between crystallization and melting temperatures of P3HT nanowires is tuned using concentration, molecular weight of the polymer, and solvent quality. We show that in this manner short P3HT nanowires (``seeds'') can be extended, though obtaining well controlled extension into linear structure remains an open challenge. In a similar fashion, graphene or graphite coated substrates were found to be excellent nucleating agents for growth of nanowire films. Northeast Alliance for Graduate Education and the Professoriate (NEAGEP), National Science Foundation Graduate Research Fellowship.

  6. Correlating Polymer Crystals via Self-Induced Nucleation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Yu, Muhuo; Zhang, Bin; Reiter, Renate; Vielhauer, Maximilian; Mülhaupt, Rolf; Xu, Jun; Reiter, Günter

    2014-06-01

    Crystallizable polymers often form multiple stacks of uniquely oriented lamellae, which have good registry despite being separated by amorphous fold surfaces. These correlations require multiple synchronized, yet unidentified, nucleation events. Here, we demonstrate that in thin films of isotactic polystyrene, the probability of generating correlated lamellae is controlled by the branched morphology of a single primary lamella. The nucleation density ns of secondary lamellae is found to be dependent on the width w of the branches of the primary lamella such that ns˜w-2. This relation is independent of molecular weight, crystallization temperature, and film thickness. We propose a nucleation mechanism based on the insertion of polymers into a branched primary lamellar crystal.

  7. Homogeneous nucleation and droplet growth in nitrogen. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dotson, E. H.

    1983-01-01

    A one dimensional computer model of the homogeneous nucleation process and growth of condensate for nitrogen flows over airfoils is developed to predict the onset of condensation and thus to be able to take advantage of as much of Reynolds capability of cryogenic tunnels as possible. Homogeneous nucleation data were taken using a DFVLR CAST-10 airfoil in the 0.3-Meter Transonic Cryogenic Tunnel and are used to evaluate the classical liquid droplet theory and several proposed corrections to it. For predicting liquid nitrogen condensation effects, use of the arbitrary Tolman constant of 0.25 x 250 billionth m or the Reiss or Kikuchi correction agrees with the CAST-10 data. Because no solid nitrogen condensation were found experimentally during the CAST-10 experiments, earlier nozzle data are used to evaluate corrections to the classical liquid droplet theory in the lower temperature regime. A theoretical expression for the surface tension of solid nitrogen is developed.

  8. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    SciTech Connect

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  9. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence. PMID:24908018

  10. Effect of geometrical confinement on the nucleation and crystallization behavior of n-alkane mixtures.

    PubMed

    Jiang, Kai; Su, Yunlan; Xie, Baoquan; Jiang, Shichun; Zhao, Ying; Wang, Dujin

    2008-12-25

    The condensed structure of normal alkane (n-alkane) mixtures in confined geometry is an interesting topic concerning the difference in crystallization behavior of odd and even alkanes. In the present work, the crystallization of mixtures of normal octadecane (n-C18H38) and normal nonadecane (n-C19H40) in microcapsules with narrow size distribution was investigated using the combination of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A surface freezing monolayer for microencapsulated n-C18H38, n-C19H40, and their mixture was detected by DSC, which for the mixture is a mixed homogeneous crystalline phase with continuous change in the composition. A more stable rotator phase (RI) was observed for the microencapsulated n-C18H38/n-C19H40 = 95/5 (molar ratio) mixture, confirmed by an increased supercooling of the transition from RI to stable phase compared to that of the mixture in bulk. Two nucleation mechanisms were speculated as "liquid-to-solid" heterogeneous nucleation and "solid-to-solid" homogeneous nucleation, which occur at different crystallization stages in microcapsules and might be attributed to the surface effect and confinement effect, respectively, in the confined geometry. PMID:19367940

  11. Intramolecular Crystal Nucleation Favored by Polymer Crystallization: Monte Carlo Simulation Evidence.

    PubMed

    Zhang, Rong; Zha, Liyun; Hu, Wenbing

    2016-07-14

    We performed dynamic Monte Carlo simulations of half-half binary blends of symmetric (double and mutual) crystallizable polymers. We separately enhanced the driving forces for polymer-uniform and polymer-staggered crystals. Under parallel enhancements, polymer-uniform crystals exhibit faster nucleation and growth, with more chain folding and less lamellar thickening, than those in polymer-staggered crystals. We attributed the results to intramolecular crystal nucleation, ruined by enhanced polymer-staggered crystallization. Our observations provide direct molecular-level evidence to support the fact that intramolecular crystal nucleation is favored by polymer crystallization in quiescent solutions and melt, which yields chain folding for the characteristic β-sheet or lamellar morphology of macromolecular crystals. PMID:27300471

  12. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  13. Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2014-07-01

    In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  14. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  15. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Spaepen, F.; Turnbull, D.

    1982-01-01

    The undercooling behavior of large spheroids of Pd40Ni40P40 was investigated. By surface etching, supporting the specimens on a fused silica substrate, and successive heating and cooling, crystallization can be eliminated, presumable due to the removal of surface heterogeneities. By this method samples up to 3.2g with a 0.53 mm minor diameter, were made entirely glassy, except for some superficial crystals comprising less than 0.5% of the volume. These experiments show that a cooling rate of approximately 1 K/sec is adequate to avoid copious homogeneous nucleation in the alloy, and that by eliminating or reducing the effectiveness of heterogeneous nucleation sites, it is possible to form bulk samples of this metallic glass with virtually unlimited dimensions.

  16. Frozen Topology: Entanglements Control Nucleation and Crystallization in Polymers

    NASA Astrophysics Data System (ADS)

    Luo, Chuanfu; Sommer, Jens-Uwe

    2014-05-01

    Polymer chains form lamellar structures during crystallization which display a memory of thermal history. Using molecular dynamics simulations and primitive path analysis, we show a direct dependence of both density and crystalline stem length on the local entanglement length. The slow relaxation of the entanglement state after a change of external conditions can directly explain the role of thermal history for polymer crystallization, in particular memory effects. The analysis of the local entanglement state can be used to predict the occurrence of nucleation events. Our results present a fresh insight of the nonequilibrium properties of polymer crystals which might be identified as "frozen topology" of polymer melts.

  17. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  18. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  19. Production of organic micro-crystals by using templated crystallization as nucleation trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirokuni; Takiyama, Hiroshi

    2013-06-01

    Fine monomodal crystalline particles are required in many fields such as pharmaceuticals and fine chemicals. In this study, the effect of template at the air/solution interface on the nucleation phenomenon was investigated. And the relationship between the nucleation time and the time at which the template interfaces were introduced into the supersaturated solution became clear, and the nucleation phenomenon of templated crystallization was also investigated. If the time of nucleation can be controlled by using template effects, monomodal crystalline particles can also be produced. The glycine- water-L-leucine (template compound) system was used. The air bubble insertion experiments and nucleation and growth experiments at re-created air/solution interface were carried out. As a result, the nucleation time after the template interface was introduced into the supersaturated solution was important for controlling size distribution. The formation of new template interface into the supersaturated solution acted as the nucleation trigger which induced controlled nucleation. By using this nucleation trigger, monomodal crystalline particles were obtained at the air/solution interface. By collecting crystalline particles immediately after nucleation was induced by nucleation trigger, submicron-order particles were obtained.

  20. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    NASA Astrophysics Data System (ADS)

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-02-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions.

  1. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals.

    PubMed

    Govada, Lata; Leese, Hannah S; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S P; Chayen, Naomi E

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  2. Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals

    PubMed Central

    Govada, Lata; Leese, Hannah S.; Saridakis, Emmanuel; Kassen, Sean; Chain, Benny; Khurshid, Sahir; Menzel, Robert; Hu, Sheng; Shaffer, Milo S. P.; Chayen, Naomi E.

    2016-01-01

    Controlling crystal nucleation is a crucial step in obtaining high quality protein crystals for structure determination by X-ray crystallography. Carbon nanomaterials (CNMs) including carbon nanotubes, graphene oxide, and carbon black provide a range of surface topographies, porosities and length scales; functionalisation with two different approaches, gas phase radical grafting and liquid phase reductive grafting, provide routes to a range of oligomer functionalised products. These grafted materials, combined with a range of controls, were used in a large-scale assessment of the effectiveness for protein crystal nucleation of 20 different carbon nanomaterials on five proteins. This study has allowed a direct comparison of the key characteristics of carbon-based nucleants: appropriate surface chemistry, porosity and/or roughness are required. The most effective solid system tested in this study, carbon black nanoparticles functionalised with poly(ethylene glycol) methyl ether of mean molecular weight 5000, provides a novel highly effective nucleant, that was able to induce crystal nucleation of four out of the five proteins tested at metastable conditions. PMID:26843366

  3. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  4. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  5. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  6. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    PubMed Central

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  7. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses.

    PubMed

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  8. The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses

    PubMed Central

    Thieme, Katrin; Avramov, Isak; Rüssel, Christian

    2016-01-01

    The addition of small amounts of niobium or tantalum oxide to lithium disilicate glass provokes a drastic decrease of the steady-state nucleation rates and the crystal growth velocities. The viscosity of the residual glassy matrix is considered as a function of the crystallization degree in the course of a non-isothermal crystallization. For simplification, a homogeneous distribution of the added oxides in the glass matrix is assumed. While the viscosity initially decreases, it significantly increases again for higher crystallization degrees hindering crystal growth. However, it was shown that the additives are enriched at the crystal interface. Several possible reasons for the inhibition of nucleation and growth kinetics such as viscosity, interfacial energy crystal/glassy phase, thermodynamic driving force or impingement rate are discussed. Since the crystallization front is blocked by the additives the impingement rate is decreased with increasing additive concentration. Since small concentrations of Nb2O5 and Ta2O5 have a drastic effect on the nucleation, these components should be enriched at the interface crystal/glass. This will only take place, if it leads to a decrease in the interfacial energy. Since this effect alone should result in an increase of the nucleation rate, it must be overcompensated by kinetic effects. PMID:27150844

  9. The interface of heterogeneous nucleation on single crystal substrates

    NASA Astrophysics Data System (ADS)

    Yang, L.; Xia, M.; Li, J.

    2016-03-01

    Under controlled nucleation process was achieved by solidifying a high purity Al droplet on a single crystal Al2O3 substrate in a high vacuum chamber. The following X-Ray Diffraction (XRD) analysis and measured undercooling prove that the nucleation was triggered by the substrate. Various lattice mismatches between new crystal and substrate (C/S) were obtained through this approach. Combining XRD patterns and high resolution transmission electron microscope analysis we found that the morphology of interface was affected by lattice misfit. An epitaxial layer was found at C/S interface with larger lattice misfit, as in Al(100)//Al2O3(0001) system. Further experiments on introduced alloying element, Sb, into liquid Al shows a suppressed epitaxial layer of Al. Chemical reaction between liquid and substrate also contributes to the formation of the interface. The nucleation of Al on the MgO substrates was actually nucleated on MgAl2O4, chemical reaction product of Al and MgO, rather than MgO.

  10. Simulations of nucleation and early growth stages of protein crystals.

    PubMed Central

    Kierzek, A M; Wolf, W M; Zielenkiewicz, P

    1997-01-01

    Analysis of known protein crystal structures reveals that interaction energies between monomer pairs alone are not sufficient to overcome entropy loss related to fixing monomers in the crystal lattice. Interactions with several neighbors in the crystal are required for stabilization of monomers in the lattice. A microscopic model of nucleation and early growth stages of protein crystals, based on the above observations, is presented. Anisotropy of protein molecules is taken into account by assigning free energies of association (proportional to the buried surface area) to individual monomer-monomer contacts in the lattice. Lattice simulations of the tetragonal lysozyme crystal based on the model correctly reproduce structural features of the movement of dislocation on the (110) crystal face. The dislocation shifts with the speed equal to the one determined experimentally if the geometric probability of correct orientation is set to 10(-5), in agreement with previously published estimates. At this value of orientational probability, the first nuclei, the critical size of which for lysozyme is four monomers, appear in 1 ml of supersaturated solution on a time scale of microseconds. Formation of the ordered phase proceeds through the growth of nuclei (rather then their association) and requires nucleations on the surface at certain stages. Images FIGURE 2 PMID:9251778

  11. Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

    SciTech Connect

    Biener, M M; Biener, J; Hodge, A M; Hamza, A V

    2007-08-08

    The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

  12. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  13. Inferred Differences in Ice Crystal Nucleation Rates between Continental and Maritime Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Avery, M. A.; Garnier, A.

    2014-12-01

    We present in situ and remotely sensed evidence for the following working hypothesis: Heterogeneous nucleation dominates during deep continental convection until ice nuclei in the updraft cannot prevent supersaturation from increasing. As it increases, homogeneous nucleation eventually occurs near cloud top (T < -60°C), with much faster ice crystal production rates. This is not the case in maritime anvil cirrus, where updrafts associated with deep convection are slower, promoting heterogeneous nucleation. We hypothesize that differences in updraft velocities and their effect on supersaturation might create a difference in the N/IWC ratios. Based on In situ measurements of the ice particle size distribution (PSD) from two aircraft field campaigns (SPARTICUS & TC4) and MODIS satellite retrievals of the temperature dependence of the 12/11 μm effective absorption optical depth ratio or βeff, ice crystal nucleation rates appear to be anomalously high near the tops of continental thunderstorms relative to maritime thunderstorms. The ice crystal nucleation rate, having units of g-1 s-1, is more related to the ratio of ice particle number concentration/ice water content (or N/IWC, with units of g-1) than to N. A surprisingly tight relationship was discovered between βeff and N/IWC, allowing N/IWC to be estimated from satellite retrievals of βeff. These retrievals verified that deep convection during TC4 over water did not produce the much higher N/IWC ratios observed during SPARTICUS in continental anvil cirrus. The imaging infrared radiometer (IIR) aboard CALIPSO has channels at 8, 10 and 12 μm and provides a data record of βeff dating back to 2006, as well as vertical profiles of IWC, extinction, depolarization and 1064/532 nm backscatter ratio from the CALIOP lidar. We will compare the MODIS-derived βeff and N/IWC relationship with that derived using the IIR data. We will also investigate the relationship between N/IWC, βeff and the vertically-resolved lidar

  14. The crystal nucleation theory revisited: The case of 2D colloidal crystals

    NASA Astrophysics Data System (ADS)

    González, A. E.; Ixtlilco-Cortés, L.

    2011-03-01

    Most of the theories and studies of crystallization and crystal nucleation consider the boundaries between the crystallites and the fluid as smooth. The crystallites are the small clusters of atoms, molecules and/or particles with the symmetry of the crystal lattice that, with a slight chance of success, would grow to form the crystal grains. In fact, in the classical nucleation theory, the crystallites are assumed to have a spherical shape (circular in 2D). As far are we are aware, there is only one experimental work [1] on colloidal crystals that founds rough surfaces for the crystallites and for the crystal grains. Motivated by this work, we performed large Kinetic Monte Carlo simulations in 2D, that would follow the eventual growing of a few crystallites to form the crystal grains. The used potential has, besides the impenetrable hard core, a soft core followed by a potential well. We found that indeed the crystallites have a fractal boundary, whose value we were able to obtain. See the figure below of a typical isolated crystallite. We were also able to obtain the critical crystallite size, measured by its number of particles, Nc, and not by any critical radius. The boundaries of the crystals above Nc also have a fractal structure but of a lower value, closer to one. Finally, we also obtained the line tension between the crystallites and the surrounding fluid, as function of temperature and particle diameter, as well as the chemical potential difference between these two phases. In the URL: www.fis.unam.mx˜˜agus˜ there are posted two movies that can be downloaded: (1) 2D_crystal_nucleation.mp4, and (2) 2D_crystal_growth.mp4, that illustrate the crystal nucleation and its further growth.

  15. Homogeneous nucleation of ethanol and n-propanol in a shock tube

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1982-01-01

    The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.

  16. Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Gránásy, László

    2012-01-01

    A simple dynamical density functional theory is used to investigate freezing of an undercooled liquid in the presence of a crystalline substrate. We find that the adsorption of the crystalline phase on the substrate, the contact angle, and the height of the nucleation barrier are nonmonotonic functions of the lattice constant of the substrate. We show that the free-growth-limited model of particle-induced freezing by Greer et al. [Acta Mater. 48, 2823 (2000)ACMAFD1359-645410.1016/S1359-6454(00)00094-X] is valid for larger nanoparticles and a small anisotropy of the interface free energy. Faceting due to the small size of the foreign particle or a high anisotropy decouples free growth from the critical size of homogeneous nuclei.

  17. Crystal nucleation and near-epitaxial growth in nacre.

    PubMed

    Olson, Ian C; Blonsky, Adam Z; Tamura, Nobumichi; Kunz, Martin; Pokroy, Boaz; Romao, Carl P; White, Mary Anne; Gilbert, Pupa U P A

    2013-12-01

    Nacre is the iridescent inner lining of many mollusk shells, with a unique lamellar structure at the sub-micron scale, and remarkable resistance to fracture. Despite extensive studies, nacre formation mechanisms remain incompletely understood. Here we present 20-nm, 2°-resolution polarization-dependent imaging contrast (PIC) images of shells from 15 mollusk species, mapping nacre tablets and their orientation patterns. These data show where new crystal orientations appear and how similar orientations propagate as nacre grows. In all shells we found stacks of co-oriented aragonite (CaCO₃) tablets arranged into vertical columns or staggered diagonally. Near the nacre-prismatic (NP) boundary highly disordered spherulitic aragonite is nucleated. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying aragonite spherulites, or with another tablet. Away from the NP-boundary all tablets are nearly co-oriented in all species, with crystal lattice tilting, abrupt or gradual, always observed and always small (plus or minus 10°). Therefore aragonite crystal growth in nacre is near-epitaxial. Based on these data, we propose that there is one mineral bridge per tablet, and that "bridge tilting" may occur without fracturing the bridge, hence providing the seed from which the next tablet grows near-epitaxially. PMID:24121160

  18. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined

  19. Influence of protein solution in nucleation and optimized formulation for the growth of ARM lipase crystal

    NASA Astrophysics Data System (ADS)

    Rahman, Raja Noor Zaliha Raja Abd; Masomian, Malihe; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad

    2015-09-01

    ARM lipase is a thermostable and organic solvent tolerant enzyme which was highly purified prior to crystallization. The His-tagged ARM lipase was purified with immobilized metal affinity chromatography followed by anion-exchange chromatography. The effect of different salt concentrations on stability, solubility and crystal nucleation of the protein was studied. The highly purified and homogeneous ARM lipase with protein concentration of 2 mg/mL was successfully crystallized by a sitting drop, vapor diffusion method with the use of 0.1 M MES monohydrate pH 6.5 and 12% (v/v) polyethylene glycol (PEG) 20000 as precipitant. The crystallization conditions were optimized by changing the pH and concentration of the precipitant. The optimum crystallization condition was 2 mg/mL ARM lipase in 0.1 M Tris-HCl, 0.15 M NaCl, pH 8.0 protein solution, crystallized using 0.1 M Tris-HCl, pH 8.0 and 12% (v/v) PEG 20000 as precipitant.

  20. Report on the Implementation of Homogeneous Nucleation Scheme in MARMOT-based Phase Field Simulation

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2013-09-30

    In this report, we summarized our effort in developing mesoscale phase field models for predicting precipitation kinetics in alloys during thermal aging and/or under irradiation in nuclear reactors. The first part focused on developing a method to predict the thermodynamic properties of critical nuclei such as the sizes and concentration profiles of critical nuclei, and nucleation barrier. These properties are crucial for quantitative simulations of precipitate evolution kinetics with phase field models. Fe-Cr alloy was chosen as a model alloy because it has valid thermodynamic and kinetic data as well as it is an important structural material in nuclear reactors. A constrained shrinking dimer dynamics (CSDD) method was developed to search for the energy minimum path during nucleation. With the method we are able to predict the concentration profiles of the critical nuclei of Cr-rich precipitates and nucleation energy barriers. Simulations showed that Cr concentration distribution in the critical nucleus strongly depends on the overall Cr concentration as well as temperature. The Cr concentration inside the critical nucleus is much smaller than the equilibrium concentration calculated by the equilibrium phase diagram. This implies that a non-classical nucleation theory should be used to deal with the nucleation of Cr precipitates in Fe-Cr alloys. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. A number of interesting phenomena were observed from the simulations: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrated that it is critical to introduce the correct critical nuclei into phase

  1. Nucleation and crystallization behavior of RE - doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Goncharuk, V.; Mamaev, A.; Silant'ev, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    The microstructure and crystallization of the glasses with composition (100-x-y)TeO2-xPbO·P2O5-yPbF2:zMF3 (M= Er, Eu, Nd; x=42.5-30, y=5-30, z=0.5-3.0) were investigated by transmission electron microscopy (TEM) and luminescence methods. It was found that the doping with the rare-earth (III) fluorides promoted nucleation in the bulk glasses. The sizes of generated particles are about 2-5 nanometers and their shapes are close to spherical. The growth rate of crystallites depended on the lead fluoride content and glass forming rate. The heat treatment of the samples promotes the glass ceramic formation, where the crystalline phase is Pb2P2O7.

  2. Linear relation between TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for aqueous solutions of sucrose, trehalose, and maltose

    NASA Astrophysics Data System (ADS)

    Kanno, Hitoshi; Soga, Makoto; Kajiwara, Kazuhito

    2007-08-01

    Homogeneous ice nucleation temperatures ( THs) of aqueous sucrose, trehalose, and maltose solutions were measured together with melting temperatures ( Tms). It is shown that there is a linear relation between TH and Tm for these solutions. Almost identical supercooling behavior is observed for these aqueous disaccharide solutions.

  3. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1979-01-01

    Crystal nucleation behavior in metallic alloys known to form glasses in melt quenching was characterized and from this characterization the possibility that massive amounts of certain alloys could be slow cooled to the glass state was assessed. Crystal nucleation behavior of pure liquid metals was examined experimentally, under containerless conditions, and theoretically.

  4. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.

    PubMed

    Chung, Sung-Yoon; Kim, Young-Min; Choi, Si-Young; Kim, Jin-Gyu

    2015-01-27

    It has been generally accepted that crystal shrinkage during Ostwald ripening can be understood simply as a reverse process of crystal growth, and as a result, little attention has been paid to shrinkage behavior. The entire microstructure of polycrystalline materials, however, forms as a consequence of both growing and shrinking crystals. Thus, scrutiny of shrinking characteristics in addition to growth aspects is essential for a complete understanding of the evolution of microstructure during Ostwald ripening. By capturing real-time in situ high-resolution electron micrographs at high temperature, we herein demonstrate the shrinkage behavior of nanocrystals embedded in a solid crystalline matrix during the ripening process of a metal phosphate. Unlike typical crystal growth behavior based on two-dimensional homogeneous nucleation, heterogeneous types of nucleation with nanoscale pits at solid-solid interfaces (or crystal edges) are observed to dominantly occur during shrinkage of the crystals. The findings of this study suggest that crystal shrinkage proceeds with a lower activation energy barrier than that of crystal growth, although both crystal growth and shrinkage take place at the same time during Ostwald ripening. PMID:25588182

  5. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2001-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on Earth (1 g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on Earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials.

  6. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons. PMID:16784271

  7. How Crystals Nucleate and Grow in Aqueous NaCl Solution.

    PubMed

    Chakraborty, Debashree; Patey, G N

    2013-02-21

    Large-scale molecular dynamics simulations (64 000 particles) are used to examine the microscopic mechanism of crystal nucleation and growth in a slightly supersaturated solution of NaCl in water at 300 K and 1 atm. Early-stage nucleation is observed, and the growth of a single crystal is followed for ∼140 ns. It is shown that the nucleation and growth process is better described by Ostwald's rule of stages than by classical nucleation theory. Crystal nucleation originates in a region where the local salt concentration exceeds that of the bulk solution. The early-stage nucleus is a loosely ordered arrangement of ions that retains a significant amount of water. The residual water is slowly removed as the crystal grows and evolves toward its stable anhydrous state. PMID:26281868

  8. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  9. Experimental study of homogeneous nucleation from the bismuth supersaturated vapor: evaluation of the surface tension of critical nucleus.

    PubMed

    Onischuk, A A; Vosel, S V; Borovkova, O V; Baklanov, A M; Karasev, V V; di Stasio, S

    2012-06-14

    The homogeneous nucleation of bismuth supersaturated vapor is studied in a laminar flow quartz tube nucleation chamber. The concentration, size, and morphology of outcoming aerosol particles are analyzed by a transmission electron microscope (TEM) and an automatic diffusion battery (ADB). The wall deposit morphology is studied by scanning electron microscopy. The rate of wall deposition is measured by the light absorption technique and direct weighting of the wall deposits. The confines of the nucleation region are determined in the "supersaturation cut-off" measurements inserting a metal grid into the nucleation zone and monitoring the outlet aerosol concentration response. Using the above experimental techniques, the nucleation rate, supersaturation, and nucleation temperature are measured. The surface tension of the critical nucleus and the radius of the surface of tension are determined from the measured nucleation parameters. To this aim an analytical formula for the nucleation rate is used, derived from author's previous papers based on the Gibbs formula for the work of formation of critical nucleus and the translation-rotation correction. A more accurate approach is also applied to determine the surface tension of critical drop from the experimentally measured bismuth mass flow, temperature profiles, ADB, and TEM data solving an inverse problem by numerical simulation. The simulation of the vapor to particles conversion is carried out in the framework of the explicit finite difference scheme accounting the nucleation, vapor to particles and vapor to wall deposition, and particle to wall deposition, coagulation. The nucleation rate is determined from simulations to be in the range of 10(9)-10(11) cm(-3) s(-1) for the supersaturation of Bi(2) dimers being 10(17)-10(7) and the nucleation temperature 330-570 K, respectively. The surface tension σ(S) of the bismuth critical nucleus is found to be in the range of 455-487 mN/m for the radius of the surface of

  10. A quantitative parameter-free prediction of simulated crystal nucleation times

    SciTech Connect

    Aga, Rachel S; Morris, James R; Hoyt, Jeffrey John; Mendelev, Mikhail I.

    2006-01-01

    We present direct comparisons between simulated crystal-nucleation times and theoretical predictions using a model of aluminum, and demonstrate that a quantitative prediction can be made. All relevant thermodynamic properties of the system are known, making the agreement of our simulation data with nucleation theories free of any adjustable parameters. The role of transient nucleation is included in the classical nucleation theory approach, and shown to be necessary to understand the observed nucleation times. The calculations provide an explanation on why nucleation is difficult to observe in simulations at moderate undercoolings. Even when the simulations are significantly larger than the critical nucleus, and when simulation times are sufficiently long, at moderate undercoolings the small concentration of critical nuclei makes the probability of the nucleation low in molecular dynamics simulations.

  11. Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon

    NASA Technical Reports Server (NTRS)

    Ong, T. P.; Xiong, Fulin; Chang, R. P. H.; White, C. W.

    1992-01-01

    The nucleation and growth of diamond crystals on single-crystal copper surfaces implanted with carbon ions is studied. Microwave plasma-enhanced chemical-vapor deposition is used for diamond growth. The single-crystal copper substrates were implanted either at room or elevated temperature with carbon ions prior to diamond nucleation. This procedure leads to the formation of a graphite film on the copper surface which greatly enhances diamond crystallite nucleation. A simple lattice model is constructed for diamond growth on graphite as 111 line (diamond) parallel to 0001 line (graphite) and 110 line (diamond) parallel to 1 1 -2 0 (graphite).

  12. Containerless protein crystallization in floating drops: application to crystal growth monitoring under reduced nucleation conditions

    NASA Astrophysics Data System (ADS)

    Lorber, Bernard; Giegé, Richard

    1996-10-01

    A micromethod was developed for the batch crystallization of proteins under conditions were the solution has no contact with the container walls. Drops of crystallization solutions (5 to 100 μl) are placed at the interface between two layers of inert and non-miscible silicone fluids contained in square glass or plastic cuvettes. The densities of the fluids are either lower or higher than those of the major precipitating agents of macromolecules, including aqueous solutions containing salts, polyethylene glycols or alcohols. Several proteins and a spherical plant virus were crystallized in the temperature range 4°C-20°C using this set-up. A thermostated device was built for the dynamic control of the temperature of crystallization drops and the monitoring of crystal growth by video-microscopy. In all cases, the habit of the crystals grown in floating drops are identical to those of controls grown in sealed glass tubes without silicone fluid. The comparison of the number of crystals in drops kept under one layer of fluid and in floating drops of the same volume indicates that heterogeneous nucleation is minimized when protein crystallization is performed in floating drops. The advantages and limitations of this novel containerless crystallization method are discussed.

  13. Metastability Limit for the Nucleation of NaCl Crystals in Confinement.

    PubMed

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2014-03-01

    We study the spontaneous nucleation and growth of sodium chloride crystals induced by controlled evaporation in confined geometries (microcapillaries) spanning several orders of magnitude in volume. In all experiments, the nucleation happens reproducibly at a very high supersaturation S ∼ 1.6 and is independent of the size, shape, and surface properties of the microcapillary. We show from classical nucleation theory that this is expected: S ∼ 1.6 corresponds to the point where nucleation first becomes observable on experimental time scales. A consequence of the high supersaturations reached at the onset of nucleation is the very rapid growth of a single skeletal (Hopper) crystal. Experiments on porous media also reveal the formation of Hopper crystals in the entrapped liquid pockets in the porous network and consequently underline the fact that sodium chloride can easily reach high supersaturations, in spite of what is commonly assumed for this salt. PMID:26274084

  14. Attainment of unstable β nucleation of glycine through novel swift cooling crystallization process

    NASA Astrophysics Data System (ADS)

    Renuka Devi, K.; Gnanakamatchi, V.; Srinivasan, K.

    2014-08-01

    The sudden cooling of mother liquor from high temperature to a temperature below the ambient through the recently introduced swift cooling crystallization process yielded the β nucleation of glycine even in the absence of anti-solvents and additives. Experiments were continued at different supersaturation and stirring levels. The nucleation matrix resulted out of these 135 experiments revealed that, even at lower supersaturation and lower stirring rates, the unstable β nucleation could be achieved. This attained result contrasts the existing reports in which β nucleation is achieved only at higher supersaturation levels. The intermediate supersaturation and stirring levels facilitate both the β and α nucleation through solution mediated phase transformation while the higher supersaturation and stirring levels facilitate only the α nucleation of glycine in the system. The swift cooling method adopted declines the energy barrier that inherently exists for β and enables its nucleation in the system. Analytically the nucleation parameters of β and α polymorphs were estimated based on Classical Nucleation Theory. Form of crystallization of the nucleated polymorphs of glycine was confirmed by powder x-ray diffraction analysis.

  15. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  16. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.

    PubMed

    Iwamatsu, Masao

    2008-02-28

    The homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. The whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami exponent but the magnitude of nucleation rate and, in particular, of incubation time are quantitatively studied. The modified Avrami plot is also used to verify the derived KJMA parameters. It is found that the Avrami exponent is close to the ideal theoretical value m=3. The temperature dependence of nucleation rate follows the activation-type behavior expected from the classical nucleation theory. On the other hand, the temperature dependence of incubation time does not follow the exponential activation-type behavior. Rather the incubation time is inversely proportional to the temperature predicted from the theory of Shneidman and Weinberg [J. Non-Cryst. Solids 160, 89 (1993)]. A need to restrict thermal noise in simulation to deduce correct Avrami exponent is also discussed. PMID:18315058

  17. Homogeneous water nucleation and droplet growth in methane and carbon dioxide mixtures at 235 K and 10 bar.

    PubMed

    Holten, V; van Dongen, M E H

    2010-05-28

    Homogeneous nucleation rates and droplet growth rates of water in pure methane and mixtures of methane and carbon dioxide were measured in an expansion wave tube at 235 K and 10 bar. The nucleation rate in pure methane is three orders of magnitude higher than literature nucleation rates of water in low-pressure helium or argon. Addition of carbon dioxide to the carrier gas mixture increases the rates even more. Specifically, rates in a mixture of methane and 3% carbon dioxide are a factor of 10 higher than the rates in pure methane. With 25% carbon dioxide, the rates are four orders of magnitude higher than the rates in pure methane. An application of the nucleation theorem shows that the critical cluster consists of 22 water molecules and 5 methane molecules, for nucleation in pure methane. Growth rates of water droplets were measured in methane and in methane-carbon dioxide mixtures at 243 K and 11.5 bar. At equal temperature, pressure and water vapor fraction, the growth rate of the squared droplet radius is about 20% lower in the mixture with 25% carbon dioxide than in pure methane. The lower growth rate is caused by a smaller diffusion coefficient of water in the mixture with carbon dioxide; the difference of the diffusion coefficients is qualitatively reproduced by the empirical Fuller correlation combined with Blanc's law. PMID:20515097

  18. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    PubMed

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models. PMID:23061836

  19. In-situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Slouf, Miroslav; Krejcikova, Sabina; Vackova, Tatana; Kratochvil, Jaroslav; Novak, Libor

    2015-03-01

    We introduce a dynamic sandwich method, which can be used for in-situ observation and quantification of polymer crystallization nucleated by micro/nanoparticles. The method was applied on polyoxymethylene (POM) composites with three nucleating agents: talc micropowder (POM/mTalc), chalk nanopowder (POM/nChalk) and titanate nanotubes (POM/TiNT). The nucleating agents were deposited between polymer films, the resulting sandwich samples were consolidated by thermal treatment, and their microtomed cross-sections were observed during isothermal crystallization by polarized light microscopy. As the intensity of polarized light was shown to be proportional to the relative crystallinity, the PLM results could be fitted to Avrami equation and the nucleating activity of all investigated particles could be quantified by means of Avrami parameters (n, k). The crystallization half-times increased reproducibly in the following order: POM/nChalk < POM/mTalc < POM/TiNT ~ POM. For strong nucleating agents (mTalc, nChalk), the crystallization kinetics corresponded to spontaneous crystallization starting from central nucleating layer, which was verified by computer simulations. The results were also confirmed by DSC. We concluded that the sandwich method is an efficient microscopic technique for detailed evaluation of nucleating activity of arbitrary micro/nanoparticles in polymer systems.

  20. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Experimental evidence indicates a dominant role of solution phase interactions in nucleating and growing tetragonal lysozyme crystals. These interactions are extensive, even at saturation, and may be a primary cause of misoriented regions in crystals grown on Earth. Microgravity, by limiting interfacial concentrations to diffusion-controlled levels, may benefit crystal quality by also reducing the extent of associated species present at the interface.

  1. Nucleation ahead of a C 60 crystal growing from the vapor

    NASA Astrophysics Data System (ADS)

    Schönherr, E.; Matsumoto, K.

    1997-07-01

    Single crystals of the fullerene C 60 are grown by the Pizzarello method in an argon atmosphere. A C 60 nucleus is formed ahead of the growing crystal when a drive rate greater than the limited mass-transfer rate is used. The analysis of the crystal growth rates and temperature distribution reveals a constitutional supersaturation which causes this particular type of nucleation.

  2. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  3. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  4. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  5. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  6. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  7. Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate).

    PubMed

    Chen, Jianxiang; Xu, Chunjiang; Wu, Defeng; Pan, Keren; Qian, Aiwen; Sha, Yulu; Wang, Li; Tong, Wei

    2015-12-10

    Cellulose crystals, including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC), were used as the fillers to prepare green composites with poly(β-hydroxybutyrate) (PHB) by melt mixing for crystallization study. The results reveal that the spherulite morphology of PHB and its composites depends highly on the crystallization temperature, evolving from bundle shaped to ring-banded and finally to irregular or zigzag textures with increase of temperature. However, the ring-banded structure is strongly affected by the presence of cellulose crystals, and the average band space decreases evidently with the addition of MCC or NCC. Compared with PHB/MCC composite, PHB/NCC composite shows degraded spherulite structure with smaller band space and higher flocculation level of peak-to-valley height because of stronger unbalanced stresses in this system. Besides, cellulose crystals can act as good heterogeneous nucleating agent to accelerate the crystallization of PHB, which is further confirmed by the polarized optical microscopy observations and the kinetic analyses. PMID:26428152

  8. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K; Noya, Eva G; Vega, Carlos

    2012-11-21

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging. PMID:23181323

  9. A novel approach to the theory of homogeneous and heterogeneous nucleation.

    PubMed

    Ruckenstein, Eli; Berim, Gersh O; Narsimhan, Ganesan

    2015-01-01

    A new approach to the theory of nucleation, formulated relatively recently by Ruckenstein, Narsimhan, and Nowakowski (see Refs. [7-16]) and developed further by Ruckenstein and other colleagues, is presented. In contrast to the classical nucleation theory, which is based on calculating the free energy of formation of a cluster of the new phase as a function of its size on the basis of macroscopic thermodynamics, the proposed theory uses the kinetic theory of fluids to calculate the condensation (W(+)) and dissociation (W(-)) rates on and from the surface of the cluster, respectively. The dissociation rate of a monomer from a cluster is evaluated from the average time spent by a surface monomer in the potential well as obtained from the solution of the Fokker-Planck equation in the phase space of position and momentum for liquid-to-solid transition and the phase space of energy for vapor-to-liquid transition. The condensation rates are calculated using traditional expressions. The knowledge of those two rates allows one to calculate the size of the critical cluster from the equality W(+)=W(-) as well as the rate of nucleation. The developed microscopic approach allows one to avoid the controversial application of classical thermodynamics to the description of nuclei which contain a few molecules. The new theory was applied to a number of cases, such as the liquid-to-solid and vapor-to-liquid phase transitions, binary nucleation, heterogeneous nucleation, nucleation on soluble particles and protein folding. The theory predicts higher nucleation rates at high saturation ratios (small critical clusters) than the classical nucleation theory for both solid-to-liquid as well as vapor-to-liquid transitions. As expected, at low saturation ratios for which the size of the critical cluster is large, the results of the new theory are consistent with those of the classical one. The present approach was combined with the density functional theory to account for the density

  10. Some Aspects of PVT Low Supersaturation Nucleation and Contactless Crystal Growth

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.

    1996-01-01

    The basic principles of the contactless growth of crystals from the vapor in combination with the process of low-supersaturation nucleation are discussed. The mathematical formulation of the morphological stability criterion in vapor growth systems is given and its implications for contactless growth technique are analyzed. A diagram for selection of proper temperature conditions for growth of CdTe crystals is presented.

  11. Liquid-to-crystal nucleation: Automated lag-time apparatus to study supercooled liquids

    NASA Astrophysics Data System (ADS)

    Heneghan, A. F.; Wilson, P. W.; Wang, Genmiao; Haymet, A. D. J.

    2001-10-01

    The statistics of liquid-to-crystal nucleation are studied using an automated lag-time apparatus. A single 500 μL sample of distilled water is repeatedly supercooled to a fixed temperature below its equilibrium freezing temperature, held until freezing occurred, and then thawed. Our raw data is then a set of approximately 300 lag-times for each of three set supercooling temperatures. In each case, a small insoluble AgI crystal was added to ensure heterogeneous nucleation and average nucleation temperatures around ΔT=8 K. The distribution of lag-times is analyzed, and shown to be well approximated by a single exponential decay, with average lag-times in the range of 1000-3000 seconds. This average lag-time decreases markedly at deeper levels of supercooling, and for the present data, this decrease is fit equally well by exponential, power law decay, and classical nucleation functional forms.

  12. Biliary proteins. Unique inhibitors of cholesterol crystal nucleation in human gallbladder bile.

    PubMed Central

    Holzbach, R T; Kibe, A; Thiel, E; Howell, J H; Marsh, M; Hermann, R E

    1984-01-01

    The onset time for cholesterol crystal nucleation of supersaturated normal human gallbladder biles is consistently prolonged when compared with biles from patients with cholesterol gallstone disease. Investigation of the factor(s) responsible for the suspended supersaturation (metastability) of normal human biles revealed that model bile solutions of cholesterol saturation index (CSI) and molar lipid composition identical to individual gallbladder bile specimens had much shorter crystal nucleation times, i.e., exhibited decreased metastability. Unsaturated normal biles, after supplementation with lecithin, cholesterol, and sodium taurocholate to a 'standard' supersaturated lipid composition, also demonstrated nucleation times three- to 15-fold longer than the comparable standard model bile. Total lipid extracts of normal biles, however, when similarly supplemented, did not differ in nucleation time from the control model solution. Gallbladder biles were fractionated by gel chromatography and the eluted fractions were pooled into two fractions. The fractions eluting in about the first 25% of the included volume when mixed with the supersaturated standard model bile induced a modest increase in nucleation time of approximately 1.5 times the control value. The fractions eluting in the second 25% of the included volume and which contained all of the bile lipids, were concentrated and supplemented with lipids to the standard composition. The nucleation times of these supplements were 3-10 times longer than the control nucleation times. Delipidated bile protein mixtures, purified by discontinuous sucrose gradient centrifugation, were recombined with purified lipids at the standard composition used previously. The nucleation times of these mixtures were significantly prolonged to the same extent as those associated with the second chromatographic fraction. These observations demonstrate that the delayed onset (inhibition) of cholesterol crystal nucleation observed in

  13. Nucleation of Crystals From Solution in Microgravity (USML-1 Glovebox (GBX) Investigation)

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.; Lehoczky, Sandor L.

    1994-01-01

    A new method for initiating nucleation from solutions in microgravity which avoids nucleation on container walls and other surfaces is described. This method consists of injecting a small quantity of highly concentrated, heated solution into the interior of a lightly supersaturated, cooler host gowth solution. It was tested successfully on USML-I, producing a large number of LAP crystals whose longest dimension averaged 1 mm.

  14. Iodine oxide homogeneous nucleation: An explanation for coastal new particle production

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thorsten; O'Dowd, Colin D.; Seinfeld, John H.

    A series of laboratory experiments on the chemical composition of aerosol particles formed after photodissociation of CH2I2, a major volatile alkyl halide released from macroalgae, have been performed in a laboratory scale reaction chamber using on-line atmospheric pressure chemical ionization mass spectrometry (APCI/MS). Based on the mass spectrometric results and the molecular properties of iodine oxides, we suggest that the self-nucleation of iodine oxides provides an efficient source of natural condensable material in coastal environments and discuss this concept focusing on OIO as one potential key species for new particle formation. The presented hypothesis not only fits the measured enrichment of iodine species in submicrometer particles, but also can explain the frequently observed nucleation bursts in the coastal boundary layer.

  15. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  16. The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    1999-01-01

    An improved version of a transverse ion source was developed which uses selected ion chemical ionization mass spectrometry techniques inside of a particle nucleation flow tube. These new techniques are very unique, in that the chemical ionization is done inside of the flow tube rather than by having to remove the compounds and clusters of interest which are lost on first contact,with any surfaces. The transverse source is also unique because it allows the ion reaction time to be varied over more than an order of magnitude, which in turn makes possible the separation of ion induced cluster growth from the charging of preexisting molecular clusters. As a result of combining these unique capabilities, the first ever measurements of prenucleation molecular clusters were performed. These clusters are the intermediate stage of growth in the gas-to-particle conversion process. This new technique provides a means of observing clusters containing 2, 3, 4, ... and up to about 8 sulfuric acid molecules, where the critical cluster size under these measurement conditions was about 4 or 5. Thus, the nucleation process can now be directly observed and even growth beyond the critical cluster size can be investigated. The details of this investigation are discussed in a recently submitted paper, which is included as Appendix A. Measurements of the diffusion coefficient of sulfuric acid and sulfuric acid clustered with a water molecule have also been performed. The measurements are also discussed in more detail in another recently submitted paper which is included as Appendix B. The empirical results discussed in both of these papers provide a critical test of present nucleation theories. They also provide new hope for resolving many of the huge discrepancies between field observation and model prediction of particle nucleation. The second part of the research conducted under this project was directed towards the development of new chemical ionization techniques for measuring sulfur

  17. Effect of Mannitol on Nucleation and Crystal Growth of Amorphous Flavonoids: Implications on the Formation of Nanocrystalline Solid Dispersion.

    PubMed

    Shete, Ganesh; Modi, Sameer R; Bansal, Arvind Kumar

    2015-11-01

    In this work, we studied crystallization kinetics of amorphous hesperetin (HRN) and naringenin (NRN) alone, and in 1:1 proportion with mannitol at Tg + 15 K. Crystallization rate of NRN was found to be significantly higher than HRN. Mannitol accelerated crystallization of HRN as well as NRN. NRN exhibited higher crystallization rate than HRN, in presence of mannitol, as well. Finke-Watzky model was used to deconvolute the crystallization kinetics data into nucleation and crystal growth rate constant. HRN alone had 9.56 × 10(9) times faster nucleation rate and 1.88 times slower crystal growth than NRN alone. Mannitol increased nucleation and crystal growth rate of HRN as well as NRN. In presence of mannitol, HRN possessed 1.34 × 10(10) times faster nucleation rate and 1.70 times slower crystal growth rate than NRN. Differences in crystallization behavior of HRN and NRN were explained by their thermodynamic properties. PMID:26183113

  18. Direct Visualization of the Two-step Nucleation Model by Fluorescence Color Changes during Evaporative Crystallization from Solution

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuki; Suzuki, Yukino; Fujimori, Jun-Ichi; Sagawa, Takehiro; Hara, Mitsuo; Seki, Takahiro; Yasukuni, Ryohei; Chapelle, Marc Lamy De La

    2016-03-01

    The two-step nucleation model for crystal nuclei formation explains several experimental and theoretical results better than the classical nucleation theory. We report here direct visualization of the two-step nucleation model for organic molecular crystallization. Evaporative crystallization from a solution of a dibenzoylmethane boron complex that displays mechanofluorochromism, a fluorescence color change induced by mechanical perturbation, was probed by fluorescence change. The dependence of fluorescence change on dispersion concentration of the complex in a polymer matrix was also investigated. We detected transitional emission from the amorphous cluster state prior to crystallization. This is the first demonstration of the two-step nucleation model based on fluorescence color changes.

  19. Direct Visualization of the Two-step Nucleation Model by Fluorescence Color Changes during Evaporative Crystallization from Solution.

    PubMed

    Ito, Fuyuki; Suzuki, Yukino; Fujimori, Jun-Ichi; Sagawa, Takehiro; Hara, Mitsuo; Seki, Takahiro; Yasukuni, Ryohei; Chapelle, Marc Lamy de la

    2016-01-01

    The two-step nucleation model for crystal nuclei formation explains several experimental and theoretical results better than the classical nucleation theory. We report here direct visualization of the two-step nucleation model for organic molecular crystallization. Evaporative crystallization from a solution of a dibenzoylmethane boron complex that displays mechanofluorochromism, a fluorescence color change induced by mechanical perturbation, was probed by fluorescence change. The dependence of fluorescence change on dispersion concentration of the complex in a polymer matrix was also investigated. We detected transitional emission from the amorphous cluster state prior to crystallization. This is the first demonstration of the two-step nucleation model based on fluorescence color changes. PMID:26953165

  20. Direct Visualization of the Two-step Nucleation Model by Fluorescence Color Changes during Evaporative Crystallization from Solution

    PubMed Central

    Ito, Fuyuki; Suzuki, Yukino; Fujimori, Jun-ichi; Sagawa, Takehiro; Hara, Mitsuo; Seki, Takahiro; Yasukuni, Ryohei; Chapelle, Marc Lamy de la

    2016-01-01

    The two-step nucleation model for crystal nuclei formation explains several experimental and theoretical results better than the classical nucleation theory. We report here direct visualization of the two-step nucleation model for organic molecular crystallization. Evaporative crystallization from a solution of a dibenzoylmethane boron complex that displays mechanofluorochromism, a fluorescence color change induced by mechanical perturbation, was probed by fluorescence change. The dependence of fluorescence change on dispersion concentration of the complex in a polymer matrix was also investigated. We detected transitional emission from the amorphous cluster state prior to crystallization. This is the first demonstration of the two-step nucleation model based on fluorescence color changes. PMID:26953165

  1. Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers

    SciTech Connect

    Kim, Kyungil; Uysal, Ahmet; Kewalramani, Sumit; Stripe, Benjamin; Dutta, Pulak

    2009-04-22

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  2. Effects of Chitosan on the Morphology and Alignment of Calcite Crystals Nucleating Under Langmuir Monolayers

    SciTech Connect

    Kim, K.; Uysal, A; Kewalramani, S; Stripe, B; Dutta, P

    2009-01-01

    The growth of calcium carbonate crystals under Langmuir monolayers was investigated in the presence of chitosan, a soluble derivative of chitin added to the subphase to better simulate the polyelectrolyte-containing in vivo environment. Chitosan causes distinct concentration-dependent changes in the orientation, shape and morphology of the calcite crystals nucleating under acid and sulfate monolayers. Our results suggest that polyelectrolytes may play essential roles in controlling the growth of biogenic calcite crystals.

  3. Crystallization from the amorphous state: nucleation-growth decoupling, polymorphism interplay, and the role of interfaces.

    PubMed

    Descamps, Marc; Dudognon, Emeline

    2014-09-01

    The physical stability of the amorphous state is governed by crystallization, which results from the complex interplay of nucleation and growth processes. These processes can be further complicated by the preferred initial nucleation of less-stable phases, and interpretation requires the evaluation of the relative roles of structure, dynamics, and thermodynamics on the kinetics of the recrystallization. As a contribution to this issue, we reanalyze data sets concerning recrystallization of two pharmaceutical compounds: L-arabitol and RS ibuprofen. These compounds share the property of being good glass formers and present monotropic polymorphism. In the present analysis, we are mainly focusing on the localization of nucleation and growth zones and the role of a transient crystallization of the metastable phase. On the basis of the elementary theories, the results offer the opportunity to discuss the impact of interfacial energies, molecular mobility, crystal disorder, liquid short-range order, and crack formation in the glass. PMID:24902677

  4. Nucleation of crystals from solution: classical and two-step models.

    PubMed

    Erdemir, Deniz; Lee, Alfred Y; Myerson, Allan S

    2009-05-19

    Crystallization is vital to many processes occurring in nature and in the chemical, pharmaceutical, and food industries. Notably, crystallization is an attractive isolation step for manufacturing because this single process combines both particle formation and purification. Almost all of the products based on fine chemicals, such as dyes, explosives, and photographic materials, require crystallization in their manufacture, and more than 90% of all pharmaceutical products contain bioactive drug substances and excipients in the crystalline solid state. Hence control over the crystallization process allows manufacturers to obtain products with desired and reproducible properties. We judge the quality of a crystalline product based on four main properties: size, purity, morphology, and crystal structure. The pharmaceutical industry in particular requires production of the desired crystal form (polymorph) to assure the bioavailability and stability of the drug substance. In solution crystallization, nucleation plays a decisive role in determining the crystal structure and size distribution. Therefore, understanding the fundamentals of nucleation is crucial to achieve control over these properties. Because of its analytical simplicity, researchers have widely applied classical nucleation theory to solution crystallization. However, a number of differences between theoretical predictions and experimental results suggest that nucleation of solids from solution does not proceed via the classical pathway but follows more complex routes. In this Account, we discuss the shortcomings of classical nucleation theory and review studies contributing to the development of the modern two-step model. In the two-step model that was initially proposed for protein crystallization, a sufficient-sized cluster of solute molecules forms first, followed by reorganization of that cluster into an ordered structure. In recent experimental and theoretical studies, we and other researchers have

  5. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ahlm, L.; Yli-Juuti, T.; Lawler, M.; Keskinen, H.; Tröstl, J.; Schobesberger, S.; Duplissy, J.; Amorim, A.; Bianchi, F.; Donahue, N. M.; Flagan, R. C.; Hakala, J.; Heinritzi, M.; Jokinen, T.; Kürten, A.; Laaksonen, A.; Lehtipalo, K.; Miettinen, P.; Petäjä, T.; Rissanen, M. P.; Rondo, L.; Sengupta, K.; Simon, M.; Tomé, A.; Williamson, C.; Wimmer, D.; Winkler, P. M.; Ehrhart, S.; Ye, P.; Kirkby, J.; Curtius, J.; Kulmala, M.; Lehtinen, K. E. J.; Smith, J. N.; Riipinen, I.; Virtanen, A.

    2015-07-01

    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e. particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake constrains their chemical composition. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) experiments performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size indicating decreasing acidity of particles. No clear effect of the sulfuric acid monomer concentrations on the hygroscopicities of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid monomer concentrations. In particular, when the concentrations of sulfuric acid was 5.1 × 106 molecules cm-3 in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01 close to the value reported for dimethylamine sulfate (DMAS) (κDMAS ~ 0.28). Furthermore, the difference in κ between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The κ values of particles in the presence of sulfuric acid and organics were

  6. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ahlm, L.; Yli-Juuti, T.; Lawler, M.; Keskinen, H.; Tröstl, J.; Schobesberger, S.; Duplissy, J.; Amorim, A.; Bianchi, F.; Donahue, N. M.; Flagan, R. C.; Hakala, J.; Heinritzi, M.; Jokinen, T.; Kürten, A.; Laaksonen, A.; Lehtipalo, K.; Miettinen, P.; Petäjä, T.; Rissanen, M. P.; Rondo, L.; Sengupta, K.; Simon, M.; Tomé, A.; Williamson, C.; Wimmer, D.; Winkler, P. M.; Ehrhart, S.; Ye, P.; Kirkby, J.; Curtius, J.; Baltensperger, U.; Kulmala, M.; Lehtinen, K. E. J.; Smith, J. N.; Riipinen, I.; Virtanen, A.

    2016-01-01

    Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study, we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at subsaturated conditions (ca. 90 % relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 × 106 molecules cm-3 in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured κ of 15 nm particles was 0.31 ± 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (κDMAS ˜ 0.28). Furthermore, the difference in κ between sulfuric acid and sulfuric acid-imethylamine experiments increased with increasing particle size. The κ values of particles in the presence of

  7. Initial stage of nucleation-mediated crystallization of a supercooled melt

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.

    2016-09-01

    The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.

  8. First passage times in homogeneous nucleation: Dependence on the total number of particles.

    PubMed

    Yvinec, Romain; Bernard, Samuel; Hingant, Erwan; Pujo-Menjouet, Laurent

    2016-01-21

    Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings, we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number of identical particles in a finite volume. We study the statistics of times required for maximal clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes, we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first assembly time behavior as a function of the total quantity of particles. We find that the mean time to first completion of a maximum-sized cluster may have a surprisingly weak dependence on the total number of particles. We highlight how higher statistics (variance, distribution) of the first passage time may nevertheless help to infer key parameters, such as the size of the maximum cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent infrequent stochastic processes, in contrast to classical nucleation theory. PMID:26801019

  9. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma

    SciTech Connect

    Gualda, G.; Cook, D.L.; Chopra, R.; Qin, L.; Anderson, A.T.; Rivers, M.

    2010-12-07

    The Bishop Tuff (USA) is a large-volume, high-silica pyroclastic rhyolite. Five pumice clasts from three early stratigraphic units were studied. Size distributions were obtained using three approaches: (1) crushing, sieving and winnowing (reliable for crystals >100 {micro}m); (2) microscopy of 1 mm{sup 3} fragments (preferable for crystals <100 {micro}m); and (3) computerised X-ray microtomography of {approx}1 cm{sup 3} pumice pieces. Phenocryst fragments coated with glass are common, and the size distributions for all crystals are concave-upward, indicating that crystal fragmentation is an important magmatic process. Three groups are recognised, characterised by: (1) high-density (0.759-0.902 g cm{sup -3}), high-crystal content (14.4-15.3 wt.%) and abundant large crystals (>800 {micro}m); concave-downward size distributions for whole crystals indicate late-stage growth with limited nucleation, compatible with the slow cooling of a large, gas-saturated, stably stratified magma body; (2) low-density (0.499 g cm{sup -3}), low-crystal content (6.63 wt.%) and few large crystals; the approximately linear size distribution reveals that nucleation was locally important, perhaps close to the walls; and (3) intermediate characteristics in all respects. The volumetric fraction of bubbles inversely correlates with the number of large crystals. This is incompatible with isobaric closed-system crystallisation, but can be explained by sinking of large crystals and rise of bubbles in the magma.

  10. Crystal nucleation in the hard-sphere system revisited: a critical test of theoretical approaches.

    PubMed

    Tóth, Gyula I; Gránásy, László

    2009-04-16

    The hard-sphere system is the best known fluid that crystallizes: the solid-liquid interfacial free energy, the equations of state, and the height of the nucleation barrier are known accurately, offering a unique possibility for a quantitative validation of nucleation theories. A recent significant downward revision of the interfacial free energy from approximately 0.61kT/sigma(2) to (0.56 +/- 0.02)kT/sigma(2) [Davidchack, R.; Morris, J. R.; Laird, B. B. J. Chem. Phys. 2006, 125, 094710] necessitates a re-evaluation of theoretical approaches to crystal nucleation. This has been carried out for the droplet model of the classical nucleation theory (CNT), the self-consistent classical theory (SCCT), a phenomenological diffuse interface theory (DIT), and single- and two-field variants of the phase field theory that rely on either the usual double-well and interpolation functions (PFT/S1 and PFT/S2, respectively) or on a Ginzburg-Landau expanded free energy that reflects the crystal symmetries (PFT/GL1 and PFT/GL2). We find that the PFT/GL1, PFT/GL2, and DIT models predict fairly accurately the height of the nucleation barrier known from Monte Carlo simulations in the volume fraction range of 0.52 < varphi < 0.54, whereas the CNT, SCCT, PFT/S1, and PFT/S2 models underestimate it significantly. PMID:19320450

  11. Crystal Orientation Dynamics of Collective Zn dots before Preferential Nucleation

    PubMed Central

    Liu, Chun-Chu; Huang, Jun-Han; Ku, Ching-Shun; Chiu, Shang-Jui; Ghatak, Jay; Brahma, Sanjaya; Liu, Chung-Wei; Liu, Chuan-Pu; Lo, Kuang-Yao

    2015-01-01

    The island nucleation in the context of heterogeneous thin film growth is often complicated by the growth kinetics involved in the subsequent thermodynamics. We show how the evolution of sputtered Zn island nucleation on Si(111) by magnetron sputtering in a large area can be completely understood as a model system by combining reflective second harmonic generation (RSHG), a 2D pole figure with synchrotron X-ray diffraction. Zn dots are then oxidized on the surfaces when exposed to the atmosphere as Zn/ZnO dots. Derived from the RSHG patterns of Zn dots at different growth times, the Zn dots grow following a unique transition from kinetic to thermodynamic control. Under kinetic-favoring growth, tiny Zn dots prefer arranging themselves with a tilted c-axis to the Si(111) substrate toward any of the sixfold in-plane Si<110> directions. Upon growth, the Zn dots subsequently evolve themselves to a metastable state with a smaller tilting angle toward selective <110> directions. As the Zn dots grow over a critical size, they become most thermodynamically stable with the c-axis vertical to the Si(111) substrate. For a system with large lattice mismatch, small volume dots take kinetic pathways with insignificant deviations in energy barriers. PMID:26211998

  12. Crystal Orientation Dynamics of Collective Zn dots before Preferential Nucleation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Chu; Huang, Jun-Han; Ku, Ching-Shun; Chiu, Shang-Jui; Ghatak, Jay; Brahma, Sanjaya; Liu, Chung-Wei; Liu, Chuan-Pu; Lo, Kuang-Yao

    2015-07-01

    The island nucleation in the context of heterogeneous thin film growth is often complicated by the growth kinetics involved in the subsequent thermodynamics. We show how the evolution of sputtered Zn island nucleation on Si(111) by magnetron sputtering in a large area can be completely understood as a model system by combining reflective second harmonic generation (RSHG), a 2D pole figure with synchrotron X-ray diffraction. Zn dots are then oxidized on the surfaces when exposed to the atmosphere as Zn/ZnO dots. Derived from the RSHG patterns of Zn dots at different growth times, the Zn dots grow following a unique transition from kinetic to thermodynamic control. Under kinetic-favoring growth, tiny Zn dots prefer arranging themselves with a tilted c-axis to the Si(111) substrate toward any of the sixfold in-plane Si<110> directions. Upon growth, the Zn dots subsequently evolve themselves to a metastable state with a smaller tilting angle toward selective <110> directions. As the Zn dots grow over a critical size, they become most thermodynamically stable with the c-axis vertical to the Si(111) substrate. For a system with large lattice mismatch, small volume dots take kinetic pathways with insignificant deviations in energy barriers.

  13. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    PubMed Central

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V.; Stanley, H. Eugene; Reguera, David; Franzese, Giancarlo

    2015-01-01

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments PMID:26095898

  14. Dislocation centers for nucleation of α-martensite and pairwise joining for martensite crystals with habits {hh l}

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Konovalov, S. V.; Yablonskaya, T. N.

    1994-04-01

    We analyze the regular pairwise joinings of α-martensite crystals with habits of the {hHl} type. We show that we can consistently interpret all known joinings by considering 60-degree linear dislocations as nucleation centers for crystals with habits {5tilde 57} and {2tilde 25} and by assuming that the directions of the Burgers vectors of the formed nucleation centers of the joined crystals are specified by the directions of the macroscopic or twinning shears of the original crystal.

  15. Nucleation, growth and characterization of LiB 3O 5 single crystals

    NASA Astrophysics Data System (ADS)

    Kannan, C. V.; Kimura, H.; Miyazaki, A.; Ramasamy, P.

    2005-02-01

    Nucleation parameters of LiB 3O 5 (LBO) that crystallized from high-temperature solution using two different solvents, namely boron oxide (B 2O 3) and molybdate (MoO 3), have been studied for better understanding of the growth process. Our results showed that B 2O 3 solvent yielded a larger value of metastable zone width than that of molybdate flux, thus giving more stability to the solution. Based on our theoretical considerations, inclusion-free LBO crystals have been grown by spontaneous nucleation and TSSG techniques using B 2O 3 solvent. Variation of optical absorption coefficient and refractive indices with wavelength has been studied. Results of optical and mechanical properties showed that the grown crystals are highly transparent and possesses hardness higher than that of KTP crystal.

  16. Theory of Nucleation and Growth of Protein Crystals by Solvent Evaporation

    NASA Astrophysics Data System (ADS)

    Baird, James K.

    1998-03-01

    Protein crystals precipitate from pH buffered aqueous solutions of strong electrolytes. Solvent evaporation is ordinarily used to supersaturate the solution and provoke nucleation. Nuclei which pass through the critical size go on to become macroscopic crystals. We investigate theoretically the early time regime where the rate of solvent evaporation controls the rate of increase of supersaturation. At rates which depend upon this supersaturation, nucleation and growth occur continuously and randomly throughout the solution. We assume that the faces of a nucleus created at time, t', grow by the spiral dislocation mechanism. Starting at t' = 0, integration of the growth rate function over t' gives an expression for the mass of crystals that have been formed up to time, t. In addition to a number of microscopic parameters describing the nuclei and crystals, this expression depends upon the concentration of the electrolyte as well as the initial and final masses of the dissolved protein.

  17. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate

    SciTech Connect

    Pan, Chien-Cheng; Lin, Kwang-Lung

    2011-05-15

    To illustrate the interfacial reaction mechanism, the Sn-Zn[Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (wt%)] solder was reflowed on Cu substrate at 250 deg. C for 15 s followed by immediate quench in liquid nitrogen. The frozen interfacial microstructure was investigated with high resolution transmission electron microscope. An amorphous double layer was formed at the interface which consists of a 5 nm pure Cu region and a Cu-Zn diffusion region. Nanocrystalline intermetallic compound (IMC) Cu{sub 5}Zn{sub 8} were observed in the Cu-Zn diffusion region. These nanocrystalline IMCs are suggested to form via a homogeneous nucleation process.

  18. Study of experiments on condensation of nitrogen by homogeneous nucleation at states modelling those on the national transonic facility

    NASA Technical Reports Server (NTRS)

    Wegener, P. P.

    1980-01-01

    A cryogenic wind tunnel is based on the twofold idea of lowering drive power and increasing Reynolds number by operating with nitrogen near its boiling point. There are two possible types of condensation problems involved in this mode of wind tunnel operation. They concern the expansion from the nozzle supply to the test section at relatively low cooling rates, and secondly the expansion around models in the test section. This secondary expansion involves higher cooling rates and shorter time scales. In addition to these two condensation problems it is not certain what purity of nitrogen can be achieved in a large facility. Therefore, one cannot rule out condensation processes other than those of homogeneous nucleation.

  19. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate

    NASA Astrophysics Data System (ADS)

    Pan, Chien-Cheng; Lin, Kwang-Lung

    2011-05-01

    To illustrate the interfacial reaction mechanism, the Sn-Zn[Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (wt%)] solder was reflowed on Cu substrate at 250 °C for 15 s followed by immediate quench in liquid nitrogen. The frozen interfacial microstructure was investigated with high resolution transmission electron microscope. An amorphous double layer was formed at the interface which consists of a 5 nm pure Cu region and a Cu-Zn diffusion region. Nanocrystalline intermetallic compound (IMC) Cu5Zn8 were observed in the Cu-Zn diffusion region. These nanocrystalline IMCs are suggested to form via a homogeneous nucleation process.

  20. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  1. Nucleation kinetics of urea succinic acid –ferroelectric single crystal

    SciTech Connect

    Dhivya, R.; Vizhi, R. Ezhil E-mail: revizhi@gmail.com; Babu, D. Rajan

    2015-06-24

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  2. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  3. Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2014-07-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is obviously less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W

  4. Flux Growth of Large Single Crystals of YFe2Al10 by Nucleation Site Reduction

    NASA Astrophysics Data System (ADS)

    Kistner-Morris, Jedediah; Wu, Liusou; Gannon, William; Aronson, Meigan

    2014-03-01

    The metallic d-electron compound YFe2Al10 is near a quantum critical point. Large single crystals of this compound are required for inelastic neutron scattering experiments. We synthesized high quality single crystals via aluminum flux growth. A number of adjustments to the growth procedure were required to optimize crystal quality and size. First, the cooling rate of the flux growth was adjusted to produce a thermodynamically favorable environment for YFe2Al10 growth, which was found to grow around 920°C. Second, initial composition of the growths were then optimized to avoid the growth of the binary phases, YAl3 and Fe4Al13, as well as to maximize crystal size and reduce site nucleation. Third, site nucleation was further reduced by polishing the alumina growth crucibles with sandpaper and then etching them with aqua regia. The result after optimization is that individual growths produced three to five polyhedral crystals with single facets up to 9mm in width, and mass of about 700mg. The implemented nucleation site reduction techniques can be applied to other flux systems to increase crystal size and mass. We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

  5. Nucleation and crystallization of tailing-based glass-ceramics by microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bao-wei; Li, Hong-xia; Zhang, Xue-feng; Jia, Xiao-lin; Sun, Zhi-chao

    2015-12-01

    The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment methods: conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a differential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron microscopy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the processing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.

  6. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    SciTech Connect

    Tohidifar, M.R.; Alizadeh, P.; Riello, P.

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  7. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  8. Theory of protein crystal nucleation and growth controlled by solvent evaporation

    NASA Astrophysics Data System (ADS)

    Baird, James K.

    1999-08-01

    The driving force for protein crystallization is the supersaturation. In the case of crystal growth in a hanging drop, the supersaturation at early times is controlled by the dynamics of solvent evaporation and is largely independent of the rate of appearance of the crystals. This permits the equations of Johnson, Mehl, Avrami, and Kolomogrov to be integrated using the classic model for crystal nucleation and the spiral dislocation model for crystal growth. As results one obtains a formula for the number of crystals in the drop and another formula for their average size. The parameters in these formulae include either explicitly or implicitly the protein mass, temperature, pH, and ionic strength, which are the independent variables known experimentally to influence the overall rate of protein crystallization.

  9. Diffuse interface analysis of crystal nucleation in hard-sphere liquid

    NASA Astrophysics Data System (ADS)

    Gránásy, László; Pusztai, Tamás

    2002-12-01

    We show that the increase of the interface free energy with deviation from equilibrium seen in recent Monte Carlo simulations [S. Auer and D. Frenkel, Nature (London) 413, 711 (2001)] can be recovered if the molecular scale diffuseness of the crystal-liquid interface is considered. We compare two models, Gránásy's phenomenological diffuse interface theory, and a density functional theory that relies on the type of Ginzburg-Landau expansion for fcc nucleation, that Shih et al. introduced for bcc crystal. It is shown that, in the range of Monte Carlo simulations, the nucleation rate of the stable fcc phase is by several orders of magnitude higher than for the metastable bcc phase, seen to nucleate first in other fcc systems. The nucleation barrier that the diffuse interface theories predict for small deviations from equilibrium is in far better agreement with the simulations than the classical droplet model. The behavior expected at high densities is model dependent. Gránásy's phenomenological diffuse interface theory indicates a spinodal point close to glass transition, while a nonsingular behavior is predicted by the density functional theory with constant Ginzburg-Landau coefficients. Remarkably, a minimum of the nucleation barrier, similar to the one seen in polydisperse systems, occurs if the known density dependence of the Ginzburg-Landau coefficients is considered.

  10. Ice nucleation: elemental identification of particles in snow crystals.

    PubMed

    Parungo, F P; Pueschel, R F

    1973-06-01

    A scanning field-emission electron microscope combined with an x-ray analyzer is used to locate the ice nucleus within a three-dimensional image of a snow crystal and determine the chemical composition of the nucleus. This makes it possible to better understand the effect of nuclei in cloud seeding. PMID:17806581

  11. Test of classical nucleation theory and mean first-passage time formalism on crystallization in the Lennard-Jones liquid

    SciTech Connect

    Lundrigan, Sarah E. M.; Saika-Voivod, Ivan

    2009-09-14

    We perform molecular dynamics (MD) and Monte Carlo computer simulations to test the ability of the recently developed formalism of mean first-passage time (MFPT) [J. Wedekind, R. Strey, and D. Reguera, J. Chem. Phys. 126, 134103 (2007); J. Wedekind and D. Reguera, J. Phys. Chem. B 112, 11060 (2008)] to characterize crystal nucleation in the Lennard-Jones liquid. We find that the nucleation rate, critical embryo size, Zeldovich factor, attachment rate, and the nucleation barrier profile obtained from MFPT all compare very well to the same quantities calculated using other methods. Furthermore, we find that the nucleation rate obtained directly through MD closely matches the prediction of classical nucleation theory.

  12. Secondary nucleation of gibbsite crystals from synthetic Bayer liquors: effect of alkali metal ions

    NASA Astrophysics Data System (ADS)

    Li, Jun; Prestidge, Clive A.; Addai-Mensah, Jonas

    2000-11-01

    The effect of alkali metal ions (Na + versus K +) on secondary nucleation of gibbsite ( γ-Al(OH) 3) from synthetic Bayer liquors has been investigated under seeded, isothermal, batch crystallisation conditions. The nucleation kinetics showed a fourth-order dependence upon Al(III) relative supersaturation and a strong temperature effect. An activation energy of 132 kJ mol -1, which was independent of alkali metal ion, was calculated. Secondary nucleation and subsequent crystal growth rates however, were greater in sodium than in potassium aluminate solution. The Arrhenius, pre-exponential factor was at least three times larger in sodium than in potassium aluminate solutions at equivalent crystal surface area, similar supersaturation and temperature. The results indicated that secondary nucleation of Al(OH) 3 is a chemical reaction-controlled process which is alkali metal ion-mediated. Na + ions provide a more favourable pathway than potassium ions for the formation of Al(III)-containing clusters, higher collision frequency between the species and crystal surface, and faster growth of potential secondary nuclei in the solutions.

  13. Supercooling, ice nucleation and crystal growth: a systematic study in plant samples.

    PubMed

    Zaragotas, Dimitris; Liolios, Nikolaos T; Anastassopoulos, Elias

    2016-06-01

    This paper presents an innovative technological platform which is based on infrared video recording and is used for monitoring multiple ice nucleation events and their interactions, as they happen in 96 well microplates. Thousands of freezing curves were obtained during this study and the following freezing parameters were measured: cooling rate, nucleation point, freezing point, solidus point, degree of supercooling, duration of dendritic phase and duration of crystal growth. We demonstrate the use of this platform in the detection of ice nuclei in plant samples. Future applications of this platform may include breeding for frost tolerance, cryopreservation, frozen food technology and atmospheric sciences. PMID:27056262

  14. Biomineralization Mechanisms: A new paradigm for crystal nucleation in organic matricies

    PubMed Central

    Veis, Arthur; Dorvee, Jason R.

    2013-01-01

    There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth and other hard tissues by creating organic matrices that can be mineralized in vitro, and either functionally substitute for bone on a permanent basis, or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral disposed in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matricies we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs such as polyaspartic acids, have similar dense liquid first-layer bound water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix. PMID:23241924

  15. Investigation of nucleation and crystal growth kinetics of nickel manganese oxalates

    NASA Astrophysics Data System (ADS)

    Aoun-Habbache, Montaha; Guillemet-Fritsch, Sophie; Lemaître, Jacques; Jones, Alan

    2005-06-01

    The nucleation and the crystal growth rates of mixed nickel manganese oxalates have been determined from the changes of the ionic concentration of the solution and the crystal size distribution during the precipitation process within a supersaturation range 0-0.1 M. Thermodynamic solubility calculations have been used to identify the different species contributing the precipitation reaction and for estimation of the thermodynamic constant. Experimental data show that the nucleation rate of mixed nickel manganese oxalate in this supersaturation range is consistent with a primary heterogeneous mechanism and was found to obey to an exponential law. The crystal growth rates indicate a surface-integration-controlled mechanism with a first-order law with respect to the supersaturation.

  16. Engineering nanoparticle-protein associations for protein crystal nucleation and nanoparticle arrangement

    NASA Astrophysics Data System (ADS)

    Benoit, Denise N.

    Engineering the nanoparticle - protein association offers a new way to form protein crystals as well as new approaches for arrangement of nanoparticles. Central to this control is the nanoparticle surface. By conjugating polymers on the surface with controlled molecular weights many properties of the nanoparticle can be changed including its size, stability in buffers and the association of proteins with its surface. Large molecular weight poly(ethylene glycol) (PEG) coatings allow for weak associations between proteins and nanoparticles. These interactions can lead to changes in how proteins crystallize. In particular, they decrease the time to nucleation and expand the range of conditions over which protein crystals form. Interestingly, when PEG chain lengths are too short then protein association is minimized and these effects are not observed. One important feature of protein crystals nucleated with nanoparticles is that the nanoparticles are incorporated into the crystals. What results are nanoparticles placed at well-defined distances in composite protein-nanoparticle crystals. Crystals on the size scale of 10 - 100 micrometers exhibit optical absorbance, fluorescence and super paramagnetic behavior derivative from the incorporated nanomaterials. The arrangement of nanoparticles into three dimensional arrays also gives rise to new and interesting physical and chemical properties, such as fluorescence enhancement and varied magnetic response. In addition, anisotropic nanomaterials aligned throughout the composite crystal have polarization dependent optical properties.

  17. Effect of pressure and hydrogen flow in nucleation density and morphology of graphene bidimensional crystals

    NASA Astrophysics Data System (ADS)

    Chaitoglou, S.; Bertran, E.

    2016-07-01

    In this paper we present new results concerning the growth of graphene by low pressure chemical vapor deposition on polycrystalline copper foils and using methane as carbon precursor. We have studied the role of hydrogen and pressure in graphene growth on substrates of polycrystalline copper foil and we have examined how they affect the nucleation density and the size of graphene bidimensional crystals. For that, small ranges of pressure (between 10 and 30 Pa) and hydrogen flow (between 10 and 20 sccm) were explored. In addition, the antagonism between two of the main effects of hydrogen was studied. Hydrogen promotes the growth but, at the same time, applies an intense dry etching during the growth process of graphene. The challenge of the present study is to find the equilibrium between these two effects so that, the growth of highly ordered crystals on copper becomes possible. The results reveal that the total pressure during the growth process of graphene affects the size as well as the nucleation density of the graphene bidimensional crystals on polycrystalline copper. Besides, the hydrogen flow affects the morphology and quality of the graphene layer. An important parameter for a correct interpretation of the results is the change of the partial pressure ratio, < {P}{{{H}}2}> /< {P}{{{C}{{H}}}4}> , during the growth process under a constant flow of H2 and CH4. Dendritic graphene crystals with lobe lengths around 30 μm along with a nucleation density of 25 nuclei/10 000 μm2 were obtained in the studied technological conditions, which corroborates that a low nucleation of graphene is required to obtain large graphene islands and a low number of crystal boundaries. Raman spectroscopy and scanning electron microscopy evidenced the effects of hydrogen on the characteristics of growth and morphology of the graphene dendritic bidimensional crystals.

  18. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  19. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    SciTech Connect

    Khon, Yury A. Kaminskii, Petr P.

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  20. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride).

    PubMed

    Wu, Ying; Hsu, Shaw Ling; Honeker, Christian; Bravet, David J; Williams, Darryl S

    2012-06-21

    The effect of the surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride) (PVDF) has been investigated. Ion-dipole interaction between the positive surface of nucleation agents and the partially negative CF(2) dipoles of PVDF is established as a main factor for further lowering the free energy barrier for nucleation, and thus increasing significantly the crystallization kinetics. This is in contrast to the behavior observed for nucleation agents possessing either negative surface or neutral charges. Positive nucleation agents led to a remarkable increase in the crystallization temperature of PVDF (lower supercooling) as compared with that of neat PVDF. The dispersion of each type of nucleation agent is also important. The melting temperatures of nucleation agents need to be higher than the melting temperature of PVDF. The melting point and degree of crystallinity of PVDF can also be raised by using specific nucleation agents. The detailed crystallization kinetics and conformational changes of the PVDF chain have been investigated. With the addition of positive nucleation agents, the γ and β chain conformations, instead of the α phase, dominate. PMID:22646047

  1. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2015-02-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  2. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  3. Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles

    NASA Astrophysics Data System (ADS)

    Khan, Saeed R.; Whalen, Patrick O.; Glenton, Patricia A.

    1993-12-01

    Membrane-assisted crystallization of calcium oxalate was studied in vitro, using constant composition methodology. Rat renal tubular brush border membrane vesicles were incubated in supersaturated solution of calcium oxalate. Calcium and oxalate depletion started much earlier in the presence of the vesicles than in their absence; within 8, 32, or 258 min of the incubation of vesicles in calcium oxalate solutions of relative supersaturation of 12, 10 or 6 respectively. Thin plate-like crystals with jagged edges formed in association with the membrane vesicles. Since crystal nucleation in the presence of membrane vesicles started within 8 min at a relative supersaturation as low as 12, it will start significantly earlier in the urine of stone formers which is known to have higher relative supersaturation with respect to calcium oxalate. These results demonstrate that cellular membranes can efficiently induce nucleation of calcium oxalate crystals from a metastable solution in an vitro system. Similar membrane induced heterogeneous nucleation of calcium oxalate in vivo within the renal tubules is a distinct possibility.

  4. Peptides of Matrix Gla Protein Inhibit Nucleation and Growth of Hydroxyapatite and Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S.; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A.; de Bruyn, John R.; Hunter, Graeme K.

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney. PMID:24265810

  5. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  6. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  7. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  8. Evidence of Multi-step Nucleation Leading to Various Crystallization Pathways from an Fe-O-Al Melt

    PubMed Central

    Wang, G. C.; Wang, Q.; Li, S. L.; Ai, X. G.; Fan, C. G.

    2014-01-01

    The crystallization process from a solution begins with nucleation, which determines the structure and size of the resulting crystals. Further understanding of multi-pathway crystallizations from solution through two-step nucleation mechanisms is needed. This study uses density functional theory to probe the thermodynamic properties of alumina clusters at high temperature and reveals the thermodynamic relationship between these clusters and the saturation levels of dissolved oxygen and aluminum in an Fe–O–Al melt. Based on the thermodynamics of cluster formation and the experimental evidence for both excess oxygen in the Fe-O-Al melt and for alumina with a polycrystalline structure in solidified iron, we demonstrate that the appearance of various types of clusters that depends on the saturation ratio determines the nucleation steps that lead to the various crystallization pathways. Such mechanisms may also be important in nucleation and crystallization from solution. PMID:24866413

  9. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  10. Effects of chitosan on the alignment, morphology and shape of calcite crystals nucleating under Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Kim, Kyungil

    The mechanisms governing selective CaCO3 crystal nucleation in living organisms remain unclear. For example, nacreous layers from the inner surfaces of shells are built as brick-and-mortar complexes of plate-like aragonite single crystals and organic layers. Unstable [001] surfaces of calcite columns in prismatic layers are also stabilized by organic molecules. Biogenic calcite crystals show different morphologies compared to geological calcite minerals. Langmuir monolayers are used as structured templates in simulated biomineralization from CaCO3 supersaturated subphases. But pure or mixed Langmuir monolayers do not mimic the nucleation sites of aspartic-rich proteins found within real biominerals. It has previously been shown that there is organic-inorganic lattice relaxation in the cases of BaF2 and hydrocerussite (2PbCO3·Pb(OH) 2) nucleation under fatty (carboxylate) acid with preferred orientation of crystals, but no lattice match is observed during CaCO3 crystallization under fatty acid Langmuir monolayers. Overall, geometric influences such as structural match between the interfacial lattices and the interactions between monolayer headgroups and aqueous ions do not guarantee any well-defined orientation of CaCO3 crystallization. CaCO3 mineralization on self-assembled monolayers on metal and alloy substrates have achieved higher degrees of orientations, even though molecules in Langmuir monolayers are better ordered than in self-assembled monolayers. Until now, Langmuir monolayer experiments have emphasized only the function of the acidic proteins. To better mimic the real organic template, it is important to include the hydrophobic and polyelectrolyte characteristics of real organic templates in shells. The organic matrix in actual shells contains hydrophobic silk fibroin (which is hydrophobic) and polyelectrolytes. Some acidic proteins reside on the surface of silk fibroins. There is also semi-crystalline beta-chitin structure whose function has not been

  11. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation.

    PubMed

    Anwar, Jamshed; Zahn, Dirk

    2011-02-25

    Exploring nucleation processes by molecular simulation provides a mechanistic understanding at the atomic level and also enables kinetic and thermodynamic quantities to be estimated. However, whilst the potential for modeling crystal nucleation and growth processes is immense, there are specific technical challenges to modeling. In general, rare events, such as nucleation cannot be simulated using a direct "brute force" molecular dynamics approach. The limited time and length scales that are accessible by conventional molecular dynamics simulations have inspired a number of advances to tackle problems that were considered outside the scope of molecular simulation. While general insights and features could be explored from efficient generic models, new methods paved the way to realistic crystal nucleation scenarios. The association of single ions in solvent environments, the mechanisms of motif formation, ripening reactions, and the self-organization of nanocrystals can now be investigated at the molecular level. The analysis of interactions with growth-controlling additives gives a new understanding of functionalized nanocrystals and the precipitation of composite materials. PMID:21271625

  12. Role of clusters in nonclassical nucleation and growth of protein crystals

    PubMed Central

    Sleutel, Mike; Van Driessche, Alexander E. S.

    2014-01-01

    The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called “precritical clusters” that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process. PMID:24449867

  13. Effects of crystallization and bubble nucleation on the seismic properties of magmas

    NASA Astrophysics Data System (ADS)

    Tripoli, Barbara Andrea; Cordonnier, Benoit; Zappone, Alba; Ulmer, Peter

    2016-02-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the location and dimensions of magmatic reservoirs. Seismic velocities are strongly affected by processes occurring within the conduit or in the magma chamber, such as crystallization and bubble exsolution. However, the limited number of constrained measurements does not allow yet to link seismic tomography and the textural state of a particular volcanic system. In this study, we investigated a chemically simplified melt in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2, which undergoes plagioclase crystallization and bubble exsolution. A Paterson-type internally heated gas pressure apparatus was employed to measure ultrasonic velocities at a constant pressure of 250 MPa and at temperature from 850 to 700°C. Magmatic processes such as crystallization, bubble nucleation, and coalescence have been recognized throughout the measurements of seismic velocities in the laboratory. Compression and shear wave velocities increase nonlinearly during crystallization. At a crystal fraction exceeding 0.45, the formation of a crystal network favors the propagation of seismic waves through magmatic liquids. However, bubble nucleation induced by crystallization leads to an increase of magma compressibility resulting in a lowering of the wave propagation velocities. These two processes occur simultaneously and have a competing influence on the seismic properties of magmas. In addition, as already observed by previous authors, when the bubble fraction is less than 0.10, the decrease in seismic velocities is more pronounced than for higher bubble fractions. The effect of bubble coalescence on elastic properties is thus lower than the effect of bubble nucleation.

  14. Mathematical modelling of nucleation and growth of crystals with buoyancy effects

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.

    2016-04-01

    A complete analytical solution of the integro-differential model describing the nucleation of crystals and their subsequent growth in a binary system with allowance for buoyancy forces is constructed. An exact analytical solution of the Fokker-Planck-type equation for the three-parameter density distribution function is found for arbitrary nucleation kinetics. Two important cases of the Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetics are considered in some detail. It is shown that the solute concentration decreases and the distribution function increases with increasing the melt supercooling (with increasing the depth of a metastable system). It is demonstrated that the distribution function attains its minimum at a certain size of crystals owing to buoyancy forces.

  15. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  16. Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature

    NASA Astrophysics Data System (ADS)

    Starr, Francis W.; Angell, C. Austen; Stanley, H. Eugene

    2003-05-01

    The behavior of thermodynamic and dynamic properties of liquid water at atmospheric pressure in the temperature range between the lower limit of supercooling (T H ≈ 235 K) and the onset of the glassy state at Tg has been the focus of much research, and many questions remain about the properties of water in this region. Since direct measurements on water in this temperature range remain largely infeasible, we use existing experimental measurements of the entropy, specific heat, and enthalpy outside this range to construct a possible form of the entropy in the “difficult-to-probe” region. Assuming that the entropy is well-defined in extreme metastable states, and that there is no intervening discontinuity at atmospheric pressure, we estimate the excess entropy Sex of the liquid over the crystal within relatively narrow limits. We find that our approximate form for Sex shows atypical behavior when compared with other liquids: using a thermodynamic categorization of “strong” and “fragile” liquids, water appears to be fragile on initial cooling below the melting temperature, and strong in the temperature region near the glass transition. This thermodynamic construction can be used, with appropriate reservations, to estimate the behavior of the dynamic properties of water by means of the Adam-Gibbs equation-which relates configurational entropy Sconf to dynamic behavior. Although the Adam-Gibbs equation uses Sconf rather than Sex as the control variable, the relation has been used successfully in a number of experimental studies with Sconf replaced by Sex. This is likely a result of a proportionality between Sconf and Sex, which we confirm for simulations of a model of water. Hence by using the constructed values of Sex, together with experimental data in the range where Sex is known, we estimate the temperature dependence of viscosity and diffusivity approaching the glass transition. Like the entropy plots, Arrhenius plots of viscosity or diffusion show an

  17. The influence of acceleration forces on nucleation, solidification, and deformation processes in tin single crystals

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.; Baldwin, D. H.

    1974-01-01

    An apparatus was designed and assembled to directionally solidify single crystals under the influence of acceleration forces of various magnitudes. The investigation conducted showed that acceleration gradients produce a preferred growth orientation effect not previously observed for tin. Convection currents at approximately 5-g encourage multiple nucleation and subsequent random orientation of growth direction. Deformation effects such as recrystallization and twinning are observed at acceleration levels greater than 2-g.

  18. Experimental Study of the Low Supersaturation Nucleation in Crystal Growth by Contactless Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Grasza, K.; Palosz, W.; Trivedi, S. B.

    1998-01-01

    The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.

  19. A new experimental setup to investigate nucleation, dynamic growth and surface properties of single ice crystals

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Jens; Bieligk, Henner; Niedermeier, Dennis; Clauss, Tina; Chou, Cédric; Ulanowski, Zbigniew; Stratmann, Frank

    2013-04-01

    The nucleation and growth of atmospheric ice particles is of importance for both, weather and climate. However, knowledge is still sparse, e.g. when considering the influences of ice particle surface properties on the radiative properties of clouds. Therefore, based on the experiences with our laminar flow tube chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004), we developed a new device to characterize nucleation, dynamic growth and light scattering properties of a fixed single ice crystal in dependence on the prevailing thermodynamic conditions. Main part of the new setup is a thermodynamically controlled laminar flow tube with a diameter of 15 mm and a length of 1.0 m. Connected to the flow tube is a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (Leipzig Ice Scattering Apparatus), equipped with an additional optical microscope. For the investigations, a single ice nucleus (IN) with a dry size of 2-5 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Two mass flow controllers adjusting a dry and a humidified gas flow are applied to control both, the temperature and the saturation ratio over a wide range. The thermodynamic conditions in the experiments were characterized using a) temperature and dew-point measurements, and b) computational fluid dynamics (CFD) calculations. Dependent on temperature and saturation ratio in the measuring volume, ice nucleation and ice crystal growth/shrinkage can occur. The optical microscope allows a time dependent visualization of the particle/ice crystal, and the LISA instrument is used to obtain 2-D light scattering patterns. Both devices together can be applied to investigate the influence of thermodynamic conditions on ice crystal growth, in particular its shape and surface properties. We successfully performed

  20. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    PubMed

    de Bruyn, John R; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L; Liao, Yinyin; Flemming, Roberta L; Bramble, Michael S; Hunter, Graeme K; Goldberg, Harvey A

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612

  1. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Chesnokov, Evgeni N.; Krasnoperov, Lev N.

    2007-04-01

    A complete thermodynamically consistent elementary reaction kinetic model of particle nucleation and growth from supersaturated vapor was developed and numerically evaluated to determine the conditions for the steady-state regime. The model treats all processes recognized in the aerosol science (such as nucleation, condensation, evaporation, agglomeration/coagulation, etc.) as reversible elementary reactions. It includes all possible forward reactions (i.e., of monomers, dimers, trimers, etc.) together with the thermodynamically consistent reverse processes. The model is built based on the Kelvin approximation, and has two dimensionless parameters: S0—the initial supersaturation and Θ—the dimensionless surface tension. The time evolution of the size distribution function was obtained over the ranges of parameters S0 and Θ. At low initial supersaturations, S0, the steady state is established after a delay, and the steady-state distribution function corresponds to the predictions of the classical nucleation theory. At high initial supersaturations, the depletion of monomers due to condensation on large clusters starts before the establishing of the steady state. The steady state is never reached, and the classical nucleation theory is not applicable. The boundary that separates these two regimes in the two dimensionless parameter space, S0 and Θ, was determined. The model was applied to several experiments on water nucleation in an expansion chamber [J. Wolk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)] and in Laval nozzle [Y. J. Kim et al., J. Phys. Chem. A 108, 4365 (2004)]. The conditions of the experiments performed using Laval nozzle (S0=40-120) were found to be close to the boundary of the non-steady-state regime. Additional calculations have shown that in the non-steady-state regime the nucleation rate is sensitive to the rate constants of the initial steps of the nucleation process, such as the monomer-monomer, monomer-dimer, etc., reactions. This

  2. Nucleation and growth of polytypic-layered crystals from the network liquid zinc chloride

    NASA Astrophysics Data System (ADS)

    Wilson, Mark

    2003-06-01

    The liquid to solid crystallization for zinc (II) chloride is studied by molecular dynamics computer simulation. The transition is unusual in that it involves a change from a three-dimensional network liquid structure to a pseudo-two-dimensional layered crystal. The crystallization events are observed from four distinct liquid starting configurations and are identified by reference to the time evolution of the system energetics and Bragg peaks associated with the cation layering. Order parameters and molecular graphics are applied to understand the transitions at an atomistic length scale. Mechanisms are presented for the initial layer growth, the coherent joining of the layered crystallites, and the destruction of high-energy grain boundaries. The growth kinetics are analyzed by defining times for catastrophic and critical nucleation. The final crystal structures are shown to have essentially random anion close-packed stacking sequences consistent with the large number of experimentally observed polytypic structures. The formation of grain boundary stacking faults is also observed.

  3. Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.

    1996-01-01

    Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.

  4. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  5. Spectroscopic investigations of the homogeneous nucleation of nickel induced by shock pyrolysis of Ni(CO)4

    NASA Astrophysics Data System (ADS)

    Steinwandel, J.; Hoeschele, J.

    1986-12-01

    The gas phase nucleation of nickel in argon inert gas was investigated at elevated temperatures (1200 K≤T≤2700 K) behind shock waves by using atomic absorption and cluster extinction spectroscopy. The initial degree of supersaturation was varied between 7.1≤lg (n/n∞) ≤0.0 corresponding to nickel atom concentrations 0.2×1016 cm-3≤n≤2×1016 cm-3 prior to nucleation. Within a temperature range of about 50 K up to phase equilibrium conditions, a significant change in nucleation kinetics was observed. No nucleation was observed at undersaturated conditions. The experiments are in contrast to existing nucleation theories because no critical supersaturation seems to be required in early nucleation stages.

  6. Kinetics of protein crystal nucleation and growth in the batch method

    NASA Astrophysics Data System (ADS)

    Baird, James K.; Hill, Susan C.; Clunie, John C.

    1999-01-01

    We have applied the Johnson-Mehl-Avrami-Kolomogorov (JMAK) theory of crystal nucleation and growth to the problem of protein crystallization in the batch method. Without integrating the JMAK equation explicitly, we use dimensional analysis to derive a general formula for the half-life for decay of the protein supersaturation. This formula includes a dimensioned group and an arbitrary dimensionless function. We integrate the JMAK equation exactly for the special case where the growth rate is independent of the supersaturation and the nucleation rate is proportional to its square. This gives an equation for the time decay of the supersaturation and a formula for the half-life in which all arbitrary dimensionless functions are evaluated. The results are consistent not only with Von Weimarn's rule, which asserts that the average size of a crystal increases as the supersaturation decreases, but also with our experimental results for crystallization of lysozyme, in which the half-life at fixed pH decreases with increasing ionic strength and decreasing temperature.

  7. Theoretical study of production of unique glasses in space. [kinetic relationships describing nucleation and crystallization phenomena

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Sievert, J. L.

    1975-01-01

    The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.

  8. Effect of dietary fenugreek seeds on biliary proteins that influence nucleation of cholesterol crystals in bile.

    PubMed

    Reddy, Raghunatha R L; Srinivasan, Krishnapura

    2011-04-01

    Formation of cholesterol gallstones in gallbladder is controlled by procrystallising and anticrystallising factors present in bile. Dietary fenugreek seed has been recently observed to possess anti-lithogenic potential in experimental mice. In the current animal study, we evaluated the effect of dietary fenugreek on the compositional changes in the bile, particularly its effect on glycoproteins, low-molecular-weight (LMW) and high-molecular-weight (HMW) proteins, cholesterol nucleation time and cholesterol crystal growth. Groups of Wistar rats were fed for 10 weeks with diets: (1) basal control (C), (2) C+fenugreek (12%), (3) high cholesterol diet (HCD) and (4) HCD+fenugreek (12%). Feeding of HCD containing 0.5% cholesterol for 10 weeks rendered the bile lithogenic. Incorporation of fenugreek into HCD decreased the cholesterol content (70.5%), total protein (58.3%), glycoprotein (27.5%), lipid peroxides (13.6%) and cholesterol saturation index (from 1.98 to 0.75) in bile, increased the bile flow rate (19.5%), prolonged the cholesterol nucleation time and reduced the vesicular form of cholesterol (65%), which was accompanied with an increase in smaller vesicular form (94%). There was an increase in biliary phospholipid (33%) and total bile acid (49%) contents in the HCD+fenugreek group as compared with the HCD group. Electrophoretic separation of biliary LMW proteins showed the presence of a high concentration of 28-kDa protein, which might be responsible for the prolongation of cholesterol nucleation time in the fenugreek-fed groups. These findings indicate that the beneficial anti-lithogenic effect of dietary fenugreek, which primarily is due to reduction in the cholesterol content in bile, was additionally affected through a modulation of the nucleating and anti-nucleating proteins, which, in turn, affect cholesterol crystallisation. PMID:21215764

  9. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength

    NASA Astrophysics Data System (ADS)

    Bhamidi, V.; Skrzypczak-Jankun, E.; Schall, C. A.

    2001-11-01

    Nucleation rate data for hen egg-white lysozyme crystallization were obtained using a particle counter. Tetragonal lysozyme crystals were expected to form at the temperature and solution conditions of these experiments: 4°C, pH 4.5 with 0.1 M sodium acetate buffer and 2-6% NaCl (w/v). The rates varied as expected, as smooth monotonic functions of supersaturation at 2%, 3% and 6% NaCl. However, at 5% NaCl, a great deal of scatter in the data was observed. At 2% and 3% NaCl, all the batches contained crystals with tetragonal morphology. At 6% NaCl, almost all of the vials contained the white powder with few or no tetragonal crystals. At 5% NaCl concentration, a mixture of tetragonal crystals and powder formed in varying proportions in all the vials as observed by visual inspection. The powdery material was examined using optical microscopy and was seen to consist of needles with regular structure and sharp, faceted edges. Powder diffraction data from these needles was inconsistent with experimental powder diffraction data from tetragonal lysozyme crystals. It is possible that at high salt and protein concentrations liquid-liquid separation occurred and yielded a crystal polymorph.

  10. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it