Science.gov

Sample records for homolog lectin structure

  1. Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family*

    PubMed Central

    Koharudin, Leonardus M. I.; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M.

    2012-01-01

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties. PMID:22865886

  2. Structure of the Lectin Mannose 6-Phosphate Receptor Homology (MRH) Domain of Glucosidase II, an Enzyme That Regulates Glycoprotein Folding Quality Control in the Endoplasmic Reticulum*

    PubMed Central

    Olson, Linda J.; Orsi, Ramiro; Alculumbre, Solana G.; Peterson, Francis C.; Stigliano, Ivan D.; Parodi, Armando J.; D'Alessio, Cecilia; Dahms, Nancy M.

    2013-01-01

    Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit. GIIβ participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIβ MRH domain by NMR spectroscopy. It adopts a β-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIβ but not in other MRHs that influences GII glucose trimming activity. PMID:23609449

  3. The Liverwort Contains a Lectin That Is Structurally and Evolutionary Related to the Monocot Mannose-Binding Lectins1

    PubMed Central

    Peumans, Willy J.; Barre, Annick; Bras, Julien; Rougé, Pierre; Proost, Paul; Van Damme, Els J.M.

    2002-01-01

    A mannose (Man)-binding lectin has been isolated and characterized from the thallus of the liverwort Marchantia polymorpha. N-terminal sequencing indicated that the M. polymorpha agglutinin (Marpola) shares sequence similarity with the superfamily of monocot Man-binding lectins. Searches in the databases yielded expressed sequence tags encoding Marpola. Sequence analysis, molecular modeling, and docking experiments revealed striking structural similarities between Marpola and the monocot Man-binding lectins. Activity and specificity studies further indicated that Marpola is a much stronger agglutinin than the Galanthus nivalis agglutinin and exhibits a preference for methylated Man and glucose, which is unprecedented within the family of monocot Man-binding lectins. The discovery of Marpola allows us, for the first time, to corroborate the evolutionary relationship between a lectin from a lower plant and a well-established lectin family from flowering plants. In addition, the identification of Marpola sheds a new light on the molecular evolution of the superfamily of monocot Man-binding lectins. Beside evolutionary considerations, the occurrence of a G. nivalis agglutinin homolog in a lower plant necessitates the rethinking of the physiological role of the whole family of monocot Man-binding lectins. PMID:12114560

  4. The three-dimensional structure of codakine and related marine C-type lectins.

    PubMed

    Gourdine, Jean-Philippe; Markiv, Anatoly; Smith-Ravin, Juliette

    2007-10-01

    Codakine is a new Ca(2+)-dependent mannose-binding C-type lectin (MBL) isolated from the gill tissue of the tropical clam, Codakia orbicularis. Bioinformatic analyses with the BLAST program have revealed similarities with marine lectins involved in immunity whose three-dimensional (3D) structures were unknown up until recently. In this article, we present bioinformatic analyses of marine lectins that are homologous to codakine, in particular lectins from the sea worm Laxus oneistus, named mermaid. These lectins are involved in the symbiotic association with sulphur-oxidizing bacteria which are closely related to the C. orbicularis gill symbiont. Using homology modelling, folding that is characteristic of C-type lectins was observed in all the marine Ca(2+)-dependent lectins studied, with conservation of random coiled structures of the carbohydrate recognition domain (CRD) and Ca(2+)-binding sites. Like codakine, the marine lectins analysed contain a signal peptide commonly found in secreted and transmembrane proteins. The majority of the predictive 3D models established from the lectins exhibit a common feature, namely the involvement in invertebrate and vertebrate immunity (dendritic cell receptor, macrophage receptor, etc.). These bioinformatic analyses and the literature data support the hypothesis that codakine, like the L. oneistus mermaids, is probably involved in the cellular mediation of symbiosis and defence against pathogenic microorganisms. PMID:17493832

  5. Insecticidal activity and lectin homology of arcelin seed protein.

    PubMed

    Osborni, T C; Alexander, D C; Sun, S S; Cardona, C; Bliss, F A

    1988-04-01

    Arcelin, a major seed protein discovered in wild beans (Phaseolus vulgaris), has toxic effects on an important bean bruchid pest, Zabrotes subfasciatus. Transfer of the arcelin-1 allele to bean cultivars and addition of purified arcelin to artificial seeds results in high levels of insect resistance. The nucleotide and derived amino acid sequences of the arcelin-1 complementary DNA are very similar to those of genes encoding the bean seed lectin, phytohemagglutinin. The gene or genes encoding arcelin may have evolved from a phytohemagglutinin gene or genes resulting in an effective mechanism for resistance to bean bruchids. PMID:17800917

  6. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease

    PubMed Central

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W.; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell–cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  7. Mushroom lectins: specificity, structure and bioactivity relevant to human disease.

    PubMed

    Hassan, Mohamed Ali Abol; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Tiralongo, Joe

    2015-01-01

    Lectins are non-immunoglobulin proteins that bind diverse sugar structures with a high degree of selectivity. Lectins play crucial role in various biological processes such as cellular signaling, scavenging of glycoproteins from the circulatory system, cell-cell interactions in the immune system, differentiation and protein targeting to cellular compartments, as well as in host defence mechanisms, inflammation, and cancer. Among all the sources of lectins, plants have been most extensively studied. However, more recently fungal lectins have attracted considerable attention due to their antitumor, antiproliferative and immunomodulatory activities. Given that only 10% of mushroom species are known and have been taxonomically classified, mushrooms represent an enormous unexplored source of potentially useful and novel lectins. In this review we provide an up-to-date summary on the biochemical, molecular and structural properties of mushroom lectins, as well as their versatile applications specifically focusing on mushroom lectin bioactivity. PMID:25856678

  8. Homolog of the maize beta-glucosidase aggregating factor from sorghum is a jacalin-related GalNAc-specific lectin but lacks protein aggregating activity.

    PubMed

    Kittur, Farooqahmed S; Yu, Hyun Young; Bevan, David R; Esen, Asim

    2009-03-01

    Recently, we identified the maize beta-glucosidase aggregating factor (BGAF) as a jacalin-related lectin (JRL) and showed that its lectin domain is responsible for beta-glucosidase aggregation. By searching for BGAF homologs in sorghum, we identified and obtained an EST clone and determined its complete sequence. The predicted protein had the same modular structure as maize BGAF, shared 67% sequence identity with it, and revealed the presence of two potential carbohydrate-binding sites (GG...ATYLQ, site I and GG...GVVLD, site II). Maize BGAF1 is the only lectin from a class of modular JRLs containing an N-terminal dirigent and a C-terminal JRL domain, whose sugar specificity and beta-glucosidase aggregating activity have been studied in detail. We purified to homogeneity a BGAF homolog designated as SL (Sorghum lectin) from sorghum and expressed its recombinant version in Escherichia coli. The native protein had a molecular mass of 32 kD and was monomeric. Both native and recombinant SL-agglutinated rabbit erythrocytes, and inhibition assays indicated that SL is a GalNAc-specific lectin. Exchanging the GG...GVVLD motif in SL with that of maize BGAF1 (GG...GIAVT) had no effect on GalNAc-binding, whereas binding to Man was abolished. Substitution of Thr(293) and Gln(296) in site I to corresponding residues (Val(294) and Asp(297)) of maize BGAF1 resulted in the loss of GalNAc-binding, indicating that site I is responsible for generating GalNAc specificity in SL. Gel-shift and pull-down assays after incubating SL with maize and sorghum beta-glucosidases showed no evidence of interaction nor were any SL-protein complexes detected in sorghum tissue extracts, suggesting that the sorghum homolog does not participate in protein-protein interactions. PMID:19056785

  9. The first crystal structure of a Mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain.

    PubMed

    Gallego del Sol, Francisca; Nagano, Celso; Cavada, Benildo S; Calvete, Juan J

    2005-10-28

    The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms. PMID:16185708

  10. Structure-function relationship of monocot mannose-binding lectins.

    PubMed Central

    Barre, A; Van Damme, E J; Peumans, W J; Rougé, P

    1996-01-01

    The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Orchidaceae, and Liliaceae. To explain the obvious differences in biological activities, the structure-function relationships of the monocot mannose-binding lectins were studied by a combination of glycan-binding studies and molecular modeling using the deduced amino acid sequences of the currently known lectins. Molecular modeling indicated that the number of active mannose-binding sites per monomer varies between three and zero. Since the number of binding sites is fairly well correlated with the binding activity measured by surface plasmon resonance, and is also in good agreement with the results of previous studies of the biological activities of the mannose-binding lectins, molecular modeling is of great value for predicting which lectins are best suited for a particular application. PMID:8972598

  11. A profile of protein-protein interaction: Crystal structure of a lectin-lectin complex.

    PubMed

    Surya, Sukumaran; Abhilash, Joseph; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-06-01

    Proteins may utilize complex networks of interactions to create/proceed signaling pathways of highly adaptive responses such as programmed cell death. Direct binary interactions study of proteins may help propose models for protein-protein interaction. Towards this goal we applied a combination of thermodynamic kinetics and crystal structure analyses to elucidate the complexity and diversity in such interactions. By determining the heat change on the association of two galactose-specific legume lectins from Butea monosperma (BML) and Spatholobus parviflorus (SPL) belonging to Fabaceae family helped to compute the binding equilibrium. It was extended further by X-ray structural analysis of BML-SPL binary complex. In order to chart the proteins interacting mainly through their interfaces, identification of the nature of forces which stabilized the association of the lectin-lectin complex was examined. Comprehensive analysis of the BMLSPL complex by isothermal titration calorimetry and X-ray crystal structure threw new light on the lectin-lectin interactions suggesting of their use in diverse areas of glycobiology. PMID:26945504

  12. Structural-functional insights and studies on saccharide binding of Sophora japonica seed lectin.

    PubMed

    Yadav, Priya; Shahane, Ganesh; Ramasamy, Sureshkumar; Sengupta, Durba; Gaikwad, Sushama

    2016-10-01

    Functional and conformational transitions of the Sophora japonica seed lectin (SJL) were studied in detail using bioinformatics and biophysical tools. Homology model of the lectin displayed all the characteristics of the legume lectin monomer and the experimental observations correlated well with the structural information. In silico studies were performed by protein-ligand docking, calculating the respective binding energies and the residues involved in the interactions were derived from LigPlot(+) analysis. Fluorescence titrations showed three times higher affinity of T-antigen disaccharide than N-acetyl galactosamine (GalNAc) towards SJL indicating extended sugar binding site of the lectin. Thermodynamic parameters of T-antigen binding to SJL indicated the process to be endothermic and entropically driven while those of GalNAc showed biphasic process. SDS-PAGE showed post-translationally modified homotetrameric species of the lectin under native conditions. In presence of guanidine hydrochloride (0.5-5.0M), the tetramer first dissociated into dimers followed by unfolding of the protein as indicated by size exclusion chromatography, fluorescence and CD spectroscopy. Different structural rearrangements were observed during thermal denaturation of SJL at physiological pH 7.2, native pH 8.5 and molten globule inducing pH 1.0. Topological information revealed by solute quenching studies at respective pH indicated differential hydrophobic environment and charge density around tryptophan residues. PMID:27185070

  13. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  14. Use of labeled tomato lectin for imaging vasculature structures.

    PubMed

    Robertson, Richard T; Levine, Samantha T; Haynes, Sherry M; Gutierrez, Paula; Baratta, Janie L; Tan, Zhiqun; Longmuir, Kenneth J

    2015-02-01

    Intravascular injections of fluorescent or biotinylated tomato lectin were tested to study labeling of vascular elements in laboratory mice. Injections of Lycopersicon esculentum agglutinin (tomato lectin) (50-100 µg/100 µl) were made intravascularly, through the tail vein, through a cannula implanted in the jugular vein, or directly into the left ventricle of the heart. Tissues cut for thin 10- to 12-µm cryostat sections, or thick 50- to 100-µm vibratome sections, were examined using fluorescence microscopy. Tissue labeled by biotinylated lectin was examined by bright field microscopy or electron microscopy after tissue processing for biotin. Intravascular injections of tomato lectin led to labeling of vascular structures in a variety of tissues, including brain, kidney, liver, intestine, spleen, skin, skeletal and cardiac muscle, and experimental tumors. Analyses of fluorescence in serum indicated the lectin was cleared from circulating blood within 2 min. Capillary labeling was apparent in tissues collected from animals within 1 min of intravascular injections, remained robust for about 1 h, and then declined markedly until difficult to detect 12 h after injection. Light microscopic images suggest the lectin bound to the endothelial cells that form capillaries and endothelial cells that line some larger vessels. Electron microscopic studies confirmed the labeling of luminal surfaces of endothelial cells. Vascular labeling by tomato lectin is compatible with a variety of other morphological labeling techniques, including histochemistry and immunocytochemistry, and thus appears to be a sensitive and useful method to reveal vascular patterns in relationship to other aspects of parenchymal development, structure, and function. PMID:25534591

  15. Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus.

    PubMed

    Buts, L; Dao-Thi, M H; Loris, R; Wyns, L; Etzler, M; Hamelryck, T

    2001-05-25

    The legume lectins are widely used as a model system for studying protein-carbohydrate and protein-protein interactions. They exhibit a fascinating quaternary structure variation, which becomes important when they interact with multivalent glycoconjugates, for instance those on cell surfaces. Recently, it has become clear that certain lectins form weakly associated oligomers. This phenomenon may play a role in the regulation of receptor crosslinking and subsequent signal transduction. The crystal structure of DB58, a dimeric lectin from the legume Dolichos biflorus reveals a separate dimer of a previously unobserved type, in addition to a tetramer consisting of two such dimers. This tetramer resembles that formed by DBL, the seed lectin from the same plant. A single amino acid substitution in DB58 affects the conformation and flexibility of a loop in the canonical dimer interface. This disrupts the formation of a stable DBL-like tetramer in solution, but does not prohibit its formation in suitable conditions, which greatly increases the possibilities for the cross-linking of multivalent ligands. The non-canonical DB58 dimer has a buried symmetrical alpha helix, which can be present in the crystal in either of two antiparallel orientations. Two existing structures and datasets for lectins with similar quaternary structures were reconsidered. A central alpha helix could be observed in the soybean lectin, but not in the leucoagglutinating lectin from Phaseolus vulgaris. The relative position and orientation of the carbohydrate-binding sites in the DB58 dimer may affect its ability to crosslink mulitivalent ligands, compared to the other legume lectin dimers. PMID:11491289

  16. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  17. Structure Predictions of Two Bauhinia variegata Lectins Reveal Patterns of C-Terminal Properties in Single Chain Legume Lectins

    PubMed Central

    Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572

  18. Interplay between metal binding and cis/trans isomerization in legume lectins: structural and thermodynamic study of P. angolensis lectin.

    PubMed

    Garcia-Pino, Abel; Buts, Lieven; Wyns, Lode; Loris, Remy

    2006-08-01

    The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype. PMID:16824540

  19. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins.

    PubMed

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H; Cogdell, Richard J

    2014-06-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding. PMID:24915077

  20. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins

    PubMed Central

    Gabrielsen, Mads; Abdul-Rahman, Puteri Shafinaz; Othman, Shatrah; Hashim, Onn H.; Cogdell, Richard J.

    2014-01-01

    Galactose-binding and mannose-binding lectins from the champedak fruit, which is native to South-east Asia, exhibit useful potential clinical applications. The specificity of the two lectins for their respective ligands allows the detection of potential cancer biomarkers and monitoring of the glycosylated state of proteins in human serum and/or urine. To fully understand and expand the use of these natural proteins, their complete sequences and crystal structures are presented here, together with details of sugar binding. PMID:24915077

  1. Novel matrix proteins of Pteria penguin pearl oyster shell nacre homologous to the jacalin-related β-prism fold lectins.

    PubMed

    Naganuma, Takako; Hoshino, Wataru; Shikanai, Yukihiro; Sato, Rie; Liu, Kaiyue; Sato, Saho; Muramoto, Koji; Osada, Makoto; Yoshimi, Kyosuke; Ogawa, Tomohisa

    2014-01-01

    Nacreous layers of pearl oyster are one of the major functional biominerals. By participating in organic compound-crystal interactions, they assemble into consecutive mineral lamellae-like photonic crystals. Their biomineralization mechanisms are controlled by macromolecules; however, they are largely unknown. Here, we report two novel lectins termed PPL2A and PPL2B, which were isolated from the mantle and the secreted fluid of Pteria penguin oyster. PPL2A is a hetero-dimer composed of α and γ subunits, and PPL2B is a homo-dimer of β subunit, all of which surprisingly shared sequence homology with the jacalin-related plant lectin. On the basis of knockdown experiments at the larval stage, the identification of PPLs in the shell matrix, and in vitro CaCO3 crystallization analysis, we conclude that two novel jacalin-related lectins participate in the biomineralization of P. penguin nacre as matrix proteins. Furthermore, it was found that trehalose, which is specific recognizing carbohydrates for PPL2A and is abundant in the secreted fluid of P. penguin mantle, functions as a regulatory factor for biomineralization via PPL2A. These observations highlight the unique functions, diversity and molecular evolution of this lectin family involved in the mollusk shell formation. PMID:25375177

  2. A Lichen Lectin Specifically Binds to the α-1,4-Polygalactoside Moiety of Urease Located in the Cell Wall of Homologous Algae

    PubMed Central

    Sacristán, Mara; Millanes, Ana-María; Legaz, María-Estrella

    2006-01-01

    A lectin from the lichen Evernia prunastri developing arginase activity (EC. 3.5.3.1) binds to the homologous algae that contain polygalactosilated urease (EC. 3.5.1.5) in their cell walls acting as a lectin ligand. The enzyme bound to its ligand shows to be inactive to hydrolyze of arginine. Hydrolysis of the galactoside moiety of urease in intact algae with α-1,4-galactosidase (EC. 3.2.1.22) releases high amount of D-galactose and impedes the binding of the lectin to the algal cell wall. However, the use of β-,4-galactosidase (EC.3.2.1.23) releases low amounts of D-galactose from the algal cell wall and does not change the pattern of binding of the lectin to its ligand. The production of glycosilated urease is restricted to the season in which algal cells divide and this assures the recognition of new phycobiont produced after cell division by its fungal partner. PMID:19521472

  3. Novel Matrix Proteins of Pteria penguin Pearl Oyster Shell Nacre Homologous to the Jacalin-Related β-Prism Fold Lectins

    PubMed Central

    Naganuma, Takako; Hoshino, Wataru; Shikanai, Yukihiro; Sato, Rie; Liu, Kaiyue; Sato, Saho; Muramoto, Koji; Osada, Makoto; Yoshimi, Kyosuke; Ogawa, Tomohisa

    2014-01-01

    Nacreous layers of pearl oyster are one of the major functional biominerals. By participating in organic compound-crystal interactions, they assemble into consecutive mineral lamellae-like photonic crystals. Their biomineralization mechanisms are controlled by macromolecules; however, they are largely unknown. Here, we report two novel lectins termed PPL2A and PPL2B, which were isolated from the mantle and the secreted fluid of Pteria penguin oyster. PPL2A is a hetero-dimer composed of α and γ subunits, and PPL2B is a homo-dimer of β subunit, all of which surprisingly shared sequence homology with the jacalin-related plant lectin. On the basis of knockdown experiments at the larval stage, the identification of PPLs in the shell matrix, and in vitro CaCO3 crystallization analysis, we conclude that two novel jacalin-related lectins participate in the biomineralization of P. penguin nacre as matrix proteins. Furthermore, it was found that trehalose, which is specific recognizing carbohydrates for PPL2A and is abundant in the secreted fluid of P. penguin mantle, functions as a regulatory factor for biomineralization via PPL2A. These observations highlight the unique functions, diversity and molecular evolution of this lectin family involved in the mollusk shell formation. PMID:25375177

  4. Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin.

    PubMed

    Hori, Kanji; Sato, Yuichiro; Ito, Kaori; Fujiwara, Yoshifumi; Iwamoto, Yasumasa; Makino, Hiroyuki; Kawakubo, Akihiro

    2007-05-01

    We have elucidated the carbohydrate-binding profile of a non-monosaccharide-binding lectin named Eucheuma serra lectin (ESA)-2 from the red alga Eucheuma serra using a lectin-immobilized column and a centrifugal ultrafiltration-high performance liquid chromatography method with a variety of fluorescence-labeled oligosaccharides. In both methods, ESA-2 exclusively bound with high-mannose type (HM) N-glycans, but not with any of other N-glycans including complex type, hybrid type and core pentasaccharides, and oligosaccharides from glycolipids. These findings indicate that ESA-2 recognizes the branched oligomannosides of the N-glycans. However, ESA-2 did not bind with any of the free oligomannoses examined that are constituents of the branched oligomannosides implying that the portion of the core N-acetyl-D-glucosamine (GlcNAc) residue(s) of the N-glycans is also essential for binding. Thus, the algal lectin was strictly specific for HM N-glycans and recognized the extended carbohydrate structure with a minimum size of the pentasaccharide, Man(alpha1-3)Man(alpha1-6)Man(beta1-4)GlcNAc(beta1-4) GlcNAc. Kinetic analysis of binding with a HM heptasaccharide (M5) showed that ESA-2 has four carbohydrate-binding sites per polypeptide with a high association constant of 1.6x10(8) M-1. Sequence analysis, by a combination of Edman degradation and mass analyses of the intact protein and of peptides produced by its enzymic digestions, showed that ESA-2 is composed of 268 amino acids (molecular weight 27950) with four tandemly repeated domains of 67 amino acids. The number of repeats coincided with the number of carbohydrate-binding sites in the monomeric molecule. Surprisingly, the marine algal lectin was homologous to hemagglutinin from the soil bacterium Myxococcus xanthus. PMID:17259190

  5. Crystal structure of a β-prism II lectin from Remusatia vivipara.

    PubMed

    Shetty, Kartika N; Bhat, Ganapati G; Inamdar, Shashikala R; Swamy, Bale M; Suguna, K

    2012-01-01

    The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 Å. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins. PMID:21788359

  6. Crystal structure of arcelin-5, a lectin-like defense protein from Phaseolus vulgaris.

    PubMed

    Hamelryck, T W; Poortmans, F; Goossens, A; Angenon, G; Van Montagu, M; Wyns, L; Loris, R

    1996-12-20

    In the seeds of the legume plants, a class of sugar-binding proteins with high structural and sequential identity is found, generally called the legume lectins. The seeds of the common bean (Phaseolus vulgaris) contain, besides two such lectins, a lectin-like defense protein called arcelin, in which one sugar binding loop is absent. Here we report the crystal structure of arcelin-5 (Arc5), one of the electrophoretic variants of arcelin, solved at a resolution of 2.7 A. The R factor of the refined structure is 20.6%, and the free R factor is 27.1%. The main difference between Arc5 and the legume lectins is the absence of the metal binding loop. The bound metals are necessary for the sugar binding capabilities of the legume lectins and stabilize an Ala-Asp cis-peptide bond. Surprisingly, despite the absence of the metal binding site in Arc5, this cis-peptide bond found in all legume lectin structures is still present, although the Asp residue has been replaced by a Tyr residue. Despite the high identity between the different legume lectin sequences, they show a broad range of quaternary structures. The structures of three different dimers and three different tetramers have been solved. Arc5 crystallized as a monomer, bringing the number of known quaternary structures to seven. PMID:8955116

  7. Characterization of IgE-binding epitopes of peanut (Arachis hypogaea) PNA lectin allergen cross-reacting with other structurally related legume lectins.

    PubMed

    Rougé, Pierre; Culerrier, Raphaël; Granier, Claude; Rancé, Fabienne; Barre, Annick

    2010-08-01

    Sera from peanut allergic patients contain IgE that specifically interact with the peanut lectin PNA and other closely related legume lectins like LcA from lentil, PsA from pea and PHA from kidney bean. The IgE-binding activity of PNA and legume lectins was assessed by immunoblotting, surface plasmon resonance (SPR) and ELISA measurements, using sera from peanut allergic patients as a IgE source. This IgE-binding cross-reactivity most probably depends on the occurrence of structurally related epitopes that have been identified on the molecular surface of PNA and other legume lectins. These epitopes definitely differ from those responsible for the allergenicity of the major allergens Ara h 1, Ara h 2 and Ara h 3, also recognized by the IgE-containing sera of peanut allergic patients. Peanut lectin PNA and other legume lectins have been characterized as potential allergens for patients allergic to edible legume seeds. However, the clinical significance of the lectin-IgE interaction has to be addressed. PMID:20541807

  8. Insights into the quaternary association of proteins through structure graphs: a case study of lectins

    PubMed Central

    2005-01-01

    The unique three-dimensional structure of both monomeric and oligomeric proteins is encoded in their sequence. The biological functions of proteins are dependent on their tertiary and quaternary structures, and hence it is important to understand the determinants of quaternary association in proteins. Although a large number of investigations have been carried out in this direction, the underlying principles of protein oligomerization are yet to be completely understood. Recently, new insights into this problem have been gained from the analysis of structure graphs of proteins belonging to the legume lectin family. The legume lectins are an interesting family of proteins with very similar tertiary structures but varied quaternary structures. Hence they have become a very good model with which to analyse the role of primary structures in determining the modes of quaternary association. The present review summarizes the results of a legume lectin study as well as those obtained from a similar analysis carried out here on the animal lectins, namely galectins, pentraxins, calnexin, calreticulin and rhesus rotavirus Vp4 sialic-acid-binding domain. The lectin structure graphs have been used to obtain clusters of non-covalently interacting amino acid residues at the intersubunit interfaces. The present study, performed along with traditional sequence alignment methods, has provided the signature sequence motifs for different kinds of quaternary association seen in lectins. Furthermore, the network representation of the lectin oligomers has enabled us to detect the residues which make extensive interactions (‘hubs’) across the oligomeric interfaces that can be targetted for interface-destabilizing mutations. The present review also provides an overview of the methodology involved in representing oligomeric protein structures as connected networks of amino acid residues. Further, it illustrates the potential of such a representation in elucidating the structural

  9. Crystal structure of Pterocarpus angolensis lectin in complex with glucose, sucrose, and turanose.

    PubMed

    Loris, Remy; Imberty, Anne; Beeckmans, Sonia; Van Driessche, Edilbert; Read, John S; Bouckaert, Julie; De Greve, Henri; Buts, Lieven; Wyns, Lode

    2003-05-01

    The crystal structure of the Man/Glc-specific seed lectin from Pterocarpus angolensis was determined in complex with methyl-alpha-d-glucose, sucrose, and turanose. The carbohydrate binding site contains a classic Man/Glc type specificity loop. Its metal binding loop on the other hand is of the long type, different from what is observed in other Man/Glc-specific legume lectins. Glucose binding in the primary binding site is reminiscent of the glucose complexes of concanavalin A and lentil lectin. Sucrose is found to be bound in a conformation similar as seen in the binding site of lentil lectin. A direct hydrogen bond between Ser-137(OG) to Fru(O2) in Pterocarpus angolensis lectin replaces a water-mediated interaction in the equivalent complex of lentil lectin. In the turanose complex, the binding site of the first molecule in the asymmetric unit contains the alphaGlc1-3betaFruf form of furanose while the second molecule contains the alphaGlc1-3betaFrup form in its binding site. PMID:12595543

  10. A Lectin from the Mussel Mytilus galloprovincialis Has a Highly Novel Primary Structure and Induces Glycan-mediated Cytotoxicity of Globotriaosylceramide-expressing Lymphoma Cells*

    PubMed Central

    Fujii, Yuki; Dohmae, Naoshi; Takio, Koji; Kawsar, Sarkar M. A.; Matsumoto, Ryo; Hasan, Imtiaj; Koide, Yasuhiro; Kanaly, Robert A.; Yasumitsu, Hidetaro; Ogawa, Yukiko; Sugawara, Shigeki; Hosono, Masahiro; Nitta, Kazuo; Hamako, Jiharu; Matsui, Taei; Ozeki, Yasuhiro

    2012-01-01

    A novel lectin structure was found for a 17-kDa α-d-galactose-binding lectin (termed “MytiLec”) isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45–52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1–4Galβ1–4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3. PMID:23093409

  11. Structural characterization of coagulant Moringa oleifera Lectin and its effect on hemostatic parameters.

    PubMed

    Luz, Luciana de Andrade; Silva, Mariana Cristina Cabral; Ferreira, Rodrigo da Silva; Santana, Lucimeire Aparecida; Silva-Lucca, Rosemeire Aparecida; Mentele, Reinhard; Oliva, Maria Luiza Vilela; Paiva, Patricia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso

    2013-07-01

    Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein. Secondary structure content was estimated as 46% α-helix, 12% β-sheets, 17% β-turns and 25% unordered structures belonging to the α/β tertiary structure class. cMoL significantly prolonged the time required for blood coagulation, activated partial thromboplastin (aPTT) and prothrombin times (PT), but was not so effective in prolonging aPTT in asialofetuin presence. cMoL acted as an anticoagulant protein on in vitro blood coagulation parameters and at least on aPTT, the lectin interacted through the carbohydrate recognition domain. PMID:23537800

  12. Quaternary structure of UEA-II, the chitobiose specific lectin from gorse.

    PubMed

    Dao-Thi, M H; Rizkallah, P; Wyns, L; Poortmans, F; Loris, R

    1998-09-01

    The chitobiose specific Ulex europaeus lectin II crystallizes in space group P3221 with unit-cell dimensions a = b = 105.54, c = 176.26 A. The asymmetric unit contains a complete lectin tetramer. The crystals were shown to diffract to 4.5 A on a rotating-anode source and to 2.7 A at the Daresbury synchrotron source. Molecular replacement and subsequent rigid-body refinement using data to 4.5 A yielded a solution corresponding to a tetramer very similar to that of phytohemagglutinin-L and soybean agglutinin. The monomers in the Ulex lectin tetramer are rotated approximately 5 degrees compared with the phytohemagglutinin-L and soybean agglutinin structures. PMID:9757099

  13. Homology-Based Modeling of Protein Structure

    NASA Astrophysics Data System (ADS)

    Xiang, Zhexin

    The human genome project has already discovered millions of proteins (http://www.swissprot.com). The potential of the genome project can only be fully realized once we can assign, understand, manipulate, and predict the function of these new proteins (Sanchez and Sali, 1997; Frishman et al., 2000; Domingues et al., 2000). Predicting protein function generally requires knowledge of protein three-dimensional structure (Blundell et al., 1978;Weber, 1990), which is ultimately determined by protein sequence (Anfinsen, 1973). Protein structure determination using experimental methods such as X-ray crystallography or NMR spectroscopy is very time consuming (Johnson et al. 1994). To date, fewer than 2% of the known proteins have had their structures solved experimentally. In 2004, more than half a million new proteins were sequenced that almost doubled the efforts in the previous year, but only 5300 structures were solved. Although the rate of experimental structure determination will continue to increase, the number of newly discovered sequences grows much faster than the number of structures solved (see Fig. 10.1).

  14. Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin.

    PubMed

    Leonidas, Demetres D; Swamy, Bale M; Hatzopoulos, George N; Gonchigar, Sathisha J; Chachadi, Vishwanath B; Inamdar, Shashikala R; Zographos, Spyros E; Oikonomakos, Nikos G

    2007-05-11

    The crystal structure of a novel fungal lectin from Sclerotium rolfsii (SRL) in its free form and in complex with N-acetyl-d-galactosamine (GalNAc) and N-acetyl- d -glucosamine (GlcNAc) has been determined at 1.1 A, 2.0 A, and 1.7 A resolution, respectively. The protein structure is composed of two beta-sheets, which consist of four and six beta-strands, connected by two alpha-helices. Sequence and structural comparisons reveal that SRL is the third member of a newly identified family of fungal lectins, which includes lectins from Agaricus bisporus and Xerocomus chrysenteron that share a high degree of structural similarity and carbohydrate specificity. The data for the free SRL are the highest resolution data for any protein of this family. The crystal structures of the SRL in complex with two carbohydrates, GalNAc and GlcNAc, which differ only in the configuration of a single epimeric hydroxyl group, provide the structural basis for its carbohydrate specificity. SRL has two distinct carbohydrate-binding sites, a primary and a secondary. GalNAc binds at the primary site, whereas GlcNAc binds only at the secondary site. Thus, SRL has the ability to recognize and probably bind at the same time two different carbohydrate structures. Structural comparison to Agaricus bisporus lectin-carbohydrate complexes reveals that the primary site is also able to bind the Thomsen-Friedenreich antigen (Galbeta1-->3GalNAc-alpha- glycan structures) whereas the secondary site cannot. The features of the molecular recognition at the two sites are described in detail. PMID:17391699

  15. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    PubMed

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. PMID:27318092

  16. Snake venom galactoside-binding lectins: a structural and functional overview.

    PubMed

    Sartim, Marco A; Sampaio, Suely V

    2015-01-01

    Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications. PMID:26413085

  17. Distant homology recognition using structural classification of proteins.

    PubMed

    Murzin, A G; Bateman, A

    1997-01-01

    Protein structure prediction is arguably the biggest unsolved problem of structural biology. The notion of the number of naturally occurring different protein folds being limited allows partial solution of this problem by the use of fold recognition methods, which "thread" the sequence in question through a library of known protein folds. The fold recognition methods were thought to be superior to the distant homology recognition methods when there is no significant sequence similarity to known structures. We show here that the Structural Classification of Proteins (SCOP) database, organizing all known protein folds according their structural and evolutionary relationships, can be effectively used to enhance the sensitivity of the distant homology recognition methods to rival the "threading" methods. In the CASP2 experiment, our approach correctly assigned into existing SCOP superfamilies all of the six "fold recognition" targets we attempted. For each of the six targets, we correctly predicted the homologous protein with a very similar structure; often, it was the most similar structure. We correctly predicted local alignments of the sequence features that we found to be characteristic for the protein superfamily containing a given target. Our global alignments, extended manually from these local alignments, also appeared to be rather accurate. PMID:9485501

  18. Solution Structures of Two Homologous Venom Peptides from Sicarius dolichocephalus

    PubMed Central

    Loening, Nikolaus M.; Wilson, Zachary N.; Zobel-Thropp, Pamela A.; Binford, Greta J.

    2013-01-01

    We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides. PMID:23342149

  19. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies. PMID:12862436

  20. Structural insights into the initiating complex of the lectin pathway of complement activation.

    PubMed

    Kjaer, Troels R; Le, Le T M; Pedersen, Jan Skov; Sander, Bjoern; Golas, Monika M; Jensenius, Jens Christian; Andersen, Gregers R; Thiel, Steffen

    2015-02-01

    The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway. PMID:25579818

  1. Structural Studies of an Anti-Inflammatory Lectin from Canavalia boliviana Seeds in Complex with Dimannosides

    PubMed Central

    Moura, Tales Rocha; Delatorre, Plínio; Rocha, Bruno Anderson Matias; do Nascimento, Kyria Santiago; Figueiredo, Jozi Godoy; Bezerra, Ingrid Gonçalves; Teixeira, Cicero Silvano; Simões, Rafael Conceição; Nagano, Celso Shiniti; de Alencar, Nylane Maria Nunes; Gruber, Karl; Cavada, Benildo Sousa

    2014-01-01

    Plant lectins, especially those purified from species of the Leguminosae family, represent the best-studied group of carbohydrate-binding proteins. Lectins purified from seeds of the Diocleinae subtribe exhibit a high degree of sequence identity notwithstanding that they show very distinct biological activities. Two main factors have been related to this feature: variance in key residues influencing the carbohydrate-binding site geometry and differences in the pH-dependent oligomeric state profile. In this work, we have isolated a lectin from Canavalia boliviana (Cbol) and solved its x-ray crystal structure in the unbound form and in complex with the carbohydrates Man(α1-3)Man(α1-O)Me, Man(α1-4)Man(α1-O)Me and 5-bromo-4-chloro-3-indolyl-α-D-mannose. We evaluated its oligomerization profile at different pH values using Small Angle X-ray Scattering and compared it to that of Concanavalin A. Based on predicted pKa-shifts of amino acids in the subunit interfaces we devised a model for the dimer-tetramer equilibrium phenomena of these proteins. Additionally, we demonstrated Cbol anti-inflammatory properties and further characterized them using in vivo and in vitro models. PMID:24865454

  2. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA.

    PubMed

    Visini, Ricardo; Jin, Xian; Bergmann, Myriam; Michaud, Gaelle; Pertici, Francesca; Fu, Ou; Pukin, Aliaksei; Branson, Thomas R; Thies-Weesie, Dominique M E; Kemmink, Johan; Gillon, Emilie; Imberty, Anne; Stocker, Achim; Darbre, Tamis; Pieters, Roland J; Reymond, Jean-Louis

    2015-11-20

    Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of LecA complexes with divalent analog GalAG1 [(Gal-β-OC6H4CO-Lys-Pro-Leu)2Lys-Phe-Lys-Ile-NH2] and related glucose-triazole linked bis-galactosides 3u3 [Gal-β-O(CH2)n-(C2HN3)-4-Glc-β-(C2HN3)-[β-Glc-4-(N3HC2)]2-(CH2)n-O-β-Gal (n = 1)] and 5u3 (n = 3) were obtained, revealing a chelate bound 3u3, cross-linked 5u3, and monovalently bound GalAG1. Nevertheless, a chelate bound model better explaining their strong LecA binding and the absence of lectin aggregation was obtained by modeling for all three ligands. A model of the chelate bound GalAG2·LecA complex was also obtained rationalizing its unusually tight LecA binding (KD = 2.5 nM) and aggregation by lectin cross-linking. The very weak biofilm inhibition with divalent LecA inhibitors suggests that lectin aggregation is necessary for biofilm inhibition by GalAG2, pointing to multivalent glycoclusters as a unique opportunity to control P. aeruginosa biofilms. PMID:26295304

  3. Multidrug resistance ABC transporter structure predictions by homology modeling approaches.

    PubMed

    Honorat, Mylène; Falson, Pierre; Terreux, Raphael; Di Pietro, Attilio; Dumontet, Charles; Payen, Léa

    2011-03-01

    Human multidrug resistance ABC transporters are ubiquitous membrane proteins responsible for the efflux of multiple, endogenous or exogenous, compounds out of the cells, and therefore they are involved in multi-drug resistance phenotype (MDR). They thus deeply impact the pharmacokinetic parameters and toxicity properties of drugs. A great pressure to develop inhibitors of these pumps is carried out, by either ligand-based drug design or (more ideally) structure-based drug design. In that goal, many biochemical studies have been carried out to characterize their transport functions, and many efforts have been spent to get high-resolution structures. Currently, beside the 3D-structures of bacterial ABC transporters Sav1866 and MsbA, only the mouse ABCB1 complete structure has been published at high-resolution, illustrating the tremendous difficulty in getting such information, taking into account that the human genome accounts for 48 ABC transporters encoding genes. Homology modeling is consequently a reasonable approach to overcome this obstacle. The present review describes, in the first part, the different approaches which have been published to set up human ABC pump 3D-homology models allowing the localization of binding sites for drug candidates, and the identification of critical residues therein. In a second part, the review proposes a more accurate strategy and practical keys to use such biological tools for initiating structure-based drug design. PMID:21470105

  4. The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains.

    PubMed

    Mann, K; Farias, C M; Del Sol, F G; Santos, C F; Grangeiro, T B; Nagano, C S; Cavada, B S; Calvete, J J

    2001-08-01

    A mannose/glucose-specific lectin was isolated from seeds of Parkia platycephala, the most primitive subfamily of Leguminosae plants. The molecular mass of the purified lectin determined by mass spectrometry was 47 946 +/- 6 Da (by electrospray ionization) and 47 951 +/- 9 Da (by matrix-assisted laser-desoption ionization). The apparent molecular mass of the lectin in solutions of pH in the range 4.5-8.5 determined by analytical ultracentrifugation equilibrium sedimentation was 94 +/- 3 kDa, showing that the protein behaved as a non-pH-dependent dimer. The amino-acid sequence of the Parkia lectin was determined by Edman degradation of overlapping peptides. This is the first report of the primary structure of a Mimosoideae lectin. The protein contained a blocked N-terminus and a single, nonglycosylated polypeptide chain composed of three tandemly arranged homologous domains. Each of these domains shares sequence similarity with jacalin-related lectin monomers from Asteraceae, Convolvulaceae, Moraceae, Musaceae, Gramineae, and Fagaceae plant families. Based on this homology, we predict that each Parkia lectin repeat may display a beta prism fold similar to that observed in the crystal structure of the lectin from Helianthus tuberosus. The P. platycephala lectin also shows sequence similarity with stress- and pathogen-upregulated defence genes of a number of different plants, suggesting a common ancestry for jacalin-related lectins and inducible defence proteins. PMID:11502201

  5. Determinants of quaternary association in legume lectins

    PubMed Central

    Brinda, K.V.; Mitra, Nivedita; Surolia, Avadhesha; Vishveshwara, Saraswathi

    2004-01-01

    It is well known that the sequence of amino acids in proteins code for its tertiary structure. It is also known that there exists a relationship between sequence and the quaternary structure of proteins. The question addressed here is whether the nature of quaternary association can be predicted from the sequence, similar to the three-dimensional structure prediction from the sequence. The class of proteins called legume lectins is an interesting model system to investigate this problem, because they have very high sequence and tertiary structure homology, with diverse forms of quaternary association. Hence, we have used legume lectins as a probe in this paper to (1) gain novel insights about the relationship between sequence and quaternary structure; (2) identify the sequence motifs that are characteristic of a given type of quaternary association; and (3) predict the quaternary association from the sequence motif. PMID:15215518

  6. Structural analysis of β-prism lectin from Colocasia esculenta (L.) S chott.

    PubMed

    Vajravijayan, S; Pletnev, S; Pletnev, V Z; Nandhagopal, N; Gunasekaran, K

    2016-10-01

    The Mannose-binding β-Prism Colocasia esculenta lectin (β-PCL) was purified from tubers using ion exchange chromatography. The purified β-PCL appeared as a single band of ∼12kDa on SDS-PAGE. β-PCL crystallizes in trigonal space group P3121 and diffracted to a resolution of 2.1Å. The structure was solved using Molecular replacement using Crocus vernus lectin (PDB: 3MEZ) as a model. From the final refined model to an R-factor of 16.5% and an Rfree of 20.4%, it has been observed that the biological unit consists of two β-Prism domains augmented through C-terminals swap over to form one of faces for each domain. Cα superposition of individual domains of β-PCL with individual domains of other related structures and superposition of whole protein structures were carried out. The higher RMS deviation for the superposition of whole structures suggest that β-prism domains assume different orientation in each structure. PMID:27262515

  7. Crystal Structure of a Fructokinase Homolog from Halothermothrix orenii

    SciTech Connect

    Khiang, C.; Seetharaman, J; Kasprzak, J; Cherlyn, N; Patel, B; Love, C; Bujnicki, J; Sivaraman, J

    2010-01-01

    Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of D-fructose to D-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrix orenii (Hore{_}18220 in sequence databases). The structure of the Hore{_}18220 protein reveals a catalytic domain with a Rossmann-like fold and a b-sheet 'lid' for dimerization. Based on comparison of Hore{_}18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore{_}18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.

  8. Structure of a 6-pyruvoyltetrahydropterin synthase homolog from Streptomyces coelicolor

    PubMed Central

    Spoonamore, James E.; Roberts, Sue A.; Heroux, Annie; Bandarian, Vahe

    2008-01-01

    The X-ray crystal structure of the 6-pyruvoyltetrahydropterin synthase (PTPS) homolog from Streptomyces coelicolor, SCO 6650, was solved at 1.5 Å resolution. SCO 6650 forms a hexameric T-fold that closely resembles other PTPS proteins. The biological activity of SCO 6650 is unknown, but it lacks both a required active-site zinc metal ion and the essential catalytic triad and does not catalyze the PTPS reaction. However, SCO 6650 maintains active-site residues consistent with binding a pterin-like substrate. PMID:18931427

  9. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    SciTech Connect

    Bianchet, M.; Odom, E; Vasta, J; Amzel, M

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.

  10. Flexible mapping of homology onto structure with Homolmapper

    PubMed Central

    Rockwell, Nathan C; Lagarias, J Clark

    2007-01-01

    Background Over the past decade, a number of tools have emerged for the examination of homology relationships among protein sequences in a structural context. Most recent software implementations for such analysis are tied to specific molecular viewing programs, which can be problematic for collaborations involving multiple viewing environments. Incorporation into larger packages also adds complications for users interested in adding their own scoring schemes or in analyzing proteins incorporating unusual amino acid residues such as selenocysteine. Results We describe homolmapper, a command-line application for mapping information from a multiple protein sequence alignment onto a protein structure for analysis in the viewing software of the user's choice. Homolmapper is small (under 250 K for the application itself) and is written in Python to ensure portability. It is released for non-commercial use under a modified University of California BSD license. Homolmapper permits facile import of additional scoring schemes and can incorporate arbitrary additional amino acids to allow handling of residues such as selenocysteine or pyrrolysine. Homolmapper also provides tools for defining and analyzing subfamilies relative to a larger alignment, for mutual information analysis, and for rapidly visualizing the locations of mutations and multi-residue motifs. Conclusion Homolmapper is a useful tool for analysis of homology relationships among proteins in a structural context. There is also extensive, example-driven documentation available. More information about homolmapper is available at . PMID:17428344

  11. Structure of the native (unligated) mannose-specific bulb lectin from Scilla campanulata (bluebell) at 1.7 A resolution.

    PubMed

    Wood, S D; Wright, L M; Reynolds, C D; Rizkallah, P J; Allen, A K; Peumans, W J; Van Damme, E J

    1999-07-01

    The X-ray crystal structure of native Scilla campanulata agglutinin, a mannose-specific lectin from bluebell bulbs and a member of the Liliaceae family, has been determined by molecular replacement and refined to an R value of 0.186 at 1.7 A resolution. The lectin crystallizes in space group P21212 with unit-cell parameters a = 70. 42, b = 92.95, c = 46.64 A. The unit cell contains eight protein molecules of Mr = 13143 Da (119 amino-acid residues). The asymmetric unit comprises two chemically identical molecules, A and B, related by a non-crystallographic twofold axis perpendicular to c. This dimer further associates by crystallographic twofold symmetry to form a tetramer. The fold of the polypeptide backbone closely resembles that found in the lectins from Galanthus nivalis (snowdrop) and Hippeastrum (amaryllis) and contains a threefold symmetric beta-prism made up of three antiparallel four-stranded beta-sheets. Each of the four-stranded beta-sheets (I, II and III) possesses a potential saccharide-binding site containing conserved residues; however, site II has two mutations relative to sites I and III which may prevent ligation at this site. Our study provides the first accurate and detailed description of a native (unligated) structure from this superfamily of mannose-specific bulb lectins and will allow comparisons with a number of lectin-saccharide complexes which have already been determined or are currently under investigation. PMID:10393293

  12. Structural Basis for Multiple Sugar Recognition of Jacalin-related Human ZG16p Lectin*

    PubMed Central

    Kanagawa, Mayumi; Liu, Yan; Hanashima, Shinya; Ikeda, Akemi; Chai, Wengang; Nakano, Yukiko; Kojima-Aikawa, Kyoko; Feizi, Ten; Yamaguchi, Yoshiki

    2014-01-01

    ZG16p is a soluble mammalian lectin, the first to be described with a Jacalin-related β-prism-fold. ZG16p has been reported to bind both to glycosaminoglycans and mannose. To determine the structural basis of the multiple sugar-binding properties, we conducted glycan microarray analyses of human ZG16p. We observed that ZG16p preferentially binds to α-mannose-terminating short glycans such as Ser/Thr-linked O-mannose, but not to high mannose-type N-glycans. Among sulfated glycosaminoglycan oligomers examined, chondroitin sulfate B and heparin oligosaccharides showed significant binding. Crystallographic studies of human ZG16p lectin in the presence of selected ligands revealed the mechanism of multiple sugar recognition. Manα1–3Man and Glcβ1–3Glc bound in different orientations: the nonreducing end of the former and the reducing end of the latter fitted in the canonical shallow mannose binding pocket. Solution NMR analysis using 15N-labeled ZG16p defined the heparin-binding region, which is on an adjacent flat surface of the protein. On-array competitive binding assays suggest that it is possible for ZG16p to bind simultaneously to both types of ligands. Recognition of a broad spectrum of ligands by ZG16p may account for the multiple functions of this lectin in the formation of zymogen granules via glycosaminoglycan binding, and in the recognition of pathogens in the digestive system through α-mannose-related recognition. PMID:24790092

  13. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  14. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  15. X-ray structure solution of amaryllis lectin by molecular replacement with only 4% of the total diffracting matter.

    PubMed

    Chantalat, L; Wood, S D; Rizkallah, P; Reynolds, C D

    1996-11-01

    It is often the case that analogous proteins from different species crystallize in a different form. These structures can usually be easily solved by the molecular-replacement (MR) technique, as the protein folding is very often conserved. However, the results from MR become more uncertain as the proportion of diffracting matter decreases as a result of multimericity and/or absence of some of the atoms in the model. In this paper results are presented on the structure solution of amaryllis lectin (109 residues per monomer) containing two protein molecules in the asymmetric unit. The structure was solved by MR using the Calpha coordinates of one monomer from snowdrop lectin which has 85% amino-acid sequence identity to amaryllis lectin. This represents only 6% of the non-H atoms of the protein molecule to be used for structure determination and it is a major improvement on previous reports. Further calculations were carried out in order to establish the minimum number of atoms which could be included in the model before a clear solution to the MR problem was revealed. This study showed that the structure of amaryllis lectin could still have been solved easily with 3.85% of the model, which even in the most favourable cases, will probably constitute a minimum for molecular-replacement structure solution. PMID:15299575

  16. Recurrent Structural Motifs in Non-Homologous Protein Structures

    PubMed Central

    Johansson, Maria U.; Zoete, Vincent; Guex, Nicolas

    2013-01-01

    We have extracted an extensive collection of recurrent structural motifs (RSMs), which consist of sequentially non-contiguous structural motifs (4–6 residues), each of which appears with very similar conformation in three or more mutually unrelated protein structures. We find that the proteins in our set are covered to a substantial extent by the recurrent non-contiguous structural motifs, especially the helix and strand regions. Computational alanine scanning calculations indicate that the average folding free energy changes upon alanine mutation for most types of non-alanine residues are higher for amino acids that are present in recurrent structural motifs than for amino acids that are not. The non-alanine amino acids that are most common in the recurrent structural motifs, i.e., phenylalanine, isoleucine, leucine, valine and tyrosine and the less abundant methionine and tryptophan, have the largest folding free energy changes. This indicates that the recurrent structural motifs, as we define them, describe recurrent structural patterns that are important for protein stability. In view of their properties, such structural motifs are potentially useful for inter-residue contact prediction and protein structure refinement. PMID:23574940

  17. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin.

    PubMed

    Buts, Lieven; Garcia-Pino, Abel; Imberty, Anne; Amiot, Nicolas; Boons, Geert-Jan; Beeckmans, Sonia; Versées, Wim; Wyns, Lode; Loris, Remy

    2006-06-01

    The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A. PMID:16704415

  18. А new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: Structure, tissue specificity, antimicrobial and antifungal activity.

    PubMed

    Chikalovets, Irina V; Kovalchuk, Svetlana N; Litovchenko, Alina P; Molchanova, Valentina I; Pivkin, Mikhail V; Chernikov, Oleg V

    2016-03-01

    In the present study, a new Gal/GalNAc specific lectin from the mussel Mytilus trossulus (designated as MTL) was identified, and its expression levels, both in tissues and toward pathogen stimulation, were then characterized. The MTL primary structure was determined via cDNA sequencing. Deduced sequence of 150 amino acid residues showed 89% similarity to lectins from the mussels Crenomytilus grayanus and Mytilus galloprovincialis that were the first members of a new family of zoolectins. The results indicated that the MTL might be involved in immune response toward pathogen infection, and it might perform different recognition specificity toward bacteria or fungi. PMID:26802895

  19. The Structure and Function of Bacterial Actin Homologs

    PubMed Central

    Shaevitz, Joshua W.; Gitai, Zemer

    2010-01-01

    During the past decade, the appreciation and understanding of how bacterial cells can be organized in both space and time have been revolutionized by the identification and characterization of multiple bacterial homologs of the eukaryotic actin cytoskeleton. Some of these bacterial actins, such as the plasmid-borne ParM protein, have highly specialized functions, whereas other bacterial actins, such as the chromosomally encoded MreB protein, have been implicated in a wide array of cellular activities. In this review we cover our current understanding of the structure, assembly, function, and regulation of bacterial actins. We focus on ParM as a well-understood reductionist model and on MreB as a central organizer of multiple aspects of bacterial cell biology. We also discuss the outstanding puzzles in the field and possible directions where this fast-developing area may progress in the future. PMID:20630996

  20. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool.

    PubMed

    Pietrzyk, Agnieszka J; Bujacz, Anna; Mak, Paweł; Potempa, Barbara; Niedziela, Tomasz

    2015-11-01

    Lectins belong to a differentiated group of proteins known to possess sugar-binding properties. Due to this fact, they are interesting research targets in medical diagnostics. Helix aspersa agglutinin (HAA) is a lectin that recognizes the epitopes containing α-d-N-acetylgalactosamine (GalNAc), which is present at the surface of metastatic cancer cells. Although several reports have already described the use of HAA as a diagnostic tool, this protein was not characterized on the molecular level. Here, we present for the first time the structural information about lectin isolated from mucus of Helix aspersa (garden snail). The amino acid sequence of this agglutinin was determined by Edman degradation and tertiary as well as quaternary structure by X-ray crystallography. The high resolution crystal structure (1.38Å) and MALDI-TOF mass spectrometry analysis provide the detailed information about a large part of the HAA natural glycan chain. The topology of the GalNAc binding cleft and interaction with lectin are very well defined in the structure and fully confirmed by STD HSQC NMR spectroscopy. Together, this provides structural clues regarding HAA specificity and opens possibilities to rational modifications of this important diagnostic tool. PMID:26416237

  1. PREDICTING RNA STRUCTURE BY MULTIPLE TEMPLATE HOMOLOGY MODELING

    PubMed Central

    FLORES, SAMUEL C.; WAN, YAQI; RUSSELL, RICK; ALTMAN, RUSS B.

    2010-01-01

    Despite the importance of 3D structure to understand the myriad functions of RNAs in cells, most RNA molecules remain out of reach of crystallographic and NMR methods. However, certain structural information such as base pairing and some tertiary contacts can be determined readily for many RNAs by bioinformatics or relatively low cost experiments. Further, because RNA structure is highly modular, it is possible to deduce local 3D structure from the solved structures of evolutionarily related RNAs or even unrelated RNAs that share the same module. RNABuilder is a software package that generates model RNA structures by treating the kinematics and forces at separate, multiple levels of resolution. Kinematically, bonds in bases, certain stretches of residues, and some entire molecules are rigid while other bonds remain flexible. Forces act on the rigid bases and selected individual atoms. Here we use RNABuilder to predict the structure of the 200-nucleotide Azoarcus group I intron by homology modeling against fragments of the distantly-related Twort and Tetrahymena group I introns and by incorporating base pairing forces where necessary. In the absence of any information from the solved Azoarcus intron crystal structure, the model accurately depicts the global topology, secondary and tertiary connections, and gives an overall RMSD value of 4.6 Å relative to the crystal structure. The accuracy of the model is even higher in the intron core (RMSD = 3.5 Å), whereas deviations are modestly larger for peripheral regions that differ more substantially between the different introns. These results lay the groundwork for using this approach for larger and more diverse group I introns, as well for still larger RNAs and RNA-protein complexes such as group II introns and the ribosomal subunits. PMID:19908374

  2. Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety.

    PubMed

    Nasi, Antonella; Picariello, Gianluca; Ferranti, Pasquale

    2009-04-13

    Lectins are a structurally diverse class of (glyco)proteins which bind mono- and oligosaccharides with high specificity and in a reversible way. For many years, the unique sugar binding properties of plant lectins have been exploited for the development of biochemical tools for glycoprotein isolation and characterisation, and the use of lectins as a glycoprofiling tool has became much more sophisticated with the advent of lectin microarrays, in which a panel of lectins are immobilized on a single chip for glycomic analysis. Among the numerous lectins studied so far, those from legumes represent the largest family. They can be present at relatively high amounts depending on genetic as well as environmental factors, and are accumulated especially in the seeds. For this reason, some lectins as the phytohemagglutinin from the common bean Phaseolus vulgaris constitute a possible risk, since consumption of raw or incorrectly processed beans has been shown to cause outbreaks of gastroenteritis, nausea and diarrhoea. On the other hand, for these anti-nutritional properties, bean extracts enriched in lectins or in lectin-related amylase inhibitors are also finding a growing use as active ingredients of "weight-blockers" in dietetic preparations for obesity treatment. Current methods to determine the lectin levels in foods are based on immunoenzymatic or toxicity tests, which are largely aspecific. Very recently, the availability of proteomic methodologies has allowed to start development and validation of sensitive and specific assays for detecting trace amounts of harmful lectins in either raw or processed foods. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterisation of legumes are presented, with focus on issues related to detection, identification, and quantification of phytohemagglutinins relevant for their biochemical, immunological and toxicological aspects. PMID

  3. Covalent structure of human haptoglobin: a serine protease homolog.

    PubMed Central

    Kurosky, A; Barnett, D R; Lee, T H; Touchstone, B; Hay, R E; Arnott, M S; Bowman, B H; Fitch, W M

    1980-01-01

    The complete amino acid sequences and the disulfide arrangements of the two chains of human haptoglobin 1-1 were established. The alpha 1 and beta chains of haptoglobin contain 83 and 245 residues, respectively. Comparison of the primary structure of haptoglobin with that of the chymotrypsinogen family of serine proteases revealed a significant degree of chemical similarity. The probability was less than 10(-5) that the chemical similarity of the beta chain of haptoglobin to the proteases was due to chance. The amino acid sequence of the beta chain of haptoglobin is 29--33% identical to bovine trypsin, bovine chymotrypsin, porcine elastase, human thrombin, or human plasmin. Comparison of haptoglobin alpha 1 chain to activation peptide regions of the zymogens revealed an identity of 25% to the fifth "kringle" region of the activation peptide of plasminogen. The probability was less than 0.014 that this similarity was due to chance. These results strongly indicate haptoglobin to be a homolog of the chymotrypsinogen family of serine proteases. Alignment of the beta-chain sequence of haptoglobin to the serine proteases is remarkably consistent except for an insertion of 16 residues in the region corresponding to the methionyl loop of the serine proteases. The active-site residues typical of the serine proteases, histidine-57 and serine-195, are replaced in haptoglobin by lysine and alanine, respectively; however, aspartic acid-102 and the trypsin specificity, residue, aspartic acid-189, do occur in haptoglobin. Haptoglobin and the serine proteases represent a striking example of homologous proteins with different biological functions. PMID:6997877

  4. High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data.

    PubMed

    Svensson, Cecilia; Teneberg, Susann; Nilsson, Carol L; Kjellberg, Anders; Schwarz, Frederick P; Sharon, Nathan; Krengel, Ute

    2002-08-01

    The primary sequence of Erythrina cristagalli lectin (ECL) was mapped by mass spectrometry, and the crystal structures of the lectin in complex with lactose and 2'-alpha-L-fucosyllactose were determined at 1.6A and 1.7A resolution, respectively. The two complexes were compared with the crystal structure of the closely related Erythrina corallodendron lectin (ECorL) in complex with lactose, with the crystal structure of the Ulex europaeus lectin II in complex with 2'-alpha-L-fucosyllactose, and with two modeled complexes of ECorL with 2'-alpha-L-fucosyl-N-acetyllactosamine. The molecular models are very similar to the crystal structure of ECL in complex with 2'-alpha-L-fucosyllactose with respect to the overall mode of binding, with the L-fucose fitting snugly into the cavity surrounded by Tyr106, Tyr108, Trp135 and Pro134 adjoining the primary combining site of the lectin. Marked differences were however noted between the models and the experimental structure in the network of hydrogen bonds and hydrophobic interactions holding the L-fucose in the combining site of the lectin, pointing to limitations of the modeling approach. In addition to the structural characterization of the ECL complexes, an effort was undertaken to correlate the structural data with thermodynamic data obtained from microcalorimetry, revealing the importance of the water network in the lectin combining site for carbohydrate binding. PMID:12139934

  5. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta.

    PubMed

    Pereira, Patrícia R; Winter, Harry C; Verícimo, Mauricio A; Meagher, Jennifer L; Stuckey, Jeanne A; Goldstein, Irwin J; Paschoalin, Vânia M F; Silva, Joab T

    2015-01-01

    The lectins, a class of proteins that occur widely in animals, plants, fungi, lichens and microorganisms, are known for their ability to specifically bind to carbohydrates. Plant lectins can be classified into 12 families including the Galanthus nivalis agglutinin (GNA)-related lectin superfamily, which is widespread among monocotyledonous plants and binds specifically to mannose, a behavior that confers remarkable anti-tumor, anti-viral and insecticidal properties on these proteins. The present study characterized a mitogenic lectin from this family, called tarin, which was purified from the crude extract from taro (Colocasia esculenta). The results showed that tarin is a glycoprotein with 2-3% carbohydrate content, composed of least 10 isoforms with pIs ranging from 5.5 to 9.5. The intact protein is a heterotetramer of 47kDa composed of two non-identical and non-covalently associated polypeptides, with small subunits of 11.9kDa and large subunits of 12.6kDa. The tarin structure is stable and recovers or maintains its functional structure following treatments at different temperatures and pH. Tarin showed a complex carbohydrate specificity, binding with high affinity to high-mannose and complex N-glycans. Many of these ligands can be found in viruses, tumor cells and insects, as well as in hematopoietic progenitor cells. Chemical modifications confirmed that both conserved and non-conserved amino acids participate in this interaction. This study determined the structural and ligand binding characteristics of a GNA-related lectin that can be exploited for several different purposes, particularly as a proliferative therapeutic molecule that is able to enhance the immunological response. PMID:25448725

  6. Lectins in the investigation of receptors

    NASA Astrophysics Data System (ADS)

    Lakhtin, V. M.; Yamskov, Igor A.

    1991-08-01

    Problems of the purification and characterisation are considered for approximately 270 receptors (including cell surface and organelle enzymes), which are glycoconjugates (mainly glycoproteins) from animals, plants and microorganisms, using various lectins (mainly lectin sorbents). An analysis has been carried out of the stages of lectin affinity chromatography of receptors (choice of detergent, use of organic solvents, elution with carbohydrates, etc.). Examples are given of procedures for the purification of receptors, including the use of paired columns and combination chromatography on lectins. The possibility of separating sub-populations of receptors using lectins has been demonstrated. Examples are given of the use of lectins in the analysis of the oligosaccharide structure of receptors. Cases are recorded of the interaction of receptors with endogenous lectins and of receptor lectins with endogenous glycoconjugates. It has been shown that lectins, in combination with glycosidases and antibodies, may be useful in the investigation of receptors. The bibliography contains 406 references.

  7. Amino acid sequence and tertiary structure of Cratylia mollis seed lectin.

    PubMed

    De Souza, Gustavo A; Oliveira, Paulo S L; Trapani, Stefano; Santos, Ana Célia O; Rosa, José C; Laure, Helen J; Faça, Vitor M; Correia, Maria T S; Tavares, Gisele A; Oliva, Glaucius; Coelho, Luana C B B; Greene, Lewis J

    2003-12-01

    Carbohydrate-protein interactions play a key role in many biological processes. Cramoll is a lectin purified from Cratylia mollis seeds that is taxonomically related to concanavalin A (Con A). Although Cramoll and Con A have the same monosaccharide specificity, they have different glycoprotein binding profiles. We report the primary structure of Cramoll, determined by Edman degradation and mass spectrometry and its 1.77 A crystallographic structure and compare it with the three-dimensional structure of Con A in an attempt to understand how differential binding can be achieved by similar or nearly identical structures. We report here that Cramoll consists of 236 residues, with 82% identity with Con A, and that its topological architecture is essentially identical to Con A, because the Calpha positional differences are below 3.5 A. Cramoll and Con A have identical binding sites for MealphaMan, Mn2+, and Ca2+. However, we observed six substitutions in a groove adjacent to the extended binding site and two in the extended binding site that may explain the differences in binding of oligosaccharides and glycoproteins between Cramoll and Con A. PMID:12966038

  8. Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

    PubMed Central

    2015-01-01

    A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen–deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic predictions. Here a unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the protein and its role. Specifically, HDX data were used to guide the homology modeling to yield a more functionally relevant structural model of DHCC. PMID:25138816

  9. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants.

    PubMed

    Peppa, Vassiliki I; Venkat, Hemalatha; Kantsadi, Anastassia L; Inamdar, Shashikala R; Bhat, Ganapati G; Eligar, Sachin; Shivanand, Anupama; Chachadi, Vishwanath B; Satisha, Gonchigar J; Swamy, Bale M; Skamnaki, Vassiliki T; Zographos, Spyridon E; Leonidas, Demetres D

    2015-01-01

    SRL is a cell wall associated developmental-stage specific lectin secreted by Sclerotium rolfsii, a soil-born pathogenic fungus. SRL displays specificity for TF antigen (Galβ1→3GalNAc-α-Ser//Thr) expressed in all cancer types and has tumour suppressing effects in vivo. Considering the immense potential of SRL in cancer research, we have generated two variant gene constructs of SRL and expressed in E. coli to refine the sugar specificity and solubility by altering the surface charge. SSR1 and SSR2 are two different recombinant variants of SRL, both of which recognize TF antigen but only SSR1 binds to Tn antigen (GalNAcα-Ser/Thr). The glycan array analysis of the variants demonstrated that SSR1 recognizes TF antigen and their derivative with high affinity similar to SRL but showed highest affinity towards the sialylated Tn antigen, unlike SRL. The carbohydrate binding property of SSR2 remains unaltered compared to SRL. The crystal structures of the two variants were determined in free form and in complex with N-acetylglucosamine at 1.7 Å and 1.6 Å resolution, respectively. Structural analysis highlighted the structural basis of the fine carbohydrate specificity of the two SRL variants and results are in agreement with glycan array analysis. PMID:26076107

  10. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24270074

  11. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity.

    PubMed

    Kovalchuk, Svetlana N; Chikalovets, Irina V; Chernikov, Oleg V; Molchanova, Valentina I; Li, Wei; Rasskazov, Valery A; Lukyanov, Pavel A

    2013-10-01

    An amino acid sequence of GalNAc/Gal-specific lectin from the mussel Crenomytilus grayanus (CGL) was determined by cDNA sequencing. CGL consists of 150 amino acid residues, contains three tandem repeats with high sequence similarities to each other (up to 73%) and does not belong to any known lectins family. According to circular dichroism results CGL is a β/α-protein with the predominance of β-structure. CGL was predicted to adopt a ß-trefoil fold. The lectin exhibits antibacterial activity and might be involved in the recognition and clearance of bacterial pathogens in the shellfish. PMID:23886951

  12. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    DOE PAGESBeta

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog ofmore » uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.« less

  13. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs: Arg- and Gln-type Bacterial CDO Homologs

    SciTech Connect

    Driggers, Camden M.; Hartman, Steven J.; Karplus, P. Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases.

  14. A cohesin-based structural platform supporting homologous chromosome pairing in meiosis.

    PubMed

    Ding, Da-Qiao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-08-01

    The pairing and recombination of homologous chromosomes during the meiotic prophase is necessary for the accurate segregation of chromosomes in meiosis. However, the mechanism by which homologous chromosomes achieve this pairing has remained an open question. Meiotic cohesins have been shown to affect chromatin compaction; however, the impact of meiotic cohesins on homologous pairing and the fine structures of cohesion-based chromatin remain to be determined. A recent report using live-cell imaging and super-resolution microscopy demonstrated that the lack of meiotic cohesins alters the chromosome axis structures and impairs the pairing of homologous chromosomes. These results suggest that meiotic cohesin-based chromosome axis structures are crucial for the pairing of homologous chromosomes. PMID:26856595

  15. Structure and Glycan Binding of a New Cyanovirin-N Homolog.

    PubMed

    Matei, Elena; Basu, Rohan; Furey, William; Shi, Jiong; Calnan, Conor; Aiken, Christopher; Gronenborn, Angela M

    2016-09-01

    The HIV-1 envelope glycoprotein gp120 is heavily glycosylated and bears numerous high mannose sugars. These sugars can serve as targets for HIV-inactivating compounds, such as antibodies and lectins, which bind to the glycans and interfere with viral entry into the target cell. We determined the 1.6 Å x-ray structure of Cyt-CVNH, a recently identified lectin from the cyanobacterium Cyanothece(7424), and elucidated its glycan specificity by NMR. The Cyt-CVNH structure and glycan recognition profile are similar to those of other CVNH proteins, with each domain specifically binding to Manα(1-2)Manα units on the D1 and D3 arms of high mannose glycans. However, in contrast to CV-N, no cross-linking and precipitation of the cross-linked species in solution was observed upon Man-9 binding, allowing, for the first time, investigation of the interaction of Man-9 with a member of the CVNH family by NMR. HIV assays showed that Cyt-CVNH is able to inhibit HIV-1 with ∼4-fold higher potency than CV-N(P51G), a stabilized version of wild type CV-N. Therefore, Cyt-CVNH may qualify as a valuable lectin for potential microbicidal use. PMID:27402833

  16. Structure-Function Analysis of Endogenous Lectin Mind-the-Gap in Synaptogenesis

    PubMed Central

    Rushton, Emma; Rohrbough, Jeffrey; Deutsch, Kalie; Broadie, Kendal

    2012-01-01

    Mind-the-Gap (MTG) is required for neuronal induction of Drosophila neuromuscular junction (NMJ) postsynaptic domains, including glutamate receptor (GluR) localization. We have previously hypothesized that MTG is secreted from the presynaptic terminal to reside in the synaptic cleft, where it binds glycans to organize the heavily-glycosylated, extracellular synaptomatrix required for trans-synaptic signaling between neuron and muscle. In this study, we test this hypothesis with MTG structure-function analyses of predicted signal peptide (SP) and carbohydrate-binding domain (CBD), by introducing deletion and point-mutant transgenic constructs into mtg null mutants. We show that the SP is required for MTG secretion and localization to synapses in vivo. We further show that the CBD is required to restrict MTG diffusion in the extracellular synaptomatrix and for postembryonic viability. However, CBD mutation results in elevation of postsynaptic GluR localization during synaptogenesis, not the mtg null mutant phenotype of reduced GluRs as predicted by our hypothesis, suggesting that proper synaptic localization of MTG limits GluR recruitment. In further testing CBD requirements, we show that MTG binds N-acetylglucosamine (GlcNAc) in a Ca2+-dependent manner, and thereby binds HRP-epitope glycans, but that these carbohydrate interactions do not require the CBD. We conclude that the MTG lectin has both positive and negative binding interactions with glycans in the extracellular synaptic domain, which both facilitate and limit GluR localization during NMJ embryonic synaptogenesis. PMID:22234957

  17. Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii.

    PubMed

    Sato, Yuichiro; Okuyama, Satomi; Hori, Kanji

    2007-04-13

    The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae. PMID:17314091

  18. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins.

    PubMed

    Cisar, J O; Sandberg, A L; Reddy, G P; Abeygunawardana, C; Bush, C A

    1997-12-01

    Lectin-mediated interactions between oral viridans group streptococci and actinomyces may play an important role in microbial colonization of the tooth surface. The presence of two host-like motifs, either GalNAc beta1-->3Gal (Gn) or Gal beta1-->3GalNAc (G), in the cell wall polysaccharides of five streptococcal strains accounts for the lactose-sensitive coaggregations of these bacteria with Actinomyces naeslundii. Three streptococcal strains which have Gn-containing polysaccharides also participate in GalNAc-sensitive coaggregations with strains of Streptococcus gordonii and S. sanguis. Each Gn- or G-containing polysaccharide is composed of a distinct phosphodiester-linked hexa- or heptasaccharide repeating unit. The occurrence of these polysaccharides on 19 additional viridans group streptococcal strains that participate in lactose-sensitive coaggregations with actinomyces was examined. Negatively charged polysaccharides that reacted with Bauhinia purpurea agglutinin, a Gal and GalNAc binding plant lectin, were isolated from 17 strains by anion exchange column chromatography of mutanolysin-cell wall digests. Results from nuclear magnetic resonance and immunodiffusion identified each of 16 polysaccharides as a known Gn- or G-containing structural type and one polysaccharide as a new but closely related Gn-containing type. Unlike the reactions of lectins, the cross-reactions of most rabbit antisera with these polysaccharides were correlated with structural features other than the host-like motifs. Gn-containing polysaccharides occurred primarily on the strains of S. sanguis and S. oralis while G-containing polysaccharides were more common among the strains of S. gordonii and S. mitis examined. The findings strongly support the hypothesis that lectin-mediated recognition of these streptococci by other oral bacteria depends on a family of antigenically diverse Gn- and G-containing cell wall polysaccharides, the occurrence of which may differ between streptococcal

  19. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins.

    PubMed Central

    Cisar, J O; Sandberg, A L; Reddy, G P; Abeygunawardana, C; Bush, C A

    1997-01-01

    Lectin-mediated interactions between oral viridans group streptococci and actinomyces may play an important role in microbial colonization of the tooth surface. The presence of two host-like motifs, either GalNAc beta1-->3Gal (Gn) or Gal beta1-->3GalNAc (G), in the cell wall polysaccharides of five streptococcal strains accounts for the lactose-sensitive coaggregations of these bacteria with Actinomyces naeslundii. Three streptococcal strains which have Gn-containing polysaccharides also participate in GalNAc-sensitive coaggregations with strains of Streptococcus gordonii and S. sanguis. Each Gn- or G-containing polysaccharide is composed of a distinct phosphodiester-linked hexa- or heptasaccharide repeating unit. The occurrence of these polysaccharides on 19 additional viridans group streptococcal strains that participate in lactose-sensitive coaggregations with actinomyces was examined. Negatively charged polysaccharides that reacted with Bauhinia purpurea agglutinin, a Gal and GalNAc binding plant lectin, were isolated from 17 strains by anion exchange column chromatography of mutanolysin-cell wall digests. Results from nuclear magnetic resonance and immunodiffusion identified each of 16 polysaccharides as a known Gn- or G-containing structural type and one polysaccharide as a new but closely related Gn-containing type. Unlike the reactions of lectins, the cross-reactions of most rabbit antisera with these polysaccharides were correlated with structural features other than the host-like motifs. Gn-containing polysaccharides occurred primarily on the strains of S. sanguis and S. oralis while G-containing polysaccharides were more common among the strains of S. gordonii and S. mitis examined. The findings strongly support the hypothesis that lectin-mediated recognition of these streptococci by other oral bacteria depends on a family of antigenically diverse Gn- and G-containing cell wall polysaccharides, the occurrence of which may differ between streptococcal

  20. HorA web server to infer homology between proteins using sequence and structural similarity.

    PubMed

    Kim, Bong-Hyun; Cheng, Hua; Grishin, Nick V

    2009-07-01

    The biological properties of proteins are often gleaned through comparative analysis of evolutionary relatives. Although protein structure similarity search methods detect more distant homologs than purely sequence-based methods, structural resemblance can result from either homology (common ancestry) or analogy (similarity without common ancestry). While many existing web servers detect structural neighbors, they do not explicitly address the question of homology versus analogy. Here, we present a web server named HorA (Homology or Analogy) that identifies likely homologs for a query protein structure. Unlike other servers, HorA combines sequence information from state-of-the-art profile methods with structure information from spatial similarity measures using an advanced computational technique. HorA aims to identify biologically meaningful connections rather than purely 3D-geometric similarities. The HorA method finds approximately 90% of remote homologs defined in the manually curated database SCOP. HorA will be especially useful for finding remote homologs that might be overlooked by other sequence or structural similarity search servers. The HorA server is available at http://prodata.swmed.edu/horaserver. PMID:19417074

  1. HorA web server to infer homology between proteins using sequence and structural similarity

    PubMed Central

    Kim, Bong-Hyun; Cheng, Hua; Grishin, Nick V.

    2009-01-01

    The biological properties of proteins are often gleaned through comparative analysis of evolutionary relatives. Although protein structure similarity search methods detect more distant homologs than purely sequence-based methods, structural resemblance can result from either homology (common ancestry) or analogy (similarity without common ancestry). While many existing web servers detect structural neighbors, they do not explicitly address the question of homology versus analogy. Here, we present a web server named HorA (Homology or Analogy) that identifies likely homologs for a query protein structure. Unlike other servers, HorA combines sequence information from state-of-the-art profile methods with structure information from spatial similarity measures using an advanced computational technique. HorA aims to identify biologically meaningful connections rather than purely 3D-geometric similarities. The HorA method finds ∼90% of remote homologs defined in the manually curated database SCOP. HorA will be especially useful for finding remote homologs that might be overlooked by other sequence or structural similarity search servers. The HorA server is available at http://prodata.swmed.edu/horaserver. PMID:19417074

  2. Accurate protein structure modeling using sparse NMR data and homologous structure information

    PubMed Central

    Thompson, James M.; Sgourakis, Nikolaos G.; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L.; Szyperski, Thomas; Montelione, Gaetano T.; Baker, David

    2012-01-01

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining , 13C, and 15N backbone and 13Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2–1.9 Å relative to the conventional determined NMR ensembles and of 0.9–1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments. PMID:22665781

  3. NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B

    PubMed Central

    Beck, Moriah R.; DeKoster, Gregory T.; Cistola, David P.; Goldman, William E.

    2011-01-01

    SUMMARY The fungal protein CBP (calcium binding protein) is a known virulence factor with an unknown virulence mechanism. The protein was identified based on its ability to bind calcium and its prevalence as Histoplasma capsulatum’s most abundant secreted protein. However, CBP has no sequence homology with other calcium binding proteins and contains no known calcium-binding motifs. Here, the NMR structure of CBP reveals a highly intertwined homodimer and represents the first atomic level NMR model of any fungal virulence factor. Each CBP monomer is comprised of four α-helices that adopt the saposin fold, characteristic of a protein family that binds to membranes and lipids. This structural homology suggests that CBP functions as a lipid-binding protein, potentially interacting with host glycolipids in the phagolysosome of host cells. PMID:19298372

  4. A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications.

    PubMed

    Tyagi, Manoj; Gowri, Venkataraman S; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Offmann, Bernard

    2006-10-01

    Analysis of protein structures based on backbone structural patterns known as structural alphabets have been shown to be very useful. Among them, a set of 16 pentapeptide structural motifs known as protein blocks (PBs) has been identified and upon which backbone model of most protein structures can be built. PBs allows simplification of 3D space onto 1D space in the form of sequence of PBs. Here, for the first time, substitution probabilities of PBs in a large number of aligned homologous protein structures have been studied and are expressed as a simplified 16 x 16 substitution matrix. The matrix was validated by benchmarking how well it can align sequences of PBs rather like amino acid alignment to identify structurally equivalent regions in closely or distantly related proteins using dynamic programming approach. The alignment results obtained are very comparable to well established structure comparison methods like DALI and STAMP. Other interesting applications of the matrix have been investigated. We first show that, in variable regions between two superimposed homologous proteins, one can distinguish between local conformational differences and rigid-body displacement of a conserved motif by comparing the PBs and their substitution scores. Second, we demonstrate, with the example of aspartic proteinases, that PBs can be efficiently used to detect the lobe/domain flexibility in the multidomain proteins. Lastly, using protein kinase as an example, we identify regions of conformational variations and rigid body movements in the enzyme as it is changed to the active state from an inactive state. PMID:16894618

  5. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A.

    PubMed

    Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi

    2015-06-01

    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. PMID:25826155

  6. Using protein homology models for structure-based studies: approaches to model refinement.

    PubMed

    Kairys, V; Gilson, M K; Fernandes, Miguel Xavier

    2006-01-01

    Homology modeling is a computational methodology to assign a 3-D structure to a target protein when experimental data are not available. The methodology uses another protein with a known structure that shares some sequence identity with the target as a template. The crudest approach is to thread the target protein backbone atoms over the backbone atoms of the template protein, but necessary refinement methods are needed to produce realistic models. In this mini-review anchored within the scope of drug design, we show the validity of using homology models of proteins in the discovery of binders for potential therapeutic targets. We also report several different approaches to homology model refinement, going from very simple to the most elaborate. Results show that refinement approaches are system dependent and that more elaborate methodologies do not always correlate with better performances from built homology models. PMID:17160340

  7. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations.

    PubMed

    Gál, Péter; Harmat, Veronika; Kocsis, Andrea; Bián, Tünde; Barna, László; Ambrus, Géza; Végh, Barbara; Balczer, Júlia; Sim, Robert B; Náray-Szabó, Gábor; Závodszky, Péter

    2005-09-30

    Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic component in the lectin pathway of complement activation. We characterized the proenzyme form of a MASP-2 catalytic fragment encompassing its C-terminal three domains and solved its crystal structure at 2.4 A resolution. Surprisingly, zymogen MASP-2 is capable of cleaving its natural substrate C4, with an efficiency about 10% that of active MASP-2. Comparison of the zymogen and active structures of MASP-2 reveals that, in addition to the activation domain, other loops of the serine protease domain undergo significant conformational changes. This additional flexibility could play a key role in the transition of zymogen MASP-2 into a proteolytically active form. Based on the three-dimensional structures of proenzyme and active MASP-2 catalytic fragments, we present model for the active zymogen MASP-2 complex and propose a mechanism for the autoactivation process. PMID:16040602

  8. Homolog detection using global sequence properties suggests an alternate view of structural encoding in protein sequences

    PubMed Central

    Scheraga, Harold A.; Rackovsky, S.

    2014-01-01

    We show that a Fourier-based sequence distance function is able to identify structural homologs of target sequences with high accuracy. It is shown that Fourier distances correlate very strongly with independently determined structural distances between molecules, a property of the method that is not attainable using conventional representations. It is further shown that the ability of the Fourier approach to identify protein folds is statistically far in excess of random expectation. It is then shown that, in actual searches for structural homologs of selected target sequences, the Fourier approach gives excellent results. On the basis of these results, we suggest that the global information detected by the Fourier representation is an essential feature of structure encoding in protein sequences and a key to structural homology detection. PMID:24706836

  9. The Purification, Properties, and Localization of an Abundant Legume Seed Lectin Cross-Reactive Material from Spartium junceum 1

    PubMed Central

    Hankins, Charles N.; Herman, Eliot M.; Kindinger, Juanita; Shannon, Leland M.

    1991-01-01

    The seeds of Spartium junceum contained a large quantity of lectin-like protein that did not appear to be either a hemagglutinin or active lectin. The cross-reactive material (CRM), like most legume seed lectins, was a tetrameric glycoprotein of about 130,000 Mr. The singlesized subunits of about 33,000 Mr were not covalently associated. The amino acid composition was typical of legume lectins and was rich in hydroxy-amino acids and poor in sulfur-containing amino acids. The Spartium CRM contained about 3.5% covalently associated carbohydrate, most likely of the high-mannose type, since the CRM was precipitated by concanavalin A. The CRM was localized by electron-microscopic immunocytochemistry and found to be exclusively in protein-filled vacuoles (protein bodies). Because this protein was so similar immunologically, structurally, and in its physiology, to classic legume seed lectins, it is most likely a lectin homolog. Similar seed lectin CRMs appear to be both common and widespread in the Leguminosae. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668191

  10. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.

    PubMed

    Agarwal, Garima; Mahajan, Swapnil; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2011-01-01

    Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been

  11. Monospecific inhibitors show that both mannan-binding lectin-associated serine protease-1 (MASP-1) and -2 Are essential for lectin pathway activation and reveal structural plasticity of MASP-2.

    PubMed

    Héja, Dávid; Harmat, Veronika; Fodor, Krisztián; Wilmanns, Matthias; Dobó, József; Kékesi, Katalin A; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2012-06-01

    The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme. PMID:22511776

  12. Monospecific Inhibitors Show That Both Mannan-binding Lectin-associated Serine Protease-1 (MASP-1) and -2 Are Essential for Lectin Pathway Activation and Reveal Structural Plasticity of MASP-2*

    PubMed Central

    Héja, Dávid; Harmat, Veronika; Fodor, Krisztián; Wilmanns, Matthias; Dobó, József; Kékesi, Katalin A.; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2012-01-01

    The lectin pathway is an antibody-independent activation route of the complement system. It provides immediate defense against pathogens and altered self-cells, but it also causes severe tissue damage after stroke, heart attack, and other ischemia reperfusion injuries. The pathway is triggered by target binding of pattern recognition molecules leading to the activation of zymogen mannan-binding lectin-associated serine proteases (MASPs). MASP-2 is considered as the autonomous pathway-activator, while MASP-1 is considered as an auxiliary component. We evolved a pair of monospecific MASP inhibitors. In accordance with the key role of MASP-2, the MASP-2 inhibitor completely blocks the lectin pathway activation. Importantly, the MASP-1 inhibitor does the same, demonstrating that MASP-1 is not an auxiliary but an essential pathway component. We report the first Michaelis-like complex structures of MASP-1 and MASP-2 formed with substrate-like inhibitors. The 1.28 Å resolution MASP-2 structure reveals significant plasticity of the protease, suggesting that either an induced fit or a conformational selection mechanism should contribute to the extreme specificity of the enzyme. PMID:22511776

  13. The bark of Robinia pseudoacacia contains a complex mixture of lectins.Characterization of the proteins and the cDNA clones.

    PubMed Central

    Van Damme, E J; Barre, A; Smeets, K; Torrekens, S; Van Leuven, F; Rougé, P; Peumans, W J

    1995-01-01

    Two lectins were isolated from the inner bark of Robinia pseudoacacia (black locust). The first (and major) lectin (called RPbAI) is composed of five isolectins that originate from the association of 31.5- and 29-kD polypeptides into tetramers. In contrast, the second (minor) lectin (called RPbAII) is a hometetramer composed of 26-kD subunits. The cDNA clones encoding the polypeptides of RPbAI and RPbAII were isolated and their sequences determined. Apparently all three polypeptides are translated from mRNAs of approximately 1.2 kb. Alignment of the deduced amino acid sequences of the different clones indicates that the 31.5- and 29-kD RPbAI polypeptides show approximately 80% sequence identity and are homologous to the previously reported legume seed lectins, whereas the 26-kD RPbAII polypeptide shows only 33% sequence identity to the previously described legume lectins. Modeling the 31.5-kD subunit of RPbAI predicts that its three-dimensional structure is strongly related to the three-dimensional models that have been determined thus far for a few legume lectins. Southern blot analysis of genomic DNA isolated from Robinia has revealed that the Robinia bark lectins are the result of the expression of a small family of lectin genes. PMID:7716244

  14. Energetics of 5-bromo-4-chloro-3-indolyl-alpha-D-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing.

    PubMed

    Gallego del Sol, Francisca; Gómez, Javier; Hoos, Sylviane; Nagano, Celso S; Cavada, Benildo S; England, Patrick; Calvete, Juan J

    2005-03-01

    Parkia platycephala belongs to the most primitive group of Leguminosae plants. Its seed lectin is made up of three homologous beta-prism repeats and exhibits binding specificity for mannose/glucose. The properties of the association between the lectin from P. platycephala seeds and monosaccharide ligands were analysed by isothermal titration calorimetry and surface plasmon resonance. The results are consistent with the lectin bearing three thermodynamically identical binding sites for mannose/glucose per monomer with dissociation constants in the millimolar range. Binding of each ligand by the lectin is enthalpically driven. Crystals have been obtained of the lectin in complex with a brominated derivative of mannose (5-bromo-4-chloro-3-indolyl-alpha-D-mannose), which were suitable for deriving an electron-density map by MAD phasing. In agreement with the thermodynamic data, six Br atoms were found in the asymmetric unit of the monoclinic P2(1) crystals, which contained two P. platycephala lectin molecules. The availability of other Br derivatives of monosaccharides (glucose, galactose, fucose) may make this strategy widely useful for structure elucidation of novel lectins or when (as in the case of the P. platycephala lectin) molecular-replacement methods fail. PMID:16511032

  15. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa

    PubMed Central

    2005-01-01

    One of the mechanisms contributing to the protection by breast-feeding of the newborn against enteric diseases is related to the ability of human milk oligosaccharides to prevent the attachment of pathogenic bacteria to the duodenual epithelium. Indeed, a variety of fucosylated oligosaccharides, specific to human milk, form part of the innate immune system. In the present study, we demonstrate the specific blocking of PA-IIL, a fucose-binding lectin of the human pathogen Pseudomonas aeruginosa, by milk oligosaccharides. Two fucosylated epitopes, Lewis a and 3-fucosyl-lactose (Lewis x glucose analogue) bind to the lectin with dissociation constants of 2.2×10−7 M and 3.6×10−7 M respectively. Thermodynamic studies indicate that these interactions are dominated by enthalpy. The entropy contribution is slightly favourable when binding to fucose and to the highest-affinity ligand, Lewis a. The high-resolution X-ray structures of two complexes of PA-IIL with milk oligosaccharides allow the precise determination of the conformation of a trisaccharide and a pentasaccharide. The different types of interaction between the oligosaccharides and the protein involve not only hydrogen bonding, but also calcium- and water-bridged contacts, allowing a rationalization of the thermodynamic data. This study provides important structural information about compounds that could be of general application in new therapeutic strategies against bacterial infections. PMID:15790314

  16. Structural Basis of Specific Recognition of Non-Reducing Terminal N-Acetylglucosamine by an Agrocybe aegerita Lectin

    PubMed Central

    Ren, Xiao-Ming; Li, De-Feng; Jiang, Shuai; Lan, Xian-Qing; Hu, Yonglin; Sun, Hui; Wang, Da-Cheng

    2015-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification that plays essential roles in many cellular pathways. Research in this field, however, is hampered by the lack of suitable probes to identify, accumulate, and purify the O-GlcNAcylated proteins. We have previously reported the identification of a lectin from the mushroom Agrocybe aegerita, i.e., Agrocybe aegerita lectin 2, or AAL2, that could bind terminal N-acetylglucosamine with higher affinities and specificity than other currently used probes. In this paper, we report the crystal structures of AAL2 and its complexes with GlcNAc and GlcNAcβ1-3Galβ1-4GlcNAc and reveal the structural basis of GlcNAc recognition by AAL2 and residues essential for the binding of terminal N-acetylglucosamine. Study on AAL2 may enable us to design a protein probe that can be used to identify and purify O-GlcNAcylated proteins more efficiently. PMID:26114302

  17. Mimicking the folding pathway to improve homology-free protein structure prediction

    NASA Astrophysics Data System (ADS)

    Freed, Karl; Debartolo, Joe; Colubri, Andres; Jha, Abhishek; Fitzgerald, James; Sosnick, Tobin

    2010-03-01

    Since demonstrating that a protein's sequence encodes its structure, the prediction of structure from sequence remains an outstanding problem that impacts numerous scientific disciplines including many genome projects. By iteratively fixing secondary structure assignments of residues during Monte Carlo simulations of folding, our coarse grained model without information concerning homology or explicit side chains outperforms current homology-based secondary structure prediction methods for many proteins. The computationally rapid algorithm using only single residue (phi, psi) dihedral angle moves also generates tertiary structures of comparable accuracy to existing all-atom methods for many small proteins, particularly ones with low homology. Hence, given appropriate search strategies and scoring functions, reduced representations can be used for accurately predicting secondary structure as well as providing three-dimensional structures, thereby increasing the size of proteins approachable by homology-free methods and the accuracy of template methods whose accuracy depends on the quality of the input secondary structure. Inclusion of information from evolutionarily related sequences enhances the statistics and the accuracy of the predictions.

  18. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  19. Hierarchical structures of amorphous solids characterized by persistent homology.

    PubMed

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G; Matsue, Kaname; Nishiura, Yasumasa

    2016-06-28

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  20. Structure of haptoglobin heavy chain and other serine protease homologs by comparative model building

    SciTech Connect

    Grer, J.

    1980-10-01

    Proteins often occur in families whose structure is closely similar, even though the proteins may come from widely different sources and have quite distinct functions. It would be useful to be able to construct the three-dimensional structure of these proteins from the known structure of one or more of them without having to solve the structure of each protein ab initio. We have been using comparative model building to derive the structure of an unusual protein of the trypsin-like serine protease family. We have recently extended this comparison to include other serine protease homologs for which a primary structure is available. To generate structures for the different members of the serine protease family, it is necessary to extract the common structural features of the molecule. Fortunately, three independently determined protein structures are available: schymotrypsin, trypsin, and elastase. These three structures were compared in detail and the structurally conserved regions in all three, mainly the BETA-sheet and the ..cap alpha..-helix, were identified. The variable portions occur in the loops on the surface of the molecule. By using these structures, the primary sequences of these three proteins were aligned. From this alignment, it is clear that sequence homology between the proteins occurs mainly in the structurally conserved regions of the molecule, while the variable portions show very little sequence homology.

  1. An N-acetyllactosamine-specific lectin, PFA, isolated from a moth (Phalera flavescens), structurally resembles an invertebrate-type lysozyme.

    PubMed

    Yokoyama, Kazutaka; Sato, Michihiko; Haneda, Toshihiro; Yamazaki, Kentaro; Kitano, Takashi; Umetsu, Kazuo

    2014-11-01

    PFA (Phalera flavescens agglutinin) lectin purified from larvae of the lobster moth (P. flavescens) shows a strong binding ability specific to the N-acetyllactosamine (Galβ1-4GlcNAc) site. We determined the genomic and cDNA sequences of the PFA gene, which consists of five exons and spans approximately 5 kb of a genomic region. Surprisingly, the amino acid sequence (149 amino acids) was similar to invertebrate-type lysozymes and related proteins. The predicted tertiary structure of the PFA protein was similar to the lysozymes of clams such as the common orient clam (Meretrix lusoria) and Japanese littleneck (Venerupis philippinarum (Tapes japonica)). The PFA, however, lacks a catalytically essential amino acid, an Asp (D), which is one of the two important amino acids (Glu (E) and D) express the function of lysozyme. As a result, lysozyme activity assays indicated that PFA does not have lysozyme activity. Results suggest that the PFA gene evolved from a lysozyme gene through the loss of lysozyme activity sites and the acquisition of lectin activity during evolution of the genus Phalera. PMID:25257940

  2. Sequence homology and structural analysis of the clostridial neurotoxins.

    PubMed

    Lacy, D B; Stevens, R C

    1999-09-01

    The clostridial neurotoxins (CNTs), comprised of tetanus neurotoxin (TeNT) and the seven serotypes of botulinum neurotoxin (BoNT A-G), specifically bind to neuronal cells and disrupt neurotransmitter release by cleaving proteins involved in synaptic vesicle membrane fusion. In this study, multiple CNT sequences were analyzed within the context of the 1277 residue BoNT/A crystal structure to gain insight into the events of binding, pore formation, translocation, and catalysis that are required for toxicity. A comparison of the TeNT-binding domain structure to that of BoNT/A reveals striking differences in their surface properties. Further, the solvent accessibility of a key tryptophan in the C terminus of the BoNT/A-binding domain refines the location of the ganglioside-binding site. Data collected from a single frozen crystal of BoNT/A are included in this study, revealing slight differences in the binding domain orientation as well as density for a previously unobserved translocation domain loop. This loop and the conservation of charged residues with structural proximity to putative pore-forming sequences lend insight into the CNT mechanism of pore formation and translocation. The sequence analysis of the catalytic domain revealed an area near the active-site likely to account for specificity differences between the CNTs. It revealed also a tertiary structure, highly conserved in primary sequence, which seems critical to catalysis but is 30 A from the active-site zinc ion. This observation, along with an analysis of the 54 residue "belt" from the translocation domain are discussed with respect to the mechanism of catalysis. PMID:10518945

  3. On Recurrent/Homologous Coronal Jets Emission: Coronal Geyser Structures

    NASA Astrophysics Data System (ADS)

    Razvan Paraschiv, Alin; Donea, Alina

    2016-05-01

    Active region 11302 has shown a vast display of solar jets during its lifetime. We examine the emission mechanism responsible for multiple coronal jet events occurring at the center-east side of the active region. Identified jet events were detected in extreme-ultraviolet (EUV), hard X-ray (HXR) and radio emissions, observed by dedicated instruments such as SDO's AIA and HMI, STEREO's EUVI and WAVES, and RHESSI, respectively. We report the detection of a base-arch structure in the lower atmosphere. The site was labelled "Coronal Geyser". The structure had emitted jets quasi-periodically for the entire time the AR was visible in SDO'S field of view. The jets expand into the corona with an apparent line of sight velocity of ~200-300$ km/s. To our knowledge the long time-scale behaviour of jet recurrence and base geyser structure was not previously discussed and data analysis of this phenomena will provide new information for theoretical modelling and data interpretation of jets.

  4. Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties.

    PubMed

    Silva, Helton C; Bari, Alfa U; Rocha, Bruno Anderson M; Nascimento, Kyria S; Ponte, Edson L; Pires, Alana F; Delatorre, Plínio; Teixeira, Edson H; Debray, Henri; Assreuy, Ana Maria S; Nagano, Celso S; Cavada, Benildo S

    2013-10-01

    Parkia biglobosa (subfamily Mimosoideae), a typical tree from African savannas, possess a seed lectin that was purified by combination of ammonium sulfate precipitation and affinity chromatography on a Sephadex G-100 column. The P. biglobosa lectin (PBL) strongly agglutinated rabbit erythrocytes, an effect that was inhibited by d-mannose and d-glucose-derived sugars, especially α-methyl-d-mannopyranoside and N-acetyl-d-glucosamine. The hemagglutinating activity of PBL was maintained after incubation at a wide range of temperature and pH and also was independent of divalent cations. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, PBL exhibited an electrophoretic profile consisting of a single band with apparent molecular mass of 45 kDa. An analysis using electrospray ionization-mass spectrometry indicated that purified lectin possesses a molecular average mass of 47 562 ± 4 Da, and the analysis by gel filtration showed that PBL is a dimer in solution. The complete amino acid sequence of PBL, as determined using tandem mass spectrometry, consists of 443 amino acid residues. PBL is composed of a single non-glycosylated polypeptide chain of three tandemly arranged jacalin-related domains. Sequence heterogeneity was found in six positions, indicating that the PBL preparations contain highly homologous isolectins. PBL showed important antinociceptive activity associated to the inhibition of inflammatory process. PMID:23996489

  5. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    PubMed

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  6. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  7. Gallic acid binding to Spatholobus parviflorus lectin provides insight to its quaternary structure forming.

    PubMed

    Surya, Sukumaran; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-10-01

    Therapeutic effects of gallic acid (GA) have already been extensively studied. However, its interaction with lectins has not gained much attention. It is of interest to validate the binding profile of GA with Spatholobus parviflorus seed lectin. A combination of Isothermal Titration Calorimetry (ITC), haemagglutination assay and molecular docking was applied on SPL-GA interaction. ITC results showed four binding sites, stoichiometry, n=4, irrespective of the ratio of SPL:GA taken for titration. Difference among the four binding sites of a single molecule of SPL with regard to GA binding kinetic parameters was consistently varying. Similarly, the glide scores obtained for GA in the four different binding clefts of SPL were also conformed to the ITC. The binding of GA on SPL without affecting its sugar binding property could be considered as a boon for glycobiological research. From the presented studies, it could be proposed that the SPL-GA interactions may facilitate drug delivery by specific targeting/attachment by profiling of cell-surface glycans, followed by controlled release of drugs. PMID:27283232

  8. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  9. Glycan and lectin biosensors.

    PubMed

    Belický, Štefan; Katrlík, Jaroslav; Tkáč, Ján

    2016-06-30

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  10. Plant as a plenteous reserve of lectin

    PubMed Central

    Hivrale, AU; Ingale, AG

    2013-01-01

    Lectins are clusters of glycoproteins of nonimmune foundation that combine specifically and reversibly to carbohydrates, mainly the sugar moiety of glycoconjugates, resulting in cell agglutination and precipitation of glycoconjugates. They are universally distributed in nature, being established in plants, fungi, viruses, bacteria, crustacea, insects, and animals, but leguminacae plants are rich source of lectins. The present review reveals the structure, biological properties, and application of plant lectins. PMID:24084524

  11. A lectin from Sesbania aculeata (Dhaincha) roots and its possible function.

    PubMed

    Biswas, S; Saroha, A; Das, H R

    2009-03-01

    A lectin was isolated from the roots of Sesbania aculeata. This is a glucose specific lectin having 39 kDa subunit molecular weight. The expression of this lectin was found to be developmentally regulated and observed to be the highest in the second week. The lectin was purified by affinity chromatography using Sephadex G-50 and found to have 28% homology with Arabidopsis thaliana lectin-like protein (accession No. CAA62665). The lectin binds with lipopolysaccharide isolated from different rhizobial strains indicating the plants interaction with multiple rhizobial species. PMID:19364328

  12. Structural basis of carbohydrate recognition by a Man(alpha1-2)Man-specific lectin from Bowringia milbraedii.

    PubMed

    Buts, Lieven; Garcia-Pino, Abel; Wyns, Lode; Loris, Remy

    2006-07-01

    The crystal structure of the seed lectin from the tropical legume Bowringia milbraedii was determined in complex with the disaccharide ligand Man(alpha1-2)Man. In solution, the protein exhibits a dynamic dimer-tetramer equilibrium, consistent with the concanavalin A-type tetramer observed in the crystal. Contacts between the tetramers are mediated almost exclusively through the carbohydrate ligand, resulting in a crystal lattice virtually identical to that of the concanavalin-A:Man(alpha1-2)Man complex, even though both proteins have less than 50% sequence identity. The disaccharide binds exclusively in a "downstream" binding mode, with the non-reducing mannose occupying the monosaccharide-binding site. The reducing mannose is bound in a predominantly polar subsite involving Tyr131, Gln218, and Tyr219. PMID:16567368

  13. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri.

    PubMed

    Lopes-Ferreira, Mônica; Magalhães, Geraldo Santana; Fernandez, Jorge Hernandez; Junqueira-de-Azevedo, Inácio de Loiola M; Le Ho, Paulo; Lima, Carla; Valente, Richard H; Moura-da-Silva, Ana Maria

    2011-06-01

    Lectins are glycan-binding receptors that recognize glycan epitopes on foreign pathogens and in the host systems. They can be involved in functions that include innate immunity, development, immune regulation and homeostasis. Several lectins have been purified and characterized from fish species. In this work, using cation-exchange chromatography, a galactose-specific lectin belonging to the family of C-type lectins was isolated from the venom of the Brazilian venomous fish Thalassophryne nattereri. Nattectin is a basic, non-glycosilated, 15 kDa monomeric protein. It exhibits hemagglutination activity that is independent of Ca(2+). We also demonstrated a lectin activity for Nattectin in the innate immune system, especially in neutrophil mobilization in mice, indicating that marine organisms are source of immunomodulator agents. PMID:21396978

  14. LocARNAscan: Incorporating thermodynamic stability in sequence and structure-based RNA homology search

    PubMed Central

    2013-01-01

    Background The search for distant homologs has become an import issue in genome annotation. A particular difficulty is posed by divergent homologs that have lost recognizable sequence similarity. This same problem also arises in the recognition of novel members of large classes of RNAs such as snoRNAs or microRNAs that consist of families unrelated by common descent. Current homology search tools for structured RNAs are either based entirely on sequence similarity (such as blast or hmmer) or combine sequence and secondary structure. The most prominent example of the latter class of tools is Infernal. Alternatives are descriptor-based methods. In most practical applications published to-date, however, the information contained in covariance models or manually prescribed search patterns is dominated by sequence information. Here we ask two related questions: (1) Is secondary structure alone informative for homology search and the detection of novel members of RNA classes? (2) To what extent is the thermodynamic propensity of the target sequence to fold into the correct secondary structure helpful for this task? Results Sequence-structure alignment can be used as an alternative search strategy. In this scenario, the query consists of a base pairing probability matrix, which can be derived either from a single sequence or from a multiple alignment representing a set of known representatives. Sequence information can be optionally added to the query. The target sequence is pre-processed to obtain local base pairing probabilities. As a search engine we devised a semi-global scanning variant of LocARNA’s algorithm for sequence-structure alignment. The LocARNAscan tool is optimized for speed and low memory consumption. In benchmarking experiments on artificial data we observe that the inclusion of thermodynamic stability is helpful, albeit only in a regime of extremely low sequence information in the query. We observe, furthermore, that the sensitivity is bounded in

  15. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    SciTech Connect

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N.

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  16. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  17. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures

    SciTech Connect

    Chen, Zhucheng; Yang, Haijuan; Pavletich, Nikola P

    2008-07-08

    The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP {gamma}-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.

  18. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.

    PubMed

    Grussendorf, Kelly A; Trezza, Christopher J; Salem, Alexander T; Al-Hashimi, Hikmat; Mattingly, Brendan C; Kampmeyer, Drew E; Khan, Liakot A; Hall, David H; Göbel, Verena; Ackley, Brian D; Buechner, Matthew

    2016-08-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  19. Prediction of the three-dimensional structure of human interleukin-7 by homology modeling.

    PubMed

    Kroemer, R T; Doughty, S W; Robinson, A J; Richards, W G

    1996-06-01

    The three-dimensional structure of human interleukin (IL)-7 has been predicted based on homology to human IL-2, IL-4, granulocyte-macrophage colony stimulating factor and growth hormone. The model has a topology common to other cytokines and displays a unique disulfide pattern. Knowledge of the tertiary structure of IL-7 has implications for analysis of key binding regions, suggestions for mutagenesis experiments and design of (ant)agonists. In this context, the model is discussed and compared with other cytokine structures. PMID:8862549

  20. Homology, Analogy, and Ethology.

    ERIC Educational Resources Information Center

    Beer, Colin G.

    1984-01-01

    Because the main criterion of structural homology (the principle of connections) does not exist for behavioral homology, the utility of the ethological concept of homology has been questioned. The confidence with which behavioral homologies can be claimed varies inversely with taxonomic distance. Thus, conjectures about long-range phylogenetic…

  1. Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies.

    PubMed

    Bota, Mihail; Arbib, Michael A

    2004-01-01

    The NeuroHomology Database system (NHDB) combines databases related to brain structures from different species with different knowledge management systems (KMSs) for systematization, evaluation and processing neurobiological data. Special attention is assessment of similarity of data from different species as a basis for exploring neural homologies. NHDB includes modules that handle brain structure and connectivity data, as well as inference engines for evaluation of the stored neurobiological information. The spatial inference engine evaluates the possible topological relations between cortical structures in different neuroanatomical atlases. The connectivity inference engine evaluates the reliability of information pertaining to fiber tracts as those are reflected in the literature. The inference engine for translation of neuroanatomical connections in different atlases evaluates the probability of existence of connections of interest in different parcellation schemes. Finally, the similarity inference engine calculates the overall degree of similarity of pairs of brain structures from different species by taking into account a set of eight criteria. We present examples of search for information in NHDB system, inferences of relations between cortical structures from equivalent neuroanatomical atlases, reconstruction of functional networks of brain structures from data collated from the literature, translation of connectivity matrices in equivalent parcellation schemes, and evaluations of similarities of brain structures from humans, macaques and rats. PMID:15067167

  2. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling.

    PubMed

    Meier, Armin; Söding, Johannes

    2015-10-01

    Homology modeling predicts the 3D structure of a query protein based on the sequence alignment with one or more template proteins of known structure. Its great importance for biological research is owed to its speed, simplicity, reliability and wide applicability, covering more than half of the residues in protein sequence space. Although multiple templates have been shown to generally increase model quality over single templates, the information from multiple templates has so far been combined using empirically motivated, heuristic approaches. We present here a rigorous statistical framework for multi-template homology modeling. First, we find that the query proteins' atomic distance restraints can be accurately described by two-component Gaussian mixtures. This insight allowed us to apply the standard laws of probability theory to combine restraints from multiple templates. Second, we derive theoretically optimal weights to correct for the redundancy among related templates. Third, a heuristic template selection strategy is proposed. We improve the average GDT-ha model quality score by 11% over single template modeling and by 6.5% over a conventional multi-template approach on a set of 1000 query proteins. Robustness with respect to wrong constraints is likewise improved. We have integrated our multi-template modeling approach with the popular MODELLER homology modeling software in our free HHpred server http://toolkit.tuebingen.mpg.de/hhpred and also offer open source software for running MODELLER with the new restraints at https://bitbucket.org/soedinglab/hh-suite. PMID:26496371

  3. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    SciTech Connect

    Griffin, Philip J.; Holt, Adam P.; Tsunashima, Katsuhiko; Sangoro, Joshua R.; Kremer, Friedrich; Sokolov, Alexei P.

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  4. Online homology modelling as a means of bridging the sequence-structure gap.

    PubMed

    Sheehan, David; O'Sullivan, Siobhán

    2011-01-01

    For even the best-studied species, there is a large gap in their representation in the protein databank (PDB) compared to within sequence databases. Typically, less than 2% of sequences are represented in the PDB. This is partly due to the considerable experimental challenge and manual inputs required to solve three dimensional structures by methods such as X-ray diffraction and multi-dimensional nuclear magnetic resonance (NMR) spectroscopy in comparison to high-throughput sequencing. This gap is made even wider by the high level of redundancy within the PDB and under-representation of some protein categories such as membrane-associated proteins which comprise approximately 25% of proteins encoded in genomes. A traditional route to closing the sequence-structure gap is offered by homology modelling whereby the sequence of a target protein is modelled on a template represented in the PDB using in silico energy minimisation approaches. More recently, online homology servers have become available which automatically generate models from proffered sequences. However, many online servers give little indication of the structural plausibility of the generated model. In this paper, the online homology server Geno3D will be described. This server uses similar software to that used in modelling structures during structure determination and thus generates data allowing determination of the structural plausibility of models. For illustration, modelling of a chemotaxis protein (CheY) from Pseudomononas entomophila L48 (accession YP_609298) on a template (PDB id. 1mvo), the phosphorylation domain of an outer membrane protein PhoP from Bacillus subtilis, will be described. PMID:22064508

  5. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  6. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement.

    PubMed

    Mortensen, Sofia; Kidmose, Rune T; Petersen, Steen V; Szilágyi, Ágnes; Prohászka, Zoltan; Andersen, Gregers R

    2015-06-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators. PMID:25911760

  7. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques.

    PubMed

    Zhu, Feifei; Trinidad, Jonathan C; Clemmer, David E

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides. PMID:25840811

  8. The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus.

    PubMed

    Audette, G F; Vandonselaar, M; Delbaere, L T

    2000-12-01

    The tertiary and quaternary structure of the lectin I from Ulex europaeus (UE-I) has been determined to 2.2 A resolution. UE-I is a dimeric metalloglycoprotein that binds the H-type 2 human blood group determinant [alpha-L-Fucalpha(1-->2)-beta-D-Galbeta(1-->4)-beta-D-Glc NAcalpha-]. Nine changes from the published amino acid sequence were necessary to account for the electron density. The quaternary structural organization of UE-I is that of the most commonly occurring legume lectin dimer. The tertiary structure of the monomeric subunits is similar to that in the conventional lectin subunit; however, some structural differences are noted. These differences include a four-stranded anti-parallel "S" sheet in UE-I versus the five-stranded S sheet in other lectin monomers. The Ala residue of the Ala-Asp cis-peptide bond present in the carbohydrate-binding site of the conventional lectin monomer is replaced with a Thr in the UE-I structure. Also, a novel disulfide bridge linking Cys115 and Cys150 is present. There are two metallic ions, one calcium and the other manganese, per subunit. N-linked oligosaccharides are at residues 23 and 111 of each subunit. One molecule of R-2-methyl-2, 4-pentanediol (R-MPD) is present in a shallow depression on the surface of each subunit. In order to examine the binding of the H-type 2 blood group determinant by UE-I, its beta-methyl glycoside (H-type 2-OMe) was docked into the binding site of R-MPD. The epitope previously identified for H-type 2-OMe by chemical mapping proved, with only minor adjustment of amino acid residues, to be complementary to the shallow cavity occupied by R-MPD in the structure. Several key interactions have been proposed between the H-type 2-OMe and UE-I. PMID:11090284

  9. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.

    PubMed

    Marques-Carvalho, Maria J; Sahoo, Nirakar; Muskett, Frederick W; Vieira-Pires, Ricardo S; Gabant, Guillaume; Cadene, Martine; Schönherr, Roland; Morais-Cabral, João H

    2012-10-12

    KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating. PMID:22732247

  10. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs

    PubMed Central

    Driggers, Camden M; Hartman, Steven J; Karplus, P Andrew

    2015-01-01

    In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ∼15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg-type” enzymes) and some having a Gln substituted for this Arg (“Gln-type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg-type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln-type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron-bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln-type” CDO enzymes, we conclude that the “Gln-type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3-mercaptopropionate dioxygenases. PMID:25307852

  11. Effect of lectins on mouse peritoneal macrophage phagocytic activity.

    PubMed

    Maldonado, G; Porras, F; Fernández, L; Vázquez, L; Zenteno, E

    1994-11-01

    We studied the in vitro ability of lectin-treated murine peritoneal macrophages to attach and phagocytize particulate antigens. Glucose and mannose specific lectins such as Con-A and lentil lectin, as well as complex lactosamine residues specific lectins, such as Phaseolus vulgaris var. cacahuate and Phaseolus coccineus var. alubia, increased the macrophage phagocytic activity towards heterologous erythrocytes, whereas peanut agglutinin, a galactose-specific lectin, diminished the macrophage phagocytic activity. These results suggest that a galactose-N-acetyl-D galactosamine-containing structure could participate as negative modulator of the phagocytic activity. PMID:7851961

  12. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications.

    PubMed

    Tsai, Henry P; Holliday, Casey M

    2015-06-01

    Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic- and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro- and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and

  13. USE OF CORTICAL STRUCTURAL HOMOLOGOUS BONE GRAFT IN FEMORAL RECONSTRUCTIVE SURGERY

    PubMed Central

    Roos, Milton Valdomiro; Roos, Bruno Dutra; Giora, Taís Stedile Busin; Taglietti, Thiago Martins

    2015-01-01

    To perform a clinical and radiographic assessment of patients undergoing surgical treatment using a cortical structural homologous bone graft for femoral reconstruction following mechanical failure of total hip arthroplasty and periprosthetic fractures. Methods: A retrospective study was conducted on 27 patients who underwent surgical treatment for femoral reconstruction following mechanical failure of total hip arthroplasty (12 cases) and periprosthetic fractures (15 cases), using a cortical structural homologous bone graft and cemented implants, between June 1999 and February 2008. Of these, 21 fulfilled all the criteria required for this study. The patients underwent pre and postoperative clinical assessments using the Harris Hip Score. Preoperative, immediate postoperative and late postoperative radiographs were also evaluated, with comparisons of fracture consolidation, radiographic signs of graft consolidation, changes to the bone stock and femoral bone quality, and femoral alignment. Results: Nine patients (42.9%) underwent femoral reconstruction following mechanical failure of total hip arthroplasty and 12 cases (57.1%) underwent femoral reconstruction following periprosthetic fracture. Regarding the postoperative clinical classification, the results were considered satisfactory in 85.7% of the cases and unsatisfactory in 14.3%. Radiographic signs of graft consolidation were seen in all cases. There was an increase in bone stock in 90.5% of the hip reconstructions, as measured by the cortical index. Furthermore, the changes to femoral bone quality were considered good in 66.7% of the cases. Conclusion: The use of cortical structural homologous bone grafts for both femoral reconstructive surgery on total hip arthroplasty and periprosthetic fractures is a good treatment option for selected cases, enabling satisfactory clinical and radiographic results. PMID:27026955

  14. Homology Modeling: Generating Structural Models to Understand Protein Function and Mechanism

    NASA Astrophysics Data System (ADS)

    Ramachandran, Srinivas; Dokholyan, Nikolay V.

    Geneticists and molecular and cell biologists routinely uncover new proteins important in specific biological processes/pathways. However, either the molecular functions or the functional mechanisms of many of these proteins are unclear due to a lack of knowledge of their atomic structures. Yet, determining experimental structures of many proteins presents technical challenges. The current methods for obtaining atomic-resolution structures of biomolecules (X-ray crystallography and NMR spectroscopy) require pure preparations of proteins at concentrations much higher than those at which the proteins exist in a physiological environment. Additionally, NMR has size limitations, with current technology limited to the determination of structures of proteins with masses of up to 15 kDa. Due to these reasons, atomic structures of many medically and biologically important proteins do not exist. However, the structures of these proteins are essential for several purposes, including in silico drug design [1], understanding the effects of disease mutations [2], and designing experiments to probe the functional mechanisms of proteins. Comparative modeling has gained importance as a tool for bridging the gap between sequence and structure space, allowing researchers to build structural models of proteins that are difficult to crystallize or for which structure determination by NMR spectroscopy is not tractable. Comparative modeling, or homology modeling, exploits the fact that two proteins whose sequences are evolutionarily connected display similar structural features [3]. Thus, the known structure of a protein (template) can be used to generate a molecular model of the protein (query) whose experimental structure is notknown.

  15. Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe.

    PubMed

    Ding, Da-Qiao; Matsuda, Atsushi; Okamasa, Kasumi; Nagahama, Yuki; Haraguchi, Tokuko; Hiraoka, Yasushi

    2016-06-01

    Chromosome structure is dramatically altered upon entering meiosis to establish chromosomal architectures necessary for the successful progression of meiosis-specific events. An early meiotic event involves the replacement of the non-SMC mitotic cohesins with their meiotic equivalents in most part of the chromosome, forming an axis on meiotic chromosomes. We previously demonstrated that the meiotic cohesin complex is required for chromosome compaction during meiotic prophase in the fission yeast Schizosaccharomyces pombe. These studies revealed that chromosomes are elongated in the absence of the meiotic cohesin subunit Rec8 and shortened in the absence of the cohesin-associated protein Pds5. In this study, using super-resolution structured illumination microscopy, we found that Rec8 forms a linear axis on chromosomes, which is required for the organized axial structure of chromatin during meiotic prophase. In the absence of Pds5, the Rec8 axis is shortened whereas chromosomes are widened. In rec8 or pds5 mutants, the frequency of homologous chromosome pairing is reduced. Thus, Rec8 and Pds5 play an essential role in building a platform to support the chromosome architecture necessary for the spatial alignment of homologous chromosomes. PMID:26511279

  16. Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1

    PubMed Central

    Liu, Shian; Bai, Yonghong; Lockless, Steve W.; Zhou, Ming

    2014-01-01

    Membrane-embedded prenyltransferases from the UbiA family catalyze the Mg2+-dependent transfer of a hydrophobic polyprenyl chain onto a variety of acceptor molecules and are involved in the synthesis of molecules that mediate electron transport, including Vitamin K and Coenzyme Q. In humans, missense mutations to the protein UbiA prenyltransferase domain-containing 1 (UBIAD1) are responsible for Schnyder crystalline corneal dystrophy, which is a genetic disease that causes blindness. Mechanistic understanding of this family of enzymes has been hampered by a lack of three-dimensional structures. We have solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus, AfUbiA, in an unliganded form and bound to Mg2+ and two different isoprenyl diphosphates. Functional assays on MenA, a UbiA family member from E. coli, verified the importance of residues involved in Mg2+ and substrate binding. The structural and functional studies led us to propose a mechanism for the prenyl transfer reaction. Disease-causing mutations in UBIAD1 are clustered around the active site in AfUbiA, suggesting the mechanism of catalysis is conserved between the two homologs. PMID:25051182

  17. Primary structures of four trypsin inhibitor E homologs from venom of Dendroaspis angusticeps: structure-function comparisons with other dendrotoxin homologs.

    PubMed

    Sigle, Randy; Hackett, Murray; Aird, Steven D

    2002-03-01

    Four trypsin inhibitor homologs, the first known from Dendroaspis angusticeps venom, were characterized using a combination of gel filtration, cation exchange, reverse-phase liquid chromatography, Edman degradation and mass spectrometry. The four toxins comprise two 57 residue and two 59 residue isoforms. The long toxins possess a Lys-Gln N-terminal extension lacked by the short toxins. The only other structural difference is an Arg/His replacement at position 55. The long Arg55 variant is identical to trypsin inhibitor E from the venom of Dendroaspis polylepis. The name epsilon-dendrotoxin is suggested so as to follow the nomenclature of Benishin, C.G., Sorensen, R.G., Brown, W.E., Krueger, B.K., Blaustein, M.P., 1988. Four polypeptide components of green mamba venom selectively block certain potassium channels in rat brain synaptosomes. Mol. Pharmacol. 34, 152-159. Among snake venom protease inhibitors, the epsilon-dendrotoxins are structurally most like the delta-dendrotoxins, with which they share only 64% of their residues. In addition, the epsilon-dendrotoxins display hydropathy profiles more like those of the alpha- and delta-dendrotoxins, than those of the trypsin inhibitors from snake venoms. Given the strong protease inhibitory activity of trypsin inhibitor E and the recently demonstrated weak K(+) channel inhibitory activity of two of these variants (Tytgat, J., Vandenberghe, I., Ulens, C., Van Beeumen, J., 2001. New polypeptide components purified from mamba venom. FEBS Lett. 491, 217-221), the epsilon-dendrotoxins represent structural and functional intermediates between the facilitatory toxins and the protease inhibitors. PMID:11711127

  18. Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.

    PubMed

    Uchida, Tatsuya; Yamasaki, Takayuki; Eto, Seiichiro; Sugawara, Hajime; Kurisu, Genji; Nakagawa, Atsushi; Kusunoki, Masami; Hatakeyama, Tomomitsu

    2004-08-27

    CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes. PMID:15194688

  19. Discovery of KDM5A inhibitors: Homology modeling, virtual screening and structure-activity relationship analysis.

    PubMed

    Wu, Xiaoai; Fang, Zhen; Yang, Bo; Zhong, Lei; Yang, Qiuyuan; Zhang, Chunhui; Huang, Shenzhen; Xiang, Rong; Suzuki, Takayoshi; Li, Lin-Li; Yang, Sheng-Yong

    2016-05-01

    Herein we report the discovery of a series of new KDM5A inhibitors. A three-dimensional (3D) structure model of KDM5A jumonji domain was firstly established based on homology modeling. Molecular docking-based virtual screening was then performed against commercial chemical databases. A number of hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the most active hit compound, 9 (IC50: 2.3μM), which led to the discovery of several new KDM5A inhibitors. Among them, compound 15e is the most potent one with an IC50 value of 0.22μM against KDM5A. This compound showed good selectivity for KDM5A and considerable ability to suppress the demethylation of H3K4me3 in intact cells. Compound 15e could be taken as a good lead compound for further studies. PMID:27020306

  20. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  1. A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus.

    PubMed

    Ismaya, Wangsa T; Yunita; Efthyani, Alida; Lai, Xuelei; Retnoningrum, Debbie S; Rachmawati, Heni; Dijkstra, Bauke W; Tjandrawinata, Raymond R

    2016-05-13

    A lectin like protein designated as LSMT is recently discovered in Agaricus bisporus. The protein adopts very similar structure to Ricin-B like lectin from Clitocybe nebularis (CNL) and HA-33 from Clostridium botulinum (HA-33), which both recognize sugar molecules that decorate the surface of the epithelial cells of the intestine. A preliminary study in silico pointed out potential capability of LSMT to perform such biological activity. Following that hypothesis, we demonstrated that LSMT is indeed capable of penetrating out from a dialysis tube of the mice intestine origin. Furthermore, the protein appeared not to evoke the immune response upon introduction into mice, unlike its structural homologs. This is the first report on the biological implication of LSMT that might lead to its application. PMID:27060548

  2. Local structural differences in homologous proteins: specificities in different SCOP classes.

    PubMed

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I' and II' are also identified

  3. Local Structural Differences in Homologous Proteins: Specificities in Different SCOP Classes

    PubMed Central

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I’ and II’ are also

  4. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    PubMed Central

    Lakhlili, Wiame; Chevé, Gwénaël; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2015-01-01

    The AKT/mammalian target of rapamycin (mTOR) pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D) structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site. PMID:26257525

  5. The Crystal Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected Homology to Bacterial Superantigens

    SciTech Connect

    Geisbrecht, B V; Hamaoka, B Y; Perman, B; Zemla, A; Leahy, D J

    2005-10-14

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 {angstrom} resolution, respectively. These structures reveal a core fold that is comprised of an {alpha}-helix lying diagonally across a five-stranded, mixed {beta}-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the {beta}-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  6. Infer Metagenomic Abundance and Reveal Homologous Genomes Based on the Structure of Taxonomy Tree.

    PubMed

    Qiu, Yu-Qing; Tian, Xue; Zhang, Shihua

    2015-01-01

    Metagenomic research uses sequencing technologies to investigate the genetic biodiversity of microbiomes presented in various ecosystems or animal tissues. The composition of a microbial community is highly associated with the environment in which the organisms exist. As large amount of sequencing short reads of microorganism genomes obtained, accurately estimating the abundance of microorganisms within a metagenomic sample is becoming an increasing challenge in bioinformatics. In this paper, we describe a hierarchical taxonomy tree-based mixture model (HTTMM) for estimating the abundance of taxon within a microbial community by incorporating the structure of the taxonomy tree. In this model, genome-specific short reads and homologous short reads among genomes can be distinguished and represented by leaf and intermediate nodes in the taxonomy tree, respectively. We adopt an expectation-maximization algorithm to solve this model. Using simulated and real-world data, we demonstrate that the proposed method is superior to both flat mixture model and lowest common ancestry-based methods. Moreover, this model can reveal previously unaddressed homologous genomes. PMID:26451823

  7. Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process.

    PubMed

    Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2014-05-01

    CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-forming toxins of diverse organisms. To elucidate the pore formation mechanism of CEL-III, the crystal structure of the CEL-III oligomer was determined. The CEL-III oligomer has a heptameric structure with a long β-barrel as a transmembrane pore. This β-barrel is composed of 14 β-strands resulting from a large structural transition of α-helices accommodated in the interface between domains 1 and 2 and domain 3 in the monomeric structure, suggesting that the dissociation of these α-helices triggered their structural transition into a β-barrel. After heptamerization, domains 1 and 2 form a flat ring, in which all carbohydrate-binding sites remain bound to cell surface carbohydrate chains, stabilizing the transmembrane β-barrel in a position perpendicular to the plane of the lipid bilayer. PMID:24652284

  8. Hemolytic Lectin CEL-III Heptamerizes via a Large Structural Transition from α-Helices to a β-Barrel during the Transmembrane Pore Formation Process*

    PubMed Central

    Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2014-01-01

    CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-forming toxins of diverse organisms. To elucidate the pore formation mechanism of CEL-III, the crystal structure of the CEL-III oligomer was determined. The CEL-III oligomer has a heptameric structure with a long β-barrel as a transmembrane pore. This β-barrel is composed of 14 β-strands resulting from a large structural transition of α-helices accommodated in the interface between domains 1 and 2 and domain 3 in the monomeric structure, suggesting that the dissociation of these α-helices triggered their structural transition into a β-barrel. After heptamerization, domains 1 and 2 form a flat ring, in which all carbohydrate-binding sites remain bound to cell surface carbohydrate chains, stabilizing the transmembrane β-barrel in a position perpendicular to the plane of the lipid bilayer. PMID:24652284

  9. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    SciTech Connect

    Veluraja, K.; Vennila, K.N.; Umamakeshvari, K.; Jasmine, A.; Velmurugan, D.

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  10. Functional and structural analysis of mice TRPC6 with human analogue through homology modelling.

    PubMed

    Chigurupati, Soumya; Bhasin, Arnima; Inampudi, Krishna Kishore; Asuthkar, Swapna; Madarampalli, Bhanupriya; Kammili, Ramana Kumar; Velpula, Kiran Kumar

    2014-01-01

    Homology models are increasingly used to determine structural and functional relationships of genes and proteins in biomedical research. In the current study, for the first time, we compared the TRPC6 gene in mouse and human. The protein encoded by this gene forms a receptor activated calcium channel in cell membrane. Defects in this gene have been implicated in a wide range of diseases including glioblastomas. To determine the structural similarities in mouse and human TRPC6, we used standard bioinformatics tools such as fold prediction to identify the protein 3D structure, sequence-structure comparison, and prediction of template and protein structure. We also used glioblastoma cell line U373MG and human glioblastoma tumour tissues to study the expression of TRPC6 in disease conditions to implicate this gene in pathological ailment. Based on the results we conclude that human TRPC6 contains 90% identity and 93% similarity with mouse TRPC6, suggesting that this protein is well conserved in these two species. These isoforms likely demonstrate similar mechanisms in regulating gene expression; thus TRPC6 studies in mice may be extrapolated to humans. PMID:24589838

  11. Agglutination of Helicobacter pylori coccoids by lectins

    PubMed Central

    Khin, Mar Mar; Hua, Jie Song; Ng, Han Cong; Wadström, Torkel; Ho, Bow

    2000-01-01

    AIM: To study the agglutination pattern of Helicobacter pylori coccoid and spiral forms. METHODS: Assays of agglutination and agglutination inhibition were applied using fifteen commercial lectins. RESULTS: Strong agglutination was observed with mannose-specific Concanavalin A (Con A), fucose-specific Tetragonolobus purpureas (Lotus A) and N-acetyl glucosamine-specific Triticum vulgaris (WGA) lectins. Mannose and fucose specific lectins were reactive with all strains of H. pylori coccoids as compared to the spirals. Specific carbohydrates, glycoproteins and mucin were shown to inhibit H. pylori lectin-agglutination reactions. Pre-treatment of the bacterial cells with formalin and sulphuric acid did not alter the agglutination patterns with lectins. However, sodium periodate treatment of bacterial cells were shown to inhibit agglutination reaction with Con A, Lotus A and WGA lectins. On the contrary, enzymatic treatment of coccoids and spirals did not show marked inhibition of H. pylori lectin agglutination. Interes tingly, heating of H. pylori cells at 60 °C for 1 h was shown to augment the agglutination with all of the lectins tested. CONCLUSION: The considerable differences in lectin agglutination patterns seen among the two differentiated forms of H. pylori might be attributable to the structural changes during the events of morphological transformation, resulting in exposing or masking some of the sugar residues on the cell surface. Possibility of various sugar residues on the cell wall of the coccoids may allow them to bind to different carbohydrate receptors on gastric mucus and epithelial cells. The coccoids with adherence characteristics like the spirals could aid in the pathogenic process of Helicobacter infection. This may probably lead to different clinical outcome of H. pylori associated gastroduodenal disease. PMID:11819557

  12. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    SciTech Connect

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  13. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations.

    PubMed Central

    Kabsch, W; Sander, C

    1984-01-01

    The search for amino acid sequence homologies can be a powerful tool for predicting protein structure. Discovered sequence homologies are currently used in predicting the function of oncogene proteins. To sharpen this tool, we investigated the structural significance of short sequence homologies by searching proteins of known three-dimensional structure for subsequence identities. In 62 proteins with 10,000 residues, we found that the longest isolated homologies between unrelated proteins are five residues long. In 6 (out of 25) cases we saw surprising structural adaptability: the same five residues are part of an alpha-helix in one protein and part of a beta-strand in another protein. These examples show quantitatively that pentapeptide structure within a protein is strongly dependent on sequence context, a fact essentially ignored in most protein structure prediction methods: just considering the local sequence of five residues is not sufficient to predict correctly the local conformation (secondary structure). Cooperativity of length six or longer must be taken into account. Also, we are warned that in the growing practice of comparing a new protein sequence with a data base of known sequences, finding an identical pentapeptide sequence between two proteins is not a significant indication of structural similarity or of evolutionary kinship. PMID:6422466

  14. Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes.

    SciTech Connect

    Morgado, L.; Bruix, M.; Orshonsky, V.; Londer, Y. Y.; Duke, N. E. C.; Yang, X.; Pokkuluri, P. R.; Schiffer, M.; Salgueiro, C. A.; Biosciences Division; Univ. Nova de Lisboa; Insti. de Quimica-Fisica

    2008-09-01

    The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (1) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (2) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

  15. Fungal Rtt109 Histone Acetyltransferase is an Unexpected Structural Homolog of Metazoan p300/CBP

    SciTech Connect

    Tang,Y.; Holbert, M.; Wurtele, H.; Meeth, K.; Rocha, W.; Gharib, M.; Jiang, E.; Thibault, P.; Verreault, A.; et al

    2008-01-01

    Rtt109, also known as KAT11, is a recently characterized fungal-specific histone acetyltransferase (HAT) that modifies histone H3 lysine 56 (H3K56) to promote genome stability. Rtt109 does not show sequence conservation with other known HATs and depends on association with either of two histone chaperones, Asf1 or Vps75, for HAT activity. Here we report the X-ray crystal structure of an Rtt109-acetyl coenzyme A complex and carry out structure-based mutagenesis, combined with in vitro biochemical studies of the Rtt109-Vps75 complex and studies of Rtt109 function in vivo. The Rtt109 structure reveals noteworthy homology to the metazoan p300/CBP HAT domain but exhibits functional divergence, including atypical catalytic properties and mode of cofactor regulation. The structure reveals a buried autoacetylated lysine residue that we show is also acetylated in the Rtt109 protein purified from yeast cells. Implications for understanding histone substrate and chaperone binding by Rtt109 are discussed.

  16. Crystal Structure of the Murine Cytomegalovirus MHC-I Homolog m144

    SciTech Connect

    Natarajan,K.; Hicks, A.; Mans, J.; Robinson, H.; Guan, R.; Mariuzza, R.; Margulies, D.

    2006-01-01

    Large DNA viruses of the herpesvirus family produce proteins that mimic host MHC-I molecules as part of their immunoevasive strategy. The m144 glycoprotein, expressed by murine cytomegalovirus, is thought to be an MHC-I homolog whose expression prolongs viral survival in vivo by preventing natural killer cell activation. To explore the structural basis of this m144 function, we have determined the three-dimensional structure of an m144/{beta}2-microglobulin ({beta}2m) complex at 1.9 {angstrom} resolution. This structure reveals the canonical features of MHC-I molecules including readily identifiable {alpha}1, {alpha}2, and {alpha}3 domains. A unique disulfide bond links the {alpha}1 helix to the {beta}-sheet floor, explaining the known thermal stability of m144. Close juxtaposition of the {alpha}1 and {alpha}2 helices and the lack of critical residues that normally contribute to anchoring the peptide N and C termini eliminates peptide binding. A region of 13 amino acid residues, corresponding to the amino-terminal portion of the {alpha}2 helix, is missing in the electron density map, suggesting an area of structural flexibility that may be involved in ligand binding.

  17. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs

    PubMed Central

    Arakaki, Tracy L; Carter, Megan; Napuli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J; Merritt, Ethan A

    2010-01-01

    The 2.1 Å crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue α-helix. This helix replaces a β-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this β-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (α2)2 homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal α-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS. PMID:20438846

  18. Alignment of distantly related protein structures: algorithm, bound and implications to homology modeling

    PubMed Central

    Wang, Sheng; Peng, Jian; Xu, Jinbo

    2011-01-01

    Motivation: Building an accurate alignment of a large set of distantly related protein structures is still very challenging. Results: This article presents a novel method 3DCOMB that can generate a multiple structure alignment (MSA) with not only as many conserved cores as possible, but also high-quality pairwise alignments. 3DCOMB is unique in that it makes use of both local and global structure environments, combined by a statistical learning method, to accurately identify highly similar fragment blocks (HSFBs) among all proteins to be aligned. By extending the alignments of these HSFBs, 3DCOMB can quickly generate an accurate MSA without using progressive alignment. 3DCOMB significantly excels others in aligning distantly related proteins. 3DCOMB can also generate correct alignments for functionally similar regions among proteins of very different structures while many other MSA tools fail. 3DCOMB is useful for many real-world applications. In particular, it enables us to find out that there is still large improvement room for multiple template homology modeling while several other MSA tools fail to do so. Availability: 3DCOMB is available at http://ttic.uchicago.edu/~jinbo/software.htm. Contact: jinboxu@gmail.com Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21791532

  19. Analysis of Structural MtrC Models Based on Homology with the Crystal Structure of MtrF

    SciTech Connect

    Edwards, Marcus; Fredrickson, Jim K.; Zachara, John M.; Richardson, David; Clarke, Thomas A.

    2012-12-01

    The outer-membrane decahaem cytochrome MtrC is part of the transmembrane MtrCAB complex required for mineral respiration by Shewanella oneidensis. MtrC has significant sequence similarity to the paralogous decahaem cytochrome MtrF, which has been structurally solved through X-ray crystallography. This now allows for homology-based models of MtrC to be generated. The structure of these MtrC homology models contain ten bis-histidine-co-ordinated c-type haems arranged in a staggered cross through a four-domain structure. This model is consistent with current spectroscopic data and shows that the areas around haem 5 and haem 10, at the termini of an octahaem chain, are likely to have functions similar to those of the corresponding haems in MtrF. The electrostatic surfaces around haem 7, close to the β-barrels, are different in MtrF and MtrC, indicating that these haems may have different potentials and interact with substrates differently.

  20. Differential structuring of human populations for homologous X and Y microsatellite loci.

    PubMed

    Scozzari, R; Cruciani, F; Malaspina, P; Santolamazza, P; Ciminelli, B M; Torroni, A; Modiano, D; Wallace, D C; Kidd, K K; Olckers, A; Moral, P; Terrenato, L; Akar, N; Qamar, R; Mansoor, A; Mehdi, S Q; Meloni, G; Vona, G; Cole, D E; Cai, W; Novelletto, A

    1997-09-01

    The global pattern of variation at the homologous microsatellite loci DYS413 (Yq11) and DXS8174 and DXS8175 (Xp22) was analyzed by examination of 30 world populations from four continents, accounting for more than 1,100 chromosomes per locus. The data showed discordant patterns of among- and within-population gene diversity for the Y-linked and the X-linked microsatellites. For the Y-linked polymorphism, all groups of populations displayed high FST values (the correlation between random haplotypes within subpopulations, relative to haplotypes of the total population) and showed a general trend for the haplotypes to cluster in a population-specific way. This was especially true for sub-Saharan African populations. The data also indicated that a large fraction of the variation among populations was due to the accumulation of new variants associated with the radiation process. Europeans exhibited the highest level of within-population haplotype diversity, whereas sub-Saharan Africans showed the lowest. In contrast, data for the two X-linked polymorphisms were concordant in showing lower FST values, as compared with those for DYS413, but higher within-population variances, for African versus non-African populations. Whereas the results for the X-linked loci agreed with a model of greater antiquity for the African populations, those for DYS413 showed a confounding pattern that is apparently at odds with such a model. Possible factors involved in this differential structuring for homologous X and Y microsatellite polymorphisms are discussed. PMID:9326337

  1. Differential structuring of human populations for homologous X and Y microsatellite loci.

    PubMed Central

    Scozzari, R; Cruciani, F; Malaspina, P; Santolamazza, P; Ciminelli, B M; Torroni, A; Modiano, D; Wallace, D C; Kidd, K K; Olckers, A; Moral, P; Terrenato, L; Akar, N; Qamar, R; Mansoor, A; Mehdi, S Q; Meloni, G; Vona, G; Cole, D E; Cai, W; Novelletto, A

    1997-01-01

    The global pattern of variation at the homologous microsatellite loci DYS413 (Yq11) and DXS8174 and DXS8175 (Xp22) was analyzed by examination of 30 world populations from four continents, accounting for more than 1,100 chromosomes per locus. The data showed discordant patterns of among- and within-population gene diversity for the Y-linked and the X-linked microsatellites. For the Y-linked polymorphism, all groups of populations displayed high FST values (the correlation between random haplotypes within subpopulations, relative to haplotypes of the total population) and showed a general trend for the haplotypes to cluster in a population-specific way. This was especially true for sub-Saharan African populations. The data also indicated that a large fraction of the variation among populations was due to the accumulation of new variants associated with the radiation process. Europeans exhibited the highest level of within-population haplotype diversity, whereas sub-Saharan Africans showed the lowest. In contrast, data for the two X-linked polymorphisms were concordant in showing lower FST values, as compared with those for DYS413, but higher within-population variances, for African versus non-African populations. Whereas the results for the X-linked loci agreed with a model of greater antiquity for the African populations, those for DYS413 showed a confounding pattern that is apparently at odds with such a model. Possible factors involved in this differential structuring for homologous X and Y microsatellite polymorphisms are discussed. Images Figure 1 PMID:9326337

  2. Structural Characterization of Inhibitors with Selectivity against Members of a Homologous Enzyme Family

    SciTech Connect

    Pavlovsky, Alexander G.; Liu, Xuying; Faehnle, Christopher R.; Potente, Nina; Viola, Ronald E.

    2013-01-31

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. As this critical pathway is only present in plants and microbes, any disruptions will be fatal to these organisms. An early pathway enzyme, L-aspartate-{beta}-semialdehyde dehydrogenase, produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the L-aspartate-{beta}-semialdehyde dehydrogenase family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against L-aspartate-{beta}-semialdehyde dehydrogenases from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure-guided approach to the development of more potent and more selective inhibitors.

  3. Structural Characterization of Inhibitors with Selectivity against Members of a Homologous Enzyme Family

    PubMed Central

    Pavlovsky, Alexander G.; Liu, Xuying; Faehnle, Christopher R.; Potente, Nina; Viola, Ronald E.

    2012-01-01

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. Since this critical pathway is only present in plants and microbes any disruptions will be fatal to these organisms. An early pathway enzyme, L-aspartate-β-semialdehyde dehydrogenase (ASADH), produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the ASADH family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against ASADHs from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure guided approach to the development of more potent and more selective inhibitors. PMID:22039970

  4. Structural characterization of inhibitors with selectivity against members of a homologous enzyme family.

    PubMed

    Pavlovsky, Alexander G; Liu, Xuying; Faehnle, Christopher R; Potente, Nina; Viola, Ronald E

    2012-01-01

    The aspartate biosynthetic pathway provides essential metabolites for many important biological functions, including the production of four essential amino acids. As this critical pathway is only present in plants and microbes, any disruptions will be fatal to these organisms. An early pathway enzyme, l-aspartate-β-semialdehyde dehydrogenase, produces a key intermediate at the first branch point of this pathway. Developing potent and selective inhibitors against several orthologs in the l-aspartate-β-semialdehyde dehydrogenase family can serve as lead compounds for antibiotic development. Kinetic studies of two small molecule fragment libraries have identified inhibitors that show good selectivity against l-aspartate-β-semialdehyde dehydrogenases from two different bacterial species, Streptococcus pneumoniae and Vibrio cholerae, despite the presence of an identical constellation of active site amino acids in this homologous enzyme family. Structural characterization of enzyme-inhibitor complexes have elucidated different modes of binding between these structurally related enzymes. This information provides the basis for a structure-guided approach to the development of more potent and more selective inhibitors. PMID:22039970

  5. Conservation of structural fluctuations in homologous protein kinases and its implications on functional sites.

    PubMed

    Kalaivani, Raju; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2016-07-01

    Our aim is to explore the similarities in structural fluctuations of homologous kinases. Gaussian Network Model based Normal Mode Analysis was performed on 73 active conformation structures in Ser/Thr/Tyr kinase superfamily. Categories of kinases with progressive evolutionary divergence, viz. (i) Same kinase with many crystal structures, (ii) Within-Subfamily, (iii) Within-Family, (iv) Within-Group, and (v) Across-Group, were analyzed. We identified a flexibility signature conserved in all kinases involving residues in and around the catalytic loop with consistent low-magnitude fluctuations. However, the overall structural fluctuation profiles are conserved better in closely related kinases (Within-Subfamily and Within-family) than in distant ones (Within-Group and Across-Group). A substantial 65.4% of variation in flexibility was not accounted by variation in sequences or structures. Interestingly, we identified substructural residue-wise fluctuation patterns characteristic of kinases of different categories. Specifically, we recognized statistically significant fluctuations unique to families of protein kinase A, cyclin-dependent kinases, and nonreceptor tyrosine kinases. These fluctuation signatures localized to sites known to participate in protein-protein interactions typical of these kinase families. We report for the first time that residues characterized by fluctuations unique to the group/family are involved in interactions specific to the group/family. As highlighted for Src family, local regions with differential fluctuations are proposed as attractive targets for drug design. Overall, our study underscores the importance of consideration of fluctuations, over and above sequence and structural features, in understanding the roles of sites characteristic of kinases. Proteins 2016; 84:957-978. © 2016 Wiley Periodicals, Inc. PMID:27028938

  6. Lectins of marine hydrobionts.

    PubMed

    Chernikov, O V; Molchanova, V I; Chikalovets, I V; Kondrashina, A S; Li, W; Lukyanov, P A

    2013-07-01

    Data from the literature and results of our research on lectins isolated from some kinds of marine hydrobionts such as clams, ascidians, sea worms, sponges, and algae are presented in this review. Results of comparative analysis of the basic physicochemical properties and biological activity of lectins isolated from various sources are discussed. PMID:24010839

  7. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators

    PubMed Central

    Guenole, Nigel

    2016-01-01

    We describe a Monte Carlo study examining the impact of assuming item isomorphism (i.e., equivalent construct meaning across levels of analysis) on conclusions about homology (i.e., equivalent structural relations across levels of analysis) under varying degrees of non-isomorphism in the context of ordinal indicator multilevel structural equation models (MSEMs). We focus on the condition where one or more loadings are higher on the between level than on the within level to show that while much past research on homology has ignored the issue of psychometric isomorphism, psychometric isomorphism is in fact critical to valid conclusions about homology. More specifically, when a measurement model with non-isomorphic items occupies an exogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the within level exogenous latent variance is under-estimated leading to over-estimation of the within level structural coefficient, while the between level exogenous latent variance is overestimated leading to underestimation of the between structural coefficient. When a measurement model with non-isomorphic items occupies an endogenous position in a multilevel structural model and the non-isomorphism of these items is not modeled, the endogenous within level latent variance is under-estimated leading to under-estimation of the within level structural coefficient while the endogenous between level latent variance is over-estimated leading to over-estimation of the between level structural coefficient. The innovative aspect of this article is demonstrating that even minor violations of psychometric isomorphism render claims of homology untenable. We also show that posterior predictive p-values for ordinal indicator Bayesian MSEMs are insensitive to violations of isomorphism even when they lead to severely biased within and between level structural parameters. We highlight conditions where poor estimation of even correctly specified

  8. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types

    PubMed Central

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R. H.

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt’s lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  9. Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types.

    PubMed

    Terada, Daiki; Kawai, Fumihiro; Noguchi, Hiroki; Unzai, Satoru; Hasan, Imtiaj; Fujii, Yuki; Park, Sam-Yong; Ozeki, Yasuhiro; Tame, Jeremy R H

    2016-01-01

    MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects. PMID:27321048

  10. Redox-dependent structural differences in putidaredoxin derived from homologous structure refinement via residual dipolar couplings.

    PubMed

    Jain, Nitin U; Tjioe, Elina; Savidor, Alon; Boulie, James

    2005-06-28

    Structural differences in the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), from the camphor hydroxylation pathway of Pseudomonas putida have been investigated as a function of oxidation state of the iron cluster. Pdx is involved in biological electron transfer to cytochrome P450(cam) (CYP101). Redox-dependent differences have been observed previously for Pdx in terms of binding affinities to CYP101, NMR spectral differences, and dynamic properties. To further characterize these differences, structure refinement of both oxidized and reduced Pdx has been carried out using a hybrid approach utilizing paramagnetic distance restraints and NMR orientational restraints in the form of backbone (15)N residual dipolar couplings. Use of these new restraints has improved the structure of oxidized Pdx considerably over the earlier solution NMR structure without RDC restraints, with the new structure now much closer in overall fold to the recently published X-ray crystal structures. We now observe better defined relative orientations of the major secondary structure elements as also of the conformation of the metal binding loop region. Extension of this approach to structure calculation of reduced Pdx has identified structural differences that are primarily localized for residues in the C-terminal interaction domain consisting of the functionally important residue Trp 106 and regions near the metal binding loop in Pdx. These redox-dependent structural differences in Pdx correlate to dynamic changes observed before and may be linked to differences in binding and electron transfer properties between oxidized and reduced Pdx. PMID:15966730

  11. Structural homology of identified motoneurones in larval and adult stages of hemi- and holometabolous insects.

    PubMed

    Breidbach, O; Kutsch, W

    1990-07-15

    The set of neurones innervating the dorsal longitudinal muscles was studied with cobalt and nickel backfills in: (1) larval and adult locusts (Schistocerca gregaria and Locusta migratoria), (2) the larval and adult beetle (Zophobas morio), and (3) various segments of these insect species. In all specimens 11 neurones were encountered, which can be subdivided into a group of 7 motoneurones that stem from the next anterior ganglion and 4 neurones located in the ganglion of the segment containing the muscles. The latter group comprises 2 contralateral and 2 medial somata, of which one is a dorsal unpaired median neurone. The results were analysed under different aspects. This neural set and the basic structure of the dendritic fields is similar in: (1) different segments (serial homology), (2) the larval stage and imago of the same species with or without a pronounced metamorphosis (ontogeny), and (3) the studied hemi- and holometabolous insects (phylogeny). Our results support the notion that the structure of these neurones is conserved irrespectively of changes in the periphery and strategy of postembryonic development. PMID:2398139

  12. An unprecedented 3D POM-Ag architecture with intertwined and homological helical structures.

    PubMed

    Sha, Jing-Quan; Li, Meng-Ting; Sun, Jing-Wen; Zhang, Yu-Nan; Yan, Peng-Fei; Li, Guang-Ming

    2013-06-01

    A new hybrid compound, Na[Ag6(pyttz)2(H2O)][PMo12O40] (pyttz = 3-(pyrid-3-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), has been hydrothermally synthesized and structurally characterized by routine techniques. X-ray diffraction analysis reveals that the title compound is constructed by the 2D Ag-pyttz coordination polymer and 3D Ag-POM architecture with helix. A fascinating structural feature is the assembling fashion of the right- and left-helical chain, namely, the helical chains with different orientations are intertwined with each other forming intertwined double helical layers along the c-axis, and the identical left- or right-handed helical chains are fused together in a hand-by-hand mode generating another homological helical layer along the a-axis. As a result, these helical layers intersect each other obtaining an unprecedented 3D POM-Ag inorganic architecture. Note that the 3D framework with a helix constructed by POMs and metal ions has never been observed up to date. Additionally, its photocatalytic degradation of RhB was also investigated. PMID:23558903

  13. Characterization of a lectin from the craysfish Cherax quadricarinatus hemolymph and its effect on hemocytes.

    PubMed

    Sánchez-Salgado, J L; Pereyra, M A; Vivanco-Rojas, O; Sierra-Castillo, C; Alpuche-Osorno, J J; Zenteno, E; Agundis, C

    2014-08-01

    Lectins participate in the immune mechanisms of crustaceans. They have been considered as humoral receptors for pathogen-associated molecular patterns; however, some reports suggest that lectins could regulate crustacean cellular functions. In the present study, we purified and characterized a serum lectin (CqL) from the hemolymph of Cherax quadricarinatus by affinity chromatography and determined its participation in the regulation of hemocytes' oxidative burst. CqL is a 290-kDa lectin in native form, constituted by 108, 80, and 29-kDa subunits. It is mainly composed of glycine, alanine, and a minor proportion of methionine and histidine. It showed no carbohydrates in its structure. CqL is composed of several isoforms, as determined by 2D-electrophoresis, and shows no homology with any crustacean protein as determined by Lc/Ms mass spectrometry. CqL agglutinated mainly rat and rabbit erythrocytes and showed a broad specificity for monosaccharides such as galactose, glucose, and sialic acid, as well as for glycoproteins, such as porcine stomach and bovine submaxillary mucin and fetuin. It is a Mn(2+)-dependent lectin. CqL recognized 8% of crayfish granular hemocytes and increased 4.2-fold the production of hemocytes' superoxide anion in vitro assays when compared with non-treated hemocytes. This effect showed the same specificity for carbohydrates as hemagglutination; moreover, superoxide dismutase and diphenyleneiodonium chloride were effective inhibitors of CqL oxidative-activation. The CqL homoreceptor is a 120-kDa glycoprotein identified in the hemocytes lysate. Our results suggest that CqL participates actively in the regulation of the generation of superoxide anions in hemocytes using NADPH-dependent mechanisms. PMID:24929243

  14. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis).

    PubMed

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M A; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  15. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis)

    PubMed Central

    Hasan, Imtiaj; Gerdol, Marco; Fujii, Yuki; Rajia, Sultana; Koide, Yasuhiro; Yamamoto, Daiki; Kawsar, Sarkar M. A.; Ozeki, Yasuhiro

    2016-01-01

    MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic “mytilectin family” in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5′ end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5′UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3′UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels. PMID:27187419

  16. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  17. Lectin genes in the Frankia alni genome.

    PubMed

    Pujic, Petar; Fournier, Pascale; Alloisio, Nicole; Hay, Anne-Emmanuelle; Maréchal, Joelle; Anchisi, Stéphanie; Normand, Philippe

    2012-01-01

    Frankia alni strain ACN14a's genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations. PMID:22159868

  18. Structural homology between lymphocyte receptors for high endothelium and class III extracellular matrix receptor.

    PubMed Central

    Gallatin, W M; Wayner, E A; Hoffman, P A; St John, T; Butcher, E C; Carter, W G

    1989-01-01

    We have identified extensive structural homology between one type of heterotypic adhesion receptor (HAR) involved in lymphocyte interactions with high endothelium in lymphoid organs and a collagen-binding protein, termed class III extracellular matrix receptor (ECMRIII), expressed on most nucleated cell types. Both receptors have been described as heterogeneous 90-kDa transmembrane glycoproteins, referred to here as gp90. Monoclonal anti-HAR antibodies, Hermes-1 and Hutch-1, and monoclonal anti-ECMRIII antibodies, P1G12 and P3H9, were utilized to compare the two receptors. (i) All these monoclonal antibodies immunoprecipitated major gp90 components as well as uncharacterized additional higher molecular mass antigens of 120-200 kDa in human and macaque fibroblasts and peripheral blood mononuclear cells. (ii) Competitive binding analyses with the antibodies identified distinct epitopes present on gp90. (iii) Enzymatic and chemical digestions generated identical peptide fragments from all the antigens in human and macaque fibroblasts and peripheral blood mononuclear cells. (iv) Sequential immunoprecipitation with P1G12 followed by the other monoclonal antibodies indicated that all gp90 species reactive with Hermes-1 and Hutch-1 also expressed the P1G12 defined epitope. In reciprocal experiments, Hermes-1 and Hutch-1 immunoprecipitation did not completely remove all P1G12-reactive gp90 from cellular extracts. One inference from these data would be that gp90 is serologically heterogeneous, encompassing HARs as a major subset of this broadly expressed class of molecules. Images PMID:2471973

  19. Modulation of MICAL Monooxygenase Activity by its Calponin Homology Domain: Structural and Mechanistic Insights

    PubMed Central

    Alqassim, Saif S.; Urquiza, Mauricio; Borgnia, Eitan; Nagib, Marc; Amzel, L. Mario; Bianchet, Mario A.

    2016-01-01

    MICALs (Molecule Interacting with CasL) are conserved multidomain enzymes essential for cytoskeletal reorganization in nerve development, endocytosis, and apoptosis. In these enzymes, a type-2 calponin homology (CH) domain always follows an N-terminal monooxygenase (MO) domain. Although the CH domain is required for MICAL-1 cellular localization and actin-associated function, its contribution to the modulation of MICAL activity towards actin remains unclear. Here, we present the structure of a fragment of MICAL-1 containing the MO and the CH domains—determined by X-ray crystallography and small angle scattering—as well as kinetics experiments designed to probe the contribution of the CH domain to the actin-modification activity. Our results suggest that the CH domain, which is loosely connected to the MO domain by a flexible linker and is far away from the catalytic site, couples F-actin to the enhancement of redox activity of MICALMO-CH by a cooperative mechanism involving a trans interaction between adjacently bound molecules. Binding cooperativity is also observed in other proteins regulating actin assembly/disassembly dynamics, such as ADF/Cofilins. PMID:26935886

  20. In Silico Study to Develop a Lectin-Like Protein from Mushroom Agaricus bisporus for Pharmaceutical Application

    PubMed Central

    Ismaya, Wangsa Tirta; Yunita; Damayanti, Sophi; Wijaya, Caroline; Tjandrawinata, Raymond R.; Retnoningrum, Debbie Sofie; Rachmawati, Heni

    2016-01-01

    A lectin-like protein of unknown function designated as LSMT was recently discovered in the edible mushroom Agaricus bisporus. The protein shares high structural similarity to HA-33 from Clostridium botulinum (HA33) and Ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which have been developed as drug carrier and anti-cancer, respectively. These homologous proteins display the ability to penetrate the intestinal epithelial cell monolayer, and are beneficial for oral administration. As the characteristics of LSMT are unknown, a structural study in silico was performed to assess its potential pharmaceutical application. The study suggested potential binding to target ligands such as HA-33 and CNL although the nature, specificity, capacity, mode, and strength may differ. Further molecular docking experiments suggest that interactions between the LSMT and tested ligands may take place. This finding indicates the possible use of the LSMT protein, initiating new research on its use for pharmaceutical purposes. PMID:27110510

  1. In Silico Study to Develop a Lectin-Like Protein from Mushroom Agaricus bisporus for Pharmaceutical Application.

    PubMed

    Ismaya, Wangsa Tirta; Yunita; Damayanti, Sophi; Wijaya, Caroline; Tjandrawinata, Raymond R; Retnoningrum, Debbie Sofie; Rachmawati, Heni

    2016-01-01

    A lectin-like protein of unknown function designated as LSMT was recently discovered in the edible mushroom Agaricus bisporus. The protein shares high structural similarity to HA-33 from Clostridium botulinum (HA33) and Ricin-B-like lectin from the mushroom Clitocybe nebularis (CNL), which have been developed as drug carrier and anti-cancer, respectively. These homologous proteins display the ability to penetrate the intestinal epithelial cell monolayer, and are beneficial for oral administration. As the characteristics of LSMT are unknown, a structural study in silico was performed to assess its potential pharmaceutical application. The study suggested potential binding to target ligands such as HA-33 and CNL although the nature, specificity, capacity, mode, and strength may differ. Further molecular docking experiments suggest that interactions between the LSMT and tested ligands may take place. This finding indicates the possible use of the LSMT protein, initiating new research on its use for pharmaceutical purposes. PMID:27110510

  2. Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins

    PubMed Central

    2014-01-01

    Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245

  3. Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*

    PubMed Central

    Yates, Luke A.; Lumb, Craig N.; Brahme, Nina N.; Zalyte, Ruta; Bird, Louise E.; De Colibus, Luigi; Owens, Raymond J.; Calderwood, David A.; Sansom, Mark S. P.; Gilbert, Robert J. C.

    2012-01-01

    Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species. PMID:23132860

  4. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: A receptor for lectin-mediated interbacterial adherence

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-07-02

    Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). {sup 1}H NMR spectra of the polysaccharide show that is partially O-acetylated. Analysis of the {sup 1}H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The {sup 1}H and {sup 13}C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by {sup 1}H-detected heteronuclear multiple-quantum correlation ({sup 1}H({sup 13}C)HMQC). The complete {sup 1}H and {sup 13}C assignment of the native polysaccharide was carried out by the same techniques augmented by a {sup 13}C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the {sup 1}H spectrum pose difficulties.

  5. Diversified Carbohydrate-Binding Lectins from Marine Resources

    PubMed Central

    Ogawa, Tomohisa; Watanabe, Mizuki; Naganuma, Takako; Muramoto, Koji

    2011-01-01

    Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families. PMID:22312473

  6. Review of Crystalline Structures of Some Selected Homologous Series of Rod-Like Molecules Capable of Forming Liquid Crystalline Phases

    PubMed Central

    Zugenmaier, Peter

    2011-01-01

    The crystal structures of four homologous series of rod-like molecules are reviewed, two of which form hydrogen bonds and two with a symmetric chemical constitution. Many of the compounds investigated turn into liquid crystalline phases upon temperature increase. It is of valuable interest to know possible conformations and possible packing arrangements as prerequisites to model liquid crystalline structures. The hydrogen bonds of homologous series of pure 4-(ω-hydroxyalkyloxy)-4′-hydroxybiphenyl (HnHBP, n the alkyloxy tail length) are realized through head to tail arrangements of the hydroxyl groups and crystallize except one compound in chiral space groups without the molecules containing any asymmetric carbon. The hydrogen bonds of the homologous series of 4-substituted benzoic acids with various lengths of the tail provide dimers through strong polar bonding of adjacent carboxyl groups and thus provide the stiff part of a mesogenic unit prerequisite for liquid crystalline phases. The homologous series of dialkanoyloxybiphenyls (BP-n, n = 1, 19), of which nine compounds could be crystallized, show liquid crystalline behavior for longer alkane chain lengths, despite the high mobility of the alkane chain ends already detectable in the crystal phase. A single molecule, half a molecule or two half molecules form the asymmetric unit in a centrosymmetric space group. The homologous series of 1,4-terephthalidene-bis-N-(4′-n-alkylaniline) (TBAA-n) exhibit a large variety of packing arrangements in the crystalline state, with or without relying on the symmetry center within the molecules. PMID:22174604

  7. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    PubMed Central

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-01-01

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Availability and implementation: Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx. Contact: xin.gao@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307635

  8. 3-D Structure of Arcade Type Flares Deduced from Soft X-Ray Observations of a Homologous Flare Series

    NASA Astrophysics Data System (ADS)

    Morita, S.; Uchida, Y.; Hirose, S.

    2002-01-01

    In the solar flare problems, no ultimate model that matches observations has been established. One of the reasons for this is due to the restrictions in the observational data lacking information about the third dimension. Thus, many researchers have tried to get information about the three dimensional (3-D) coronal structures by using various techniques or ideas; like movie analysis, calculations using vector or line-of-sight components of photospheric magnetic data, and etc.. In the near future, a mission named STEREO which will obtain information about the 3-D coronal structures from two satellites, is planned. In the present paper, we noted the homology in a homologous flare series of February 1992. We derived a 3-D coronal structures by making use of the images obtained from the three different sight-lines at some common phases in them with Yohkoh SXT. The result of this analysis has made it clear that the so-called ``cusped arcade'' at the maximum phase in the well-known 1992 February 21 flare is, contrary to the general views, an ``elongated arch'' seen with a shallow oblique angle. It is not the ``flare arcade'' seen axis-on as widely conceived. This elongated arch coincides roughly with a diagonal of the main body of the "soft X-ray arcade" that came up later. The magnetic structure causing the flare as a whole turned out in this analysis to be a structure with quadruple magnetic sources. The relative locations of these four characteristic sources stayed almost the same throughout the period of this homologous flare series, determining the fundamental shape of this homologous series. We also examined the corresponding features for other similar events, also using information from other satellites, and will report the results.

  9. Structure and Function Analysis of Nucleocapsid Protein of Tomato Spotted Wilt Virus Interacting with RNA Using Homology Modeling*

    PubMed Central

    Li, Jia; Feng, Zhike; Wu, Jianyan; Huang, Ying; Lu, Gang; Zhu, Min; Wang, Bi; Mao, Xiang; Tao, Xiaorong

    2015-01-01

    The nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) plays key roles in assembling genomic RNA into ribonucleoprotein (RNP), which serves as a template for both viral gene transcription and genome replication. However, little is known about the molecular mechanism of how TSWV N interacts with genomic RNA. In this study, we demonstrated that TSWV N protein forms a range of higher ordered oligomers. Analysis of the RNA binding behavior of N protein revealed that no specific oligomer binds to RNA preferentially, instead each type of N oligomer is able to bind RNA. To better characterize the structure and function of N protein interacting with RNA, we constructed homology models of TSWV N and N-RNA complexes. Based on these homology models, we demonstrated that the positively charged and polar amino acids in its predicted surface cleft of TSWV N are critical for RNA binding. Moreover, by N-RNA homology modeling, we found that the RNA component is deeply embedded in the predicted protein cleft; consistently, TSWV N-RNA complexes are relatively resistant to digestion by RNase. Collectively, using homology modeling, we determined the RNA binding sites on N and found a new protective feature for N protein. Our findings also provide novel insights into the molecular details of the interaction of TSWV N with RNA components. PMID:25540203

  10. Sugared biomaterial binding lectins: achievements and perspectives.

    PubMed

    Bojarová, P; Křen, V

    2016-07-19

    Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants. PMID:27075026

  11. Biotoxicity assays for fruiting body lectins and other cytoplasmic proteins.

    PubMed

    Künzler, Markus; Bleuler-Martinez, Silvia; Butschi, Alex; Garbani, Mattia; Lüthy, Peter; Hengartner, Michael O; Aebi, Markus

    2010-01-01

    Recent studies suggest that a specific class of fungal lectins, commonly referred to as fruiting body lectins, play a role as effector molecules in the defense of fungi against predators and parasites. Hallmarks of these fungal lectins are their specific expression in reproductive structures, fruiting bodies, and/or sclerotia and their synthesis on free ribosomes in the cytoplasm. Fruiting body lectins are released upon damage of the fungal cell and bind to specific carbohydrate structures of predators and parasites, which leads to deterrence, inhibition of growth, and development or even killing of these organisms. Here, we describe assays to assess the toxicity of such lectins and other cytoplasmic proteins toward three different model organisms: the insect Aedes aegypti, the nematode Caenorhabditis elegans, and the amoeba Acanthamoeba castellanii. All three assays are based on heterologous expression of the examined proteins in the cytoplasm of Escherichia coli and feeding of these recombinant bacteria to omnivorous and bacterivorous organisms. PMID:20816208

  12. Mammalian galectins: structure, carbohydrate specificity, and functions.

    PubMed

    Rapoport, E M; Kurmyshkina, O V; Bovin, N V

    2008-04-01

    Galectins are a family of beta-galactoside binding lectins, homological by a sequence of the carbohydrate-binding site. In this review literature data about structure and carbohydrate specificity of galectins are discussed. The role of galectins in the regulation of cell adhesion in immune response, inflammation, and cancer progression is considered. PMID:18457568

  13. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  14. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  15. Identification, Characterization, and X-ray Crystallographic Analysis of a Novel Type of Mannose-Specific Lectin CGL1 from the Pacific Oyster Crassostrea gigas.

    PubMed

    Unno, Hideaki; Matsuyama, Kazuki; Tsuji, Yoshiteru; Goda, Shuichiro; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2016-01-01

    A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications. PMID:27377186

  16. Identification, Characterization, and X-ray Crystallographic Analysis of a Novel Type of Mannose-Specific Lectin CGL1 from the Pacific Oyster Crassostrea gigas

    PubMed Central

    Unno, Hideaki; Matsuyama, Kazuki; Tsuji, Yoshiteru; Goda, Shuichiro; Hiemori, Keiko; Tateno, Hiroaki; Hirabayashi, Jun; Hatakeyama, Tomomitsu

    2016-01-01

    A novel mannose-specific lectin, named CGL1 (15.5 kDa), was isolated from the oyster Crassostrea gigas. Characterization of CGL1 involved isothermal titration calorimetry (ITC), glycoconjugate microarray, and frontal affinity chromatography (FAC). This analysis revealed that CGL1 has strict specificity for the mannose monomer and for high mannose-type N-glycans (HMTGs). Primary structure of CGL1 did not show any homology with known lectins but did show homology with proteins of the natterin family. Crystal structure of the CGL1 revealed a unique homodimer in which each protomer was composed of 2 domains related by a pseudo two-fold axis. Complex structures of CGL1 with mannose molecules showed that residues have 8 hydrogen bond interactions with O1, O2, O3, O4, and O5 hydroxyl groups of mannose. The complex interactions that are not observed with other mannose-binding lectins revealed the structural basis for the strict specificity for mannose. These characteristics of CGL1 may be helpful as a research tool and for clinical applications. PMID:27377186

  17. Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein.

    PubMed

    do Nascimento, Antônia S F; Serna, Sonia; Beloqui, Ana; Arda, Ana; Sampaio, Alexandre H; Walcher, Janika; Ott, Dimitri; Unverzagt, Carlo; Reichardt, Niels-Christian; Jimenez-Barbero, Jesus; Nascimento, Kyria S; Imberty, Anne; Cavada, Benildo S; Varrot, Annabelle

    2015-06-01

    We determined the specificity of BTL, a lectin from the red marine alga Bryothamnion triquetrum, toward fucosylated oligosaccharides. BTL showed a strict specificity for the core α1,6-fucosylation, which is an important marker for cancerogenesis and quality control of therapeutical antibodies. The double fucosylation α1,6 and α1,3 was also recognized, but the binding was totally abolished in the sole presence of the α1,3-fucosylation. A more detailed analysis of the specificity of BTL showed a preference for bi- and tri-antennary nonbisected N-glycans. Sialylation or fucosylation at the nonreducing end of N-glycans did not affect the recognition by the lectin. BTL displayed a strong affinity for a core α1,6-fucosylated octasaccharide with a Kd of 12 μM by titration microcalorimetry. The structural characterization of the interaction between BTL and the octasaccharide was obtained by STD-NMR. It demonstrated an extended epitope for recognition that includes the fucose residue, the distal GlcNAc and one mannose residue. Recombinant rBTL was obtained in Escherichia coli and characterized. Its binding properties for carbohydrates were studied using hemagglutination tests and glycan array analysis. rBTL was able to agglutinate rabbit erythrocytes with strong hemagglutination activity only after treatment with papain and trypsin, indicating that its ligands were not directly accessible at the cell surface. The hemagglutinating properties of rBTL confirm the correct folding and functional state of the protein. The results show BTL as a potent candidate for cancer diagnosis and as a reagent for the preparation and quality control of antibodies lacking core α1,6-fucosylated N-glycans. PMID:25573275

  18. Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models.

    PubMed

    Cavasotto, Claudio N; Palomba, Damián

    2015-09-14

    With >800 members in humans, the G protein-coupled receptor (GPCR) super-family is the target for more than 30% of the marketed drugs. The recent boom in GPCR crystallography has enabled the solution of ∼30 different GPCR structures, which boosted the identification and optimization of novel modulators and new chemical entities through structure-based strategies. However, the number of available structures represents a small part of the human GPCR druggable target space, and its complete coverage in the near future seems unlikely. Homology modelling represents a reliable tool to fill this gap, and hence to vastly expand the horizons of structure-based drug discovery and design. In this Feature Article, we show from a wealth of retrospective and prospective studies that in spite of the pitfalls of and standing challenges in homology modelling, structural models have been critical for the blossoming and success of GPCR structure-based lead discovery and optimization endeavours; in addition, they have also been instrumental in characterizing receptor-ligand interaction, guiding the design of site-directed mutagenesis and SAR studies, and assessing off-target effects. Considering though their current limitations, we also discuss the most pressing issues to develop more accurate homology modelling strategies, with a special focus on the integration of computational tools with biochemical, biophysical and QSAR data, highlighting methodological aspects and recent progress. The teachings of the three GPCR Dock community-wide assessments and the fresh developments in GPCR classes B, C and F are commented. This is a fast growing and highly promising field of research, and in the coming years, the use of high-quality models should enable the discovery of a growing number of potent, selective and efficient GPCR drug leads with high therapeutic potential through receptor structure-based strategies. PMID:26256645

  19. Lectins with anti-HIV activity: a review.

    PubMed

    Akkouh, Ouafae; Ng, Tzi Bun; Singh, Senjam Sunil; Yin, Cuiming; Dan, Xiuli; Chan, Yau Sang; Pan, Wenliang; Cheung, Randy Chi Fai

    2015-01-01

    Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed. PMID:25569520

  20. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    PubMed

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. PMID:25824951

  1. Comparison of crystal structures of two homologous proteins: structural origin of altered domain interactions in immunoglobulin light-chain dimers.

    PubMed

    Huang, D B; Chang, C H; Ainsworth, C; Brünger, A T; Eulitz, M; Solomon, A; Stevens, F J; Schiffer, M

    1994-12-13

    The sequence and structure of a second human kappa 1 immunoglobulin light-chain variable domain, Wat, has been determined. The R-factor is 15.7% for 1.9-A data. One hundred and ninety-five water molecules were identified; 30 water molecules were located in identical positions in each of the monomers. Some of the water molecules are integral parts of the domains. This light chain is encoded by the same variable domain gene that encoded the previously characterized kappa I variable domain, Rei. Due to limited somatic mutation, the two highly homologous proteins differ in only 20 of the 108 residues. Wat crystallized in space group P6(4) while Rei crystallized in space group P6(1); in both crystals, the asymmetric unit was the noncovalent dimer. Although the basic domain structure is the same for both proteins, the relative positions of the domains within the two dimers differ. This difference is most likely accounted for by the replacement of Tyr36 in Rei by Phe in the Wat protein. Residue Tyr36 is part of the hydrogen-bonding network in the interface between the domains in Rei. Losing the hydrogen-bonding capability of residue 36 by replacement of Tyr by Phe alters the network of hydrogen bonds between the domains, resulting in a different domain-domain contact. The details of lattice contacts in the two crystals were compared. One type of contact that extends the beta-sheet of the individual domains was conserved, but because it involved different symmetry elements within the crystal, different crystal packing resulted. In the Wat crystal, one of the contacts shows an example of how a symmetrical binding site can "bind" an asymmetrical object. Further, the examination of the Wat crystal also illustrates how the different crystalline environments of the domains of the dimer results in different distributions of temperature factors for the residues within the domains. PMID:7993911

  2. Plant Lectin-Like Bacteriocin from a Rhizosphere-Colonizing Pseudomonas Isolate

    PubMed Central

    Parret, Annabel H. A.; Schoofs, Geert; Proost, Paul; De Mot, René

    2003-01-01

    Rhizosphere isolate Pseudomonas sp. strain BW11M1, which belongs to the Pseudomonas putida cluster, secretes a heat- and protease-sensitive bacteriocin which kills P. putida GR12-2R3. The production of this bacteriocin is enhanced by DNA-damaging treatment of producer cells. We isolated a TnMod mutant of strain BW11M1 that had lost the capacity to inhibit the growth of strain GR12-2R3. A wild-type genomic fragment encompassing the transposon insertion site was shown to confer the bacteriocin phenotype when it was introduced into Escherichia coli cells. The bacteriocin structural gene was identified by defining the minimal region required for expression in E. coli. This gene was designated llpA (lectin-like putidacin) on the basis of significant homology of its 276-amino-acid product with mannose-binding lectins from monocotyledonous plants. LlpA is composed of two monocot mannose-binding lectin (MMBL) domains. Several uncharacterized bacterial genes encoding diverse proteins containing one or two MMBL domains were identified. A phylogenetic analysis of the MMBL domains present in eukaryotic and prokaryotic proteins assigned the putidacin domains to a new bacterial clade within the MMBL-containing protein family. Heterologous expression of the llpA gene also conveyed bacteriocin production to several Pseudomonas fluorescens strains. In addition, we demonstrated that strain BW11M1 and heterologous hosts secrete LlpA into the growth medium without requiring a cleavable signal sequence. Most likely, the mode of action of this lectin-like bacteriocin is different from the modes of action of previously described Pseudomonas bacteriocins. PMID:12533465

  3. Solution Structure and Sugar-Binding Mechanism of Mouse Latrophilin-1 RBL: a 7TM Receptor-Attached Lectin-Like Domain

    PubMed Central

    Vakonakis, Ioannis; Langenhan, Tobias; Prömel, Simone; Russ, Andreas; Campbell, Iain D.

    2008-01-01

    Summary Latrophilin-1 (Lat-1), a target receptor for α-Latrotoxin, is a putative G protein-coupled receptor implicated in synaptic function. The extracellular portion of Lat-1 contains a rhamnose binding lectin (RBL)-like domain of unknown structure. RBL domains, first isolated from the eggs of marine species, are also found in the ectodomains of other metazoan transmembrane proteins, including a recently discovered coreceptor of the neuronal axon guidance molecule SLT-1/Slit. Here, we describe a structure of this domain from the mouse Lat-1. RBL adopts a unique α/β fold with long structured loops important for monosaccharide recognition, as shown in the structure of a complex with L-rhamnose. Sequence alignments and mutagenesis show that residues important for carbohydrate binding are often absent in other receptor-attached examples of RBL, including the SLT-1/Slit coreceptor. We postulate that this domain class facilitates direct protein-protein interactions in many transmembrane receptors. PMID:18547526

  4. Lectin domains at the frontiers of plant defense

    PubMed Central

    Lannoo, Nausicaä; Van Damme, Els J. M.

    2014-01-01

    Plants are under constant attack from pathogens and herbivorous insects. To protect and defend themselves, plants evolved a multi-layered surveillance system, known as the innate immune system. Plants sense their encounters upon perception of conserved microbial structures and damage-associated patterns using cell-surface and intracellular immune receptors. Plant lectins and proteins with one or more lectin domains represent a major part of these receptors. The whole group of plant lectins comprises an elaborate collection of proteins capable of recognizing and interacting with specific carbohydrate structures, either originating from the invading organisms or from damaged plant cell wall structures. Due to the vast diversity in protein structures, carbohydrate recognition domains and glycan binding specificities, plant lectins constitute a very diverse protein superfamily. In the last decade, new types of nucleocytoplasmic plant lectins have been identified and characterized, in particular lectins expressed inside the nucleus and the cytoplasm of plant cells often as part of a specific plant response upon exposure to different stress factors or changing environmental conditions. In this review, we provide an overview on plant lectin motifs used in the constant battle against pathogens and predators during plant defenses. PMID:25165467

  5. Test of circular dichroism (CD) methods for crambin and CD-assisted secondary structure prediction of its homologous toxins.

    PubMed

    Teeter, M M; Whitlow, M

    1988-01-01

    Methods that analyze protein circular dichroism (CD) spectra for fractions of secondary structure are evaluated for the plant protein crambin, which has a known high-resolution crystal structure. In addition, a two-step secondary structure prediction scheme is presented and used for the toxins homologous to crambin, shown by others to have secondary structures similar to crambin. The test of CD spectral analysis methods with the protein crambin employed two computer programs and several CD basis sets. Crambin's crystal structure, known to 0.945A resolution (Hendrickson, W.A., Teeter, M.M. Nature 290:107-113, 1981), allows accurate evaluation of results. Analysis with the protein spectra basis sets (Provencher, S.W., Glöckner, J. Biochemistry 20:33-37, 1981) as modified (Manavalan, P., Johnson, W.C., Jr. Anal. Biochem. 167:76-85, 1987) agreed most closely with crambin's crystal structure. This method was then applied to the CD spectra of the membrane-active toxins homologous to crambin (alpha 1- and beta-purothionin, phoratoxin A and B, and viscotoxin A3 and B). The new program SEQ (pronounced "seek") was developed to assign the secondary structure along the protein chain in a hierarchical fashion and applied to the plant toxins. The method constrained the secondary structure fractions to those from CD analysis and combined standard statistical methods with amphipathic helix location. Both CD-arrived secondary structure percentages and sequence assignment indicate that the viscotoxins are structurally most similar to crambin. Purothionin's secondary structure was predicted to be fundamentally similar to crambin's with a difference at the start of the first helix. This assignment agreed with Raman and NMR analyses of purothionin and lends validity to the method presented here. Differences from the NMR in the CD secondary structure fraction analysis for phoratoxin suggest interference in the CD from tryptophan residues. PMID:3253736

  6. The use of lectin microarray for assessing glycosylation of therapeutic proteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins. PMID:26918373

  7. Transitive Homology-Guided Structural Studies Lead to Discovery of Cro Proteins With 40% Sequence Identify But Different Folds

    SciTech Connect

    Roessler, C.G.; Hall, B.M.; Anderson, W.J.; Ingram, W.M.; Roberts, S.A.; Montfort, W.R.; Cordes, M.H.J.

    2009-05-27

    Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a 'stepping-stone' method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and {lambda}. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and {lambda}. The domains show 40% sequence identity but differ by switching of {alpha}-helix to {beta}-sheet in a C-terminal region spanning {approx}25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.

  8. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL

    PubMed Central

    2012-01-01

    Background In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. Results A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. Conclusions PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool. Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html PMID:22536966

  9. Structural and Functional Studies of the Ras-Associating and Pleckstrin Homology Domains of Grb10 and Grb14

    SciTech Connect

    Depetris, R.; Wu, J; Hubbard, S

    2009-01-01

    Growth factor receptor-binding proteins Grb7, Grb10 and Grb14 are adaptor proteins containing a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region and a C-terminal Src-homology-2 domain. Previous structural studies showed that the Grb14 BPS region binds as a pseudosubstrate inhibitor in the tyrosine kinase domain of the insulin receptor to suppress insulin signaling. Here we report the crystal structure of the RA and PH domains of Grb10 at 2.6-A resolution. The structure reveals that these two domains, along with the intervening linker, form an integrated, dimeric structural unit. Biochemical studies demonstrated that Grb14 binds to activated Ras, which may serve as a timing mechanism for downregulation of insulin signaling. Our results illuminate the membrane-recruitment mechanisms not only of Grb7, Grb10 and Grb14 but also of MIG-10, Rap1-interacting adaptor molecule, lamellipodin and Pico, proteins involved in actin-cytoskeleton rearrangement that share a structurally related RA-PH tandem unit.

  10. Structure of Arabidopsis thaliana 5-methylthioribose Kinase Reveals a More Occluded Active Site Than its Bacterial Homolog

    SciTech Connect

    Ku,S.; Cornell, K.; Howell, P.

    2007-01-01

    Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATP?S and MTR has been determined at 1.9 Angstroms resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATP?S analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

  11. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    PubMed Central

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-01-01

    Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism. PMID:25004975

  12. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  13. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  14. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    PubMed Central

    Cuneo, Matthew J; Tian, Yaji; Allert, Malin; Hellinga, Homme W

    2008-01-01

    Background Comparison of experimentally determined mesophilic and thermophilic homologous protein structures is an important tool for understanding the mechanisms that contribute to thermal stability. Of particular interest are pairs of homologous structures that are structurally very similar, but differ significantly in thermal stability. Results We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 Å resolution. We find that tteRBP is significantly more stable (appTm value ~102°C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) (appTm value ~56°C). The tteRBP has essentially the identical backbone conformation (0.41 Å RMSD of 235/271 Cα positions and 0.65 Å RMSD of 270/271 Cα positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities. Conclusion The near identity of backbone structures of this pair of proteins entails that the significant differences in their thermal stabilities are encoded exclusively by the identity of the amino acid side-chains. Furthermore, the degree of sequence divergence is strongly correlated with structure; with a high degree of conservation in the core progressing to increased diversity in the boundary and surface regions. Different factors that may possibly contribute to thermal stability appear to be differentially encoded in each of these regions of the protein. The tteRBP/ecRBP pair therefore offers an opportunity to dissect contributions to thermal stability by side-chains alone in the absence of large structural differences. PMID:18373848

  15. Structure of a Neurospora RNA polymerase I promoter defined by transcription in vitro with homologous extracts.

    PubMed Central

    Tyler, B M; Giles, N H

    1985-01-01

    A Neurospora in vitro transcription system has been developed which specifically and efficiently initiates transcription of a cloned Neurospora crassa ribosomal RNA gene by RNA polymerase I. The initiation site of transcription (both in vitro and in vivo) appears to be located about 850 bp from the 5' end of mature 17S rRNA. However, the primary rRNA transcripts are normally cleaved very rapidly at a site 120-125 nt from the 5' end in vitro and in vivo. The nucleotide sequence surrounding the initiation site has been determined. The region from -16 to +9 exhibits partial homology to the corresponding sequences from a wide variety of organisms including yeast, but the most striking similarity is to the initiation region from Dictyostelium discoideum which displays 73% homology to the Neurospora sequence from -23 to +47. The Neurospora sequences from -96 to +97 have been shown to be sufficient for transcription. This region contains two sequences displaying 8/9 bp matches to elements of the 5S rDNA promoter. Images PMID:2989792

  16. Conserved protein YecM from Escherichia coli shows structural homology to metal-binding isomerases and oxygenases.

    SciTech Connect

    Zhang, R.; Duke, N.; Laskowski, R.; Evdokimova, E.; Skarina, T.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Univ. of Toronto; Univ. Health Network; Birbeck Coll.

    2003-01-01

    The crystal structure of protein YecM{sup 1} has been determined at 1.6 {angstrom} resolution as a part of the ongoing structural genomics initiative (http://www.mcsg.anl.gov). The YecM is a conserved, hypothetical Escherichia coli protein with sequence homologs found exclusively in bacteria, including Salmonella typhimunium, Yersinia pestis, Vibrio cholerae, Haemophilus influenza, and Pasteurella multocida. YecM (188 residues) shows also sequence similarity to proteins in COG database (http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox-?COG3102). YecM (Pfam-B domain 24546) was selected as a structural genomics target it shows no sequence similarity with proteins of known three-dimensional structure and therefore, may contain a previously unobserved field.

  17. Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.

    PubMed

    Sablin, Elena P; Blind, Raymond D; Uthayaruban, Rubatharshini; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Ingraham, Holly A; Fletterick, Robert J

    2015-12-01

    The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and structural studies demonstrated that the signaling phosphatidylinositols PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind and regulate SF-1 (Steroidogenic Factor-1, NR5A1), a close homolog of LRH-1. Here, we describe the crystal structure of human LRH-1 ligand binding domain (LBD) bound by PIP3 - the first phospholipid with a head group endogenous to mammals. We show that the phospholipid hormone binds LRH-1 with high affinity, stabilizing the receptor LBD. While the hydrophobic PIP3 tails (C16/C16) are buried inside the LRH-1 ligand binding pocket, the negatively charged PIP3 head group is presented on the receptor surface, similar to the phosphatidylinositol binding mode observed in the PIP3-SF-1 structure. Thus, data presented in this work reinforce our earlier findings demonstrating that signaling phosphatidylinositols regulate the NR5A receptors LRH-1 and SF-1. PMID:26416531

  18. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac[alpha]2-6Gal[beta]1-4GlcNAc human-type influenza receptor

    SciTech Connect

    Kadirvelraj, Renuka; Grant, Oliver C.; Goldstein, Irwin J.; Winter, Harry C.; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J.

    2013-03-07

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Ac{alpha}2-6Gal{beta}. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 {angstrom}) in complex with a trisaccharide, whose sequence (Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Ac{alpha}2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.

  19. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  20. [The structural, transcriptional and homology analysis of two frr genes in rice].

    PubMed

    Hu, Xin; Hu, Hao; Hong, Guo-Fan; Han, Bin

    2004-02-01

    Two rice (Oryza sativa subsp. japonica cv. Nipponbare) ribosome recycling factor genes--OsfrrA and OsfrrB had been identified and characterized in this study. The gene OsfrrA is located on chromosome 4 while OsfrrB on chromosome 7. No other homologue is found in rice organelle genomes. Both genes are unique in rice genome and constitutively expressed. The N-terminal character of their encoded protein products suggests that the proteins are transferred to mitochondrion and chloroplast respectively and carry out their functions. The sequence conservation and the constitutive expression profile of the two genes strongly imply their indispensable role in plant growth. In addition, these sequences share phylogenetic homology to some extent with other prokaryotic and eukaryotic RRFs, providing further evidence for the endosymbiotic theory, and implying the potential value of RRFs in molecular evolution research. PMID:15583417

  1. Lectin-like molecules in transcriptome of Littorina littorea hemocytes.

    PubMed

    Gorbushin, Alexander M; Borisova, Elena A

    2015-01-01

    The common periwinkle Littorina littorea was introduced in the list of models for comparative immunobiology as a representative of phylogenetically important taxon Caenogastropoda. Using Illumina sequencing technology, we de novo assembled the transcriptome of Littorina littorea hemocytes from 182 million mRNA-Seq pair-end 100 bp reads into a total of 15,526 contigs clustered in 4472 unigenes. The transcriptome profile was analyzed for presence of carbohydrate-binding molecules in a variety of architectural contexts. Hemocytes' repertoire of lectin-like proteins bearing conserved carbohydrate-recognition domains (CRDs) is highly diversified, including 11 of 15 lectin families earlier described in animals, as well as the novel members of lectin family found for the first time in mollusc species. The new molluscan lineage-specific domain combinations were confirmed by cloning and sequencing, including the fuco-lectin related molecules (FLReMs) composed of N-terminal region with no sequence homology to any known protein, a middle Fucolectin Tachylectin-4 Pentaxrin (FTP) domain, and a C-terminal epidermal growth factor (EGF) repeat region. The repertoire of lectin-like molecules is discussed in terms of their potential participation in the receptor phase of immune response. In total, immune-associated functions may be attributed to 70 transcripts belonging to 6 lectin families. These lectin-like genes show low overlap between species of invertebrates, suggesting relatively rapid evolution of immune-associated genes in the group. The repertoire provides valuable candidates for further characterization of the gene functions in mollusc immunity. PMID:25451301

  2. Insights into Regulated Ligand Binding Sites from the Structure of ZO-1 Src Homology 3-Guanylate Kinase Module

    SciTech Connect

    Lye, Ming F.; Fanning, Alan S.; Su, Ying; Anderson, James M.; Lavie, Arnon

    2010-11-09

    Tight junctions are dynamic components of epithelial and endothelial cells that regulate the paracellular transport of ions, solutes, and immune cells. The assembly and permeability of these junctions is dependent on the zonula occludens (ZO) proteins, members of the membrane-associated guanylate kinase homolog (MAGUK) protein family, which are characterized by a core Src homology 3 (SH3)-GUK module that coordinates multiple protein-protein interactions. The structure of the ZO-1 SH3-GUK domain confirms that the interdependent folding of the SH3 and GUK domains is a conserved feature of MAGUKs, but differences in the orientation of the GUK domains in three different MAGUKs reveal interdomain flexibility of the core unit. Using pull-down assays, we show that an effector loop, the U6 region in ZO-1, forms a novel intramolecular interaction with the core module. This interaction is divalent cation-dependent and overlaps with the binding site for the regulatory molecule calmodulin on the GUK domain. These findings provide insight into the previously observed ability of the U6 region to regulate TJ assembly in vivo and the structural basis for the complex protein interactions of the MAGUK family.

  3. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    SciTech Connect

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J; Rupasinghe, Sanjeewa; Tang, Ming; Harris, Jason B; Baudry, Jerome Y; Schuler, Mary A; Rienstra, Chad M

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  4. Accuracy of a structural homology model for a class II histocompatibility protein, HLA-DR1: comparison to the crystal structure.

    PubMed

    Nauss, J L; Reid, R H; Sadegh-Nasseri, S

    1995-06-01

    Structural homology modeling is used to test the accuracy by which a Class I major histocompatibility complex (MHC) could be used to model a Class II MHC. The crystal structure of HLA-aw68 served as a reference molecule to model HLA-DR1. The resulting model was compared to the recently released crystal structure by Brown et al. (Nature, Vol. 364, p. 33-39 (1993)). The overall tertiary structure motif (two alpha-helices and a beta-sheet forming a peptide binding cleft) was maintained. However, significant deviations in the secondary structure elements were found between the model and the DR1 crystal structure. These deviations were consistent with the differences between Class I and Class II crystal structures. In regions where the model and DR1 crystals structures are most similar, side chain orientations are also similar. Specific peptide-MHC interactions are discussed and compared with the crystal structure results. PMID:7669268

  5. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure

    PubMed Central

    Yang, Darren; Boyer, Benjamin; Prévost, Chantal; Danilowicz, Claudia; Prentiss, Mara

    2015-01-01

    RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results. PMID:26384422

  6. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure.

    PubMed

    Yang, Darren; Boyer, Benjamin; Prévost, Chantal; Danilowicz, Claudia; Prentiss, Mara

    2015-12-01

    RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results. PMID:26384422

  7. Development and Applications of the Lectin Microarray.

    PubMed

    Hirabayashi, Jun; Kuno, Atsushi; Tateno, Hiroaki

    2015-01-01

    The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed. PMID:25821171

  8. A mushroom lectin from ascomycete Cordyceps militaris.

    PubMed

    Jung, Eui Cha; Kim, Ki Don; Bae, Chan Hyung; Kim, Ju Cheol; Kim, Dae Kyong; Kim, Ha Hyung

    2007-05-01

    A mushroom lectin has been purified from ascomycete Cordyceps militaris, which is one of the most popular mushrooms in eastern Asia used as a nutraceutical and in traditional Chinese medicine. This lectin, designated CML, exhibited hemagglutination activity in mouse and rat erythrocytes, but not in human ABO erythrocytes. SDS-PAGE of CML revealed a single band with a molecular mass of 31.0 kDa under both nonreducing and reducing conditions that was stained by silver nitrate, and a 31.4 kDa peak in a Superdex-200 HR gel-filtration column. The hemagglutination activity was inhibited by sialoglycoproteins, but not in by mono- or disaccharides, asialoglycoproteins, or de-O-acetylated glycoprotein. The activity was maximal at pH 6.0-9.1 and at temperatures below 50 degrees C. Circular dichroism spectrum analysis revealed that CML comprises 27% alpha-helix, 12% beta-sheets, 29% beta-turns, and 32% random coils. Its binding specificity and secondary structure are similar to those of a fungal lectin from Arthrobotrys oligospora. However, the N-terminal amino acid sequence of CML differs greatly from those of other lectins. CML exhibits mitogenic activity against mouse splenocytes. PMID:17306462

  9. Lectins stain cells differentially in the coral, Montipora capitata.

    PubMed

    Work, Thierry M; Farah, Yael

    2014-03-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis. PMID:24518620

  10. Lectins stain cells differentially in the coral, Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  11. Molecular structure and chromosomal mapping of the human homolog of the agouti gene

    SciTech Connect

    Kwon, H.Y.; Woychik, R.P.; Bultman, S.J. |; Loeffler, C.; Hansmann, I.; Chen, W.J.; Furdon, P.J.; Wilkison, W.; Powell, J.G.; Usala, A.L.

    1994-10-11

    The agouti (a) locus in mouse chromosome 2 normally regulates coat color pigmentation. The mouse agouti gene was recently cloned and shown to encode a distinctive 131-amino acid protein with a consensus signal peptide. Here the authors describe the cloning of the human homolog of the mouse agouti gene using an interspecies DNA-hybridization approach. Sequence analysis revealed that the coding region of the human agouti gene is 85% identical to the mouse gene and has the potential to encode a protein of 132 amino acids with a consensus signal peptide. Chromosomal assignment using somatic-cell-hybrid mapping panels and fluorescence in situ hybridization demonstrated that the human agouti gene maps to chromosome band 20q11.2. This result revealed that the human agouti gene is closely linked to several traits, including a locus called MODY (for maturity onset diabetes of the young) and another region that is associated with the development of myeloid leukemia. Initial expression studies with RNA from several adult human tissues showed that the human agouti gene is expressed in adipose tissue and testis.

  12. Structures of Homologous Composite Transposons Carrying cbaABC Genes from Europe and North America

    PubMed Central

    Di Gioia, Diana; Peel, Michelle; Fava, Fabio; Wyndham, R. Campbell

    1998-01-01

    IS1071 is a class II transposable element carrying a tnpA gene related to the transposase genes of the Tn3 family. Copies of IS1071 that are conserved with more than 99% nucleotide sequence identity have been found as direct repeats flanking a remarkable variety of catabolic gene sequences worldwide. The sequences of chlorobenzoate catabolic transposons found on pBRC60 (Tn5271) in Niagara Falls, N.Y., and on pCPE3 in Bologna, Italy, show that these transposons were formed from highly homologous IS1071 and cbaABC components (levels of identity, >99.5 and >99.3%, respectively). Nevertheless, the junction sequences between the IS1071L and IS1071R elements and the internal DNA differ by 41 and 927 bp, respectively, suggesting that these transposons were assembled independently on the two plasmids. The formation of the right junction in both transposons truncated an open reading frame for a putative aryl-coenzyme A ligase with sequence similarity to benzoate- and p-hydroxybenzoate-coenzyme A ligases of Rhodopseudomonas palustris. PMID:9572977

  13. Protein Alpha Shape (PAS) Dock: a new gaussian-based score function suitable for docking in homology modelled protein structures.

    PubMed

    Tøndel, Kristin; Anderssen, Endre; Drabløs, Finn

    2006-03-01

    Protein Alpha Shape (PAS) Dock is a new empirical score function suitable for virtual library screening using homology modelled protein structures. Here, the score function is used in combination with the geometry search method Tabu search. A description of the protein binding site is generated using gaussian property fields like in Protein Alpha Shape Similarity Analysis (PASSA). Gaussian property fields are also used to describe the ligand properties. The overlap between the receptor and ligand hydrophilicity and lipophilicity fields is maximised, while minimising steric clashes. Gaussian functions introduce a smoothing of the property fields. This makes the score function robust against small structural variations, and therefore suitable for use with homology models. This also makes it less critical to include protein flexibility in the docking calculations. We use a fast and simplified version of the score function in the geometry search, while a more detailed version is used for the final prediction of the binding free energies. This use of a two-level scoring makes PAS-Dock computationally efficient, and well suited for virtual screening. The PAS-Dock score function is trained on 218 X-ray structures of protein- ligand complexes with experimental binding affinities. The performance of PAS-Dock is compared to two other docking methods, AutoDock and MOE-Dock, with respect to both accuracy and computational efficiency. According to this study, PAS-Dock is more computationally efficient than both AutoDock and MOE-Dock, and gives a better prediction of the free energies of binding. PAS-Dock is also more robust against structural variations than AutoDock. PMID:16652207

  14. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA

    PubMed Central

    Dong, Aiping; Yoder, Jeffrey A.; Zhang, Xing; Zhou, Lan; Bestor, Timothy H.; Cheng, Xiaodong

    2001-01-01

    DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m5C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m5C MTases, including the consensus S-adenosyl-l-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-l-homocysteine (AdoHcy) has been determined at 1.8 Å resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HhaI, a confirmed bacterial m5C MTase, and the smaller target recognition domains of DNMT2 and M.HhaI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HhaI. DNMT2 binds AdoHcy in the same conformation as confirmed m5C MTases and, while DNMT2 shares all sequence and structural features with m5C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif. PMID:11139614

  15. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis.

    PubMed

    Léger, Psylvia; Tetard, Marilou; Youness, Berthe; Cordes, Nicole; Rouxel, Ronan N; Flamand, Marie; Lozach, Pierre-Yves

    2016-06-01

    Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment. PMID:26990254

  16. Insights into the structure and inhibition of Giardia intestinalis arginine deiminase: homology modeling, docking, and molecular dynamics studies.

    PubMed

    Trejo-Soto, Pedro Josué; Aguayo-Ortiz, Rodrigo; Yépez-Mulia, Lilián; Hernández-Campos, Alicia; Medina-Franco, José Luis; Castillo, Rafael

    2016-04-01

    Giardia intestinalis arginine deiminase (GiADI) is an important metabolic enzyme involved in the energy production and defense of this protozoan parasite. The lack of this enzyme in the human host makes GiADI an attractive target for drug design against G. intestinalis. One approach in the design of inhibitors of GiADI could be computer-assisted studies of its crystal structure, such as docking; however, the required crystallographic structure of the enzyme still remains unresolved. Because of its relevance, in this work, we present a three-dimensional structure of GiADI obtained from its amino acid sequence using the homology modeling approximation. Furthermore, we present an approximation of the most stable dimeric structure of GiADI identified through molecular dynamics simulation studies. An in silico analysis of druggability using the structure of GiADI was carried out in order to know if it is a good target for design and optimization of selective inhibitors. Potential GiADI inhibitors were identified by docking of a set of 3196 commercial and 19 in-house benzimidazole derivatives, and molecular dynamics simulation studies were used to evaluate the stability of the ligand-enzyme complexes. PMID:26017138

  17. Structural homology between different archaebacterial DNA-dependent RNA polymerases analyzed by immunological comparison of their components

    PubMed Central

    Schnabel, Ralf; Thomm, Michael; Gerardy-Schahn, Rita; Zillig, Wolfram; Stetter, Karl Otto; Huet, Janine

    1983-01-01

    The archaebacterial DNA-dependent RNA polymerases have a complex structure containing eight or more components. Immunochemical analysis shows an extensive homology between the components of the enzymes of nine different species. Two enzyme subtypes can be distinguished: that of the thermoacidophilic and/or sulfur-metabolizing archaebacteria with the composition BACDEFGHIJ and that of the methanogenic plus halophilic archaebacteria with the composition ABB'C(D).... Components B and B' of the latter subtype probably evolved by the division of the large component B of the BACD... type enzyme. The existence of the two subtypes corroborates the division of the archaebacteria into two phylogenetic main branches. ImagesFig. 1.Fig. 1.Fig. 2.Fig. 3. PMID:16453454

  18. Toxicity and binding profile of lectins from the Genus canavalia on brine shrimp.

    PubMed

    Arruda, Francisco Vassiliepe Sousa; Melo, Arthur Alves; Vasconcelos, Mayron Alves; Carneiro, Romulo Farias; Barroso-Neto, Ito Liberato; Silva, Suzete Roberta; Pereira-Junior, Francisco Nascimento; Nagano, Celso Shiniti; Nascimento, Kyria Santiago; Teixeira, Edson Holanda; Saker-Sampaio, Silvana; Sousa Cavada, Benildo; Sampaio, Alexandre Holanda

    2013-01-01

    Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species of Canavalia genus. In order to determine the toxicity, assays with Artemia nauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins to Artemia nauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract of Artemia nauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins. PMID:24380079

  19. Toxicity and Binding Profile of Lectins from the Genus Canavalia on Brine Shrimp

    PubMed Central

    Arruda, Francisco Vassiliepe Sousa; Melo, Arthur Alves; Vasconcelos, Mayron Alves; Carneiro, Romulo Farias; Barroso-Neto, Ito Liberato; Silva, Suzete Roberta; Pereira-Junior, Francisco Nascimento; Nagano, Celso Shiniti; Nascimento, Kyria Santiago; Teixeira, Edson Holanda; Saker-Sampaio, Silvana; Sousa Cavada, Benildo; Sampaio, Alexandre Holanda

    2013-01-01

    Lectins are sugar-binding proteins widely distributed in nature with many biological functions. Although many lectins have a remarkable biotechnological potential, some of them can be cytotoxic. Thus, the aim of this study was to assess the toxicity of five lectins, purified from seeds of different species of Canavalia genus. In order to determine the toxicity, assays with Artemia nauplii were performed. In addition, a fluorescence assay was carried out to evaluate the binding of lectins to Artemia nauplii. In order to verify the relationship between the structure of lectins and their cytotoxic effect, structural analysis was carried out to evaluate the volume of the carbohydrate recognition domain (CRD) of each lectin. The results showed that all lectins exhibited different toxicities and bound to a similar area in the digestive tract of Artemia nauplii. Concerning the structural analysis, differences in spatial arrangement and volume of CRD may explain the variation of the toxicity exhibited by each lectin. To this date, this is the first study that establishes a link between toxicity and structure of CRD from Diocleinae lectins. PMID:24380079

  20. Structure and Protein-Protein Interaction Studies on Chlamydia trachomatis Protein CT670 (YscO Homolog)

    SciTech Connect

    Lorenzini, Emily; Singer, Alexander; Singh, Bhag; Lam, Robert; Skarina, Tatiana; Chirgadze, Nickolay Y.; Savchenko, Alexei; Gupta, Radhey S.

    2010-07-28

    Comparative genomic studies have identified many proteins that are found only in various Chlamydiae species and exhibit no significant sequence similarity to any protein in organisms that do not belong to this group. The CT670 protein of Chlamydia trachomatis is one of the proteins whose genes are in one of the type III secretion gene clusters but whose cellular functions are not known. CT670 shares several characteristics with the YscO protein of Yersinia pestis, including the neighboring genes, size, charge, and secondary structure, but the structures and/or functions of these proteins remain to be determined. Although a BLAST search with CT670 did not identify YscO as a related protein, our analysis indicated that these two proteins exhibit significant sequence similarity. In this paper, we report that the CT670 crystal, solved at a resolution of 2 {angstrom}, consists of a single coiled coil containing just two long helices. Gel filtration and analytical ultracentrifugation studies showed that in solution CT670 exists in both monomeric and dimeric forms and that the monomer predominates at lower protein concentrations. We examined the interaction of CT670 with many type III secretion system-related proteins (viz., CT091, CT665, CT666, CT667, CT668, CT669, CT671, CT672, and CT673) by performing bacterial two-hybrid assays. In these experiments, CT670 was found to interact only with the CT671 protein (YscP homolog), whose gene is immediately downstream of ct670. A specific interaction between CT670 and CT671 was also observed when affinity chromatography pull-down experiments were performed. These results suggest that CT670 and CT671 are putative homologs of the YcoO and YscP proteins, respectively, and that they likely form a chaperone-effector pair.

  1. Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-09-01

    Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. PMID:22676903

  2. Fine carbohydrate recognition of Euphorbia milii lectin.

    PubMed

    Irazoqui, Fernando J; Vozari-Hampe, Magdolna M; Lardone, Ricardo D; Villarreal, Marcos A; Sendra, Victor G; Montich, Guillermo G; Trindade, Vera M; Clausen, Henrik; Nores, Gustavo A

    2005-10-14

    Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML). Competitive assays using various sugars showed that GalNAc was the strongest inhibitor, and that the hydroxyl axial position of C4 and acetamido on C2 of GalNAc are critical points of EML recognition. A hydrophobic locus adjacent to GalNAc is also an important region for EML binding. Direct binding assays of EML revealed a stereochemical requirement for a structure adjacent to terminal GalNAc, showing that GalNAc residue is a necessary but not sufficient condition for EML interaction. The capacity of EML to bind epithelial tumor cells makes it a potentially useful tool for study of some over-expressed GalNAc glycoconjugates. PMID:16122701

  3. Homology, homoplasy, novelty, and behavior.

    PubMed

    Hall, Brian K

    2013-01-01

    Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous). PMID:22711423

  4. Structure of the Afferent Terminals in Terminal Ganglion of a Cricket and Persistent Homology

    PubMed Central

    Brown, Jacob; Gedeon, Tomáš

    2012-01-01

    We use topological data analysis to investigate the three dimensional spatial structure of the locus of afferent neuron terminals in crickets Acheta domesticus. Each afferent neuron innervates a filiform hair positioned on a cercus: a protruding appendage at the rear of the animal. The hairs transduce air motion to the neuron signal that is used by a cricket to respond to the environment. We stratify the hairs (and the corresponding afferent terminals) into classes depending on hair length, along with position. Our analysis uncovers significant structure in the relative position of these terminal classes and suggests the functional relevance of this structure. Our method is very robust to the presence of significant experimental and developmental noise. It can be used to analyze a wide range of other point cloud data sets. PMID:22649516

  5. The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles.

    PubMed

    Lee, Albert; Nakano, Miyako; Hincapie, Marina; Kolarich, Daniel; Baker, Mark S; Hancock, William S; Packer, Nicolle H

    2010-08-01

    One common method used for analyzing the glycoproteome is chromatography using multiple lectins that display different affinities toward oligosaccharide structures. Much has been done to determine lectin affinity using standard glycoproteins with known glycosylation; however, a knowledge of the selectivity and specificity of lectins exposed to complex mixtures of proteins is required if they are to be used as a means of studying the glycoproteome. In the present study, three lectins (Concanavalin A, Jacalin, and Wheat Germ Agglutinin) were used to fractionate glycoproteins from two different complex environments: (1) cell membranes and (2) plasma. Reproducible enrichment of glycoproteins from these samples has been shown to result from the combined use of these lectins. However, the global glycan profiles of the released N- and O-linked oligosaccharides from the glycoproteins retained by the lectins, and from those glycoproteins that did not bind, using both these complex samples, were found to be very similar. That is, although the lectins selectively and reproducibly retained some glycoproteins, other proteins with the same attached oligosaccharide structures did not bind. Some small N- and O-glycan differences were observed in the bound fractions but there was little absolute specificity toward individual oligosaccharide structures known to have high affinity to these lectins. These data indicate that lectins are useful for fractionating glycoproteins from complex mixtures, but that the overall glycoproteome is not isolated by this approach. PMID:20726804

  6. Lectin histochemistry of normal and neoplastic peripheral nerve sheath. 1. Lectin binding pattern of normal peripheral nerve in man.

    PubMed

    Matsumura, K; Nakasu, S; Nioka, H; Handa, J

    1993-01-01

    The binding patterns of lectins to normal peripheral nerves were examined. Twelve biotinylated lectins were used in this study; Canavalia ensiformis (Con A), Pisum sativum (PSA), Lens culinaris (LCA), Ricinus communis 1 (RCA-1), Arachis hypogaea (PNA), Glycine max (SBA), Sophora japonica (SJA), Bandeiraea simplicifolia 1 (BSL-1), Triticum vulgaris (WGA), succinylated WGA (s-WGA), Ulex europaeus 1 (UEA-1) and Helix pomatia (HPA). Cytoplasm of Schwann cells and perineurial cells was stained by Con A, PSA, LCA, s-WGA and WGA. PNA showed specific binding to perineurial cells, while after neuraminidase treatment stain with this lectin was demonstrated also in Schwann cells. Myelin sheaths were stained with fewer lectins. SBA and HPA with sialic acid removal rarely showed reactivity to the peripheral nerve structure in surgical specimens, in contrast to clear staining of Schwann cells, perineurial cells and myelin sheaths in autopsy specimens. The present study shows distinct lectin stainings of specific structures of the normal human peripheral nerves, and provides important basic information on the alterations of lectin binding patterns during pathological processes in the peripheral nerves. PMID:8310810

  7. Electronic Detection of Lectins Using Carbohydrate Functionalized Nanostructures: Graphene versus Carbon Nanotubes

    PubMed Central

    Chen, Yanan; Vedala, Harindra; Kotchey, Gregg P.; Audfray, Aymeric; Cecioni, Samy; Imberty, Anne; Vidal, Sébastien; Star, Alexander

    2012-01-01

    Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 µM of nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL and ConA) and three carbohydrate epitopes (galactose, fucose and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugates surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (Kd) and compare them to the values obtained from the isothermal titration microcalorimetry (ITC) technique. PMID:22136380

  8. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III

    SciTech Connect

    Hlouchova, Klara; Barinka, Cyril; Konvalinka, Jan; Lubkowski, Jacek

    2009-10-23

    Glutamate carboxypeptidase III (GCPIII) is a metalloenzyme that belongs to the transferrin receptor/glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) superfamily. GCPIII has been studied mainly because of its evolutionary relationship to GCPII, an enzyme involved in a variety of neuropathologies and malignancies, such as glutamatergic neurotoxicity and prostate cancer. Given the potential functional and pharmacological overlap between GCPIII and GCPII, studies addressing the structural and physiological properties of GCPIII are crucial for obtaining a deeper understanding of the GCPII/GCPIII system. In the present study, we report high-resolution crystal structures of the human GCPIII ectodomain in a 'pseudo-unliganded' state and in a complex with: (a) L-glutamate (a product of hydrolysis); (b) a phosphapeptide transition state mimetic, namely (2S,3'S)-{l_brace}[(3'-amino-3'-carboxy-propyl)-hydroxyphosphinoyl]methyl{r_brace}-pentanedioic acid; and (c) quisqualic acid, a glutamate biostere. Our data reveal the overall fold and quaternary arrangement of the GCPIII molecule, define the architecture of the GCPIII substrate-binding cavity, and offer an experimental evidence for the presence of Zn{sup 2+} ions in the bimetallic active site. Furthermore, the structures allow us to detail interactions between the enzyme and its ligands and to characterize the functional flexibility of GCPIII, which is essential for substrate recognition. A comparison of these GCPIII structures with the equivalent GCPII complexes reveals differences in the organization of specificity pockets, in surface charge distribution, and in the occupancy of the co-catalytic zinc sites. The data presented here provide information that should prove to be essential for the structurally-aided design of GCPIII-specific inhibitors and might comprise guidelines for future comparative GCPII/GCPIII studies.

  9. Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.).

    PubMed

    Moon, Yea Kyung; Hong, Jong-Pil; Cho, Young-Chan; Yang, Sae-Jun; An, Gynheung; Kim, Woo Taek

    2009-11-30

    Although the possible cellular roles of several ubiquitin-specific proteases (UBPs) were identified in Arabidopsis, almost nothing is known about UBP homologs in rice, a monocot model plant. In this report, we searched the rice genome database ( http://signal.salk.edu/cgi-bin/RiceGE ) and identified 21 putative UBP family members (OsUBPs) in the rice genome. These OsUBP genes each contain a ubiquitin carboxyl-terminal hydrolase (UCH) domain with highly conserved Cys and His boxes and were subdivided into 9 groups based on their sequence identities and domain structures. RT-PCR analysis indicated that rice OsUBP genes are expressed at varying degrees in different rice tissues. We isolated a full-length cDNA clone for OsUBP6, which possesses not only a UCH domain, but also an N-terminal ubiquitin motif. Bacterially expressed OsUBP6 was capable of dismantling K48-linked tetraubiquitin chains in vitro. Quantitative real-time RT-PCR indicated that OsUBP6 is constitutively expressed in different tissues of rice plants. An in vivo targeting experiment showed that OsUBP6 is predominantly localized to the nucleus in onion epidermal cells. We also examined how knock-out of OsUBP6 affects developmental growth of rice plants. Although homozygous T3 osubp6 T-DNA insertion mutant seedlings displayed slower growth relative to wild type seedlings, mature mutant plants appeared to be normal. These results raise the possibility that loss of OsUBP6 is functionally compensated for by an as-yet unknown OsUBP homolog during later stages of development in rice plants. PMID:19855938

  10. Linear IgE-epitope mapping and comparative structural homology modeling of hazelnut and English walnut 11S globulins.

    PubMed

    Robotham, Jason M; Hoffman, Gregg G; Teuber, Suzanne S; Beyer, Kirsten; Sampson, Hugh A; Sathe, Shridhar K; Roux, Kenneth H

    2009-09-01

    Allergic reactions to walnuts and hazelnuts can be serious. The 11S globulins (legumins) have been identified as important allergens in these and other nuts and seeds. Here we identify the linear IgE-binding epitopes of walnut and hazelnut 11S globulins, and generate 3D 11S globulin models to map the locations of the epitopes for comparison to other allergenic homologues. Linear IgE-epitope mapping was performed by solid-phase overlapping 15-amino acid peptides probed with IgE from pooled allergic human sera. Several walnut (Jug r 4) and hazelnut (Cor a 9) 11S globulin peptides with reactivity to patient IgE were identified. Comparative alignment with cashew (Ana o 2), peanut (Ara h 3), and soybean G1 (Gly m 6.0101) and G2 (Gly m 6.0201) allergenic homologues revealed several shared allergenic 'hot spots'. Homology modeling was performed based on the atomic structure of the soybean glycinin. Surface map comparisons between the tree nut and peanut homologues revealed structural motifs that could be important for IgE elicitation and binding and show that, contrary to predictions, the reactive epitopes are widely distributed throughout the monomeric subunits, both internally and externally, including regions occluded by quaternary subunit association. These findings reveal structural features that may be important to allergenicity and cross-reactivity of this protein class. PMID:19631385

  11. Structure of Sla1p homology domain 1 and interaction with the NPFxD endocytic internalization motif

    PubMed Central

    Mahadev, Ravi K; Di Pietro, Santiago M; Olson, John M; Piao, Hai Lan; Payne, Gregory S; Overduin, Michael

    2007-01-01

    Adaptor proteins play important endocytic roles including recognition of internalization signals in transmembrane cargo. Sla1p serves as the adaptor for uptake of transmembrane proteins containing the NPFxD internalization signal, and is essential for normal functioning of the actin cytoskeleton during endocytosis. The Sla1p homology domain 1 (SHD1) within Sla1p is responsible for recognition of the NPFxD signal. This study presents the NMR structure of the NPFxD-bound state of SHD1 and a model for the protein–ligand complex. The α+β structure of the protein reveals an SH3-like topology with a solvent-exposed hydrophobic ligand binding site. NMR chemical shift perturbations and effects of structure-based mutations on ligand binding in vitro define residues that are key for NPFxD binding. Mutations that abolish ligand recognition in vitro also abolish NPFxD-mediated receptor internalization in vivo. Thus, SHD1 is a novel functional domain based on SH3-like topology, which employs a unique binding site to recognize the NPFxD endocytic internalization signal. Its distant relationship with the SH3 fold endows this superfamily with a new role in endocytosis. PMID:17363896

  12. Structural characterization of MepB from Staphylococcus aureus reveals homology to endonucleases

    PubMed Central

    Agah, Sayeh; Poulos, Sandra; Banchs, Christian; Faham, Salem

    2014-01-01

    The MepRAB operon in Staphylococcus aureus has been identified to play a role in drug resistance. Although the functions of MepA and MepR are known, little information is available on the function of MepB. Here we report the X-ray structure of MepB to 2.1 Å revealing its structural similarity to the PD-(D/E)XK family of endonucleases. We further show that MepB binds DNA and RNA, with a higher affinity towards RNA and single stranded DNA than towards double stranded DNA. Notably, the PD-(D/E)XK catalytic active site residues are not conserved in MepB. MepB's association with a drug resistance operon suggests that it plays a role in responding to antimicrobials. This role is likely carried out through MepB's interactions with nucleic acids. PMID:24501097

  13. Stability data of FlgD from Helicobacter pylori and structural comparison with other homologs

    PubMed Central

    Pulić, Ivana; Cendron, Laura; Salamina, Marco; Polverino de Laureto, Patrizia; Matković-Čalogović, Dubravka; Zanotti, Giuseppe

    2016-01-01

    Flagellin component D (FlgD) from Helicobacter pylori is involved in the assembly of the hook of flagella, helical tubular structures that provide motility in non-filamentous bacteria. Data provided in this article refer to HpFlgD from strains 26695 (HpFlgD_26695) and G27 (HpFlgD_G27). Within this article, information on the secondary structure content and different type of interfaces found in the two crystal forms of HpFlgD (monoclinic, HpFlgD_m and tetragonal, HpFlgD_t) are provided, as well as the list of the hydrogen bonds between monomers that are relevant for their assembly into a tetramer. Additionally, data involving investigation of the size of HpFlgD in the solution and the crystallized HpFlgD are presented, “Crystal structure of truncated FlgD from the human pathogen Helicobacter pylori” [1]. The superposition of the different domains of HpFlgD (Fn-III and tudor domains) with the similar domains found in other species is shown, as well as the superposition of HpFlgD and modeled HpFlgE (flagellar hook protein). PMID:27014738

  14. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization.

    PubMed

    Tomar, Jyoti Singh; Peddinti, Rama Krishna

    2016-07-01

    The DNA glycosylases cleave CN glycosyl bond to release a free base and generate abasic sites concurrently. Function and structure of these enzymes in the pathogenic bacterium Acinetobacter baumannii and its closely related species are not well characterized. Inhibition of TAG enzyme is a promising drug design strategy against A. baumannii. Here optimized molecular modeling approaches were used to provide a structural scaffold of TAG. The recombinant TAG protein was expressed and purified to determine oligomeric state using size exclusion chromatography, which showed the existence of TAG protein as monomer (mwt ∼21kDa). Secondary structure and substrate binding were analyzed using CD are in good agreement with the in silico predictions. Near UV-CD spectrum shows the involvement of Tyr residues in substrate recognition. Molecular docking studies were performed to understand the molecular recognition interactions and this knowledge was used to identify the potent inhibitors using virtual screening. Residues crucial for DNA holding and enzyme catalysis are reconfirmed by the in silico mutational studies. PMID:27017978

  15. Stability data of FlgD from Helicobacter pylori and structural comparison with other homologs.

    PubMed

    Pulić, Ivana; Cendron, Laura; Salamina, Marco; Polverino de Laureto, Patrizia; Matković-Čalogović, Dubravka; Zanotti, Giuseppe

    2016-06-01

    Flagellin component D (FlgD) from Helicobacter pylori is involved in the assembly of the hook of flagella, helical tubular structures that provide motility in non-filamentous bacteria. Data provided in this article refer to HpFlgD from strains 26695 (HpFlgD_26695) and G27 (HpFlgD_G27). Within this article, information on the secondary structure content and different type of interfaces found in the two crystal forms of HpFlgD (monoclinic, HpFlgD_m and tetragonal, HpFlgD_t) are provided, as well as the list of the hydrogen bonds between monomers that are relevant for their assembly into a tetramer. Additionally, data involving investigation of the size of HpFlgD in the solution and the crystallized HpFlgD are presented, "Crystal structure of truncated FlgD from the human pathogen Helicobacter pylori" [1]. The superposition of the different domains of HpFlgD (Fn-III and tudor domains) with the similar domains found in other species is shown, as well as the superposition of HpFlgD and modeled HpFlgE (flagellar hook protein). PMID:27014738

  16. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.

    PubMed

    Maheshwari, Surabhi; Brylinski, Michal

    2015-01-01

    The identification of protein-protein interactions is vital for understanding protein function, elucidating interaction mechanisms, and for practical applications in drug discovery. With the exponentially growing protein sequence data, fully automated computational methods that predict interactions between proteins are becoming essential components of system-level function inference. A thorough analysis of protein complex structures demonstrated that binding site locations as well as the interfacial geometry are highly conserved across evolutionarily related proteins. Because the conformational space of protein-protein interactions is highly covered by experimental structures, sensitive protein threading techniques can be used to identify suitable templates for the accurate prediction of interfacial residues. Toward this goal, we developed eFindSite(PPI) , an algorithm that uses the three-dimensional structure of a target protein, evolutionarily remotely related templates and machine learning techniques to predict binding residues. Using crystal structures, the average sensitivity (specificity) of eFindSite(PPI) in interfacial residue prediction is 0.46 (0.92). For weakly homologous protein models, these values only slightly decrease to 0.40-0.43 (0.91-0.92) demonstrating that eFindSite(PPI) performs well not only using experimental data but also tolerates structural imperfections in computer-generated structures. In addition, eFindSite(PPI) detects specific molecular interactions at the interface; for instance, it correctly predicts approximately one half of hydrogen bonds and aromatic interactions, as well as one third of salt bridges and hydrophobic contacts. Comparative benchmarks against several dimer datasets show that eFindSite(PPI) outperforms other methods for protein-binding residue prediction. It also features a carefully tuned confidence estimation system, which is particularly useful in large-scale applications using raw genomic data. eFindSite(PPI) is

  17. Antifungal activity of lectins against yeast of vaginal secretion

    PubMed Central

    Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

    2012-01-01

    Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256μg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

  18. Isolation and analysis of mannose/trehalose/maltose specific lectin from jack bean with antibruchid activity.

    PubMed

    Shanmugavel, Sakthivelkumar; Velayutham, Veeramani; Kamalanathan, Tamilarasan; Periasamy, Mullainadhan; Munusamy, Arumugam; Sundaram, Janarthanan

    2016-10-01

    A lectin with insecticidal property against the stored product pest, Callosobruchus maculatus was successfully isolated from the seeds of Canavalia virosa using standard affinity chromatography. The isolated molecule typically behaved like a lectin in its characteristics. It agglutinated indicator red blood cells (RBC) in its native as well as enzyme treated conditions. The enzyme treated RBC types exhibited a very high hemagglutination (HA) titre values and this property of isolated molecule behaved like arcelin, the lectin-like molecules reported from several species of Phaseolus. As a characteristic feature of a lectin, the isolated molecule effectively inhibited the agglutination of indicator RBC types with simple and complex carbohydrates including glycoproteins. This nature of the isolated molecule also relate with characteristic feature of arcelin isoforms in inhibiting HA activity with complex glycoproteins as reported in many studies. Most interestingly, the present study disclosed trehalose as a potent inhibitor of C. virosa lectin. Therefore, feeding insect pests on the lectin like arcelin could serve as antibiosis factor/anti-insect activity. The molecular characteristics of this isolated molecule and its mass studies too revealed its homology with arcelin, arcelin-1, 2 and 6 isoforms of P. vulgaris and lectin from Canavalia cathartica, C. lineata and C. brasiliensis. PMID:27238584

  19. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  20. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  1. First-principles study of homologous series of layered Bi-Sb-Te-Se and Sn-O structures

    NASA Astrophysics Data System (ADS)

    Govaerts, Kirsten

    In the first part of the thesis, we present a systematic study of the stable layered structures at T = 0 K for the Bi-Sb-Te-Se system by means of a combination of the Cluster Expansion (CE) method and first-principles electronic structure calculations. In order to account for the existence of long-periodic layered structures and the strong structural relaxations we have developed a one-dimensional CE with occupation variables explicitly accounting for the fact that Bi or Sb atoms are part of an even or odd number of layers. For the binary systems A1-xQx (A = Sb, Bi; Q = Te, Se) the resulting (meta)stable structures are the homologous series (A2) n(A2Q3)m built up from successive bilayers A 2 and quintuple units A2Q3. The Bi1-xSb x system is found to be an almost ideal solution. The CE for the ternary Bi-Sb-Te system not only reproduces the binary stable structures but also finds stable ternary layered compounds with an arbitrary stacking of Sb 2Te3, Bi2Te3 and Te-Bi-Te-Sb-Te quintuple units, optionally separated by mixed Bi/Sb bilayers. We also investigate the electronic properties of the newly found ground state structures, and in particular the effect of Bi bilayers on the electronic structure of the topological insulator Bi2Se3. Due to the charge transfer from the Bi bilayers to the quintuple layers, the top- and bottom-surface Dirac cones shift down in energy. Also the Rashba-split conduction band states shift down, resulting in a new Dirac cone. The bands of the additional Bi bilayer are just ordinary Rashba-split states originating from the dipole built up by the charge transfer. These results offer new insight in experimental results, where cones are not always correctly identified. In a second part of the thesis, we investigate the Sn-O system. First we show that a combination of current van der Waals-corrected functionals and many-body calculations within the GW approximation provide accurate values for both structural and electronic properties of Sn

  2. Crystal structure of a γδ T-cell receptor specific for the human MHC class I homolog MICA

    PubMed Central

    Xu, Bin; Pizarro, Juan C.; Holmes, Margaret A.; McBeth, Christine; Groh, Veronika; Spies, Thomas; Strong, Roland K.

    2011-01-01

    γδ T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human γδ T cells of the Vδ1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive Vδ1 γδ T-cell receptor (TCR) showed expected overall structural homology to antibodies, αβ, and other γδ TCRs, but complementary determining region conformations and conservation of Vδ1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on γδ T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of γδ T-cell/target cell interfaces. PMID:21262824

  3. Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain

    PubMed Central

    Shimada, Atsushi; Yamaguchi, Atsuko; Kohda, Daisuke

    2016-01-01

    FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding. PMID:26822536

  4. Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain

    NASA Astrophysics Data System (ADS)

    Shimada, Atsushi; Yamaguchi, Atsuko; Kohda, Daisuke

    2016-01-01

    FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.

  5. Crystal structure of a Gammadelta T-cell Receptor Specific for the Human MHC class I Homolog MICA

    SciTech Connect

    B Xu; J Pizarro; M Holmes; C McBeth; V Groh; T Spies; R Strong

    2011-12-31

    {gamma}{delta} T cells play important roles in bridging innate and adaptive immunity, but their recognition mechanisms remain poorly understood. Human {gamma}{delta} T cells of the V{sub {delta}}1 subset predominate in intestinal epithelia and respond to MICA and MICB (MHC class I chain-related, A and B; MIC) self-antigens, mediating responses to tumorigenesis or viral infection. The crystal structure of an MIC-reactive V{sub {delta}}1 {gamma}{delta} T-cell receptor (TCR) showed expected overall structural homology to antibodies, {alpha}{beta}, and other {gamma}{delta} TCRs, but complementary determining region conformations and conservation of V{sub {delta}}1 use revealed an uncharacteristically flat potential binding surface. MIC, likewise, serves as a ligand for the activating immunoreceptor natural killer group 2, D (NKG2D), also expressed on {gamma}{delta} T cells. Although MIC recognition drives both the TCR-dependent stimulatory and NKG2D-dependent costimulatory signals necessary for activation, interaction analyses showed that MIC binding by the two receptors was mutually exclusive. Analysis of relative binding kinetics suggested sequential recognition, defining constraints for the temporal organization of {gamma}{delta} T-cell/target cell interfaces.

  6. The NMDA Receptor NR1 C1 Region Bound to Calmodulin: Structural Insights into Functional Differences between Homologous Domains

    SciTech Connect

    Ataman, Zeynep Akyol; Gakhar, Lokesh; Sorensen, Brenda R.; Hell, Johannes W.; Shea, Madeline A.

    2008-09-17

    Calmodulin (CaM) regulates tetrameric N-methyl-D-aspartate receptors (NMDARs) by binding tightly to the C0 and C1 regions of its NR1 subunit. A crystal structure (2HQW; 1.96 {angstrom}) of calcium-saturated CaM bound to NR1C1 (peptide spanning 875-898) showed that NR1 S890, whose phosphorylation regulates membrane localization, was solvent protected, whereas the endoplasmic reticulum retention motif was solvent exposed. NR1 F880 filled the CaM C-domain pocket, whereas T886 was closest to the N-domain pocket. This 1-7 pattern was most similar to that in the CaM-MARCKS complex. Comparison of CaM-ligand wrap-around conformations identified a core tetrad of CaM C-domain residues (FLMM{sub C}) that contacted all ligands consistently. An identical tetrad of N-domain residues (FLMM{sub N}) made variable sets of contacts with ligands. This CaM-NR1C1 structure provides a foundation for designing mutants to test the role of CaM in NR1 trafficking as well as insights into how the homologous CaM domains have different roles in molecular recognition.

  7. Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data

    PubMed Central

    Grishaev, Alexander; Ying, Jinfa; Canny, Marella D.; Pardi, Arthur; Bax, Ad

    2008-01-01

    A procedure is presented for refinement of a homology model of E.Coli tRNAVal, originally based on the X-ray structure of yeast tRNAPhe, using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N-HN RDCs measured with Pf1 phage alignment, and 20 imino N-HN RDCs obtained from magnetic field dependent alignment of tRNAVal. The refinement strategy aims to largely retain the local geometry of the 58% identical tRNAPhe by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Qfree = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNAPhe, in agreement with previous NMR-based tRNAVal models. PMID:18787959

  8. Functional Recombinants Designed from a Fetuin/Asialofetuin-Specific Marine Algal Lectin, Rhodobindin

    PubMed Central

    Han, Jong Won; Jung, Min Gui; Shim, Eun Young; Shim, Jun Bo; Kim, Young Min; Kim, Gwang Hoon

    2015-01-01

    Plant lectins have attracted much attention for biomedical applications including targeted drug delivery system and therapy against tumors and microbial infections. The main problem of using lectins as a biomedical tool is a batch-to-batch variation in isoforms content. The production of lectins using recombination tools has the advantage of obtaining high amounts of proteins with more precise properties, but there are only a handful of functional recombinant lectins presently available. A fetuin/asialo-fetuin specific lectin, Rhodobindin, has unique tandem repeats structure which makes it useful in exploiting for recombinant lectin. We developed three functional recombinant lectins using E. coli expression system: one from full cDNA sequence and two from fragmentary sequences of Rhodobindin. Hemagglutinating activity and solubility of the recombinant lectins were highest at OD 0.7 cell concentration at 20 °C. The optimized process developed in this study was suitable for the quality-controlled production of high amounts of soluble recombinant lectins. PMID:25871294

  9. New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level.

    PubMed

    Nigou, J; Vercellone, A; Puzo, G

    2000-06-23

    Lipoarabinomannans are key molecules of the mycobacterial envelopes involved in many steps of tuberculosis immunopathogenesis. Several of the biological activities of lipoarabinomannans are mediated by their ability to bind human C-type lectins, such as the macrophage mannose receptor, the mannose-binding protein and the surfactant proteins A and D. The lipoarabinomannan mannooligosaccharide caps have been demonstrated to be involved in the binding to the lectin carbohydrate recognition domains. We report an original analytical approach, based on capillary electrophoresis monitored by laser-induced fluorescence, allowing the absolute quantification, in nanomole quantities of lipoarabinomannan, of the number of mannooligosaccharide units per lipoarabinomannan molecule. Moreover, this analytical approach was successful for the glycosidic linkage determination of the mannooligosaccharide motifs and has been applied to the comparative analysis of parietal and cellular lipoarabinomannans of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv, H37Ra and Erdman strains. Significant differences were observed in the amounts of the various mannooligosaccharide units between lipoarabinomannans of different strains and between parietal and cellular lipoarabinomannans of the same strain. Nevertheless, no relationship was found between the number of mannooligosaccharide caps and the virulence of the corresponding strain. The results of the present study should help us to gain more understanding of the molecular basis of lipoarabinomannan discrimination in the process of binding to C-type lectins. PMID:10873458

  10. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies

    NASA Astrophysics Data System (ADS)

    Ohnishi, Koji

    1984-12-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen β and α chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both β and α) gene products, respectively, all of which being ˜90 residues long, were concluded to be homologous to β2-microglobulin (β2M). The membraneembedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II α chains than to class II β chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a β2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  11. Use of lectins in immunohematology

    PubMed Central

    Gorakshakar, Ajit C.; Ghosh, Kanjaksha

    2016-01-01

    Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review. PMID:27011665

  12. A review of fish lectins.

    PubMed

    Ng, Tzi Bun; Fai Cheung, Randy Chi; Wing Ng, Charlene Cheuk; Fang, Evandro Fei; Wong, Jack Ho

    2015-01-01

    Lectins have been reported from various tissues of a diversity of fish species including Japanese eel, conger eel, electric eel, bighead carp, gibel carp, grass carp, Arabian Gulf catfish, channel catfish, blue catfish, catfish, pike perch, perch, powan, zebrafish, toxic moray, cobia fish, steelhead trout, Japanese trout, Atlantic salmon, chinook salmon, olive rainbow smelt, rainbow smelt, white-spotted charr, tilapia, blue gourami, ayu, Potca fish, Spanish mackerel, gilt head bream, tench, roach, rudd, common skate, and sea lamprey. The tissues from which the lectins were isolated comprise gills, eggs, electric organ, stomach, intestine, and liver. Lectins have also been isolated from skin, mucus serum, and plasma. The lectins differ in molecular weight, number of subunits, glycosylation, sugar binding specificity and amino acid sequence. Their activities include antimicrobial, antitumor, immunoregulatory and a role in development. PMID:25929869

  13. Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein.

    PubMed

    Kiełbowicz-Matuk, Agnieszka; Banachowicz, Ewa; Turska-Tarska, Anna; Rey, Pascal; Rorat, Tadeusz

    2016-05-01

    Phosphatidylinositol transfer proteins (PITPs) include a large group of proteins implicated in the non-vesicular traffic of phosphatidylinositol (PI) between membranes. In yeast, the structure and function of the PITP Sec14-p protein have been well characterized. In contrast, the knowledge on plant PITP proteins is very scarce. In this work, we characterized a novel type of PITP protein in barley named HvSec14p and related to the yeast Sec14-p protein. Our data reveal that HvSec14p consists of only the Sec14p-domain structurally homologous to the yeast phosphoinositide binding domain. We show that HvSec14p expression is up-regulated at both transcript and protein levels at specific stages of development during seed formation and germination, and in leaves of a drought-tolerant barley genotype under osmotic constraints. Modeling analyses of the protein three-dimensional structure revealed its capacity to dock the phosphoinositides, PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2. Consistently, the recombinant HvSec14p protein is able to bind in vitro most PIP types, the highest affinity being observed with PtdIns(3,5)P2. Based on the high gene expression at specific developmental stages and in drought-tolerant barley genotypes, we propose that HvSec14p plays essential roles in the biogenesis of membranes in expanding cells and in their preservation under osmotic stress conditions. PMID:26993240

  14. Specificity analysis of lectins and antibodies using remodeled glycoproteins.

    PubMed

    Iskratsch, Thomas; Braun, Andreas; Paschinger, Katharina; Wilson, Iain B H

    2009-03-15

    Due to their ability to bind specifically to certain carbohydrate sequences, lectins are a frequently used tool in cytology, histology, and glycan analysis but also offer new options for drug targeting and drug delivery systems. For these and other potential applications, it is necessary to be certain as to the carbohydrate structures interacting with the lectin. Therefore, we used glycoproteins remodeled with glycosyltransferases and glycosidases for testing specificities of lectins from Aleuria aurantia (AAL), Erythrina cristagalli (ECL), Griffonia simplicifolia (GSL I-B(4)), Helix pomatia agglutinin (HPA), Lens culinaris (LCA), Lotus tetragonolobus (LTA), peanut (Arachis hypogaeae) (PNA), Ricinus communis (RCA I), Sambucus nigra (SNA), Vicia villosa (VVA), and wheat germ (Triticum vulgaris) (WGA) as well as reactivities of anti-carbohydrate antibodies (anti-bee venom, anti-horseradish peroxidase [anti-HRP], and anti-Lewis(x)). After enzymatic remodeling, the resulting neoglycoforms display defined carbohydrate sequences and can be used, when spotted on nitrocellulose or in enzyme-linked lectinosorbent assays, to identify the sugar moieties bound by the lectins. Transferrin with its two biantennary complex N-glycans was used as scaffold for gaining diverse N-glycosidic structures, whereas fetuin was modified using glycosidases to test the specificities of lectins toward both N- and O-glycans. In addition, alpha(1)-acid glycoprotein and Schistosoma mansoni egg extract were chosen as controls for lectin interactions with fucosylated glycans (Lewis(x) and core alpha1,3-fucose). Our data complement and expand the existing knowledge about the binding specificity of a range of commercially available lectins. PMID:19123999

  15. Structural Studies of Apo Nosl, an Accessory Protein of the Nitrous Oxide Reductase System: Insights from Structural Homology with MerB, a Mercury Resistance Protein

    SciTech Connect

    Taubner, Lara M.; McGuirl, Michele A.; Dooley, David M.; Copie, Valerie

    2006-10-01

    The formation of the unique catalytic tetranuclear copper cluster (CuZ) of nitrous oxide reductase, N2OR, requires the coexpression of a multiprotein assembly apparatus encoded by the nosDFYL operon. NosL, one of the proteins encoded by this transcript, is a 20 kDa lipoprotein of the periplasm that has been shown to bind copper(I), although its function has yet to be detemined. Cu(I) EXAFS data collected on the holo protein demonstrated that features of the copper binding site are consistent with a role for this protein as a metallochaperone, a class of metal ion transporters involved in metal resistance, homeostasis, and metallocluster biosynthesis. To test this hypothesis and to gain insight into other potential functional roles for this protein in the N2OR system, the three-dimensional solution structure of apo NosL has been solved by solution NMR methods. The structure of apo NosL consists of two relatively independent homologous domains that adopt an unusual ββαβ topology. The fold of apo NosL displays structural homology to only one other protein, MerB, an organomercury lyase involved in bacterial mercury resistance. The structural similarity between apo NosL and MerB, together with the absolute conservation of Met109 in all NosL sequences, indicates that this residue may be involved in copper ligation, and that the metal binding site is likely to be solvent-accessible and contiguous with a large binding cleft. The structural observations suggest that NosL is exceptionally adapted for a role in copper and/or sulfur delivery and possibly for metallochaperone function.

  16. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers.

    PubMed Central

    Erickson, H P; Taylor, D W; Taylor, K A; Bramhill, D

    1996-01-01

    The bacterial cell division protein FtsZ is a homolog of tubulin, but it has not been determined whether FtsZ polymers are structurally related to the microtubule lattice. In the present study, we have obtained high-resolution electron micrographs of two FtsZ polymers that show remarkable similarity to tubulin polymers. The first is a two-dimensional sheet of protofilaments with a lattice very similar to that of the microtubule wall. The second is a miniring, consisting of a single protofilament in a sharply curved, planar conformation. FtsZ minirings are very similar to tubulin rings that are formed upon disassembly of microtubules but are about half the diameter. This suggests that the curved conformation occurs at every FtsZ subunit, but in tubulin rings the conformation occurs at either beta- or alpha-tubulin subunits but not both. We conclude that the functional polymer of FtsZ in bacterial cell division is a long thin sheet of protofilaments. There is sufficient FtsZ in Escherichia coli to form a protofilament that encircles the cell 20 times. The similarity of polymers formed by FtsZ and tubulin implies that the protofilament sheet is an ancient cytoskeletal system, originally functioning in bacterial cell division and later modified to make microtubules. Images Fig. 1 Fig. 2 Fig. 3 PMID:8552673

  17. Structural stability of Bacillus thuringiensis delta-endotoxin homolog-scanning mutants determined by susceptibility to proteases.

    PubMed Central

    Almond, B D; Dean, D H

    1993-01-01

    Forty homolog-scanning (double-reciprocal-crossover) mutant proteins of two Bacillus thuringiensis delta-endotoxin genes (cryIAa and cryIAc) were examined for potential structural alterations by a series of proteolytic assays. Three groups of mutants could be identified. Group 1, consisting of 13 mutants, showed no delta-endotoxin present during overexpression conditions in Escherichia coli (48 h at 37 degrees C, with a ptac promoter). These mutants produced full-sized delta-endotoxin detectable by polyacrylamide gel electrophoresis with Coomassie blue staining or Western immunoanalysis after 24 h of growth but not after 48 h, suggesting sensitivity to intracellular proteases. Group 2 consisted of 13 mutants that produced stable delta-endotoxins that were completely digested by 2% bovine trypsin. In contrast, native delta-endotoxin produces a 65,000-Da trypsin-resistant peptide, which is the active toxin. Group 3 mutants expressed delta-endotoxin and trypsin-stable toxins, similar to the wild type. In this study, 12 group 3 mutant toxins were compared with wild type toxins by thermolysin digestion at a range of temperatures. The two wild-type toxins exhibited significant differences in thermolysin digestion midpoints. Among the group 3 mutants, most possessed significantly different protein stabilities relative to their parental toxins. Two of the group 3 mutants were observed to have exchanged the thermolysin sensitivity properties of the parental toxins. Images PMID:8368834

  18. A Comparative Study of Lectin Affinity Based Plant N-Glycoproteome Profiling Using Tomato Fruit as a Model*

    PubMed Central

    Ruiz-May, Eliel; Hucko, Simon; Howe, Kevin J.; Zhang, Sheng; Sherwood, Robert W.; Thannhauser, Theodore W.; Rose, Jocelyn K. C.

    2014-01-01

    Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to provide a significant benefit for the analysis of plant N-glycoproteins; however, it has yet to be determined whether certain lectins, or combinations of lectins are optimal for plant N-glycoproteome profiling; or whether specific lectins show preferential association with particular N-glycosylation sites or N-glycan structures. We describe here a comparative study of three mannose-binding lectins, concanavalin A, snowdrop lectin, and lentil lectin, to profile the N-glycoproteome of mature green stage tomato (Solanum lycopersicum) fruit pericarp. Through coupling lectin affinity chromatography with a shotgun proteomics strategy, we identified 448 putative N-glycoproteins, whereas a parallel lectin affinity chromatography plus hydrophilic interaction chromatography analysis revealed 318 putative N-glycosylation sites on 230 N-glycoproteins, of which 100 overlapped with the shotgun analysis, as well as 17 N-glycan structures. The use of multiple lectins substantially increased N-glycoproteome coverage and although there were no discernible differences in the structures of N-glycans, or the charge, isoelectric point (pI) or hydrophobicity of the glycopeptides that differentially bound to each lectin, differences were observed in the amino acid frequency at the −1 and +1 subsites of the N-glycosylation sites. We also demonstrated an alternative and complementary in planta recombinant expression strategy, followed by affinity MS analysis, to identify the putative N-glycan structures of glycoproteins whose abundance is too low to be readily determined by a shotgun approach, and

  19. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  20. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  1. Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases

    SciTech Connect

    Vivian, Julian P.; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M.; Wilce, Matthew C.J.; Byres, Emma; Dias, Manisha; Schmidberger, Jason W.; Cowan, Peter J.; d'Apice, Anthony J.F.; Hartland, Elizabeth L.; Rossjohn, Jamie; Beddoe, Travis

    2010-04-19

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  2. Purification and characterization of a novel beta-D-galactosides-specific lectin from Clitoria ternatea.

    PubMed

    Naeem, Aabgeena; Haque, Shabirul; Khan, Rizwan Hasan

    2007-09-01

    A lectin present in seeds of Clitoria ternatea agglutinated trypsin-treated human B erythrocytes. The sugar specificity assay indicated that lectin belongs to Gal/Gal NAc-specific group. Hence the lectin, designated C. ternatea agglutinin (CTA), was purified by the combination of acetic acid precipitation, salt fractionation and affinity chromatography. HPLC gel filtration, SDS-polyacrylamide gel electrophoresis and mass spectrometry indicated that the native lectin is composed of two identical subunits of molecular weight 34.7 kDa associated by non covalent bonds. The N-terminal sequence of CTA shared homology with Glycine max and Pisum sativum. Complete sequence was also found to be homologous to S-64 protein of Glycine max, suggesting that CTA probably exhibits both hemagglutination and probably sugar uptake activity. The carbohydrate binding specificity of the lectin was investigated by quantitative turbidity measurements, and percent inhibition assays. Based on these assays, we conclude that CTA binds beta-D: -galactosides, and also may has an extended specificity towards non-reducing terminal Neu5Acalpha2,6Gal. PMID:17514413

  3. Probing the cons and pros of lectin-induced immunomodulation: case studies for the mistletoe lectin and galectin-1.

    PubMed

    Gabius, H J

    2001-07-01

    When imagining to monitor animal cells through a microscope with resolution at the molecular level, a salient attribute of their surfaces will be the abundance of glycan chains. They present galactosides at their termini widely extending like tentacles into the extracellular space. Their spatial accessibility and their potential for structural variability endow especially these glycan parts with capacity to act as docking points for molecular sensors (sugar receptors such as lectins). Binding and ligand clustering account for transmission of post-binding signals into the cell interior. The range of triggered activities has turned plant lectins into popular tools in cell biology and immunology. Potential for clinical application has been investigated rigorously only in recent years. As documented in vitro and in vivo for the galactoside-specific mistletoe lectin, its apparent immunomodulatory capacity reflected in upregulation of production of proinflammatory cytokines will not necessarily be clinically favorable but a double-edged sword. In fact, lectin application has been shown to stimulate tumor growth in cell lines, histocultures of human tumors and in two animal models using chemical carcinogenesis or tumor transplantation. When testing immunological effects of the endogenous lectin galectin-1, protection against disorders mediated by activated T cells came up for consideration. Elimination of these cells via CD7-dependent induction of apoptosis, and a shift to the Th2 response by the galectin, are factors to ameliorate disease states. This result encourages further efforts with other galectins. Functional redundancy, synergism, diversity or antagonism among galectins are being explored to understand the actual role of this class of endogenous lectins in inflammation. Regardless of the results of further preclinical testing for galectin-1, these two case studies break new ground in our understanding how glycans as ligands for lectins convey reactivity to

  4. Structure of the connector of bacteriophage T7 at 8A resolution: structural homologies of a basic component of a DNA translocating machinery.

    PubMed

    Agirrezabala, Xabier; Martín-Benito, Jaime; Valle, Mikel; González, José M; Valencia, Alfonso; Valpuesta, José María; Carrascosa, José L

    2005-04-15

    The three-dimensional structure of the bacteriophage T7 head-to-tail connector has been obtained at 8A resolution using cryo-electron microscopy and single-particle analysis from purified recombinant connectors. The general morphology of the T7 connector is that of a 12-folded toroidal homopolymer with a channel that runs along the longitudinal axis of the particle. The structure of the T7 connector reveals many structural similarities with the connectors from other bacteriophages. Docking of the atomic structure of the varphi29 connector into the three-dimensional reconstruction of T7 connector reveals that the narrow, distal region of the two oligomers are almost identical. This region of the varphi29 connector has been suggested to be involved in DNA translocation, and is composed of an alpha-beta-alpha-beta-beta-alpha motif. A search for alpha-helices in the same region of the T7 three-dimensional map has located three alpha-helices in approximately the same position as those of the varphi29 connector. A comparison of the predicted secondary structure of several bacteriophage connectors, including among others T7, varphi29, P22 and SPP1, reveals that, despite the lack of sequence homology, they seem to contain the same alpha-beta-alpha-beta-beta-alpha motif as that present in the varphi29 connector. These results allow us to suggest a common architecture related to a basic component of the DNA translocating machinery for several viruses. PMID:15784250

  5. Histological and lectin histochemical studies of the vomeronasal organ of horses.

    PubMed

    Lee, Kwang-Hyup; Park, Changnam; Kim, Jeongtae; Moon, Changjong; Ahn, Meejung; Shin, Taekyun

    2016-08-01

    The morphological characteristics and glycoconjugate composition of the vomeronasal organ (VNO) of the horse was investigated using histological, immunohistochemical, and lectin histochemical methods. The VNO is bilaterally located at the base of the nasal septum, has a tubular structure surrounded by cartilage, and consists of sensory and non-sensory epithelia. Immunohistochemical examination showed that the vomeronasal sensory epithelium (VSE) consisted of receptor cells positive for both olfactory marker protein (OMP) and protein gene product 9.5 (PGP 9.5), supporting cells, and basal cells. VNO receptor cells were positive for G protein Gαi2 (vomeronasal receptor type 1 marker), but not Gαo (vomeronasal receptor type 2 marker). Lectin histochemical studies using 21 biotinylated lectins showed that the free border of the VSE was positive for 20 lectins. The receptor and supporting cells reacted with 16 lectins while the basal cells reacted with 15 lectins, with varying intensities. In the vomeronasal non-sensory epithelium, the free border was positive for 19 lectins. The cilated cells were positive for 17 lectins and the basal cells were positive for 15 lectins. The vomeronasal glands, positioned in the lamina propria, were stained with both periodic acid Schiff (PAS) and alcian blue (pH 2.5). Eighteen lectins stained the acinar cells of the vomeronasal glands with various binding patterns. These findings suggest that horse VNO receptor cells express vomeronasal receptor type 1, and the VNO glands have mucous to seromucous characteristics. Moreover, each lectin differentially binds each cell type in both the VNO sensory and non-sensory epithelia. PMID:27233915

  6. Prevalence of the F-type lectin domain.

    PubMed

    Bishnoi, Ritika; Khatri, Indu; Subramanian, Srikrishna; Ramya, T N C

    2015-08-01

    F-type lectins are fucolectins with characteristic fucose and calcium-binding sequence motifs and a unique lectin fold (the "F-type" fold). F-type lectins are phylogenetically widespread with selective distribution. Several eukaryotic F-type lectins have been biochemically and structurally characterized, and the F-type lectin domain (FLD) has also been studied in the bacterial proteins, Streptococcus mitis lectinolysin and Streptococcus pneumoniae SP2159. However, there is little knowledge about the extent of occurrence of FLDs and their domain organization, especially, in bacteria. We have now mined the extensive genomic sequence information available in the public databases with sensitive sequence search techniques in order to exhaustively survey prokaryotic and eukaryotic FLDs. We report 437 FLD sequence clusters (clustered at 80% sequence identity) from eukaryotic, eubacterial and viral proteins. Domain architectures are diverse but mostly conserved in closely related organisms, and domain organizations of bacterial FLD-containing proteins are very different from their eukaryotic counterparts, suggesting unique specialization of FLDs to suit different requirements. Several atypical phylogenetic associations hint at lateral transfer. Among eukaryotes, we observe an expansion of FLDs in terms of occurrence and domain organization diversity in the taxa Mollusca, Hemichordata and Branchiostomi, perhaps coinciding with greater emphasis on innate immune strategies in these organisms. The naturally occurring FLDs with diverse domain organizations that we have identified here will be useful for future studies aimed at creating designer molecular platforms for directing desired biological activities to fucosylated glycoconjugates in target niches. PMID:25943580

  7. Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): a case of monobrachial homology

    PubMed Central

    Matveevsky, Sergey; Bakloushinskaya, Irina; Tambovtseva, Valentina; Romanenko, Svetlana; Kolomiets, Oxana

    2015-01-01

    Abstract Synaptonemal complex (SC) chains were revealed in semisterile intraspecific F1 hybrids of Ellobius tancrei Blasius, 1884 (2n = 49, NF=56 and 2n=50, NF=56), heterozygous for Robertsonian (Rb) translocations. Chains were formed by Rb submetacentrics with monobrachial homology. Chromosome synapsis in spermatocytes of these hybrids was disturbed, apparently because of the problematic release of the chromosomes from the SC chains. These hybrids suffer from low fertility, and our data support the opinion that this is because a formation of Rb metacentrics with monobrachial homology within different races of the same species might be an initial event for the divergence of chromosomal forms. PMID:26752380

  8. Antinutritional properties of plant lectins.

    PubMed

    Vasconcelos, Ilka M; Oliveira, José Tadeu A

    2004-09-15

    Lectins are carbohydrate binding (glyco)proteins which are ubiquitous in nature. In plants, they are distributed in various families and hence ingested daily in appreciable amounts by both humans and animals. One of the most nutritionally important features of plant lectins is their ability to survive digestion by the gastrointestinal tract of consumers. This allows the lectins to bind to membrane glycosyl groups of the cells lining the digestive tract. As a result of this interaction a series of harmful local and systemic reactions are triggered placing this class of molecules as antinutritive and/or toxic substances. Locally, they can affect the turnover and loss of gut epithelial cells, damage the luminal membranes of the epithelium, interfere with nutrient digestion and absorption, stimulate shifts in the bacterial flora and modulate the immune state of the digestive tract. Systemically, they can disrupt lipid, carbohydrate and protein metabolism, promote enlargement and/or atrophy of key internal organs and tissues and alter the hormonal and immunological status. At high intakes, lectins can seriously threaten the growth and health of consuming animals. They are also detrimental to numerous insect pests of crop plants although less is presently known about their insecticidal mechanisms of action. This current review surveys the recent knowledge on the antinutritional/toxic effects of plant lectins on higher animals and insects. PMID:15302522

  9. Studies on phytohemagglutinins. XXVII. A study of the pea lectin binding site.

    PubMed

    Cermáková, M; Entlicher, G; Kocourek, J

    1976-02-20

    Under defined mild conditions the reaction of the pea lectin with 2-nitrophenylsulfenyl chloride results in sulfenylation of only 2 of the 10 tryptophan residues of the lectin molecule with simultaneous loss of biological activity. Both sulfenylated tryptophan residues belong to the two heavy subunits of the lectin. Enzymic hydrolysis and separation of the tryptic peptides yields only one homogeneous yellow peptide containing the modified tryptophan residue. The isolated peptide has the following sequence (NPS, nitrophenylsulfenyl): HAsp-Val-Val-Pro-Glu-(2-NPS-Trp)-Val-ArgOH. The octapeptide is either directly a part of the pea lectin binding site or it plays an important role in maintaining the tertiary structure of the binding site. According to the amino acid composition and amino acid sequence, the octapeptide isolated from the pea lectin is almost identical with that part of the peptide chain of concanavalin A near to which the location of the sugar binding site is supposed to be. PMID:1252454

  10. Insecticidal activity of plant lectins and potential application in crop protection.

    PubMed

    Macedo, Maria Lígia R; Oliveira, Caio F R; Oliveira, Carolina T

    2015-01-01

    Lectins constitute a complex group of proteins found in different organisms. These proteins constitute an important field for research, as their structural diversity and affinity for several carbohydrates makes them suitable for numerous biological applications. This review addresses the classification and insecticidal activities of plant lectins, providing an overview of the applicability of these proteins in crop protection. The likely target sites in insect tissues, the mode of action of these proteins, as well as the use of lectins as biotechnological tools for pest control are also described. The use of initial bioassays employing artificial diets has led to the most recent advances in this field, such as plant breeding and the construction of fusion proteins, using lectins for targeting the delivery of toxins and to potentiate expected insecticide effects. Based on the data presented, we emphasize the contribution that plant lectins may make as tools for the development of integrated insect pest control strategies. PMID:25633332

  11. Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study.

    PubMed

    Peltola, Minna; Neu, Thomas R; Raulio, Mari; Kolari, Marko; Salkinoja-Salonen, Mirja S

    2008-07-01

    Deinococcus geothermalis is resistant to chemical and physical stressors and forms tenuous biofilms in paper industry. The architecture of its biofilms growing on glass and on stainless acid proof steel was studied with confocal laser scanning microscopy and fluorescent lectins and nanobeads as in situ probes. Hydrophobic nanobeads adhered to the biofilms but did not penetrate to biofilm interior. In contrast, the biofilms were readily permeable towards many different lectins. A skeletal network of glycoconjugates, reactive with Dolichos biflorus and Maclura pomifera lectins, was prominent in the space inside the biofilm colony core but absent on the exterior. Cells in the core space of the biofilm were interconnected by a network of adhesion structures, reactive with Amaranthus caudatus lectin but with none of the 65 other tested lectins. The glycoconjugates connecting the individual cells to steel reacted with Phaseolus vulgaris lectin whereas those connecting to glass mainly reacted with A. caudatus lectin. Envelopes of all cells in the D. geothermalis biofilm reacted with several other lectins, with many different specificities. We conclude that numerous different glycoconjugates are involved in the adhesion and biofilm formation of D. geothermalis, possibly contributing its unique survival capacity when exposed to dehydration, biocidal chemicals and other extreme conditions. PMID:18373677

  12. C-type lectins do not act as functional receptors for filovirus entry into cells

    SciTech Connect

    Matsuno, Keita; Nakayama, Eri; Noyori, Osamu; Marzi, Andrea; Ebihara, Hideki; Irimura, Tatsuro; Feldmann, Heinz; Takada, Ayato

    2010-12-03

    Research highlights: {yields} Filovirus glycoprotein (GP) having a deficient receptor binding region were generated. {yields} Mutant GPs mediated virus entry less efficiently than wild-type GP. {yields} Mutant GPs bound to C-type lectins but not mediated entire steps of cellular entry. {yields} C-type lectins do not independently mediate filovirus entry into cells. {yields} Other molecule(s) are required for C-type lectin-mediated entry of filoviruses. -- Abstract: Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.

  13. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies

    PubMed Central

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

    2012-01-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rTRPV1. We experimentally evaluated by mutational analysis the contribution of residues of rat TRPV1 (rTRPV1) contributing to ligand binding by the prototypical TRPV1 agonists capsaicin and resiniferatoxin. We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands. PMID:21448716

  14. 3D Structure Prediction of Human β1-Adrenergic Receptor via Threading-Based Homology Modeling for Implications in Structure-Based Drug Designing

    PubMed Central

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein. PMID:25860348

  15. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing.

    PubMed

    Ul-Haq, Zaheer; Saeed, Maria; Halim, Sobia Ahsan; Khan, Waqasuddin

    2015-01-01

    Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein. PMID:25860348

  16. Multifactorial Resistance of Bacillus subtilis Spores to High-Energy Proton Radiation: Role of Spore Structural Components and the Homologous Recombination and Non-Homologous End Joining DNA Repair Pathways

    PubMed Central

    Reitz, Günther; Li, Zuofeng; Klein, Stuart; Nicholson, Wayne L.

    2012-01-01

    Abstract The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior. Key Words: Bacillus—Spores—DNA repair—Protection—High-energy proton radiation. Astrobiology 12, 1069–1077. PMID:23088412

  17. Sweet entanglements – protein:glycan interactions in two HIV-inactivating lectin families

    PubMed Central

    Koharudin, Leonardus M. I.; Gronenborn, Angela M.

    2012-01-01

    Structures and sugar binding by members of two lectin families, CVNH and OAAH, were determined to elucidate the basis for recognition of high-mannose glycans on the HIV envelope glycoprotein gp120. We solved NMR solution and/or crystal structures for several lectins and delineated their carbohydrate specificity by array screening and direct NMR titrations. Both families recognize different epitopes on high-mannose glycans, namely Manα(1–2)Man units at the ends of the D1 and D3 arms and α3,α6-mannopentaose at the central branch point of Man-8 or Man-9 for CVNH and OAAH lectins, respectively. PMID:23023834

  18. MMBL proteins: from lectin to bacteriocin.

    PubMed

    Ghequire, Maarten G K; Loris, Remy; De Mot, René

    2012-12-01

    Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes. PMID:23176516

  19. The 75-kilodalton antigen of Bartonella bacilliformis is a structural homolog of the cell division protein FtsZ.

    PubMed Central

    Padmalayam, I; Anderson, B; Kron, M; Kelly, T; Baumstark, B

    1997-01-01

    A genomic library of Bartonella bacilliformis was constructed and screened with human anti-Bartonella serum from a patient with the chronic, verruga peruana phase of bartonellosis. An immunoreactive clone isolated from this library was found to code for a 591-amino-acid protein with a high degree of sequence similarity to the FtsZ family of proteins. The degree of amino acid identity between the B. bacilliformis protein (FtsZ[Bb]) and the other FtsZ proteins is especially pronounced over the N-terminal 321 amino acids (N-terminal domain) of the sequence, with values ranging from 45% identity for the homolog from Micrococcus luteus (FtsZ[Ml]) to 91% identity for the homolog from Rhizobium melliloti, (FtsZ[Rm1]). All of the functional domains required for FtsZ activity are conserved in FtsZ(Bb) and are located within the N-terminal domain of the protein. FtsZ(Bb) is approximately twice as large as most of the other FtsZ proteins previously reported, a property it shares with FtsZ(Rm1). Like the Rhizobium homolog, FtsZ(Bb) has a C-terminal region of approximately 256 amino acids that is absent in the other FtsZ proteins. Evidence is presented that implicates this region in the protein's antigenicity and suggests that, unlike most other FtsZ homologs, FtsZ(Bb) is at least partly exposed at the cell surface. PCR analysis revealed that an ftsZ gene similar in size to the B. bacilliformis gene is present in Bartonella henselae, a bacterium that is closely related to B. bacilliformis. PMID:9226264

  20. Effects of detergents on the oligomeric structures of hemolytic lectin CEL-III as determined by small-angle X-ray scattering.

    PubMed

    Goda, Shuichiro; Sadakata, Hitoshi; Unno, Hideaki; Hatakeyama, Tomomitsu

    2013-01-01

    Hemolytic lectin CEL-III isolated from the sea cucumber Cucumaria echinata forms transmembrane pores by self-oligomerization in target cell membranes. It also formed soluble oligomers in aqueous solution upon binding with specific carbohydrates under conditions of high pH and a high salt concentration. The size of the soluble CEL-III oligomers decreased when treated with detergents such as Triton X-100 and SDS. Small-angle X-ray scattering measurements suggested that the dissociated unit of the oligomer was a tightly associated CEL-III heptamer. Without detergents in solution, these heptamers further assembled into larger 21mer oligomers, comprising three heptamers held together by relatively weak hydrophobic interactions. PMID:23470749

  1. Structural and sequence similarities of hydra xeroderma pigmentosum A protein to human homolog suggest early evolution and conservation.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246

  2. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    PubMed Central

    Ghaskadbi, Saroj

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246

  3. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models.

    PubMed

    Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok

    2014-01-01

    Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research. PMID:23828036

  4. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  5. Crystallization and preliminary characterization of a highly thermostable lectin from Trichosanthes dioica and comparison with other Trichosanthes lectins

    SciTech Connect

    Dharkar, Poorva D.; Anuradha, P.; Gaikwad, Sushama M.; Suresh, C. G.

    2006-03-01

    A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. A lectin from Trichosanthes dioica seeds has been purified and crystallized using 25%(w/v) PEG 2K MME, 0.2 M ammonium acetate, 0.1 M Tris–HCl pH 8.5 and 50 µl 0.5%(w/v) n-octyl β-d-glucopyranoside as thick needles belonging to hexagonal space group P6{sub 4}. Unit-cell parameters were a = b = 167.54, c = 77.42 Å. The crystals diffracted to a Bragg spacing of 2.8 Å. Both the structures of abrin-a and T. kirilowii lectin could be used as a model in structure determination using the molecular-replacement method; however, T. kirilowii lectin coordinates gave better values of reliability and correlation parameters. The thermal, chemical and pH stability of this lectin have also been studied. When heated, its haemagglutination activity remained unaffected up to 363 K. Other stability studies show that 4 M guanidinium hydrochloride (Gdn–HCl) initiates unfolding and that the protein is completely unfolded at 6 M Gdn–HCl. Treatment with urea resulted in a total loss of activity at higher concentrations of denaturant with no major structural changes. The protein remained stable over a wide pH range, from pH 6 to pH 12, except for partial unfolding at extremely alkaline pH. The role of disulfide bonds in the protein stability was found to be insignificant. Rayleigh light-scattering studies showed no molecular aggregation in any of the extreme treated conditions. The unusual stability of this lectin resembles that of type II ribosome-inactivating proteins (type II RIPs), which is also supported by structure determination. The structural features observed in a preliminary electron-density map were compared with the other two available Trichosanthes lectin structures.

  6. Structural Characterization of the E2 Domain of APL-1, a C. Elegans Homolog of Human Amyloid Precursor Protein, and its Heparin Binding Site

    SciTech Connect

    Hoopes, J.; Liu, X; Xu, X; Demeler, B; Folta-Stogniew, E; Li, C; Ha, Y

    2010-01-01

    The amyloid {beta}-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.

  7. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  8. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.

    PubMed

    Yang, Yuedong; Zhan, Jian; Zhou, Yaoqi

    2016-07-01

    Structure-based virtual screening usually involves docking of a library of chemical compounds onto the functional pocket of the target receptor so as to discover novel classes of ligands. However, the overall success rate remains low and screening a large library is computationally intensive. An alternative to this "ab initio" approach is virtual screening by binding homology search. In this approach, potential ligands are predicted based on similar interaction pairs (similarity in receptors and ligands). SPOT-Ligand is an approach that integrates ligand similarity by Tanimoto coefficient and receptor similarity by protein structure alignment program SPalign. The method was found to yield a consistent performance in DUD and DUD-E docking benchmarks even if model structures were employed. It improves over docking methods (DOCK6 and AUTODOCK Vina) and has a performance comparable to or better than other binding-homology methods (FINDsite and PoLi) with higher computational efficiency. The server is available at http://sparks-lab.org. © 2016 Wiley Periodicals, Inc. PMID:27074979

  9. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension

    PubMed Central

    Di Tommaso, Paolo; Moretti, Sebastien; Xenarios, Ioannis; Orobitg, Miquel; Montanyola, Alberto; Chang, Jia-Ming; Taly, Jean-François; Notredame, Cedric

    2011-01-01

    This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat. PMID:21558174

  10. Dipeptidyl peptidase IV activity and/or structure homologs: Contributing factors in the pathogenesis of rheumatoid arthritis?

    PubMed Central

    Sedo, Aleksi; Duke-Cohan, Jonathan S; Balaziova, Eva; Sedova, Liliana R

    2005-01-01

    Several of the proinflammatory peptides involved in rheumatoid arthritis pathogenesis, including peptides induced downstream of tumor necrosis factor-α as well as the monocyte/T cell-attracting chemokines RANTES and stromal cell-derived factor (SDF)-1α and the neuropeptides vasoactive intestinal peptide (VIP) and substance P, have their biological half-lives controlled by dipeptidyl peptidase IV (DPPIV). Proteolysis by DPPIV regulates not only the half-life but also receptor preference and downstream signaling. In this article, we examine the role of DPPIV homologs, including CD26, the canonical DPPIV, and their substrates in the pathogenesis of rheumatoid arthritis. The differing specific activities of the DPPIV family members and their differential inhibitor response provide new insights into therapeutic design. PMID:16277701

  11. Structural recognition mechanisms between human Src homology domain 3 (SH3) and ALG-2-interacting protein X (Alix).

    PubMed

    Shi, Xiaoli; Betzi, Stephane; Lugari, Adrien; Opi, Sandrine; Restouin, Audrey; Parrot, Isabelle; Martinez, Jean; Zimmermann, Pascale; Lecine, Patrick; Huang, Mingdong; Arold, Stefan T; Collette, Yves; Morelli, Xavier

    2012-06-21

    The functions of Src family kinases are tightly regulated through Src homology (SH) domain-mediated protein-protein interactions. We previously reported the biophysical characteristics of the apoptosis-linked gene 2-interacting protein X (Alix) in complex with the haemopoietic cell kinase (Hck) SH3 domain. In the current study, we have combined ITC, NMR, SAXS and molecular modeling to determine a 3D model of the complex. We demonstrate that Hck SH3 recognizes an extended linear proline-rich region of Alix. This particular binding mode enables Hck SH3 to sense a specific non-canonical residue situated in the SH3 RT-loop of the kinase. The resulting model helps clarify the mechanistic insights of Alix-Hck interaction. PMID:22641034

  12. Mitogenic activity of edible mushroom lectins.

    PubMed

    Ho, J C K; Sze, S C W; Shen, W Z; Liu, W K

    2004-03-17

    A special group of lectins were isolated from three popular Asian edible mushrooms: Volvariella volvacea, Pleurotus flabellatus and Hericium erinacium, and their mitogenic activities towards mouse T cells were compared to the extensively investigated Agaricus bisporus lectin (ABL) and the Jack bean lectin, Concanavalin A (Con A). Among the four mushroom lectins tested, V. volvacea lectin (VVL) exhibited strong mitogenic activity as demonstrated by 3H-thymidine incorporation, which was at least 10-fold more effective than that of Con A, and the other mushroom lectins did not exhibit any proliferative activity. Treatment with VVL and ABL resulted in activation of the protein tyrosine kinase, p56lck, and expression of early activation markers, CD69 and CD25, but only VVL induced intracellular calcium influx while ABL triggered cell death. The calcium influx was sensitive to calcium channel antagonists such as nifedipine and verapamil. The P. flabellatus lectin (PFL) and H. erinacium lectin (HEL) did not stimulate p56lck expression and cell proliferation. Neither of these lectins interfered with Con A-mediated lymphocyte proliferation, which further indicated that both PFL and HEL were non-mitogenic. Taken all results together, VVL induced mitogenesis through T cell receptors and the subsequent calcium signaling pathway. PMID:15026140

  13. Lectins and their application to clinical microbiology.

    PubMed Central

    Slifkin, M; Doyle, R J

    1990-01-01

    Lectins are generally associated with plant or animal components, selectively bind carbohydrates, and interact with procaryotic and eucaryotic cells. Lectins have various specificities that are associated with their ability to interact with acetylaminocarbohydrates, aminocarbohydrates, sialic acids, hexoses, pentoses, and as other carbohydrates. Microbial surfaces generally contain many of the sugar residues that react with lectins. Lectins are presently used in the clinical laboratory to type blood cells and are used in a wide spectrum of applications, including, in part, as carriers of chemotherapeutic agents, as mitogens, for fractionation of animal cells, and for investigations of cellular surfaces. Numerous studies have shown that lectins can be used to identify rapidly certain microorganisms isolated from a clinical specimen or directly in a clinical specimen. Lectins have been demonstrated to be important diagnostic reagents in the major realms of clinical microbiology. Thus, they have been applied in bacteriology, mycology, mycobacteriology, and virology for the identification and/or differentiation of various microorganisms. Lectins have been used successfully as epidemiologic as well as taxonomic markers of specific microorganisms. Lectins provide the clinical microbiologist with cost-effective and potential diagnostic reagents. This review describes the applications of lectins in clinical microbiology. Images PMID:2200603

  14. cDNA cloning and 1.75 A crystal structure determination of PPL2, an endochitinase and N-acetylglucosamine-binding hemagglutinin from Parkia platycephala seeds.

    PubMed

    Cavada, Benildo S; Moreno, Frederico B B; da Rocha, Bruno A M; de Azevedo, Walter F; Castellón, Rolando E R; Goersch, Georg V; Nagano, Celso S; de Souza, Emmanuel P; Nascimento, Kyria S; Radis-Baptista, Gandhi; Delatorre, Plínio; Leroy, Yves; Toyama, Marcos H; Pinto, Vicente P T; Sampaio, Alexandre H; Barettino, Domingo; Debray, Henri; Calvete, Juan J; Sanz, Libia

    2006-09-01

    Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407+/-15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 A resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (betaalpha)8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. PMID:16934035

  15. Seasonal lectin binding variations of thumb pad in the frog (Pelophylax ridibundus).

    PubMed

    Kaptan, Engin; Bolkent, Sehnaz

    2014-01-01

    The thumb pad is one of the most common secondary sexual characteristics in frogs. Although it is known that amphibian skin has affinity for several lectins, there is no report regarding lectin-binding affinity of the thumb pad or its structural components. This study investigated localization and seasonal variation of specific carbohydrate moieties of glycoconjugates in both the epidermal and dermal components of the frog thumb pad at the light microscopic level using lectin histochemistry. The study consisted of four seasonal groups of the frog species, Pelophylax ridibundus (Synonym of Rana ridibunda): active, prehibernating, hibernating and posthibernating. Four horseradish peroxidase conjugated lectins were employed. It was found that dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and ulex europaeus (UEAI) gave positive reactions in both epidermal layers and breeding glands. These three lectins bound specific secretory cells in the breeding glands, and the distribution of the cells and epithelial lectin reactions exhibited seasonal changes. In addition, UEA-I and peanut agglutinin (PNA) showed an affinity in granular glands and the granular zone of mixed glands. Generally, epidermal lectin binding showed dense affinity during the posthibernation period. DBA, UEA-I, and WGA-specific cells in the mucous gland decreased gradually until the posthibernation period. These findings suggest that differences of lectin binding in the thumb pad may be related to functional activities and, thus, seasonal adaptations. Moreover, the presence of specific lectin-binding cells in the breeding glands indicated that they consisted of heterogeneous secretory cell composition or that the cells were at different secretory stages. PMID:24127244

  16. Macromolecular Crowding Effects on Two Homologs of Ribosomal Protein S16: Protein-Dependent Structural Changes and Local Interactions

    PubMed Central

    Mikaelsson, Therese; Ådén, Jörgen; Wittung-Stafshede, Pernilla; Johansson, Lennart B.-Å.

    2014-01-01

    Proteins function in cellular environments that are crowded with biomolecules, and in this reduced available space, their biophysical properties may differ from those observed in dilute solutions in vitro. Here, we investigated the effects of a synthetic macromolecular crowding agent, dextran 20, on the folded states of hyperthermophilic (S16Thermo) and mesophilic (S16Meso) homologs of the ribosomal protein S16. As expected for an excluded-volume effect, the resistance of the mesophilic protein to heat-induced unfolding increased in the presence of dextran 20, and chemical denaturation experiments at different fixed temperatures showed the macromolecular crowding effect to be temperature-independent. Förster resonance energy transfer experiments show that intramolecular distances between an intrinsic Trp residue and BODIPY-labeled S16Meso depend on the level of the crowding agent. The BODIPY group was attached at three specific positions in S16Meso, allowing measurements of three intraprotein distances. All S16Meso variants exhibited a decrease in the average Trp-BODIPY distance at up to 100 mg/mL dextran 20, whereas the changes in distance became anisotropic (one distance increased, two distances decreased) at higher dextran concentrations. In contrast, the two S16Thermo mutants did not show any changes in Trp-BODIPY distances upon increase of dextran 20 concentrations. It should be noted that the fluorescence quantum yields and lifetimes of BODIPY attached to the two S16 homologs decreased gradually in the presence of dextran 20. To investigate the origin of this decrease, we studied the BODIPY quantum yield in three protein variants in the presence of a tyrosine-labeled dextran. The experiments revealed distinct tyrosine quenching behaviors of BODIPY in the three variants, suggesting a dynamic local interaction between dextran and one particular S16 variant. PMID:25028882

  17. Homology modeling, docking, molecular dynamics simulation, and structural analyses of coxsakievirus B3 2A protease: an enzyme involved in the pathogenesis of inflammatory myocarditis.

    PubMed

    Maghsoudi, Amir Hossein; Khodagholi, Fariba; Hadi-Alijanvand, Hamid; Esfandiarei, Mitra; Sabbaghian, Marjan; Zakeri, Zahra; Shaerzadeh, Fatemeh; Abtahi, Shervin; Maghsoudi, Nader

    2011-11-01

    2A protease of the pathogenic coxsackievirus B3 is key to the pathogenesis of inflammatory myocarditis and, therefore, an attractive drug target. However lack of a crystal structure impedes design of inhibitors. Here we predict 3D structure of CVB3 2A(pro) based on sequence comparison and homology modeling with human rhinovirus 2A(pro). The two enzymes are remarkably similar in their core regions. However they have different conformations at the N-terminal. A large number of N-terminal hydrophobic residues reduce the thermal stability of CVB3 2A(pro), as we confirmed by fluorescence, western blot and turbidity measurement. Molecular dynamic simulation revealed that elevated temperature induces protein motion that results in frequent movement of the N-terminal coil. This may therefore induce successive active site changes and thus play an important role in destabilization of CVB3 2A(pro) structure. PMID:21664926

  18. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    SciTech Connect

    Durkin, M.E.; Chung, A.E.; Wewer, U.M.

    1995-03-20

    Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from {lambda} genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF-like repeats and the single thyroglobulin-type repeat are each encoded by separate exons. The carboxyl-terminal half of entactin displays sequence homology to the growth factor-like region of the low-density lipoprotein receptor, and in both genes this region is encoded by eight exons. The positions of four introns are also conserved in the homologous region of the two genes. These observations suggest that the entactin gene has evolved via exon shuffling. Finally, several sequence polymorphisms useful for gene linkage analysis were found in the 3{prime} noncoding region of the last exon. 52 refs., 8 figs.

  19. Molecular evolution of serpins: homologous structure of the human. cap alpha. /sub 1/-antichymotrypsin and. cap alpha. /sub 1/-antitrypsin genes

    SciTech Connect

    Bao, J.; Sifers, R.N.; Kidd, V.J.; Ledley, F.D.; Woo, S.L.C.

    1987-12-01

    ..cap alpha../sub 1/-Antichymotrypsin belongs to a supergene family that includes ..cap alpha../sub 1/-antitrypsin, antithrombin III, ovalbumin, and angiotensinogen. The human chromosomal ..cap alpha../sub 1/-antichymotrypsin gene has been cloned and its molecular structure established. The gene is approximately 12 kb in length and contains five exons and four introns. The locations of the introns within the ..cap alpha../sub 1/-antichymotrypsin gene are identical with those of the human ..cap alpha../sub 1/-antitrypsin and angiotensinogen genes. Other members of this supergene family contain introns located at nonhomologous positions of the genes. The homologous organization of the ..cap alpha../sub 1/-antichymotrypsin and ..cap alpha../sub 1/-antitrypsin genes corresponds with the high degree of homology between their protein sequences and suggest that these loci arose by recent gene duplication. A model is presented for the evolution of both the genomic structure and the protein sequences of the serine protease inhibitor superfamily.

  20. Structure-odor correlations in homologous series of alkanethiols and attempts to predict odor thresholds by 3D-QSAR studies.

    PubMed

    Polster, Johannes; Schieberle, Peter

    2015-02-11

    Homologous series of alkane-1-thiols, alkane-2-thiols, alkane-3-thiols, 2-methylalkane-1-thiols, 2-methylalkane-3-thiols, 2-methylalkane-2-thiols, and alkane-1,ω-dithiols were synthesized to study the influence of structural changes on odor qualities and odor thresholds. In particular, the odor thresholds were strongly influenced by steric effects: In all homologous series a minimum was observed for thiols with five to seven carbon atoms, whereas increasing the chain length led to an exponential increase in the odor threshold. Tertiary alkanethiols revealed clearly lower odor thresholds than found for primary or secondary thiols, whereas neither a second mercapto group in the molecule nor an additional methyl substitution lowered the threshold. To investigate the impact of the SH group, odor thresholds and odor qualities of thiols were compared to those of the corresponding alcohols and (methylthio)alkanes. Replacement of the SH group by an OH group as well as S-methylation of the thiols significantly increased the odor thresholds. By using comparative molecular field analysis, a 3D quantitative structure-activity relationship model was created, which was able to simulate the odor thresholds of alkanethiols in good agreement with the experimental results. NMR and mass spectrometric data for 46 sulfur-containing compounds are additionally supplied. PMID:25608797

  1. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    SciTech Connect

    Goetz, R.; Dover, K; Laezza, F; Shtraizent, N; Huang, X; Tchetchik, D; Eliseenkova, A; Goldfarb, M; Mohammadi, M; et. al.

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.

  2. Crystallization and preliminary X-ray diffraction analysis of the seed lectin from Parkia platycephala.

    PubMed

    Gallego del Sol, Francisca; Ramón-Maiques, Santiago; Santos, Claudia F; Grangeiro, Thalles B; Nagano, Celso S; Farias, Creuza M S A; Cavada, Benildo S; Calvete, Juan J

    2002-01-01

    The crystallization and preliminary X-ray diffraction analysis of the seed lectin of Parkia platycephala, a Mimosoideae, regarded as the most primitive group of the Leguminosae plants, are reported. Its amino-acid sequence consists of three tandemly arranged jacalin-related beta-prism domains, which is a novel fold for a leguminous lectin. Furthermore, no other lectin structure with this arrangement of domains has been described. P2(1)2(1)2(1) crystals (unit-cell parameters a = 63.6, b = 68.5, c = 208.5 A), which diffract to a maximum resolution of 2.2 A, were obtained in hanging drops at pH 8 and 293 K by the vapor-diffusion method using 10% 2-propanol and 20% polyethylene glycol 4000 as precipitants. The asymmetric unit contains two lectin molecules and has a solvent content of 46%. Only a single beta-prism domain could be located by molecular replacement using the structure of the Helianthus tuberosus lectin (PDB code 1c3k) as the search model. Isomorphous heavy-atom derivatives are currently being produced to solve the complete structure of the P. platycephala seed lectin. PMID:11752802

  3. Differential expression of skin mucus C-type lectin in two freshwater eel species, Anguilla marmorata and Anguilla japonica.

    PubMed

    Tsutsui, Shigeyuki; Yoshinaga, Tatsuki; Komiya, Kaoru; Yamashita, Hiroka; Nakamura, Osamu

    2016-08-01

    Two types of lactose-specific lectins, galectin (AJL-1) and C-type lectin (AJL-2), were previously identified in the mucus of adult Anguilla japonica. Here, we compared the expression profiles of these two homologous lectins at the adult and juvenile stages between the tropical eel Anguilla marmorata and the temperate eel A. japonica. Only one lectin, predicted to be an orthologue of AJL-1 by LC-MS/MS, was detected in the mucus of adult A. marmorata. We also found that an orthologous gene to AJL-2 was expressed at very low levels, or not at all, in the skin of adult A. marmorata. However, we detected the gene expression of an AJL-2-orthologue in the skin of juvenile A. marmorata, and a specific antibody also detected the lectin in the juvenile fish epidermis. These findings suggest that expression profiles of mucosal lectins vary during development as well as between species in the Anguilla genus. PMID:27026508

  4. Genes for the Major Structural Components of Thermotogales Species' Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    SciTech Connect

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman R.; Wu, Si; Brewer, Heather M.; Gogarten, J. Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is an unusual cell envelope that includes a loose-fitting sheath around each cell, often called a toga. Only two toga-associated structural proteins have been identified in Thermotoga maritima: the anchor protein OmpA1 (previously termed Ompα) and the porin OmpB (previously termed Ompβ). The gene encoding OmpA (ompA1) was assigned in the genome sequence to TM0477, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. Here we identify the ompB gene as TM0476, determined by LC/MS/MS analysis of the native OmpB protein purified from T. maritima cells. The purified OmpB had β-sheet secondary structure as determined by circular dichroism. Analysis of the sequence of ompB product shows it has porin characteristics including a carboxy terminus anchoring motif and a porin-specific amino acid composition. Orthologs of ompB were found in the genomes of some, but not all, Thermotogales. Those without orthologs have putative analogs. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one to three OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1(TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  5. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.

  6. Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood.

    PubMed

    Vickers, Dwayne A L; Hincapie, Marina; Hancock, William S; Murthy, Shashi K

    2011-06-01

    Lectins are a group of proteins that bind specifically and reversibly to mono- and oligosaccharide carbohydrate structures that are present on the surfaces of mammalian cells. The use of lectins as capture agents in microfluidic channels was examined with a focus on cells associated with T and B lymphocytic leukemia. In addition to examining the adhesion of Jurkat T and Raji B lymphocytes to a broad panel of lectins, this work also examined the capture of these cells from whole blood. Captured T and B lymphocytes were eluted from the microfluidic devices with a solution of the lectin's inhibiting sugar. The capture and release steps were accomplished in under 1 h. The significance of this work lies within the realm of low-cost capture of abundant target cells with non-stimulatory elution capability. PMID:21455756

  7. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila.

    PubMed

    Wagh, Dhananjay A; Rasse, Tobias M; Asan, Esther; Hofbauer, Alois; Schwenkert, Isabell; Dürrbeck, Heike; Buchner, Sigrid; Dabauvalle, Marie-Christine; Schmidt, Manuela; Qin, Gang; Wichmann, Carolin; Kittel, Robert; Sigrist, Stephan J; Buchner, Erich

    2006-03-16

    Neurotransmitters are released at presynaptic active zones (AZs). In the fly Drosophila, monoclonal antibody (MAB) nc82 specifically labels AZs. We employ nc82 to identify Bruchpilot protein (BRP) as a previously unknown AZ component. BRP shows homology to human AZ protein ELKS/CAST/ERC, which binds RIM1 in a complex with Bassoon and Munc13-1. The C terminus of BRP displays structural similarities to multifunctional cytoskeletal proteins. During development, transcription of the bruchpilot locus (brp) coincides with neuronal differentiation. Panneural reduction of BRP expression by RNAi constructs permits a first functional characterization of this large AZ protein: larvae show reduced evoked but normal spontaneous transmission at neuromuscular junctions. In adults, we observe loss of T bars at active zones, absence of synaptic components in electroretinogram, locomotor inactivity, and unstable flight (hence "bruchpilot"-crash pilot). We propose that BRP is critical for intact AZ structure and normal-evoked neurotransmitter release at chemical synapses of Drosophila. PMID:16543132

  8. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    SciTech Connect

    Shanklin, J.; Somerville, C. )

    1991-03-15

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the {Delta}{sup 9} desaturase is developmentally regulated.

  9. Molecular Characterization and Global Expression Analysis of Lectin Receptor Kinases in Bread Wheat (Triticum aestivum)

    PubMed Central

    Pandey, Ajay K.; Singh, Kashmir; Upadhyay, Santosh Kumar

    2016-01-01

    Lectin receptor kinases (LRKs) play a critical role in plants during development and stress conditions, but a comprehensive analysis at genome level is still not carried out in Triticum aestivum. Herein, we performed the genome wide identification, characterization and expression analysis of these genes in T. aestivum (TaLRK). In-total 263 TaLRK genes were identified, which were further classified into three groups based on the nature of lectin domain. We identified, two TaLRKs consisted of calcium-dependent lectin (C-LRK), while 84 legume-lectin (L-LRK) and 177 bulb-lectin (B-LRK) domains. The L-LRK and B-LRK genes were distributed throughout the genome of T. aestivum. Most of the TaLRKs were clustered as homologs, which were distributed either in proximity on same chromosome or on homoeologous chromosomes of A, B and D sub-genomes. A total of 9 and 58 duplication events were also predicted in L-LRK and B-LRK, respectively. Phylogenetic analysis indicated conserved evolutionary relationship of homologous and orthologous genes from multiple plant species. Gene ontology analysis indicated TaLRKs role in binding, signaling and receptor activities. Most of the TaLRKs consisted of a trans-membrane domain and predicted to be localized in the plasma-membrane. A diverse expression pattern of TaLRK genes was found in various developmental stages and stress conditions. Some TaLRKs were found to be highly affected during a particular stress, which indicated a specialized role of each LRK gene in a specific stress condition. These results described various characteristic feature and expression pattern of TaLRK genes, which will pave the way for functional characterization in wheat. PMID:27111449

  10. Amino-terminal amino acid sequence of the major structural polypeptides of avian retroviruses: sequence homology between reticuloendotheliosis virus p30 and p30s of mammalian retroviruses.

    PubMed Central

    Hunter, E; Bhown, A S; Bennett, J C

    1978-01-01

    The major structural polypeptides, p30 of reticuloendotheliosis virus (REV) (strain T) and p27 of avian sarcoma virus B77, have been compared with regard to amino acid composition. NH2-terminal amino acid sequence, and immunological crossreactions. The amino acid composition of the two polypeptides is distinct, and a comparison of the first 30 NH2-terminal amino acids of REV p30 with that for the first 25 of B77 p27 yields only three homologous residues. In competition radioimmunoassays the polypeptides show no crossreactivity. A comparison of the amino acid composition and NH2-terminal amino acid sequence of REV p30 with those reported for several mammalian retrovirus p30s shows remarkable similarities. Both REV and mammalian p30s contain a large number of polar residues in their amino acid composition and show approximately 40% homology in the first 30 NH2-terminal amino acids. No crossreactivity could be observed, however, in competition radioimmunoassays between Rauscher murine leukemia virus p30 and that of REV. The observations reported here suggest a close evolutionary relationship between REV and the mammalian retroviruses. Images PMID:208072

  11. A Homology Modeling Study toward the Understanding of Three-dimensional Structure and Putative Pharmacological Profile of the G-Protein Coupled Receptor GPR55

    PubMed Central

    Elbegdorj, Orgil; Westkaemper, Richard B.

    2015-01-01

    The orphan G-protein coupled receptor GPR55 was shown to bind to certain cannabinoid compounds which led to its initial classification as the third type of cannabinoid receptor. Later studies showed that lysophosphatidylinositol (LPI) also activated GPR55, in particular 2-arachidonoyl-LPI was proposed to be its endogenous ligand. However, the results of pharmacological studies regarding GPR55 have been quite inconsistent. Despite its contradictory pharmacological profile, GPR55 has been implicated in various disease states including inflammatory and neuropathic pain, metabolic bone diseases, and cancer. Herein, we report the ligand binding properties of GPR55 by applying homology modeling and automated docking algorithms in order to understand its pharmacological profile. The 3D homology model of GPR55 was built based on the Adenosine A2A receptor crystal structure. Docking studies of several types of reported ligands were carried out afterwards. The results indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for its ligand binding and the amino acid residue Lys80 seemed to be the anchor residue for receptor recognition. In addition, its putative agonist and antagonist appeared to recognize different domains of the receptor corresponding to their reported pharmacological activities. PMID:23220281

  12. Lectin-based glycomics: how and when was the technology born?

    PubMed

    Hirabayashi, Jun

    2014-01-01

    Lectin-based glycomics is an emerging, comprehensive technology in the post-genome sciences. The technique utilizes a panel of lectins, which is a group of biomolecules capable of deciphering "glycocodes," with a novel platform represented by a lectin microarray. The method enables multiple glycan-lectin interaction analyses to be made so that differential glycan profiling can be performed in a rapid and sensitive manner. This approach is in clear contrast to another advanced technology, mass spectrometry, which requires prior glycan liberation. Although the lectin microarray cannot provide definitive structures of carbohydrates and their attachment sites, it gives useful clues concerning the characteristic features of glycoconjugates. These include differences not only in terminal modifications (e.g., sialic acid (Sia) linkage, types of fucosylation) but also in higher ordered structures in terms of glycan density, depth, and direction composed for both N- and O-glycans. However, before this technique began to be implemented in earnest, many other low-throughput methods were utilized in the late twentieth century. In this chapter, the author describes how the current lectin microarray technique has developed based on his personal experience. PMID:25117239

  13. Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition.

    PubMed

    Roy, René; Murphy, Paul V; Gabius, Hans-Joachim

    2016-01-01

    Glycan recognition by sugar receptors (lectins) is intimately involved in many aspects of cell physiology. However, the factors explaining the exquisite selectivity of their functional pairing are not yet fully understood. Studies toward this aim will also help appraise the potential for lectin-directed drug design. With the network of adhesion/growth-regulatory galectins as therapeutic targets, the strategy to recruit synthetic chemistry to systematically elucidate structure-activity relationships is outlined, from monovalent compounds to glyco-clusters and glycodendrimers to biomimetic surfaces. The versatility of the synthetic procedures enables to take examining structural and spatial parameters, alone and in combination, to its limits, for example with the aim to produce inhibitors for distinct galectin(s) that exhibit minimal reactivity to other members of this group. Shaping spatial architectures similar to glycoconjugate aggregates, microdomains or vesicles provides attractive tools to disclose the often still hidden significance of nanometric aspects of the different modes of lectin design (sequence divergence at the lectin site, differences of spatial type of lectin-site presentation). Of note, testing the effectors alone or in combination simulating (patho)physiological conditions, is sure to bring about new insights into the cooperation between lectins and the regulation of their activity. PMID:27187342

  14. Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins.

    PubMed

    Godula, Kamil; Bertozzi, Carolyn R

    2012-09-26

    Interactions of mucin glycoproteins with cognate receptors are dictated by the structures and spatial organization of glycans that decorate the mucin polypeptide backbone. The glycan-binding proteins, or lectins, that interact with mucins are often oligomeric receptors with multiple ligand binding domains. In this work, we employed a microarray platform comprising synthetic glycopolymers that emulate natural mucins arrayed at different surface densities to evaluate how glycan valency and spatial separation affect the preferential binding mode of a particular lectin. We evaluated a panel of four lectins (Soybean agglutinin (SBA), Wisteria floribunda lectin (WFL), Vicia villosa-B-4 agglutinin (VVA), and Helix pomatia agglutin (HPA)) with specificity for α-N-acetylgalactosamine (α-GalNAc), an epitope displayed on mucins overexpressed in many adenocarcinomas. While these lectins possess the ability to agglutinate A(1)-blood cells carrying the α-GalNAc epitope and cross-link low valency glycoconjugates, only SBA showed a tendency to form intermolecular cross-links among the arrayed polyvalent mucin mimetics. These results suggest that glycopolymer microarrays can reveal discrete higher-order binding preferences beyond the recognition of individual glycan epitopes. Our findings indicate that glycan valency can set thresholds for cross-linking by lectins. More broadly, well-defined synthetic glycopolymers enable the integration of glycoconjugate structural and spatial diversity in a single microarray screening platform. PMID:22967056

  15. Stability of Curcuma longa rhizome lectin: Role of N-linked glycosylation.

    PubMed

    Biswas, Himadri; Chattopadhyaya, Rajagopal

    2016-04-01

    Curcuma longa rhizome lectin, a mannose-binding protein of non-seed portions of turmeric, is known to have antifungal, antibacterial and α-glucosidase inhibitory activities. We studied the role of complex-type glycans attached to asparagine (Asn) 66 and Asn 110 to elucidate the role of carbohydrates in lectin activity and stability. Apart from the native lectin, the characteristics of a deglycosylated Escherichia coli expressed lectin, high-mannose oligosaccharides at both asparagines and its glycosylation mutants N66Q and N110Q expressed in Pichia pastoris, were compared to understand the relationship between glycosylation and activity. Far UV circular dichroism (CD) spectra, fluorescence emission maximum, hemagglutination assay show no change in secondary or tertiary structures or sugar-binding properties between wild-type and aforementioned recombinant lectins under physiological pH. But reduced agglutination activity and loss of tertiary structure are observed in the acidic pH range for the deglycosylated and the N110Q protein. In thermal and guanidine hydrochloride (GdnCl)-induced unfolding, the wild-type and high-mannose lectins possess higher stability compared with the deglycosylated recombinant lectin and both mutants, as measured by a higher Tm of denaturation or a greater free energy change, respectively. Reversibility experiments after thermal denaturation reveal that deglycosylated proteins tend to aggregate during thermal inactivation but the wild type shows a much greater recovery to the native state upon refolding. These results suggest that N-glycosylation in turmeric lectin is important for the maintenance of its proper folding upon changes in pH, and that the oligosaccharides help in maintaining the active conformation and prevent aggregation in unfolded or partially folded molecules. PMID:26603318

  16. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination.

    PubMed

    Diancourt, Laure; Passet, Virginie; Chervaux, Christian; Garault, Peggy; Smokvina, Tamara; Brisse, Sylvain

    2007-10-01

    Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137(T) (= ATCC 393(T)). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (pi ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei

  17. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs.

    PubMed Central

    Shanklin, J; Somerville, C

    1991-01-01

    Stearoyl-acyl-carrier-protein (ACP) desaturase (EC 1.14.99.6) was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was no detectable identity between the deduced amino acid sequences of the castor delta 9-stearoyl-ACP desaturase and either the delta 9-stearoyl-CoA desaturase from rat or yeast or the delta 12 desaturase from Synechocystis, suggesting that these enzymes may have evolved independently. However, there was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the delta 9 desaturase is developmentally regulated. Images PMID:2006187

  18. Multilocus Sequence Typing of Lactobacillus casei Reveals a Clonal Population Structure with Low Levels of Homologous Recombination▿ †

    PubMed Central

    Diancourt, Laure; Passet, Virginie; Chervaux, Christian; Garault, Peggy; Smokvina, Tamara; Brisse, Sylvain

    2007-01-01

    Robust genotyping methods for Lactobacillus casei are needed for strain tracking and collection management, as well as for population biology research. A collection of 52 strains initially labeled L. casei or Lactobacillus paracasei was first subjected to rplB gene sequencing together with reference strains of Lactobacillus zeae, Lactobacillus rhamnosus, and other species. Phylogenetic analysis showed that all 52 strains belonged to a single compact L. casei-L. paracasei sequence cluster, together with strain CIP107868 (= ATCC 334) but clearly distinct from L. rhamnosus and from a cluster with L. zeae and CIP103137T (= ATCC 393T). The strains were genotyped using amplified fragment length polymorphism, multilocus sequence typing based on internal portions of the seven housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA, and recG, and tandem repeat variation (multilocus variable-number tandem repeats analysis [MLVA] using nine loci). Very high concordance was found between the three methods. Although amounts of nucleotide variation were low for the seven genes (π ranging from 0.0038 to 0.0109), 3 to 12 alleles were distinguished, resulting in 31 sequence types. One sequence type (ST1) was frequent (17 strains), but most others were represented by a single strain. Attempts to subtype ST1 strains by MLVA, ribotyping, clustered regularly interspaced short palindromic repeat characterization, and single nucleotide repeat variation were unsuccessful. We found clear evidence for homologous recombination during the diversification of L. casei clones, including a putative intragenic import of DNA into one strain. Nucleotides were estimated to change four times more frequently by recombination than by mutation. However, statistical congruence between individual gene trees was retained, indicating that recombination is not frequent enough to disrupt the phylogenetic signal. The developed multilocus sequence typing scheme should be useful for future studies of L. casei

  19. A glycobiology review: carbohydrates, lectins, and implications in cancer therapeutics

    PubMed Central

    Ghazarian, Haike; Idoni, Brian; Oppenheimer, Steven B.

    2010-01-01

    This review is intended for general readers who would like a basic foundation in carbohydrate structure and function, lectin biology and the implications of glycobiology in human health and disease, particularly in cancer therapeutics. These topics are among the hundreds included in the field of glycobiology and are treated here because they form the cornerstone of glycobiology or the focus of many advances in this rapidly expanding field. PMID:20199800

  20. Energetics of 5-bromo-4-chloro-3-indolyl-α-d-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing

    SciTech Connect

    Gallego del Sol, Francisca; Gómez, Javier; Hoos, Sylviane; Nagano, Celso S.; Cavada, Benildo S.; England, Patrick; Calvete, Juan J.

    2005-03-01

    The first crystal structure of a Mimosoideae lectin, Parkia platycephala has been solved by MAD phasing using 5-bromo-4-chloro-3-indolyl-α-d-mannose as an anomalous X-ray scatterer. This strategy may be useful for structure elucidation of novel lectins or when molecular replacement methods fail.

  1. Gene Sequence Homology of Chemokines Across Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of expressed gene and protein sequences available in the biological information databases facilitates comparison of protein homologies. A high degree of sequence similarity typically implies homology regarding structure and function and may provide clues to antibody cross-reactivities...

  2. GENE SEQUENCE HOMOLOGY OF CHEMOKINES ACROSS SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of expressed gene and protein sequences available in the biological information databases facilitates comparison of protein homologies. A high degree of sequence similarity typically implies homology regarding structure and function and may provide clues to antibody cross-react...

  3. NMR Structure of Lipoprotein YxeF from Bacillus subtilis Reveals a Calycin Fold and Distant Homology with the Lipocalin Blc from Escherichia coli

    PubMed Central

    Xiao, Rong; Acton, Thomas B.; Sathyamoorthy, Bharathwaj; Dey, Fabian; Fischer, Markus; Skerra, Arne; Rost, Burkhard; Montelione, Gaetano T.; Szyperski, Thomas

    2012-01-01

    The soluble monomeric domain of lipoprotein YxeF from the Gram positive bacterium B. subtilis was selected by the Northeast Structural Genomics Consortium (NESG) as a target of a biomedical theme project focusing on the structure determination of the soluble domains of bacterial lipoproteins. The solution NMR structure of YxeF reveals a calycin fold and distant homology with the lipocalin Blc from the Gram-negative bacterium E.coli. In particular, the characteristic β-barrel, which is open to the solvent at one end, is extremely well conserved in YxeF with respect to Blc. The identification of YxeF as the first lipocalin homologue occurring in a Gram-positive bacterium suggests that lipocalins emerged before the evolutionary divergence of Gram positive and Gram negative bacteria. Since YxeF is devoid of the α-helix that packs in all lipocalins with known structure against the β-barrel to form a second hydrophobic core, we propose to introduce a new lipocalin sub-family named ‘slim lipocalins’, with YxeF and the other members of Pfam family PF11631 to which YxeF belongs constituting the first representatives. The results presented here exemplify the impact of structural genomics to enhance our understanding of biology and to generate new biological hypotheses. PMID:22693626

  4. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures.

    PubMed

    Kurz, Michael; Brachvogel, Volker; Matter, Hans; Stengelin, Siegfried; Thüring, Harald; Kramer, Werner

    2003-02-01

    Bile acids are generated in vivo from cholesterol in the liver, and they undergo an enterohepatic circulation involving the small intestine, liver, and kidney. To understand the molecular mechanism of this transportation, it is essential to gain insight into the three-dimensional (3D) structures of proteins involved in the bile acid recycling in free and complexed form and to compare them with homologous members of this protein family. Here we report the solution structure of the human ileal lipid-binding protein (ILBP) in free form and in complex with cholyltaurine. Both structures are compared with a previously published structure of the porcine ILBP-cholylglycine complex and with related lipid-binding proteins. Protein structures were determined in solution by using two-dimensional (2D)- and 3D-homo and heteronuclear NMR techniques, leading to an almost complete resonance assignment and a significant number of distance constraints for distance geometry and restrained molecular dynamics simulations. The identification of several intermolecular distance constraints unambiguously determines the cholyltaurine-binding site. The bile acid is deeply buried within ILBP with its flexible side-chain situated close to the fatty acid portal as entry region into the inner ILBP core. This binding mode differs significantly from the orientation of cholylglycine in porcine ILBP. A detailed analysis using the GRID/CPCA strategy reveals differences in favorable interactions between protein-binding sites and potential ligands. This characterization will allow for the rational design of potential inhibitors for this relevant system. PMID:12486725

  5. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    PubMed Central

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies – a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. DOI: http://dx.doi.org/10.7554/eLife.11795.001 PMID:26673077

  6. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    PubMed

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. PMID:26673077

  7. Interactions with lectins and agglutination profiles of clinical, food, and environmental isolates of Listeria.

    PubMed Central

    Facinelli, B; Giovanetti, E; Casolari, C; Varaldo, P E

    1994-01-01

    On the basis of preliminary trials with 14 collection strains of Listeria, five lectins (Canavalia ensiformis, concanavalin A; Griffonia simplicifolia lectin I; Helix pomatia agglutinin; Ricinus communis agglutinin; and Triticum vulgaris wheat germ agglutinin) were selected to set up a microtiter agglutination assay. The lectin agglutination profiles of 174 clinical, food, and environmental strains of Listeria monocytogenes, Listeria innocua, and Listeria seeligeri were investigated. Data on the standard determination of the antigenic structure were available for clinical strains; nonclinical isolates were assigned to serogroup 1 or 4 with commercial antisera. The listeria-lectin interaction was related to serological type rather than species; in particular, the strains assigned to serogroup 1 or belonging to serovars 1/2a, 1/2b, 1/2c, 3a, 3b, and 7 were never agglutinated by G. simplicifolia lectin I. The five-lectin set proved to be capable of detecting differences between serologically identical isolates of L. monocytogenes. Of the 150 isolates of this species, 144 were distributed over 15 different lectin agglutination profiles and 6 autoagglutinated, the overall typeability being 96%. However, the profiles encountered among L. monocytogenes isolates were not randomly distributed. With strains assigned to serogroup 1 or belonging to serovars 1/2a, 1/2b, 1/2c, and 3b, the clinical isolates fell into only two of the eight patterns recorded overall; with strains of serogroup 4 and serovar 4b, food and environmental isolates were distributed over eight of the nine patterns found in total, while clinical isolates were distributed over five patterns. In a comparative study of 15 epidemiologically relevant isolates of L. monocytogenes from five distinct outbreaks, strains with identical phage types and/or DNA fingerprints displayed identical lectin profiles. The heterogeneity of agglutination profiles may form the basis of a new approach to L. monocytogenes typing

  8. Molecular structures and antiproliferative activity of side-chain saturated and homologated analogs of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone

    NASA Astrophysics Data System (ADS)

    Pal, Sanjima; Jadhav, Mahesh; Weyhermüller, Thomas; Patil, Yogesh; Nethaji, M.; Kasabe, Umesh; Kathawate, Laxmi; Konkimalla, V. Badireenath; Salunke-Gawali, Sunita

    2013-10-01

    Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, {n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P21 space group, while L-6 in P21/c space group. Molecules of L-4 and L-8 from polymeric chains through Csbnd H⋯O and Nsbnd H⋯O close contacts. L-6 is a dimer formed by Nsbnd H⋯O interaction. Slipped π-π stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = L-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity.

  9. How a plant lectin recognizes high mannose oligosaccharides.

    PubMed

    Garcia-Pino, Abel; Buts, Lieven; Wyns, Lode; Imberty, Anne; Loris, Remy

    2007-08-01

    The crystal structure of Pterocarpus angolensis seed lectin is presented in complex with a series of high mannose (Man) oligosaccharides ranging from Man-5 to Man-9. Despite that several of the nine Man residues of Man-9 have the potential to bind in the monosaccharide-binding site, all oligomannoses are bound in the same unique way, employing the tetrasaccharide sequence Manalpha(1-2)Manalpha(1-6)[Manalpha(1-3)]Manalpha(1-. Isothermal titration calorimetry titration experiments using Man-5, Man-9, and the Man-9-containing glycoprotein soybean (Glycine max) agglutinin as ligands confirm the monovalence of Man-9 and show a 4-times higher affinity for Man-9 when it is presented to P. angolensis seed lectin in a glycoprotein context. PMID:17556509

  10. Linking microfilaments to intracellular membranes: the actin-binding and vesicle-associated protein comitin exhibits a mannose-specific lectin activity.

    PubMed Central

    Jung, E; Fucini, P; Stewart, M; Noegel, A A; Schleicher, M

    1996-01-01

    Comitin is a 24 kDa actin-binding protein from Dictyostelium discoideum that is located primarily on Golgi and vesicle membranes. We have probed the molecular basis of comitin's interaction with both actin and membranes using a series of truncation mutants obtained by expressing the appropriate cDNA in Escherichia coli. Comitin dimerizes in solution; its principle actin-binding activity is located between residues 90 and 135. The N-terminal 135 'core' residues of comitin contain a 3-fold sequence repeat that is homologous to several monocotyledon lectins and which retains key residues that determine these lectins' three-dimensional structure and mannose binding. These repeats of comitin appear to mediate its interaction with mannose residues in glycoproteins or glycolipids on the cytoplasmic surface of membrane vesicles from D.discoideum, and comitin can be released from membranes with mannose. Our data indicate that comitin binds to vesicle membranes via mannose residues and, by way of its interaction with actin, links these membranes to the cytoskeleton. Images PMID:8635456

  11. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin

    PubMed Central

    Taniguchi, Reiya; Kato, Hideaki E.; Font, Josep; Deshpande, Chandrika N.; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Jormakka, Mika; Nureki, Osamu

    2015-01-01

    In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin. PMID:26461048

  12. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica.

    PubMed Central

    Chadee, K; Petri, W A; Innes, D J; Ravdin, J I

    1987-01-01

    Establishment of adherence by Entamoeba histolytica is mediated by a 170-kD Gal/GalNAc inhibitable lectin and is required for cytolysis and phagocytosis of mammalian target cells. We studied the biochemical mechanisms of the in vitro interaction between rat and human colonic mucins and axenic E. histolytica trophozoites. Crude mucus prevented amebic adherence to Chinese hamster ovary (CHO) cells by up to 70%. Purification of the colonic mucins by Sepharose 4B chromatography, nuclease digestion, and cesium chloride gradient centrifugation resulted in a 1,000-fold enrichment of the inhibitory mucins. Purified rat mucin inhibited amebic adherence to and cytolysis of homologous rat colonic epithelial cells. Oxidation and enzymatic cleavage of rat mucin Gal and GalNAc residues completely abrogated mucin inhibition of amebic adherence. The binding of rat 125I-mucin to amebae was galactose specific, saturable, reversible, and pH dependent. A monoclonal antibody specific for the 170-kD amebic Gal/GalNAc lectin completely inhibited the binding of rat 125I-mucin. Rat mucin bound to Affigel affinity purified the amebic lectin from conditioned medium. Colonic mucin glycoproteins act as an important host defense by binding to the parasite's adherence lectin, thus preventing amebic attachment to and cytolysis of host epithelial cells. Images PMID:2890655

  13. Purification and characterization of a novel lectin from a freshwater cyanobacterium, Oscillatoria agardhii.

    PubMed

    Sato, Y; Murakami, M; Miyazawa, K; Hori, K

    2000-02-01

    In the survey of 14 species of laboratory-cultured cyanobacteria for hemagglutinins, we newly detected the activity in two species, Oscillatoria agardhii, strain NIES-204, and Phormidium foveolarum, strain NIES-503. From the extract of O. agardhii, which showed the highest activity with trypsin-treated erythrocytes of rabbit, a lectin was purified to homogeneity by the combination of precipitation with (NH4)2SO4, gel filtration, hydrophobic chromatography and reverse phase chromatography. The purified lectin, designated OAA, was a monomeric protein with an apparent molecular weight of 13,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 16,000 on gel filtration. The amino acid composition was rich in glycine and acidic amino acids. The hemagglutination activity was inhibited by glycoproteins such as yeast mannan, but not by any of the monosaccharides tested. The activity was stable over a wide range of pH (4-11) and at a high temperature of 80 degrees C, and independent on the presence of divalent cations. The features of OAA resembled those of many of lectins from marine macroalgae. The sequence of amino-terminal residues of OAA was determined as ALYNVENQWGGSSAPWNEGG, which was highly homologous to those of lectins from macroalgae of the genus Eucheuma and that of a myxobacterium Myxococcus xanthus hemagglutinin. PMID:10817903

  14. Lectins in Castor Bean Seedlings 1

    PubMed Central

    Harley, Suzanne M.; Beevers, Harry

    1986-01-01

    The amounts of the two lectins (ricin and Ricinus communis agglutinin) in tissues of castor bean seedlings were followed during germination and early growth. For measurement, lectins in extracts were separately eluted from Sepharose columns; an antibody to the agglutinin was also used to detect the lectins by immunodiffusion. The endosperm of the dry seed contains 3.5 mg total lectin (5.6% of the total seed protein), which declines by 50% by day 4 and more rapidly thereafter as the tissue is completely consumed. The cotyledons of the dry seed also contain lectins but the amounts are less than 1% of those in the endosperm, and, as in the endosperm, they are constituents of the albumin fraction of the isolated protein bodies. No lectins were detected in the green cotyledons of 10-day seedlings that had been exposed to light from day 5. The embryonic axes of 2-day seedlings contained very small amounts of lectins but they were not detectable in the aerial parts of seedlings grown for 3 weeks or in cells from endosperm grown in tissue culture. The ability of proteinases and glycosidases (isolated from endosperm of 4-day seedlings) to hydrolyze the lectins was examined. No hydrolysis of the two lectins was observed, but the subunits, separated by reduction with 2-mercaptoethanol, were hydrolyzed slowly by a proteinase and some release of mannose was observed in the presence of the glycosidases. Ricin was converted to its subunits by cysteine and an enzyme in an endosperm extract accelerated chain separation by glutathione. Images Fig. 3 PMID:16664561

  15. An experimentally tested scenario for the structural evolution of eukaryotic Cys2His2 zinc fingers from eubacterial ros homologs.

    PubMed

    Netti, Fortuna; Malgieri, Gaetano; Esposito, Sabrina; Palmieri, Maddalena; Baglivo, Ilaria; Isernia, Carla; Omichinski, James G; Pedone, Paolo V; Lartillot, Nicolas; Fattorusso, Roberto

    2013-07-01

    The exact evolutionary origin of the zinc finger (ZF) domain is unknown, as it is still not clear from which organisms it was first derived. However, the unique features of the ZF domains have made it very easy for evolution to tinker with them in a number of different manners, including their combination, variation of their number by unequal crossing-over or tandem duplication and tuning of their affinity for specific DNA sequence motifs through point substitutions. Classical Cys2His2 ZF domains as structurally autonomous motifs arranged in multiple copies are known only in eukaryotes. Nonetheless, a single prokaryotic Cys2His2 ZF domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens and recently characterized. The present work focuses on the evolution of the classical ZF domains with the goal of trying to determine whether eukaryotic ZFs have evolved from the prokaryotic Ros-like proteins. Our results, based on computational and experimental data, indicate that a single insertion of three amino acids in the short loop that separates the β-sheet from the α-helix of the Ros protein is sufficient to induce a structural transition from a Ros like to an eukaryotic-ZF like structure. This observation provides evidence for a structurally plausible and parsimonious scenario of fold evolution, giving a structural basis to the hypothesis of a horizontal gene transfer (HGT) from bacteria to eukaryotes. PMID:23576569

  16. Genes for the Major Structural Components of Thermotogales Species’ Togas Revealed by Proteomic and Evolutionary Analyses of OmpA and OmpB Homologs

    SciTech Connect

    Petrus, Amanda K.; Swithers, Kristen S.; Ranjit, Chaman R.; Wu, Si; Brewer, Heather M.; Gogarten, J Peter; Pasa-Tolic, Ljiljana; Noll, Kenneth M.

    2012-06-29

    The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompa) and the porin OmpB (or Ompb). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant b-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had b-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.

  17. The backbone structure of the thermophilic Thermoanaerobacter tengcongensis ribose binding protein is essentially identical to its mesophilic E. coli homolog

    SciTech Connect

    Cuneo, Matthew J.; Tian, Yaji; Allert, Malin; Hellinga, Homme W.

    2008-10-27

    We report the X-ray crystal structure of a Thermoanaerobacter tengcongensis ribose binding protein (tteRBP) determined to 1.9 {angstrom} resolution. We find that tteRBP is significantly more stable ({sup app}T{sub m} value {approx} 102 C) than the mesophilic Escherichia coli ribose binding protein (ecRBP) ({sup app}T{sub m} value {approx} 56 C). The tteRBP has essentially the identical backbone conformation (0.41 {angstrom} RMSD of 235/271 C{sub {alpha}} positions and 0.65 {angstrom} RMSD of 270/271 C{sub {alpha}} positions) as ecRBP. Classification of the amino acid substitutions as a function of structure therefore allows the identification of amino acids which potentially contribute to the observed thermal stability of tteRBP in the absence of large structural heterogeneities.

  18. Mannose-specific lectin from the mushroom Hygrophorus russula.

    PubMed

    Suzuki, Tomohiro; Sugiyama, Kozue; Hirai, Hirofumi; Ito, Hiroyuki; Morita, Tatsuya; Dohra, Hideo; Murata, Takeomi; Usui, Taichi; Tateno, Hiroaki; Hirabayashi, Jun; Kobayashi, Yuka; Kawagishi, Hirokazu

    2012-05-01

    A lectin was purified from the mushroom Hygrophorus russula by affinity chromatography on a Sephadex G-50 column and BioAssist S cation exchange chromatography and designated H. russula lectin (HRL). The results of sodium dodecyl sulfate-polyaclylamidegel electrophoresis, gel filtration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of HRL indicated that it was composed of four identical 18.5 kDa subunits with no S-S linkage. Isoelectric focusing of the lectin showed bands near pI 6.40. The complete sequence of 175 amino acid residues was determined by amino acid sequencing of intact or enzyme-digested HRL. The sequence showed homology with Grifola frondosa lectin. The cDNA of HRL was cloned from RNA extracted from the mushroom. The open reading frame of the cDNA consisted of 528 bp encoding 176 amino acids. In hemagglutination inhibition assay, α1-6 mannobiose was the strongest inhibitor and isomaltose, Glcα1-6Glc, was the second strongest one, among mono- and oligosaccharides tested. Frontal affinity chromatography indicated that HRL had the highest affinity for Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc, and non-reducing terminal Manα1-6 was essential for the binding of HRL to carbohydrate chains. The sugar-binding specificity of HRL was also analyzed by using BIAcore. The result from the analysis exhibited positive correlations with that of the hemagglutination inhibition assay. All the results suggested that HRL recognized the α1-6 linkage of mannose and glucose, especially the Manα1-6 bond. HRL showed a mitogenic activity against spleen lymph cells of an F344 rat. Furthermore, an enzyme-linked immunosorbent assay showed strong binding of HRL to human immunodeficiency virus type-1 gp120. PMID:22198564

  19. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study

    NASA Astrophysics Data System (ADS)

    Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.

    2014-02-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.

  20. Determining Structure and Function of Steroid Dehydrogenase Enzymes by Sequence Analysis, Homology Modeling, and Rational Mutational Analysis

    PubMed Central

    DUAX, WILLIAM L.; THOMAS, JAMES; PLETNEV, VLADIMIR; ADDLAGATTA, ANTHONY; HUETHER, ROBERT; HABEGGER, LUKAS; WEEKS, CHARLES M.

    2006-01-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, ~300 have been characterized functionally, and the three-dimensional crystal structures of ~40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30–40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3β-hydroxysteroid dehydrogenase isomerase (3β-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3α,20β-HSD. Combining three-dimensional structural information and sequence data on the 3α,20β-HSD, UDPGE, and 3β-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3β-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model. PMID:16467263

  1. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  2. Solution structure of the reduced form of human peroxiredoxin-6 elucidated using zero-length chemical cross-linking and homology modelling.

    PubMed

    Rivera-Santiago, Roland F; Harper, Sandra L; Zhou, Suiping; Sriswasdi, Sira; Feinstein, Sheldon I; Fisher, Aron B; Speicher, David W

    2015-05-15

    Peroxiredoxin-6 (PRDX6) is an unusual member of the peroxiredoxin family of antioxidant enzymes that has only one evolutionarily conserved cysteine. It reduces oxidized lipids and reactive oxygen species (ROS) by oxidation of the active-site cysteine (Cys(47)) to a sulfenic acid, but the mechanism for conversion back to a thiol is not completely understood. Moreover, it has phospholipase A2 (PLA2) activity in addition to its peroxidase activity. Interestingly, some biochemical data are inconsistent with a known high-resolution crystal structure of the catalytic intermediate of the protein, and biophysical data indicate that the protein undergoes conformational changes that affect enzyme activity. In order to further elucidate the solution structure of this important enzyme, we used chemical cross-linking coupled with high-resolution MS (CX-MS), with an emphasis on zero-length cross-links. Distance constraints from high confidence cross-links were used in homology modelling experiments to determine a solution structure of the reduced form of the protein. This structure was further evaluated using chemical cross-links produced by several homo-bifunctional amine-reactive cross-linking reagents, which helped to confirm the solution structure. The results show that several regions of the reduced version of human PRDX6 are in a substantially different conformation from that shown for the crystal structure of the peroxidase catalytic intermediate. The differences between these two structures are likely to reflect catalysis-related conformational changes. These studies also demonstrate that CX-MS using zero-length cross-linking is a powerful strategy for probing protein conformational changes that is complementary to alternative methods such as crystallographic, NMR and biophysical studies. PMID:25748205

  3. Conjugation, number of Dewar resonance structures (DSs) in homologous polyzethrene and related conjugated polycyclic hydrocarbon series, and kinked versus straight

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray

    2015-11-01

    Kinked polyzethrenes are more stable than linear polyzethrenes making them better candidates as materials for organic electronic devices (e.g., organic field effect transistors, nonlinear optics, and semiconductors) because of their greater singlet biradical properties. For series of molecules constructed by successive attachment of a given aufbau unit, we are able to derive analytical or recursion expressions relating certain properties. For example, starting with a few known number of Dewar resonance structures (DSs) for such a series, one is often able to derive analytical or recursion expressions for these DS values by our method of successive differences which then lead to either constant or Fibonacci numbers, respectively. The increasing order of π-electronic stability of isomers with the same number of Kekulé structures (K) is determined by their increasing number of DSs. Kinked polycyclic conjugated polyenes with a single classical structure (i.e., K = 1) are more conjugated and stable than their straight polycyclic isomers with a single classical structure.

  4. Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin

    SciTech Connect

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun; Lee, Seok-Yong; Pitt, Geoffrey S.

    2012-11-13

    Voltage-gated Na{sup +} (Na{sub V}) channels initiate neuronal action potentials. Na{sub V} channels are composed of a transmembrane domain responsible for voltage-dependent Na{sup +} conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human NaV CTD, an FHF, and Ca{sup 2+}-free CaM at 2.2 {angstrom}. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual NaV CTD isoforms for distinctive FHFs.

  5. Exploring 3D structure of human gonadotropin hormone receptor at antagonist state using homology modeling, molecular dynamic simulation, and cross-docking studies.

    PubMed

    Sakhteman, Amirhossein; Khoddami, Minasadat; Negahdaripour, Manica; Mehdizadeh, Arash; Tatar, Mohsen; Ghasemi, Younes

    2016-09-01

    Human gonadotropin hormone receptor, a G-protein coupled receptor, is the target of many medications used in fertility disorders. Obtaining more structural information about the receptor could be useful in many studies related to drug design. In this study, the structure of human gonadotropin receptor was subjected to homology modeling studies and molecular dynamic simulation within a DPPC lipid bilayer for 100 ns. Several frames were thereafter extracted from simulation trajectories representing the receptor at different states. In order to find a proper model of the receptor at the antagonist state, all frames were subjected to cross-docking studies of some antagonists with known experimental values (Ki). Frame 194 revealed a reasonable correlation between docking calculated energy scores and experimental activity values (|r| = 0.91). The obtained correlation was validated by means of SSLR and showed the presence of no chance correlation for the obtained model. Different structural features reported for the receptor, such as two disulfide bridges and ionic lock between GLU90 and LYS 121 were also investigated in the final model. PMID:27561920

  6. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326

    PubMed Central

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L.; LeDoyt, Morgan; La Vake, Carson J.; Caimano, Melissa J.; Cruz, Adriana R.; Salazar, Juan C.

    2015-01-01

    ABSTRACT We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu593 → Gln593) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a “structure-to-pathogenesis” approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. IMPORTANCE Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog

  7. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    SciTech Connect

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P.; Gilbert, Harry J.; Davies, Gideon J.

    2015-02-01

    A high-resolution structure of a noncanonical α-mannanase relevant to human health and nutrition has been solved via heavy-atom phasing of a selenomethionine derivative. The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α){sub 6}-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76.

  8. Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.

    PubMed

    Jaehme, Michael; Guskov, Albert; Slotboom, Dirk Jan

    2014-11-01

    PnuC transporters catalyze cellular uptake of the NAD+ precursor nicotinamide riboside (NR) and belong to a large superfamily that includes the SWEET sugar transporters. We present a crystal structure of Neisseria mucosa PnuC, which adopts a highly symmetrical fold with 3+1+3 membrane topology not previously observed in any protein. The high symmetry of PnuC with a single NR bound in the center suggests a simple alternating-access translocation mechanism. PMID:25291599

  9. Structure of the GH76 α-mannanase homolog, BT2949, from the gut symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Thompson, Andrew J.; Cuskin, Fiona; Spears, Richard J.; Dabin, Jerome; Turkenburg, Johan P.; Gilbert, Harry J.; Davies, Gideon J.

    2015-01-01

    The large bowel microbiota, a complex ecosystem resident within the gastrointestinal tract of all human beings and large mammals, functions as an essential, nonsomatic metabolic organ, hydrolysing complex dietary polysaccharides and modulating the host immune system to adequately tolerate ingested antigens. A significant member of this community, Bacteroides thetaiotaomicron, has evolved a complex system for sensing and processing a wide variety of natural glycoproducts in such a way as to provide maximum benefit to itself, the wider microbial community and the host. The immense ability of B. thetaiotaomicron as a ‘glycan specialist’ resides in its enormous array of carbohydrate-active enzymes, many of which are arranged into polysaccharide-utilization loci (PULs) that are able to degrade sugar polymers that are often inaccessible to other gut residents, notably α-mannan. The B. thetaiotaomicron genome encodes ten putative α-mannanases spread across various PULs; however, little is known about the activity of these enzymes or the wider implications of α-mannan metabolism for the health of both the microbiota and the host. In this study, SAD phasing of a selenomethionine derivative has been used to investigate the structure of one such B. thetaiotaomicron enzyme, BT2949, which belongs to the GH76 family of α-mannanases. BT2949 presents a classical (α/α)6-barrel structure comprising a large extended surface cleft common to other GH76 family members. Analysis of the structure in conjunction with sequence alignments reveals the likely location of the catalytic active site of this noncanonical GH76. PMID:25664752

  10. Using lectins to harvest the plasma/serum glycoproteome.

    PubMed

    Fanayan, Susan; Hincapie, Marina; Hancock, William S

    2012-07-01

    Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases. PMID:22740463

  11. Novel animal defenses against predation: a snail egg neurotoxin combining lectin and pore-forming chains that resembles plant defense and bacteria attack toxins.

    PubMed

    Dreon, Marcos Sebastián; Frassa, María Victoria; Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E; Heras, Horacio

    2013-01-01

    Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0-10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator's body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new

  12. Novel Animal Defenses against Predation: A Snail Egg Neurotoxin Combining Lectin and Pore-Forming Chains That Resembles Plant Defense and Bacteria Attack Toxins

    PubMed Central

    Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E.; Heras, Horacio

    2013-01-01

    Although most eggs are intensely predated, the aerial egg clutches from the aquatic snail Pomacea canaliculata have only one reported predator due to unparalleled biochemical defenses. These include two storage-proteins: ovorubin that provides a conspicuous (presumably warning) coloration and has antinutritive and antidigestive properties, and PcPV2 a neurotoxin with lethal effect on rodents. We sequenced PcPV2 and studied whether it was able to withstand the gastrointestinal environment and reach circulation of a potential predator. Capacity to resist digestion was assayed using small-angle X-ray scattering (SAXS), fluorescence spectroscopy and simulated gastrointestinal proteolysis. PcPV2 oligomer is antinutritive, withstanding proteinase digestion and displaying structural stability between pH 4.0–10.0. cDNA sequencing and protein domain search showed that its two subunits share homology with membrane attack complex/perforin (MACPF)-like toxins and tachylectin-like lectins, a previously unknown structure that resembles plant Type-2 ribosome-inactivating proteins and bacterial botulinum toxins. The protomer has therefore a novel AB toxin combination of a MACPF-like chain linked by disulfide bonds to a lectin-like chain, indicating a delivery system for the former. This was further supported by observing PcPV2 binding to glycocalix of enterocytes in vivo and in culture, and by its hemaggutinating, but not hemolytic activity, which suggested an interaction with surface oligosaccharides. PcPV2 is able to get into predator’s body as evidenced in rats and mice by the presence of circulating antibodies in response to sublethal oral doses. To our knowledge, a lectin-pore-forming toxin has not been reported before, providing the first evidence of a neurotoxic lectin in animals, and a novel function for ancient and widely distributed proteins. The acquisition of this unique neurotoxic/antinutritive/storage protein may confer the eggs a survival advantage, opening new

  13. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  14. Interactions between indole-3-acetic acid (IAA) with a lectin from Canavalia maritima seeds reveal a new function for lectins in plant physiology.

    PubMed

    Delatorre, Plinio; Silva-Filho, José Caetano; Rocha, Bruno Anderson Matias; Santi-Gadelha, Tatiane; da Nóbrega, Raphael Batista; Gadelha, Carlos Alberto Almeida; do Nascimento, Kyria Santiago; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda; Cavada, Benildo Sousa

    2013-09-01

    Indole-3-acetic acid (IAA) bound is considered a storage molecule and is inactive. However, some studies have proposed an additional possible regulatory mechanism based on the ability of lectins to form complexes with IAA. We report the first crystal structure of ConM in complex with IAA at 2.15 Å resolution. Based on a tetrameric model of the complex, we hypothesize how the lectin controls the availability of IAA during the early seedling stages, indicating a possible new physiological role for these proteins. A free indole group is also bound to the protein. The ConM interaction with different forms of IAA is a strategy to render the phytohormone unavailable to the cell. Thus, this new physiological role proposed for legume lectins might be a novel mechanism by which IAA levels are decreased in addition to the destruction and formation of new complexes in the later stages of seed germination. PMID:23727478

  15. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action

    SciTech Connect

    Baram, David; Pyetan, Erez; Sittner, Assa; Auerbach-Nevo, Tamar; Bashan, Anat; Yonath, Ada

    2010-07-13

    Trigger factor (TF), the first chaperone in eubacteria to encounter the emerging nascent chain, binds to the large ribosomal subunit in the vicinity of the protein exit tunnel opening and forms a sheltered folding space. Here, we present the 3.5-{angstrom} crystal structure of the physiological complex of the large ribosomal subunit from the eubacterium Deinococcus radiodurans with the N-terminal domain of TF (TFa) from the same organism. For anchoring, TFa exploits a small ribosomal surface area in the vicinity of proteins L23 and L29, by using its 'signature motif' as well as additional structural elements. The molecular details of TFa interactions reveal that L23 is essential for the association of TF with the ribosome and may serve as a channel of communication with the nascent chain progressing in the tunnel. L29 appears to induce a conformational change in TFa, which results in the exposure of TFa hydrophobic patches to the opening of the ribosomal exit tunnel, thus increasing its affinity for hydrophobic segments of the emerging nascent polypeptide. This observation implies that, in addition to creating a protected folding space for the emerging nascent chain, TF association with the ribosome prevents aggregation by providing a competing hydrophobic environment and may be critical for attaining the functional conformation necessary for chaperone activity.

  16. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus.

    PubMed

    Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise

    2016-10-01

    Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. PMID:27113336

  17. Molecular cloning and expression analysis of a F-type lectin gene from Japanese sea perch (Lateolabrax japonicus).

    PubMed

    Qiu, Lihua; Lin, Liansheng; Yang, Keng; Zhang, Hanhua; Li, Jianzhu; Zou, Falin; Jiang, Shigui

    2011-08-01

    The techniques of homology cloning and anchored PCR were used to clone the fucose-binding lectin (F-type lectin) gene from Japanese sea perch (Lateolabrax Japonicus). The full-length cDNA of sea perch F-lectin (JspFL) contained a 5' untranslated region (UTR) of 39 bp, an ORF of 933 bp encoding a polypeptide of 310 amino acids with an estimated molecular mass of 10.82 kDa and a 3' UTR of 332 bp. The searches for nucleotides and protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of JspFL was homological to the Fucose-binding lectin in other fish species. In the JspFL deduced amino acid sequence, two tandem domains that exhibit the eel carbohydrate-recognition sequence motif were found. The temporal expressions of gene in the different tissues were measured by real-time PCR. And the mRNA expressions of the gene were constitutively expressed in tissues including spleen, head-kidney, liver, gill, and heart. The JspFL expression in spleen was different during the stimulated time point, 2 h later the expression level became up-regulated, and 6 h later the expression level became down-regulated. The result indicated that JspFL was constitutive and inducible expressed and could play a critical role in the host-pathogen interaction. PMID:21104013

  18. Structural features that specify tyrosine kinase activity deduced from homology modeling of the epidermal growth factor receptor.

    PubMed Central

    Knighton, D R; Cadena, D L; Zheng, J; Ten Eyck, L F; Taylor, S S; Sowadski, J M; Gill, G N

    1993-01-01

    To identify structural features that distinguish protein-tyrosine kinases from protein-serine kinases, a molecular model of the kinase domain of epidermal growth factor receptor was constructed by substituting its amino acid sequence for the amino acid sequence of the catalytic subunit of cAMP-dependent protein kinase in a 2.7-A refined crystallographic model. General folding was conserved as was the configuration of invariant residues at the active site. Two sequence motifs that distinguish the two families correspond to loops that converge at the active site of the enzyme. A conserved arginine in the catalytic loop is proposed to interact with the gamma phosphate of ATP. The second loop provides a binding surface that positions the tyrosine of the substrate. A positively charged surface provides additional sites for substrate recognition. Images Fig. 2 Fig. 3 Fig. 4 PMID:8389462

  19. Electronic Band Structure and Optical Properties of Srn+1TinO3n+1 Ruddlesden-Popper Homologous Series

    NASA Astrophysics Data System (ADS)

    Reshak, Ali Hussain; Auluck, Sushil; Kityk, Ivan

    2008-07-01

    State-of-the-art calculations of electronic band structures, density of states and frequency-dependent optical properties have been reported for Srn+1TinO3n+1 (n=1, 2, 3, ∞) compounds. These materials possess indirect wide energy band gaps. The frequency dependent optical properties of n=1,2,3 compounds show considerable anisotropy and positive birefringence. The conduction band minimum is originates from Ti-d states, while the valence band maximum is governed by O-p states. The bandwidth of the Ti-d states is responsible for the decrease in the energy band gap as n changes from 1 to 2, 3, and ∞. We have analyzed the degree of hybridization on the basis of the ratio of the orbital overlapping within the muffin tin sphere.

  20. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    PubMed

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  1. Structure-function relationship of a plant NCS1 member--homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis.

    PubMed

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  2. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome.

    PubMed

    Li, Yan; Ng, Hui Qi; Li, Qingxin; Kang, CongBao

    2016-01-01

    The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD. PMID:27025590

  3. Structure-Function Relationship of a Plant NCS1 Member – Homology Modeling and Mutagenesis Identified Residues Critical for Substrate Specificity of PLUTO, a Nucleobase Transporter from Arabidopsis

    PubMed Central

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M. Joanne; Möhlmann, Torsten

    2014-01-01

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. PMID:24621654

  4. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome

    PubMed Central

    Li, Yan; Ng, Hui Qi; Li, Qingxin; Kang, CongBao

    2016-01-01

    The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD. PMID:27025590

  5. Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous Nostoc H-NOX domain complexes

    PubMed Central

    Kumar, Vijay; Martin, Faye; Hahn, Michael G.; Schaefer, Martina; Stamler, Jonathan S.; Stasch, Johannes-Peter; van den Akker, Focco

    2013-01-01

    The soluble guanylyl cyclase (sGC) is an important receptor for nitric oxide (NO). Nitric oxide activates sGC several hundred fold to generate cGMP from GTP. Because of sGC’s salutary roles in cardiovascular physiology, it has received substantial attention as a drug target. The heme domain of sGC is key to its regulation as it not only contains the NO activation site but also harbors sites for NO-independent sGC activators as well an S-nitrosylation site (β1 C122) involved in desensitization. Here we report the crystal structure of the activator BAY 60-2770 bound to the Nostoc H-NOX domain that is homologous to sGC. The structure reveals that BAY 60-2770 has displaced the heme and acts as a heme mimetic via carboxylate-mediated interactions with the conserved YxSxR motif as well as hydrophobic interactions. Comparisons with the previously determined BAY 58-2667 bound structure reveals that BAY 60-2770 is more ordered in its hydrophobic tail region. sGC activity assays demonstrate that BAY 60-2770 has about 10% higher fold maximal stimulation compared to BAY 58-2667. S-nitrosylation of the BAY 60-2770 substituted Nostoc H-NOX domain causes subtle changes in the vicinity of the S-nitrosylated C122 residue. These shifts could impact the adjacent YxSxR motif and αF helix and as such potentially inhibit either heme incorporation or NO-activation of sGC and thus provide a structural basis for desensitization. PMID:23614626

  6. Variable domain structure of {kappa}IV human light chain len : high homology to the murine light chain McPC603.

    SciTech Connect

    Huang, D.-B.; Chang, C.-H.; Ainsworth, C.; Johnson, G.; Solomon, A.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center

    1997-12-01

    Antibody light chains of the {kappa} subgroup are the predominant light chain component in human immune responses and are used almost exclusively in the antibody repertoire of mice. Human {kappa} light chains comprise four subgroups. To date, all crystallographic studies of human {kappa} light chains were carried out on proteins of the {kappa}I subgroup. The light chain produced by multiple myeloma patient Len, was of the {kappa}IV subgroup, it differed by only one residue from the germ-line gene encoded protein. The variable domain fragment of the light chain was crystallized from ammonium sulfate in space group C222{sub 1}. The crystal structure was determined by molecular replacement and refined at 1.95 Angstrom resolution to an R-factor of 0.15. Protein Len has six additional residues in its CDR1 segment compared to the {kappa}I proteins previously characterized. The {kappa}IV variable domain. Len, differs in only 23 of 113 residues from murine {kappa} light chain McPC603. The RMS deviation upon superimposing their {alpha}-carbons was 0.69 Angstrom. The CDR1 segment of the human and murine variable domains have the same length and conformation although their amino acid sequences differ in 5 out of 17 residues. Structural features were identified that could account for the significantly higher stability of the human {kappa}IV protein relative to its murine counterpart. This human {kappa}IV light chain structure is the closest human homolog to a murine light chain and can be expected to facilitate detailed structural comparisons necessary for effective humanization of murine antibodies.

  7. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  8. A lectin gene encodes the alpha-amylase inhibitor of the common bean.

    PubMed Central

    Moreno, J; Chrispeels, M J

    1989-01-01

    An alpha-amylase inhibitor that inhibits insect and mammalian alpha-amylases but not plant alpha-amylases, is present in seeds of the common bean (Phaseolus vulgaris). We have purified the alpha-amylase inhibitor by using a selective heat treatment in acidic medium and affinity chromatography with porcine pancreas alpha-amylase coupled to agarose. Under sodium dodecyl sulfate gel electrophoresis, the purified inhibitor gave rise to five bands with mobilities corresponding to molecular masses ranging from 14 to 19 kDa. N-terminal sequencing (up to 15 amino acids) of the polypeptides obtained from these bands resulted in only two different sequences matching two stretches of the amino acid sequence deduced from an already described lectin gene [Hoffman, L. M. (1984) J. Mol. Appl. Gen. 2,447-453]. This gene is different from but closely related to the genes that code for phytohemagglutinin, the major lectin of bean. Further evidence based on amino acid composition, identification of a precursor, and recognition of the product of the gene (expressed in Escherichia coli) by an anti-alpha-amylase inhibitor serum confirms that the inhibitor is encoded by this or a closely related lectin gene. This finding assigns a biological function, which has been described at the molecular level, to a plant lectin gene product and supports the defense role postulated for seed lectins. The lack of homology with other families of enzyme inhibitors suggests that this may be the first member of a new family of plant enzyme inhibitors. Images PMID:2682631

  9. An unusual anti-H lectin inhibited by milk from individuals with the Bombay phenotype.

    PubMed

    Joshi, S R; Vasantha, K; Robb, J S

    2005-01-01

    There are several lectins with anti-H specificity but few of them serve as useful reagents. An anti-H lectin, extracted from the seeds of the plant Momordica dioica Roxb. ex willd., was tested for its hemagglutination and inhibition properties, using standard serologic methods and panel RBCs, serum, saliva, milk, and oligosaccharides purified from milk. The extract displayed strongest agglutination with group O RBCs and was weakest with group A1B RBCs in a spectrum of O>A2>B>A2B>A1>A1B; the extract failed to react with the RBCs from 25 individuals with the Bombay (Oh) phenotype and was inhibited by H secretor saliva, hence it was characterized as anti-H. However, its inhibition by milk samples from five mothers with the Bombay phenotype called into question its specificity as anti-H. The lectin reacted as strongly with group O ii (adult) RBCs as with normal OI RBCs, ruling out its specificity as anti-HI. Hemagglutination inhibition was observed with 2'-fucosyllactose (Type 2 H) and lacto-N-fucopentose-I (Type 1 H), suggesting that the binding of the lectin had preference for H structures. However, inhibition by N-acetyllactosamine, lacto-Ntetraose, and lacto-N-neotetraose suggested that the lectin also recognized unsubstituted terminal beta-linked galactose units. The hemagglutinin property in the present lectin showed an unusual anti-H specificity. The lectin was inhibited by milk from Bombay phenotype individuals and certain milk oligosaccharides not specific for the H antigen. PMID:15783298

  10. Inactivation and fragmentation of lectin from Bothrops leucurus snake venom by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Nunes, E. S.; Souza, M. A. A.; Vaz, A. F. M.; Coelho, L. C. B. B.; Aguiar, J. S.; Silva, T. G.; Guarnieri, M. C.; Melo, A. M. M. A.; Oliva, M. L. V.; Correia, M. T. S.

    2012-04-01

    Gamma radiation alters the molecular structure of biomolecules and is able to mitigate the action of snake venoms and their isolated toxins. The effect of γ-radiation on the folding of Bothrops lecurus venom lectin was measured by a hemagglutinating assay, intrinsic and bis-ANS fluorescence. Intrinsic and bis-ANS fluorescence analyses indicated that irradiation caused unfolding followed by aggregation of the lectin. Our results suggest that irradiation can lead to significant changes in the protein structure, which may promote the loss of its binding property and toxic action.

  11. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators.

    PubMed Central

    Paz-Ares, J; Ghosal, D; Wienand, U; Peterson, P A; Saedler, H

    1987-01-01

    The structure of the wild-type c1 locus of Zea mays was determined by sequence analysis of one genomic and two cDNA clones. The coding region is composed of three exons (150 bp, 129 bp and one, at least 720 bp) and two small introns (88 bp and 145 bp). Transcription of the mRNAs corresponding to the two cDNA clones cLC6 (1.1 kb) and cLC28 (2.1 kb) starts from the same promoter. Both cDNAs are identical except that cLC28 extends further at its 3' end. A putative protein, 273 amino acids in length was deduced from the sequence of both transcripts. It contains two domains, one basic and the other acidic and might function as a transcriptional activator. The basic domain of this c1-encoded protein shows 40% sequence homology to the protein products of animal myb proto-oncogenes. Images Fig. 3. PMID:3428265

  12. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division.

    PubMed Central

    RayChaudhuri, D

    1999-01-01

    The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue. PMID:10228152

  13. Epidemiological characterization of Neisseria gonorrhoeae by lectins.

    PubMed Central

    Schalla, W O; Whittington, W L; Rice, R J; Larsen, S A

    1985-01-01

    A total of 101 isolates of penicillinase-producing and non-penicillinase-producing Neisseria gonorrhoeae with known nutritional requirements, plasmid content, and serovars, were examined for lectin agglutination patterns. These isolates were from outbreaks in Georgia, California, Hawaii, and Pennsylvania. Cell suspensions made from 16- to 18-h cultures were mixed with 14 different lectins, and the resultant agglutination patterns were classified as agglutination groups. Among the 101 isolates tested, 24 different agglutination groups were demonstrated. Of the organisms tested, 55% were located in 3 of the 24 groups, and 86% of the isolates reacted with the lectins Trichosanthes kinlowii, Griffonia simplicifolia I, peanut agglutinin, soybean agglutinin, potato agglutinin, and wheat germ agglutinin. One isolate did not react with peanut or potato agglutinin, five isolates lacked reactivity with potato agglutinin, and six isolates did not react with wheat germ agglutinin. Of the wheat germ-negative isolates, four were from Pennsylvania and were identical with regard to auxotype, plasmid content, serovar, and lectin group. The other two wheat germ-negative isolates were from California and were unrelated by the same criteria to the four Pennsylvania isolates and to each other. Among the isolates tested, there were no differences in lectin groups with regard to the sex of the patient. In the Georgia collection, agglutination with one lectin group was confined to isolates of serogroup IA. This association was not observed for the other geographic areas. Some isolates showing identical auxotype, plasmid content, and serovars could be differentiated based on lectin agglutination patterns, whereas other isolates were identical by all testing criteria. PMID:3930560

  14. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations.

    PubMed

    Feng, Zhiwei; Pearce, Larry V; Xu, Xiaomeng; Yang, Xiaole; Yang, Peng; Blumberg, Peter M; Xie, Xiang-Qun

    2015-03-23

    The transient receptor potential vanilloid type 1 (TRPV1) is a heat-activated cation channel protein, which contributes to inflammation, acute and persistent pain. Antagonists of human TRPV1 (hTRPV1) represent a novel therapeutic approach for the treatment of pain. Developing various antagonists of hTRPV1, however, has been hindered by the unavailability of a 3D structure of hTRPV1. Recently, the 3D structures of rat TRPV1 (rTRPV1) in the presence and absence of ligand have been reported as determined by cryo-EM. rTRPV1 shares 85.7% sequence identity with hTRPV1. In the present work, we constructed and reported the 3D homology tetramer model of hTRPV1 based on the cryo-EM structures of rTRPV1. Molecular dynamics (MD) simulations, energy minimizations, and prescreen were applied to select and validate the best model of hTRPV1. The predicted binding pocket of hTRPV1 consists of two adjacent monomers subunits, which were congruent with the experimental rTRPV1 data and the cyro-EM structures of rTRPV1. The detailed interactions between hTRPV1 and its antagonists or agonists were characterized by molecular docking, which helped us to identify the important residues. Conformational changes of hTRPV1 upon antagonist/agonist binding were also explored by MD simulation. The different movements of compounds led to the different conformational changes of monomers in hTRPV1, indicating that TRPV1 works in a concerted way, resembling some other channel proteins such as aquaporins. We observed that the selective filter was open when hTRPV1 bound with an agonist during MD simulation. For the lower gate of hTRPV1, we observed large similarities between hTRPV1 bound with antagonist and with agonist. A five-point pharmacophore model based on several antagonists was established, and the structural model was used to screen in silico for new antagonists for hTRPV1. By using the 3D TRPV1 structural model above, the pilot in silico screening has begun to yield promising hits with

  15. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  16. Braid Floer homology

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Ghrist, R.; Vandervorst, R. C.; Wójcik, W.

    2015-09-01

    Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R / Z ×D2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Floer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy-Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Floer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Floer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology.

  17. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  18. Effect of chum salmon egg lectin on tight junctions in Caco-2 cell monolayers.

    PubMed

    Nemoto, Ryo; Yamamoto, Shintaro; Ogawa, Tomohisa; Naude, Ryno; Muramoto, Koji

    2015-01-01

    The effect of a chum salmon egg lectin (CSL3) on tight junction (TJ) of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER) value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine. PMID:25951005

  19. Chemical Lectinology: Tools for Probing the Ligands and Dynamics of Mammalian Lectins In Vivo

    PubMed Central

    Belardi, Brian; Bertozzi, Carolyn R.

    2015-01-01

    Summary The importance and complexity associated with the totality of glycan structures, i.e. the glycome, has garnered significant attention from chemists and biologists alike. However, what is lacking from this biochemical picture is how cells, tissues, and organisms interpret glycan patterns and translate this information into appropriate responses. Lectins, glycan-binding proteins, are thought to bridge this gap by decoding the glycome and dictating cell fate based on the underlying chemical identities and properties of the glycome. Yet, our understanding of the in vivo ligands and function for most lectins is still incomplete. This review focuses on recent advances in chemical tools to study the specificity and dynamics of mammalian lectins in live cells. A picture emerges of lectin function that is highly sensitive to its organization, which in turn drastically shapes immunity and cancer progression. We hope this review will inspire biologists to make use of these new techniques and stimulate chemists to continue developing innovative approaches to probe lectin biology in vivo. PMID:26256477

  20. The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species.

    PubMed

    Cerigini, Emanuela; Palma, Francesco; Barbieri, Elena; Buffalini, Michele; Stocchi, Vilberto

    2008-07-01

    Lectins, proteins that are able to bind carbohydrate structures, are typically involved in cell recognition mechanisms. We demonstrate here that TBF-1, the main soluble protein in the Tuber borchii Vittad. fruiting body, is a phase-specific lectin that is able selectively to bind the exopolysaccharides produced by ascoma-associated Rhizobium spp. Characterization of TBF-1 was performed using both the protein purified from the truffles and the recombinant protein overexpressed in Escherichia coli. The two proteins exhibit the same hemagglutination activity toward rabbit red blood cells and the same sugar binding specificity. The discovery of lectin activity for TBF-1 led us to propose revising the protein name to 'T. borchii fruiting body lectin 1' with the acronym TBFL-1. PMID:18505412

  1. Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina speciosa.

    PubMed

    Konozy, Emadeldin H E; Bernardes, Emerson S; Rosa, Cesar; Faca, Vitor; Greene, Lewis Joel; Ward, Richard John

    2003-02-15

    present in a highly hydrophobic environment, and binding of lactose to EspecL neither quenched tryptophan fluorescence nor altered lambda(max) position. Treating purified EspecL with NBS an affinity-modifying reagent specific for tryptophan totally inactivated the lectin with total modification of three tryptophan residues. Of these residues only the third modified residue seemed to play a crucial role in the lectin activity. Addition of lactose to the assay medium did not provide protection against NBS modification which indicated that tryptophan might not be directly involved in the binding of haptenic sugar D-galactose. Modification of tyrosine with N-acetylimidazole led to a 50% drop in EspecL activity with concomitant acetylation of six tyrosine residues. The secondary structure of EspecL as studied by circular dichroism was found to be a typical beta-pleated-sheet structure which is comparable to the CD structure of Erythrina corallodendron lectin. Binding of lactose did not alter the EspecL secondary structure as revealed by CD examination. PMID:12573281

  2. 21 CFR 864.9550 - Lectins and protectins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lectins and protectins. 864.9550 Section 864.9550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins...

  3. 21 CFR 864.9550 - Lectins and protectins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lectins and protectins. 864.9550 Section 864.9550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins...

  4. 21 CFR 864.9550 - Lectins and protectins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lectins and protectins. 864.9550 Section 864.9550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins...

  5. 21 CFR 864.9550 - Lectins and protectins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lectins and protectins. 864.9550 Section 864.9550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins...

  6. Crystallization and preliminary X-ray diffraction analysis of the lectin from Dioclea rostrata Benth seeds

    SciTech Connect

    Delatorre, Plínio; Nascimento, Kyria Santiago; Melo, Luciana Magalhães; Souza, Emmanuel Prata de; Rocha, Bruno Anderson Matias da; Benevides, Raquel G.; Oliveira, Taiana Maia de; Bezerra, Gustavo Arruda; Bezerra, Maria Júlia Barbosa; Cunha, Rodrigo Maranguape Silva da; Cunha, Francisco Assis Bezerra da; Freire, Valder Nogueira; Cavada, Benildo Sousa

    2006-02-01

    D. rostrata lectin was crystallized by hanging-drop vapor diffusion. The crystal belongs to the orthorhombic space group I222 and diffracted to 1.87 Å resolution. Lectins from the Diocleinae subtribe (Leguminosae) are highly similar proteins that promote various biological activities with distinctly differing potencies. The structural basis for this experimental data is not yet fully understood. Dioclea rostrata lectin was purified and crystallized by hanging-drop vapour diffusion at 293 K. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 61.51, b = 88.22, c = 87.76 Å. Assuming the presence of one monomer per asymmetric unit, the solvent content was estimated to be about 47.9%. A complete data set was collected at 1.87 Å resolution.

  7. Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood

    PubMed Central

    Vickers, Dwayne A. L.; Hincapie, Marina; Hancock, William S.

    2011-01-01

    Lectins are a group of proteins that bind specifically and reversibly to mono- and oligosaccharide carbohydrate structures that are present on the surfaces of mammalian cells. The use of lectins as capture agents in microfluidic channels was examined with a focus on cells associated with T and B lymphocytic leukemia. In addition to examining the adhesion of Jurkat T and Raji B lymphocytes to a broad panel of lectins, this work also examined the capture of these cells from whole blood. Captured T and B lymphocytes were eluted from the microfluidic devices with a solution of the lectin’s inhibiting sugar. The capture and release steps were accomplished in under 1 h. The significance of this work lies within the realm of low-cost capture of abundant target cells with non-stimulatory elution capability. PMID:21455756

  8. An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae).

    PubMed Central

    Zhu, K; Huesing, J E; Shade, R E; Bressan, R A; Hasegawa, P M; Murdock, L L

    1996-01-01

    Griffonia simplicifolia II, an N-acetylglucosamine-specific legume lectin, has insecticidal activity when fed to the cowpea weevil, Callosobruchus maculatus (F.). A cDNA clone encoding G. simplicifolia II was isolated from a leaf cDNA library, sequenced, and expressed in a bacterial expression system. The recombinant protein exhibited N-acetylglucosamine-binding and insecticidal activity against cowpea weevil, indicating that glycosylation and multimeric structure are not required for these properties. These results support the hypothesis that genes of the legume lectin gene family encode proteins that function in plant defense against herbivores. PMID:8587982

  9. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-01

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  10. Patterns of sperm-specific histone variation in sea stars and sea urchins: primary structural homologies in the N-terminal region of spermatogenic H1.

    PubMed

    Massey, C B; Watts, S A

    1992-04-15

    An electrophoretic characterization of histones from pyloric caeca, testes, and sperm of Asterias vulgaris revealed a sperm/testes-specific variant of histone H1 significantly larger than its somatic counterpart from pyloric caeca. Additional proteins were observed in H1 regions of acetic acid-urea polyacrylamide gels in testicular extracts. Sperm or testis-specific variants of H2B observed in sea urchins were not found in the sea star. Evidence presented suggests that sperm- or testes-specific H1 species of intermediate mobility may arise from a single, slow-migrating H1 species (SpH1). Although an increase in nonspecific DNA binding by nuclear proteins must occur during the process of spermatogenesis, different organisms exhibit various patterns of sperm-specific protein mediating differential binding during the process. Sperm-specific variants of both H1 and H2B histones are observed in sea urchins, while the only variant observed in sea stars during spermatogenesis is SpH1. Sequencing of the N-terminus of SpH1 from A. vulgaris revealed a repeating tetrapeptide in residues 3-6 and 8-11 (Ser-Pro-Arg-Lys and Ser-Pro-Lys-Lys, respectively), homologous to repeats in the N-termini of sperm-specific H1s from sea urchins. Primary structure within critical, variable regions of molecules responsible for nonspecific DNA binding appear conserved in many organisms. The occurrence of repeating tetrapeptides in SpH1 and other DNA binding proteins suggests that such domains may function similarly in various chromatins undergoing regulated or reversible condensation. PMID:1583456

  11. Structure-based characterization of the binding of peptide to the human endophilin-1 Src homology 3 domain using position-dependent noncovalent potential analysis.

    PubMed

    Fu, Chunjiang; Wu, Gang; Lv, Fenglin; Tian, Feifei

    2012-05-01

    Many protein-protein interactions are mediated by a peptide-recognizing domain, such as WW, PDZ, or SH3. In the present study, we describe a new method called position-dependent noncovalent potential analysis (PDNPA), which can accurately characterize the nonbonding profile between the human endophilin-1 Src homology 3 (hEndo1 SH3) domain and its peptide ligands and quantitatively predict the binding affinity of peptide to hEndo1 SH3. In this procedure, structure models of diverse peptides in complex with the hEndo1 SH3 domain are constructed by molecular dynamics simulation and a virtual mutagenesis protocol. Subsequently, three noncovalent interactions associated with each position of the peptide ligand in the complexed state are analyzed using empirical potential functions, and the resulting potential descriptors are then correlated with the experimentally measured affinity on the basis of 1997 hEndo1 SH3-binding peptides with known activities, using linear partial least squares regression (PLS) and the nonlinear support vector machine (SVM). The results suggest that: (i) the electrostatics appears to be more important than steric properties and hydrophobicity in the formation of the hEndo1 SH3-peptide complex; (ii) P(-4) of the core decapeptide ligand with the sequence pattern P(-6)P(-5)P(-4)P(-3)P(-2)P(-1)P(0)P(1)P(2)P(3) is the most important position in terms of determining both the stability and specificity of the architecture of the complex, and; (iii) nonlinear SVM appears to be more effective than linear PLS for accurately predicting the binding affinity of a peptide ligand to hEndo1 SH3, whereas PLS models are straightforward and easy to interpret as compared to those built by SVM. PMID:21947444

  12. Carbohydrate-lectin interactions assayed by SPR.

    PubMed

    Duverger, Eric; Lamerant-Fayel, Nathalie; Frison, Natacha; Monsigny, Michel

    2010-01-01

    Surface plasmon resonance is a valuable tool to determine the affinity between glycoconjugates and sugar-binding proteins such as plant and animal lectins. The main interest of using such an approach is that neither the lectins - which are proteins - nor their ligands - natural compounds such as glycoproteins, oligosaccharides, polysaccharides, or synthetic glycoconjugates such as glycoclusters or neoglycoproteins - require any tag. Because lectins bear several binding sites, they behave like immunoglobulin eliciting avidity phenomena. This peculiarity may lead to erroneous results if special conditions are not applied. We obtained best and reproducible results when the lectin was immobilized and its ligands were used as soluble analytes. With heterogeneous glycoconjugates such as neoglycoproteins (which are heterogeneous in terms of nature, number, and position of sugar residues) or a mixture of oligosaccharides, the data may be more accurately gathered by using the Sips approach, which has been used to determine mean binding constants of polyclonal antibodies. With small analytes such as oligosaccharides, we found it convenient to determine binding constants by using an inhibitory approach: a neoglycoprotein (M (r) = approximately 80,000) was allowed to bind to the immobilized lectin and small oligosaccharides were used as inhibitors. With larger glycoconjugates such as peptides substituted with glycoclusters, direct binding measurements gave accurate results. Because of the availability of low-cost simple sugars (mono- or disaccharides) it is very convenient to use large concentrations of such carbohydrates to clean the sensor chips instead of more drastic cleaning solutions such as acids or alkali, in such a way that the immobilized lectin is stable for many experiments. PMID:20217620

  13. Lectin glycoprofiling of recombinant therapeutic interleukin-7.

    PubMed

    Landemarre, Ludovic; Duverger, Eric

    2013-01-01

    Lectins array is a powerfull and complementary method of glycans analysis allowing fast identification of specific motifs on molecules or cells. This technology is of increased interest for the development of therapeutic recombinant glycoproteins and particularly relevant for a first study of lot-to-lot comparison, or detection of unwanted glycans. In this chapter, we describe a lectin array-type method specifically designed for the study of recombinant therapeutic interleukin-7 (rhIL-7). This specific method allows the analysis of the glycans motifs, the distribution of the glycoforms population, and the detection of potential immunogen glycans in rhIL-7 purified CHO-produced batches. PMID:23475723

  14. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography

    PubMed Central

    Wang, Kevin; Peng, Eric D.; Huang, Amy S.; Xia, Dong; Vermont, Sarah J.; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M.; Bradley, Peter J.

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  15. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    PubMed

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  16. A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities.

    PubMed

    Wu, Mingjiang; Tong, Changqing; Wu, Yue; Liu, Shuai; Li, Wei

    2016-06-15

    A lectin (HFL) was isolated from the brown alga, Hizikia fusiformis, through ion exchange on cellulose DE52 and HPLC with a TSK-gel G4000PWXL column. SDS-PAGE showed that HFL had a molecular mass of 16.1 kDa. The HPLC (with a TSK-gel G4000PWXL column) indicated that HFL is a tetramer in its native state. The total carbohydrate content was 41%. Glucose, galactose and fucose were the monosaccharide units of HFL, and the normalized mol% values were 6, 14 and 80, respectively. HFL contains a large amount of the acidic amino acid, Asx. The β-elimination reaction suggested that the oligosaccharide and peptide moieties of HFL may belong to the N-glucosidic linkage. The amino acid sequences, of about five segments of HFL, were acquired by MALDI-TOF/TOF, and the sequences have no homology with other lectins. HFL was found to agglutinate sheep erythrocytes. The hemagglutination activity was inhibited by thyroglobulin, from bovine thyroid, but not by any of the monosaccharides tested. The lectin reaction was independent of the presence of the divalent cation Ca(2+). HFL showed free radical scavenging activity against hydroxyl, DPPH and ABTS(+) radicals. PMID:26868541

  17. Characterization of a Lectin from Lactarius deterrimus (Research on the Possible Involvement of the Fungal Lectin in Recognition between Mushroom and Spruce during the Early Stages of Mycorrhizae Formation).

    PubMed Central

    Giollant, M.; Guillot, J.; Damez, M.; Dusser, M.; Didier, P.; Didier, E.

    1993-01-01

    A lectin (LDetL) was isolated from carpophores of the mushroom Lactarius deterrimus, a specific symbiont of the spruce, by a combination of affinity, hydroxylapatite, and gel-filtration chromatography. Its molecular mass, as determined by gel filtration, is about 37,000 D, and its structure is dimeric, with two identical subunits assembled by noncovalent bonds. It appeared homogeneous on high-performance liquid chromatography gel filtration, but isoelectric focusing revealed microheterogeneity, with a main band in the pH zone near 6.5. Amino acid analysis showed that LDetL contains a large proportion of glycine and especially methionine. Hapten inhibition assay indicated that LDetL is most specific for [beta]-D-galactosyl(1->3)-D-N-acetyl galactosamine residues. The lectin was formed in the in vitro-cultivated mycelium, and anti-lectin antibodies revealed by indirect immunofluorescence the presence of lectin in the cell wall. Receptor sites for LDetL were found on the roots, especially on the root hairs, of axenically grown spruce seedlings. The lectin LDL previously isolated by us from the taxonomically related mushroom Lactarius deliciosus, a symbiont of the pine, does not bind to the spruce radicle. This suggests a role of the fungal lectin in recognition and specificity during the early stages of mycorrhizae formation. PMID:12231706

  18. Role of Structure-Based Changes due to Somatic Mutation in Highly Homologous DNA-Binding and DNA-Hydrolyzing Autoantibodies Exemplified by A23P Substitution in the VH Domain

    PubMed Central

    Kozyr, A. V.; Kolesnikov, A. V.; Khlyntseva, A. E.; Bogun, A. G.; Savchenko, G. A.; Shemyakin, I. G.; Gabibov, A. G.

    2012-01-01

    Anti-DNA autoantibodies are responsible for tissue injury in lupus. A subset of DNA-specific antibodies capable of DNA cleavage can be even more harmful after entering the living cells by destroying nuclear DNA. Origins of anti-DNA autoantibodies are not fully understood, and the mechanism of induction of DNA-cleaving activity remains speculative. The autoantibody BV04-01 derived from lupus-prone mouse is the only DNA-hydrolyzing immunoglobulin with known 3D structure. Identification and analysis of antibodies homologous to BV04-01 may help to understand molecular bases and origins of DNA-cleaving activity of autoantibodies. BLAST search identified murine anti-DNA autoantibody MRL-4 with sequences of variable region genes highly homologous to those of autoantibody BV04-01. Despite significant homology to BV04-01, not only MRL-4 had no DNA-cleaving activity, but also reversion of its unusual P23 mutation to the germline alanine resulted in a dramatic loss of affinity to DNA. Contrary to this effect, transfer of the P23 mutation to the BV04-01 has resulted in a significant drop in DNA binding and almost complete loss of catalytic activity. In the present paper we analyzed the properties of two homologous autoantibodies and mutants thereof and discussed the implications of unusual somatic mutations for the development of autoantibodies with DNA-binding and DNA-hydrolyzing activity. PMID:23193442

  19. Structures of MART-126/27-35Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition

    SciTech Connect

    Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K; Powell, Jr., Daniel J.; Johnson, Laura A; Restifo, Nicholas P; Baker, Brian M

    2008-09-17

    Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

  20. Lectins from tropical sponges. Purification and characterization of lectins from genus Aplysina.

    PubMed

    Miarons, P B; Fresno, M

    2000-09-22

    Only a few animal phyla have been screened for the presence and distribution of lectins. Probably the most intensively studied group is the mollusk. In this investigation, 22 species from 12 families of tropical sponges collected in Los Roques National Park (Venezuela) were screened for the presence of lectins. Nine saline extracts exhibited strong hemagglutinating activity against pronase-treated hamster red blood cells; five of these reacted against rabbit red blood cells, four with trypsin-treated bovine red blood cells, and five with human red blood cells regardless of the blood group type. Extracts from the three species studied from genus Aplysina (archeri, lawnosa, and cauliformis) were highly reactive and panagglutinating against the panel of red blood cells tested. The lectins from A. archeri and A. lawnosa were purified to homogeneity by ammonium sulfate fractionation, affinity chromatography on p-aminobenzyl-beta-1-thiogalactopyranoside-agarose, and gel filtration chromatography. Both lectins exhibited a native molecular mass of 63 kDa and by SDS-polyacrylamide gel electrophoresis under reducing conditions have an apparent molecular mass of 16 kDa, thus suggesting they occur as homotetramers. The purified lectins contain 3-4 mol of divalent cation per molecule, which are essential for their biological activity. Hapten inhibition of hemagglutination was carried out to define the sugar binding specificity of the purified A. archeri lectin. The results indicate a preference of the lectin for nonreducing beta-linked d-Gal residues being the best inhibitors of red blood cells binding methyl-beta-d-Gal and thiodigalactoside (Gal beta 1-4-thiogalactopyranoside). The behavior of several glycans on immobilized lectin affinity chromatography confirmed and extended the specificity data obtained by hapten inhibition. PMID:10852905

  1. Rapid Assays for Lectin Toxicity and Binding Changes that Reflect Altered Glycosylation in Mammalian Cells

    PubMed Central

    Stanley, Pamela; Sundaram, Subha

    2014-01-01

    Glycosylation engineering is used to generate glycoproteins, glycolipids or proteoglycans with a more defined complement of glycans on their glycoconjugates. For example, a mammalian cell glycosylation mutant lacking a specific glycosyltransferase generates glycoproteins, and/or glycolipids, and/or proteoglycans, with truncated glycans missing the sugar transferred by that glycosyltransferase, and also missing those sugars that would be added subsequently. In some cases, an alternative glycosyltransferase may then use the truncated glycans as acceptors, thereby generating a new or different glycan subset in the mutant cell. Another type of glycosylation mutant arises from gain-of-function mutations that, for example, activate a silent glycosyltransferase gene. In this case, glycoconjugates will have glycans with additional sugar(s) that are more elaborate than the glycans of wild type cells. Mutations in other genes that affect glycosylation, such as nucleotide sugar synthases or transporters, will alter the glycan complement in more general ways that usually affect several types of glycoconjugates. There are now many strategies for generating a precise mutation in a glycosylation gene in a mammalian cell. Large-volume cultures of mammalian cells may also give rise to spontaneous mutants in glycosylation pathways. This article will focus on how to rapidly characterize mammalian cells with an altered glycosylation activity. The key reagents for the protocols described are plant lectins that bind mammalian glycans with varying avidities, depending on the specific structure of those glycans. Cells with altered glycosylation generally become resistant or hypersensitive to lectin toxicity, and have reduced or increased lectin or antibody binding. Here we describe rapid assays to compare the cytotoxicity of lectins in a lectin resistance test, and the binding of lectins or antibodies by flow cytometry in a glycan-binding assay. Based on these tests, glycosylation changes

  2. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin.

    PubMed

    Mohs, Angela; Li, Yingjie; Doss-Pepe, Ellen; Baum, Jean; Brodsky, Barbara

    2005-02-15

    Missense mutations in the collagen triple-helix that replace one of the required Gly residues in the (Gly-Xaa-Yaa)(n)() repeating sequence have been implicated in various disorders. Although most hereditary collagen disorders are rare, a common occurrence of a Gly replacement mutation is found in the collagenous domain of mannose binding lectin (MBL). A Gly --> Asp mutation at position 54 in MBL is found at a frequency as high as 30% in certain populations and leads to increased susceptibility to infections. The structural and energetic consequences of this mutation are investigated by comparing a triple-helical peptide containing the N-terminal Gly-X-Y units of MBL with the homologous peptide containing the Gly to Asp replacement. The mutation leads to a loss of triple-helix content but only a small decrease in the stability of the triple-helix (DeltaT(m) approximately 2 degrees C) and no change in the calorimetric enthalpy. NMR studies on specifically labeled residues indicate the portion of the peptide C-terminal to residue 54 is in a highly ordered triple-helix in both peptides, while residues N-terminal to the mutation site have a weak triple-helical signal in the parent peptide and are completely disordered in the mutant peptide. These results suggest that the N-terminal triplet residues are contributing little to the stability of this peptide, a hypothesis confirmed by the stability and enthalpy of shorter peptides containing only the region C-terminal to the mutation site. The Gly to Asp replacement at position 54 in MBL occurs at the boundary of a highly stable triple-helix region and a very unstable sequence. The junctional position of this mutation minimizes its destabilizing effect, in contrast with the significant destabilization seen for Gly replacements in peptides modeling collagen diseases. PMID:15697204

  3. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  4. Crystallization and crystal manipulation of the Pterocarpus angolensis seed lectin.

    PubMed

    Loris, Remy; Garcia-Pino, Abel; Buts, Lieven; Bouckaert, Julie; Beeckmans, Sonia; De Greve, Henri; Wyns, Lode

    2005-06-01

    The Man/Glc-specific legume lectin from the seeds of the African bloodwood tree (Pterocarpus angolensis) was crystallized in the presence of the disaccharide ligand Man(alpha1-3)ManMe. Small crystals initially appeared from a preliminary screen, but proved difficult to reproduce. The initial crystals were used to prepare microseeds, leading to a reproducible crystallization protocol. All attempts to obtain crystals directly of the ligand-free protein or of other carbohydrate complexes failed. However, the Man(alpha1-3)ManMe co-crystals withstand soaking with ten other carbohydrates known to bind to the lectin. Soaking for 15 min in 100 mM carbohydrate typically resulted in complete replacement of Man(alpha1-3)ManMe by the desired carbohydrate despite the involvement of lattice contacts at the binding site. Transferring the crystals for two weeks in carbohydrate-free artificial mother liquor resulted in the complete removal of the sugar from one of the two monomers in the asymmetric unit. Additional treatment of these crystals with 100 mM EDTA for two weeks resulted in removal of the structural calcium and manganese ions, which is accompanied by significant structural rearrangements of the loops that constitute the carbohydrate-binding site. PMID:15930620

  5. On the hodological criterion for homology.

    PubMed

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as "the same organ in different animals under every variety of form and function" and its redefinition after Darwin as "the same trait in different lineages due to common ancestry" entail the same heuristic problem: how to establish "sameness."Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  6. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  7. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  8. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  9. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  10. The structure, function and properties of sirohaem decarboxylase - an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway

    PubMed Central

    Palmer, David J; Schroeder, Susanne; Lawrence, Andrew D; Deery, Evelyne; Lobo, Susana A; Saraiva, Ligia M; McLean, Kirsty J; Munro, Andrew W; Ferguson, Stuart J; Pickersgill, Richard W; Brown, David G; Warren, Martin J

    2014-01-01

    Some bacteria and archaea synthesize haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side-chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem respectively. The characterization of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallized and its structure has been elucidated. The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed. PMID:24865947

  11. The F-actin capping proteins of Physarum polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin; cap42(b) is Physarum actin.

    PubMed Central

    Ampe, C; Vandekerckhove, J

    1987-01-01

    We have carried out a primary structure analysis of the F-actin capping proteins of Physarum polycephalum. Cap42(b) was completely sequenced and was found to be identical with Physarum actin. Approximately 88% of the sequence of cap42(a) was determined. Cap42(a) and fragmin were found to be identical by amino acid composition, isoelectric point, mol. wt, elution time on reversed-phase chromatography and amino acid sequence of their tryptic peptides. The available sequence of cap42(a) is greater than 36% homologous with the NH2-terminal 42-kd domain of human gelsolin. A highly homologous region of 16 amino acids is also shared between cap42(a), gelsolin and the Acanthamoeba profilins. Cap42(a) binds two actin molecules in a similar way to gelsolin suggesting a mechanism of F-actin modulation that has been conserved during evolution. Images Fig. 1. Fig. 3. Fig. 4. PMID:2832154

  12. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation.

    PubMed

    Kittur, Farooqahmed S; Lalgondar, Mallikarjun; Yu, Hyun Young; Bevan, David R; Esen, Asim

    2007-03-01

    In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities. PMID:17210577

  13. The size, shape and specificity of the sugar-binding site of the jacalin-related lectins is profoundly affected by the proteolytic cleavage of the subunits.

    PubMed Central

    Houlès Astoul, Corinne; Peumans, Willy J; van Damme, Els J M; Barre, Annick; Bourne, Yves; Rougé, Pierre

    2002-01-01

    Mannose-specific lectins with high sequence similarity to jacalin and the Maclura pomifera agglutinin have been isolated from species belonging to the families Moraceae, Convolvulaceae, Brassicaceae, Asteraceae, Poaceae and Musaceae. Although these novel mannose-specific lectins are undoubtedly related to the galactose-specific Moraceae lectins there are several important differences. Apart from the obvious differences in specificity, the mannose- and galactose-specific jacalin-related lectins differ in what concerns their biosynthesis and processing, intracellular location and degree of oligomerization of the protomers. Taking into consideration that the mannose-specific lectins are widely distributed in higher plants, whereas their galactose-specific counterparts are confined to a subgroup of the Moraceae sp. one can reasonably assume that the galactose-specific Moraceae lectins are a small-side group of the main family. The major change that took place in the structure of the binding site of the diverging Moraceae lectins concerns a proteolytic cleavage close to the N-terminus of the protomer. To corroborate the impact of this change, the specificity of jacalin was re-investigated using surface plasmon resonance analysis. This approach revealed that in addition to galactose and N -acetylgalactosamine, the carbohydrate-binding specificity of jacalin extends to mannose, glucose, N -acetylmuramic acid and N -acetylneuraminic acid. Owing to this broad carbohydrate-binding specificity, jacalin is capable of recognizing complex glycans from plant pathogens or predators. PMID:12169094

  14. Algal lectins as promising biomolecules for biomedical research.

    PubMed

    Singh, Ram Sarup; Thakur, Shivani Rani; Bansal, Parveen

    2015-02-01

    Lectins are natural bioactive ubiquitous proteins or glycoproteins of non-immune response that bind reversibly to glycans of glycoproteins, glycolipids and polysaccharides possessing at least one non-catalytic domain causing agglutination. Some of them consist of several carbohydrate-binding domains which endow them with the properties of cell agglutination or precipitation of glycoconjugates. Lectins are rampant in nature from plants, animals and microorganisms. Among microorganisms, algae are the potent source of lectins with unique properties specifically from red algae. The demand of peculiar and neoteric biologically active substances has intensified the developments on isolation and biomedical applications of new algal lectins. Comprehensively, algal lectins are used in biomedical research for antiviral, antinociceptive, anti-inflammatory, anti-tumor activities, etc. and in pharmaceutics for the fabrication of cost-effective protein expression systems and nutraceutics. In this review, an attempt has been made to collate the information on various biomedical applications of algal lectins. PMID:23855360

  15. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms

    PubMed Central

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-01-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  16. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry

    PubMed Central

    Andrade, Camila G; Cabral Filho, Paulo E; Tenório, Denise PL; Santos, Beate S; Beltrão, Eduardo IC; Fontes, Adriana; Carvalho, Luiz B

    2013-01-01

    Cell surface glycoconjugates play an important role in differentiation/dedifferentiation processes and lectins are employed to evaluate them by several methodologies. Fluorescent probes are considered a valuable tool because of their ability to provide a particular view, and are more detailed and sensitive in terms of cell structure and molecular content. The aim of this study was to evaluate and compare the expression and distribution of glycoconjugates in normal human breast tissue, and benign (fibroadenoma), and malignantly transformed (invasive ductal carcinoma) breast tissues. For this, we used mercaptosuccinic acid-coated Cadmium Telluride (CdTe) quantum dots (QDs) conjugated with concanavalin A (Con A) or Ulex europaeus agglutinin I (UEA I) lectins to detect α-D-glucose/mannose and L-fucose residues, respectively. The QD-lectin conjugates were evaluated by hemagglutination activity tests and carbohydrate inhibition assays, and were found to remain functional, keeping their fluorescent properties and carbohydrate recognition ability. Fluorescence images showed that different regions of breast tissue expressed particular types of carbohydrates. While the stroma was preferentially and intensely stained by QD-Con A, ductal cells were preferentially labeled by QD-UEA I. These results indicate that QD-lectin conjugates can be used as molecular probes and can help to elucidate the glycoconjugate profile in biological processes. PMID:24324334

  17. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry.

    PubMed

    Andrade, Camila G; Cabral Filho, Paulo E; Tenório, Denise P L; Santos, Beate S; Beltrão, Eduardo I C; Fontes, Adriana; Carvalho, Luiz B

    2013-01-01

    Cell surface glycoconjugates play an important role in differentiation/dedifferentiation processes and lectins are employed to evaluate them by several methodologies. Fluorescent probes are considered a valuable tool because of their ability to provide a particular view, and are more detailed and sensitive in terms of cell structure and molecular content. The aim of this study was to evaluate and compare the expression and distribution of glycoconjugates in normal human breast tissue, and benign (fibroadenoma), and malignantly transformed (invasive ductal carcinoma) breast tissues. For this, we used mercaptosuccinic acid-coated Cadmium Telluride (CdTe) quantum dots (QDs) conjugated with concanavalin A (Con A) or Ulex europaeus agglutinin I (UEA I) lectins to detect α-D-glucose/mannose and L-fucose residues, respectively. The QD-lectin conjugates were evaluated by hemagglutination activity tests and carbohydrate inhibition assays, and were found to remain functional, keeping their fluorescent properties and carbohydrate recognition ability. Fluorescence images showed that different regions of breast tissue expressed particular types of carbohydrates. While the stroma was preferentially and intensely stained by QD-Con A, ductal cells were preferentially labeled by QD-UEA I. These results indicate that QD-lectin conjugates can be used as molecular probes and can help to elucidate the glycoconjugate profile in biological processes. PMID:24324334

  18. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms.

    PubMed

    Zhang, R Y; Neu, T R; Bellenberg, S; Kuhlicke, U; Sand, W; Vera, M

    2015-05-01

    Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482(T) and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms. PMID:25488256

  19. Logistic regression models to predict solvent accessible residues using sequence- and homology-based qualitative and quantitative descriptors applied to a domain-complete X-ray structure learning set

    PubMed Central

    Nepal, Reecha; Spencer, Joanna; Bhogal, Guneet; Nedunuri, Amulya; Poelman, Thomas; Kamath, Thejas; Chung, Edwin; Kantardjieff, Katherine; Gottlieb, Andrea; Lustig, Brooke

    2015-01-01

    A working example of relative solvent accessibility (RSA) prediction for proteins is presented. Novel logistic regression models with various qualitative descriptors that include amino acid type and quantitative descriptors that include 20- and six-term sequence entropy have been built and validated. A domain-complete learning set of over 1300 proteins is used to fit initial models with various sequence homology descriptors as well as query residue qualitative descriptors. Homology descriptors are derived from BLASTp sequence alignments, whereas the RSA values are determined directly from the crystal structure. The logistic regression models are fitted using dichotomous responses indicating buried or accessible solvent, with binary classifications obtained from the RSA values. The fitted models determine binary predictions of residue solvent accessibility with accuracies comparable to other less computationally intensive methods using the standard RSA threshold criteria 20 and 25% as solvent accessible. When an additional non-homology descriptor describing Lobanov–Galzitskaya residue disorder propensity is included, incremental improvements in accuracy are achieved with 25% threshold accuracies of 76.12 and 74.79% for the Manesh-215 and CASP(8+9) test sets, respectively. Moreover, the described software and the accompanying learning and validation sets allow students and researchers to explore the utility of RSA prediction with simple, physically intuitive models in any number of related applications. PMID:26664348

  20. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN.

    PubMed

    Kahlow, Barbara Stadler; Nery, Rodrigo Araldi; Skare, Thelma L; Ribas, Carmen Australia Paredes Marcondes; Ramos, Gabriela Piovezani; Petisco, Roberta Dombroski

    2016-03-01

    Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes carbohydrate patterns found on the surface of a large number of pathogenic micro-organisms, activating the complement system. However, this protein seems to increase the tissue damage after ischemia. In this paper is reviewed some aspects of harmful role of the mannose binding lectin in ischemia/reperfusion injury. PMID:27120743

  1. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  2. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN

    PubMed Central

    KAHLOW, Barbara Stadler; NERY, Rodrigo Araldi; SKARE, Thelma L; RIBAS, Carmen Australia Paredes Marcondes; RAMOS, Gabriela Piovezani; PETISCO, Roberta Dombroski

    2016-01-01

    Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes carbohydrate patterns found on the surface of a large number of pathogenic micro-organisms, activating the complement system. However, this protein seems to increase the tissue damage after ischemia. In this paper is reviewed some aspects of harmful role of the mannose binding lectin in ischemia/reperfusion injury. PMID:27120743

  3. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  4. Mannose-Binding Lectin Promoter Polymorphisms and Gene Variants in Pulmonary Tuberculosis Patients from Cantabria (Northern Spain)

    PubMed Central

    Lavín-Alconero, Lucía; Sánchez-Velasco, Pablo; Guerrero-Alonso, M.-Ángeles; Ausín, Fernando; Fariñas, M.-Carmen; Leyva-Cobián, Francisco

    2012-01-01

    Mannose-binding lectin is a central molecule of the innate immune system. Mannose-binding lectin 2 promoter polymorphisms and structural variants have been associated with susceptibility to tuberculosis. However, contradictory results among different populations have been reported, resulting in no convincing evidence of association between mannose-binding lectin 2 and susceptibility to tuberculosis. For this reason, we conducted a study in a well genetically conserved Spanish population in order to shed light on this controversial association. We analysed the six promoter and structural mannose-binding lectin 2 gene variants in 107 patients with pulmonary tuberculosis and 441 healthy controls. Only D variant and HYPD haplotype were significantly more frequents in controls which would indicate that this allele could confer protection against pulmonary tuberculosis, but this difference disappeared after statistical correction. Neither the rest of alleles nor the haplotypes were significantly associated with the disease. These results would indicate that mannose-binding lectin promoter polymorphisms and gene variants would not be associated with an increased risk to pulmonary tuberculosis. Despite the slight trend of the D allele and HYPD haplotype in conferring protection against pulmonary tuberculosis, susceptibility to this disease would probably be due to other genetic factors, at least in our population. PMID:23304495

  5. Mannose-binding lectin promoter polymorphisms and gene variants in pulmonary tuberculosis patients from cantabria (northern Spain).

    PubMed

    Ocejo-Vinyals, J-Gonzalo; Lavín-Alconero, Lucía; Sánchez-Velasco, Pablo; Guerrero-Alonso, M-Ángeles; Ausín, Fernando; Fariñas, M-Carmen; Leyva-Cobián, Francisco

    2012-01-01

    Mannose-binding lectin is a central molecule of the innate immune system. Mannose-binding lectin 2 promoter polymorphisms and structural variants have been associated with susceptibility to tuberculosis. However, contradictory results among different populations have been reported, resulting in no convincing evidence of association between mannose-binding lectin 2 and susceptibility to tuberculosis. For this reason, we conducted a study in a well genetically conserved Spanish population in order to shed light on this controversial association. We analysed the six promoter and structural mannose-binding lectin 2 gene variants in 107 patients with pulmonary tuberculosis and 441 healthy controls. Only D variant and HYPD haplotype were significantly more frequents in controls which would indicate that this allele could confer protection against pulmonary tuberculosis, but this difference disappeared after statistical correction. Neither the rest of alleles nor the haplotypes were significantly associated with the disease. These results would indicate that mannose-binding lectin promoter polymorphisms and gene variants would not be associated with an increased risk to pulmonary tuberculosis. Despite the slight trend of the D allele and HYPD haplotype in conferring protection against pulmonary tuberculosis, susceptibility to this disease would probably be due to other genetic factors, at least in our population. PMID:23304495

  6. Mitochondria and the Lectin Pathway of Complement*

    PubMed Central

    Brinkmann, Christel R.; Jensen, Lisbeth; Dagnæs-Hansen, Frederik; Holm, Ida E.; Endo, Yuichi; Fujita, Teizo; Thiel, Steffen; Jensenius, Jens C.; Degn, Søren E.

    2013-01-01

    Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Notwithstanding the evolutionary time that has passed since the initial endosymbiotic event, mitochondria have retained many hallmarks of their eubacterial origin. Recent studies have indicated that during perturbations of normal homeostasis, such as following acute trauma leading to massive necrosis and release of mitochondria, the immune system might mistake symbiont for enemy and initiate an inappropriate immune response. The innate immune system is the first line of defense against invading microbial pathogens, and as such is the primary suspect in the recognition of mitochondria-derived danger-associated molecular patterns and initiation of an aberrant response. Conversely, innate immune mechanisms are also central to noninflammatory clearance of innocuous agents. Here we investigated the role of a central humoral component of innate immunity, the lectin pathway of complement, in recognition of mitochondria in vitro and in vivo. We found that the soluble pattern recognition molecules, mannan-binding lectin (MBL), L-ficolin, and M-ficolin, were able to recognize mitochondria. Furthermore, MBL in complex with MBL-associated serine protease 2 (MASP-2) was able to activate the lectin pathway and deposit C4 onto mitochondria, suggesting that these molecules are involved either in homeostatic clearance of mitochondria or in induction of untoward inflammatory reactions. We found that following mitochondrial challenge, C3 was consumed in vivo in the absence of overt inflammation, indicating a potential role of complement in noninflammatory clearance of mitochondria. Thus, we report here the first indication of involvement of the lectin pathway in mitochondrial immune handling. PMID:23378531

  7. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides.

    PubMed

    Yasuda, Emi; Tateno, Hiroaki; Hirabayashi, Jun; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-07-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  8. Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides▿†

    PubMed Central

    Yasuda, Emi; Tateno, Hiroaki; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-01-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  9. Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds.

    PubMed

    Leite, Joana Filomena Magalhães; Assreuy, Ana Maria Sampaio; Mota, Mário Rogério Lima; Bringel, Pedro Henrique de Souza Ferreira; Lacerda, Rodrigo Rodrigues e; Gomes, Vinícius de Morais; Cajazeiras, João Batista; Nascimento, Kyria Santiago do; Pessôa, Hilzeth de Luna Freire; Gadelha, Carlos Alberto de Almeida; Delatorre, Plinio; Cavada, Benildo Sousa; Santi-Gadelha, Tatiane

    2012-01-01

    Lectins are proteins that have the ability to bind specifically and reversibly to carbohydrates and glycoconjugates, without altering the structure of the glycosyl ligand. They are found in organisms such as viruses, plants and humans, and they have been shown to possess important biological activities. The objective of this study was to purify and characterize lectins in the seeds of Clitoria fairchildiana, as well as to verify their biological activities. The results indicated the presence of a lectin (CFAL) in the glutelin acid protein fraction, which agglutinated native rabbit erythrocytes. CFAL was purified by column chromatography ion-exchange, DEAE-Sephacel, which was obtained from a peak of protein retained in the matrix by applying 0.5 M NaCl using the step-wise method. Electrophoretic analysis of this lectin in SDS-PAGE indicated a two band pattern protein molecular mass of approximately 100 and 116 kDa. CFAL proved to be unspecific to all carbohydrates/glycoconjugates in common use for the sugar inhibition test. This lectin showed no significant cytotoxicity to human red blood cells. It was observed that CFAL has anti-inflammatory activity in the paw edema induced by carrageenan model, in which a 64% diminution in edema was observed. Antinociceptive effects were observed for CFAL in the abdominal writhing test (induced by acetic acid), in which increasing doses of the lectin caused reduction in the number of contortions by up to 72%. It was concluded that the purified and characterized lectin from the seeds of Clitoria fairchildiana has anti-inflammatory and antinociceptive activity, and is not cytotoxic to human erythrocytes. PMID:22418929

  10. Concept, strategy and realization of lectin-based glycan profiling.

    PubMed

    Hirabayashi, Jun

    2008-08-01

    Lectins are a diverse group of carbohydrate-binding proteins. Each lectin has its own specificity profile. It is believed that lectins exist in all living organisms that produce glycans. From a practical viewpoint, lectins have been used extensively in biochemical fields including proteomics due to their usefulness as detection and enrichment tools for specific glycans. Nevertheless, they have often been underestimated as probes, especially compared with antibodies, because of their low affinity and broad specificity. However, together with the concept of glycomics, such properties of lectins are now considered to be suitable for the task of 'profiling' in order to cover a wider range of ligands. Recently there has been rapid movement in the field of proteomics aimed at the investigation of glycan-related biomarkers. This is partly because of limitations of the present approach of simply following changes in protein-level expression, without paying sufficient attention to the fact and effects of glycosylation. The trend is reflected in the frequent use of lectins in the contexts of glycoprotein enrichment and glycan profiling. However, there are many aspects to be considered in using lectins, which differ considerably from antibodies. In this article, the author, as a developer of two unique methodologies, frontal affinity chromatography (FAC) and the lectin microarray, describes critical points concerning the use of lectins, together with the concept, strategy and means to achieve advances in these emerging glycan profiling technologies. PMID:18390573

  11. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes

    SciTech Connect

    de Miranda Santos, I.K.; Pereira, M.E.

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeus and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.

  12. Tomato lectin histochemistry for microglial visualization.

    PubMed

    Villacampa, Nàdia; Almolda, Beatriz; González, Berta; Castellano, Bernardo

    2013-01-01

    The use of different lectins for the study of microglial cells in the central nervous system (CNS) is a valuable tool that has been extensively used in the last years for the selective staining of this glial cell population, not only in normal physiological conditions, but also in a wide range of pathological situations where the normal homeostasis of the parenchyma is disturbed. In this chapter we accurately describe the methodology for the selective labelling of microglial cells by using the tomato lectin (TL), a protein lectin obtained from Lycopersicum esculentum with specific affinity for poly-N-acetyl lactosamine sugar residues which are found on the plasma membrane and in the cytoplasm of microglia. Here we describe how to perform this technique on vibratome, frozen, and paraffin sections for optical microscopy, as well as for transmission electron microscopy (TEM) studies. Using this methodology it is possible to visualize amoeboid microglia in the developing brain, ramified microglia in the adult, and activated/reactive microglia in the experimentally damaged brain. In addition, as TL also recognized sugar residues in endothelial cells, this technique is very useful for the study of the relationship established between microglia and the CNS vasculature. PMID:23813385

  13. [Homologous recombination among bacterial genomes: the measurement and identification].

    PubMed

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research. PMID:26907777

  14. Purification, crystallization and preliminary structural characterization of the N-terminal region of the human formin-homology protein FHOD1

    SciTech Connect

    Schulte, Antje Rak, Alexey; Pylypenko, Olena; Ludwig, Diana; Geyer, Matthias

    2007-10-01

    The N-terminal region (1–339) of the human FHOD1 protein has been crystallized in two different crystal forms. A crystal of the (C31S,C71S) mutant diffracted to around 2.3 Å resolution. Formins are key regulators of actin cytoskeletal dynamics that constitute a diverse protein family that is present in all eukaryotes examined. They typically consist of more than 1000 amino acids and are defined by the presence of two conserved regions, namely the formin homology 1 and 2 domains. Additional conserved domains comprise a GTPase-binding domain for activation, a C-terminal autoregulation motif and an N-terminal recognition domain. In this study, the N-terminal region (residues 1–339) of the human formin homology domain-containing protein 1 (FHOD1) was purified and crystallized from 20%(w/v) PEG 4000, 10%(v/v) glycerol, 0.3 M magnesium chloride and 0.1 M Tris–HCl pH 8.0. Native crystals belong to space group P1, with unit-cell parameters a = 35.4, b = 73.9, c = 78.7 Å, α = 78.2, β = 86.2, γ = 89.7°. They contain two monomers of FHOD1 in the asymmetric unit and diffract to a resolution of 2.3 Å using a synchrotron-radiation source.

  15. Non-labeled QCM Biosensor for Bacterial Detection using Carbohydrate and Lectin Recognitions

    PubMed Central

    Shen, Zhihong; Huang, Mingchuan; Xiao, Caide; Zhang, Yun; Zeng, Xiangqun; Wang, Peng G.

    2008-01-01

    High percentages of harmful microbes or their secreting toxins bind to specific carbohydrate sequences on human cells at the recognition and attachment sites. A number of studies also show that lectins react with specific structures of bacteria and fungi. In this report, we take advantage of the fact that a high percentage of microorganisms have both carbohydrate and lectin binding pockets at their surface. We demonstrate here for the first time that a carbohydrate non-labeled mass sensor in combination with lectin-bacterial O-antigen recognition can be used for detection of high molecular weight bacterial targets with remarkably high sensitivity and specificity. A functional mannose self-assembled monolayer (SAM) in combination with lectin Con A was used as molecular recognition elements for the detection of E. coli W1485 using Quartz Crytsal Microbalance (QCM) as a transducer. The multivalent binding of Concanavalin A (Con A) to the Escherichia coli (E. coli) surface O-antigen favors the strong adhesion of E. coli to mannose modified QCM surface by forming bridges between these two. As a result, the contact area between cell and QCM surface increases that leads to rigid and strong attachment. Therefore it enhances the binding between E. coli and the mannose. Our results show a significant improvement of the sensitivity and specificity of carbohydrate QCM biosensor with a experimental detection limit of a few hundred bacterial cells. The linear range is from 7.5 × 102 to 7.5 × 107 cells/mL that is four decade wider than the mannose alone QCM sensor. The change of damping resistances for E. coli adhesion experiments was no more than 1.4% suggesting that the bacterial attachment was rigid, rather than a viscoelastic behavior. Little non-specific binding was observed for Staphylococcus aureus and other proteins (Fetal Bovine serum, Erythrina cristagalli lectin). Our approach not only overcomes the challenges of applying QCM technology for bacterial detection but

  16. Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins.

    PubMed

    Sudakevitz, Dvora; Imberty, Anne; Gilboa-Garber, Nechama

    2002-08-01

    The worldwide distributed plant aggressive pathogen Ralstonia solanacearum, which causes lethal wilt in many agricultural crops, produces a potent L-fucose-binding lectin (RSL) exhibiting sugar specificity similar to that of PA-IIL of the human aggressive opportunistic pathogen Pseudomonas aeruginosa. Both lectins show L-fucose > L-galactose > D-arabinose > D-mannose specificity, but the affinities of RSL to these sugars are substantially lower. Unlike Ulex europaeus anti-H lectin, but like PA-IIL and Aleuria aurantia lectin (AAL), RSL agglutinates H-positive human erythrocytes regardless of their type, O, A, B, or AB, and animal erythrocytes (papain-treated ones more strongly than untreated ones). It also interacts with H and Lewis chains in the saliva of "secretors" and "nonsecretors." RSL purification is easier than that of PA-IIL since R. solanacearum extracts do not contain a galactophilic PA-IL-like activity. Mass spectrometry and 35 N-terminal amino acid sequencing enabled identification of the RSL protein (subunit approximately 9.9 kDa, approximately 90 amino acids) in the complete genome sequence of this bacterium. Despite the greater phylogenetic proximity of R. solanacearum to P. aeruginosa, and the presence of a PA-IIL-like gene in its genome, the RSL structure is not related to that of PA-IIL, but to that of the fucose-binding lectin of the mushroom (fungus) Aleuria aurantia, which like the two bacteria is a soil inhabitant. PMID:12153735

  17. Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides

    PubMed Central

    Alvarez-Manilla, Gerardo; Warren, Nicole L.; Atwood, James; Orlando, Ron; Dalton, Stephen; Pierce, Michael

    2011-01-01

    Numerous studies have recently focused on the identification of specific glycan biomarkers; given the important roles that protein linked glycans play, for example, during development and disease progression. The identification of protein glycobiomarkers, which are part of a very complex proteome, has involved the use of fractionation techniques such as lectin affinity chromatography. In this study, the glycoproteomic characterization of pluripotent murine embryonic stem cells (ES) and from ES cells that were differentiated into embroid bodies (EB) was performed using immobilized Concanavalin A (ConA). This procedure allowed the isolation of glycopeptides that express biantennary and hybrid N-linked structures (ConA2 fraction) as well as high mannose glycans (ConA3 fraction), that were abundant in both ES and EB stages. A total of 293 unique N-linked glycopeptide sequences (from 180 glycoproteins) were identified in the combined data sets from ES and EB cells. Of these glycopeptides, a total of 119 sequences were identified exclusively in only one of the lectin bound fractions, (24 in the ES-ConA2, 15 in the ES-ConA3, 16 in the EB-ConA2 and 64 in the EB-ConA3). Results from this study allowed the identification of individual N-glycosylation sites of proteins that express specific glycan types. The absence of some of these lectin bound glycopeptides in a cell stage suggested that they were derived from proteins that were either expressed exclusively on a defined developmental stage, or were expressed in both cell stages but carried the lectin bound oligosaccharides in only one of them. Therefore, these lectin bound glycopeptides can be considered as stage specific glycobiomarkers. PMID:19545112

  18. Subcellular site of lectin synthesis in developing rice embryos

    PubMed Central

    Stinissen, Hetty M.; Peumans, Willy J.; Chrispeels, Maarten J.

    1984-01-01

    Embryos of developing rice (Oryza sativa L. cv. Koshihikari) caryopses which actively synthesize lectin were labelled with [35S]cysteine for different times and newly synthesized rice lectin was isolated by affinity chromatography. Gel filtration of embryo extracts on Sepharose-4B indicated that a large portion of the labelled lectin was associated with the particulate fraction. Experiments with detergent indicated that this lectin was sequestered within organelles. When extracts of pulse-labelled embryos were fractionated on isopycnic sucrose gradients, this detergent-released lectin banded in the same density-region as the endoplasmic reticulum (ER) marker enzyme NADH-cytochrome c reductase. Both radioactivity in rice lectin and the enzyme activity shifted towards a higher density in the presence of 2 mM Mg acetate, indicating that the labelled lectin was associated with the rough ER. The ER-bound lectin could be chased from this organelle when tissue was incubated in unlabelled cysteine following a 1 h pulse of labelled cysteine. Radioactivity chased out of the ER with a half-life of ˜4 h and accumulated in the soluble fraction. In the ER the lectin was present as a polypeptide with mol. wt. 23 000, while in the soluble fraction it occurred as polypeptides with mol. wt. 18 000, 10 000 and 8000. The rice lectin in the ER is capable of binding carbohydrates since it binds readily to the affinity gels. It is associated into dimers with an approximate mol. wt. of 46 000. The results show that newly synthesized rice lectin is transiently sequestered within the ER before further transport and processing take place. ImagesFig. 5. PMID:16453545

  19. Atomic visualization of a flipped-back conformation of bisected glycans bound to specific lectins

    PubMed Central

    Nagae, Masamichi; Kanagawa, Mayumi; Morita-Matsumoto, Kana; Hanashima, Shinya; Kizuka, Yasuhiko; Taniguchi, Naoyuki; Yamaguchi, Yoshiki

    2016-01-01

    Glycans normally exist as a dynamic equilibrium of several conformations. A fundamental question concerns how such molecules bind lectins despite disadvantageous entropic loss upon binding. Bisected glycan, a glycan possessing bisecting N-acetylglucosamine (GlcNAc), is potentially a good model for investigating conformational dynamics and glycan-lectin interactions, owing to the unique ability of this sugar residue to alter conformer populations and thus modulate the biological activities. Here we analyzed bisected glycan in complex with two unrelated lectins, Calsepa and PHA-E. The crystal structures of the two complexes show a conspicuous flipped back glycan structure (designated ‘back-fold’ conformation), and solution NMR analysis also provides evidence of ‘back-fold’ glycan structure. Indeed, statistical conformational analysis of available bisected and non-bisected glycan structures suggests that bisecting GlcNAc restricts the conformations of branched structures. Restriction of glycan flexibility by certain sugar residues may be more common than previously thought and impinges on the mechanism of glycoform-dependent biological functions. PMID:26971576

  20. An optimized approach for enrichment of glycoproteins from cell culture lysates using native multi-lectin affinity chromatography.

    PubMed

    Lee, Ling Y; Hincapie, Marina; Packer, Nicolle; Baker, Mark S; Hancock, William S; Fanayan, Susan

    2012-09-01

    Lectins are capable of recognizing specific glycan structures and serve as invaluable tools for the separation of glycosylated proteins from nonglycosylated proteins in biological samples. We report on the optimization of native multi-lectin affinity chromatography, combining three lectins, namely, concanavalin A, jacalin, and wheat germ agglutinin for fractionation of cellular glycoproteins from MCF-7 breast cancer lysate. We evaluated several conditions for optimum recovery of total proteins and glycoproteins such as low pH and saccharide elution buffers, and the inclusion of detergents in binding and elution buffers. Optimum recovery was observed with overnight incubation of cell lysate with lectins at 4°C, and inclusion of detergent in binding and saccharide elution buffers. Total protein and bound recoveries were 80 and 9%, respectively. Importantly, we found that high saccharide strength elution buffers were not necessary to release bound glycoproteins. This study demonstrates that multi-lectin affinity chromatography can be extended to total cell lysate to investigate the cellular glycoproteome. PMID:22997032

  1. Cyanovirin-N inhibits mannose-dependent Mycobacterium-C-type lectin interactions but does not protect against murine tuberculosis

    PubMed Central

    Driessen, Nicole N.; Boshoff, Helena I.M.; Maaskant, Janneke J.; Gilissen, Sebastiaan A.C.; Vink, Simone; van der Sar, Astrid M.; Vandenbroucke-Grauls, Christina M.J.E.; Bewley, Carole A.; Appelmelk, Ben J.; Geurtsen, Jeroen

    2012-01-01

    Cyanovirin-N (CV-N) is a mannose-binding lectin that inhibits HIV-1 infection by blocking mannose-dependent target-cell entry via C-type lectins. Like HIV-1, Mycobacterium tuberculosis expresses mannosylated surface-structures and exploits C-type lectins to gain cell-access. Here we investigated whether CV-N, as for HIV-1, can inhibit M. tuberculosis infection. We found that CV-N specifically interacted with mycobacteria by binding to the mannose-capped lipoglycan lipoarabinomannan. Furthermore, CV-N competed with the C-type lectins DC-SIGN and mannose receptor for ligand binding and inhibited the binding of M. tuberculosis to dendritic cells but, unexpectedly, not to macrophages. Subsequent in vivo infection experiments in a mouse model demonstrated that CV-N, despite its activity, did not inhibit or delay M. tuberculosis infection. This outcome argues against a critical role for mannose-dependent C-type lectin interactions during initial stages of murine M. tuberculosis infection and suggests that, depending on the circumstances, M. tuberculosis can productively infect cells using different modes of entry. PMID:22942435

  2. Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of Nontypeable Haemophilus influenzae and Recognition by Host Lectins.

    PubMed

    Kalograiaki, Ioanna; Euba, Begoña; Proverbio, Davide; Campanero-Rhodes, María A; Aastrup, Teodor; Garmendia, Junkal; Solís, Dolores

    2016-06-01

    Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface. PMID:27176788

  3. Deciphering the Glycan Preference of Bacterial Lectins by Glycan Array and Molecular Docking with Validation by Microcalorimetry and Crystallography

    PubMed Central

    Topin, Jeremie; Arnaud, Julie; Sarkar, Anita; Audfray, Aymeric; Gillon, Emilie; Perez, Serge; Jamet, Helene; Varrot, Annabelle; Imberty, Anne; Thomas, Aline

    2013-01-01

    Recent advances in glycobiology revealed the essential role of lectins for deciphering the glycocode by specific recognition of carbohydrates. Integrated multiscale approaches are needed for characterizing lectin specificity: combining on one hand high-throughput analysis by glycan array experiments and systematic molecular docking of oligosaccharide libraries and on the other hand detailed analysis of the lectin/oligosaccharide interaction by x-ray crystallography, microcalorimetry and free energy calculations. The lectins LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria are part of the virulence factors used by the pathogenic bacteria to invade the targeted host. These two lectins are not related but both recognize fucosylated oligosaccharides such as the histo-blood group oligosaccharides of the ABH(O) and Lewis epitopes. The specificities were characterized using semi-quantitative data from glycan array and analyzed by molecular docking with the Glide software. Reliable prediction of protein/oligosaccharide structures could be obtained as validated by existing crystal structures of complexes. Additionally, the crystal structure of BambL/Lewis x was determined at 1.6 Å resolution, which confirms that Lewis x has to adopt a high-energy conformation so as to bind to this lectin. Free energies of binding were calculated using a procedure combining the Glide docking protocol followed by free energy rescoring with the Prime/Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method. The calculated data were in reasonable agreement with experimental free energies of binding obtained by titration microcalorimetry. The established predictive protocol is proposed to rationalize large sets of data such as glycan arrays and to help in lead discovery projects based on such high throughput technology. PMID:23976992

  4. tRNA[superscript His] guanylyltransferase (THG1), a unique 3;#8242;-5;#8242; nucleotidyl transferase, shares unexpected structural homology with canonical 5;#8242;-3;#8242; DNA polymerases

    SciTech Connect

    Hyde, Samantha J.; Eckenroth, Brian E.; Smith, Brian A.; Eberley, William A.; Heintz, Nicholas H.; Jackman, Jane E.; Doublié, Sylvie

    2011-11-07

    All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA{sup His} guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-{angstrom} crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.

  5. Characterization of mannose binding lectin from channel catfish Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannose-binding lectin (MBL) is an important component of innate immunity capable of activating the lectin pathway of the complement system. A MBL gene was isolated from channel catfish (Ictalurus punctatus). The deduced protein contains a canonical collagen-like domain, a carbohydrate recognition d...

  6. Modulation of glycan detection on specific glycoproteins by lectin multimerization

    PubMed Central

    Cao, Zheng; Partyka, Katie; McDonald, Mitchell; Brouhard, Elizabeth; Hincapie, Marina; Brand, Randall E.; Hancock, William S.; Haab, Brian B.

    2013-01-01

    Improved methods for studying glycans could spur significant advances in the understanding and application of glycobiology. The use of affinity reagents such as lectins and glycan-binding antibodies is a valuable complement to methods involving mass spectrometry and chromatography. Many lectins, however, are not useful as analytic tools due to low affinity in vitro. As an approach to increasing lectin avidity to targeted glycans, we tested the use of lectin multimerization. Several biotinylated lectins were linked together through streptavidin interactions. The binding of certain lectins for purified glycoproteins and glycoproteins captured directly out of biological solutions was increased using multimerization, resulting in the detection of lower concentrations of glycoprotein than possible using monomeric detection. The analysis of glycoproteins in plasma samples showed that the level of binding enhancement through multimerization was not equivalent across patient samples. Wheat germ agglutinin (WGA) reactive glycans on fibronectin and thrombospondin-5 were preferentially bound by multimers in pancreatic cancer patient samples relative to control samples, suggesting a cancer-associated change in glycan density that could be detected only through lectin multimerization. This strategy could lead to the more sensitive and informative detection of glycans in biological samples and a broader spectrum of lectins that are useful as analytical reagents. PMID:23286506

  7. Modulation of glycan detection on specific glycoproteins by lectin multimerization.

    PubMed

    Cao, Zheng; Partyka, Katie; McDonald, Mitchell; Brouhard, Elizabeth; Hincapie, Marina; Brand, Randall E; Hancock, William S; Haab, Brian B

    2013-02-01

    Improved methods for studying glycans could spur significant advances in the understanding and application of glycobiology. The use of affinity reagents such as lectins and glycan-binding antibodies is a valuable complement to methods involving mass spectrometry and chromatography. Many lectins, however, are not useful as analytic tools due to low affinity in vitro. As an approach to increasing lectin avidity to targeted glycans, we tested the use of lectin multimerization. Several biotinylated lectins were linked together through streptavidin interactions. The binding of certain lectins for purified glycoproteins and glycoproteins captured directly out of biological solutions was increased using multimerization, resulting in the detection of lower concentrations of glycoprotein than possible using monomeric detection. The analysis of glycoproteins in plasma samples showed that the level of binding enhancement through multimerization was not equivalent across patient samples. Wheat germ agglutinin (WGA) reactive glycans on fibronectin and thrombospondin-5 were preferentially bound by multimers in pancreatic cancer patient samples relative to control samples, suggesting a cancer-associated change in glycan density that could be detected only through lectin multimerization. This strategy could lead to the more sensitive and informative detection of glycans in biological samples and a broader spectrum of lectins that are useful as analytical reagents. PMID:23286506

  8. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential

    PubMed Central

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C.; Müller, Werner E. G.

    2015-01-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  9. Glycan profiling of endometrial cancers using lectin microarray.

    PubMed

    Nishijima, Yoshihiro; Toyoda, Masashi; Yamazaki-Inoue, Mayu; Sugiyama, Taro; Miyazawa, Masaki; Muramatsu, Toshinari; Nakamura, Kyoko; Narimatsu, Hisashi; Umezawa, Akihiro; Mikami, Mikio

    2012-10-01

    Cell surface glycans change during the process of malignant transformation. To characterize and distinguish endometrial cancer and endometrium, we performed glycan profiling using an emerging modern technology, lectin microarray analysis. The three cell lines, two from endometrial cancers [well-differentiated type (G1) and poorly differentiated type (G3)] and one from normal endometrium, were successfully categorized into three independent groups by 45 lectins. Furthermore, in cancer cells, a clear difference between G1 and G3 type was observed for the glycans recognized with six lectins, Ulex europaeus agglutinin I (UEA-I), Sambucus sieboldiana agglutinin (SSA), Sambucus nigra agglutinin (SNA), Trichosanthes japonica agglutinin I (TJA-I), Amaranthus caudatus agglutinin (ACA), and Bauhinia purpurea lectin (BPL). The lectin microarray analysis using G3 type tissues demonstrated that stage I and stage III or IV were distinguished depending on signal pattern of three lectins, Dolichos biflorus agglutinin (DBA), BPL, and ACA. In addition, the analysis of the glycans on the ovarian cancer cells showed that only anticancer drug-sensitive cell lines had almost no activities to specific three lectins. Glycan profiling by the lectin microarray may be used to assess the characteristics of tumors and potentially to predict the success of chemotherapy treatment. PMID:22957961

  10. 21 CFR 864.9550 - Lectins and protectins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... antigens. These substances are used to detect blood group antigens for in vitro diagnostic purposes. (b...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That Manufacture Blood and Blood Products § 864.9550 Lectins and protectins. (a) Identification. Lectins and protectins...

  11. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  12. Assessment of lectin inactivation by heat and digestion.

    PubMed

    Pusztai, A; Grant, G

    1998-01-01

    Proteins/glycoproteins from plants, particularly lectins, are more resistant to heat denaturation than animal proteins (1, 2). With legume seeds, whose lectin content is appreciable, this presents potentially serious problems in nutritional practice. Therefore, before they can be used safely, legume-based food/ feeds usually require thorough and expensive heat processing to inactivate antinutritive components. Indeed, dry or moist heating of seeds at 70°C for several h has little or no effect on their lectin activity (Fig. 1) and treatment at much higher temperatures is needed to inactivate the biological and antinutritional effects of legume lectins (1, 2). The safety aspect is even more serious with some monocot lectins, such as wheatgerm agglutinin or a number of oilseed lectins, such as peanut agglutinin and many others because they are extremely heat stable and normal cooking or other conventional heat treatments may fail to inactivate them (3) Thus, the best way to avoid potential harmful effects of these heat-resistant lectins is to limit their dietary intake to a minimum. Fig. 1. Loss of lectin activity during aqueous heat treatment of soybean at various temperatures. PMID:21374488

  13. Lectin-binding properties of Aeromonas caviae strains

    PubMed Central

    Rocha-de-Souza, Cláudio M.; Hirata-Jr, Raphael; Mattos-Guaraldi, Ana L.; Freitas-Almeida, Angela C.; Andrade, Arnaldo F. B.

    2008-01-01

    The cell surface carbohydrates of four strains of Aeromonas caviae were analyzed by agglutination and lectin-binding assays employing twenty highly purified lectins encompassing all sugar specificities. With the exception of L-fucose and sialic acid, the sugar residues were detected in A. caviae strains. A marked difference, however, in the pattern of cell surface carbohydrates in different A. caviae isolates was observed. Specific receptors for Tritricum vulgaris (WGA), Lycopersicon esculentum (LEL) and Solanum tuberosum (STA) (D-GlcNAc-binding lectins) were found only in ATCC 15468 strain, whereas Euonymus europaeus (EEL, D-Gal-binding lectin) sites were present exclusively in AeQ32 strain, those for Helix pomatia (HPA, D-GalNAc-binding lectin) in AeC398 and AeV11 strains, and for Canavalia ensiformes (Con A, D-Man-binding lectin) in ATCC 15468, AeC398, AeQ32 and AeV11 strains, after bacterial growing at 37°C. On the other hand, specific receptors for WGA and EEL were completely abrogated growing the bacteria at 22°C. Binding studies with 125I- labeled lectins from WGA, EEL and Con A were performed. These assays essentially confirmed the selectivity, demonstrated in the agglutination assays of these lectins for the A. caviae strains. PMID:24031204

  14. Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of architecture on reactivity to a lectin

    PubMed Central

    Xiao, Qi; Zhang, Shaodong; Wang, Zhichun; Sherman, Samuel E.; Moussodia, Ralph-Olivier; Peterca, Mihai; Muncan, Adam; Williams, Dewight R.; Hammer, Daniel A.; Vértesy, Sabine; André, Sabine; Gabius, Hans-Joachim; Klein, Michael L.; Percec, Virgil

    2016-01-01

    A library of eight amphiphilic Janus glycodendrimers (GDs) with d-mannose (Man) headgroups, a known routing signal for lectin-mediated transport processes, was constructed via an iterative modular methodology. Sequence-defined variations of the Janus GD modulate the surface density and sequence of Man after self-assembly into multilamellar glycodendrimersomes (GDSs). The spatial mode of Man presentation is decisive for formation of either unilamellar or onion-like GDS vesicles. Man presentation and Janus GD concentration determine GDS size and number of bilayers. Beyond vesicle architecture, Man topological display affects kinetics and